Gaseous fuel combustion

Information

  • Patent Grant
  • 9890689
  • Patent Number
    9,890,689
  • Date Filed
    Thursday, October 29, 2015
    9 years ago
  • Date Issued
    Tuesday, February 13, 2018
    6 years ago
Abstract
In an internal combustion engine, gaseous fuel is injected in a first injection through a pre-combustion chamber into the combustion chamber to mix with air in the combustion chamber. The pre-combustion chamber has a jet aperture in fluid communication between the pre-combustion chamber and the combustion chamber. Mixed gaseous fuel and air is then ingested into the pre-combustion chamber from the combustion chamber and ignited. In a second injection, injecting gaseous fuel into the pre-combustion chamber and expelling, with the second injection, ignited gaseous fuel and air from the pre-combustion chamber through the jet aperture and into the combustion chamber as a flaming jet with a core of gaseous fuel.
Description
BACKGROUND

The concepts herein relate to gaseous fuel combustion for internal combustion engines.


There is a push to utilize natural gas as an engine fuel due to its low cost. Relative to diesel fuel, for instance, natural gas is a lower cost fuel per energy. To take advantage of the lower cost of natural gas, many engines are designed specifically to run on natural gas. Additionally, some engines originally designed to use diesel fuel can be retrofitted to use natural gas as fuel.


Diesel engines have high compression ratios and use compression ignition to ignite the diesel fuel charge. Natural gas is typically ignited with a spark plug. However, the ignition energy from the spark plug does not always effectively ignite the natural gas at high compression ratios, particularly at lean operating conditions. For example, the high velocity of the direct-injected natural gas tends to quench the developing flame kernel. To remedy this, some systems forgo a spark plug and use diesel fuel as a pilot fuel. In other words, these systems inject a small amount of diesel fuel as a pilot fuel early in the compression cycle that auto-ignites from the compression. Natural gas is then by injected and ignited by the combusting pilot fuel. However, a natural gas system using diesel as a pilot fuel requires two fuel systems and associated piping, storage, injectors, etc., which can increase cost, size, complexity and makes retrofitting difficult.





DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic side cross-sectional view of a portion of an internal combustion engine system;



FIG. 2 is a schematic of an example engine system;



FIG. 3 is a timing diagram of engine cycle;



FIGS. 4A-4D are sequential cross-sectional views of a portion of an internal combustion engine during an engine cycle; and



FIG. 5 shows a diagram of the heat release rate of an example combustion implementing multiple ignition events.





Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION


FIG. 1 shows a cross-section of a portion of an example internal combustion engine system 100. The example engine system 100 includes an internal combustion engine 101 that is a reciprocating engine and includes a head 102, a block 122, and a piston 104. The piston 104 is located inside a cylinder defined inside the block 122. The piston 104 is carried to reciprocate inside the cylinder during engine operation and its movement drives a crank (not shown) and movement of the crank drives the piston 104. A main combustion chamber 106 is a volume located inside the cylinder between the head 102 and the piston 104, and is bounded by the block 122. FIG. 1 is a cross-section of one piston 104 in a cylinder. The engine 101, however, can include one, two or more similar pistons 104 in a cylinder coupled to the crank.


The example internal combustion engine 101 includes an air intake passage 108 with intake valve 110 and an exhaust passage 112 with exhaust valve 114. The passages 108, 112 are in the head 102 adjacent to the main combustion chamber 106, and the valves 110, 114 form part of the walls of the main combustion chamber 106. The intake valve 110 opens to admit air and a fuel injector 125 operates to inject fuel to form the air/fuel mixture in the main combustion chamber 106. After combustion, the exhaust valve 114 opens to exhaust combustion residuals out of the main combustion chamber 106 and into the exhaust passage 112. Although the concepts herein are described herein with respect to a reciprocating internal combustion engine, the concepts could be applied to other internal combustion engine configurations.


The example internal combustion engine 101 includes an example engine fuel injector-igniter assembly 116. The engine fuel injector-igniter assembly 116 includes a fuel injector 125 and an example igniter plug 124. The fuel injector 125 is arranged for direct injection, meaning that the injector 125 injects fuel directly into the combustion chamber (here, the main combustion chamber 106 and a pre-combustion chamber 120), rather than into or upstream from the air intake passage 108. In certain instances, the engine 101 can additionally include an injector or other fueling device, not arranged for direct injection, that is coupled to a source of gaseous fuel to introduce the fuel into or upstream from the air intake passage 108.


The example injector-igniter assembly 116 is a generally elongate enclosure located in the head 102 and is threadingly and/or otherwise coupled to the head 102. In some instances, the injector-igniter assembly 116 can extend into the main combustion chamber 106, be flush with a wall of combustion chamber 106, or be recessed from a wall of main combustion chamber 106. The example igniter plug 124 is received inside the example injector-igniter assembly 116 and is coupled to the injector-igniter assembly 116 threadingly and/or otherwise. The injector-igniter assembly 116 defines an outer enclosure around the igniter plug 124 and the fuel injector 125.


A pre-combustion chamber 120 encloses an outlet of the fuel injector 125 and the igniter 124. FIG. 1 shows the pre-combustion chamber 120 as an outer chamber inside the injector-igniter assembly 116 adjacent to but separate from the main combustion chamber 106. However, in some instances, the pre-combustion chamber 120 can be formed in the head 102 itself and the injector-igniter assembly 116 can be omitted or the pre-combustion chamber 120 can be integrated with the igniter plug 124 (e.g., in a common or conjoined housing or enclosure). The pre-combustion chamber 120 is shown having a generally symmetrical cylindrical shape about the centerline of the injector-igniter assembly 116, but in other instances the pre-chamber 120 could be an asymmetrical shape. In some instances, the centerline of the pre-chamber 120 coincides with the centerline of the injector-igniter assembly 116, but in other instances the pre-chamber is offset or at a non-parallel angle relative to the centerline of the injector-igniter assembly 116.


The example injector-igniter assembly 116 includes jet apertures 118a-c. The jet apertures 118a-c are in fluid communication between the interior of the pre-chamber 120 and the exterior of the pre-chamber 120. Three jet apertures 118a-c are visible in this cross section, yet fewer or more could be provided. The jet apertures 118a-c converge to a central passage 126 that opens into the pre-combustion chamber 120. The central passage 126 is an axial interior passage that extends from jet apertures 118a-c, along the centerline of the injector-igniter assembly 116, to the pre-combustion chamber 120. The central passage 126 channels flow along the centerline of the injector-igniter assembly 116, and as shown, the greatest transverse dimension of the passage 126 is smaller than the greatest transverse dimension of the remainder of the pre-combustion chamber 120. The jet apertures 118a-c can number one or more, including one or more that are laterally oriented (e.g., jet apertures 118a-b) and/or one or more that are axially oriented (e.g., jet aperture 118c), and can be located on the injector-igniter assembly 116 in a symmetric or asymmetric pattern. The jet apertures 118a-c allow charge, flame, and residuals to flow between the injector-igniter assembly 120 and the main combustion chamber 106. As discussed in more detail below, air/fuel mixture from combustion chamber 106 is ingested into the precombustion chamber 120 through the jet apertures 118a-c and the central passage 126 operates to channel the flow along the centerline of the injector-igniter assembly 116 to the igniter plug 124. In certain instances, the central passage 126 channels the flow of air/fuel mixture directly into the ignition gap of the igniter plug 124 and/or through a center jet aperture of an enclosure around the ignition gap of the igniter plug 124. Then, after the air/fuel mixture in the pre-chamber 120 is ignited, the jet apertures 118a-c and central passage 126 operate as jet passages to nozzle combusting air/fuel mixture from the pre-chamber 120 into divergent flame jets that reach deep into the main combustion chamber 106 and ignite the fuel in the main combustion chamber 106.


The fuel injector 125 is coupled to a fuel source (not shown) of one or more gaseous fuels (e.g., gaseous methane, natural gas, biogas, landfill gas, propane or other gaseous fuels or short chain hydrocarbons referred to as fuel gas) and is configured to directly inject the gaseous fuel into the pre-chamber 120 during the compression stroke of the piston 104. The lateral jet apertures 118a-b can be oriented more laterally than axially or at a 45 degree angle to axially to reduce amount of fuel injected into the main combustion chamber 106 that is directed into or collects in the corners or crevices at the interface between the piston 104 and the combustion chamber 106. Additionally or alternatively, the diameter of the axial jet aperture 118c can be made relatively larger than the diameters of the lateral jet apertures 118a-b, so that a smaller portion of the injected fuel flows through each of the lateral jet apertures 118a-b than through the central axial passage 118c to distribute the fuel more homogenously in the main combustion chamber 106.


The igniter plug 124 is a device configured to initiate a flame kernel to ignite the air/fuel mixture in the combustion chamber 106, such as a spark plug, hot surface igniter, laser igniter, and/or other type of igniter. In some implementations, the igniter plug 124 includes an additional enclosure separate from the pre-chamber 120 that forms a chamber enclosing the location of ignition. Some examples of igniter plugs that could be used as igniter plug 124 are described in US 2014/0190437, entitled “Quiescent Chamber Hot Gas Igniter,” and U.S. Pat. No. 8,584,648, entitled “Controlled Spark Ignited Flame Kernel Flow.” Other configurations of igniter are also within the concepts herein.


The example engine system 100 also includes a controller 150 that is communicatively coupled to the injector-igniter assembly 116. The controller 150 can send signals to the injector-igniter assembly 116 to inject fuel through the fuel injector 125 into the pre-combustion chamber 120. In some implementations, the controller 150 signals the injector-igniter assembly 116 to inject fuel multiple times as multiple separate fuel injection events. The controller 150 can time the signals such that the fuel is injected for a particular duration of time. The controller 150 can also signal the igniter plug 124 to ignite the mixed fuel and air in the pre-chamber 120. The controller 150 can send signals of different types in any order. For example, the controller 150 can send one or more signals to inject fuel and send one or more of signals to operate the igniter. In some implementations, the controller 150 simultaneously sends signals to inject fuel and signals to ignite. The controller 150 can be included as part of the engine system 100 or as part of the injector-igniter assembly 116 or as part of another system.



FIG. 2 shows a schematic of controller 150 that is communicatively coupled to an example engine 101. The controller 150 can send signals to the engine 101 to trigger fuel injection and/or ignition events. The controller 150 includes a memory 252 and a processor 254. The memory 252 is a computer-readable medium that stores instructions, such as instructions to perform the methods described herein, that are operable to be performed by the processor 254. The processor 254, for example, can be a computer, circuitry, a microprocessor, or another type of data processing apparatus. In some implementations, some or all of the controller 150 is integrated with the engine system 100.


The example engine fuel injector-igniter assembly 116 can enable the engine 100 to operate using a gaseous fuel without a second fuel (e.g., pilot fuel) of a different type. For example, the injector-igniter assembly 116 can allow the engine 101 to operate using a gaseous fuel (e.g., natural gas) without also using a diesel fuel as a pilot fuel. In some cases, the injector-igniter assembly 116 can be installed or retrofit onto a diesel engine to enable the engine to operate using all gaseous fuel. For example, the head of a diesel engine could be replaced with another head that includes an injector-igniter assembly such as injector-igniter assembly 116. Alternately, an injector-igniter assembly 116 could replace the injection system of a diesel engine, or an injector-igniter assembly 116 could be installed along with an existing injection system. In this manner, an all-diesel engine or a partly-diesel engine can be converted to an all-gaseous-fuel engine by using an injector-igniter assembly while retaining the diesel compression ratio during engine operation.


Referring now to FIGS. 3 and 4A-D, the injector-igniter assembly injects gaseous fuel at multiple separate instances to facilitate combustion. FIG. 3 shows a timing diagram of an example sequence 300 of a portion of an engine cycle including fuel injections 302, 306, 310 and an ignition event 304. Were it shown in full, in a four stroke engine, the entire engine cycle includes intake of air, compression of the combustion chamber contents, a power stroke where the piston in forced downward by combustion of the air/fuel charge, and exhaust where the contents of the combustion chamber are exhausted. The fuel injections 302, 306, 310 and the ignition event 304 can, for example, be triggered by signals from a controller 150. FIGS. 4A-D show portions of a cycle of an engine 400 that is substantially similar to example engine 101 shown in FIG. 1. For example, the engine 400 includes an injector-igniter assembly 410 that includes a gaseous fuel injector 412 and an igniter plug 414. The engine 400 also includes a pre-combustion chamber 430 that is fluidly connected to the combustion chamber 402 through a central passage 432 and jet apertures 426.


A first fuel injection 302 through the injector 412 occurs before the ignition event 304 and before the piston has reached top dead center 308 to charge the combustion chamber with a majority of its total fuel charge for the engine cycle. At this stage, the total air charge for the engine cycle has been admitted into the combustion chamber or is being admitted, and the fuel flows out of the pre-combustion chamber through the jet apertures 426 to mix with the air in the main combustion chamber. Alternatively, or in combination with an injection through injector 412, the first fuel injection 302 can be introduced through the air intake, for example, via a fuel injector or other fueling device that introduces fuel into or upstream of the air intake. In certain instances, the first ignition event 302 begins at −150 degrees from compression top dead center 308 (i.e., where the piston is at its highest point on its compression stroke), and then injection of fuel is ceased. However, the first ignition event 302 can occur at other times relative to compression top dead center 308. The quantity of fuel injected during the first fuel injection 302 is intended to provide a majority of the fuel charge for the engine cycle, yet keep the resulting air/fuel mixture below the pre-ignition threshold. In certain instances, 60%, 70%, 80%, or some other majority fraction of the total injected fuel in one engine cycle is injected. In certain instances, the air/fuel ratio in the main combustion chamber is lambda 1.5 or higher, where lambda is the ratio of ratio the actual air/fuel ratio to the stoichiometric ratio. FIG. 4A shows the portion of the engine 400 cycle at which the fuel injected at the first fuel injection 302 jets through the pre-combustion chamber 430 into the combustion chamber 402 through the jet apertures 426. As the first fuel injection 302 occurs before the ignition event 304, the fuel jetted into the combustion chamber 430 combines and mixes with the air in the combustion chamber 402. Because the resulting air/fuel mixture is below the pre-ignition threshold, it does not substantially pre-ignite due to heat and compression in the combustion chamber.


The first fuel injection 302 is phased such that the piston movement in compression drives the air/fuel mixture to be ingested from the combustion chamber 402 through the jet apertures 426 and into the pre-chamber 430. Some residual fuel from the first injection 302 remains in the pre-chamber 430 and enriches the air/fuel mixture ingested from the main combustion chamber. FIG. 4B shows example engine 400 during the compression cycle of the engine cycle in which the air/fuel mixture is driven into the pre-chamber 430. The central passage 432 channels, as shown in FIGS. 4A-D, the ingested air/fuel mixture to impinge on the igniter plug 414 and causes the incoming air/fuel mixture to turbulently circulate and mix in the pre-combustion chamber 430. In some cases, the jet apertures 426 can meet with the central passage 432 at an angle that smoothly transitions incoming flow through the jet apertures 426 into the central passage 432, for example, to reduce velocity losses into the pre-chamber 430.


At some time after the first fuel injection 302 and before the piston reaches top dead center 308, an ignition event 304 is triggered to begin igniting the air/fuel mixture in the pre-chamber 430. The ignition of the air/fuel mixture in the pre-chamber 430 is protected from the high velocity in the main combustion chamber. In certain instances, the ignition event can occur at −10 degrees (or some other time) from top dead center 308. With reference to engine 400 in FIGS. 4A-C, the ignition event 304 ignites the mixed gaseous fuel and air ingested into the pre-combustion chamber 430 from the combustion chamber 402. The increased pressure created in the pre-chamber 430 by the combustion causes the combusting air/fuel mixture to jet out the jet apertures 426 as flames and into the combustion chamber 402. The air/fuel mixture ignited in the pre-chamber 430 producing flame jets 424a, 424b operates like a “pilot charge” that ignites the mixture in the main combustion chamber.


After the ignition event 304, a second fuel injection 306 is triggered to provide additional fuel to the flaming jets produced by igniting the air/fuel mixture in the pre-chamber 430. The second fuel injection 306 enriches the mixture in the pre-chamber 430 for improved ignitability. The second fuel injection 306 occurs before compression top dead center 308, quickly after the ignition event 304, and contains a fraction of the remaining fuel to be injected during a cycle. After the second fuel injection 306, injection of fuel is paused to allow the flame in the pre-chamber 430 and jetting from the pre-chamber 430 to stabilize and grow. The amount of fuel in the second injection 306 is selected to be small enough that it tends to not quench the combusting mixture in the pre-chamber 430. In certain instances, if the first fuel injection 302 contains 70% of the total fuel to be injected during a cycle, the second fuel injection 306 may contain only 5% of the fuel to be injected. These are example proportions of fuel, of course; actual proportions of fuel can depend on the engine, the application, the desired combustion characteristics, or other factors. In certain instances, the second injection occurs at −5 degrees from top dead center 308 as shown in FIG. 3.



FIG. 4C shows the example engine 400 just after the second fuel injection 306. The second fuel injection 306 has injected fuel 420 behind the combustion air/fuel mixture 422, also aiding in expelling a portion of the ignited and air/fuel mixture 422 from the pre-combustion chamber through the jet apertures 426. FIG. 4D shows the engine 400 after the fuel 420 from the second fuel injection 306 has filled the pre-chamber and driven the flaming jets 424a, 424b out of the pre-chamber. As the fuel 420 flows through the jet apertures 426, the core of the flaming jets 424a, 424b are filled with the un-combusted fuel 420 from the second fuel injection 306. The flaming jets 424a, 424b ignite the cores of fuel 420 as a diffusion flame. Diffusion combustion is a relatively slow combustion, as the combustion is limited by the rate of diffusion of the air into the fuel, and thus can provide a slower, more controlled combustion event. The slower diffusion combustion occurring in the flaming jets 424a, 424b allows the flaming jets to combust more slowly to be more robust, stronger flames than flaming jets without a core of air/fuel mixture and diffusion combustion.


A third fuel injection 310 is then triggered to provide the remainder of the total fuel charge for the engine cycle. The third fuel injection 310 can occur after the piston has passed compression top dead center 308. In certain instances, the third fuel injection 310 occurs at +5 degrees from top dead center 308 as shown in FIG. 3. In some implementations, the third fuel injection 310 injects a quantity of fuel less than that of the first fuel injection 302 but larger than that of the second fuel injection 306. The third fuel injection 310 injects the remainder of the fuel used in a cycle of the engine, such that the first injection 302, second injection 306, and third injection 310 encompasses all of the gaseous fuel injected during a cycle of the engine. For example, the first fuel injection 302 can contain 70% of the total fuel to be injected, the second fuel injection 306 can contain 5% of the fuel, and the third fuel injection can contain the remaining 25% of the fuel. The third fuel injection 310 can be delayed a duration after the second fuel injection 306 (e.g., 5-10 crank angle degrees or another duration) to allow the flames to grow and move away from the injector 412. In certain instances, all or a portion of the third fuel injection 310 feeds the fuel core of the flaming jets 424a, 424b and then combusts in a diffusion flame.


In some implementations, the second and third injection 306, 310 events are combined into the second fuel injection 306 to provide benefits or characteristics of a third fuel injection 310, and a third fuel injection 310 is not used. In such an example, the second fuel injection 306 occurs after compression top dead center 308 and includes the remainder of the fuel injected during a cycle of the engine. For example, if the first fuel injection 302 contains 70% of the total fuel to be injected during a cycle, the second fuel injection 306 can contain the remaining 30% of the fuel.



FIG. 5 shows a diagram 500 of the heat release rate of an example combustion implementing multiple ignition events as described in FIG. 3 and as implemented in engine 100 and engine 400 with an injector-igniter assembly. The heat release rate curve 502 is plotted against the crank angle degrees of an engine cycle. The curve 502 shows that the heat release rate increases rapidly after the second fuel injection 306 that occurs at −5 degrees from top dead center 308. In particular, the heat release rate increases the most rapidly approximately between top dead center 308 and the third ignition event 310 at +5 degrees. The diagram 500 indicates that the use of multiple injection events and an injector-igniter assembly as described can enable rapid combustion of gaseous fuel used in a diesel engine.


A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. Accordingly, other implementations are within the scope of the following claims.

Claims
  • 1. A method of combusting gaseous fuel in a combustion chamber of an internal combustion engine, the method comprising: injecting, in a first injection, gaseous fuel into the internal combustion engine to mix with air in the combustion chamber, the internal combustion engine comprising a pre-combustion chamber having a jet aperture in fluid communication between the pre-combustion chamber and the combustion chamber;after the first injection, igniting, in the pre-combustion chamber, mixed gaseous fuel and air ingested into the pre-combustion chamber from the combustion chamber; andafter the igniting, injecting, in a second injection, gaseous fuel into the pre-combustion chamber and expelling, with the second injection, ignited gaseous fuel and air from the pre-combustion chamber through the jet aperture and into the combustion chamber as a flaming jet with a core of gaseous fuel.
  • 2. The method of claim 1, further comprising injecting, in a third injection after the second injection, gaseous fuel through the pre-combustion chamber into the combustion chamber.
  • 3. The method of claim 2, where the quantity of gaseous fuel injected in the first injection is larger than injected in the third injection, and the quantity of fuel injected in the third injection is larger than injected in the second injection.
  • 4. The method of claim 2, where the internal combustion engine is a reciprocating engine comprising a piston in the combustion chamber, and where injecting, in the third injection, gaseous fuel comprises injecting, in the third injection, gaseous fuel after the piston has passed compression top dead center.
  • 5. The method of claim 4, where injecting, in the second injection, gaseous fuel comprises injecting, in the second injection, gaseous fuel before the piston has passed compression top dead center.
  • 6. The method of claim 3, where the first, second and third injection comprise all of the gaseous fuel injected during a cycle of the engine.
  • 7. The method of claim 1, where a majority of the fuel injected in the first and second injection is injected in the first injection.
  • 8. The method of claim 1, where the engine is a reciprocating engine comprising a piston in the combustion chamber, and the first and second injections are injected before compression top dead center.
  • 9. The method of claim 1, where the flaming jet is diffusion combustion.
  • 10. The method of claim 1, where injecting, in a first injection, gaseous fuel into the internal combustion engine comprises injecting, in a first injection, gaseous fuel through the pre-combustion chamber into the internal combustion engine.
  • 11. A system, comprising: an engine fuel injector-igniter assembly adapted for installation to an engine in fluid communication with a combustion chamber of the engine, the injector-igniter assembly comprising an enclosure defining a pre-combustion chamber enclosing an outlet of a gaseous fuel injector and an igniter and comprising a jet aperture in fluid communication between the interior of the pre-combustion chamber and the exterior of the pre-combustion chamber;a controller adapted to communicatively couple to the injector-igniter assembly, the controller adapted to: signal the injector-igniter assembly to inject a first injection of gaseous fuel through the pre-combustion chamber into the combustion chamber via the jet aperture;after the first injection, signal the injector-igniter assembly to ignite, in the pre-combustion chamber, mixed gaseous fuel and air ingested into the pre-combustion chamber from the combustion chamber; andafter the ignition, signal the injector-igniter assembly to inject a second injection of gaseous fuel into the pre-combustion chamber and expel, with the second injection, ignited gaseous fuel and air from the pre-combustion chamber through the jet aperture and into the combustion chamber as a flaming jet with a core of gaseous fuel.
  • 12. The system of claim 11, where the controller is further adapted to signal the injector-igniter assembly to inject a third injection of gaseous fuel into the pre-combustion chamber, the third injection being a smaller quantity of fuel than the first injection and a greater quantity of fuel than the second injection.
  • 13. The system of claim 12, where the controller is adapted to signal the injector-igniter assembly to inject the first injection and second injection of gaseous fuel before compression top dead center and the third injection of gaseous fuel after top dead center.
  • 14. The system of claim 12, where the controller is adapted to inject all the fuel injected into the engine during a cycle in the first, second and third injections.
  • 15. The system of claim 11, where the injector-igniter assembly is generally elongate and the enclosure comprises a plurality of jet apertures, and where at least one of the jet apertures is oriented laterally and one of the jet apertures is oriented axially.
  • 16. The system of claim 11, where the enclosure defines an axial interior passage extending from a jet aperture to the remainder of the pre-combustion chamber, where the greatest transverse dimension of the passage is smaller than the greatest transverse dimension of the remainder of the pre-combustion chamber.
  • 17. A method, comprising: injecting gaseous fuel into an engine to mix with air in a main combustion chamber of the engine;after the injecting, igniting, in a pre-combustion chamber, mixed gaseous fuel and air ingested into the pre-combustion chamber from the main combustion chamber; andafter the igniting, injecting gaseous fuel into the pre-combustion chamber forming a flaming jet with a core of gaseous fuel in the main combustion chamber.
  • 18. The method of claim 16, comprising injecting gaseous fuel into the pre-combustion chamber to compete the total fuel charge supplied to the combustion chamber in a cycle of the engine.
  • 19. The method of claim 18, where injecting gaseous fuel into the pre-combustion chamber forming a flaming jet with a core of gaseous fuel in the main combustion chamber comprises injecting less gaseous fuel than in the first mentioned injecting.
US Referenced Citations (271)
Number Name Date Kind
892296 Oberhansli Jun 1908 A
1009867 Terry Nov 1911 A
1242375 Robinson Oct 1917 A
1253570 Berry Jan 1918 A
1320115 Bloomhuff et al. Oct 1919 A
1322493 Little Nov 1919 A
1325439 Dinger Dec 1919 A
1360294 Hill Nov 1920 A
1361347 Nighswander Dec 1920 A
1361580 Herz Dec 1920 A
1538750 Scognamillo May 1925 A
1596240 Dikeman Aug 1926 A
1611856 Farnsworth Dec 1926 A
1700603 Vreeland et al. Jan 1929 A
1732827 Adam Oct 1929 A
1748338 Georgias Feb 1930 A
1963801 O'Marra Jun 1934 A
2047575 Burtnett Jul 1936 A
2127513 Harper, Jr. Aug 1938 A
2153598 Steward Apr 1939 A
2208030 Holmes Jul 1940 A
2231173 Starr Feb 1941 A
2299924 Ost Oct 1942 A
2314128 Coldwell Mar 1943 A
2416107 Litton Feb 1947 A
2456080 Wu Pe Dec 1948 A
2487535 Fernandez Nov 1949 A
2497862 Chuy Feb 1950 A
2509538 Sues May 1950 A
2586864 Rose Feb 1952 A
2614546 Schwarz Oct 1952 A
2673554 Thaheld Mar 1954 A
2758576 Schlamann Aug 1956 A
2776394 Cuny et al. Jan 1957 A
2843780 Harper, Jr. Jul 1958 A
2895069 Davis Jul 1959 A
2899585 Dollenberg Aug 1959 A
2957099 Dutterer Oct 1960 A
3230939 Abramovich Jan 1966 A
3270722 Bernard Sep 1966 A
3300672 Fisher Jan 1967 A
3665902 Bloomfield May 1972 A
3710764 Jozlin Jan 1973 A
3718425 Weyl et al. Feb 1973 A
3911874 Vincent Oct 1975 A
3911878 Hofbauer et al. Oct 1975 A
3958144 Franks May 1976 A
4004413 Ueno Jan 1977 A
4091772 Heater May 1978 A
4092558 Yamada May 1978 A
4096832 Casull Jun 1978 A
4098232 Gleiter Jul 1978 A
4123998 Heintzeloman Nov 1978 A
4124000 Genslak Nov 1978 A
4125094 Noguchi et al. Nov 1978 A
4143627 Noguchi Mar 1979 A
4170968 Noguchi Oct 1979 A
4218993 Blackburn Aug 1980 A
4232638 Takahashi Nov 1980 A
4242990 Scherenberg Jan 1981 A
4248189 Barber et al. Feb 1981 A
4248192 Lampard Feb 1981 A
4372264 Trucco Feb 1983 A
4398513 Tanasawa Aug 1983 A
4406260 Burley Sep 1983 A
4416228 Benedikt et al. Nov 1983 A
4424780 Trucco Jan 1984 A
4429669 Burley Feb 1984 A
4441469 Wilke Apr 1984 A
4452189 Latsch et al. Jun 1984 A
4490122 Tromeur Dec 1984 A
4509476 Breuser et al. Apr 1985 A
4532899 Lorts Aug 1985 A
4612888 Ishida Sep 1986 A
4641616 Lampard Feb 1987 A
4646695 Blackburn Mar 1987 A
4744341 Hareyama et al. May 1988 A
4765293 Gonzalez Aug 1988 A
4795937 Wagner et al. Jan 1989 A
4854281 Hareyama et al. Aug 1989 A
4901688 Kashiwara et al. Feb 1990 A
4930473 Dietrich Jun 1990 A
4963784 Niessner Oct 1990 A
4987868 Richardson Jan 1991 A
5014656 Leptich et al. May 1991 A
5051651 Kashiwara et al. Sep 1991 A
5067458 Bailey Nov 1991 A
5076229 Stanley Dec 1991 A
5085189 Huang Feb 1992 A
5091672 Below Feb 1992 A
5105780 Richardson Apr 1992 A
5107168 Friedrich et al. Apr 1992 A
5222993 Crane Jun 1993 A
5224450 Paul et al. Jul 1993 A
5239959 Loth et al. Aug 1993 A
5245963 Sabol et al. Sep 1993 A
5271365 Oppenheim Dec 1993 A
5369328 Gruber et al. Nov 1994 A
5408961 Smith Apr 1995 A
5421300 Durling et al. Jun 1995 A
5430346 Johnson Jul 1995 A
5454356 Kawamura Oct 1995 A
5554908 Kuhnert et al. Sep 1996 A
5555862 Tozzi Sep 1996 A
5555867 Freen Sep 1996 A
5555868 Neumann Sep 1996 A
5560326 Merritt Oct 1996 A
5612586 Benedikt et al. Mar 1997 A
5619959 Tozzi Apr 1997 A
5623179 Buhl Apr 1997 A
5632253 Paul et al. May 1997 A
5647444 Williams Jul 1997 A
5662181 Williams et al. Sep 1997 A
5678517 Chen Oct 1997 A
5715788 Tarr Feb 1998 A
5791374 Black et al. Aug 1998 A
5799637 Cifuni Sep 1998 A
5803026 Merritt Sep 1998 A
5821675 Suzuki Oct 1998 A
5829407 Watson Nov 1998 A
5892319 Rossi Apr 1999 A
5947076 Srinivasan et al. Sep 1999 A
6013973 Sato Jan 2000 A
6060822 Krupa et al. May 2000 A
6064144 Knoll et al. May 2000 A
6095111 Ueda Aug 2000 A
6129069 Uitenbroek Oct 2000 A
6129152 Hosie et al. Oct 2000 A
6130498 Shimizu et al. Oct 2000 A
6198209 Baldwin et al. Mar 2001 B1
6279550 Bryant Aug 2001 B1
6302067 Merritt Oct 2001 B1
6305346 Ueda et al. Oct 2001 B1
6318335 Tomczyk Nov 2001 B2
6326719 Boehler et al. Dec 2001 B1
6340013 Britton Jan 2002 B1
6460506 Nevinger Oct 2002 B1
6463890 Chomiak Oct 2002 B1
6495948 Garrett, III Dec 2002 B1
6554016 Kinder Apr 2003 B2
6574961 Shiraishi Jun 2003 B2
6595182 Oprea Jul 2003 B2
6611083 LaBarge et al. Aug 2003 B2
6670740 Landon, Jr. Dec 2003 B2
6749172 Kinder Jun 2004 B2
6830017 Wolf et al. Dec 2004 B2
6913092 Bourgoyne et al. Jul 2005 B2
7004444 Kinder Feb 2006 B2
7007661 Warlick Mar 2006 B2
7007913 Kinder Mar 2006 B2
7025036 Lampard Apr 2006 B2
7086376 McKay Aug 2006 B2
7100567 Bailey et al. Sep 2006 B1
7104245 Robinet et al. Sep 2006 B2
7367307 Lampard May 2008 B2
7370626 Schubert May 2008 B2
7408293 Francesconi et al. Aug 2008 B2
7409933 Nino Aug 2008 B2
7438043 Shiraishi Oct 2008 B2
7615914 Francesconi et al. Nov 2009 B2
7628130 Johng Dec 2009 B2
7659655 Tozzi et al. Feb 2010 B2
7743753 Fiveland Jun 2010 B2
7762320 Williams Jul 2010 B2
7848871 Onishi Dec 2010 B2
7856956 Inoue et al. Dec 2010 B2
7891426 Williams Feb 2011 B2
7922551 Tozzi Apr 2011 B2
7950364 Nerheim May 2011 B2
8033335 Orbell et al. Oct 2011 B2
8143772 Francesconi Mar 2012 B2
8181617 Kuhnert et al. May 2012 B2
8261711 Shimoda Sep 2012 B2
8286734 Hannegan et al. Oct 2012 B2
8313324 Bulat et al. Nov 2012 B2
8322432 Bailey et al. Dec 2012 B2
8353337 Bailey et al. Jan 2013 B2
8387587 Ogata Mar 2013 B2
8499854 Mitchell et al. Aug 2013 B2
8584648 Chiera et al. Nov 2013 B2
8733331 McAlister May 2014 B2
8757129 Hill Jun 2014 B1
8800536 Plata Aug 2014 B2
8839762 Chiera et al. Sep 2014 B1
8857405 Attard Oct 2014 B2
8890396 Ernst et al. Nov 2014 B2
8924136 Nakamoto Dec 2014 B2
8925518 Riley Jan 2015 B1
9172216 Ernst Oct 2015 B2
20030196634 Lausch Oct 2003 A1
20040061421 Morita et al. Apr 2004 A1
20040100179 Boley et al. May 2004 A1
20040123849 Bryant Jul 2004 A1
20040177837 Bryant Sep 2004 A1
20050000484 Schultz et al. Jan 2005 A1
20050092285 Klonis et al. May 2005 A1
20050172929 Strauss Aug 2005 A1
20050211217 Boley et al. Sep 2005 A1
20050224606 Dingle Oct 2005 A1
20050279321 Crawford Dec 2005 A1
20060005803 Robinet et al. Jan 2006 A1
20060278195 Hotta Dec 2006 A1
20070069617 Tozzi et al. Mar 2007 A1
20070151540 Takahashi Jul 2007 A1
20070169737 Gong et al. Jul 2007 A1
20070236122 Borror Oct 2007 A1
20070261672 Lippert Nov 2007 A1
20080017165 Schubert Jan 2008 A1
20080168963 Gagliano Jul 2008 A1
20080257301 Hotta Oct 2008 A1
20090236144 Todd et al. Sep 2009 A1
20090241896 Fiveland Oct 2009 A1
20090309475 Tozzi Dec 2009 A1
20100132660 Nerheim Jun 2010 A1
20100133977 Kato Jun 2010 A1
20100147259 Kuhnert et al. Jun 2010 A1
20100192909 Ikeda Aug 2010 A1
20110036638 Sokol et al. Feb 2011 A1
20110062850 Tozzi Mar 2011 A1
20110065350 Burke Mar 2011 A1
20110089803 Francesconi Apr 2011 A1
20110148274 Ernst et al. Jun 2011 A1
20110297121 Kraus et al. Dec 2011 A1
20110308489 Herden Dec 2011 A1
20110320108 Morinaga Dec 2011 A1
20120000664 Nas et al. Jan 2012 A1
20120013133 Rios, III et al. Jan 2012 A1
20120064465 Borissov et al. Mar 2012 A1
20120103302 Attard May 2012 A1
20120118262 Johnson May 2012 A1
20120125279 Hampson et al. May 2012 A1
20120125287 Chiera May 2012 A1
20120125636 Linde et al. May 2012 A1
20120299459 Sakakura Nov 2012 A1
20120310510 Imamura Dec 2012 A1
20130000598 Tokuoka Jan 2013 A1
20130042834 Chiera et al. Feb 2013 A9
20130047954 McAlister Feb 2013 A1
20130055986 Tozzi et al. Mar 2013 A1
20130099653 Ernst Apr 2013 A1
20130139784 Pierz Jun 2013 A1
20130160734 Redtenbacher et al. Jun 2013 A1
20130179050 Munshi Jul 2013 A1
20130192896 Bailey et al. Aug 2013 A1
20130206122 Chiera Aug 2013 A1
20130220269 Woo Aug 2013 A1
20140026846 Johnson Jan 2014 A1
20140032081 Willi et al. Jan 2014 A1
20140076274 Tozzi et al. Mar 2014 A1
20140083391 Gruber Mar 2014 A1
20140102404 Sotiropoulou et al. Apr 2014 A1
20140137840 McAlister May 2014 A1
20140144406 Schock May 2014 A1
20140165980 Chiera et al. Jun 2014 A1
20140190437 Chiera et al. Jul 2014 A1
20140209057 Pouring Jul 2014 A1
20140261294 Thomassin Sep 2014 A1
20150020769 Huang Jan 2015 A1
20150040845 Chiera et al. Feb 2015 A1
20150068489 Bunce Mar 2015 A1
20150075506 Ishida Mar 2015 A1
20150128898 Osaka May 2015 A1
20150167576 Glugla et al. Jun 2015 A1
20150260131 Riley Sep 2015 A1
20150267631 Miyamoto Sep 2015 A1
20150354481 Geckler Dec 2015 A1
20160010538 Suzuki Jan 2016 A1
20160017845 Huang Jan 2016 A1
20160024994 Engineer Jan 2016 A1
20160047323 Suzuki Feb 2016 A1
20160053668 Loetz Feb 2016 A1
Foreign Referenced Citations (71)
Number Date Country
410007 Jan 2003 AT
509876 Dec 2011 AT
1010329 May 1977 CA
2320415 Mar 2001 CA
2825995 Oct 2006 CN
31 20 007 Dec 1982 DE
3230793 Feb 1984 DE
3913665 Oct 1990 DE
4422939 Jan 1996 DE
19624965 Jan 1998 DE
10143209 Jun 2002 DE
101 44 976 Apr 2003 DE
102010004851 Jun 2011 DE
102011006597 Mar 2012 DE
102012021842 Sep 2014 DE
0216027 Apr 1987 EP
0 675 272 Oct 1995 EP
0971107 Jan 2000 EP
1026800 Aug 2000 EP
1028506 Aug 2000 EP
0937196 Sep 2000 EP
1265329 Dec 2002 EP
1556592 Oct 2003 EP
1556932 Jul 2005 EP
1701419 Sep 2006 EP
121759 Mar 2011 FI
122501 Feb 2012 FI
577766 Sep 1924 FR
764079 May 1934 FR
985788 Jul 1951 FR
2071129 Sep 1971 FR
2131938 Nov 1972 FR
2131938 Aug 1979 FR
2846042 Apr 2004 FR
588074 May 1947 GB
50077738 Jun 1975 JP
S5252013 Apr 1977 JP
57-018283 Jan 1982 JP
58162719 Sep 1983 JP
H02148588 Dec 1990 JP
03-011575 Jan 1992 JP
4133281 May 1992 JP
4262388 Sep 1992 JP
08-260970 Oct 1996 JP
09166024 Jun 1997 JP
2008-504649 Feb 2006 JP
20140117152 Oct 2014 KR
2116474 Jul 1998 RU
968493 Oct 1982 SU
1370269 Jan 1988 SU
WO 8707777 Dec 1987 WO
WO 9106142 May 1991 WO
WO 9202718 Feb 1992 WO
WO 2004036013 Apr 2004 WO
WO 2004036709 Apr 2004 WO
WO 2004107518 Dec 2004 WO
WO 2006011950 Feb 2006 WO
WO 2009060119 May 2009 WO
WO 2009109694 Sep 2009 WO
WO 2009130376 Oct 2009 WO
WO 2010072519 Jul 2010 WO
WO 2011031136 Mar 2011 WO
WO 2011085853 Jul 2011 WO
WO 2011101541 Aug 2011 WO
WO 2011128190 Oct 2011 WO
WO 2011151035 Dec 2011 WO
WO 201221914 Feb 2012 WO
WO 2012091739 Jul 2012 WO
WO2014201030 Dec 2014 WO
WO2015138987 Sep 2015 WO
WO 2015138987 Sep 2015 WO
Non-Patent Literature Citations (17)
Entry
Fino Scholl et al., “Development and Analysis of a Controlled Hot Surface Ignition System for Lean Burn Gas Engines” Proceedings of the ASME 2012 Internal Combustion Engine Division Spring Technical Conference ICES2012, May 6-9, 2012 (12 pages).
Sachin Joshi et al., “On Comparative Performance Testing of Prechamber and Open Chamber Laser Ignition” Journal of Engineering for Gas Turbines and Power, Dec. 2011, vol. 133, pp. 122801-1 to 122801-5.
McIntyre, Dustin L., et al., “Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-Switched Laser Spark Plug” U.S. Department of Energy, National Energy Technology Laboratory, 2008, 14 pages.
Dale, J.D. et al., “Enhanced Ignition for I. C. Engines With Premixed Charge,” Lawrence Berkeley Laboratory, Society of Automotive Engineers Annual Congress, Oct. 1980, 52 pages.
“New Spark Plug Concepts for Modern-Day Gasoline Engines,” Beru Aktiengesellschaft, MTZ vol. 68, Feb. 2007, 8 pages.
BorgWarner BERU Systems Pre-Chamber Technology, 1 page.
BorgWarner BERU Systems, BERU Industrial Spark Plugs, Feb. 2012, 48 pages.
Maria-Emmanuella McCoole, M.Sc.E.E. et al.; Solutions for Improving Spark Plug Life in High Efficiency, High Power Density, Natural Gas Engines; Proceedings of ICES2006; ASME Internal Combustion Engine Division 2006 Spring Technical Conference; May 8-10, 2006, Aachen, Germany; ICES2006-1417; pp. 1-8.
Dr. Luigi Tozzi et al.; Advanced Combustion System Solutions for Increasing Thermal Efficiency in Natural Gas Engines While Meeting Future Demand for Low NOx Emissions; Proceedings of JRCICE2007; 2007 ASME/IEEE Joint Rail Conference & Internal Combustion Engine Spring Technical Conference; Mar. 13-16, 2006, Pueblo, Colorado USA; JRCICE2007-40026; pp. 1-7.
Jessica Adair et al; Knock Characterization Using Ionization Detection; GMRC Gas Machinery Conference; Oklahoma City, Oklahoma; Oct. 2006; pp. 1-23.
Hironori Osamura, Development of Long Life and High Ignitability iridium Spark Plug, Technical Paper, Seoul 2000 FISITA World Automotive Congress; Jun. 12-15, 2000 Seoul, Korea; 6 pages.
Hironori Osamura, Development of New Iridium Alloy for Spark Plug Electrodes; SAE Technical Paper Series; 1999-1-0796; SI Engine Components and Technology (SP-1437); International Congress and Exposition Mar. 1-4, 1999; 14 pages.
“Wartsila 34SG Engine Technology for Compressor Drive,” Wartsila Engines, Wartsila Corporation 2009, 16 pages.
Federal Mogul, Champion® Bridge Iridium Spark Plug, Industrial Gas Stationary Engines—High Demand/Premium Market, Jun. 2012, 1 page.
BOSCH, Spark Plugs Technical Information, published on or before Nov. 28, 2014, 28 pages.
Chiera et al., “Cap Shielded Ignition System”, U.S. Appl. No. 14/664,431, Mar. 20, 2015, 22 pages.
PCT International Search Report and Written Opinion of the International Searching Authority, PCT/US2016/059159, dated Jan. 19, 2017, 13 pages.
Related Publications (1)
Number Date Country
20170122184 A1 May 2017 US