The sealing and gasket industry would benefit from a low cost, pressure sensor enabled, gasket assembly capable of continuously reporting its state of integrity. This would essentially take the form of a ‘smart gasket’ in critical pipe-work infrastructure where continuous self monitoring can (a) facilitate compliance with maintenance and assurance requirements, (b) reduce the risk of environmental impact as a result of leakage, and (c) increase process efficiency due to reduction of downtime and leakage.
In inexpensive, microchip-scale pressure sensor based on compound semiconductor materials technology has been designed and miniaturized. This sensor may be physically as small as one millimeter square and ˜15 microns thick and offers reversible pressure measurement to loading of in excess of 50 MPa. It is described in U.S. Pat. No. 7,127,949B2, Contact pressure sensor and method for manufacturing, granted October 2006.
By altering the internal structure of the sensor chip, it can be made to suit various ranges of pressures, sensitivity and applications. In addition, it has the unique ability to continuously monitor pressure for an indefinite period. The initial application that has been identified is in the production of ‘intelligent’ industrial metallic gaskets where it is necessary to monitor the forces between pipe-work flanges.
A sealing, high pressure, high temperature gasket for use in oil and gas applications is described comprising mechanical and electrical integration of the aforementioned sensor into an industry standard gasket without compromising mechanical sealing quality, and allowing extraction of electrical signals.
In one embodiment a stainless steel gasket with graphite sealing faces be may be chosen for integration with the sensor (See
A version of this gasket modified to integrate with a pressure sensor comprises similar graphite discs covering a two part steel disc. However, the graphite discs are modified to integrate with the sensor without compromising the seal quality and specifications, and without causing damage to the sensor insert under full pressure load.
A second type of gasket is a strip of high grade metal, commonly stainless steel, wound in a spiral (known as the winding). This spiral is wound together with a “filler” strip such as PTFE, graphite, or a non-asbestos jointing, depending on the application (See
The sensor measure force on the winding of the gasket against the outer ring of the gasket due to squeezing of the winding between the flanges. The force measurement is perpendicular, the force of the spiral against the outer ring, by either a sensor in the ring, or a device that can measure pressure against the ring.
The pressure measurement may be facilitated by holes in the outer ring that permit small elastic deformation of the outer ring that can be measured. Pressure sensors may be mounted inside such holes, or at the inner edge of the outer ring at the interface to the spiral. Alternately markings may be available on the outer ring that facilitate measurement of deformation of the outer ring under pressure. The pressure exerted against the outer ring may be determined using ultrasonic measurement of the outer ring. Alternately, stiffness or deformation measurement of the outer ring may be used to estimate the pressure exerted against the outer ring by the spiral. Preferably the measurements are performed at multiple positions along the outer ring to determine if the gasket pressure is evenly distributed or not. In some embodiments, a permanent monitoring system may be installed to monitor the deformation of the outer ring, such as glass fiber based interferometry that measures a gap between a reference surface and a deformed surface with high accuracy.
The sensor signal may be exposed through the side of the gasket so as to not compromise the seal.
This application claims priority under 35 USC 119 to U.S. application Ser. No. 61/821,850, filed on May 10, 2013, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61821850 | May 2013 | US |