The present invention relates generally to heart valves that may be implanted within a patient, and, more particularly, to multiple component heart valve assemblies, and to apparatus and methods for making and using them.
Prosthetic heart valves can replace defective human valves in patients. For example, one piece valves have been suggested that include sewing rings or suture cuffs that are attached to and extend around the outer circumference of a prosthetic valve. In addition, multiple component valves have also been suggested that include a sewing ring that is separate from a valve component. The sewing rings of either type of prosthetic valve can be tedious and time consuming to secure within a target site, i.e., within an annulus of a heart where a natural heart valve has been removed.
For example, to implant a sewing ring within an annulus of a heart, between twelve and twenty sutures may be secured initially to tissue surrounding the annulus. The sewing ring and/or the entire prosthetic valve may then be advanced or “parachuted” down the sutures into the annulus. Knots may then be tied with the sutures to secure the sewing ring within the annulus, whereupon the sutures may be cut. Consequently, this procedure can be very complicated, requiring management and manipulation of many sutures. The complexity of the procedure also provides a greater opportunity for mistakes and requires a patient to be on cardiopulmonary bypass for a lengthy period of time.
Because the annulus of the heart may not match the circular cross-section of the sewing ring and/or prosthetic valve, the prosthetic valve may not fit optimally within the annulus. As a result, natural blood hemodynamics through and around the valve may be impaired, resulting in clotting, possible emboli production, and eventual calcification of the valve structure.
To address this concern, flexible sewing rings have been suggested for use with multiple component valves. The sewing ring may be implanted within the annulus, e.g., using the procedure described above, i.e., parachuted down an arrangement of sutures. The sewing ring may conform at least partially to the anatomy of the annulus. Alternatively, instead of using sutures, it has also been suggested to drive staples through the sewing ring into the surrounding tissue to secure the sewing ring.
When a mechanical or other prosthetic valve is then attached to the sewing ring, however, the valve and sewing ring may not mate together effectively, e.g., if the shape of the sewing ring has been distorted to conform to the annulus, which may also impair natural blood hemodynamics, create leaks, and/or otherwise impair performance of the prosthetic valve.
The present invention is directed to heart valves that may be implanted within a patient, and, more particularly, to multiple component heart valve assemblies, and to apparatus and methods for making and using them.
In accordance with one embodiment, a prosthesis is provided for receiving a prosthetic valve to replace a preexisting natural or prosthetic heart valve within a biological annulus adjacent a sinus cavity. The prosthesis may include an annular member implantable within the biological annulus, a collar extending upwardly from the annular member, and a sewing ring extending radially outwardly from at least one of the annular member and the collar. The collar and/or annular member may be resiliently compressible, expandable, and/or otherwise movable relative to one another. For example, the collar may be biased to a predetermined orientation, e.g., substantially aligned with a longitudinal axis of the annular member, yet may be compressible axially towards the annular member and/or movable transversely relative to the longitudinal axis.
In accordance with another embodiment, a prosthesis is provided for receiving a prosthetic valve to replace a preexisting natural or prosthetic heart valve within a biological annulus adjacent a sinus cavity. The prosthesis may include an annular member implantable within the biological annulus for contacting tissue surrounding the biological annulus, a collar for engaging with a prosthetic valve, and a spring structure for supporting the collar away from the annular member, e.g., along a longitudinal axis. For example, the spring structure may allow the collar to be compressed towards the annular member along the longitudinal axis and/or transversely relative to the longitudinal axis, yet be resiliently biased to a predetermined position away from the annular member. Optionally, the prosthesis may include a sewing ring, e.g., extending radially outwardly from at least one of the collar and the annular member. The spring structure may also allow the collar to be deflected, folded, and/or compressed transversely relative to the longitudinal axis, e.g., to facilitate accessing the sewing ring and/or annular member during implantation.
In accordance with still another embodiment, a heart valve assembly is provided for implantation within a biological annulus. The heart valve assembly may include an annular prosthesis that includes an annular member implantable within a biological annulus, a collar extending upwardly from the annular member, and a spring structure for supporting the collar away from the annular member, e.g., along a longitudinal axis of the annular member. The heart valve assembly also includes a prosthetic valve, e.g., a mechanical or bioprosthetic heart valve, which may have a circular or multiple lobular shape for implantation above the biological annulus.
Optionally, one or more connectors may be provided on at least one of the collar and the prosthetic valve for securing the prosthetic valve to the annular prosthesis. For example, the one or more connectors may include a plurality of tabs or detents, a drawstring, and the like on the collar for engaging a frame of the prosthetic valve. Alternatively, the one or more connectors may include one or more latches, detents, interlocking elements, e.g., on the prosthetic valve and/or the annular prosthesis.
In one embodiment, the collar may include a plurality of tabs that capture a portion of a frame of the prosthetic valve when the prosthetic valve is directed into engagement with the collar. Optionally, the tabs may be movable, e.g., using a tool, to release the prosthetic valve from the collar.
In exemplary embodiments, the collar, annular member, spring structure, and/or sewing ring may be formed from resiliently flexible material, e.g., metal, such as Nitinol, Elgiloy, or stainless steel, an elastomer, such as silicone, or other plastic material, and may be covered at least partially with a fabric covering. The collar, annular member, and/or spring structure may be formed as a unitary piece or may be separate components that are attached to one another, e.g., before or after being covered with fabric.
In accordance with yet another embodiment, a method is provided for implanting a prosthetic heart valve assembly within a biological annulus, e.g., adjacent a sinus cavity. An annular member may be introduced into the biological annulus, e.g., to direct tissue surrounding the biological annulus outwardly and/or to at least partially dilate the biological annulus. A flexible sewing ring may extend around the annular member that may receive one or more connectors, e.g., sutures, clips, and the like, to secure the annular member relative to the annulus.
In one embodiment, a collar or stand-off extends upwardly from the annular member for receiving the prosthetic valve. The collar may be coupled to the annular member by a spring structure, which may bias the collar to a predetermined position relative to the annular member, but allow the collar to be moved relative to the annular member. For example, the collar may be folded or otherwise moved transversely to facilitate access to the sewing ring, e.g., for directing one or more connectors through the sewing ring. In addition, the collar may be compressible towards the annular member, but resiliently biased to direct the collar upwardly, e.g., within the sinus cavity above the biological annulus.
A prosthetic valve, e.g., a mechanical or bioprosthetic valve, may be advanced into the sinus cavity, and secured relative to the annular member. For example, the prosthetic valve may be secured to the collar using one or more connectors, e.g., a plurality of tabs or detents on the collar, a drawstring in the collar, one or more sutures, clips, detents, and/or other cooperating connectors, e.g., on the collar and/or frame of the valve prosthesis.
The collar may support the prosthetic valve above the tissue biological, e.g., within the sinus cavity, e.g., the sinus of Valsalva above an aortic valve site. In addition or alternatively, the collar may allow the prosthetic valve to have a larger size than the annular member, thereby enhancing the fluid flow or other performance characteristics of the implanted heart valve assembly. Optionally, the collar may include a funnel or other tapered shape that may provide a transition from a relatively larger prosthetic valve to the annular member within the biological annulus. In addition, the collar may support the prosthetic valve away from a wall of the sinus or other supra-annular space, while still allowing blood to flow easily into the coronary arteries around the prosthetic valve.
In another option, the prosthetic valve may be removable from the collar, e.g., to allow the prosthetic valve to be replaced. In addition or alternatively, the collar and prosthetic valve may have a substantially circular shape, which may allow the prosthetic valve to be secured to the collar, yet be rotatable relative to the collar.
Other aspects and features of the present invention will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.
The drawings illustrate exemplary embodiments of the invention, in which:
Turning to the drawings,
Turning to
Returning to
In one embodiment, the annular ring 18 may have a generally circular shape, e.g., defining a central longitudinal axis 19. Alternatively, the annular ring 18 may have a multi-lobular shape about its circumference, e.g., including three lobes separated by scallops or cusps (not shown). In addition or alternatively, the annular ring 18 may generally define a plane substantially perpendicular to the axis 19 or may have a sinusoidal or other shape that extends above and below a plane.
Optionally, the annular ring 18 may be expandable and/or contractible such that the diameter may be adjusted. In one embodiment, the annular ring 18 may be biased to expand to a predetermined diameter. If desired, the annular ring 18 may be contracted radially to a smaller diameter, e.g., folded or compressed to facilitate delivery into a biological annulus, yet may be resiliently expandable to the predetermined diameter, e.g., to dilate tissue surrounding the biological annulus and/or to facilitate securing the gasket member 12 within the biological annulus.
The annular ring 18 may be formed from an elastic or superelastic material, e.g., metal such as Nitinol, Elgiloy, stainless steel, and the like, a polymer or other plastic, and/or a composite material. In an exemplary method, the annular ring 18 may be cut from a flat sheet of base material having a desired thickness for the annular ring 18, e.g., by laser cutting, mechanical cutting, and the like. For example, the annular ring 18 may be initially formed as a long band of material (not shown), having a width corresponding to the desired height “h” of the annular ring 18 and a length corresponding to a circumference (π d) of the desired diameter “d” of the annular ring 18, as shown in
Fabric may be wrapped at least partially around the annular ring 18, while accommodating expansion and contraction of the annular ring 18, if the annular ring 18 is expandable. For example, at least near the ends, the fabric may not be secured to the annular ring 18, while sutures and the like (not shown) may secure the fabric to other portions of the annular ring 18. Alternatively, the entire annular ring 18 may be free to slide within a fabric sleeve (not shown) wrapped around the annular ring 18. Additional information on the construction of the annular ring 18 may be found in the references incorporated by reference elsewhere herein.
The collar 22 may be spaced apart and/or extend upwardly from the annular ring 18. For example, as best seen in
The collar 22 may be a generally circular annular band 22 for receiving or otherwise engaging the valve member 14, e.g., as described further below. In one embodiment, the collar 22 may include a lower rim 22a defining a lip 17 and a sidewall 22b extending upwardly from the rim 22a, thereby defining a recess 23 for receiving the valve member 14 therein. In addition, the collar 22 may include one or more connectors, e.g., a plurality of detents 16, for securing the valve member 14 within the recess 23 and/or otherwise to the collar 22. As shown, the detents 16 include tabs extending downwardly and inwardly from the sidewall 22b, e.g., defining an angle relative to the axis 19. The tabs 16 may be biased inwardly but may be resiliently deflectable outwardly, e.g., during introduction of the valve member 14. Lower, free ends 16a of the tabs 16 may be spaced above the lip 17, e.g., for capturing a portion of the valve member 14 between the rim 22a and the tabs 16, as described further below.
In addition or alternatively, the collar 22 and/or other portion of the gasket member 12 may include one or more connectors in addition to or instead of the detents 16. For example, the collar 22 may include a plurality of fasteners, clips, latches, and the like (not shown) inset within or otherwise attached to the collar 22, e.g., similar to those disclosed in US Publication Nos. 2006/0195184 and 2006/0235508, incorporated by reference above. Alternatively, the gasket member 12 may include a plurality of guide rails or other elongate members (not shown) extending from the collar 22 and/or sewing cuff 20 for guiding the valve member 14 towards the gasket member 12 and/or securing the valve member 14 to the gasket member 12, similar to the elongate members disclosed in Publication No. 2005/0165479, incorporated by reference above, or co-pending application Ser. No. 60/746,038, filed Apr. 29, 2006, the entire disclosure of which is expressly incorporated by reference herein.
Returning to
As shown, in one embodiment, the base 42 and spring member 44 of the spring structure 40 and the collar 22 may be formed as a unitary piece. For example, the collar 33 and/or spring structure 40 may be formed by machining, molding, casting, stamping, etching, and the like. Alternatively, the base 42, spring member 44, and/or collar 22 may be formed as separate pieces that are attached to one another, e.g., by bonding, sonic welding, cooperating connectors, interference fit, and the like (not shown). Similar to the annular ring 18, the spring structure 40 and/or collar 22 may be formed from metal, such as Nitinol, Elgiloy, stainless steel, and the like, a polymer or other plastic, and/or a composite material. For example, in an alternative embodiment, the spring member 44 may be a metal spring, the base 42 may be formed from silicone or other elastomer (e.g., also providing a core for the sewing ring 20 as well as a base for the spring member 44), and the collar 22 may be formed from Nitinol or other metal attached to the spring member 44.
Turning to
Optionally, section D may have a tapered or other shape that may conform at least partially to a shape of a biological annulus into which the resulting annular prosthesis 12 is implanted. In addition or alternatively, section D may include a plurality of openings 28 extending therethrough, e.g., for accommodating sutures, staples or other connectors therethrough. The openings C, 28 may be cut, bored, drilled, or otherwise formed through the base 42 or may be created when the base 42 is molded, cast, and the like.
Turning to
With continued reference to
Although described in an exemplary order, it will be appreciated that the sequence of the steps described above for forming the collar 22 and spring structure 40 are merely exemplary. The procedure described may be performed in any order, i.e., such that the collar 22, spring member 44, and/or base 42 may be created sequentially or simultaneously with one another.
Optionally, as shown in
With additional reference to
Generally, to make the annular prosthesis shown in
The collar 22 and spring structure 40 may be formed as described above, before, after, or in conjunction with the annular ring 18 and/or skirt 26. Once formed, the annular ring 18 may be disposed with the upper edge within the recess 29 within the base 42 of the spring structure 40. Optionally, the annular ring 18 may be attached to the base 42, e.g., by bonding, welding, an interference fit, and the like. Otherwise, the upper edge of the annular ring 18 may simply be placed within the recess 29, and fabric may be wrapped around the annular ring 18 and/or base 42 to hold the annular ring 18 adjacent the base 42. Optionally, one or more sutures (not shown) may be directed through openings (also not shown) in the annular ring 18 and base 42 to secure the annular ring 18 adjacent the base 42.
In an alternative embodiment, the base 42 of the spring structure 40 may be eliminated. In this alternative, the lower end of the spring member 44 may be attached directly to the annular ring 18. For example, the lower end of the spring structure 40 may be bonded, fused, or otherwise attached to an upper region of the annular ring 18.
If the sewing ring 20 includes a core 25, the core 25 may be attached around the base 42 and/or the annular ring 18. The core material may be bonded, molded, or otherwise attached to the base 42 and/or annular ring 18. Fabric may be wrapped or otherwise secured around the core 25, the annular ring 18, the base 42, the spring member 44, and the collar 22, e.g., using known sewing or other methods. The resulting prosthesis 12 shown in
As fabric is being secured around the collar 22 and/or spring member 44, the collar 22 may be directed and maintained partially towards the annular ring 18. After securing the fabric, the collar 22 may be released, thereby applying tension on the fabric as the spring member 44 attempts to bias the collar 22 away from the annular member 18. This tension may pull the fabric slightly, e.g., to reduce the risk of the fabric puckering. The fabric may cover the tabs 16 within the collar 22 or openings may be provided in the fabric to allow the tabs to extend therethrough. If the fabric covers the tabs 16, the fabric should not be tensioned to cause the tabs 16 to deflected outwardly from their relaxed position.
Thus, turning to
Turning to
The gasket member 12 may be advanced until the annular ring 18 extends at least partially into the biological annulus 90. In one embodiment, the annular ring 18 extends entirely through the biological annulus 90, with the lower edge of the annular ring 18 remaining free within the sub-annular space below 92 the biological annulus 90.
Optionally, as shown, the gasket member 12 may include a flexible skirt 26 that extends through the annulus. The skirt 26 may be biased to extend outwardly as shown to provide a smooth transition and/or enhance a seal between the heart vale assembly 10 and the biological annulus.
The sewing ring 20 may contact the tissue within the supra-annular space 94 above the biological annulus 90, although the sewing ring 20 may not provide any structural support of the annular ring 18. For example, the sewing ring 20 may be substantially flexible, e.g., conforming substantially to the shape of the supra-annular space 94.
If the annular ring 18 is expandable or otherwise compressed, the annular ring 18 may then be expanded within the biological annulus 90, e.g., to dilate the biological annulus or otherwise direct the surrounding tissue outwardly against the underlying tissue structures. For example, the annular ring 18 may simply be released by the delivery tool, whereupon the annular ring 18 may resiliently expand against the tissue surrounding the biological annulus 90, thereby substantially securing the annular ring 18 (and consequently, the gasket member 12) relative to the biological annulus 90. In addition or alternatively, a dilation tool (not shown) may be advanced into the gasket member 12 and expanded to forcibly (e.g., plastically) expand the annular ring 18 within the biological annulus 90.
If the sewing ring 20 is restrained by the delivery tool, the sewing ring 20 may be released to allow the sewing ring 20 to contact the surrounding tissue, e.g., within the aortic root above the biological annulus 90. Because of the floppy (i.e., flexible and conformable) nature of the core, the sewing ring 20 may adopt the shape of the surrounding tissue, e.g., lying flatter within the coronary sinus regions, while becoming more vertical adjacent the commissures.
With the gasket member 12 in place, a plurality of fasteners 96, e.g., clips, staples, sutures, and the like, may be directed through the sewing ring 20 into the tissue surrounding the biological annulus 90 to secure the gasket member 12 relative to the biological annulus 90. In addition or alternatively, a plurality of fasteners (not shown) may be directed through the openings 28 in the base 42 to secure the gasket member 12 relative to the biological annulus 90. Exemplary fasteners and apparatus and methods for delivering them are disclosed in U.S. Publication Nos. 2005/0080454 and 2006/0122634, the entire disclosures of which are expressly incorporated by reference herein.
To facilitate accessing the sewing ring 20 during delivery of the fasteners 96, local portions of the collar 22 may be at least partially deflected out of the way. For example, the collar 22 may be folded inwardly to move fabric and other obstructions out of the way, e.g., similar to the embodiments disclosed in U.S. Publication No. 2007/0016285, incorporated by reference herein. Thus, the flexibility of the collar 22 may facilitate visual and/or tactile access to one or more portions of the sewing ring 20, whereupon one or more fasteners 96 may be delivered through the accessed portion(s) of the sewing ring 20. After delivering the fastener(s) 96, the collar 22 may be released, whereupon the collar 22 may resiliently return outwardly to its annular shape.
The valve member 14 may then be advanced into the biological annulus 90, e.g. using another delivery tool or the same tool (not shown) used to deliver the gasket member 12. The valve member 14 may then be secured to the collar 22. For example, as shown in
In addition or alternatively, the collar 22 and/or valve member 14 may include other connectors (not shown), e.g., a drawstring, sutures, guide rails, and the like to secure the valve member 14 relative to the collar 22. Exemplary connectors are disclosed in the references incorporated elsewhere herein, e.g., in US Publication Nos. 2006/0195184 and 2006/0235508, or in application Ser. No. 60/746,038, incorporated by reference above.
Optionally, if the collar 22 and frame 32 are generally circular, it may be possible to rotate the valve member 14 within the collar 22. As the valve member 14 is rotated, the lower portion 36 of the frame 32 may simply slide around under the tabs 16. Thus, the valve member 14 may be rotated to a desired angular orientation within the biological annulus 90.
Once the valve member 14 is secured, any tools may be removed, and the procedure completed using known methods.
The collar 22 may support the valve member 14 within a sinus cavity 98 above the biological annulus 90. For example, the spacing of the collar 22 from the annular ring 18 may predispose the valve member 14 within the sinus of Valsalva above an aortic valve site. During implantation, if desired, the valve member 14 may be pressed into the collar 22, whereupon the spring structure 40 may deform, allowing the collar 22 to move axially towards the annular ring 18. When the valve member 14 is released within the sinus cavity 98, the spring structure 40 may resiliently move upwardly away from the biological annulus 90. Thus, the spring structure 40 may be radially soft and flexible, while providing desired axial support for the valve member 14.
Because the valve member 14 is supported within the sinus cavity 98 in this manner, the valve member 14 may be selected from a larger size than the diameter or other cross-section of the biological annulus 90. For example, it may be possible to select a valve member 14 that is at least about two millimeters (2 mm) larger than the annular ring 18 for aortic valve applications. In addition, the valve member 14 and collar 22 may allow blood to flow around the valve member 14, e.g., to enter the coronary arteries or other vessels (not shown) communicating with the sinus cavity 98. Even though the valve member 14 and collar 22 are larger than the annular ring 18 and biological annulus 90, the sinus cavity 98 may be sufficiently large to allow blood to flow around the valve member 14 and collar 22 into the coronary arteries or other vessels adjacent the biological annulus 90.
In addition or alternatively, the sewing ring 20 may have a tri-lobular or other shape (not shown) that may avoid obstructing the coronary arteries or other vessels communicating with the sinus cavity 98. Optionally, the sewing ring 20 may include a stiffening structure, e.g., core 25, to maintain perfusion of the coronary arteries or other vessels communicating with the sinus cavity 98.
If desired, the collar 22 may allow the valve member 14 to be removed from the sinus cavity 98, e.g., to be replaced with a new valve. To remove the valve member 14, a tool may be inserted between the frame 32 and the sidewall 22b, e.g., to deflect the tabs 16 radially outwardly. With the tabs 16 deflected outwardly, the lower portion 36 of the frame 32 may be lifted past the tabs 16, allowing the valve member 14 to be removed from the collar 22. Once the valve member 14 is removed, another valve (not shown) may be introduced and received within the collar 22, as desired.
It will be appreciated that elements or components shown with any embodiment herein are exemplary for the specific embodiment and may be used on or in combination with other embodiments disclosed herein.
While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents and alternatives falling within the scope of the appended claims.
This application claims benefit of provisional application Ser. No. 60/743,185, filed Jan. 27, 2006, the entire disclosure of which is expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3143742 | Cromie | Aug 1964 | A |
3320974 | High et al. | May 1967 | A |
3370305 | Goott et al. | Feb 1968 | A |
3371352 | Siposs | Mar 1968 | A |
3464065 | Cromie | Sep 1969 | A |
3546710 | Ivanovich et al. | Dec 1970 | A |
3571815 | Somyk | Mar 1971 | A |
3574865 | Hamaker | Apr 1971 | A |
3628535 | Ostrowsky et al. | Dec 1971 | A |
3686740 | Shiley | Aug 1972 | A |
3691567 | Cromie | Sep 1972 | A |
3710744 | Goodenough et al. | Jan 1973 | A |
3744060 | Bellhouse et al. | Jul 1973 | A |
3755823 | Hancock | Sep 1973 | A |
3800403 | Anderson | Apr 1974 | A |
3839741 | Haller | Oct 1974 | A |
3959827 | Kaster | Jun 1976 | A |
3974854 | Kurpanek | Aug 1976 | A |
3996623 | Kaster | Dec 1976 | A |
3997923 | Possis | Dec 1976 | A |
4035849 | Angell et al. | Jul 1977 | A |
4078268 | Possis | Mar 1978 | A |
4078468 | Civitello | Mar 1978 | A |
4084268 | Ionexcu et al. | Apr 1978 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4164046 | Cooley | Aug 1979 | A |
4172295 | Batten | Oct 1979 | A |
4211325 | Wright | Jul 1980 | A |
4217665 | Bex et al. | Aug 1980 | A |
4218782 | Rygg | Aug 1980 | A |
4245358 | Moasser | Jan 1981 | A |
4259753 | Liotta et al. | Apr 1981 | A |
4291420 | Reul | Sep 1981 | A |
4297749 | Davis et al. | Nov 1981 | A |
RE30912 | Hancock | Apr 1982 | E |
4343048 | Ross et al. | Aug 1982 | A |
4364126 | Rosen et al. | Dec 1982 | A |
4388735 | Ionescu et al. | Jun 1983 | A |
4441216 | Ionescu et al. | Apr 1984 | A |
4451936 | Carpentier et al. | Jun 1984 | A |
4470157 | Love | Sep 1984 | A |
4477930 | Totten et al. | Oct 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4501030 | Lane | Feb 1985 | A |
4506394 | Bedard | Mar 1985 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4605407 | Black et al. | Aug 1986 | A |
3409013 | Berry | Nov 1986 | A |
4626255 | Reichart et al. | Dec 1986 | A |
4629459 | Ionescu et al. | Dec 1986 | A |
4665906 | Jervis | May 1987 | A |
4666442 | Arru et al. | May 1987 | A |
4680031 | Alonso | Jul 1987 | A |
4683883 | Martin | Aug 1987 | A |
4687483 | Fisher et al. | Aug 1987 | A |
4692164 | Dzemeshkievich et al. | Sep 1987 | A |
4702250 | Ovil et al. | Oct 1987 | A |
4705516 | Barone et al. | Nov 1987 | A |
4725274 | Lane et al. | Feb 1988 | A |
4731074 | Rousseau et al. | Mar 1988 | A |
4743253 | Magladry | May 1988 | A |
4758151 | Arru et al. | Jul 1988 | A |
4775378 | Knoch et al. | Oct 1988 | A |
4778461 | Pietsch et al. | Oct 1988 | A |
4790843 | Carpentier et al. | Dec 1988 | A |
4816029 | Penny, III et al. | Mar 1989 | A |
4851000 | Gupta | Jul 1989 | A |
4865600 | Carpentier et al. | Sep 1989 | A |
4888009 | Lederman et al. | Dec 1989 | A |
4892541 | Alonso | Jan 1990 | A |
4914097 | Proudian et al. | Apr 1990 | A |
4917698 | Carpentier et al. | Apr 1990 | A |
4935030 | Alonso | Jun 1990 | A |
4960424 | Grooters | Oct 1990 | A |
4993428 | Arms | Feb 1991 | A |
4994077 | Dobben | Feb 1991 | A |
5002567 | Bona et al. | Mar 1991 | A |
5010892 | Colvin et al. | Apr 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5035708 | Wieting et al. | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5071431 | Sauter et al. | Dec 1991 | A |
5104406 | Curcio et al. | Apr 1992 | A |
5147391 | Lane | Sep 1992 | A |
5163953 | Vince | Nov 1992 | A |
5163954 | Curcio et al. | Nov 1992 | A |
5163955 | Love et al. | Nov 1992 | A |
5178633 | Peters | Jan 1993 | A |
5192303 | Gatturna | Mar 1993 | A |
5258023 | Reger | Nov 1993 | A |
5316016 | Adams et al. | May 1994 | A |
5326370 | Love et al. | Jul 1994 | A |
5326371 | Love et al. | Jul 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5376112 | Duran | Dec 1994 | A |
5396887 | Imran | Mar 1995 | A |
5397346 | Walker et al. | Mar 1995 | A |
5397348 | Campbell et al. | Mar 1995 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5406857 | Eberhardt et al. | Apr 1995 | A |
5423887 | Love et al. | Jun 1995 | A |
5425741 | Lemp et al. | Jun 1995 | A |
5431676 | Dubrul et al. | Jul 1995 | A |
5449384 | Johnson | Sep 1995 | A |
5449385 | Religa et al. | Sep 1995 | A |
5469868 | Reger | Nov 1995 | A |
5476510 | Eberhardt et al. | Dec 1995 | A |
5488789 | Religa et al. | Feb 1996 | A |
5489297 | Duran | Feb 1996 | A |
5489298 | Love et al. | Feb 1996 | A |
5500016 | Fisher | Mar 1996 | A |
5531784 | Love et al. | Jul 1996 | A |
5533515 | Coller et al. | Jul 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5549666 | Hata et al. | Aug 1996 | A |
5562729 | Purdy et al. | Oct 1996 | A |
5571175 | Vanney | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573007 | Bobo, Sr. | Nov 1996 | A |
5573543 | Akopov | Nov 1996 | A |
5578076 | Krueger et al. | Nov 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5607470 | Milo | Mar 1997 | A |
5613982 | Goldstein | Mar 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5628789 | Vanney et al. | May 1997 | A |
5662704 | Gross | Sep 1997 | A |
5669917 | Sauer | Sep 1997 | A |
5693090 | Unsworth et al. | Dec 1997 | A |
5695503 | Krueger et al. | Dec 1997 | A |
5713952 | Vanney et al. | Feb 1998 | A |
5713953 | Vallana et al. | Feb 1998 | A |
5716370 | Williamson, IV et al. | Feb 1998 | A |
5716399 | Love | Feb 1998 | A |
5720755 | Dakov | Feb 1998 | A |
5725554 | Simon | Mar 1998 | A |
5728064 | Burns et al. | Mar 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5735894 | Krueger et al. | Apr 1998 | A |
5752522 | Murphy | May 1998 | A |
5755782 | Love et al. | May 1998 | A |
5766240 | Johnson | Jun 1998 | A |
5776187 | Krueger et al. | Jul 1998 | A |
5776188 | Shepherd et al. | Jul 1998 | A |
5800527 | Jansen et al. | Sep 1998 | A |
5807405 | Vanney et al. | Sep 1998 | A |
5814097 | Sterman et al. | Sep 1998 | A |
5814098 | Hinnenkamp et al. | Sep 1998 | A |
5814100 | Carpentier et al. | Sep 1998 | A |
5824060 | Christie et al. | Oct 1998 | A |
5824061 | Quijano et al. | Oct 1998 | A |
5824064 | Taheri | Oct 1998 | A |
5830239 | Toomes | Nov 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5843179 | Vanney et al. | Dec 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5855563 | Kaplan et al. | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5855603 | Reif | Jan 1999 | A |
5860992 | Daniel | Jan 1999 | A |
5861028 | Angell | Jan 1999 | A |
5861029 | Angell | Jan 1999 | A |
5865801 | Houser | Feb 1999 | A |
5876436 | Vanney et al. | Mar 1999 | A |
5879371 | Gardiner et al. | Mar 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5891195 | Klostermeyer | Apr 1999 | A |
5895420 | Mirsch, II et al. | Apr 1999 | A |
5902308 | Murphy | May 1999 | A |
5908450 | Gross et al. | Jun 1999 | A |
5908452 | Bokros et al. | Jun 1999 | A |
5910170 | Reimink et al. | Jun 1999 | A |
5919147 | Jain | Jul 1999 | A |
5921934 | Teo | Jul 1999 | A |
5921935 | Hickey | Jul 1999 | A |
5924984 | Rao | Jul 1999 | A |
5931969 | Carpentier et al. | Aug 1999 | A |
5935163 | Gabbay | Aug 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5961549 | Nguyen et al. | Oct 1999 | A |
5961550 | Carpentier | Oct 1999 | A |
5972004 | Williamson, IV et al. | Oct 1999 | A |
5972024 | Northrup, III | Oct 1999 | A |
5976183 | Ritz | Nov 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
5984973 | Girard et al. | Nov 1999 | A |
6007577 | Vanney et al. | Dec 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6042607 | Williamson et al. | Mar 2000 | A |
6045576 | Starr et al. | Apr 2000 | A |
6059827 | Fenton, Jr. | May 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6068657 | Lapeyre et al. | May 2000 | A |
6074041 | Gardiner et al. | Jun 2000 | A |
6074417 | Peredo | Jun 2000 | A |
6074418 | Buchanan et al. | Jun 2000 | A |
6081737 | Shah | Jun 2000 | A |
6083179 | Oredsson | Jul 2000 | A |
6096074 | Pedros | Aug 2000 | A |
6099475 | Seward et al. | Aug 2000 | A |
6102944 | Huynh | Aug 2000 | A |
6106550 | Magovern et al. | Aug 2000 | A |
6110200 | Hinnenkamp | Aug 2000 | A |
6113632 | Reif | Sep 2000 | A |
6117091 | Young et al. | Sep 2000 | A |
6126007 | Kari et al. | Oct 2000 | A |
6129758 | Love | Oct 2000 | A |
6139575 | Shu et al. | Oct 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6143025 | Stobie et al. | Nov 2000 | A |
6149658 | Gardiner et al. | Nov 2000 | A |
6162233 | Williamson, IV et al. | Dec 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6168614 | Anderson et al. | Jan 2001 | B1 |
6176877 | Buchanan et al. | Jan 2001 | B1 |
6183512 | Hawanec, Jr. et al. | Feb 2001 | B1 |
6197054 | Hamblin, Jr. et al. | Mar 2001 | B1 |
6200306 | Klostermeyer | Mar 2001 | B1 |
6203553 | Robertson | Mar 2001 | B1 |
6214043 | Krueger et al. | Apr 2001 | B1 |
6217610 | Carpentier et al. | Apr 2001 | B1 |
6217611 | Klostermeyer | Apr 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6241765 | Griffin et al. | Jun 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6245105 | Nguyen et al. | Jun 2001 | B1 |
6254636 | Peredo | Jul 2001 | B1 |
6264691 | Gabbay | Jul 2001 | B1 |
6270526 | Cox | Aug 2001 | B1 |
6270527 | Campbell et al. | Aug 2001 | B1 |
6283127 | Sterman et al. | Sep 2001 | B1 |
6283995 | Moe et al. | Sep 2001 | B1 |
6287339 | Vazquez et al. | Sep 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6299638 | Sauter | Oct 2001 | B1 |
6309417 | Spence | Oct 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6319280 | Schoon | Nov 2001 | B1 |
6319281 | Patel | Nov 2001 | B1 |
6322588 | Ogle et al. | Nov 2001 | B1 |
6328727 | Frazier et al. | Dec 2001 | B1 |
6328763 | Love et al. | Dec 2001 | B1 |
6338740 | Carpentier | Jan 2002 | B1 |
6350281 | Rhee | Feb 2002 | B1 |
6358278 | Brendzel et al. | Mar 2002 | B1 |
6358556 | Ding et al. | Mar 2002 | B1 |
6371983 | Lane | Apr 2002 | B1 |
6391053 | Brendzel et al. | May 2002 | B1 |
6395025 | Fordenbacher et al. | May 2002 | B1 |
6409759 | Peredo | Jun 2002 | B1 |
6413275 | Nguyen et al. | Jul 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6440164 | DiMatteo et al. | Aug 2002 | B1 |
6447524 | Knodel | Sep 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6468305 | Otte | Oct 2002 | B1 |
6503272 | Duerig et al. | Jan 2003 | B2 |
6514265 | Ho et al. | Feb 2003 | B2 |
6530952 | Vesely | Mar 2003 | B2 |
6547827 | Carpentier et al. | Apr 2003 | B2 |
6551332 | Nguyen et al. | Apr 2003 | B1 |
6558418 | Carpentier et al. | May 2003 | B2 |
6569196 | Vesely | May 2003 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6585766 | Huynh et al. | Jul 2003 | B1 |
6589279 | Anderson et al. | Jul 2003 | B1 |
6598307 | Love et al. | Jul 2003 | B2 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6607541 | Gardiner et al. | Aug 2003 | B1 |
6613059 | Ho et al. | Sep 2003 | B2 |
6613085 | Anderson et al. | Sep 2003 | B1 |
6641593 | Schaller et al. | Nov 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6676671 | Robertson et al. | Jan 2004 | B2 |
6678862 | Love et al. | Jan 2004 | B1 |
6682559 | Myers et al. | Jan 2004 | B2 |
6685739 | DiMatteo et al. | Feb 2004 | B2 |
6692513 | Streeter et al. | Feb 2004 | B2 |
6695859 | Golden et al. | Feb 2004 | B1 |
6709457 | Otte et al. | Mar 2004 | B1 |
6716243 | Colvin et al. | Apr 2004 | B1 |
6716244 | Klaco | Apr 2004 | B2 |
6716789 | Cox | Apr 2004 | B1 |
6719790 | Brendzel et al. | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6764508 | Roehe et al. | Jul 2004 | B1 |
6767362 | Schreck | Jul 2004 | B2 |
6769434 | Liddicoat et al. | Aug 2004 | B2 |
6776785 | Yencho | Aug 2004 | B1 |
6786924 | Ryan et al. | Sep 2004 | B2 |
6786925 | Schoon et al. | Sep 2004 | B1 |
6790229 | Berreklouw | Sep 2004 | B1 |
6790230 | Beyersdorf et al. | Sep 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6830585 | Artof et al. | Dec 2004 | B1 |
6833924 | Love et al. | Dec 2004 | B2 |
6837902 | Nguyen et al. | Jan 2005 | B2 |
6846324 | Stobie | Jan 2005 | B2 |
6846325 | Liddicoat | Jan 2005 | B2 |
6872226 | Cali et al. | Mar 2005 | B2 |
6893459 | Macoviak | May 2005 | B1 |
6893460 | Spenser et al. | May 2005 | B2 |
6896690 | Lambrecht et al. | May 2005 | B1 |
6908481 | Cribier | Jun 2005 | B2 |
6911043 | Myers et al. | Jun 2005 | B2 |
6913607 | Ainsworth et al. | Jul 2005 | B2 |
6918917 | Nguyen et al. | Jul 2005 | B1 |
6921407 | Nguyen et al. | Jul 2005 | B2 |
6926730 | Nguyen et al. | Aug 2005 | B1 |
6929653 | Streeter | Aug 2005 | B2 |
6939365 | Fogarty et al. | Sep 2005 | B1 |
6945980 | Nguyen et al. | Sep 2005 | B2 |
6945997 | Huynh et al. | Sep 2005 | B2 |
6960221 | Ho et al. | Nov 2005 | B2 |
6974476 | McGuckin et al. | Dec 2005 | B2 |
7011681 | Vesely | Mar 2006 | B2 |
7025780 | Gabbay | Apr 2006 | B2 |
7037333 | Myers et al. | May 2006 | B2 |
7070616 | Majercak et al. | Jul 2006 | B2 |
7083648 | Yu | Aug 2006 | B2 |
7097659 | Woolfson et al. | Aug 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7134184 | Schreck | Nov 2006 | B2 |
7141064 | Scott et al. | Nov 2006 | B2 |
7147663 | Berg et al. | Dec 2006 | B1 |
7153324 | Case et al. | Dec 2006 | B2 |
7172625 | Shu et al. | Feb 2007 | B2 |
7175659 | Hill et al. | Feb 2007 | B2 |
7182769 | Ainsworth et al. | Feb 2007 | B2 |
7186265 | Sharkawy et al. | Mar 2007 | B2 |
7195641 | Palmaz et al. | Mar 2007 | B2 |
7201761 | Woolfson et al. | Apr 2007 | B2 |
7201771 | Lane | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7214344 | Carpentier et al. | May 2007 | B2 |
7238200 | Lee et al. | Jul 2007 | B2 |
7252682 | Seguin | Aug 2007 | B2 |
7261732 | Justino | Aug 2007 | B2 |
7300463 | Liddicoat | Nov 2007 | B2 |
RE40377 | Williamson, IV et al. | Jun 2008 | E |
7393360 | Spenser et al. | Jul 2008 | B2 |
7422603 | Lane | Sep 2008 | B2 |
7445632 | McGuckin et al. | Nov 2008 | B2 |
7513909 | Lane et al. | Apr 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7547313 | Gardiner et al. | Jun 2009 | B2 |
7556647 | Drews et al. | Jul 2009 | B2 |
7575594 | Sieracki | Aug 2009 | B2 |
7578843 | Shu | Aug 2009 | B2 |
7597711 | Drews et al. | Oct 2009 | B2 |
7708775 | Rowe et al. | May 2010 | B2 |
7722643 | Ho et al. | May 2010 | B2 |
7744611 | Nguyen et al. | Jun 2010 | B2 |
7763040 | Schaller et al. | Jul 2010 | B2 |
7771469 | Liddicoat | Aug 2010 | B2 |
20010007956 | Letac et al. | Jul 2001 | A1 |
20010018592 | Schaller et al. | Aug 2001 | A1 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20010039435 | Roue et al. | Nov 2001 | A1 |
20010039436 | Frazier et al. | Nov 2001 | A1 |
20010041914 | Frazier et al. | Nov 2001 | A1 |
20010041915 | Roue et al. | Nov 2001 | A1 |
20010044656 | Williamson et al. | Nov 2001 | A1 |
20010049492 | Frazier et al. | Dec 2001 | A1 |
20020026238 | Lane et al. | Feb 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020055774 | Liddicoat | May 2002 | A1 |
20020058994 | Hill et al. | May 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020077555 | Schwartz | Jun 2002 | A1 |
20020077698 | Peredo | Jun 2002 | A1 |
20020091441 | Nguyen et al. | Jul 2002 | A1 |
20020116054 | Lundell et al. | Aug 2002 | A1 |
20020123802 | Snyders | Sep 2002 | A1 |
20020128684 | Foerster | Sep 2002 | A1 |
20020138138 | Yang | Sep 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020173842 | Buchanan | Nov 2002 | A1 |
20020177223 | Ogle et al. | Nov 2002 | A1 |
20020183834 | Klaco | Dec 2002 | A1 |
20020188348 | DiMatteo et al. | Dec 2002 | A1 |
20020198594 | Schreck | Dec 2002 | A1 |
20030014104 | Cribier | Jan 2003 | A1 |
20030023300 | Bailey et al. | Jan 2003 | A1 |
20030023302 | Moe et al. | Jan 2003 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030036791 | Bonhoeffer et al. | Feb 2003 | A1 |
20030036795 | Andersen et al. | Feb 2003 | A1 |
20030040792 | Gabbay | Feb 2003 | A1 |
20030045902 | Weadock | Mar 2003 | A1 |
20030055495 | Pease et al. | Mar 2003 | A1 |
20030109922 | Peterson | Jun 2003 | A1 |
20030109924 | Cribier | Jun 2003 | A1 |
20030114913 | Spenser et al. | Jun 2003 | A1 |
20030125793 | Vesely | Jul 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030149477 | Gabbay | Aug 2003 | A1 |
20030149478 | Figulla et al. | Aug 2003 | A1 |
20030153974 | Spenser et al. | Aug 2003 | A1 |
20030167089 | Lane | Sep 2003 | A1 |
20030191481 | Nguyen et al. | Oct 2003 | A1 |
20030199963 | Tower et al. | Oct 2003 | A1 |
20030199971 | Tower et al. | Oct 2003 | A1 |
20030229394 | Ogle et al. | Dec 2003 | A1 |
20030236568 | Hojeibane et al. | Dec 2003 | A1 |
20040015232 | Shu | Jan 2004 | A1 |
20040019374 | Hojeibane et al. | Jan 2004 | A1 |
20040024452 | Kruse et al. | Feb 2004 | A1 |
20040030381 | Shu | Feb 2004 | A1 |
20040034411 | Quijano et al. | Feb 2004 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040044406 | Woolfson et al. | Mar 2004 | A1 |
20040050393 | Golden et al. | Mar 2004 | A1 |
20040068276 | Golden et al. | Apr 2004 | A1 |
20040078074 | Anderson et al. | Apr 2004 | A1 |
20040093075 | Kuehne | May 2004 | A1 |
20040102797 | Golden et al. | May 2004 | A1 |
20040106976 | Bailey et al. | Jun 2004 | A1 |
20040122514 | Fogarty | Jun 2004 | A1 |
20040122516 | Fogarty | Jun 2004 | A1 |
20040122526 | Imran | Jun 2004 | A1 |
20040167573 | Williamson, IV et al. | Aug 2004 | A1 |
20040167620 | Ortiz et al. | Aug 2004 | A1 |
20040176839 | Huynh et al. | Sep 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040193261 | Berreklouw | Sep 2004 | A1 |
20040199176 | Berreklouw | Oct 2004 | A1 |
20040206363 | McCarthy et al. | Oct 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040210305 | Shu et al. | Oct 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040225355 | Stevens | Nov 2004 | A1 |
20040225356 | Frater | Nov 2004 | A1 |
20040236411 | Sarac et al. | Nov 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20040260390 | Sarac et al. | Dec 2004 | A1 |
20050010285 | Lambrecht et al. | Jan 2005 | A1 |
20050027348 | Case et al. | Feb 2005 | A1 |
20050033398 | Seguin | Feb 2005 | A1 |
20050043760 | Fogarty | Feb 2005 | A1 |
20050043790 | Seguin | Feb 2005 | A1 |
20050060029 | Le et al. | Mar 2005 | A1 |
20050065594 | DiMatteo et al. | Mar 2005 | A1 |
20050065601 | Lee et al. | Mar 2005 | A1 |
20050065614 | Stinson | Mar 2005 | A1 |
20050070924 | Schaller et al. | Mar 2005 | A1 |
20050075584 | Cali | Apr 2005 | A1 |
20050075659 | Realyvasquez et al. | Apr 2005 | A1 |
20050075667 | Ho et al. | Apr 2005 | A1 |
20050075713 | Biancucci et al. | Apr 2005 | A1 |
20050075717 | Nguyen et al. | Apr 2005 | A1 |
20050075718 | Nguyen et al. | Apr 2005 | A1 |
20050075719 | Bergheim | Apr 2005 | A1 |
20050075720 | Nguyen et al. | Apr 2005 | A1 |
20050075724 | Svanidze et al. | Apr 2005 | A1 |
20050080454 | Drews | Apr 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050098547 | Cali et al. | May 2005 | A1 |
20050101975 | Nguyen et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050131429 | Ho et al. | Jun 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137687 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137689 | Salahieh et al. | Jun 2005 | A1 |
20050137690 | Salahieh et al. | Jun 2005 | A1 |
20050137691 | Salahieh et al. | Jun 2005 | A1 |
20050137692 | Haug et al. | Jun 2005 | A1 |
20050137694 | Haug et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050137696 | Salahieh et al. | Jun 2005 | A1 |
20050137702 | Haug et al. | Jun 2005 | A1 |
20050150775 | Zhang et al. | Jul 2005 | A1 |
20050159811 | Lane | Jul 2005 | A1 |
20050165477 | Andruiza et al. | Jul 2005 | A1 |
20050165479 | Lane | Jul 2005 | A1 |
20050182483 | Osborne et al. | Aug 2005 | A1 |
20050182486 | Gabbay | Aug 2005 | A1 |
20050192665 | Spenser et al. | Sep 2005 | A1 |
20050203616 | Cribier | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050203618 | Sharkaway et al. | Sep 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050222674 | Paine | Oct 2005 | A1 |
20050234545 | Nugent et al. | Oct 2005 | A1 |
20050234546 | Nuget et al. | Oct 2005 | A1 |
20050240259 | Sisken et al. | Oct 2005 | A1 |
20050240263 | Fogarty | Oct 2005 | A1 |
20050251252 | Stobie | Nov 2005 | A1 |
20050261765 | Liddicoat | Nov 2005 | A1 |
20050283231 | Haug et al. | Dec 2005 | A1 |
20060004389 | Nguyen et al. | Jan 2006 | A1 |
20060005129 | Damm et al. | Jan 2006 | A1 |
20060009841 | McGuckin et al. | Jan 2006 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060052867 | Revuelta et al. | Mar 2006 | A1 |
20060058871 | Zakay et al. | Mar 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060085060 | Campbell | Apr 2006 | A1 |
20060095125 | Chinn et al. | May 2006 | A1 |
20060122634 | Ino | Jun 2006 | A1 |
20060122692 | Gilad et al. | Jun 2006 | A1 |
20060135964 | Vesely | Jun 2006 | A1 |
20060136052 | Vesely | Jun 2006 | A1 |
20060136054 | Berg et al. | Jun 2006 | A1 |
20060149360 | Schwammenthal et al. | Jul 2006 | A1 |
20060149367 | Sieracki | Jul 2006 | A1 |
20060154230 | Cunanan | Jul 2006 | A1 |
20060161249 | Realyvasquez et al. | Jul 2006 | A1 |
20060167543 | Bailey et al. | Jul 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060195184 | Lane et al. | Aug 2006 | A1 |
20060195185 | Lane et al. | Aug 2006 | A1 |
20060195186 | Drews et al. | Aug 2006 | A1 |
20060207031 | Cunanan et al. | Sep 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060235508 | Lane | Oct 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060246888 | Bender et al. | Nov 2006 | A1 |
20060253191 | Salahieh et al. | Nov 2006 | A1 |
20060259134 | Schwammenthal et al. | Nov 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060265056 | Nguyen et al. | Nov 2006 | A1 |
20060271172 | Tehrani | Nov 2006 | A1 |
20060271175 | Woolfson et al. | Nov 2006 | A1 |
20060276888 | Lee | Dec 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20060287719 | Rowe et al. | Dec 2006 | A1 |
20070010835 | Breton et al. | Jan 2007 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070016285 | Lane et al. | Jan 2007 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070016288 | Gurskis et al. | Jan 2007 | A1 |
20070027461 | Gardiner et al. | Feb 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070078509 | Lotfy | Apr 2007 | A1 |
20070078510 | Ryan | Apr 2007 | A1 |
20070095698 | Cambron | May 2007 | A1 |
20070100440 | Figulla et al. | May 2007 | A1 |
20070106313 | Golden et al. | May 2007 | A1 |
20070129794 | Realyvasquez | Jun 2007 | A1 |
20070142848 | Ainsworth et al. | Jun 2007 | A1 |
20070142906 | Figulla et al. | Jun 2007 | A1 |
20070142907 | Moaddeb et al. | Jun 2007 | A1 |
20070150053 | Gurskis et al. | Jun 2007 | A1 |
20070156233 | Kapadia et al. | Jul 2007 | A1 |
20070162103 | Case et al. | Jul 2007 | A1 |
20070162107 | Haug et al. | Jul 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070162113 | Sharkawy et al. | Jul 2007 | A1 |
20070179604 | Lane | Aug 2007 | A1 |
20070185565 | Schwammenthal et al. | Aug 2007 | A1 |
20070198097 | Zegdi | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070203576 | Lee et al. | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070225801 | Drews et al. | Sep 2007 | A1 |
20070233237 | Krivoruchko | Oct 2007 | A1 |
20070239266 | Birdsall | Oct 2007 | A1 |
20070239269 | Dolan et al. | Oct 2007 | A1 |
20070239273 | Allen | Oct 2007 | A1 |
20070255398 | Yang et al. | Nov 2007 | A1 |
20070260305 | Drews et al. | Nov 2007 | A1 |
20070265701 | Gurskis et al. | Nov 2007 | A1 |
20070270944 | Bergheim et al. | Nov 2007 | A1 |
20070288089 | Gurskis et al. | Dec 2007 | A1 |
20080004696 | Vesely | Jan 2008 | A1 |
20080033543 | Gurskis et al. | Feb 2008 | A1 |
20080071361 | Tuval et al. | Mar 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080097595 | Gabbay | Apr 2008 | A1 |
20080119875 | Ino et al. | May 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20080319543 | Lane | Dec 2008 | A1 |
20090036903 | Ino et al. | Feb 2009 | A1 |
20090054974 | McGuckin et al. | Feb 2009 | A1 |
20090112233 | Xiao | Apr 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090192599 | Lane et al. | Jul 2009 | A1 |
20090192602 | Kuehn | Jul 2009 | A1 |
20090192603 | Ryan | Jul 2009 | A1 |
20090192604 | Gloss | Jul 2009 | A1 |
20090192605 | Gloss et al. | Jul 2009 | A1 |
20090192606 | Gloss et al. | Jul 2009 | A1 |
20090210052 | Forster et al. | Aug 2009 | A1 |
20090264903 | Lee et al. | Oct 2009 | A1 |
20090319038 | Gurskis et al. | Dec 2009 | A1 |
20100030244 | Woolfson et al. | Feb 2010 | A1 |
20100044410 | Argentine et al. | Feb 2010 | A1 |
20100100174 | Gurskis | Apr 2010 | A1 |
20100249894 | Oba et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
2356656 | Jan 2000 | CN |
19532973 | Nov 1996 | DE |
0 084 395 | Aug 1986 | EP |
0 096 721 | Dec 1987 | EP |
0 125 393 | Dec 1987 | EP |
0 179 562 | Jul 1989 | EP |
1057460 | Dec 2000 | EP |
1 088 529 | Apr 2001 | EP |
1171059 | Jan 2002 | EP |
971 650 | Jan 2005 | EP |
171 059 | Feb 2005 | EP |
1093599 | Dec 1967 | GB |
1477643 | Jun 1977 | GB |
2011259 | Jul 1979 | GB |
2 056 023 | Mar 1981 | GB |
2 069 843 | Sep 1981 | GB |
2254254 | Oct 1992 | GB |
2 279 134 | Dec 1994 | GB |
1116573 | Jul 1985 | SU |
8705489 | Sep 1987 | WO |
8900084 | Feb 1989 | WO |
9115167 | Oct 1991 | WO |
9201269 | Aug 1992 | WO |
9213502 | Aug 1992 | WO |
9219184 | Nov 1992 | WO |
9219185 | Nov 1992 | WO |
9517139 | Jun 1995 | WO |
9528899 | Nov 1995 | WO |
9640006 | Dec 1996 | WO |
9709933 | Mar 1997 | WO |
9709944 | Mar 1997 | WO |
9727799 | Aug 1997 | WO |
9741801 | Nov 1997 | WO |
9742871 | Nov 1997 | WO |
9806329 | Feb 1998 | WO |
9911201 | Mar 1999 | WO |
9915112 | Apr 1999 | WO |
9951169 | Oct 1999 | WO |
0032105 | Jun 2000 | WO |
0040176 | Jul 2000 | WO |
0044311 | Aug 2000 | WO |
0056250 | Sep 2000 | WO |
0059382 | Oct 2000 | WO |
0060995 | Oct 2000 | WO |
0064380 | Nov 2000 | WO |
0110310 | Feb 2001 | WO |
0110312 | Feb 2001 | WO |
0158363 | Aug 2001 | WO |
0176510 | Oct 2001 | WO |
0182840 | Nov 2001 | WO |
0187190 | Nov 2001 | WO |
2004006810 | Jan 2004 | WO |
2004089246 | Oct 2004 | WO |
2005004753 | Jan 2005 | WO |
2005020842 | Mar 2005 | WO |
2005039452 | May 2005 | WO |
2005072655 | Aug 2005 | WO |
2006086135 | Aug 2006 | WO |
2009137517 | Nov 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20070179604 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60743185 | Jan 2006 | US |