Gasoline upgrading process

Information

  • Patent Grant
  • 5407559
  • Patent Number
    5,407,559
  • Date Filed
    Monday, June 1, 1992
    32 years ago
  • Date Issued
    Tuesday, April 18, 1995
    29 years ago
Abstract
A process is provided for producing low sulfur gasoline of relatively high octane number from a catalytically cracked, sulfur-containing naphtha by hydrodesulfurization followed by treatment over an acidic catalyst comprising crystals having the structure of ZSM-12. The treatment over the acidic catalyst comprising ZSM-12 in the second step restores the octane loss which takes place as a result of the hydrogenative treatment and results in a low sulfur gasoline product with an octane number comparable to that of the feed naphtha. In favorable cases, using feeds of extended end point such as heavy naphthas with 95 percent points above about 380.degree. F. (about 193.degree. C.), improvements in both product octane and yield relative to the feed may be obtained.
Description

FIELD OF THE INVENTION
This invention relates to a process for the upgrading of hydrocarbon streams. It more particularly refers to a process for upgrading gasoline boiling range petroleum fractions containing substantial proportions of sulfur impurities.
BACKGROUND OF THE INVENTION
Heavy petroleum fractions, such as vacuum gas oil, or even resids such as atmospheric resid, may be catalytically cracked to lighter and more valuable products, especially gasoline. Catalytically cracked gasoline forms a major part of the gasoline product pool in the United States. It is conventional to recover the product of catalytic cracking and to fractionate the cracking products into various fractions such as light gases; naphtha, including light and heavy gasoline; distillate fractions, such as heating oil and Diesel fuel; lube oil base fractions; and heavier fractions.
Where the petroleum fraction being catalytically cracked contains sulfur, the products of catalytic cracking usually contain sulfur impurities which normally require removal, usually by hydrotreating, in order to comply with the relevant product specifications. These specifications are expected to become more stringent in the future, possibly permitting no more than about 300 ppmw sulfur in motor gasolines. In naphtha hydrotreating, the naphtha is contacted with a suitable hydrotreating catalyst at elevated temperature and somewhat elevated pressure in the presence of a hydrogen atmosphere. One suitable family of catalysts which has been widely used for this service is a combination of a Group VIII and a Group VI element, such as cobalt and molybdenum, on a suitable substrate, such as alumina.
Sulfur impurities tend to concentrate in the heavy fraction of the gasoline, as noted in U.S. Pat. No. 3,957,625 (Orkin) which proposes a method of removing the sulfur by hydrodesulfurization of the heavy fraction of the catalytically cracked gasoline so as to retain the octane contribution from the olefins which are found mainly in the lighter fraction. In one type of conventional, commercial operation, the heavy gasoline fraction is treated in this way. As an alternative, the selectivity for hydrodesulfurization relative to olefin saturation may be shifted by suitable catalyst selection, for example, by the use of a magnesium oxide support instead of the more conventional alumina.
In the hydrotreating of petroleum fractions, particularly naphthas, and most particularly heavy cracked gasoline, the molecules containing the sulfur atoms are mildly hydrocracked so as to release their sulfur, usually as hydrogen sulfide. After the hydrotreating operation is complete, the product may be fractionated, or even just flashed, to release the hydrogen sulfide and collect the now sweetened gasoline. Although this is an effective process that has been practiced on gasolines and heavier petroleum fractions for many years to produce satisfactory products, it does have disadvantages.
Naphthas, including light and full range naphthas, may be subjected to catalytic reforming so as to increase their octane numbers by converting at least a portion of the paraffins and cycloparaffins in them to aromatics. Fractions to be fed to catalytic reforming, such as over a platinum type catalyst, also need to be desulfurized before reforming because reforming catalysts are generally not sulfur tolerant. Thus, naphthas are usually pretreated by hydrotreating to reduce their sulfur content before reforming. The octane rating of reformate may be increased further by processes such as those described in U.S. Pat. Nos. 3,767,568 and 3,729,409 (Chen) in which the reformate octane is increased by treatment of the reformate with ZSM-5.
Aromatics are generally the source of high octane number, particularly very high research octane numbers and are therefore desirable components of the gasoline pool. They have, however, been the subject of severe limitations as a gasoline component because of possible adverse effects on the ecology, particularly with reference to benzene. It has therefore become desirable, as far as is feasible, to create a gasoline pool in which the higher octanes are contributed by the olefinic and branched chain paraffinic components, rather than the aromatic components. Light and full range naphthas can contribute substantial volume to the gasoline pool, but they do not generally contribute significantly to higher octane values without reforming.
Cracked naphtha, as it comes from the catalytic cracker and without any further treatments, such as purifying operations, has a relatively high octane number as a result of the presence of olefinic components. It also has an excellent volumetric yield. As such, cracked gasoline is an excellent contributor to the gasoline pool. It contributes a large quantity of product at a high blending octane number. In some cases, this fraction may contribute as much as up to half the gasoline in the refinery pool. Therefore, it is a most desirable component of the gasoline pool, and it should not be lightly tampered with.
Other highly unsaturated fractions boiling in the gasoline boiling range, which are produced in some refineries or petrochemical plants, include pyrolysis gasoline. This is a fraction which is often produced as a by-product in the cracking of petroleum fractions to produce light unsaturates, such as ethylene and propylene. Pyrolysis gasoline has a very high octane number but is quite unstable in the absence of hydrotreating because, in addition to the desirable olefins boiling in the gasoline boiling range, it also contains a substantial proportion of diolefins, which tend to form gums after storage or standing.
Hydrotreating of any of the sulfur containing fractions which boil in the gasoline boiling range causes a reduction in the olefin content, and consequently a reduction in the octane number and as the degree of desulfurization increases, the octane number of the normally liquid gasoline boiling range product decreases. Some of the hydrogen may also cause some hydrocracking as well as olefin saturation, depending on the conditions of the hydrotreating operation.
Various proposals have been made for removing sulfur while retaining the more desirable olefins. U.S. Pat. No. 4,049,542 (Gibson), for instance, discloses a process in which a copper catalyst is used to desulfurize an olefinic hydrocarbon feed such as catalytically cracked light naphtha.
In any case, regardless of the mechanism by which it happens, the decrease in octane which takes place as a consequence of sulfur removal by hydrotreating creates a tension between the growing need to produce gasoline fuels with higher octane number and, because of current ecological considerations, the need to produce cleaner burning, less polluting fuels, especially low sulfur fuels. This inherent tension is yet more marked in the current supply situation for low sulfur, sweet crudes.
Other processes for treating catalytically cracked gasolines have also been proposed in the past. For example, U.S. Pat. No. 3,759,821 (Brennan) discloses a process for upgrading catalytically cracked gasoline by fractionating it into a heavier and a lighter fraction and treating the heavier fraction over a ZSM-5 catalyst, after which the treated fraction is blended back into the lighter fraction. Another process in which the cracked gasoline is fractionated prior to treatment is described in U.S. Pat. No. 4,062,762 (Howard) which discloses a process for desulfurizing naphtha by fractionating the naphtha into three fractions each of which is desulfurized by a different procedure, after which the fractions are recombined.
In our co-pending applications Ser. Nos. 07/850,106, filed Mar. 12, 1992, and 07/745,311, filed Aug. 15, 1991, we have described processes for the upgrading of gasoline by sequential hydrotreating and selective cracking steps. In the first step of the process, the naphtha is desulfurized by hydrotreating and during this step some loss of octane results from the saturation of olefins. The octane loss is restored in the second step by a shape-selective cracking, preferably carried out in the presence of an intermediate pore size zeolite such as ZSM-5. The product is a low-sulfur gasoline of good octane rating. Reference is made to Ser. Nos. 07/745,311 and 07/850,106 for a detailed description of these processes.
As shown in these prior applications, zeolite ZSM-5 is effective for restoring the octane loss which takes place when the initial naphtha feed is hydrotreated. When the hydrotreated naphtha is passed over the catalyst in the second step of the process, some components of the gasoline are cracked into lower boiling range materials. If these boil below the gasoline boiling range, there will be a loss in the yield of the gasoline product. If, however, the cracking products are within the gasoline range, a net volumetric yield increase occurs. To achieve this, it is helpful to increase the end point of the naphtha feed to the extent that this will not result in the gasoline product end point or similar restrictions (e.g., T.sub.90, T.sub.95) being exceeded. While the intermediate pore size zeolites such as ZSM-5 will convert the higher boiling components of the feed, a preferred mode of operation would be to increase conversion of the higher boiling components to products which will remain in the gasoline boiling range.
Of the intermediate pore size zeolites or those behaving like intermediate pore size zeolites, ZSM-12 and its conventional preparations are taught by U.S. Pat. Nos. 3,832,449 and 4,552,739. It has a distinctive X-ray diffraction pattern which identifies it from other known crystalline materials.
U.S. Pat. No. 4,391,785 teaches a method for synthesis of zeolite ZSM-12 from a reaction mixture comprising, as a directing agent, a compound selected from the group consisting of dimethyl pyridinium halide and dimethyl pyrrolidinium halide.
U.S. Pat. No. 4,112,056 teaches a synthesis method for ZSM-12 from a reaction mixture containing tetraethylammonium ions as directing agent. U.S. Pat. No. 4,452,769 claims a method for synthesizing ZSM-12 from a reaction mixture containing methyltriethylammonium ions as the directing agent. European Patent Application 13,630 claims synthesis of ZSM-12 from a reaction mixture containing a directing agent defined as an organic compound containing nitrogen and comprising "an alkyl or aryl group having between 1 and 7 carbon atoms, at least one of which comprises an ethyl radical". U.S. Pat. No. 4,482,531, teaches synthesis of ZSM-12 with a DABCO-C.sub.n -diquat, n being 4,5,6 or 10, directing agent; and U.S. Pat. No. 4,539,193, teaches use of bis (dimethylpiperidinium) trimethylene directing agent for synthesis of ZSM-12.
U.S. Pat. No. 5,021,141 teaches synthesis of the ZSM-12 type structure from a reaction mixture comprising hexamethyleneimine directing agent. The entire contents of the above patents are incorporated herein by reference as to synthesis and description of the ZSM-12 structure.
SUMMARY OF THE INVENTION
We have now found that a specific synthetic zeolite, i.e., having the structure of ZSM-12, is relatively more effective than ZSM-5 for the conversion of the higher boiling components of the naphtha. Although less active than ZSM-5 for increasing the octane of the hydrotreated naphtha, the ZSM-12 structure crystalline material converts more of the heavier, back-end fraction to lighter gasoline components. The improved back-end cracking selectivity of a catalyst comprising crystals having the structure of ZSM-12 has potential benefit in situations where lower gasoline end-points are desirable. In addition, it has been found that this catalyst produces relatively more of the branched-chain C.sub.4 and C.sub.5 paraffins and olefins which are useful in alkylation and etherification units for the production of alkylate and fuel ethers such as MTBE and TAME.
According to the present invention, a process is provided for catalytically desulfurizing cracked fractions in the gasoline boiling range to reduce sulfur to acceptable levels in an initial hydrotreating step, after which the desulfurized material is treated with an acidic catalyst to restore lost octane. The acidic catalyst comprises a synthetic porous crystalline component having the structure of ZSM-12.
In favorable cases, the volumetric yield of gasoline boiling range product is not substantially reduced and may even be increased so that the number of octane barrels of product produced is at least equivalent to the number of octane barrels of feed introduced into the operation.
The process may be utilized to desulfurize light and full range naphtha fractions while maintaining octane so as to obviate the need for reforming such fractions, or at least, without the necessity of reforming such fractions to the degree previously considered necessary. Since reforming generally implies a significant yield loss, this constitutes a marked advantage of the present process.





DETAILED DESCRIPTION
Feed
The feed to the process comprises a sulfur-containing petroleum fraction which boils in the gasoline boiling range. Feeds of this type include light naphthas typically having a boiling range of about C.sub.6 to 330.degree. F., full range naphthas typically having a boiling range of about C.sub.5 to 420.degree. F., heavier naphtha fractions boiling in the range of about 260.degree. F. to 412.degree. F., or heavy gasoline fractions boiling at, or at least within, the range of about 330.degree. to 500.degree. F., preferably about 330.degree. to 412.degree. F. While the most preferred feed appears at this time to be a heavy gasoline produced by catalytic cracking; or a light or full range gasoline boiling range fraction, the best results are obtained when, as described below, the process is operated with a gasoline boiling range fraction which has a 95 percent point (determined according to ASTM D 86) of at least about 325.degree. F. (163.degree. C.) and preferably at least about 350 .degree. F. (177.degree. C.), for example, 95 percent points of at least 380.degree. F. (about 193.degree. C.) or at least about 400.degree. F. (about 220.degree. C.).
The process may be operated with the entire gasoline fraction obtained from the catalytic cracking step or, alternatively, with part of it. Because the sulfur tends to be concentrated in the higher boiling fractions, it is preferable, particularly when unit capacity is limited, to separate the higher boiling fractions and process them through the steps of the present process without processing the lower boiling cut. The cut point between the treated and untreated fractions may vary according to the sulfur compounds present. Usually a cut point in the range of from about 100.degree. F. (38.degree. C.) to about 300.degree. F. (150.degree. C.), more usually in the range of about 200.degree. F. (93.degree. C.) to about 300.degree. F. (150.degree. C.) will be suitable. The exact cut point selected will depend on the sulfur specification for the gasoline product as well as on the type of sulfur compounds present: lower cut points will typically be necessary for lower product sulfur specifications. Sulfur which is present in components boiling below about 150.degree. F. (65.degree. C.) is mostly in the form of mercaptans which may be removed by extractive type processes such as Merox, but hydrotreating is appropriate for the removal of thiophene and other cyclic sulfur compounds present in higher boiling components, e.g., component fractions boiling above about 180.degree. F. (82.degree. C.). Treatment of the lower boiling fraction in an extractive type process coupled with hydrotreating of the higher boiling component may therefore represent a preferred economic process option. Higher cut points will be preferred in order to minimize the amount of feed which is passed to the hydrotreater and the final selection of cut point together with other process options such as the extractive type desulfurization will therefore be made in accordance with the product specifications, feed constraints and other factors.
The sulfur content of these catalytically cracked fractions will depend on the sulfur content of the feed to the cracker as well as on the boiling range of the selected fraction used as the feed in the process. Lighter fractions, for example, will tend to have lower sulfur contents than the higher boiling fractions. As a practical matter, the sulfur content will exceed 50 ppmw and usually will be in excess of 100 ppmw and in most cases in excess of about 500 ppmw. For the fractions which have 95 percent points over about 380.degree. F. (193.degree. C.), the sulfur content may exceed about 1,000 ppmw and may be as high as 4,000 or 5,000 ppmw or even higher, as shown below. The nitrogen content is not as characteristic of the feed as the sulfur content and is preferably not greater than about 20 ppmw although higher nitrogen levels typically up to about 50 ppmw may be found in certain higher boiling feeds with 95 percent points in excess of about 380.degree. F. (193.degree. C.). The nitrogen level will, however, usually not be greater than 250 or 300 ppmw. As a result of the cracking which has preceded the steps of the present process, the feed to the hydrodesulfurization step will be olefinic, with an olefin content of at least 5 and more typically in the range of 10 to 20, e.g., 15-20, weight percent.
Process Configuration
The selected sulfur-containing, gasoline boiling range feed is treated in two stages by first hydrotreating the feed by effective contact of the feed with a hydrotreating catalyst, which is suitably a conventional hydrotreating catalyst, such as a combination of a Group VI and a Group VIII metal on a suitable refractory support such as alumina, under hydrotreating conditions. Under these conditions, at least some of the sulfur is separated from the feed molecules and converted to hydrogen sulfide, to produce a hydrotreated intermediate product comprising a normally liquid fraction boiling in substantially the same boiling range as the feed (gasoline boiling range), but which has a lower sulfur content and a lower octane number than the feed.
This hydrotreated intermediate product which also boils in the gasoline boiling range (and usually has a boiling range which is not substantially higher than the boiling range of the feed), is then treated by contact with an acidic catalyst comprising crystals having the structure of ZSM-12 under conditions which produce a second product comprising a fraction which boils in the gasoline boiling range which has a higher octane number than the portion of the hydrotreated intermediate product fed to this second step. The product from this second step usually has a boiling range which is not substantially higher than the boiling range of the feed to the hydrotreater, but it is of lower sulfur content while having a comparable octane rating as the result of the second stage treatment.
Hydrotreating
The temperature of the hydrotreating step is suitably from about 400.degree. to 850.degree. F. (about 220.degree. to 454.degree. C.), preferably about 500.degree. to 800.degree. F. (about 260.degree. to 427.degree. C.) with the exact selection dependent on the degree of desulfurization desired for a given feed and catalyst. Because the hydrogenation reactions which take place in this stage are exothermic, a rise in temperature takes place along the reactor. This is favorable to the overall process when it is operated in the cascade mode because the second stage is one which implicates cracking, an endothermic reaction. In this case, therefore, the conditions in the first stage should be adjusted not only to obtain the desired degree of desulfurization but also to produce the required inlet temperature for the second stage of the process so as to promote the desired shape-selective cracking reactions in that stage. A temperature rise of about 20.degree. to 200.degree. F. (about 11.degree. to 111.degree. C.) is typical under most hydrotreating conditions and with reactor inlet temperatures in the preferred 500.degree. to 800.degree. F. (260.degree. to 427.degree. C.) range, will normally provide a requisite initial temperature for cascading to the second stage of the process. When operated in the two-stage configuration with interstage separation and heating, control of the first stage exotherm is obviously not as critical; two-stage operation may be preferred since it offers the capability of decoupling and optimizing the temperature requirements of the individual stages.
Since the feeds are readily desulfurized, low to moderate pressures may be used, typically from about 50 to 1500 psig (about 445 to 10443 kPa), preferably about 300 to 1000 psig (about 2170 to 7,000 kPa). Pressures are total system pressure, reactor inlet. Pressure will normally be chosen to maintain the desired aging rate for the catalyst in use. The space velocity (hydrodesulfurization step) is typically about 0.5 to 10 LHSV (hr.sup.-1), preferably about 1 to 6 LHSV (hr.sup.-1). The hydrogen to hydrocarbon ratio in the feed is typically about 500 to 5000 SCF/Bbl, usually about 1000 to 2500 SCF/B. The extent of the desulfurization will depend on the feed sulfur content and, of course, on the product sulfur specification with the reaction parameters selected accordingly. It is not necessary to go to very low nitrogen levels but low nitrogen levels may improve the activity of the catalyst in the second stage of the process. Normally, the denitrogenation which accompanies the desulfurization will result in an acceptable organic nitrogen content in the feed to the second step of the process; if it is necessary, however, to increase the denitrogenation in order to obtain a desired level of activity in the second step, the operating conditions in the first step may be adjusted accordingly.
The catalyst used in the hydrodesulfurization step is suitably a conventional desulfurization catalyst made up of a Group VI and/or a Group VIII metal on a suitable substrate. The Group VI metal is usually molybdenum or tungsten and the Group VIII metal usually nickel or cobalt. Combinations such as Ni--Mo or Co--Mo are typical. Other metals which possess hydrogenation functionality are also useful in this service. To further promote desulfurization or denitrogenation, phosphorus may also be present. The support for the catalyst is conventionally a porous solid, usually alumina, or silica-alumina but other porous solids such as magnesia, titania or silica, either alone or mixed with alumina or silica-alumina may also be used, as convenient.
The particle size and the nature of the hydrotreating catalyst will usually be determined by the type of hydrotreating process which is being carried out, such as: a down-flow, liquid phase, fixed bed process; an up-flow, fixed bed, trickle phase process; an ebulating, fluidized bed process; or a transport, fluidized bed process. All of these different process schemes are generally well known in the petroleum arts, and the choice of the particular mode of operation is a matter left to the discretion of the operator, although the fixed bed arrangements are preferred for simplicity of operation.
A change in the volume of gasoline boiling range material typically takes place in the first stage. Although some decrease in volume occurs as the result of the conversion to lower boiling products (C.sub.5 -), the conversion to C.sub.5 - products is typically not more than 5 vol percent and usually below 3 vol percent and is normally compensated for by the increase which takes place as a result of aromatics saturation. An increase in volume is typical for the second stage of the process where, as the result of cracking the back end of the hydrotreated feed, cracking products within the gasoline boiling range are produced. An overall increase in volume of the gasoline boiling range (C.sub.5 +) materials may occur.
Octane Restoration
After the hydrotreating stage, the hydrotreated intermediate product is passed to the second stage of the process in which cracking takes place in the presence of the acidic catalyst comprising crystalline material having the structure of ZSM-12. The effluent from the hydrotreating stage may be subjected to an interstage separation in order to remove the inorganic sulfur and nitrogen as hydrogen sulfide and ammonia as well as light ends but this is not necessary and, in fact, it has been found that the first stage can be cascaded directly into the second stage. This can be done very conveniently in a down-flow, fixed-bed reactor by loading the hydrotreating catalyst directly on top of the second stage catalyst.
The separation of the light ends at this point may be desirable if the added complication is acceptable since the saturated C.sub.4 -C.sub.6 fraction from the hydrotreater is a highly suitable feed to be sent to the isomerizer for conversion to iso-paraffinic materials of high octane rating. This will avoid the conversion of this fraction to non-gasoline (C.sub.5 -) products in the second stage of the process. Another process configuration with potential advantages is to take a heart cut, for example, a 195.degree.-302.degree. F. (90.degree.-150.degree. C.) fraction, from the first stage product and send it to the reformer where the low octane naphthenes which make up a significant portion of this fraction are converted to high octane aromatics. The heavy portion of the first stage effluent is, however, sent to the second stage for restoration of lost octane by treatment with the acid catalyst. The hydrotreatment in the first stage is effective to desulfurize and denitrogenate the catalytically cracked naphtha which permits the heart cut to be processed in the reformer. Thus, the preferred configuration in this alternative is for the second stage to process the C.sub.8 + portion of the first stage effluent and with feeds which contain significant amounts of heavy components up to about C.sub.13, e.g., with C.sub.9 -C.sub.13 fractions going to the second stage, improvements in both octane and yield can be expected.
The conditions used in the second stage of the process are those which result in a controlled degree of shape-selective cracking of the desulfurized, hydrotreated effluent from the first stage. This produces olefins which restore the octane rating of the original, cracked feed at least to a partial degree. The reactions which take place during the second stage are mainly the shape-selective cracking of low octane paraffins to form higher octane products, both by the selective cracking of heavy paraffins to lighter paraffins and the cracking of low octane n-paraffins, in both cases with the generation of olefins. Some isomerization of n-paraffins to branched-chain paraffins of higher octane may take place, making a further contribution to the octane of the final product. In favorable cases, the original octane rating of the feed may be completely restored or perhaps even exceeded. Since the volume of the second stage product will typically be comparable to that of the original feed or even exceed it, the number of octane barrels (octane rating x volume) of the final, desulfurized product may exceed the octane barrels of the feed.
The conditions used in the second stage are those which are appropriate to produce this controlled degree of cracking. Typically, the temperature of the second stage will be about 300.degree. to 900.degree. F. (about 150.degree. to 480.degree. C.), preferably about 350.degree. to 800.degree. F. (about 177.degree. to 427.degree. C.). As mentioned above, however, a convenient mode of operation is to cascade the hydrotreated effluent into the second reaction zone and this will imply that the outlet temperature from the first stage will set the initial temperature for the second stage. The feed characteristics and the inlet temperature of the hydrotreating stage, coupled with the conditions used in the first stage will set the first stage exotherm and, therefore, the initial temperature of the second stage. Thus, the process can be operated in a completely integrated manner, as shown below.
The pressure in the second reaction zone is not critical since no hydrogenation is desired at this point in the sequence although a lower pressure in this stage will tend to favor olefin production with a consequent favorable effect on product octane. The pressure will therefore depend mostly on operating convenience and will typically be comparable to that used in the first stage, particularly if cascade operation is used. Thus, the pressure will typically be about 50 to 1500 psig (about 445 to 10445 kPa), preferably about. 300 to 1000 psig (about 2170 to 7000 kPa) with comparable space velocities, typically from about 0.5 to 10 LHSV (hr.sup.-1), normally about 1 to 6 LHSV (hr.sup.-1). Hydrogen to hydrocarbon ratios typically of about 0 to 5000 SCF/Bbl, preferably about 100 to 2500 SCF/Bbl will be selected to minimize catalyst aging.
The use of relatively lower hydrogen pressures thermodynamically favors the increase in volume which occurs in the second stage and for this reason, overall lower pressures are preferred if this can be accommodated by the constraints on the aging of the two catalysts. In the cascade mode, the pressure in the second stage may be constrained by the requirements of the first but in the two-stage mode the possibility of recompression permits the pressure requirements to be individually selected, affording the potential for optimizing conditions in each stage.
Consistent with the objective of restoring lost octane while retaining overall product volume, the conversion to products boiling below the gasoline boiling range (C.sub.5 -) during the second stage is held to a minimum. However, because the cracking of the heavier portions of the feed may lead to the production of products within the gasoline range, a net increase in gasoline range material may occur during this stage of the process, particularly if the feed includes a significant amount of the higher boiling fractions. It is for this reason that the use of the higher boiling naphthas is favored, especially the fractions with 95 percent points above about 350.degree. F. (about 177.degree. C.) and even more preferably above about 380.degree. F. (about 193.degree. C.) or higher, for instance, above about 400.degree. F. (about 205.degree. C.). Normally, however, the 95 percent point will not exceed about 520.degree. F. (about 270.degree. C.) and usually will be not more than about 500.degree. F. (about 260.degree. C.).
The catalyst used in the second stage of the process possesses sufficient acidic functionality to bring about the desired cracking reactions to restore the octane lost in the hydrotreating stage. This catalyst must comprise crystals having the structure of ZSM-12, either alone or in combination with one or more of the other acidic catalyst materials. ZSM-12 exhibits a Constraint Index value of 2.3 at 316.degree. C. determined by the method described in U.S. Pat. No. 4,016,218, incorporated herein by reference for details of the method. The structure of ZSM-12 is indicated in Zeolites, vol. 5, p. 346 (1985), incorporated herein by reference in its entirety.
Other acidic catalyst materials useful for combination with the ZSM-12 include, as non-limiting examples, those having the structures of ZSM-5, described in U.S. Pat. No. 3,702,886; ZSM-11 described in U.S. Pat. No. 3,709,979; ZSM-23, described in U.S. Pat. No. 4,076,842; ZSM-35, described in U.S. Pat. No. 4,016,245; ZSM-48, described in U.S. Pat. No. 4,397,827; ZSM-50, described in U.S. Pat. No. 4,640,849; and the synthetic porous crystalline materials characterized in U.S. Pat. No. 4,962,256, each patent incorporated herein by reference in its entirety.
The catalyst of the second stage should have adequate acid activity. One measure of the acid activity of a catalyst is its alpha value. This is a measure of the ability of the catalyst to crack normal hexane under prescribed conditions. This test has been widely published and is conventionally used in the petroleum cracking art, and compares the cracking activity of a catalyst under study with the cracking activity, under the same operating and feed conditions, of an amorphous silica-alumina catalyst, which has been designated to have an alpha value of 1. The alpha value is an approximate indication of the catalytic cracking activity of the catalyst compared to the standard catalyst. The alpha test gives the relative rate constant (rate of normal hexane conversion per volume of catalyst per unit time) of the test catalyst relative to the standard catalyst which is taken as an alpha of 1 (Rate Constant=0.016 sec.sup.-1). The alpha test is described in U.S. Pat. 3,354,078 and in J. Catalysis, 4, 527 (1965); 6, 278 (1966); and 61, 395 (1980), to which reference is made for a description of the test. The experimental conditions of the test used to determine the alpha values referred to in this specification include a constant temperature of 538.degree. C. and a variable flow rate as described in detail in J. Catalysis, 61, 395 (1980).
The catalyst used in the second stage of the process suitably has an alpha value of at least about 20, usually in the range of 20 to 800 and preferably at least about 50 to 200. It is inappropriate for this catalyst to have too high an acid activity because it is desirable to only crack and rearrange so much of the intermediate product as is necessary to restore lost octane without severely reducing the volume of the gasoline boiling range product.
The active component of the catalyst, e.g., the zeolite, will usually be used in combination with a binder or substrate because the particle sizes of the pure zeolite are too small and lead to an excessive pressure drop in a catalyst bed. This binder or substrate, is suitably any refractory binder material. Examples of these materials are well known and typically include silica, titania, alumina, silica-alumina, silica-zirconia, silica-titania, and combinations thereof.
The catalyst used in this stage of the process may contain a metal hydrogenation function for improving catalyst aging or regenerability. On the other hand, depending on the feed characteristics, process configuration (cascade or two-stage) and operating parameters, the presence of a metal hydrogenation function may be undesirable because it may tend to promote saturation of olefinics produced in the cracking reactions as well as possibly bringing about recombination of inorganic sulfur. If found to be desirable under the actual conditions used with particular feeds, metals such as the Group VIII base metals or combinations will normally be found suitable, for example nickel. Noble metals such as platinum or palladium will normally offer no advantage over nickel. A nickel content of about 0.5 to about 5 weight percent is suitable.
The particle size and the nature of the second stage conversion catalyst will usually be determined by the type of conversion process which is being carried out, such as: a down-flow, liquid-phase, fixed-bed process; an up-flow, fixed-bed, liquid-phase process; an ebulating, fixed fluidized-bed liquid- or gas-phase process; or a liquid- or gas-phase, transport, fluidized-bed process, as noted above, with the fixed-bed type of operation preferred.
The conditions of operation and the catalysts should be selected, together with appropriate feed characteristics to result in a product slate in which the gasoline product octane is not substantially lower than the octane of the feed gasoline boiling range material; that is, not lower by more than about 1 to 3 octane numbers. It is preferred also that the volumetric yield of the product is not substantially diminished relative to the feed. In some cases, the volumetric yield and/or octane of the gasoline boiling range product may well be higher than those of the feed, as noted above and in favorable cases, the octane barrels (that is the octane number of the product times the volume of product) of the product will be higher than the octane barrels of the feed.
The operating conditions in the first and second stages may be the same or different but the exotherm from the hydrotreatment stage will normally result in a higher initial temperature for the second stage. Where there are distinct first and second conversion zones, whether in cascade operation or otherwise, it is often desirable to operate the two zones under different conditions. Thus the second zone may be operated at higher temperature and lower pressure than the first zone in order to maximize the octane increase obtained in this zone.
Further increases in the volumetric yield of the gasoline boiling range fraction of the product, and possibly also of the octane number (particularly the motor octane number), may be obtained by using the C.sub.3 -C.sub.4 portion of the product as feed for an alkylation process to produce alkylate of high octane number. The light ends from the second stage of the process are particularly suitable for this purpose since they are more olefinic than the comparable but saturated fraction from the hydrotreating stage. Alternatively, the olefinic light ends from the second stage may be used as feed to an etherification process to produce ethers such as MTBE or TAME for use as oxygenate fuel components. Depending on the composition of the light ends, especially the paraffin/olefin ratio, alkylation may be carried out with additional alkylation feed, suitably with isobutane which has been made in this or a catalytic cracking process or which is imported from other operations, to convert at least some and preferably a substantial proportion, to high octane alkylate in the gasoline boiling range, to increase both the octane and the volumetric yield of the total gasoline product. The use of ZSM-12 is particularly favorable when the present process is combined with an alkylation unit because of its potential for the production of branched-chain paraffins and olefins, both of which tend to result in a high quality alkylate. The branched-chain olefins are suitable feeds for the production of alkyl tertiary ethers such as MTBE and TAME and for this reason, the use of the ZSM-12 catalysts represents a preferred mode of operation when combined with an etherification unit. Further, catalyst for the second stage of this process comprising crystals having the structure of ZSM-12 is more active for 420.degree. F.+ (215.degree. C.+) conversion than the same catalyst with ZSM-5, but slightly less effective for octane enhancement than the ZSM-5 catalyst. The ZSM-12 catalyst provides a higher combined yield of isobutanes and isopentanes, mostly isobutanes.
In one example of the operation of this process, it is reasonable to expect that, with a heavy cracked naphtha feed, the first stage hydrodesulfurization will reduce the octane number by at least 1.5%, more normally at least about 3%. With a full range naphtha feed, it is reasonable to expect that the hydrodesulfurization operation will reduce the octane number of the gasoline boiling range fraction of the first intermediate product by at least about 5%, and, if the olefin content is high in the feed, that this octane reduction could go as high as about 15%.
The second stage of the process should be operated under a combination of conditions such that at least about half (1/2) of the octane lost in the first stage operation will be recovered, preferably such that all of the lost octane will be recovered, most preferably that the second stage will be operated such that there is a net gain of at least about 1% in octane over that of the feed, which is about equivalent to a gain of at least about 5% based on the octane of the hydrotreated intermediate.
The process should normally be operated under a combination of conditions such that the desulfurization should be at least about 50%, preferably at least about 75%, as compared to the sulfur content of the feed.
Claims
  • 1. A process for upgrading a sulfur-containing feed fraction boiling in the gasoline boiling range which comprises:
  • contacting the sulfur-containing feed fraction having a 95 percent point of at least 325.degree. F. with a hydrodesulfurization catalyst in a first reaction zone, operating under a combination of elevated temperature, elevated pressure and an atmosphere comprising hydrogen, to produce an intermediate product comprising a normally liquid fraction which has a reduced sulfur content and a reduced octane number as compared to the feed; and
  • contacting at least the gasoline boiling range portion of the intermediate product in a second reaction zone at a temperature of about 350.degree. to 800.degree. F. with an acidic catalyst comprising a crystalline material having the structure of ZSM-12 to convert it to a product comprising a fraction boiling in the gasoline boiling range having a higher octane number than the gasoline boiling range fraction of the intermediate product.
  • 2. The process of claim 1 in which said feed is a cracked naphtha fraction comprising olefins.
  • 3. The process of claim 1 in which said feed fraction comprises a naphtha fraction having a 95 percent point of at least about 350.degree. F.
  • 4. The process of claim 3 in which said feed fraction comprises a naphtha fraction having a 95 percent point of at least about 380.degree. F.
  • 5. The process of claim 4 in which said feed fraction comprises a naphtha fraction having a 95 percent point of at least about 400.degree. F.
  • 6. The process of claim 1 in which the acidic catalyst includes a metal component having hydrogenation functionality.
  • 7. The process of claim 1 in which the hydrodesulfurization catalyst comprises a Group VIII and a Group VI metal.
  • 8. The process of claim 1 in which the hydrodesulfurization is carried out at a temperature of about 400.degree. to 800.degree. F., a pressure of about 50 to 1500 psig, a space velocity of about 0.5 to 10 LHSV, and a hydrogen to hydrocarbon ratio of about 500 to 5000 standard cubic feet of hydrogen per barrel of feed.
  • 9. The process of claim 8 in which the hydrodesulfurization is carried out at a temperature of about 500.degree. to 750.degree. F., a pressure of about 300 to 1000 psig, a space velocity of about 1 to 6 LHSV, and a hydrogen to hydrocarbon ratio of about 1000 to 2500 standard cubic feet of hydrogen per barrel of feed.
  • 10. The process of claim 1 in which the second reaction zone conversion is carried out at a pressure of about 50 to 1500 psig, a space velocity of about 0.5 to 10 LHSV, and a hydrogen to hydrocarbon ratio of about 0 to 5000 standard cubic feet of hydrogen per barrel of feed.
  • 11. The process of claim 10 in which the second reaction zone conversion is carried out at a pressure of about 300 to 1000 psig, a space velocity of about 1 to 6 LHSV, and a hydrogen to hydrocarbon ratio of about 100 to 2500 standard cubic feet of hydrogen per barrel of feed.
  • 12. The process of claim 1 which is carried out in two stages with an interstage separation of light ends and heavy ends with the heavy ends fed to the second reaction zone.
  • 13. The process of claim 12 in which the normally liquid intermediate product from the first reaction zone comprises a C.sub.8 + fraction having an initial point of at least 210.degree. F.
  • 14. A process for upgrading a sulfur-containing feed fraction boiling in the gasoline boiling range which comprises:
  • hydrodesulfurizing a catalytically cracked, olefinic, sulfur-containing gasoline feed having a sulfur content of at least 50 ppmw, an olefin content of at least 5 percent and a 95 percent point of at least 325.degree. F. with a hydrodesulfurization catalyst in a hydrodesulfurization zone, operating under a combination of elevated temperature, elevated pressure and an atmosphere comprising hydrogen, to produce an intermediate product comprising a normally liquid fraction which has a reduced sulfur content and a reduced octane number as compared to the feed; and
  • contacting at least the gasoline boiling range portion of the intermediate product in a second reaction zone at a temperature of about 350.degree. to 800.degree. F. with an acidic catalyst comprising a crystalline material having the structure of ZSM-12 to convert it to a product comprising a fraction boiling in the gasoline boiling range having a higher octane number than the gasoline boiling range fraction of the intermediate product.
  • 15. The process of claim 14 in which the feed fraction has a 95 percent point of at least 350.degree. F., an olefin content of 10 to 20 weight percent, a sulfur content from 100 to 5,000 ppmw and a nitrogen content of 5 to 250 ppmw.
  • 16. The process of claim 15 in which said feed fraction comprises a naphtha fraction having a 95 percent point of at least about 380.degree. F.
  • 17. The process of claim 14 in which the acidic catalyst includes a metal component having hydrogenation functionality.
  • 18. The process of claim 14 in which the hydrodesulfurization is carried out at a temperature of about 500.degree. to 800.degree. F., a pressure of about 300 to 1000 psig, a space velocity of about 1 to 6 LHSV, and a hydrogen to hydrocarbon ratio of about 1000 to 2500 standard cubic feet of hydrogen per barrel of feed.
  • 19. The process of claim 14 in which the second reaction zone conversion is carried out at a pressure of about 300 to 1000 psig, a space velocity of about 1 to 6 LHSV, and a hydrogen to hydrocarbon ratio of about 100 to 2500 standard cubic feet of hydrogen per barrel of feed.
  • 20. The process of claim 14 which is carried out in two stages with an interstage separation of light ends and heavy ends with the heavy ends fed to the second reaction zone.
  • 21. The process of claim 14 which is carried out in cascade mode with the entire intermediate product passed to the second reaction zone.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of application Ser. No. 07/850,106, filed Mar. 12, 1992, which is a continuation-in-part of application Ser. No. 07/745,311, filed Aug. 15, 1991, now U.S. Pat. No. 5,346,609, issue date Sep. 13, 1994.

US Referenced Citations (20)
Number Name Date Kind
2898287 Welty, Jr. Aug 1959
2899378 Herder Aug 1959
2901415 Hemminger et al. Aug 1959
3008895 Hansford et al. Nov 1961
3044950 Swartz Jul 1962
3549515 Brainard et al. Dec 1970
3729409 Chen Apr 1973
3759821 Brennan et al. Sep 1973
3767568 Chen Oct 1973
3832449 Rosinski et al. Aug 1974
3957625 Orkin May 1976
4062762 Howard et al. Dec 1977
4112056 Chen et al. Sep 1978
4358363 Smith Nov 1982
4391785 Rosinski et al. Jul 1983
4452769 Chu et al. Jun 1984
4482531 Kuehl Nov 1984
4539193 Valyocsik May 1985
4753720 Morrison Jun 1988
4827076 Kokayeff et al. May 1989
Continuation in Parts (2)
Number Date Country
Parent 850106 Mar 1992
Parent 745311 Aug 1991