During many surgical procedures, the surgeon is required to grip tissue to perform a puncture, ligation, suture or cut. Traditionally, this gripping has been accomplished using numerous types of available tissue forceps. However, these instruments grip the intended tissue at a single point, and the above procedures are then performed in the proximity of the gripped site. Therefore, the gripped point unilaterally acts as a pivot for the force of the needle, thread, scissors, or scalpel. As a result, the tissue turns on the gripped point, and a desired right angle cut or needle insertion is not possible. For years, we have compromised by accepting these tiny deviations from the ideal. However, as the field of surgery advances, there is a greater need for instruments that can perform as accurately as possible. There are a few existing fork-like forceps that can grip tissue at two points and are theoretically capable of providing two pivots to perform the above-mentioned techniques. However, these fork-like forceps, due to their structural design, are incapable of placing very close, millimeter-sized sutures, which is necessary during intestinal anastomoses. While many surgeons consider 3 to 5 mm acceptable for their intestinal anastomosis inter-suture distance, Juliet C et al., in their “Systematic review of the technique of colorectal anastomosis” in February 2013, explained that these surgeons are probably relying on their education and instinct than on scientific evidence. In the only available study, Waninger J, Kauffmann G W, Shah I A, and Farthmann E H examined the “Influence of the distance between interrupted sutures and the tension of sutures on the healing of experimental colonic anastomoses” published in Am J Surg. 1992 March; 163(3):319-23. The results of this study demonstrated that the best healing pattern during anastomosis would be achieved by moderate sutures tension and a 1.5-mm distance between sutures. The present invention is a device that is capable of facilitating such desired suturing.
The present invention aims to provide a surgical tissue forceps that prevents even minimal turns (i.e., deflection) of the tissue during basic techniques, including suturing and cuts. The other purpose of this instrument is to provide a surgical tissue forceps that gives the surgeon more control over his or her performance. In accordance with the above goals, an embodiment of the present invention is a tweezer-like instrument with a split jaw at the distal end. Two arms of the jaw enable the surgeon to grasp two adjacent locations of the intestinal tissue in a single bite, leaving the tissue section between these two points fixed and accessible for suturing or cutting. The increased control over the surgical site increases both the speed and quality of the entire procedure.
As shown in
In one embodiment of the present invention, each opposing jaw has a pair of prongs (21 and 22). Each pair of prongs is elongated from a single jaw. The two prongs in each pair are parallel to one another, and all four single prongs have equal lengths of ten to thirty mm. The front tips of the prongs (23 and 24) are preferentially non-toothed when the forceps is intended to be used exclusively for visceral tissue.
The space between the two prongs elongated from a single jaw, called the cleft (41), enables the surgeon to insert or remove a needle during the procedure, while the tissue, called the work plate, is grasped and fixed by the forceps. When gripping viable tissue, the gripping surface of prongs of the first jaw (19) aligns with the gripping surface of the prongs of the second jaw (20). To avoid any tissue damage during the double-linear grasp, in one embodiment, these inside gripping surfaces of the first and second prongs (21 and 22) have atraumatic teeth (
Using any fork-like forceps, a surgeon can place only one stitch on any sinlge bite, and this ideally occurs in the midpoint of the cleft. Therefore, the shortest possible distance between two consecutive stitches cannot be less than half the width of the jaws, and the maximum jaw width must not be more than three mm if the placement of 1.5 mm distant sutures is desired.
In all previous fork-like forceps, bilateral side extensions from the junction of the handles and jaws are common key structural elements. In other words, in some existing forceps, the width of the fork-like griping section is larger than the width of the blades. These extensions act as a site in which two tines of the forceps extend in parallel and are separated.
In one embodiment of the present invention, the prongs of each jaw of the gastrointestinal double-grasp forceps lengthen along the lateral edges of the junctions (17 and 18) without any side extension. The outer width of the forceps at any point along the gripping area is constantly equal to the width of the blades at the junction (17 and 18). Therefore, a gastrointestinal double-grasp forceps has a wider blade at its junction (17 and 18) than does any existing fork-like forceps with the same cleft width. Consequently, at the junction, the gastrointestinal double-grasp forceps presents a more tolerant structure to static forces during gripping than does any fork-like forceps. This design enables industries to manufacture the new forceps with prongs close to 1 mm and capable of placing 1.5 mm consecutive sutures during gastrointestinal anastomoses. This critical need can be met when the blade junctions are still reasonably wide, up to three mm, to tolerate forces at this point. Without the aforementioned side extensions at the junctions (17 and 18), smoother maneuvers of gastrointestinal double-grasp tissue forceps in narrow anatomical spaces can also be assumed.
An ideal suture is theoretically formed when the needle penetrates or exits the tissue at a right angle to the tissue. As shown in
The other special characteristic of the embodiment of the present invention is flap management, as shown in
In one embodiment, by placing the prongs of the gastrointestinal double-grasp forceps abreast of the last stitch, the surgeon will be able to locate the exact place for the next stitch without relying on a visual estimate. By replacing the conventional subjective scale with an objective scale to place consecutive sutures, the gastrointestinal double-grasp forceps is assumed to increase both the quality and speed of gastrointestinal surgical procedures.
Because the two blades of the present forceps and their elements are mirror images of one another, each depicted dimension for the distal elements of one of two blades (
In another embodiment of the present invention, to manufacture a gastrointestinal double-grasp tissue forceps with the option of Tj>Tp, the prongs taper with a mild slop toward their ends in the side view.
In another alternate embodiment, when a distance between two consecutive sutures of more than 1.5 mm is desired (for example, n), d1 will be corrected to d1=(2 n)−2, while the other dimensions will remain unchanged.
In the last alternate embodiment, if the forceps is used for tougher tissues, such as fascia, dura or skin, the gripping surfaces and prong tips are toothed.
In an alternate embodiment of the invention, the jaws and corresponding prongs are aligned along the blade axis. In other words, the angle at the blade junction (17 and 18) with the jaws (19 and 20) is zero.
There are many variations that can be made to the details of the invention (for example, the concept can be used for a thumb forceps or for a laparoscope forceps) without deviating from the intent and scope of the following claims, which are intended to cover all generic and specific features of the invention.
Any variations of the above techniques are also intended to be covered by this patent application.