The present invention relates to digital circuits, and more particularly, to domino logic circuits with reduced current leakage.
Domino (or dynamic) logic circuits are often employed in high performance systems. For example, consider a computer system, such as that illustrated in FIG. 1. In
Some or all of the functional units making up a computer system as described above may comprise domino logic circuits. Some of these domino circuits may employ clock gating, where they are put into an inactive state when not needed so as to reduce wasted power. However, for deep sub-micron process technology, wasted power due to current leakage may nevertheless present problems in clock gated domino circuits if not properly taken into account. Various techniques have been proposed for reducing leakage current, such as, for example, using dynamic threshold scaling or providing multiple supply voltages. Such techniques often introduce a performance penalty or additional hardware cost and complexity. The use of long channel length transistors in clock-gated domino circuits has also been contemplated for reducing current leakage. However, to the best of our knowledge, such previously considered techniques for using long channel length transistors in clock gated domino logic circuits have introduced a penalty in performance.
By clock gating during an evaluation phase instead of a pre-charge phase, and by utilizing long channel length transistors in the pre-charge path, embodiments of the present invention achieve leakage reduction in domino logic blocks without introducing any significant performance loss. A domino logic stage in an embodiment of the present invention at the circuit level is provided in FIG. 2. In practice, more than one such domino logic stage is usually used in a domino logic block.
In
Half-keeper 216, comprising inverter 218 and pull-up pMOSFET 220, is sized to ideally maintain node 206 HIGH during an evaluation phase unless it is otherwise pulled LOW by nMOS pull-down logic 212 and nMOSFET 204. (Logic gates other than inverter 218, such as a NOR gate, may be utilized in half-keeper 216.) Upon completing an evaluation, the output signal at output port 222 propagates through other domino logic stages (not shown) and is eventually captured by a latch or other dynamic stage. The logic function realized by the domino stage of
The domino stage of
It is to be understood that the term “supply rail” as used in the above discussion is in general some kind of conductive material, such as a copper interconnect, power plane, doped polysilicon, or the integrated circuit substrate itself upon which the circuit of
Pull-up pMOSFET 202, pull-up pMOSFET 220, and pull-down nMOSFET 224 are sized to have long channel lengths. That is, the particular technology used to create the circuit of
For an embodiment of the present invention, when a domino block is placed in an inactive state, the clock signal for each domino stage making up the domino block is gated so that it is HIGH, and each domino stage within the domino block is put into a discharged state. In this way, leakage current during an inactive state is reduced. One method to discharge all the stages in a domino block, is to discharge the boundary stages, which will cause all subsequent domino stages in the domino block to discharge. One way to discharge a boundary stage during an inactive stage is to ensure that its input voltages are maintained HIGH. This will be described in more detail below with reference to FIG. 2.
Suppose the domino stage of
A high-level abstraction of an embodiment of the present invention is provided in
For the embodiment of
Various modifications may be made to the disclosed embodiments without departing from the scope of the invention as claimed below. For an example, in other embodiments, sampling elements 304 may be any known latch compatible with domino logic, where the latched voltages need not be HIGH provided the boundary domino stages are forced to discharge during an inactive state when the clock signal is gated HIGH. Discharging a domino stage is straightforward. For example, for the domino stage of
As another example, in other embodiments, not all of transistors 202, 224, and 220 in a domino stage may be long channel length transistors. For example, transistors 202 and 224 may be long channel length transistors, but transistor 220 may not be a long channel length transistor. More generally, it is not necessary that each channel for transistors 202, 224, and 220 have the same length. Furthermore, even without using long channel length transistors, leakage current may nevertheless be reduced by discharging the domino stage and putting it in an evaluation phase during an inactive state. That is, in other embodiments, pMOSFET 202, pMOSFET 220, and nMOSFET 224 may have the same channel lengths as other transistors, but where the clock is gated so that the domino stage is in an evaluation phase when inactive, and where the domino stage is discharged when put into its inactive state.
Number | Name | Date | Kind |
---|---|---|---|
5598114 | Jamshidi | Jan 1997 | A |
5625303 | Jamshidi | Apr 1997 | A |
5646558 | Jamshidi | Jul 1997 | A |
5982197 | Ono et al. | Nov 1999 | A |
6229340 | Hagihara | May 2001 | B1 |
6429689 | Allen et al. | Aug 2002 | B1 |
6707318 | Kumar et al. | Mar 2004 | B2 |
6732136 | Chen et al. | May 2004 | B1 |
20040194037 | Jamshidi et al. | Sep 2004 | A1 |
20040252574 | Jamshidi | Dec 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040119503 A1 | Jun 2004 | US |