The subject invention relates to gasifier systems and, in one particular example, gasifiers used in waste-to-energy systems.
A typical gasifier includes a combustion zone for fuel (e.g., pellets) and a grate supporting the fuel bed during combustion. Ash falls through the grate and is collected in some fashion. When the fuel is of a predetermined composition, the grate can be very simple in design, e.g., a plate with holes or slots in it. Those skilled in the art have also devised rotating grates and grates which shake in order to encourage the ash to fall through the grate. See “State of the Art for Small Scale Gas Producer-Engine Systems” by Ali Kaupp first published by the German Appropriate Technology Exchange and reissued by the Biomass Energy Foundation Press, Golden, Colo. 80401 incorporated herein by this reference.
The applicant's co-pending application U.S. patent application Ser. No. 12/070,032 filed Feb. 14, 2008 discloses a new waste-to-energy method wherein feedstock waste is shredded, dried, and pelletized. The pellets are then combusted in a gasifier to produce a gas used to operate a generator which generates electricity. In such a waste-to-energy system, the composition of the fuel converted in the gasifier can vary widely. The feedstock waste, for example, may contain metal, ceramic, and/or other waste material which are not combustible in this process.
Such non-fuel products collect on the gasifier grate and impede the flow of gas through the gasifier. If the pressure drop along the reactor increases significantly, the result can be a dangerous “updraft” condition. In any case, the efficient operation of the gasifier depends on the correct pressure drop along the reactor.
Known shaking or other grates are ineffective at removing the non-fuel “clinkers” which collect on the grates. And, making the grate openings larger in size so that the clinkers pass through the grate considerably reduces yield because it allows for large, not fully converted feedstock to pass through. This defeats the purpose of the grate. Manually cleaning the grates of clinkers is inefficient as well since the gasifier must be shut down in order to do so. During the shut down period, no producer gas is produced.
One aspect of the subject invention is to provide a gasifier with a new grate subsystem. In some examples, such a grate subsystem can reduce or eliminate clinkers and/or better maintain the correct pressure drop along the reactor. Preferably, the new grate subsystem properly contains the fuel feedstock and minimizes any waste of the feedstock.
In some examples, the new grate subsystem is fairly simple in design. It is also an object of the subject invention, in one embodiment, to provide such a new grate subsystem which reduces or eliminates the need to manually clear the grate of clinkers. One preferred grate subsystem better maintains the proper flow of gas through the gasifier.
The subject invention results from the partial realization that, in one example, a new grate subsystem for a gasifier includes a hopper with angled grates feeding clinkers to a pair of grinding shafts which grind the clinkers in order to maintain the correct pressure in the gasifier.
This invention features, in one embodiment, a gasifier comprising a combustion zone where a gas is introduced and fuel is combusted and at least one sensor for measuring a predetermined condition in the gasifier. A grate subsystem contains the fuel and includes at least one grinding mechanism. A controller is responsive to the sensor and controls the grinding mechanism. The controller is configured to activate the grinding mechanism if the predetermined condition exists to reduce the collection of non-fuel products on the grate subsystem.
In one example, the sensor is a pressure sensor responsive to the pressure below the grate subsystem. In one version, the grate subsystem includes at least two downwardly angled fixed grates defining a hopper area between the grates. The grinding mechanism then typically includes at least two spaced grinding shafts disposed in the hopper area. In one particular example, each shaft includes a gear meshed with a gear on the other shaft to drive the shafts together. A motor drives one shaft and the controller is configured to energize the motor.
One preferred subsystem includes two pairs of fixed downwardly angled grates defining two hopper areas. There are two pairs of spaced grinding shafts and one pair is disposed in each hopper area. In one particular design, each grate includes slots between 0.1 and 0.3 inches wide spaced between 0.5 and 0.8 inches apart and there is a gap of between 0.1 and 0.3 inches between the grinding shafts.
One preferred gasifier grate subsystem further includes a housing configured as a tray containing the grates and the grinding shafts. In one design, the tray includes spaced side members connected by spaced end members. Typically, the grinding shafts extend between the spaced end members. Bearings on each shaft rotatably couple the shafts to the end members.
One preferred controller is programmed to determine if a pressure output by the pressure sensor meets or exceeds a predetermined pressure and activates the grinding mechanism if the pressure meets or exceeds the predetermined pressure. The controller deactivates the grinding mechanism if the pressure does not meet or exceed the predetermined pressure. The controller may be further programmed to activate the grinding mechanism for increasing time intervals until the pressure does not meet or exceed the predetermined pressure.
The subject invention also features a gasifier grate subsystem comprising at least two downwardly angled fixed grates defining a hopper area between the grates, at least two spaced grinding shafts disposed in the hopper area, and a controller, responsive to a sensor, configured to actuate the grinding shafts if a predetermined condition exists to reduce the collection of non-fuel products on the fixed grates.
One gasifier grate control system in accordance with the subject invention features a grate subsystem for containing fuel in a gasifier. The grate subsystem includes at least one grinding mechanism and a controller, responsive to at least one sensor, for controlling the grinding mechanism. The controller is configured to actuate the grinding mechanism if a predetermined condition exists to reduce the collection of non-fuel products on the grate subsystem. The sensor may be a pressure sensor responsive to the pressure below the grate subsystem. The grate subsystem may include at least two downwardly angled fixed grates defining a hopper area between the grates and the grinding mechanism typically includes at least two spaced grinding shafts disposed in the hopper area.
The gasifier grate control system controller is preferably programmed to determine if the sensor output meets or exceeds the predetermined condition, activate the grinding mechanism if the sensor output meets or exceeds the predetermined condition, and deactivate the grinding mechanism if the sensor output does not meet or exceed the predetermined condition. The controller is preferably programmed to activate the grinding mechanism for increasing time intervals until the sensor output does not meet or exceed the predetermined condition.
The subject invention also features a gasifier comprising means for combusting fuel, sensor means for measuring a predetermined condition in the gasifier, a grate containing the fuel, and means for automatically removing clinkers on the grate in response to the sensed predetermined condition. In one embodiment, the means for automatically removing the clinkers includes at least one grinding mechanism activated by a controller responsive to the sensor means.
The subject invention also features a method of controlling a gasifier including a grate. One preferred method comprises detecting at least one gasifier condition indicative of clinkers on the grate and in response automatically activating a grinding mechanism to remove the clinkers. The grinding mechanism is deactivated when the gasifier condition no longer exists so that fuel is not ground and wasted.
The subject invention, however, in other embodiments, need not achieve all these objectives and the claims hereof should not be limited to structures or methods capable of achieving these objectives.
Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:
Aside from the preferred embodiment or embodiments disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. If only one embodiment is described herein, the claims hereof are not to be limited to that embodiment. Moreover, the claims hereof are not to be read restrictively unless there is clear and convincing evidence manifesting a certain exclusion, restriction, or disclaimer.
As noted in the background section above, it is important that the pressure drop through the gasifier 10 remains within specified parameters. Clinkers clogging the grate subsystem 16, for example, could increase the pressure to drop a level where an “updraft” condition occurs. And, in any case, the efficiency of the gasifier depends on the free flow of gas through the gasifier. When the fuel, e.g., pellets, is from an uncontrolled source, for example, the waste from a cafeteria or building, the likelihood of clinkers clogging the grate subsystem increases. The waste might include food and paper but also non-fuel products such as glass, metal, and ceramic materials.
Accordingly, the subject invention features a size reduction subsystem such as grinding mechanism 24 driven by motor M. The subject invention also features a sensor or sensor subsystem 20 for measuring a predetermined condition in the gasifier. In one preferred embodiment, sensor 20 is a pressure sensor providing an output to controller 22 which is responsive to the output of the pressure sensor and is configured (e.g., programmed) to determine if the pressure meets a predefined condition (e.g., a pressure indicating a potential “updraft” condition or a pressure indicating a low efficiency of the gasifier). Then, in response, controller 22 controls (e.g., energizes or activates) motor M of grinding mechanism 24 to rid the grate of clinkers. Controller 22 may be embodied in a computer, circuitry on a circuit board, a processor, an application specific integrated circuit, and the like.
As shown in
Although this unique system will find uses in gasifiers of different designs and differing means for combusting fuel,
Fixed grates 62a-62d,
Each fixed grate may be angled between 30° to 45° with respect to horizontal (angle θ in
To grind clinkers including metal, ceramic, and other hard materials, all the grate components are best made of stainless steel and grinding shafts 64a-64d are configured to grind such hard metals. Although this specific design includes two pairs of spaced downwardly angled grates and two pairs of grinding shafts, this is not a limitation of the subject invention. Other means for removing clinkers other than the grinders shown herein are within the scope of the subject invention. Size reduction devices other than grinders are possible.
The preferred tray structure 60 includes spaced side members 70a and 70b connected via spaced end members 72a and 72b. Grinding shaft 64a and 64b extend between spaced end members 72a and 72b as shown. This structure also defines an ash pit below grates 62a-62d. In one example, the grinding shafts were 3 inches in diameter and were made of Al tool steel. Bearings 74a-74d rotatably support one end of grinding shaft 64a-64d, respectively, with respect to end member 72a. Bearing blocks 76a-76d rotatably support the other end of grinding shaft 64a-64d, respectively, with respect to end member 72b. Spaced brackets 78a and 78b support the opposing ends of grate 62a-62d.
As discussed above, controller 22,
The result, in the preferred embodiment, is a new grate subsystem for a gasifier. Clinkers are reduced or even eliminated. The correct pressure is maintained in the gasifier. There is a reduction or even an elimination of the need to manually clear the grates of clinkers.
But, although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments.
In addition, any amendment presented during the prosecution of the patent application for this patent is not a disclaimer of any claim element presented in the application as filed: those skilled in the art cannot reasonably be expected to draft a claim that would literally encompass all possible equivalents, many equivalents will be unforeseeable at the time of the amendment and are beyond a fair interpretation of what is to be surrendered (if anything), the rationale underlying the amendment may bear no more than a tangential relation to many equivalents, and/or there are many other reasons the applicant can not be expected to describe certain insubstantial substitutes for any claim element amended.
Other embodiments will occur to those skilled in the art and are within the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3760717 | DeMilt et al. | Sep 1973 | A |
3790091 | Law et al. | Feb 1974 | A |
3910775 | Jackman et al. | Oct 1975 | A |
3949036 | Nelson | Apr 1976 | A |
4026678 | Livingston | May 1977 | A |
4203374 | Frederick | May 1980 | A |
4225457 | Schulz | Sep 1980 | A |
4445906 | Riemann et al. | May 1984 | A |
4557204 | Faehnle | Dec 1985 | A |
4859211 | Moore | Aug 1989 | A |
5230716 | Notestein | Jul 1993 | A |
5407809 | Finn | Apr 1995 | A |
5428906 | Lynam et al. | Jul 1995 | A |
5431702 | Schulz | Jul 1995 | A |
5562743 | Daugherty et al. | Oct 1996 | A |
5656248 | Kline et al. | Aug 1997 | A |
6018471 | Titus et al. | Jan 2000 | A |
6506223 | White | Jan 2003 | B2 |
7108788 | Chang et al. | Sep 2006 | B2 |
7252691 | Philipson | Aug 2007 | B2 |
7685737 | Gorbell et al. | Mar 2010 | B2 |
20020148917 | Koenig | Oct 2002 | A1 |
20060130396 | Werner | Jun 2006 | A1 |
20090090282 | Gold et al. | Apr 2009 | A1 |
Entry |
---|
U.S. Appl. No. 12/928,892, Young et al. |
PCT Written Opinion of the International Searching Authority, PCT Application No. PCT/US08/11508, Jan. 8, 2009 (eight (8) pages). |
Number | Date | Country | |
---|---|---|---|
20110072722 A1 | Mar 2011 | US |