Gasket with collar for prosthetic heart valves and methods for using them

Information

  • Patent Grant
  • 8211169
  • Patent Number
    8,211,169
  • Date Filed
    Friday, May 26, 2006
    18 years ago
  • Date Issued
    Tuesday, July 3, 2012
    12 years ago
Abstract
A heart valve assembly includes a prosthesis for receiving a prosthetic valve to replace a preexisting natural or prosthetic heart valve within a biological annulus adjacent a sinus cavity. The prosthesis includes an annular member implantable within the biological annulus for contacting tissue surrounding the biological annulus to provide an opening through the biological annulus, a collar extending upwardly from the annular member, and a sewing cuff extending radially outwardly from the annular member and/or collar. Optionally, the annular member and/or collar may be resiliently compressible, expandable, and/or otherwise biased. A valve member, e.g., a mechanical or bioprosthetic valve may be coupled to the collar, e.g., using a drawstring, sutures, or other connectors, to secure the valve member to the gasket member.
Description
FIELD OF THE INVENTON

The present invention relates generally to heart valves that may be implanted within a patient, and, more particularly, to multiple component heart valve assemblies that may be assembled together, and to apparatus and methods for using them.


BACKGROUND

Prosthetic heart valves can replace defective human valves in patients. For example, one piece valves have been suggested that include sewing rings or suture cuffs that are attached to and extend around the outer circumference of a prosthetic valve. In addition, multiple component valves have also been suggested that include a sewing ring that is separate from a valve component. The sewing rings of either type of prosthetic valve can be tedious and time consuming to secure within a target site, i.e., within an annulus of a heart where a natural heart valve has been removed.


For example, to implant a sewing ring within an annulus of a heart, between twelve and twenty sutures may be secured initially to tissue surrounding the annulus. The sewing ring and/or the entire prosthetic valve may then be advanced or “parachuted” down the sutures into the annulus. Knots may then be tied with the sutures to secure the sewing ring within the annulus, whereupon the sutures may be cut. Consequently, this procedure can be very complicated, requiring management and manipulation of many sutures. The complexity of the procedure also provides a greater opportunity for mistakes and requires a patient to be on cardiopulmonary bypass for a lengthy period of time.


Because the annulus of the heart may not match the circular cross-section of the sewing ring and/or prosthetic valve, the prosthetic valve may not fit optimally within the annulus. As a result, natural blood hemodynamics through and around the valve may be impaired, resulting in clotting, possible emboli production, and eventual calcification of the valve structure.


To address this concern, flexible sewing rings have been suggested for use with multiple component valves. The sewing ring may be implanted within the annulus, e.g., using the procedure described above, i.e., parachuted down an arrangement of sutures. The sewing ring may conform at least partially to the anatomy of the annulus. Alternatively, instead of using sutures, it has also been suggested to drive staples through the sewing ring into the surrounding tissue to secure the sewing ring.


When a mechanical or prosthetic valve is then attached to the sewing ring, however, the valve and sewing ring may not mate together effectively, e.g., if the shape of the sewing ring has been distorted to conform to the annulus, which may also impair natural blood hemodynamics, create leaks, and/or otherwise impair performance of the prosthetic valve.


SUMMARY OF THE INVENTION

The present invention is directed to heart valves that may be implanted within a patient, and, more particularly, to multiple component heart valve assemblies that may be assembled together, and to apparatus and methods for making and implanting them.


In accordance with one embodiment, a prosthesis is provided for receiving a prosthetic valve to replace a preexisting natural or prosthetic heart valve within a biological annulus adjacent a sinus cavity. The prosthesis may include an annular member implantable within the biological annulus for contacting tissue surrounding the biological annulus to provide an opening through the biological annulus, a collar extending upwardly from the annular member, and a sewing cuff extending radially outwardly from the annular member and/or collar. Optionally, the annular member and/or collar may be resiliently compressible, expandable, and/or otherwise biased.


In accordance with another embodiment, a heart valve assembly is provided for implantation within a biological annulus. The heart valve assembly may include an annular prosthesis implantable within a biological annulus that includes an annular member for contacting tissue surrounding the biological annulus, and a collar extending upwardly from the annular member. The heart valve assembly also includes a prosthetic valve, e.g., including a mechanical or bioprosthetic heart valve, which may have a circular or multiple lobular shape for implantation above the biological annulus.


Optionally, one or more connectors may be provided on at least one of the annular prosthesis and the prosthetic valve for securing the prosthetic valve to the annular prosthesis. For example, the one or more connectors may include a drawstring on the collar for engaging a frame of the prosthetic valve. Alternatively, the one or more connectors may include one or more latches, detents, interlocking elements on the prosthetic valve and/or the annular prosthesis.


In one embodiment, the collar may be formed from resiliently flexible material, e.g., silicone covered with a fabric covering. The collar may be formed as a unitary piece with a sewing ring and/or annular member, which may be covered with one or more pieces of fabric. Alternatively, the collar, sewing ring, and/or annular member may be separate components that are attached to one another, either before or after being covered with fabric.


In accordance with yet another embodiment, a method is provided for implanting a prosthetic heart valve assembly to replace a natural or prosthetic heart valve implanted within a biological annulus below a sinus cavity. An annular member may be introduced into the biological annulus, e.g., to direct tissue surrounding the biological annulus outwardly, e.g., to at least partially dilate the biological annulus. A flexible sewing cuff or skirt may extend around the annular member that may receive one or more connectors, e.g., sutures, clips, and the like, to secure the annular member within the annulus.


A valve prosthesis, e.g., a mechanical or bioprosthetic valve, may be advanced into the sinus cavity, and secured relative to the annular member. In one embodiment, a collar or stand-off extends upwardly from the annular member for receiving the valve prosthesis. The valve prosthesis may be secured to the collar using one or more connectors, e.g., a drawstring in the collar, one or more sutures, clips detents, and/or other cooperating connectors, e.g., on the collar and a frame of the valve prosthesis.


The collar may support the valve prosthesis above the tissue annulus, e.g., within the sinus of valsalva. The collar may allow the valve prosthesis to have a larger size than the annular member, thereby enhancing the fluid flow or other performance characteristics of the implanted heart valve assembly. Optionally, the collar may include a funnel or other tapered shape that may provide a transition from a relatively larger valve prosthesis to the annular member within the tissue annulus. In addition, the collar may support the valve prosthesis away from a wall of the sinus or other supra-annular space, while still allowing blood to flow easily into the coronary arteries around the valve prosthesis.


In accordance with still another embodiment, a heart valve prosthesis is provided that includes an annular prosthesis implantable within a biological annulus, and a prosthetic valve member secured to the annular prosthesis. The annulus prosthesis may include an annular member sized for implantation within the biological annulus, a sewing cuff extending radially from the annular member, and an annular transition extending upwardly from the annular member. The valve member may include a frame secured to the annular transition, the frame having a cross-section that is substantially larger than the annular member.


In accordance with yet another embodiment, a method is provided for implanting a prosthetic heart valve assembly within a biological annulus. The heart valve assembly includes an annular member sized for delivery into the biological annulus, an annular transition extending upwardly from the annular ring, and a valve member secured to the annular transition that has a cross-section larger than the annular member. The heart valve assembly may be introduced towards the biological annulus such that the annular member is disposed within the biological annulus and the valve member is disposed above the biological annulus, and the heart valve assembly may be secured to tissue adjacent the biological annulus.


In one embodiment, a valve member is selected having a predetermined size corresponding to a sinus cavity above the biological annulus, and the selected valve member is secured to the annular transition before introduction into the biological annulus. In another embodiment, the valve member is secured to the annular transition during manufacturing and provided preassembled. In still another embodiment, the annular transition may be implanted within the biological annulus, and then the valve member may be introduced and secured to the annular transition.


Other aspects and features of the present invention will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate exemplary embodiments of the invention, in which:



FIG. 1 is a perspective view of a two piece heart valve assembly including a gasket member and a mechanical valve.



FIG. 2 is a perspective view of an exemplary mechanical valve that may be provided with the heart valve assembly of FIG. 1.



FIGS. 3A and 3B are perspective and top views, respectively, of an exemplary embodiment of a gasket member (with a fabric covering removed for clarity) that may be provided with the heart valve assembly of FIG. 1.



FIG. 3C is a cross-sectional view of the gasket member of FIG. 3B taken along line A-A.



FIG. 3D is a cross-sectional view of the gasket member of FIG. 3C taken along line B-B.



FIGS. 4A and 4B are perspective and partial cross-sectional side views, respectively, of the heart valve assembly of FIG. 1.



FIG. 5 is a cross-sectional view showing the heart valve assembly of FIGS. 4A and 4B implanted within a tissue annulus of a patient.



FIGS. 6A-6D are top, two perspective, and side views, respectively, of a core for a collar that may be included in a gasket member.



FIGS. 7A-7C show a method for covering the core of FIGS. 6A-6D with fabric to provide a collar for a gasket member.



FIG. 8A is a perspective view of a mechanical valve secured to the collar of FIG. 7C by a drawstring.



FIG. 8B is a perspective view of the mechanical valve of FIG. 8A being secured to a completed gasket member by a drawstring.



FIGS. 9A and 9B are perspective view of the gasket member of FIGS. 3A-3D, showing flexibility of a collar of the gasket member allowing the collar to be compressed or diverted to provide access to a sewing ring of the gasket member.



FIG. 10 is a perspective view of a mechanical valve including a frame disposed adjacent a portion of a collar, showing a groove in the frame that may engage with the collar when a drawstring on the collar is tightened.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Turning to the drawings, FIG. 1 shows an exemplary embodiment of a heart valve assembly 10 that generally includes a gasket member 12 and a valve member 14. As shown, the valve member 14 may be a mechanical valve including an annular frame 32 supporting a pair of valve members 33 that open and close within the frame 32 (e.g., see FIGS. 5 and 4A, respectively). Optionally, as best seen in FIG. 2, the valve member 14 may include a pair of ears 34 extending downwardly from the frame 32, e.g., for pivotally securing the valve members 33 to the frame 32.


In an exemplary embodiment, the valve member 14 may be a mechanical valve, such as the “Regent” Bileaflet Valve manufactured by St. Jude Medical. In alternative embodiments, the valve member 14 may be other mechanical or bioprosthetic valves, such as those disclosed in co-pending application Ser. No. 10/646,63, filed Aug. 22, 2003, Ser. No. 10/681,700, filed Oct. 8, 2003, Ser. No. 10/765,725, filed Jan. 26, 2004, Ser. No. 11/069,081, filed Feb. 28, 2005, and 60/669,704, filed Apr. 8, 2005. The entire disclosures of these applications are expressly incorporated by reference herein.


Turning to FIGS. 3A-3D, an exemplary embodiment of the gasket member 12 is shown that generally includes an annular ring 18, a sewing cuff 20, and a collar or stand-off 22. A fabric covering, which may be provided on one or more components of the gasket member 12 has been omitted for clarity. In one embodiment, the annular ring 18 may have a generally circular shape, although alternatively, the annular ring 18 may have a multi-lobular shape about the circumference, e.g., including three lobes separated by scallops or cusps (not shown). Optionally, the annular ring 18 may be expandable and/or contractible such that the diameter may be adjusted, e.g., based upon the anatomy of the patient encountered during a procedure. In one embodiment, the annular ring 18 may be biased to expand to a predetermined diameter. Thus, the annular ring 18 may be contracted radially to a smaller diameter, e.g., to facilitate delivery into an annulus, yet may be resiliently expandable to dilate tissue surrounding the annulus and/or to facilitate securing the gasket member 12 within the annulus. In addition, if the sewing cuff 20 and/or collar 22 are substantially flexible, they may also be at least partially folded or otherwise compressed to facilitate introduction into a biological annulus.


With additional reference to FIG. 4B, the annular ring 18 may be formed from an elastic or superelastic material, such as Nitinol, or any of the other materials described in the applications incorporated by reference herein. For example, the annular ring 18 may be cut from a flat sheet of base material having a desired thickness for the annular ring 18, for example, by laser cutting, mechanical cutting, and the like. Thus, the annular ring 18 may be initially formed as a long band of material, having a width corresponding to the desired width of the annular ring 18. The band may be wrapped around a mandrel or otherwise restrained in a generally cylindrical shape with the ends adjacent to one another, and the band may be heat treated or otherwise processed to program the generally cylindrical shape to create the annular ring 218. The generally cylindrical shape may include the ends overlapping one another, spaced apart from one another to provide an open “C” shape, or attached to one another.


When the annular ring 18 is at least partially covered with fabric, as shown in FIG. 1, e.g., for tissue ingrowth, the fabric may be wrapped around the annular ring 18, while accommodating expansion and contraction of the annular ring 18. For example, at least near the ends (not shown) of the annular ring 18, the fabric may not be secured to the annular ring 18, allowing the ends to slide circumferentially relative to the fabric. Optionally, sutures and the like (not shown) may be used to secure the fabric to the annular ring 18 at locations removed from the ends, e.g., at an intermediate location about the circumference of the annular ring 18. Alternatively, the entire annular ring 18 may be free to slide within the fabric wrapped around the annular ring 18.


The sewing cuff 20 may be attached to or otherwise extend around the annular ring 18. The sewing cuff 20 may simply be a layer of fabric or other material covering at least a portion of the annular ring 218. As shown in FIGS. 3A-3D, the sewing cuff 20 may include flexible core material, such as silicone or other elastomeric material, foam, fabric, and the like, which may be attached to or otherwise extend around the annular ring 18, e.g., from an upper edge of the annular ring 18. The core may include a solid wall or a lattice structure, and may be maintained adjacent the annular ring 18 by the surrounding fabric or may be attached to the annular ring 18, e.g., along an upper edge of the annular ring 18. Additional information on materials and methods for making and using the gasket member 12, e.g., the annular ring 18, sewing cuff 20, and/or other components may be found in application Ser. No. 11/069,081, incorporated by reference above.


The collar 22 may be attached to or otherwise extend upwardly from the annular ring 18 and/or the sewing cuff 20. As shown, the collar 22 may include a core 23, which may be separate from the core of the sewing cuff 20. The core 23 and the core of the sewing cuff 20 may be attached to one another, e.g., by bonding fusing, interference fit, and the like, and/or may be maintained adjacent one another by the surrounding fabric. Alternatively, the core 23 of the collar 22 and the core of the sewing cuff 22 may be formed as a unitary piece, e.g., by molding, cutting and/or machining from a blank, and the like. In a further alternative, the collar 22 may be disposed adjacent the sewing cuff 20 and/or annular ring 18, and attached thereto, e.g., using one or more sutures or other connectors (not shown).


The material of the core 23 may be substantially flexible, e.g., manufactured in a desired annular shape, yet easily deformed, e.g., deflected, stretched, and/or compressed, as demonstrated in FIGS. 9A and 9B. Exemplary materials for the core include silicone or other elastomeric materials, foam, fabric, felt, polymers, and the like, e.g. similar to the sewing cuff 20. The materials may be molded or otherwise formed into the core, e.g., using known molding, extrusion, cutting, machining, or other manufacturing procedures.


In the embodiment shown in FIGS. 6A-6D, the core 23 may be formed from a cylindrical or tubular section of material, e.g., silicone, which may have portions cut away or otherwise removed to provide the final shape and/or features of the core 23. Alternatively, the core 23 may be molded or otherwise formed to include its final shape and/or features. The core 23 may have a substantially uniform inner and/or outer diameter, or, alternatively, the core 23 may be tapered, e.g., such that a lower edge of the core 23 is narrower than an upper edge, as described further below.


As shown in FIGS. 7A-7C, the core 23 may be covered with fabric 25. Optionally, one or more connectors may be attached to or otherwise provided on the core 23. For example, as shown in FIG. 7C, a drawstring 30 has been provided that at least partially surrounds the core 23. The drawstring 30 may include one or more threads or other filaments that extend around the circumference of the core 23. The fabric 25 may be wrapped around the core 23 such that the fabric 25 also covers the filament of the drawstring 30. Ends 31 of the drawstring 30 may extend through opening in the fabric 25, thereby allowing the ends 31 to be pulled by a user, e.g., to constrict and/or compress the core 23 radially inwardly. Alternatively, other connectors (not shown) may be provided on the collar 22 that may interlock or otherwise engage mating connectors or other features on the valve member 14, e.g., such as those disclosed in application Ser. No. 60/748,639, filed Dec. 7, 2005, Ser. No. 11/279,246, filed Apr. 10, 2006, and 60/746,038, filed Apr. 29, 2006, the disclosures of which are expressly incorporated by reference herein, or in the other applications incorporated by reference above.


As best seen in FIG. 3C, the collar 22 may include one or more grooves or pockets 24 formed within the collar 22. For example, the collar 22 may include a pair of opposing grooves on an inner surface thereof, which may accommodate the ears 34 of the valve member 14 shown in FIG. 2. The collar 22 may have sufficient height to accommodate receiving the frame 32 of the valve member 14 without the ears 34 extending down into the annular ring 18, e.g., as can be seen in FIG. 5, which may otherwise at least partially obstruct the passage through a biological annulus. The collar 22 may have sufficient structural integrity to support the valve member 14, yet be sufficiently flexible to be deformable to facilitate introduction into a patient's body and/or to move the collar 22 away to accommodate delivery of one or more connectors into the sewing cuff 20, as described elsewhere herein.


During use, the gasket member 12 may be implanted within a patient's body, e.g., within or adjacent to a biological annulus 90, as shown in FIG. 5, similar to the methods disclosed in the applications incorporated by reference above. The biological annulus 90 may be the site for replacement of an existing natural or previously implanted prosthetic valve, such as a tricuspid, mitral, aortic, or pulmonary valve within a patient's heart (not shown). The biological annulus may extend from a supra annular region, e.g., the Sinus of Valsalva for an aortic valve, through a native valve site, e.g., a site where the aortic valve has been removed, to a sub-annular region.


With the annular ring 18 contracted into a relatively small diameter (if the annular ring 18 is radially compressible), the gasket member 12 may be advanced into the annulus 90 using a delivery tool (not shown). The gasket member 12 may be advanced until the annular ring 18 extends at least partially into the biological annulus 90. In one embodiment, the annular ring 18 may extend entirely through the biological annulus 90, with the lower edge of the annular ring 18 remaining free within the sub-annular space below the biological annulus 90. Optionally, as shown in FIGS. 4B and 5, the gasket member 12 may include a flexible skirt 26 that extends through the annulus 90. The skirt 26 may be biased to extend outwardly as shown to provide a smooth transition and/or enhance a seal between the heart vale assembly 10 and the biological annulus 90.


If the annular ring 18 is expandable or otherwise compressed, the annular ring 18 may then be expanded within the biological annulus 90, e.g., to dilate the biological annulus 90 or otherwise direct the surrounding tissue outwardly against the underlying tissue structures. For example, the annular ring 218 may simply be released by the delivery tool, whereupon the annular ring 18 may resiliently expand against the tissue surrounding the biological annulus 90, thereby substantially securing the annular ring 18 (and consequently, the gasket member 12) relative to the biological annulus 90. In addition or alternatively, a dilation tool (not shown) may be advanced into the gasket member 12 and expanded to forcibly (e.g., plastically) expand the annular ring 18 within the biological annulus 90.


If the sewing cuff 20 is restrained by the delivery tool, the sewing cuff 20 may be released to allow the sewing cuff 20 to contact the surrounding tissue, e.g., within the aortic root above the biological annulus 90. The sewing cuff 20 may contact the tissue within the supra-annular space above the biological annulus 90, as shown in FIG. 5, although the sewing cuff 20 may not provide any structural support of the annular ring 18. Because of the floppy (i.e., flexible and conformable) nature of the core of the sewing cuff 20, the sewing cuff 20 may adopt the shape of the surrounding tissue, e.g., lying flatter within the coronary sinus regions, while becoming more vertical adjacent the commissures, as explained in the applications incorporated by reference above.


With the gasket member 12 in place, a plurality of fasteners, e.g., clips, staples, sutures, and the like (not shown), may be directed through the sewing cuff 20 into the tissue surrounding the biological annulus to secure the gasket member 12 relative to the biological annulus. If necessary to facilitate access to the sewing cuff 20, local portions of the collar 22 may be at least partially deflected out of the way, as shown in FIGS. 9A and 9B. The collar 22 may be sufficiently resilient to return to its annular shape upon release. Additional information on fasteners and apparatus and methods for delivering them may be found in application Ser. No. 10/681,700, filed Oct. 8, 2003 and Ser. No. 11/004,445, filed Dec. 3, 2004, the entire disclosures of which are expressly incorporated by reference herein.


The valve member 14 may then be advanced into the biological annulus, e.g. using another delivery tool or the same tool (not shown) used to deliver the gasket member 12. The valve member 14 may then be secured to the collar 22, e.g., using one or more connectors. For example, as described above, in one embodiment, the collar 22 may include a drawstring 30, as shown in FIG. 7C. After inserting the valve member 14 at least partially into the collar 22, as shown in FIGS. 8A and 8B, the ends 31 may be pulled to tighten the drawstring 30 around the frame 32 of the valve member 14 to secure the valve member 14 relative to the collar 22. Optionally, the frame 32 may include an annular groove 36 or other feature(s) (not shown) that may receive a portion of the collar 22 or otherwise engage the collar when the drawstring 30 is tightened.


Alternatively, one or more sutures 40 may be directed through a sewing cuff 39 on the valve member 14 and the fabric and/or core of the collar 22, e.g., as shown in FIG. 1. In a further alternative, the valve member 14 and/or collar 22 may include cooperating clips, detents, and the like (not shown) that may self-engage when the valve member 14 is docked into the collar 22, similar to the embodiments described in the applications incorporated by reference above. In still another alternative, the gasket member 12 may include a plurality of leaders or other elongate guides (not shown), which may be directed through a sewing cuff 39 or other portion of the valve member 14, similar to the apparatus and methods disclosed in application Ser. No. 60/748,639 and 60/746,038, incorporated by reference above. For example, the leaders may be sutures, and knots may be directed down the sutures to secure the valve member 14 to the collar 22, whereupon the sutures may be cut or otherwise severed. Alternatively, other guide members (not shown) may be provided that may be directed through the sewing cuff 39, e.g., through receivers or other mating connectors (also not shown) in the sewing cuff 22 or simply by “picking up” strands of the fabric of the sewing cuff 22, as described in the applications incorporated by reference above.


Once the valve member 14 is secured, any tools may be removed, and the procedure completed using known methods.


In an alternative embodiment, the valve member 14 may be secured to the collar 22 (or otherwise to the gasket member 12, as described elsewhere herein) before introduction into the patient's body. For example, immediately before implantation, a user may select a desired size valve member 14 and direct the valve member into engagement with the collar 22, e.g., using one or more cooperating detents or other connectors as described herein or in the applications incorporated by reference above. In a further alternative, the valve member 14 may be secured to the collar 22 during manufacturing, and shipped pre-assembled as a single piece.


The resulting heart valve assembly 10 may be introduced into a tissue annulus, e.g., a site of a native or previously implanted prosthetic valve (not shown), as a single component. For example, a plurality of sutures may be placed in tissue surrounding the tissue annulus, e.g., using conventional needle and suture devices. The sutures may be directed through a portion of the heart valve assembly 10, e.g., through the sewing cuff 20, valve frame, or other portion of the heart valve assembly 10. In one embodiment, a needle on one end of each suture may be directed through fabric on the heart valve assembly, i.e., to pick up one or more strands of the fabric.


Once several sutures have been directed through the heart valve assembly 10, e.g., spaced apart around the circumference of the heart valve assembly 10, the heart valve assembly 10 may be advanced or “parachuted” down the sutures into the tissue annulus. Knots may be tied in the sutures to secure the heart valve assembly 10 within or otherwise to the tissue annulus. Excess suture material may then be cut off or otherwise severed. Optionally, other connectors, e.g., staples, clips, and the like, may be delivered through the sewing cuff 20 and/or other portion of the heart valve assembly 10 into the surrounding tissue, in addition to or instead of the sutures. Thus, the heart valve assembly 10 may be delivered more analogously to a one-piece valve.


One advantage of the apparatus and methods described herein is that a valve member 14 may be selected that is larger than conventional one-piece valves. Because the valve member 14 is secured to or otherwise supported by the collar 22, the valve member 14 may be disposed above the tissue annulus, e.g., within the sinus of Valsalva, upon implantation within the aortic valve annulus. Because this space is larger than the tissue annulus, a relatively larger valve member 14 may be selected than if the valve member 14 were disposed within the aortic valve annulus.


The collar 22 may provide a substantially smooth and/or continuous transition from the valve member 14 into the tissue annulus, thereby providing improved flow through the heart valve assembly 10 and/or tissue annulus after implantation. Thus, an inner surface of the collar 22 may be designed to transition substantially smoothly from a larger upper edge, corresponding to the size of the valve member 14 down to a lower edge corresponding to the size of the annular member 18 extending through the biological annulus. This may enhance hemodynamics of blood flowing through the biological annulus, as compared to conventional valves.


It will be appreciated that elements or components shown with any embodiment herein are exemplary for the specific embodiment and may be used on or in combination with other embodiments disclosed herein.


While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents and alternatives falling within the scope of the appended claims.

Claims
  • 1. A heart valve assembly, comprising: an annular prosthesis implantable within a natural valve annulus, the annular prosthesis comprising an annular member configured to be received in a biological annulus, a sewing cuff extending radially outwardly from the annular member, and a collar extending upwardly from the annular member; anda prosthetic valve comprising a frame securable to the collar, wherein the frame includes a first ear and a second ear, wherein the first and second ears extend downwardly from the frame,wherein the collar includes a first pocket configured to receive the first ear and a second pocket configured to receive the second ear, andwherein the collar defines an interior lumen having a longitudinal axis, wherein the collar includes an internal wall and an external wall, wherein the internal wall is closer to the longitudinal axis than the external wall, and wherein the first and second pockets are formed in the internal wall of the collar.
  • 2. The heart valve assembly of claim 1, further comprising one or more connectors for securing the prosthetic valve to the annular prosthesis.
  • 3. The heart valve assembly of claim 2, wherein the one or more connectors comprises a drawstring on the collar.
  • 4. The heart valve assembly of claim 1, wherein the prosthetic valve comprises a mechanical valve.
  • 5. The heart valve assembly of claim 1, wherein the prosthetic valve comprises a bioprosthetic valve.
  • 6. The heart valve assembly of claim 1, wherein the first and second pockets are open to the interior lumen.
  • 7. A method for implanting a prosthetic heart valve assembly to replace a natural or prosthetic heart valve implanted within a biological annulus below a sinus cavity, the method comprising: obtaining a gasket member comprising an annular ring sized for delivery into the biological annulus, the gasket member comprising an annular transition extending upwardly from the annular ring, wherein the annular transition comprises a first pocket and a second pocket, wherein the annular transition defines an interior lumen having a longitudinal axis, wherein the annular transition includes an internal wall and an external wall, wherein the internal wall is closer to the longitudinal axis than the external wall, arid wherein the first and second lockets are formed in the internal wall of the annular transition;obtaining a valve member that has a cross-section larger than the annular ring, wherein the valve member comprises a frame including first and second ears extending downwardly from the frame, and wherein the first ear is configured to mate with the first pocket and the second ear is configured to mate with the second pocket to secure the valve member to the frame;connecting the valve member to the annular transition to provide a heart valve assembly;introducing the heart valve assembly towards the biological annulus such that the annular ring is disposed within the biological annulus and the valve member is disposed within the sinus cavity; andsecuring the heart valve assembly to tissue adjacent the biological annulus.
  • 8. The method of claim 7, wherein the first and second pockets are open to the interior lumen.
  • 9. A method for implanting a prosthetic heart valve assembly within a biological annulus, comprising: obtaining a heart valve assembly comprising an annular member sized for delivery into the biological annulus, an annular transition extending upwardly from the annular ring, and a valve member secured to the annular transition that has a cross-section larger than the annular member, wherein the valve member comprises a frame including first and second ears extending downwardly from the frame, wherein the annular transition includes a first pocket configured to receive the first ear and a second pocket configured to receive the second ear, wherein the annular transition defines an interior lumen having a longitudinal axis, wherein the annular transition includes an internal wall and an external wall, wherein the internal wall is closer to the longitudinal axis than the external wall, and wherein the first and second pockets are formed in the internal wall of the annular transition;introducing the heart valve assembly towards the biological annulus such that the annular member is disposed within the biological annulus and the valve member is disposed above the biological annulus; andsecuring the heart valve assembly to tissue adjacent the biological annulus.
  • 10. The method of claim 9, wherein introducing the heart valve assembly comprises: placing a plurality of sutures through tissue surrounding the biological annulus;directing the sutures through portions of the heart valve assembly; andadvancing the heart valve assembly down the sutures until the annular member is disposed within the biological annulus.
  • 11. The method of claim 10, wherein the heart valve assembly is secured to tissue adjacent the biological annulus by tying knots in the sutures.
  • 12. The method of claim 9, wherein the annular transition comprises a collar including an upper edge to which the valve member is secured, the annular transition providing a transition inwardly from the upper edge towards the annular member for facilitating flow through the heart valve assembly.
  • 13. The method of claim 9, further comprising selecting a valve member having a predetermined size corresponding to a sinus cavity above the biological annulus, and securing the selected valve member to the annular transition.
  • 14. The method of claim 9, wherein the first and second pockets are open to the interior lumen.
RELATED APPLICATION DATA

This application claims benefit of provisional application Ser. Nos. 60/685,265, filed May 27, 2005 and 60/748,640, field Dec. 7, 2005, the entire disclosures of which are expressly incorporated herein by reference.

US Referenced Citations (602)
Number Name Date Kind
3143742 Cromie Aug 1964 A
3320974 High et al. May 1967 A
3370305 Goott et al. Feb 1968 A
3371352 Siposs Mar 1968 A
3409013 Berry Nov 1968 A
3464065 Cromie Sep 1969 A
3546710 Ivanovich et al. Dec 1970 A
3571815 Somyk Mar 1971 A
3574865 Hamaker Apr 1971 A
3628535 Ostrowsky et al. Dec 1971 A
3686740 Shiley Aug 1972 A
3691567 Cromie Sep 1972 A
3710744 Goodenough et al. Jan 1973 A
3744060 Bellhouse et al. Jul 1973 A
3755823 Hancock Sep 1973 A
3800403 Anderson et al. Apr 1974 A
3839741 Haller Oct 1974 A
3959827 Kaster Jun 1976 A
3974854 Kurpanek Aug 1976 A
3996623 Kaster Dec 1976 A
3997923 Possis Dec 1976 A
4035849 Angell et al. Jul 1977 A
4078268 Possis Mar 1978 A
4078468 Civitello Mar 1978 A
4084268 Ionexcu et al. Apr 1978 A
4106129 Carpentier et al. Aug 1978 A
4164046 Cooley Aug 1979 A
4172295 Batten Oct 1979 A
4211325 Wright Jul 1980 A
4217665 Bex et al. Aug 1980 A
4218782 Rygg Aug 1980 A
4245358 Moasser Jan 1981 A
4259753 Liotta et al. Apr 1981 A
4291420 Reul Sep 1981 A
4297749 Davis et al. Nov 1981 A
RE30912 Hancock Apr 1982 E
4343048 Ross et al. Aug 1982 A
4364126 Rosen et al. Dec 1982 A
4388735 Ionescu et al. Jun 1983 A
4441216 Ionescu et al. Apr 1984 A
4451936 Carpentier et al. Jun 1984 A
4470157 Love Sep 1984 A
4477930 Totten et al. Oct 1984 A
4485816 Krumme Dec 1984 A
4501030 Lane Feb 1985 A
4506394 Bedard Mar 1985 A
4535483 Klawitter et al. Aug 1985 A
4548202 Duncan Oct 1985 A
4605407 Black et al. Aug 1986 A
4626255 Reichart et al. Dec 1986 A
4629459 Ionescu et al. Dec 1986 A
4665906 Jervis May 1987 A
4666442 Arru et al. May 1987 A
4680031 Alonso Jul 1987 A
4683883 Martin Aug 1987 A
4687483 Fisher et al. Aug 1987 A
4692164 Dzemeshkievich et al. Sep 1987 A
4702250 Ovil et al. Oct 1987 A
4705516 Barone et al. Nov 1987 A
4725274 Lane et al. Feb 1988 A
4731074 Rousseau et al. Mar 1988 A
4743253 Magladry May 1988 A
4758151 Arru et al. Jul 1988 A
4775378 Knoch et al. Oct 1988 A
4778461 Pietsch et al. Oct 1988 A
4790843 Carpentier et al. Dec 1988 A
4816029 Penny, III et al. Mar 1989 A
4851000 Gupta Jul 1989 A
4865600 Carpentier et al. Sep 1989 A
4888009 Lederman et al. Dec 1989 A
4892541 Alonso Jan 1990 A
4917097 Proudian et al. Apr 1990 A
4917698 Carpentier et al. Apr 1990 A
4935030 Alonso Jun 1990 A
4960424 Grooters Oct 1990 A
4993428 Arms Feb 1991 A
4994077 Dobben Feb 1991 A
5002567 Bona et al. Mar 1991 A
5010892 Colvin et al. Apr 1991 A
5032128 Alonso Jul 1991 A
5035709 Wieting et al. Jul 1991 A
5037434 Lane Aug 1991 A
5071431 Sauter et al. Dec 1991 A
5104406 Curcio et al. Apr 1992 A
5147391 Lane Sep 1992 A
5163953 Vince Nov 1992 A
5163954 Curcio et al. Nov 1992 A
5163955 Love et al. Nov 1992 A
5178633 Peters Jan 1993 A
5192303 Gatturna et al. Mar 1993 A
5258023 Reger Nov 1993 A
5316016 Adams et al. May 1994 A
5326370 Love et al. Jul 1994 A
5326371 Love et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5370685 Stevens Dec 1994 A
5376112 Duran Dec 1994 A
5396887 Imran Mar 1995 A
5397346 Walker et al. Mar 1995 A
5397348 Campbell et al. Mar 1995 A
5397351 Pavcnik et al. Mar 1995 A
5406857 Eberhardt et al. Apr 1995 A
5423887 Love et al. Jun 1995 A
5425741 Lemp et al. Jun 1995 A
5431676 Dubrul et al. Jul 1995 A
5449384 Johnson Sep 1995 A
5449385 Religa et al. Sep 1995 A
5469868 Reger Nov 1995 A
5476510 Eberhardt et al. Dec 1995 A
5488789 Religa et al. Feb 1996 A
5489297 Duran Feb 1996 A
5489298 Love et al. Feb 1996 A
5500016 Fisher Mar 1996 A
5531784 Love et al. Jul 1996 A
5533515 Coller et al. Jul 1996 A
5549665 Vesely et al. Aug 1996 A
5549666 Hata et al. Aug 1996 A
5562729 Purdy et al. Oct 1996 A
5571175 Vanney Nov 1996 A
5571215 Sterman et al. Nov 1996 A
5573007 Bobo, Sr. Nov 1996 A
5573543 Akopov Nov 1996 A
5578076 Krueger et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5607470 Milo Mar 1997 A
5613982 Goldstein Mar 1997 A
5618307 Donlon et al. Apr 1997 A
5626607 Malecki et al. May 1997 A
5628789 Vanney et al. May 1997 A
5662704 Gross Sep 1997 A
5669917 Sauer Sep 1997 A
5693090 Unsworth et al. Dec 1997 A
5695503 Krueger et al. Dec 1997 A
5713952 Vanney et al. Feb 1998 A
5713953 Vallana et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5716399 Love Feb 1998 A
5720755 Dakov Feb 1998 A
5725554 Simon Mar 1998 A
5728064 Burns et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5735894 Krueger et al. Apr 1998 A
5752522 Murphy May 1998 A
5755782 Love et al. May 1998 A
5766240 Johnson Jun 1998 A
5776187 Krueger et al. Jul 1998 A
5776188 Shepherd et al. Jul 1998 A
5800527 Jansen et al. Sep 1998 A
5807405 Vanney et al. Sep 1998 A
5814097 Sterman et al. Sep 1998 A
5814098 Hinnenkamp et al. Sep 1998 A
5814100 Carpentier et al. Sep 1998 A
5824060 Christie et al. Oct 1998 A
5824061 Quijano et al. Oct 1998 A
5824064 Taheri Oct 1998 A
5830239 Toomes Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5843179 Vanney et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5855563 Kaplan et al. Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855603 Reif Jan 1999 A
5860992 Daniel Jan 1999 A
5861028 Angell Jan 1999 A
5865801 Houser Feb 1999 A
5876436 Vanney et al. Mar 1999 A
5879371 Gardiner et al. Mar 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5891195 Klostermeyer et al. Apr 1999 A
5895420 Mirsch, II et al. Apr 1999 A
5902308 Murphy May 1999 A
5908450 Gross et al. Jun 1999 A
5908452 Bokros et al. Jun 1999 A
5910170 Reimink et al. Jun 1999 A
5919147 Jain Jul 1999 A
5921934 Teo Jul 1999 A
5921935 Hickey Jul 1999 A
5924984 Rao Jul 1999 A
5931969 Carpentier et al. Aug 1999 A
5935163 Gabbay Aug 1999 A
5957949 Leonhardt et al. Sep 1999 A
5961549 Nguyen et al. Oct 1999 A
5961550 Carpentier Oct 1999 A
5972004 Williamson, IV et al. Oct 1999 A
5972024 Northrup, III Oct 1999 A
5976183 Ritz Nov 1999 A
5984959 Robertson et al. Nov 1999 A
5984973 Girard et al. Nov 1999 A
6007577 Vanney et al. Dec 1999 A
6010531 Donlon et al. Jan 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6045576 Starr et al. Apr 2000 A
6059827 Fenton, Jr. May 2000 A
6066160 Colvin et al. May 2000 A
6068657 Lapeyre et al. May 2000 A
6074401 Gardiner et al. Jun 2000 A
6074417 Peredo Jun 2000 A
6074418 Buchanan et al. Jun 2000 A
6081737 Shah Jun 2000 A
6083179 Oredsson Jul 2000 A
6096074 Pedros Aug 2000 A
6099475 Seward et al. Aug 2000 A
6102944 Huynh Aug 2000 A
6106550 Magovern et al. Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6113632 Reif Sep 2000 A
6117091 Young et al. Sep 2000 A
6126007 Kari et al. Oct 2000 A
6129758 Love Oct 2000 A
6139575 Shu et al. Oct 2000 A
6143024 Campbell et al. Nov 2000 A
6143025 Stobie et al. Nov 2000 A
6149658 Gardiner et al. Nov 2000 A
6162233 Williamson, IV et al. Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6168614 Anderson et al. Jan 2001 B1
6176877 Buchanan et al. Jan 2001 B1
6183512 Howanec, Jr. et al. Feb 2001 B1
6197054 Hamblin, Jr. et al. Mar 2001 B1
6200306 Klostermeyer Mar 2001 B1
6203553 Robertson Mar 2001 B1
6214043 Krueger et al. Apr 2001 B1
6217610 Carpentier et al. Apr 2001 B1
6217611 Klostermeyer Apr 2001 B1
6231561 Frazier et al. May 2001 B1
6231602 Carpentier et al. May 2001 B1
6241765 Griffin et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6245105 Nguyen et al. Jun 2001 B1
6254636 Peredo Jul 2001 B1
6264691 Gabbay Jul 2001 B1
6270526 Cox Aug 2001 B1
6270527 Campbell et al. Aug 2001 B1
6283127 Sterman et al. Sep 2001 B1
6283995 Moe et al. Sep 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6299638 Sauter Oct 2001 B1
6309417 Spence Oct 2001 B1
6312447 Grimes Nov 2001 B1
6312465 Griffin et al. Nov 2001 B1
6319280 Schoon Nov 2001 B1
6319281 Patel Nov 2001 B1
6322588 Ogle et al. Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6328763 Love et al. Dec 2001 B1
6338740 Carpentier Jan 2002 B1
6350281 Rhee Feb 2002 B1
6358278 Brendzel et al. Mar 2002 B1
6358556 Ding et al. Mar 2002 B1
6371983 Lane Apr 2002 B1
6391053 Brendzel et al. May 2002 B1
6395025 Fordenbacher et al. May 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6409759 Peredo Jun 2002 B1
6413275 Nguyen et al. Jul 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6425902 Love Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6447524 Knodel Sep 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468305 Otte Oct 2002 B1
6503272 Duerig et al. Jan 2003 B2
6514265 Ho et al. Feb 2003 B2
6530952 Vesely Mar 2003 B2
6547827 Carpentier et al. Apr 2003 B2
6551332 Nguyen et al. Apr 2003 B1
6558418 Carpentier et al. May 2003 B2
6569196 Vesely May 2003 B1
6582462 Andersen et al. Jun 2003 B1
6585766 Huynh et al. Jul 2003 B1
6589279 Anderson et al. Jul 2003 B1
6598307 Love et al. Jul 2003 B2
6602289 Colvin et al. Aug 2003 B1
6607541 Gardiner et al. Aug 2003 B1
6613059 Ho et al. Sep 2003 B2
6613085 Anderson et al. Sep 2003 B1
6641593 Schaller et al. Nov 2003 B1
6652578 Bailey et al. Nov 2003 B2
6676671 Robertson et al. Jan 2004 B2
6678962 Love et al. Jan 2004 B1
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6692513 Streeter et al. Feb 2004 B2
6695859 Golden et al. Feb 2004 B1
6709457 Otte et al. Mar 2004 B1
6716243 Colvin et al. Apr 2004 B1
6716244 Klaco Apr 2004 B2
6719789 Cox Apr 2004 B2
6719790 Brendzel et al. Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang May 2004 B2
6764508 Roehe et al. Jul 2004 B1
6767362 Schreck Jul 2004 B2
6769434 Liddicoat et al. Aug 2004 B2
6776785 Yencho Aug 2004 B1
6786924 Ryan et al. Sep 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6805711 Quijano et al. Oct 2004 B2
6830585 Artof et al. Dec 2004 B1
6833924 Love et al. Dec 2004 B2
6837902 Nguyen et al. Jan 2005 B2
6846324 Stobie Jan 2005 B2
6846325 Liddicoat Jan 2005 B2
6872226 Cali et al. Mar 2005 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6908481 Cribier Jun 2005 B2
6911043 Myers et al. Jun 2005 B2
6913607 Ainsworth et al. Jul 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6921407 Nguyen et al. Jul 2005 B2
6926730 Nguyen et al. Aug 2005 B1
6929653 Streeter Aug 2005 B2
6939365 Fogarty Sep 2005 B1
6945980 Nguyen et al. Sep 2005 B2
6945997 Huynh et al. Sep 2005 B2
6960221 Ho et al. Nov 2005 B2
6974476 McGuckin et al. Dec 2005 B2
7011681 Vesely Mar 2006 B2
7025780 Gabbay Apr 2006 B2
7037333 Myers et al. May 2006 B2
7070616 Majercak et al. Jul 2006 B2
7083648 Yu Aug 2006 B2
7097659 Woolfson et al. Aug 2006 B2
7101396 Artof et al. Sep 2006 B2
7137184 Schreck Nov 2006 B2
7141064 Scott et al. Nov 2006 B2
7147663 Berg et al. Dec 2006 B1
7153324 Case et al. Dec 2006 B2
7172625 Shu et al. Feb 2007 B2
7175659 Hill et al. Feb 2007 B2
7182769 Ainsworth et al. Feb 2007 B2
7186265 Sharkawy et al. Mar 2007 B2
7195641 Palmaz et al. Mar 2007 B2
7201761 Woolfson et al. Apr 2007 B2
7201771 Lane Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7214344 Carpentier et al. May 2007 B2
7238200 Lee et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7261732 Justino Aug 2007 B2
7300463 Liddicoat Nov 2007 B2
RE40377 Williamson, IV et al. Jun 2008 E
7393360 Spenser et al. Jul 2008 B2
7422603 Lane Sep 2008 B2
7445632 McGuckin et al. Nov 2008 B2
7513909 Lane et al. Apr 2009 B2
7547313 Gardiner et al. Jun 2009 B2
7556647 Drews et al. Jul 2009 B2
7578843 Shu Aug 2009 B2
7597711 Drews et al. Oct 2009 B2
7708775 Rowe et al. May 2010 B2
7722643 Ho et al. May 2010 B2
7744611 Nguyen et al. Jun 2010 B2
7763040 Schaller et al. Jul 2010 B2
7771469 Liddicoat Aug 2010 B2
7803184 McGuckin et al. Sep 2010 B2
20010007956 Letac et al. Jul 2001 A1
20010018592 Schaller et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010039435 Roue et al. Nov 2001 A1
20010039436 Frazier et al. Nov 2001 A1
20010041914 Frazier et al. Nov 2001 A1
20010041915 Roue et al. Nov 2001 A1
20010049492 Frazier et al. Dec 2001 A1
20020026238 Lane et al. Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020055774 Liddicoat May 2002 A1
20020058994 Hill et al. May 2002 A1
20020058995 Stevens May 2002 A1
20020077555 Schwartz Jun 2002 A1
20020077698 Peredo Jun 2002 A1
20020091441 Guzik Jul 2002 A1
20020116054 Lundell et al. Aug 2002 A1
20020123802 Snyders Sep 2002 A1
20020128684 Foerster Sep 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20020177223 Ogle et al. Nov 2002 A1
20020183834 Klaco Dec 2002 A1
20020188348 DiMatteo et al. Dec 2002 A1
20020198594 Schreck Dec 2002 A1
20030014104 Cribier Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030023302 Moe et al. Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030036791 Philipp et al. Feb 2003 A1
20030036795 Andersen et al. Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030045902 Weadeock Mar 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030109922 Peterson Jun 2003 A1
20030109924 Cribier Jun 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030125793 Vesely Jul 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030149477 Gabbay Aug 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030153974 Spenser et al. Aug 2003 A1
20030167089 Lane Sep 2003 A1
20030191481 Nguyen et al. Oct 2003 A1
20030199963 Tower et al. Oct 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030229394 Ogle et al. Dec 2003 A1
20030236568 Hojeibane et al. Dec 2003 A1
20040015232 Shu Jan 2004 A1
20040019374 Hojeibane et al. Jan 2004 A1
20040024452 Kruse et al. Feb 2004 A1
20040030381 Shu Feb 2004 A1
20040034411 Quijano et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040044406 Woolfson Mar 2004 A1
20040050393 Golden et al. Mar 2004 A1
20040068276 Golden et al. Apr 2004 A1
20040078074 Anderson et al. Apr 2004 A1
20040093075 Kuehne May 2004 A1
20040102797 Golden et al. May 2004 A1
20040106976 Bailey et al. Jun 2004 A1
20040106990 Spence et al. Jun 2004 A1
20040122514 Fogarty Jun 2004 A1
20040122516 Fogarty et al. Jun 2004 A1
20040122526 Imran Jun 2004 A1
20040167573 Williamson, IV et al. Aug 2004 A1
20040167620 Ortiz et al. Aug 2004 A1
20040176839 Huynh et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040199176 Berreklouw Oct 2004 A1
20040206363 McCarthy et al. Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210305 Shu Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040225355 Stevens Nov 2004 A1
20040225356 Frater Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050027348 Case et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050043760 Fogarty Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050060029 Le et al. Mar 2005 A1
20050065594 DiMatteo et al. Mar 2005 A1
20050065601 Lee et al. Mar 2005 A1
20050065614 Stinson Mar 2005 A1
20050070924 Schaller et al. Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075659 Realyvasquez et al. Apr 2005 A1
20050075667 Ho et al. Apr 2005 A1
20050075713 Biancucci et al. Apr 2005 A1
20050075717 Nguyen et al. Apr 2005 A1
20050075718 Nguyen et al. Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075724 Svanidze et al. Apr 2005 A1
20050075730 Myers et al. Apr 2005 A1
20050080454 Drews Apr 2005 A1
20050096738 Cali et al. May 2005 A1
20050098547 Cali et al. May 2005 A1
20050101975 Nguyen et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050131429 Ho et al. Jun 2005 A1
20050137682 Justino Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137694 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137696 Salahieh et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050150775 Zhang et al. Jul 2005 A1
20050159811 Lane Jul 2005 A1
20050165477 Andruiza et al. Jul 2005 A1
20050165479 Drews et al. Jul 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050182486 Gabbay Aug 2005 A1
20050192665 Spenser et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050203618 Sharkaway et al. Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222674 Paine Oct 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240259 Sisken et al. Oct 2005 A1
20050240263 Fogarty Oct 2005 A1
20050251252 Stobie Nov 2005 A1
20050261765 Liddicoat Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20060004389 Nguyen et al. Jan 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060085060 Campbell Apr 2006 A1
20060095125 Chinn et al. May 2006 A1
20060122634 Ino Jun 2006 A1
20060122692 Gilad et al. Jun 2006 A1
20060135964 Vesely Jun 2006 A1
20060136052 Vesely Jun 2006 A1
20060136054 Berg et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060149367 Sieracki Jul 2006 A1
20060154230 Cunanan Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060195184 Lane Aug 2006 A1
20060195185 Lane Aug 2006 A1
20060195186 Drews Aug 2006 A1
20060207031 Cunanan et al. Sep 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060235508 Lane Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060246888 Bender et al. Nov 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060271172 Tehrani Nov 2006 A1
20060271175 Woofson et al. Nov 2006 A1
20060276888 Lee Dec 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20070005129 Damm et al. Jan 2007 A1
20070010835 Breton et al. Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016285 Lane Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis Jan 2007 A1
20070027461 Gardiner et al. Feb 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070078509 Lotfy Apr 2007 A1
20070078510 Ryan Apr 2007 A1
20070095698 Cambron May 2007 A1
20070100440 Figulla et al. May 2007 A1
20070106313 Golden et al. May 2007 A1
20070129794 Realyvasquez Jun 2007 A1
20070142848 Ainsworth et al. Jun 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070150053 Gurskis Jun 2007 A1
20070156233 Kapadia et al. Jul 2007 A1
20070162103 Case et al. Jul 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070162113 Sharkawy et al. Jul 2007 A1
20070179604 Lane Aug 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070198097 Zegdi Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070225801 Drews et al. Sep 2007 A1
20070233237 Krivoruchko Oct 2007 A1
20070239266 Birdsall Oct 2007 A1
20070239269 Dolan et al. Oct 2007 A1
20070239273 Allen Oct 2007 A1
20070255398 Yang et al. Nov 2007 A1
20070260305 Drews et al. Nov 2007 A1
20070265701 Gurskis et al. Nov 2007 A1
20070270944 Bergheim et al. Nov 2007 A1
20070288089 Gurskis et al. Dec 2007 A1
20080004696 Vesely Jan 2008 A1
20080033543 Gurskis et al. Feb 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080097595 Gabbay Apr 2008 A1
20080119875 Ino et al. May 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080319543 Lane Dec 2008 A1
20090036903 Ino et al. Feb 2009 A1
20090112233 Xiao Apr 2009 A1
20090192599 Lane et al. Jul 2009 A1
20090192602 Kuehn Jul 2009 A1
20090192603 Ryan Jul 2009 A1
20090192604 Gloss Jul 2009 A1
20090192605 Gloss et al. Jul 2009 A1
20090192606 Gloss et al. Jul 2009 A1
20090210052 Forster et al. Aug 2009 A1
20090264903 Lee et al. Oct 2009 A1
20090319038 Gurskis et al. Dec 2009 A1
20100030244 Woolfson et al. Feb 2010 A1
20100044410 Argentine et al. Feb 2010 A1
20100100174 Gurskis Apr 2010 A1
20100249894 Oba et al. Sep 2010 A1
Foreign Referenced Citations (61)
Number Date Country
2356656 Jan 2000 CN
19532973 Nov 1996 DE
0 084 395 Aug 1986 EP
0 096 721 Dec 1987 EP
0 125 393 Dec 1987 EP
0 179 562 Jul 1989 EP
1057460 Dec 2000 EP
1 088 529 Apr 2001 EP
1171059 Jan 2002 EP
971 650 Jan 2005 EP
171 059 Feb 2005 EP
1093599 Dec 1967 GB
1477643 Jun 1977 GB
2011259 Jul 1979 GB
2 056 023 Mar 1981 GB
2 069 843 Sep 1981 GB
2254254 Oct 1992 GB
2 279 134 Dec 1994 GB
1116573 Jul 1985 SU
8705489 Sep 1987 WO
8900084 Feb 1989 WO
9115167 Oct 1991 WO
9201269 Aug 1992 WO
9213502 Aug 1992 WO
9219184 Nov 1992 WO
9219185 Nov 1992 WO
9517139 Jun 1995 WO
9528899 Nov 1995 WO
9640006 Dec 1996 WO
9709933 Mar 1997 WO
9709944 Mar 1997 WO
9727799 Aug 1997 WO
9741801 Nov 1997 WO
9742871 Nov 1997 WO
9806329 Feb 1998 WO
9911201 Mar 1999 WO
9915112 Apr 1999 WO
9951169 Oct 1999 WO
0032105 Jun 2000 WO
0040176 Jul 2000 WO
0044311 Aug 2000 WO
0056250 Sep 2000 WO
0059382 Oct 2000 WO
0060995 Oct 2000 WO
0064380 Nov 2000 WO
0110310 Feb 2001 WO
0110312 Feb 2001 WO
0149217 Jul 2001 WO
0158363 Aug 2001 WO
0176510 Oct 2001 WO
0182840 Nov 2001 WO
0187190 Nov 2001 WO
03063740 Aug 2003 WO
2004006810 Jan 2004 WO
2004089246 Oct 2004 WO
2005004753 Jan 2005 WO
2005020842 Mar 2005 WO
2005039452 May 2005 WO
2005072655 Aug 2005 WO
2006086135 Aug 2006 WO
2009137517 Nov 2009 WO
Related Publications (1)
Number Date Country
20070016285 A1 Jan 2007 US
Provisional Applications (2)
Number Date Country
60685265 May 2005 US
60748640 Dec 2005 US