The present technology generally relates to systems for coking coal, and in particular to systems and methods for detecting a leak in a system for coking coal.
Coke is a solid carbon fuel and carbon source used to melt and reduce iron ore in the production of steel. Coking ovens have been used for many years to convert coal into metallurgical coke. In one process, coke is produced by batch feeding pulverized coal to an oven that is sealed and heated to very high temperatures for 24 to 48 hours under closely-controlled atmospheric conditions. During the coking process, the finely crushed coal devolatilizes and forms a fused mass of coke having a predetermined porosity and strength. Because the production of coke is a batch process, multiple coke ovens are operated simultaneously.
One style of coke plants includes Horizontal Heat Recovery (HHR) ovens, which have a unique environmental advantage over chemical byproduct ovens based upon a relative operating atmospheric pressure condition inside the oven. HHR ovens operate under negative pressure, whereas chemical byproduct ovens operate at a slightly positive atmospheric pressure. Both oven types are typically constructed of refractory bricks and other materials in which creating a generally airtight environment can be a challenge because small cracks can form in these structures, thereby allowing air to leak in or out of the oven. Cracks may also form in structures fluidly coupled to the ovens, exacerbating the challenge of creating an airtight environment. In coke plants operating under a negative pressure, such cracks may permit uncontrolled air to leak into the system, thereby affecting the overall functionality of the coke plant. And in coke plants operating under a positive pressure, such cracks may permit gases to escape from the plant before being treated, thereby making it more difficult to control the coking conditions and increasing the environmental footprint of the coke plant.
Accordingly, identifying leaks so they can be repaired is an important step in maintaining a functioning coke plant. Current leak detection methods are suboptimal for a variety of reasons. For example, current leak detection methods do not allow a user to quantitatively analyze the size of leaks, and therefore do not allow users to prioritize repair of troublesome leaks. Furthermore, leaks in certain locations (e.g., in an insulated chamber, in the sole flue, etc.) may be difficult and/or not possible to locate with current methods.
The present technology provides systems and methods for detecting leaks in a system for coking coal (e.g., a coke plant). The system and methods can include discharging a gaseous tracer at a first location adjacent to a potential leak site (e.g., a “test” location) in the coke plant, and, after discharging the gaseous tracer at the test location, measuring an amount of the gaseous tracer at a location downstream of the test location (e.g., at a second location with a lower pressure than the first location). The downstream location can be at least partially fluidly isolated from the test location under normal, non-leaking, operating conditions. Measuring a spike in the concentration of the gaseous tracer at the location downstream of the potential leak site can therefore indicate that there is a leak at the test location. As discussed in greater detail below, the present technology be used to detect leaks in a number of different coke plant systems, including chemical byproduct coke plants (“byproduct system”), heat recovery coke plants (“heat recovery system”), beehive/non-recovery coke plants (“non-recovery system”), and other types of coke plants known in the art.
Coke plants have a number of different structures that may be susceptible to forming leaks. For example, coke system(s) generally have a plurality of coke ovens for heating coal to produce coke. In some embodiments, coke systems may also include one or more flue gas chambers, a plurality of heat recovery steam generators, a common tunnel fluidly coupled to the plurality of coke ovens and/or the plurality of heat recovery steam generators, and/or other features common to coke plants known in the art. Due to a variety of reasons, various structures and/or surfaces in the coke plant may be susceptible to cracking or other wear that permits an airflow between the external environment and the interior of the system, or vice versa. Such airflow may be problematic, for example, because it can make it challenging to maintain a desired pressure inside the system, can make it challenging to maintain a suitable temperature for coking coal, and can adversely affect the quality of coke produced by the system. The uncontrolled airflow may also increase the environmental footprint of certain coke plants. Accordingly, the present technology provides systems and methods for detecting leaks that permits air to enter or leave the coking system in an uncontrolled and/or undesired manner, or otherwise affects the performance of the coke plant. More specifically, as will be described in detail herein, select embodiments of the present technology can, among other things, (1) identify whether a leak exists, (2) identify a location of a leak, and/or (3) at least semi-quantitatively analyze the size of the leak. Identifying cracks enables the cracks to be repaired, patched, or otherwise treated to mitigate and/or eliminate the foregoing problems, among other things. In some embodiments, the present technology enables leaks to be detected without reducing the temperature of the coking plant or taking the coking plant “offline” (i.e., the test can be performed without interrupting the operation of the coke plant). For example, in some embodiments the tests described herein can be performed in systems having temperatures of 100 degrees Celsius or higher, 500 degrees Celsius or higher, 1,000 degrees Celsius or higher, and/or 1,500 degrees Celsius or higher, thereby allowing the tests to be performed without interrupting the coking cycle.
As will be described in greater detail below, the present technology can be applied to any number of coke plants, including, for example, heat recovery coking systems and byproduct coking systems. For example, for heat recovery systems, several embodiments of the present technology include discharging a gaseous tracer adjacent to an external facing surface of the coke plant. If there is a leak between the external facing surface and the interior of the coke plant, the negative pressure of the heat recovery system will draw the gaseous tracer into the coke plant. Accordingly, the amount of gaseous tracer inside the heat recovery system may be measured at a location downstream of the tested external facing surface to determine if gaseous tracer discharged at the potential leak site entered the heat recovery system. If a spike in gaseous tracer is observed at the downstream location inside the heat recovery system, there is likely a leak on the tested surface. This process may be repeated at any number of potential leak sites. Likewise, in byproduct coking systems, several embodiments of the present technology include discharging a gaseous tracer into a high-pressure environment adjacent a low-pressure environment. If there is a leak between the high-pressure environment and the low-pressure environment, the gaseous tracer will be detected in the low-pressure environment.
As will be discussed in detail herein, the present system is beneficial because, among other things, it can at least partially quantitatively characterize leaks and locate leaks in locations where traditional methods cannot. For example, the present technology allows coke plant operators to prioritize repair of more troublesome leaks based on the provided quantitative analysis. Furthermore, the present technology enables identification of leaks in locations that were previously difficult to test, such as insulated regions of the system or in the sole flue. The present technology, for example, is capable of identifying regions that do not have a direct leak into the interior of the system, but instead allow air into a region between an outer surface and insulation. This air may be problematic because it can migrate beneath the insulation and enter the system at a different location.
Specific details of several embodiments of the disclosed technology are described below with reference to particular, representative configurations. The disclosed technology can be practiced in accordance with coke making systems having other suitable configurations. Specific details describing structures or processes that are well-known and often associated with coke making systems but that can unnecessarily obscure some significant aspects of the present technology are not set forth in the following description for clarity. Moreover, although the following disclosure sets forth some embodiments of the different aspects of the disclosed technology, some embodiments of the technology can have configurations and/or components different than those described in this section. As such, the present technology can include some embodiments with additional elements and/or without several of the elements described below with reference to
As used herein, the terms “coke plants”, “coking plants”, “coke systems,” “coking systems,” “systems for coking coal,” and their variants collectively refer to any type of coke plant, including byproduct coke plants, heat recovery coke plants, horizontal heat recovery coke plants, non-recovery coke plants, and horizontal non-recovery coke plants. Moreover, certain aspects of the present disclosure are described in the context of a specific oven type. However, as one skilled in the art will appreciate, such aspects may be readily adapted for use with any type of coke plant. Accordingly, aspects of the present disclosure is not limited to a specific type of coke plant, unless explicitly noted otherwise.
As used herein, the terms “high-pressure system” and “low-pressure system” are used in a relative manner. Neither the “high-pressure system” nor the “low-pressure system” require a pressure above or below a specific magnitude. Rather, the term “high-pressure system” is used to mean that the system has a pressure that is greater than a pressure in another adjacent system (e.g., a low-pressure system). Likewise, the term “low-pressure system” is used to mean that the system has a pressure that is less than a pressure in another adjacent system (e.g., a high-pressure system).
As used herein, the terms “upstream” and “downstream” refer to the expected direction of gas flow in a coke plant. For example, gas is expected to flow in a direction from an upstream structure to a downstream structure.
As used herein, the term “residence time” refers to the duration of time that it takes for a gas to travel between two locations. For example, the first location can be any test location and the second location can be any location where measurements are taken.
Reference throughout this specification to relative terms such as, for example, “generally,” “approximately,” and “about” are used herein to mean the stated value plus or minus 10%. For example, the term “about 100” refers to a range from 90 to 110, inclusive.
Referring to
In operation, coke is produced in the ovens 101 by first loading coal into the oven chamber 110, heating the coal in an oxygen depleted environment, driving off the volatile fraction of coal and then oxidizing the volatiles within the oven 101 to capture and utilize the heat given off. The coal volatiles are oxidized within the ovens over a 48-hour coking cycle and release heat to regeneratively drive the carbonization of the coal to coke. The coking cycle begins when the front door 114 is opened and coal is charged onto the floor 111. The coal on the floor 111 is known as the coal bed. Heat from the oven (due to the previous coking cycle) starts the carbonization cycle. Preferably, no additional fuel other than that produced by the coking process is used. Roughly half of the total heat transfer to the coal bed is radiated down onto the top surface of the coal bed from the luminous flame and radiant oven crown 113. The remaining half of the heat is transferred to the coal bed by conduction from the floor 111, which is convectively heated from the volatilization of gases in the sole flue 118. In this way, a carbonization process “wave” of plastic flow of the coal particles and formation of high strength cohesive coke proceeds from both the top and bottom boundaries of the coal bed at the same rate, preferably meeting at the center of the coal bed after about 45-48 hours.
Any of a number of structures, locations, connections, and/or surfaces within the coke plant 100 may be susceptible to leaks. Leaks may form, for example, in the sole flue 118, in the front door 114, in the air inlet 119, in the uptake ducts 103, and/or in the common tunnel 102. Other locations not explicitly mentioned herein may also be susceptible to leaks. Leaks may form, for example, if one or more cracks extend between an external facing surface and an internal facing surface of the coking system. Leaks may also occur at connective joints. When the coke plant 100 is operating under a negative pressure, such as in a heat recovery system, a leak will allow uncontrolled air to enter into the coke plant 100, thereby affecting the functionality of the coke plant 100. Accordingly, there is a need to test for and identify leaks in the coke plant 100. Thus, a probe 120 is provided to test for leaks at potential leak sites. As will be described in detail herein, the probe 120 is configured to detect leaks in the coke plant 100 by dispensing a gaseous tracer adjacent to a potential leak site.
The coke ovens 202 are heated via burning gaseous fuel and allowing the heated gases to occupy flue chambers 204 positioned around the ovens 202. In some embodiments, each oven 202 can share a common heating flue chamber 204 with an adjacent oven 202. The plant 200 can further include a waste gas tunnel 206 and a plurality of ducts 208 fluidly connecting the flue chambers 204 and the waste gas tunnel 206. The gaseous fuel can be combusted adjacent the flue chambers 204 to generate hot flue gas that can enter the flue chambers 204 and heat the coke ovens 202. The flue gas can then enter the waste gas tunnel 206 via the plurality of ducts 208 and be transported to an exhaust stack (not shown).
The coke oven battery 200 also includes a plurality of raw coke gas vents 210 fluidly connected to the oven chambers 202. After raw coke gas is vaporized from the heated coal in the oven chambers 202, the raw coke gas vents transport the raw gas from the oven chambers 202 to a main collector channel 212. The main collector channel 212 delivers the raw coke gas vents to a byproduct treatment plant, as described in detail with respect to
As with coke plant 100, byproduct coke plant 200 may be susceptible to leaks that can allow air to enter the system and/or gases to uncontrollably flow from a high-pressure location to a low-pressure location. As one skilled in the art will appreciate, the high-pressure location can be internal or external to the coke plant 200, and the low-pressure location can be internal or external to the coke plant 200, depending on the configuration of the plant 200. Leaks may form, for example, in the oven doors, the flue chambers 204, the waste gas tunnel 206, the ducts 208, the raw coke gas vents 210, and/or the main collector channel 212. Leaks may also form under insulation in, for example the flue chambers 204. Other locations not explicitly mentioned herein may also be susceptible to leaks (e.g., in an air space beam area, in a cold duct, by fans, etc.). Leaks may form, for example, if one or more cracks extend between an external facing surface and an internal facing surface of the coking system. Leaks may also occur at connective joints and under/through insulation. When the coke plant 200 is operating under a positive pressure, a leak may allow raw coke oven gas or other pollutants to flow out of the system and into the surrounding environment. Accordingly, there is a need to test for and identify leaks in the coke plant 200. Thus, as illustrated in
A probe 320 for dispensing a gaseous tracer is illustrated as being positioned adjacent to the plurality of ovens 302. As described herein, the probe is configured to detect leaks in the coke plant by dispensing a gaseous tracer adjacent to a potential leak site. Thus, the probe 320 may be moved to any location adjacent to a potential leak site. For example, the probe 320 can be a hand-held probe that a user can carry between potential leak sites. Accordingly, the probe 320 can enable a user to relatively quickly check multiple locations for leaks. As further illustrated in
Referring to
A number of gaseous tracers may be suitable for use with the present technology. For example, in some embodiments, the gaseous tracer may be any compound that is not otherwise present in the system and is detectable at a location within the system. In some embodiments, the gaseous tracer may already be present in the system and/or the environment. As will be described below, such tracers can be used because a baseline measurement of the gaseous tracer already present in the system can be taken and adjusted for.
In some embodiments, the gaseous tracer is a non-combustible tracer (e.g., it is at least partially stable and is not fully degraded in the system). For example, the non-combustible gaseous tracer can comprise any non-reactive molecule or element. Examples of suitable non-reactive gaseous tracers include the noble gases, including but not limited to helium, neon, argon, xenon, and their isotopes. Other examples of suitable gaseous tracers include non-noble gases such as fluorine gas. Yet another example of suitable gaseous tracers are nuclear tracers, such as tritium.
The gaseous tracer may exhibit certain flow characteristics once mixed with other gases inside the system. For example, in some embodiments, the gaseous tracer may flow through some or generally all of the system with a generally turbulent flow. In other embodiments, the flow of the gaseous tracer may be generally turbulent in at least one region of the system. In some embodiments, the flow of the gaseous tracer through the system may further be characterized by its Reynolds number. For example, in some embodiments, the gaseous tracer may exhibit a Reynolds number of about 4,000 or more, about 10,000 or more, about 25,000 or more, about 50,000 or more, or about 100,000 or more in at least one region of the system. Further, in some embodiments, the gaseous tracer may also move through the system in a relatively short residence time. For example, depending on the size of the system, the residence time may be 120 seconds or less, 90 seconds or less, 60 seconds or less, 45 seconds or less, 30 seconds or less, and/or 15 seconds or less. As one skilled in the art will appreciate, the flow characteristics depend on, among other things, the conditions adjacent to and within the coking system. However, the present technology provides gaseous tracer tests that work in coking systems that exhibit a wide range of flow characteristics, including in systems having flow characteristics such as turbulent flow, high Reynolds numbers, and/or relatively short residence times.
The method 600 continues by measuring the amount of gaseous tracer at a location inside the system and downstream from the potential leak site (process step 604). Measurements may be made by any device suitable to continuously monitor a volume or amount of gaseous tracer (e.g., a mass spectrometer, etc.). Measurements may be made at any location downstream from the potential leak site (e.g., an exhaust stack, a distillation column, etc.). By measuring gaseous tracer at a location downstream from the potential leak site, any gaseous tracer that entered at the potential leak site during step 602 may be detected. Accordingly, detecting a spike in gaseous tracer during step 604 indicates there is likely a leak at the potential leak site. If no spike in gaseous tracer is detected, no gaseous tracer entered the system during step 602, and therefore there likely is not a leak at the potential leak site.
Method 700 continues by discharging gaseous tracer adjacent to a potential leak site in the system that is upstream from the first location (process step 704). As discussed previously, the potential leak site can be any site in the system that may allow external air to enter into the system in an uncontrolled manner. For example, potential leak sites include, but are not limited to, the sole flues, the oven chambers, the front doors of the ovens, the back doors of the ovens, the air inlets, the uptake ducts, and/or the common tunnel, as well as any connecting joints or ducts between said sites. If the potential leak site includes a leak, the pressure differential between the inside of the system and the external environment will suck gaseous tracer into the system. Once inside the system, the gaseous tracer will move in a downstream direction away from the potential leak site and towards a downstream location.
The method 700 continues by continuously measuring the amount of gaseous tracer at the first location for a period beginning when the gaseous tracer is discharged at the potential leak site (process step 706). By measuring gaseous tracer at the first location, any gaseous tracer that entered at the potential leak site during step 704 may be detected. The period may be any period of time approximately equal to the time it takes the gaseous tracer to travel from the potential leak site to the first location. For example, the period may be determined by dividing the distance between the first location and the potential leak site by the average velocity of the gaseous tracer between the first location and the potential leak site. In some embodiments, this time may be 120 seconds or less, 90 seconds or less, 60 seconds or less, 45 seconds or less, 30 seconds or less, and/or 15 seconds or less.
The method 700 continues by comparing the baseline amount of gaseous tracer with the amount of gaseous tracer observed during the period to determine if there is a leak at the potential leak site (process step 708). If the measuring device has been zeroed out in step 702 such that the baseline reading of gaseous tracer is zero, any gaseous tracer detected during the period likely entered the system through a leak at the potential leak site. If the measuring device was not zeroed out, a spike in the amount of gaseous tracer during the period likely indicates that gaseous tracer entered the system through a leak at the potential leak site. The method 700 may be optionally repeated by discharging a gaseous tracer at a second potential leak location upstream from the first location, and repeating steps 704, 706, and 708.
The method 900 further includes injecting a first amount of a gaseous tracer into the system at a first location, wherein the first location is adjacent to a known leak site or another site that allows air to enter into the system (process step 904). Injecting the gaseous tracer into the system enables an operator to determine how the gaseous tracer will behave once inside the system. For example, the presence of the gaseous tracer will be monitored at the downstream location so a residence time can be determined for the first amount of gaseous tracer to travel from the first location to the downstream location (process step 906). It may be useful to determine the residence time because it can define the period of time to measure for the gaseous tracer when it has been sprayed on a potential leak site.
The method 900 continues similarly to method 700. For example, the method 900 includes discharging a second amount of the gaseous tracer adjacent to a potential leak site (process step 908), continuously monitoring the amount of the gaseous tracer at the downstream location beginning when the gaseous tracer is discharged at the potential leak site and lasting for a period equal to the residence time (process step 910), and comparing the baseline amount of the gaseous tracer with the amount of the gaseous tracer observed during the period equal to the residence time to determine if there is a leak at the potential leak site (process step 912). If the measuring device has been zeroed out in step 902 such that the baseline reading of gaseous tracer is zero, any gaseous tracer detected during the period likely entered the system through a leak at the potential leak site. If the measuring device was not zeroed out, a spike in the amount of gaseous tracer during the period likely indicates that gaseous tracer entered the system through a leak at the potential leak site.
The method 1000 continues by discharging a second known amount of gaseous tracer adjacent to a potential leak site (process step 1008), continuously monitoring the amount of gaseous tracer beginning when the gaseous tracer is discharged at the potential leak site and lasting for at least a period equal to the residence time (process step 1010), and comparing the baseline amount of the gaseous tracer with the amount of the gaseous tracer observed during the period equal to the residence time to determine (i) if there is a leak at the potential leak site, and (ii) the size of the leak (process step 1012). With respect to determining whether there is a leak, method 1000 operates in a generally similar fashion as the methods described above: if the measuring device has been zeroed out in step 1002 such that the baseline reading of gaseous tracer is zero, any gaseous tracer detected during the period likely entered the system through a leak at the potential leak site, and if the measuring device was not zeroed out, a spike in the amount of gaseous tracer during the period likely indicates that the gaseous tracer entered the system through a leak at the potential leak site. However, because the amount of gaseous tracer injected in step 1004 and discharged in step 1008 are known, the relative size of the leak can also be determined. For example, the amount discharged in steps 1004 and 1008 can be equal. Since the first known amount of the gaseous tracer is injected into the system, the amount measured at the downstream location following this injection can represent an expected upper limit on the amount of gaseous tracer that could be observed in step 1010. Thus, the amount of the gaseous tracer observed in step 1010 can be compared to the amount of the gaseous tracer observed following step 1004 to get a semi-quantitative estimate of the size of the leak.
Method 1100 continues by determining whether the first leak or the second leak is larger. To do so, the first amount of the gaseous tracer observed during the first period is compared with the second amount of the gaseous tracer observed during the second period (process step 1116). Since the first known amount and second known amount of gaseous tracer discharged adjacent to the first and second potential leak sites are the same amount, the amount of gaseous tracer observed during the first and second period can indicate whether the first or second leak is larger. For example, if more gaseous tracer is detected during the first period than during the second period, the first leak is likely larger than the second leak. Likewise, if more gaseous tracer is detected during the second period than during the first period, the second leak is likely larger than the first leak. This information can be useful, for example, in prioritizing which leak to fix first.
Similar to
Method 1100 continues by determining whether the first leak or the second leak is larger. To do so, the second measurement is compared with the first measurement (process step 1016). Since the first known amount and second known amount of gaseous tracer discharged adjacent to the first and second potential leak sites are the same amount, the relative amount of gaseous tracer in the second and third measurements can indicate whether the first or second leak is larger. For example, if more gaseous tracer is detected during the second measurement, the first leak is likely larger than the second leak. Likewise, if more gaseous tracer is detected during the third measurement, the second leak is likely larger than the first leak. This information can be useful, for example, in prioritizing which leak to fix first.
Method 1300 continues by discharging a second known amount of the gaseous tracer adjacent to a first potential leak site (process step 1308). The second amount of the gaseous tracer should be approximately equal to the first known amount. Method 1300 further includes measuring a second amount of the gaseous tracer at the location downstream of the first location, wherein the downstream location is also downstream of the second potential leak site (process step 1310), and generating a second volume versus time graph of the second amount of the gaseous tracer, wherein the graph includes a slope, inflection points, and a magnitude (process step 1312). This can be done in a similar fashion as described above with respect to step 1306.
The first volume versus time graph and the second volume versus time graph may be compared to determine (i) if there is a leak at the potential leak site, and (ii) the size of the leak. To determine whether there is a leak, the second volume versus time graph can be analyzed. If there is a spike in the amount of gaseous tracer observed, there is likely a leak. To determine the size of the leak, the first and second volume versus time graphs may be compared. Since the first volume versus time graph resulted from injecting the gaseous tracer into the system, it quantifies the behavior of the gaseous tracer if approximately all of the gaseous tracer entered the system. Thus, the second volume versus time graph can be compared against the first volume versus time graph to quantitatively determine certain characteristics of the leak. For example, if the magnitude under the curve of the second graph approaches the magnitude under the curve of the first graph, the leak is relatively large (e.g., more gaseous tracer was able to enter the system through the leak). If the magnitude under the curve of the second graph is much smaller than the first graph, the leak is relatively small (e.g., less gaseous tracer was able to enter the system through the leak). Likewise, the distance between inflection points can indicate whether the gaseous tracer entered through a single leak or through two or more leaks. If there are multiple inflection points spaced apart from each other, the gaseous tracer may have entered through multiple leaks, with each inflection point indicating a separate leak. In some embodiments, the data collected from one or more of the tests described herein can be analyzed using an algorithm or other computational modeling software. In some embodiments, the data is analyzed to determine an estimated leak rate (e.g., in lbs/hr and/or O2%). Such modeling may also predict the reduction of the leak rate following repair of one or more specific leaks and may help a user prioritize which leak(s) to repair first. Moreover, although method 1300 is described above with respect to measuring a volume of the gaseous tracer and generating a volume versus time graph, one skilled in the art will recognize that other measurements corresponding to an amount of the gaseous tracer (e.g., mass, moles, etc.) could be utilized.
Other embodiments of the present technology integrate aspects of the gaseous tracer tests described herein with a coke plant monitoring system. For example, the coke plants described herein can include various sensors (e.g., oxygen sensors) that continuously or at least semi-continuously detect the presence of a target substance or molecule (e.g., oxygen). If an unexplained change in concentration of the target substance or molecule is sensed by the sensor (e.g., if the concentration of measured oxygen unexpectedly increases), the monitoring system can send an alert to a user. The alert can state that an abnormality was sensed, and/or can include more detailed information such as a suspected location of a problem (e.g., leak) causing the abnormality. The alert can direct the user to said location to perform a gaseous tracer test as described herein to more accurately identify the leak, identify the precise location of the leak, and/or semi-quantitatively analyze a size of the leak. In some embodiments, the monitoring system may also include a gaseous tracer detector (e.g., a Helium detector, etc.) such that a user does not need to deploy a gaseous tracer detector after receiving the alert and before conducting the gaseous tracer test.
The following examples are provided to further illustrate embodiments of the present technology and are not to be interpreted as limiting the scope of the present technology. To the extent that certain embodiments or features thereof are mentioned, it is merely for purposes of illustration and, unless otherwise specified, is not intended to limit the present technology. It will be understood that many variations can be made in the procedures herein described while still remaining within the bounds of the present technology. Such variations are intended to be included within the scope of the presently disclosed technology.
A gaseous tracer test representative of some embodiments of the present technology was performed to detect leaks in or around a heat recovery steam generator in a heat recovery coking system. A helium detector was placed downstream from the heat recovery steam generator adjacent the main stack at the outlet of the induced draft fans, although in other examples other locations downstream from the tested surface can be used, as described in detail above. The detector was positioned to measure helium concentration inside of the heat recovery coking system. Before testing for leaks, a known volume of helium was injected into an open oven uptake while the detector was recording helium concentration. The time between the injection of helium into the open oven uptake and the detection of the helium at the downstream detector defined a residence time for the helium. Once the residence time was determined, and with the helium detector continuously monitoring helium levels, helium was discharged using a probe generally similar to probe 400. More specifically, the helium was sprayed on various external facing surfaces of the heat recovery steam generators. As discussed above, the present technology enables a user to sequentially test multiple surfaces for leaks. Accordingly, the probe was used to spray various surfaces of the heat recovery steam generator while the helium detector was continuously recording the concentration of helium within the system. The results of the tests are illustrated in
A gaseous tracer test representative of some embodiments of the present technology was performed to detect leaks in or around a heat recovery steam generator in a heat recovery coking system. A helium detector was placed downstream from the heat recovery steam generator adjacent the main stack at the outlet of the induced draft fans, although in other examples other locations downstream from the tested surface can be used, as described in detail above. The detector was positioned to measure helium concentration inside of the heat recovery coking system. Before testing for leaks, a known volume of helium was injected into an open oven uptake while the detector was recording helium concentration. The time between the injection of helium into the open oven uptake and the detection of the helium at the downstream detector defined a residence time for the helium. Once the residence time was determined, and with the helium detector continuously monitoring helium levels, helium was discharged using a probe generally similar to probe 400. More specifically, the helium was sprayed on various external facing surfaces of the ovens that are designed to be fluidly isolated from an interior of the system. The results of the tests are illustrated in
The concentration of detected helium spiked after spraying surfaces B and F. For example, the concentration of detected helium spiked from around 3.40E7 Atm·cc/s after spraying surface A to about 1.6E6 Atm·cc/s after spraying surface B. This indicates that more helium entered the system after spraying surface B than after spraying surface A. Likewise, the concentration of detected helium spiked from around 3.6E7 Atm·cc/s after spraying surface E to about 1.0E6 Atm·cc/s after spraying surface F. Accordingly, this indicates that more helium entered the system after spraying surface F than after spraying surface E. Any of the above values can be compared to determine which surfaces are allowing the most air to enter the system.
As can be appreciated from the foregoing disclosure, the representative systems and methods described above may be combined in various manners to achieve desired results. Accordingly, this disclosure is not intended to be exhaustive or to limit the present technology to the precise forms disclosed herein. Although specific embodiments are disclosed herein for illustrative purposes, various equivalent modifications are possible without deviating from the present technology, as those of ordinary skill in the art will recognize. In some cases, well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the present technology. Although steps of methods may be presented herein in a particular order, alternative embodiments may perform the steps in a different order. Similarly, certain aspects of the present technology disclosed in the context of particular embodiments can be combined or eliminated in other embodiments. Furthermore, while advantages associated with certain embodiments of the present technology may have been disclosed in the context of those embodiments, other embodiments of the present technology may have been disclosed in the context of those embodiments, other embodiments can also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages or other advantages disclosed herein to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.
Throughout this disclosure, the singular terms “a,”, “an,” and “the” include plural referents unless the context clearly indicates otherwise. Similarly, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of items in the list. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. Reference herein to “one embodiment,” “an embodiment,” or similar formulations means that a particular feature, structure, operation, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present technology. Thus, the appearances of such phrases or formulations herein are not necessarily all referring to the same embodiment. Furthermore, various particular features, structures, operations, or characteristics may be combined in any suitable manner in one or more embodiments.
The present application claims priority to U.S. Provisional Patent Application No. 62/785,728, titled “GASEOUS TRACER LEAK DETECTION,” filed Dec. 28, 2018; U.S. Provisional Patent Application No. 62/786,096, titled “SYSTEMS AND METHODS FOR TREATING A SURFACE OF A COKE PLANT,” filed Dec. 28, 2018; U.S. Provisional Patent Application No. 62/786,157, titled “COKE PLANT TUNNEL REPAIR AND FLEXIBLE JOINTS,” filed Dec. 28, 2018; and U.S. Provisional Patent Application No. 62/786,194, titled “COKE PLANT TUNNEL REPAIR AND ANCHOR DISTRIBUTION,” filed Dec. 28, 2018; the disclosures of which are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62785728 | Dec 2018 | US | |
62786096 | Dec 2018 | US | |
62786157 | Dec 2018 | US | |
62786194 | Dec 2018 | US |