The present technology relates generally to gate assemblies, and in particular to gate assembly actuators with an alignment adjustment mechanism.
Gate assemblies are used for a variety of applications, such as preventing unauthorized access to private property and/or establishing a secure facility. The swing gate is a type of gate assembly popular for its simplicity and functionality. Swing gates operate by having a swing gate panel pivotably coupled to a stationary anchor. A swing gate operator, such as a linear actuator, can drive the swing gate between closed and open positions by causing one end of the swing gate panel to pivot about a stationary anchor. However, if the swing gate panel and the actuator assembly are not properly aligned, undesirable twisting or bending loads on the swing gate panel or the actuator can be generated during actuation of the swing gate.
The present technology provides a swing gate actuator assembly for use with a swing gate. Some embodiments of the swing gate actuator assembly include a motor and an arm coupled to the motor. The arm can have a distal portion spaced apart from the motor and coupleable to the swing gate. The distal portion can include a channel extending therethrough. The actuator assembly can also include a fastener insertable through the channel and configured to secure the arm to the swing gate. The fastener can include a shaft having opposing first and second end portions and an arm engagement region between the first and second end portions. The arm engagement region is configured to reside at least partially within the channel. The arm engagement region can include first and second tapered sections extending in opposite directions. The first tapered section extends axially in a first direction toward the first end portion of the shaft, and the second tapered section extends axially in a second direction opposite the first direction and toward the second end portion of the shaft. A pivot portion is positioned between the first and second tapered sections. The first and the second tapered sections can have variable diameters extending along their axial lengths, and the pivot portion can have a diameter greater than the variable diameters of the first and second tapered sections. Thus, the pivot portion can be configured to engage the distal portion of the arm within the channel, and the first and second tapered sections can be configured to allow a longitudinal axis of the fastener to pivot within the channel about the pivot portion.
Some embodiments of the present technology provide a swing gate actuator assembly configured to open and close a swing gate. The swing gate actuator assembly comprises a motor configured to move the swing gate between open and closed positions, and an arm configured to connect the motor and the swing gate. The arm includes a proximal portion adjacent the motor and a distal portion spaced apart from the motor. The distal portion includes an interior surface defining a channel extending radially through the distal portion. A fastener can be inserted through the channel and configured to secure the arm to the swing gate. The fastener can include an arm engagement region extending along an axial length of the fastener. The arm engagement region can be configured to reside at least partially within the channel and can include a first section having a first cross-section with a first diameter and a second section having a second cross-section with a second diameter, wherein the second diameter is less than the first diameter. When the arm is secured to the swing gate by the fastener, the interior surface of the channel can contact the arm engagement region at the first section and can be spaced apart from the arm engagement region at least at a portion of the second section. The arm engagement region can thus be configured to allow a longitudinal axis of the arm to pivot relative to the swing gate about the first section.
Some embodiments of the present technology provide a swing gate actuator assembly that comprises a motor and an arm operably couplable to the motor. The arm includes a proximal portion configured to be adjacent to the motor and a distal portion configured to be spaced apart from the motor. The distal portion includes a channel extending radially therethrough. A fastener can be insertable through the channel and configured to secure the arm to the swing gate. The fastener can include a shaft having an arm engagement region configured to reside at least partially within the channel. The arm engagement region can include a first tapered section extending axially along a first portion of the shaft, a second tapered section extending axially along a second portion of the shaft, and a pivot portion positioned between the first tapered section and the second tapered section. The first and second tapered sections can have variable diameters extending along their axial lengths, and the pivot portion can have a diameter greater than the variable diameters of the first and second tapered sections.
Swing gate systems, associated drive systems, and related methods are described in detail herein in accordance with embodiments of the present disclosure. The systems and associated assemblies and/or features overcome drawbacks experienced in the prior art and provide other benefits. Certain details are set forth in the following description and in
The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments of the invention. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.
Where applicable, relative terminology such as “about” or “substantially” is used herein as meaning the stated value plus or minus ten percent. References throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment and included in at least one embodiment of the present invention. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment” in various places through the specification are not necessarily all referring to the same embodiments. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As shown in
The first anchor 104 and the second anchor 106 shown in
The swing gate 102 can move between the closed and open positions upon activation of the actuator assembly 110. As illustrated in
The illustrated actuator assembly 110 shown in
The arm 114 includes a proximal arm portion 116 adjacent to the actuator housing 112 and a distal arm portion 118 spaced apart from the actuator housing. A distal end region 119 of the distal arm portion 118 may be coupled to the swing gate panel 102. For example, as illustrated in
The actuator assembly 110 of the illustrated embodiment shown in
As shown in
To connect the arm 114 and the swing gate panel 102, the distal end region 119 can be positioned between the projections 125 such that the channel 122 aligns with the first and second apertures of the projections 125. The fastener 130 can then be inserted through the apertures in the projections 125 and through the channel 122, thereby releasably securing the distal arm portion 118 to the swing gate panel 102. In some embodiments, the fastener 130 can be releasably secured to the bracket 120. For example, as shown in
The swing gate panel 102 of the illustrated embodiment is configured to swing through an arc and with a range of motion approximately 0 degrees-150 degrees, although other ranges can be used. A swing gate can bind or create undesirable twisting loads as it swings through its range of motion if the arrangement between the anchor 104, the swing gate panel 102, and/or the actuator assembly 110 is misaligned, or if upward or downward loads are applied to the swing gate panel 102. For example, when the swing gate assembly 100 is accurately installed, the anchors 104 and 106, and the vertical portion 102c of swing gate panel 102, and the longitudinal axis of the fastener 130 should all be parallel to the Z-Axis, which preferably corresponds to vertical alignment. In addition, the longitudinal axis of the actuator assembly 110 is to remain parallel to the X-Y plane throughout the arcuate travel of the swing gate panel 102 between the closed and open positions. A misalignment event is anything that could potentially cause the vertical portion 102c or the longitudinal axis of the fastener 130 to come out of parallel with the Z-axis, or that causes the longitudinal axis of the actuator assembly 110 to come out of parallel with the X-Y plane. Undesirable twisting or binding loads can occur in response to a misalignment event, such as if the anchor 104 is installed out of plumb, or if the plane of the swing gate panel 102 is skewed relative to the anchor 104. Such misalignment can be causes by, as an example, poor installation, inconsistent construction of components, and/or settling of the components over time after installation. A misalignment event and resulting binding or twisting loads can also occur if an impact or other external load 150 (
The actuator assembly 110 can be configured to accommodate for some vertical and/or torsional movement of the swing gate panel 102 relative to the anchor 104 (
The arm engagement region 138 has opposing proximal and distal tapered sections 144 and 146 extending away from an intermediate pivot portion 148 configured to engage the cylindrical interior surface defining the channel 122. The proximal tapered section 144 can be shaped and sized such that the diameter of the section decreases as the section extends away from the intermediate pivot portion 148 and toward the shoulder portion 136 adjacent to the enlarged head 132. The distal tapered section 146 tapers in the opposite direction, such that the diameter of the section decreases as the section extends away from the intermediate pivot portion 148 and toward the distal portion 137. In the illustrated embodiment, each of the proximal and distal tapered sections 144 and 146 have the greatest diameter adjacent to the intermediate pivot portion 148. Accordingly, each of the proximal and distal tapered sections 144 and 146 have a frusto-conical shape. The dimensions of the proximal and distal tapered sections 144 and 146 can be the same, although in other embodiments the dimensions (i.e., diameters, length, circumference, and/or tapered angle of the proximal tapered section 144) can be different that those of the distal tapered section. The degree of tapering can also be defined as an angle between a longitudinal axis A-A of the shaft 134 and an axis B-B defined by an outer surface of the respective proximal or distal tapered sections 144 or 146. In the illustrated embodiment, the angle between the central axis A-A and the axis B-B may be in the range of approximately 0.5 degrees-30 degrees, depending upon the desired range of motion of the actuator arm relative to the swing gate panel 102 (
For example, when the fastener is substantially perpendicular to a longitudinal axis C-C of the distal arm portion 118, the intermediate pivot portion 148 engages the interior surface of the channel 122 substantially around the circumference of the pivot portion 148, while each of the proximal and distal tapered sections 144 and 146 do not engage the interior surface. In this configuration, as shown in
When the longitudinal axis A-A of the fastener 130 is not substantially perpendicular to the longitudinal axis C-C of the distal arm portion 118, the intermediate pivot portion 148 may engage the interior surface of the channel 122 while at least a portion of the proximal tapered section 144 and/or the distal tapered section 146 remains at least partially spaced apart from the interior surface of the channel 122. This configuration provided by the proximal and distal tapered sections 144 and 146 relative to the intermediate pivot portion 148 allows for a degree of pivotal movement of the swing gate panel 102 relative to the actuator arm 114. For example, this pivotal movement prevents binding if, as discussed above, a misalignment event occurs such that the anchor 104 or the vertical portion 102c of swing gate panel 102 or the longitudinal axis of the fastener 130 comes out of parallel with the Z-Axis, or if the longitudinal axis of the actuator assembly 110 comes out of parallel with the X-Y plane, thereby avoiding excessive torque on the actuator arm 114 during the misalignment event, while still allowing the actuator arm 114 to extend or retract to move the swing gate panel 102 between the open and closed positions without binding. Accordingly, the contoured fastener 130 allows for the arm 114 to pivot to accommodate for a misalignment event while still allowing for smooth operation of the swing gate panel 102 and the actuator assembly 110 for movement between the closed and open positions.
In another embodiment of an adjustment mechanism in accordance with aspects of the present technology, the channel in the distal arm portion that receives the fastener is tapered or otherwise contoured to allow for the pivotal movement of the swing gate panel with respect to the actuator arm in the event of a misalignment event. As illustrated in
As one of ordinary skill in the art will appreciate from the foregoing, a number of variations of the described embodiments are possible without deviating from the scope of the present disclosure. For example, the arm engagement region 138 can have a variety of configurations other than those explicitly discussed above, while still enabling the swing gate panel to have a range of motion with respect to the actuator arm. For example, instead of having first and second tapered sections, the arm engagement region may have first and second sections that have a substantially constant circumference along their axial lengths. A pivot portion with a circumference greater than the substantially constant circumference of the first and second sections can be positioned between the first and second sections. Other suitable configurations for the arm engagement region include a single tapered section or a single section with a constant circumference less than the circumference of the pivot portion.
The fasteners 130 described herein can also be used to connect the actuator assembly 110 to the anchor 104 (e.g., at the bracket 111) to reduce the likelihood of gate malfunction in response to a misalignment event. In such embodiments, the fastener 130 can releasably secure the actuator assembly 110 to the anchor 104 and enable a range of motion between the actuator assembly 110 and the anchor 104. Thus, in response to a misalignment event, the actuator assembly 110 can pivot about the pivot portion 148 of the fastener 130, reducing the likelihood of gate malfunction. In some embodiments, an actuator assembly can have the fasteners described herein at both its swing gate panel connection and at its anchor connection. In other embodiments, an actuator assembly has the fasteners described herein at either its swing gate panel connection or its anchor connection, but not both.
The fasteners described herein may comprise any material suitable for use with an actuator assembly and may be selected based off one or more desired properties of the fastener. In some embodiments, for example, the material may be selected to ensure the fastener is strong enough to support the weight of the swing gate panel. In some embodiments, the material may be selected to ensure the fastener is at least partially resistant to corrosion or other deterioration. In some embodiments, the material may be selected and/or the fastener may be configured such that the fastener can operate as a sheer point in the swing gate assembly. By acting as a sheer point, the fastener can protect other components of the swing gate assembly from being damaged in response to a critical event. Exemplary materials can include steel, stainless steel, titanium, aluminum, or the like. In some embodiments, the fastener may comprise an alloy such as a combination of one or more of steel, stainless steel, titanium, or the like and one or more common additives known in the art. The fastener can be manufactured according to methods known in the art.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Additionally, aspects of the invention described in the context of particular embodiments or examples may be combined or eliminated in other embodiments. Although advantages associated with certain embodiments of the invention have been described in the context of those embodiments, other embodiments may also exhibit such advantages. Additionally, not all embodiments need necessarily exhibit such advantages to fall within the scope of the invention.