This application claims priority under 35 USC § 119 to Korean Patent Application No. 10-2018-0052951, filed on May 9, 2018 in the Korean Intellectual Property Office (KIPO), the contents of which are incorporated herein by reference in its entirety.
Example embodiments relate generally to display devices. More particularly, example embodiments relate to gate drivers and display devices including the gate drivers.
Generally, a display device may include a display panel and a panel driver. The display panel may include a plurality of gate lines and a plurality of data lines. The panel driver may include a data driver providing data voltages to the data lines, and a gate driver providing gate signals to the gate lines.
The gate driver may include a plurality of stages that sequentially output the gate signals. Each stage may charge an internal control node, and may output the gate signal to a gate line, and a carry signal to a subsequent stage, based on a voltage of the charged control node. A pulse edge of the carry signal may trigger the outputting of a gate signal of the subsequent stage. An operating mode of a display device may transition, for example, from a normal mode, in which an image signal corresponding to an externally provided image data is displayed, to a fail mode, in which a black screen or a predetermined pattern is displayed. This operating mode transition may be due to an error in input image data that occurs during a frame period in the normal mode. When the transition occurs, the control node of at least a portion of the stages may be in a charged state, which results in an abnormal (faulty) operation of the gate driver.
Example embodiments provide a display device including a gate driver capable of preventing an abnormal operation caused by an operating mode change.
According to some example embodiments, there is provided a gate driver included in a display device including a plurality of stages that sequentially output a plurality of gate signals. At least some of the plurality of stages includes an output circuit part configured to output a gate signal of the gate signals to a gate output node and a carry output node in response to a voltage of a control node, where the gate signal and the carry signal each have a pulse synchronized with a pulse of a clock signal. A node controlling circuit part is configured to pull up the control node in response to a previous carry signal output in synchronization with an inverted clock signal inverted from the clock signal, and to pull down the control node in response to a subsequent carry signal output in synchronization with a delayed inverted clock signal delayed with respect to the inverted clock signal. A holding circuit part configured to hold the control node at a second off voltage in response to the clock signal, to hold the gate output node at a first off voltage in response to the inverted dock signal, and to hold the carry output node at the second off voltage in response to the inverted clock signal. In a mode transition period, the holding parts receive the clock signal having an on voltage maintained throughout at least one clock cycle, and the inverted clock signal having the on voltage maintained throughout the at least one clock cycle, and in response, and discharge the control nodes, the gate output nodes and carry output nodes.
In various example embodiments:
When an operating mode of the display device is changed from a first mode to a second mode, the mode transition period may correspond to an initial period of the second mode in which a data signal is not output.
The first mode may be a normal mode. and the second mode may be a fail mode.
A normal image may be displayed based on input image data received from an external device in the normal mode, and a black image or a pattern image may be displayed based on black data or pattern data stored in the display device in the fail mode.
The first mode may correspond to a first frame rate or a first resolution, and the second mode may correspond to a second frame rate different from the first frame rate or a second resolution different from the first resolution.
In a blank period, at least one of the clock signal and the inverted clock signal may have an off voltage.
In a blank period, the clock signal and the inverted clock signal may have a charge shared voltage.
The clock signal may be one of K clock signals received by the gate driver, where the K clock signals have sequentially delayed phases. The inverted clock signal may be one of K inverted clock signals that are respectively inverted from the K clock signals, where K is an integer greater than 1. An N-th one of the plurality of stages may receive, as the previous carry signal, the carry signal of an (N−K)-th one of the plurality of stages, and may receive, as the subsequent carry signal, the carry signal of an (N+K+L)-th one of the plurality of stages, where N is an integer greater than K, and L is an integer greater than 0 and less than K.
The output part may include a first transistor including a gate terminal connected to the control node, a first terminal receiving the clock signal, and a second terminal connected to the gate output node, and a second transistor including a gate terminal connected to the control node, a first terminal receiving the clock signal, and a second terminal connected to the carry output node.
The output part may further include a capacitor including a first electrode connected to the control node, and a second electrode to the gate output node.
The node controlling part may include a third transistor including a gate terminal receiving the previous carry signal, a first terminal receiving the previous carry signal, and a second terminal connected to the control node, and a fourth transistor including a gate terminal receiving the subsequent carry signal, a first terminal connected to the control node, and a second terminal receiving the second off voltage.
The holding part may include a fifth transistor including a gate terminal receiving the clock signal, a first terminal connected to the control node, and a second terminal connected to the carry output node, a sixth transistor including a gate terminal receiving the inverted clock signal, a first terminal connected to the gate output node, and a second terminal receiving the first off voltage, and a seventh transistor including a gate terminal receiving the inverted clock signal, a first terminal connected to the carry output node, and a second terminal receiving the second off voltage.
According to some example embodiments, there is provided a gate driver included in a display device including a plurality of stages that sequentially output a plurality of gate signals. At least some of the plurality of stages includes a first transistor including a gate terminal connected to a control node, a first terminal receiving a clock signal, and a second terminal connected to a gate output node, a second transistor including a gate terminal connected to the control node, a first terminal receiving the clock signal, and a second terminal connected to a carry output node, a third transistor including a gate terminal receiving a previous carry signal having a pulse output in synchronization with a pulse of an inverted clock signal inverted from the clock signal, a first terminal receiving the previous carry signal, and a second terminal connected to the control node, a fourth transistor including a gate terminal receiving a subsequent carry signal that is output in synchronization with a delayed inverted clock signal delayed with respect to the inverted clock signal, a first terminal connected to the control node, and a second terminal receiving a second off voltage, a fifth transistor including a gate terminal receiving the clock signal, a first terminal connected to the control node, and a second terminal connected to the carry output node, a sixth transistor including a gate terminal receiving the inverted clock signal, a first terminal connected to the gate output node, and a second terminal receiving a first off voltage, and a seventh transistor including a gate terminal receiving the inverted clock signal, a first terminal connected to the carry output node, and a second terminal receiving the second off voltage. In a mode transition period, the fifth transistors discharge the control nodes in response to the clock signal having an on voltage, and, in response to the inverted clock signal having the on voltage, the sixth transistors discharge the gate output nodes, and the seventh transistors of the plurality of stages discharge the carry output nodes.
In some example embodiments, when an operating mode of the display device is changed from a normal mode to a fail mode, the mode transition period may correspond to an initial period of the fail mode in which a data signal is not output.
According to some example embodiments, there is provided a display device including a display panel including a plurality of pixels, a data driver configured to apply data voltages to the pixels, a timing controller configured to generate a vertical clock signal, a power management circuit configured to generate a clock signal and an inverted clock signal based on the vertical clock signal, and a gate driver including a plurality of stages that sequentially output a plurality of gate signals to the pixels in response to the clock signal and the inverted clock signal. In a mode transition period, the power management circuit outputs each of the clock signal and the inverted clock signal at an on voltage maintained throughout at least one clock cycle, which causes the plurality of stages to discharge control nodes, gate output nodes and carry output nodes of the plurality of stages.
In various embodiments:
The timing controller may transfer a masking detection signal to the power management circuit, and the masking detection signal may be activated during the mode transition period. The power management circuit may change the clock signal and the inverted clock signal to the on voltage in response to the masking detection signal.
The timing controller may transfer a command to the power management circuit through an inter-integrated circuit (I2C) communication, and the power management circuit may change the clock signal and the inverted clock signal to the on voltage in response to the command.
The timing controller may transfer a gate control signal representing that the clock signal and the inverted clock signal are to be toggled to the power management circuit, and the power management circuit may change the clock signal and the inverted clock signal to the on voltage when a time of an inactive period of the gate control signal reaches a predetermined threshold time.
The timing controller may transfer a data enable signal representing that a data signal is output to the data driver. The power management circuit may count a time duration of the data enable signal, and may change the clock signal and the inverted clock signal to the on voltage when the time duration exceeds a predetermined normal range.
A gate driver and display device according to example embodiments may discharge, in the mode transition period, the control nodes, the gate output nodes, and the carry output nodes of the plurality of stages using the clock signal and the inverted clock signal each having the on voltage, thereby preventing an abnormal operation of the gate driver.
Illustrative, non-limiting example embodiments will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings.
Example embodiments are described more Tully hereinafter with reference to the accompanying drawings. Like or similar reference characters refer to like or similar elements throughout.
The display panel 150 may have a display portion where an image is displayed, and a peripheral portion adjacent to the display portion. The display panel 150 may include a plurality of gate lines GL, a plurality of data lines DL and a plurality of pixels connected to the data lines DL and the gate lines GL. The gate lines GL may extend in a first direction D1, the data lines DL may extend in a second direction D2 crossing the first direction D1, and the pixels may be disposed in a matrix form. The display panel 150 may be a liquid crystal display (LCD) panel, where each pixel may include a switching element, and a liquid crystal capacitor and a storage capacitor connected to the switching element. Other types of displays may alternatively be utilized.
The timing controller 200 may control an operation timing of the display device 100. The timing controller 200 may generate control signals CONT1, CONT2, GC, MOS, STV and CPV and a data signal DAI A based on input image data and an input control signal CONT received from an external device (e.g., a graphic processing unit (GPU)). The input image data IMG may include red image data, green image data and blue image data, and the input control signal CONT may include a master clock signal, a data enable signal, a vertical synchronization signal, a horizontal synchronization signal, etc.
The timing controller 200 may generate a first control Signal CONT1 for controlling an operation of the data driver 500 and the data signal DAM based on the input image data IMG and the input control signal CONT, and may provide the first control signal CONT1 and the data signal DATA to the data driver 500. Further, the timing controller 200 may generate a second control signal CONT2 for controlling an operation of the gamma reference voltage generator 400 based on the input control signal CONT, and may provide the second control signal CONT2 to the gamma reference voltage generator 400.
Further, the timing controller 200 may generate control signals GC, MDS, STV and CPV for controlling an operation of the gate driver 300 based on the input control signal CONT. The control signals GC, MDS, STV and CPV generated by the timing controller 200 may be converted by the power management circuit 600 into control signals STVP, CK and CKB suitable for the gate driver 300 and the control signals STVP, CK and CKB converted by the power management circuit 600 may be provided to the gate driver 300. The control signals GC, MDS, STV and CPV generated by the timing controller 200 may include, but are not limited to, a gate control signal GC representing that a clock signal CK and an inverted clock signal CKB are to be toggled, a vertical start signal STV, a vertical clock signal CPV, and a masking detection signal MDS which is activated during a mode transition period.
The gamma reference voltage generator 400 may generate a gamma reference voltage VGREF based on the second control signal CONT2 received from the timing controller 200, and may provide the gamma reference voltage VGREF to the data driver 500. The gamma reference voltage VGREF may have a voltage level corresponding to each gray level. The gamma reference voltage generator 400 may be configured and disposed independently as depicted in
The data driver 500 may receive the first control signal CONT1 and the data signal DATA from the timing controller 200, and may receive the gamma reference voltage VGREF from the gamma reference voltage generator 400. The data driver 500 may convert the data signal DATA into an analog data voltage using the gamma reference voltage VGREF, and output the data voltage to the data line DL. The data driver 500 may be mounted directly on the display panel 150; may be connected to the display panel 150 in a form of a tape carrier package TCP; may be integrated in the peripheral portion of the display panel 150; or may be packaged in alternative ways.
The power management circuit 600 may supply power to the display device 100, and may convert the control signals GC, MDS, STV and CPV generated by the timing controller 200 into the control signals STVP, CK and CKB suitable for the gate driver 300. For example, the power management circuit 600 may generate an improved vertical start signal STVP by adjusting a voltage level of the vertical start signal STV corresponding to the gate driver 300, and may generate at least one clock signal CK and at least one inverted clock signal CKB based on the gate control signal GC and the vertical clock signal CPV. In some cases, the control signals STVP, CK and CKB may be modified by circuitry within the PMIC 600 or the gate driver 300 to have signal levels suitable for the gate driver 300.
The gate driver 300 may generate gate signals for driving the gate lines GL based on the control signals STVP, CK and CKB received from the power management circuit 600, e.g., the improved vertical start signal STVP, the clock signal CK and the inverted clock signal CKB. The gate driver 300 may include a plurality P of gate line driving stages GST 310-1 to 310-P (hereafter, just “stages”), each for driving a respective one of the gate lines GL. In some example embodiments, the gate driver 300 may be implemented as an amorphous silicon gate (ASU) driver using an amorphous silicon thin film transistor (a-Si TFT), and may be integrated in the peripheral portion of the display panel 150. In other example embodiments, the gate driver 300 may be implemented using an oxide semiconductor, a crystalline semiconductor, a polycrystalline semiconductor, etc., and may be integrated in the peripheral portion of the display panel 150. In still other example embodiments, the gate driver may be implemented as a TCP or a chip on film (COF).
The stages 310-(N−K), 310-N and 310-(N+K+L) may sequentially output the gate signals GS(N−K), GS(N) and GS(N+K+L) in response to the K clock signals CK1, . . . , CKK having the sequentially delayed phases and the K inverted clock signals CKB1, . . . , CKBK respectively inverted from the K clock signals CK1, . . . , CKK. For example, as illustrated in
In the example of
The N-th stage 310-N may then output the N-th gate signal GS(N) and the N-th carry signal CR(N) m response to the first clock signal CK1, and thereafter may discharge (or pull down) the control node in response to a subsequent or next carry signal CR(N+K+L) output in synchronization with a delayed inverted clock signal, where L is an integer greater than 0 and less than K (e.g., the (1+L)-th inverted clock signal CKB(1+L) delayed with respect to the first inverted clock signal CKB1). The delay may be by a phase between 0-180 degrees. For example, if L=2, the delayed inverted clock signal (e.g., the third inverted clock signal CKB3) lags the first inverted clock signal CKB1 by a phase greater than 0 degree and less than 180 degree.
As described above, the N-th stage 310-N outputting the N-th gate signal GS(N) and the N-th carry signal CR(N) in synchronization with the first clock signal CK1 may discharge the control node in response to a subsequent carry signal CR(N+K+L), rather than in response to a next carry signal (i.e., an (N+K)-th carry signal) output in synchronization with the first inverted clock signal CKB1. The subsequent carry signal CR(N+K+L) is output in synchronization with the delayed inverted clock signal (e.g., the third inverted clock signal CKB3) delayed with respect to the first inverted clock signal CKB1. Thereby, the N-th stage 310-N may change the N-th gate signal GS(N) to a low level using the first clock signal CK1 having the low level without a pull-down transistor for pulling down a gate output node at which the N-th gate signal GS(N) is output. In some example embodiments, to perform this operation, the N-th stage 310-N may have a configuration illustrated in
As illustrated in
The node controlling part 324 may pull up the control node NC in response to a previous carry signal CR(N−K) that is output in synchronization with an inverted clock signal CKB1 inverted from the clock signal CK1; and may pull down the control node NC in response to a subsequent ca y signal C(N+K+L) that is output in synchronization with a delayed inverted clock signal (in the example of
The holding part 326 may hold the control node NC as approximately the second off voltage VSS2 in response to the clock signal CK1 (when transistor T4 is turned on, a voltage of VSS2 minus VDS (T4) may appear at node NC, which approximately equals VSS2). Similarly, the holding part 326 may hold the gate output node NGO as approximately a first off voltage VSS1 (due to transistor T6 being turned on in response to the inverted clock signal CKB1; and may hold the carry output node NCO as the second off voltage VSS2 in response to the inverted clock signal CKB1. For example, the holding part 326 may include a fifth transistor T5 including a gate terminal receiving the clock signal CK1, a first terminal connected to the control node NC, and a second terminal connected to the carry output node NCO, a sixth transistor T6 including a gate terminal receiving the inverted clock signal CKB1, a first terminal connected to the gate output node NGO, and a second terminal receiving the first off voltage VSS1, and a seventh transistor T7 including a gate terminal receiving the inverted clock signal CKB1, a first terminal connected to the carry output node NCO, and a second terminal receiving the second off voltage VSS2. According to example embodiments, the first off voltage VSS1 and the second off voltage VSS2 may be substantially the same voltage, or may be different voltages. For example, the second off voltage VSS2 may have a voltage level lower than a voltage level of the first off voltage VSS1, or vice versa.
Subsequently, the N-th gate signal GS(N) may be changed to a low level responsive to a filling edge of the first clock signal CK1, without a pull-down transistor for pulling down the gate output node NGO. To this end, the Nth stage 310-N may pull down the control node NC in response to an (N+K+L)-th carry signal CR(N+K+L) that is output in synchronization with the third inverted clock signal CKB3 delayed with respect to the first inverted clock signal CKB1. In the example of
As illustrated in
However, consider the case where the carry propagation stage interval for charging the control node NC is the interval of K stages, and the carry propagation stage interval for discharging the control node NC is the interval of K+L stages. Here if the operating mode of the display device 100 is changed when the control node NC of the N-th stage 310-N is in the charged state, the control node NC of the (N+K)-th stage may be undesirably charged by the N-th carry signal CR(N), and the (N+K)-th carry signal CR(N+K) of the (N+K)-th stage may be applied to an (N−L)-th stage. Thus, the (N+K)-th carry signal CR(N+K) of the (N+K)-th stage may not be used to discharge the control node NC of the N-th stage 310-N. Without the use of preventative measures such as those described below, as time goes on, the number of gate signals that are simultaneously output may be increased, an over-current may occur, and thus the display device 100 may be shut down by the OCP function of the power management circuit 600. Further, the N-th carry signal CR(N) of the N-th stage 310-N may undesirably discharge the control node NC of an (N−K−L)-th stage, and thus the control node NC of an (N−2K−2L)-th stage receiving an (N−K−L)-th carry signal of the (N−K−L)-th stage may not be discharged.
To prevent this abnormal operation of the gate driver 300, the display device 100 according to example embodiments may change both of the clock signal CK and the inverted clock signal CKB (i.e., all of the individual clock and inverted clock signals thereof) to an on voltage in a mode transition period in which the operating mode of the display device 100 is changed. The control nodes NC, the gate output nodes NGO and the carry output nodes NCO of the plurality of stages 310-(N−K), 310-N and 310-(N−K+L) may each be discharged using the clock signal CK and the inverted clock signal CKB each having the on voltage. The discharging of these nodes prevents simultaneous output of gate signals that would otherwise cause the over-current condition and the resulting OCP function to be activated.
For example, as illustrated in
As described above, the control nodes NC, the gate output nodes NGO and the carry output nodes NCO may be discharged using the clock signal CK having the on voltage and the inverted clock signal CKB having the on voltage, and thus the abnormal operation of the gate driver caused by the undesirably charged control nodes NC may be prevented. Further, in a case where the operating mode of the display device 100 is changed from the second mode MODE2 to the first mode MODE1, also in a mode transition period MTP, which is an initial period of the first mode MODE1 in which the data signal DATA is not output from the timing controller 200 to the data driver 500, the control nodes NC, the gate output nodes NGO and the carry output nodes NCO may be discharged using the clock signal CK and the inverted clock signal CKB each having the on voltage. Thus, the abnormal operation of the gate driver 300 may be prevented.
In either of the above cases, during the MTP period, the clock signal CK and the inverted clock signal CKB may each have the on voltage concurrently throughout the MTP period, as illustrated in
A normal mode may be a mode in which a normal image is displayed based on the input image data IMG received from the external device (e.g., the CPU). A fail mode may be a mode in which a black image or a pattern image is displayed based on black data or pattern data stored in the display device 100. In some embodiments, the mode transition period MTP may be the initial period (or a masking period) in which the data signal DATA is not output from the timing controller 200 to the data driver 500 when the operating mode of the display device 100 is changed between the normal mode and the fail mode In other embodiments, the mode transition period MTP may be the initial period (or the masking period) in which the data signal DATA is not output from the timing controller 200 to the data driver 500 when the operating mode of the display device 100 is changed between a first mode corresponding to a first frame rate or a first resolution and a second mode corresponding to a second frame rate different from the first frame rate or a second resolution different from the first resolution.
In some example embodiments, as illustrated in
In an example, as illustrated in
In a case where both the clock signal CK and the inverted clock signal CKB have the on voltage not only in the mode transition period MTP but also in the blank period BP, high voltage stresses to the transistors T5, T6 and T7 of the holding parts 326 may be accumulated, and deterioration of the transistors T5, T6 and T7 may be intensified. However, in the display device 100 according to example embodiments, both the clock signal CK and the inverted clock signal CKB may have the on voltage in the mode transition period MTP, but the clock signal CK and the inverted clock signal CKB in the blank period BP of each frame period FP may be maintained as the last voltages in the active period AP. Accordingly, the high voltage stresses to the transistors T5, T6 and T7 of the holding parts 326 may not be accumulated.
In another example, as illustrated in
In still another example, as illustrated in
Although
As described above, the display device 100 according to example embodiments may discharge the control nodes NC, the gate output nodes NGO and the carry output nodes NCO of the plurality of stages 310-(N−K), 310-N and 310-(N−K+L) using the clock signal CK having the on voltage and the inverted clock signals CKB having the on voltage in the mode transition. period MTP, thereby preventing the abnormal operation of the gate driver 300.
Referring to
Referring to
The timing controller 200b may transfer a data enable signal DE representing that a data signal DATA is output to the data driver 500. In some example embodiments, the data enable signal DE transferred to the power management circuit 600b may be an internal signal generated by the timing controller 200b based on an input data enable signal included in an input control signal CONT. In other example embodiments, the timing controller 200b may provide the power management circuit 600b with the input data enable signal included in the input control signal CONT as is, or the power management circuit 600b may receive the input data enable signal directly from an external device (e.g., a GPU).
The power management circuit 600b may count a time duration of the data enable signal DE, and may change the clock signal CK and the inverted clock signal CKB to the on voltage when the counted data enable signal DE time duration exceeds a predetermined normal range. The time duration or the count of the data enable signal DE may refer to a time after which the data enable signal DE has risen to and has remained at a logic high level. For example, when the data enable signal DE count exceeds a predetermined normal range, the power management circuit 600b may determine that an operating mode is to be changed from a normal mode to a fail mode, and may output the clock signal CK and the inverted clock signal CKB each having the on voltage for a predetermined time. Accordingly, control nodes, gate output nodes and carry output nodes of stages of the gate driver 300 may be discharged in response to the clock signal CK and inverted clock signal CKB each having the on voltage, and thus an abnormal operation of the gate driver 300 may be prevented.
The processor 1110 may perform various computing functions or tasks. The processor 1110 may be an application processor (AP), a micro processor, a central processing unit (CPU), etc. The processor 1110 may be coupled to other components via an address bus, a control bus, a data bus, etc., and be further coupled to an extended bus such as a peripheral component interconnection (PCI) bus.
The memory device 1120 may store data for operations of the electronic device 1100. For example, the memory device 1120 may include at least one non-volatile memory device such as an erasable programmable read-only memory (EPROM) device, an electrically erasable programmable read-only memory (EEPROM) device, a flash memory device, a phase change random access memory (PRAM) device, a resistance random access memory (RRAM) device, a nano floating gate memory (NFGM) device, a polymer random access memory (PoRAM) device, a magnetic random access memory (MRAM) device, a ferroelectric random access memory (FRAM) device, etc, and/or at least one volatile memory device such as a dynamic random access memory (DRAM) device, a static random access memory (SRAM) device, a mobile dynamic random access memory (mobile DRAM) device, etc.
The storage device 1130 may be a solid state drive (SSD) device, a hard disk drive (HDD) device, a CD-ROM device, etc. The I/O device 1140 may comprise an input device such as a keyboard, a keypad, a mouse, a touch screen, etc, and an output device such as a printer, a speaker, etc. The power supply 1150 may supply power for operations of the electronic device 1100. The display device 1160 may be connected to other components through the buses or other communication links.
The display device 1160 may discharge control nodes, gate output nodes and carry output nodes of stages of a gate driver using a clock signal having an on voltage and an inverted clock signal having the on voltage, thereby preventing an abnormal operation of the gate driver. Examples of the display device 1160 include any of the display devices 100, 100a, 100b described above.
The electronic device 1100 according to example embodiments may be any electronic device including the display device 1160, such as a digital television (TV), a 3D TV, a personal computer (PC), a home appliance, a laptop computer, a cellular phone, a smart phone, a tablet computer, a wearable device, a personal digital assistant (PDA), a portable multimedia player (PMP), a digital camera, a music player, a portable game console, a navigation system, etc.
The foregoing is illustrative of example embodiments and is not to be construed as limiting thereof. Although a few example embodiments have been described, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from the novel teachings and advantages of the present inventive concept. Accordingly, all such modifications are intended to be included within the scope of the present inventive concept as defined in the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2018-0052951 | May 2018 | KR | national |