The present application claims a priority of the Chinese patent application No. 201910280077.1 filed on Apr. 9, 2019, which is incorporated herein by reference in its entirety.
The present disclosure relates to the field of display driving technology, in particular to a gate driving unit, a gate driving method, a gate driving circuitry and a display device.
In order to maintain pixel brightness fluctuation within a reasonable range, it is still necessary to refresh data when a static image is displayed, because a voltage for controlling brightness varies over time due to current leakage. As an effective method, a refresh rate is reduced so as to reduce the power consumption, and a current leakage rate of a pixel needs to be reduced so as to ensure the display quality. Oxide semiconductor has an ultra-low current leakage property, so it may be used to meet the above requirements. In order to ensure a charging rate of the pixel and provide a small parasitic capacitance, as a better approach, advantages of Low Temperature Poly-Silicon (LTPS) and oxide may be combined, i.e., a Low Temperature Polycrystalline Oxide (LTPO) process may be adopted. Usually, in a pixel circuitry, a Thin Film Transistor (TFT), which is sensitive to the current leakage occurring at a gate electrode of a driving transistor, is replaced with an oxide TFT, and the other transistors are LTPS TFTs, so as to make full use of their advantages to perform a gate driving operation at low power consumption. However, a normal-phase gate driving signal and a reverse-phase gate driving signal need to be adopted by the pixel circuitry, and it is inconvenient for a conventional gate driving circuitry to provide the normal-phase gate driving signal and the reverse-phase gate driving signal simultaneously, so a charging/discharging rate cannot be increased.
In one aspect, the present disclosure provides a gate driving unit, including a reverse-phase gate driving signal output end, a normal-phase gate driving signal output end, an input circuitry, an output control circuitry, an input node control circuitry and an output circuitry. The input circuitry is connected to a first clock signal end, an input end and an input node, and configured to control the input end to be electrically connected to the input node under the control of a first clock signal from the first clock signal end. The output control circuitry is connected to the input node, a second clock signal end and an output node, and configured to control a potential at the output node under the control of a potential at the input node and a second clock signal from the second clock signal end. The input node control circuitry is connected to the second clock signal end, the output node and the input node, and configured to control the potential at the input node in accordance with the potential at the output node under the control of the second clock signal. The output circuitry is connected to the output node, the reverse-phase gate driving signal output end and the normal-phase gate driving signal output end, and configured to output a reverse-phase gate driving signal through the reverse-phase gate driving signal output end and output a normal-phase gate driving signal through the normal-phase gate driving signal output end in accordance with the potential at the output node.
In a possible embodiment of the present disclosure, the output control circuitry includes an NOR gate, a first input end of which is connected to the second clock signal end, a second input end of which is connected to the input node, and an output end of which is connected to the output node.
In a possible embodiment of the present disclosure, the output circuitry includes a first output phase inverter and a second output phase inverter. An input end of the first output phase inverter is connected to the output node, and an output end of the first output phase inverter is connected to the reverse-phase gate driving signal output end. An input end of the second output phase inverter is connected to the reverse-phase gate driving signal output end, and an output end of the second output phase inverter is connected to the normal-phase gate driving signal output end.
In a possible embodiment of the present disclosure, the input node control circuitry includes an input node control switching circuitry, a control end of which is connected to the second clock signal end, a first end of which is connected to the reverse-phase gate driving signal output end, and a second end of which is connected to the input node. The input node control switching circuitry is configured to enable the reverse-phase gate driving signal output end to be electrically connected to, or electrically disconnected from, the input node under the control of the second clock signal.
In a possible embodiment of the present disclosure, the NOR gate includes a first NOR transistor, a second NOR transistor, a third NOR transistor and a fourth NOR transistor, the first output phase inverter includes a first reverse-phase output transistor and a second reverse-phase output transistor, and the second output phase inverter includes a third reverse-phase output transistor and a fourth reverse-phase output transistor. The first NOR transistor, the second NOR transistor, the first reverse-phase output transistor and the third reverse-phase output transistor are p-type thin film transistors, and the third NOR transistor, the fourth NOR transistor, the second reverse-phase output transistor and the fourth reverse-phase output transistor are n-type thin film transistors.
In a possible embodiment of the present disclosure, a control electrode of the first NOR transistor is connected to the second clock signal end, a first electrode of the first NOR transistor is electrically connected to a first voltage end, and a second electrode of the first NOR transistor is connected to a first electrode of the second NOR transistor. A control electrode of the second NOR transistor is connected to the input node, and a second electrode of the second NOR transistor is connected to the output node. A control electrode of the third NOR transistor is connected to the input node, a first electrode of the third NOR transistor is connected to the output node, and a second electrode of the third NOR transistor is connected to a second voltage end. A control electrode of the fourth NOR transistor is connected to the second clock signal end, a first electrode of the fourth NOR transistor is connected to the output node, and a second electrode of the fourth NOR transistor is connected to the second voltage end.
In a possible embodiment of the present disclosure, a control electrode of the first reverse-phase output transistor is connected to the output node, a first electrode of the first reverse-phase output transistor is connected to the first voltage end, and a second electrode of the first reverse-phase output transistor is connected to the reverse-phase gate driving signal output end. A control electrode of the second reverse-phase output transistor is connected to the output node, a first electrode of the second reverse-phase output transistor is connected to the reverse-phase gate driving signal output end, and a second electrode of the second reverse-phase output transistor is connected to the second voltage end. A control electrode of the third reverse-phase output transistor is connected to the reverse-phase gate driving signal output end, a first electrode of the third reverse-phase output transistor is connected to the first voltage end, and a second electrode of the third reverse-phase output transistor is connected to the normal-phase gate driving signal output end. A control electrode of the fourth reverse-phase output transistor is connected to the reverse-phase gate driving signal output end, a first electrode of the fourth reverse-phase output transistor is connected to the normal-phase gate driving signal output end, and a second electrode of the fourth reverse-phase output transistor is connected to the second voltage end.
In a possible embodiment of the present disclosure, the input node control circuitry includes a control phase inverter and an input node control switching circuitry. An input end of the control phase inverter is connected to the output node. A control end of the input node control switching circuitry is connected to the second clock signal end, a first end of the input node control switching circuitry is connected to an output end of the control phase inverter, and a second end of the input node control switching circuitry is connected to the input node. The input node control switching circuitry is configured to enable the output end of the control phase inverter to be electrically connected to, or electrically disconnected from, the input node under the control of the second clock signal.
In a possible embodiment of the present disclosure, the output circuitry includes a first output phase inverter, a normal-phase output sub-circuitry and a reverse-phase output sub-circuitry. An input end of the first output phase inverter is connected to the output node, and an output end of the first output phase inverter is connected to a first node. The normal-phase output sub-circuitry is configured to output a normal-phase gate driving signal through the normal-phase gate driving signal output end in accordance with a potential at the first node. The reverse-phase output sub-circuitry is configured to output a reverse-phase gate driving signal through the reverse-phase gate driving signal output end in accordance with the potential at the first node.
In a possible embodiment of the present disclosure, the normal-phase output sub-circuitry includes a normal-phase output phase inverter, an input end of which is connected to the first node, and an output end of which is connected to the normal-phase gate driving signal output end. The reverse-phase output sub-circuitry includes a first reverse-phase output phase inverter and a second reverse-phase output phase inverter. An input end of the first reverse-phase output phase inverter is connected to the first node, an output end of the first reverse-phase output phase inverter is connected to an input end of the second reverse-phase output phase inverter, and an output end of the second reverse-phase output phase inverter is connected to the reverse-phase gate driving signal output end.
In a possible embodiment of the present disclosure, the NOR gate includes a first NOR transistor, a second NOR transistor, a third NOR transistor and a fourth NOR transistor, the first output phase inverter includes a first reverse-phase output transistor and a second reverse-phase output transistor, the normal-phase output phase inverter includes a first normal-phase output phase-inverting transistor and a second normal-phase output phase-inverting transistor, the first reverse-phase output phase inverter includes a first reverse-phase output phase-inverting transistor and a second reverse-phase output phase-inverting transistor, and the second reverse-phase output phase inverter includes a third reverse-phase output phase-inverting transistor and a fourth reverse-phase output phase-inverting transistor. The first NOR transistor, the second NOR transistor, the first reverse-phase output transistor, the first normal-phase output phase-inverting transistor, the first reverse-phase output phase-inverting transistor and the third reverse-phase output phase-inverting transistor are p-type thin film transistors, and the third NOR transistor, the fourth NOR transistor, the second reverse-phase output transistor, the second normal-phase output phase-inverting transistor, the second reverse-phase output phase-inverting transistor and the fourth reserve-phase output phase-inverting transistor are n-type thin film transistors.
In a possible embodiment of the present disclosure, a control electrode of the first NOR transistor is connected to the second clock signal end, a first electrode of the first NOR transistor is electrically connected to a first voltage end, and a second electrode of the first NOR transistor is connected to a first electrode of the second NOR transistor. A control electrode of the second NOR transistor is connected to the input node, and a second electrode of the second NOR transistor is connected to the output node. A control electrode of the third NOR transistor is connected to the input node, a first electrode of the third NOR transistor is connected to the output node, and a second electrode of the third NOR transistor is connected to a second voltage end. A control electrode of the fourth NOR transistor is connected to the second clock signal end, a first electrode of the fourth NOR transistor is connected to the output node, and a second electrode of the fourth NOR transistor is connected to the second voltage end.
In a possible embodiment of the present disclosure, a control electrode of the first reverse-phase output transistor is connected to the output node, a first electrode of the first reverse-phase output transistor is connected to the first voltage end, and a second electrode of the first reverse-phase output transistor is connected to the first node. A control electrode of the second reverse-phase output transistor is connected to the output node, a first electrode of the second reverse-phase output transistor is connected to the first node, and a second electrode of the second reverse-phase output transistor is connected to the second voltage end. A control electrode of the first normal-phase output phase-inverting transistor is connected to the first node, a first electrode of the first normal-phase output phase-inverting transistor is connected to the first voltage end, and a second electrode of the first normal-phase output phase-inverting transistor is connected to the reverse-phase gate driving signal output end. A control electrode of the second normal-phase output phase-inverting transistor is connected to the first node, a first electrode of the second normal-phase output phase-inverting transistor is connected to the reverse-phase gate driving signal output end, and a second electrode of the second normal-phase output phase-inverting transistor is connected to the second voltage end. A control electrode of the first reverse-phase output phase-inverting transistor is connected to the first node, a first electrode of the first reverse-phase output phase-inverting transistor is connected to the first voltage end, and a second electrode of the first reverse-phase output phase-inverting transistor is connected to a second node. A control electrode of the second reverse-phase output phase-inverting transistor is connected to the first node, a first electrode of the second reverse-phase output phase-inverting transistor is connected to the second node, and a second electrode of the second reverse-phase output phase-inverting transistor is connected to the second voltage end. A control electrode of the third reverse-phase output phase-inverting transistor is connected to the second node, a first electrode of the third reverse-phase output phase-inverting transistor is connected to the first voltage end, and a second electrode of the third reverse-phase output phase-inverting transistor is connected to the normal-phase gate driving signal output end. A control electrode of the fourth reverse-phase output phase-inverting transistor is connected to the second node, a first electrode of the fourth reverse-phase output phase-inverting transistor is connected to the normal-phase gate driving signal output end, and a second electrode of the fourth reverse-phase output phase-inverting transistor is connected to the second voltage end.
In a possible embodiment of the present disclosure, the input circuitry includes an input switching circuitry, a control end of which is connected to the first clock signal end, a first end of which is connected to the input end, and a second end of which is connected to the input node. The input switching circuitry is configured to enable the input end to be electrically connected to, or electrically disconnected from, the input node under the control the first clock signal from the first clock signal end.
In another aspect, the present disclosure further provides a gate driving method for the above-mentioned gate driving unit. A display period includes an input stage, an output stage and a resetting stage arranged sequentially. The gate driving method includes: at the input stage, controlling, by the input circuitry, the input end to be electrically connected to the input node under the control of the first clock signal, controlling, by the output control circuitry, a potential at the output node to be a first level under the control of a potential at the input node and the second clock signal, and controlling, by the output circuitry, the normal-phase gate driving signal output end to output the first level and controlling the reverse-phase gate driving signal output end to output a second level in accordance with the potential at the output node; at the output stage, controlling, by the input circuitry, the input end to be electrically connected to, or electrically disconnected from, the input node under the control of the first clock signal so as to maintain the potential at the input node as the first level, controlling, by the output control circuitry, the potential at the output node under the control of the potential at the input node and the second clock signal, controlling, by the input node control circuitry, the potential at the input node to be maintained as the first level in accordance with the potential at the output node under the control of the second clock signal, and controlling, by the output circuitry, the normal-phase gate driving signal output end to output the normal-phase gate driving signal and controlling the reverse-phase gate driving signal output end to output the reverse-phase gate driving signal in accordance with the potential at the output node; and at the resetting stage, controlling, by the input circuitry, the input end to be electrically connected to the input node under the control of the first clock signal, controlling, by the input node control circuitry, the output node to be electrically disconnected from the input node under the control of the second clock signal, controlling, by the output control circuitry, the potential at the output node to be the first level under the control of the potential at the input node and the second clock signal, and controlling, by the output circuitry, the normal-phase gate driving signal output end to output the first level and controlling the reverse-phase gate driving signal output end to output a second level in accordance with the potential at the output node.
In a possible embodiment of the present disclosure, at the output stage, the controlling, by the output control circuitry, the potential at the output node under the control of the potential at the input node and the second clock signal includes: when a potential of the second clock signal is the first level, controlling, by the output control circuitry, the potential at the output node to be the second level; and when the potential of the second clock signal is the second level, controlling, by the output control circuitry, the potential at the output node to be the first level. At the output stage, the controlling, by the output circuitry, the normal-phase gate driving signal output end to output the normal-phase gate driving signal and controlling the reverse-phase gate driving signal output end to output the reverse-phase gate driving signal in accordance with the potential at the output node includes: when the potential at the output node is the second level, controlling, by the output circuitry, the normal-phase gate driving signal output end to output the second level and controlling the reverse-phase gate driving signal output end to output the first level; and when the potential at the output node is the first level, controlling, by the output circuitry, the normal-phase gate driving signal output end to output the first level and controlling the reverse-phase gate driving signal output end to output the second level.
In a possible embodiment of the present disclosure, the display period further includes a maintenance stage after the resetting stage, and the maintenance stage includes at least one maintenance time period including a first maintenance sub-stage and a second maintenance sub-stage. The gate driving method further includes: at the first maintenance sub-stage, inputting the second level to the input end, enabling the first clock signal to be at the second level, enabling the second clock signal to be at the first level, controlling, by the input circuitry, the input end to be electrically disconnected from the input node under the control of the first clock signal, controlling, by the output control circuitry, the potential at the output node to be the first level under the control of the potential at the input node and the second clock signal, controlling, by the input node control circuitry, the potential at the input node to be maintained as the second level in accordance with the potential at the output node under the control of the second clock signal, and controlling, by the output circuitry, the normal-phase gate driving signal output end to output the first level and controlling the reverse-phase gate driving signal output end to output the second level in accordance with the potential at the output node; and at the second maintenance sub-stage, inputting the second level to the input end, enabling the first clock signal to be at the first level, enabling the second clock signal to be at the second level, controlling, by the input circuitry, the input end to be electrically connected to the input node under the control of the first clock signal, controlling, by the output control circuitry, the potential at the output node to be the first level under the control of the potential at the input node and the second clock signal, controlling, by the input node control circuitry, the output node to be electrically disconnected from the input node under the control of the second clock signal, and controlling, by the output circuitry, the normal-phase gate driving signal output end to output the first level and controlling the reverse-phase gate driving signal output end to output the second level in accordance with the potential at the output node.
In yet another aspect, the present disclosure provides a gate driving circuitry including a plurality of levels of the above-mentioned gate driving units. Apart from a first-level gate driving unit, an input end of a current-level gate driving unit is connected to a reverse-phase gate driving signal output end of a previous-level gate driving unit.
In a possible embodiment of the present disclosure, the gate driving circuitry further includes a first part of gate driving units and a second part of gate driving units arranged alternately. A first clock signal input end of each of the first part of gate driving units is connected to the first clock signal end, and a second clock signal input end of each of the first part of gate driving units is connected to the second clock signal end. A first clock signal input end of each of the second part of gate driving units is connected to the second clock signal end, and a second clock signal input end of each of the second part of gate driving units is connected to the first clock signal end.
In still yet another aspect, the present disclosure provides a display device including the above-mentioned gate driving circuitry.
In order to make the objects, the technical solutions and the advantages of the present disclosure more apparent, the present disclosure will be described hereinafter in a clear and complete manner in conjunction with the drawings and embodiments. Obviously, the following embodiments merely relate to a part of, rather than all of, the embodiments of the present disclosure, and based on these embodiments, a person skilled in the art may, without any creative effort, obtain the other embodiments, which also fall within the scope of the present disclosure.
Each transistor adopted in all the embodiments of the present disclosure may be a triode, a thin film transistor, a field-effect transistor, or any other element having a same characteristic. In the embodiments of the present disclosure, in order to differentiate two electrodes of the transistor, apart from a control electrode, from each other, one of the two electrodes may be called as a first electrode, and the other may be called as a second electrode.
In actual use, when the transistor is a triode, the control electrode may be a base, the first electrode may be a collector and the second electrode may be an emitter; or the control electrode may be a base, the first electrode may be an emitter and the second electrode may be a collector.
In actual use, when the transistor is a thin film transistor or a field-effect transistor, the control electrode may be a gate electrode, the first electrode may be a drain electrode and the second electrode may be a source electrode; or the control electrode may be a gate electrode, the first electrode may be a source electrode and the second electrode may be a drain electrode.
As shown in
According to the embodiments of the present disclosure, the gate driving unit may output the normal-phase gate driving signal and the reverse-phase gate driving signal simultaneously (at an output stage, the normal-phase gate driving signal may be of a phase reverse to the reverse-phase gate driving signal), so as to meet the requirement on driving pixels controlled by two gate driving signals, and increase a charging/discharging rate.
During the implementation, the first clock signal GCKB may be of, but not limited to, a phase reverse to the second clock signal GCK.
The gate driving unit in the embodiments of the present disclosure may be applied to a Complementary Metal Oxide Semiconductor (CMOS) pixel circuitry, particularly to a Low Temperature Polycrystalline Oxide (LTPO) pixel circuitry.
As shown in
To be specific, the output control circuitry may include an NOR gate, a first input end of which is connected to the second clock signal end, a second input end of which is connected to the input node, and an output end of which is connected to the output node.
When the output control circuitry includes the NOR gate and a potential of the second clock signal from the second clock signal end and/or the potential at the input node are each a high level, the NOR gate may output, via its output end, a low level to the output node. When the potential of the second clock signal from the second clock signal end and the potential at the input node are each a low level, the NOR gate may output, via its output end, a high level to the output node.
In a possible embodiment of the present disclosure, the output circuitry may include a first output phase inverter and a second output phase inverter. An input end of the first output phase inverter may be connected to the output node, and an output end of the first output phase inverter may be connected to the reverse-phase gate driving signal output end. An input end of the second output phase inverter may be connected to the reverse-phase gate driving signal output end, and an output end of the second output phase inverter may be connected to the normal-phase gate driving signal output end.
In a possible embodiment of the present disclosure, the input node control circuitry may include an input node control switching circuitry, a control end of which is connected to the second clock signal end, a first end of which is connected to the reverse-phase gate driving signal output end, and a second end of which is connected to the input node. The input node control switching circuitry is configured to enable the reverse-phase gate driving signal output end to be electrically connected to, or electrically disconnected from, the input node under the control of the second clock signal.
As shown in
During the operation of the gate driving unit in
In another possible embodiment of the present disclosure, the input node control circuitry may include a control phase inverter and an input node control switching circuitry. An input end of the control phase inverter may be connected to the output node. A control end of the input node control switching circuitry may be connected to the second clock signal end, a first end of the input node control switching circuitry may be connected to an output end of the control phase inverter, and a second end of the input node control switching circuitry may be connected to the input node. The input node control switching circuitry is configured to enable the output end of the control phase inverter to be electrically connected to, or electrically disconnected from, the input node under the control of the second clock signal.
As shown in
During the operation of the gate driving unit in
In another possible embodiment of the present disclosure, the output circuitry may include a first output phase inverter, a normal-phase output sub-circuitry and a reverse-phase output sub-circuitry. An input end of the first output phase inverter may be connected to the output node, and an output end of the first output phase inverter may be connected to a first node. The normal-phase output sub-circuitry is configured to output a normal-phase gate driving signal through the normal-phase gate driving signal output end in accordance with a potential at the first node. The reverse-phase output sub-circuitry is configured to output a reverse-phase gate driving signal through the reverse-phase gate driving signal output end in accordance with the potential at the first node.
To be specific, the normal-phase output sub-circuitry may include a normal-phase output phase inverter, an input end of which is connected to the first node, and an output end of which is connected to the normal-phase gate driving signal output end. The reverse-phase output sub-circuitry may include a first reverse-phase output phase inverter and a second reverse-phase output phase inverter. An input end of the first reverse-phase output phase inverter may be connected to the first node, an output end of the first reverse-phase output phase inverter may be connected to an input end of the second reverse-phase output phase inverter, and an output end of the second reverse-phase output phase inverter may be connected to the reverse-phase gate driving signal output end.
To be specific, the input circuitry may include an input switching circuitry, a control end of which is connected to the first clock signal end, a first end of which is connected to the input end, and a second end of which is connected to the input node.
As shown in
During the operation of the gate driving unit in
The gate driving unit will be described hereinafter in conjunction with two specific embodiments.
As shown in
The input node control circuitry 13 may include an input node control switching circuitry which includes an input node control switching transistor TC. A gate electrode of the input node control switching transistor TC may receive the second clock signal GCK, a source electrode thereof may be connected to the input node Qi, and a drain electrode thereof may be connected to the reverse-phase gate driving signal output end Gn_PM.
The output circuitry 14 may include a first output phase inverter INVO1 and a second output phase inverter INVO2. An input end of the first output phase inverter INVO1 may be connected to the output node Qo, and an output end thereof may be connected to the reverse-phase gate driving signal output end Gn_PM. An input end of the second output phase inverter INVO2 may be connected to the reverse-phase gate driving signal output end Gn_PM, and an output end thereof may be connected to the normal-phase gate driving signal output end Gn_NM.
For the gate driving unit in the first embodiment as shown in
At the input stage t1, INPUT may input a low level, GCK may be at a high level, and GCKB may be at a low level, so as to turn on TI and enable Qi to be electrically connected to INPUT, thereby to enable the potential at Qi to be a low level. ORF may output a low level, i.e., the potential at Qo may be a low level, so as to turn off TC. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
At the output stage t2, GCK may be at a low level, GCKB may be at a high level, and INPUT may input a high level, so as to turn off TI, thereby to maintain the potential at Qi as the low level and maintain the potential at Qo as the high level. At this time, Gn_PM may output a low level. TC may be turned on, so as to maintain the potential at Qi as the low level. At this time, Gn_NM may output a high level.
At the resetting stage t3, GCK may be at a high level, GCKB may be at a low level, and INPUT may input a high level, so as to turn on TI and enable Qi to be electrically connected to INPUT, thereby to pull up the potential at Qi to be a high level. ORF may output a low level, so as to pull down the potential at Qo to be a low level. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
At the first maintenance sub-stage t41, GCK may be at a low level, GCKB may be at a high level, and INPUT may input a high level, so as to turn off TI and maintain the potential at Qi as the high level. ORF may output a low level, so as to pull down the potential at Qo to be a low level. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
At the second maintenance sub-stage t42, GCK may be at a high level, GCKB may be at a low level, and INPUT may input a high level, so as to turn on TI and enable the potential at Qi to be a high level. ORF may output a low level, so as to pull down the potential at Qo to be a low level. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
At the maintenance stage, INPUT may be maintained at a high level.
The maintenance stage may include a plurality of maintenance time periods. At the first maintenance sub-stage and the second maintenance sub-stage of each of the plurality of maintenance time periods, the levels of GCK and GCKB may be switched periodically. For example, at a first maintenance sub-stage of a first maintenance time period, GCK may be a low level, and GCKB may be a high level, and at a second maintenance sub-stage of the first maintenance time period, GCK may be a high level, and GCKB may be a low level; at a first maintenance sub-stage of a second maintenance time period, GCK may be a low level, and GCKB may be a high level, and at a second maintenance sub-stage of the second maintenance time period, GCK may be a high level, and GCKB may be a low leve; . . . ; and at a first maintenance sub-stage of an Nth maintenance time period, GCK may be a low level, and GCKB may be a high level, and at a second maintenance sub-stage of the Nth maintenance time period, GCK may be a high level, and GCKB may be a low level, where N is an integer.
In addition, at the first maintenance sub-stage and the second maintenance sub-stage of each of the plurality of maintenance time periods, when the levels of GCK and GCKB are switched periodically, TI and TC may be turned on and off alternately, so as to maintain Qi at a high level. ORF may output a low level, so Gn_PM may output a high level, and Gn_NM may output a low level.
At the input stage t1, INPUT may input a low level, GCK may be at a high level, and GCKB may be at a low level, so as to turn on TI and enable Qi to be electrically connected to INPUT, thereby to enable the potential at Qi to be a low level. ORF may output a low level, i.e., the potential at Qo may be a low level, so as to turn off TC. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
At the first output sub-stage t21, GCK may be at a low level, GCKB may be at a high level, and INPUT may input a high level, so as to turn off TI, thereby to maintain the potential at Qi as the low level and maintain the potential at Qo as the high level. At this time, Gn_PM may output a low level. TC may be turned on, so as to maintain the potential at Qi as the low level. At this time, Gn_NM may output a high level.
At the second output sub-stage t22, GCK may be at a high level, GCKB may be at a low level, and INPUT may input a low level, so as to turn on TI, and enable INPUT to be electrically connected to Qi, thereby to enable the potential at Qi to be a low level. ORF may output a low level, i.e., the potential at Qo may be a low level, so as to turn off TC. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
At the third output sub-stage t23, GCK may be at a low level, GCKB may be at a high level, and INPUT may input a high level, so as to turn off TI, and maintain the potential at Qi as the low level. ORF may output a high level, so as to turn on TC. At this time, Gn_PM may output a low level so as to maintain the potential at Qi as the low level, and Gn_NM may output a high level.
At the resetting stage t3, GCK may be at a high level, GCKB may be at a low level, and INPUT may input a high level, so as to turn on TI and enable the potential at Qi to be a high level. ORF may output a low level, so as to turn off TC. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
At the first maintenance sub-stage t41, GCK may be at a low level, GCKB may be at a high level, and INPUT may input a high level, so as to turn off TI and maintain the potential at Qi as the high level. ORF may output a low level, i.e., the potential at Qo may be a low level. At this time, Gn_PM may output a high level. TC may be turned on, so as to maintain the potential at Qi as the high level. At this time, Gn_NM may output a low level.
At the second maintenance sub-stage t42, GCK may be at a high level, GCKB may be at a low level, and INPUT may input a high level, so as to turn on TI, thereby to enable the potential at Qi to be a high level. ORF may output a low level, i.e., the potential at Qo may be a low level. At this time, Gn_PM may output a high level. TC may be turned off, and at this time, Gn_NM may output a low level.
INVO1 may include a first reverse-phase output transistor Tinv1 and a second reverse-phase output transistor Tinv2. A control electrode of the first reverse-phase output transistor Tinv1 may be connected to the output node Qo, a first electrode of the first reverse-phase output transistor Tinv1 may be connected to the first voltage end, and a second electrode of the first reverse-phase output transistor Tinv1 may be connected to the reverse-phase gate driving signal output end Gn_PM. A control electrode of the second reverse-phase output transistor Tinv2 may be connected to the output node Qo, a first electrode of the second reverse-phase output transistor Tinv2 may be connected to the reverse-phase gate driving signal output end Gn_PM, and a second electrode of the second reverse-phase output transistor Tinv2 may be connected to the second voltage end.
INVO2 may include a third reverse-phase output transistor Tinv3 and a fourth reverse-phase output transistor Tinv4. A control electrode of the third reverse-phase output transistor Tinv3 may be connected to the reverse-phase gate driving signal output end Gn_PM, a first electrode of the third reverse-phase output transistor Tinv3 may be connected to the first voltage end, and a second electrode of the third reverse-phase output transistor Tinv3 may be connected to the normal-phase gate driving signal output end Gn_NM. A control electrode of the fourth reverse-phase output transistor Tinv4 may be connected to the reverse-phase gate driving signal output end Gn_PM, a first electrode of the fourth reverse-phase output transistor Tinv4 may be connected to the normal-phase gate driving signal output end Gn_NM, and a second electrode of the fourth reverse-phase output transistor Tinv4 may be connected to the second voltage end.
In
In the circuit shown in
In actual use, the p-type transistor may be charged rapidly and the n-type transistor may be discharged rapidly. As shown in
As shown in
The input node control circuitry 13 may include a control phase inverter INV1 and an input node control switching circuitry. An input end of the control phase inverter INV1 may be connected to the output node Qo. The input node control switching circuitry may include an input node control transmission gate Tg2, a reverse-phase control end of which receives the second clock signal GCKB, a normal-phase control end of which receives the first clock signal GCK, a first end of which is connected to an output end of the control phase inverter INV1, and a second end of which is connected to the input node Qi.
The output circuitry 14 may include a first output phase inverter INVO1, a normal-phase output sub-circuitry and a reverse-phase output sub-circuitry. An input end of the first output phase inverter INVO1 may be connected to the output node Qo, and an output end of the first output phase inverter INVO1 may be connected to a first node N1. The normal-phase output sub-circuitry may include a normal-phase output phase inverter INVOP, an input end of which is connected to the first node N1, and an output end of which is connected to the normal-phase gate driving signal output end Gn_NM. The reverse-phase output sub-circuitry may include a first reverse-phase output phase inverter INVON1 and a second reverse-phase output phase inverter INVON2. An input end of the first reverse-phase output phase inverter INVON1 may be connected to the first node N1, and an output end of the first reverse-phase output phase inverter INVON1 may be connected to an input end of the second reverse-phase output phase inverter INVON2, and an output end of the second reverse-phase output phase inverter INVON2 may be connected to the reverse-phase gate driving signal output end Gn_PM.
In the second embodiment of the present disclosure, the gate driving unit may include two reverse-phase output phase inverter for reverse-phase output, so as to increase the driving capability.
At the input stage t1, INPUT may input a low level, GCK may be at a high level, and GCKB may be at a low level, so as to enable Qi to be electrically connected to INPUT under the control of Tg1, thereby to enable the potential at Qi to be a low level. ORF may output a low level, i.e., the potential at Qo may be a low level, so as to turn off Tg2. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
At the output stage t2, GCK may be at a low level, GCKB may be at a high level, and INPUT may input a high level, so as to turn off Tg1, thereby to maintain the potential at Qi as the low level and maintain the potential at Qo as the high level. INV1 may output a low level, so as to enable the output end of INV1 to be electrically connected to Qi under the control of Tg2. At this time, Gn_PM may output a low level, and Gn_NM may output a high level.
At the resetting stage t3, GCK may be at a high level, GCKB may be at a low level, and INPUT may input a high level, so as to enable Qi to be electrically connected to INPUT under the control of Tg1, thereby to pull up the potential at Qi to be a high level. ORF may output a low level, so as to pull down the potential at Qo to be a low level, and turn off Tg2. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
At the first maintenance sub-stage t41, GCK may be at a low level, GCKB may be at a high level, and INPUT may input a high level, so as to turn off Tg1 and maintain the potential at Qi as the high level. ORF may output a low level, so as to pull down the potential at Qo to be a low level. INV1 may output a high level, so as to enable the output end of INV1 to be electrically connected to Qi under the control of Tg2. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
At the second maintenance sub-stage t42, GCK may be at a high level, GCKB may be at a low level, and INPUT may input a high level, so as to enable INPUT to be electrically connected to Qi under the control of Tg1, thereby to enable the potential at Qi to be a high level. ORF may output a low level, so as to pull down the potential at Qo to be a low level and turn off Tg2. At this time, Gn_PM may output a high level, and G_ NM may output a low level.
At the maintenance stage, INPUT may be maintained at a high level. The maintenance stage may include a plurality of maintenance time periods. At the first maintenance sub-stage and the second maintenance sub-stage of each of the plurality of maintenance time periods, the levels of GCK and GCKB may be switched periodically, and Tg1 and Tg2 may be turned on and off alternately, so as to maintain Qi at a high level. ORF may output a low level, so Gn_PM may output a high level, and Gn_NM may output a low level.
At the input stage t1, INPUT may input a low level, GCK may be at a high level, and GCKB may be at a low level, so as to enable Qi to be electrically connected to INPUT under the control of Tg1, thereby to enable the potential at Qi to be a low level. ORF may output a low level, i.e., the potential at Qo may be a low level, so as to turn off Tg2. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
At the first output sub-stage t21, GCK may be at a low level, GCKB may be at a high level, and INPUT may input a high level, so as to turn off Tg1, maintain the potential at Qo as the high level, and enable the output end of INV1 to be electrically connected to Qi under the control of Tg2. INV1 may output a low level, so as to maintain the potential at Qi as the low level. At this time, Gn_PM may output a low level, and Gn_NM may output a high level.
At the second output sub-stage t22, GCK may be at a high level, GCKB may be at a low level, and INPUT may input a low level, so as to enable INPUT to be electrically connected to Qi under the control of Tg1, thereby to enable the potential at Qi to be a low level. ORF may output a low level, i.e., the potential at Qo may be a low level, so as to turn off Tg2. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
At the third output sub-stage t23, GCK may be at a low level, GCKB may be at a high level, and INPUT may input a high level, so as to turn off Tg1. ORF may output a high level, i.e., the potential at Qo may be a high level, so as to enable the output end of INV1 to be electrically connected to Qi under the control of Tg2. INV1 may output a low level, so as to maintain the potential at Qi as the low level. At this time, Gn_PM may output a low level, and Gn_NM may output a high level.
At the resetting stage t3, GCK may be at a high level, GCKB may be at a low level, and INPUT may input a high level, so as to enable INPUT to be electrically connected to Qi under the control of Tg1, thereby to enable the potential at Qi to be a high level. ORF may output a low level, i.e., the potential at Qo may be a low level, so as to turn off Tg2. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
At the first maintenance sub-stage t41, GCK may be at a low level, GCKB may be at a high level, and INPUT may input a high level, so as to turn off Tg1 and maintain the potential at Qi as the high level. ORF may output a low level, i.e., the potential at Qo may be a low level. INV1 may output a high level, so as to enable INV1 to be electrically connected to Qi under the control of Tg2. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
At the second maintenance sub-stage t42, GCK may be at a high level, GCKB may be at a low level, and INPUT may input a high level, so as to enable INPUT to be electrically connected to Qi under the control of Tg1, thereby to enable the potential at Qi to be a high level. ORF may output a low level, i.e., the potential at Qo may be a low level. At this time, Gn_PM may output a high level, and Gn_NM may output a low level.
The NOR gate ORF may include a first NOR transistor TORF1, a second NOR transistor TORF2, a third NOR transistor TORF3 and a fourth NOR transistor TORF4. A control electrode of the first NOR transistor TORF1 may be connected to the second clock signal end, a first electrode of the first NOR transistor TORF1 may be electrically connected to a first voltage end, and a second electrode of the first NOR transistor TORF1 may be connected to a first electrode of the second NOR transistor TORF2. A control electrode of the second NOR transistor TORF2 may be connected to the input node Qi, and a second electrode of the second NOR transistor TORF2 may be connected to the output node Qo. A control electrode of the third NOR transistor TORF3 may be connected to the input node Qi, a first electrode of the third NOR transistor TORF3 may be connected to the output node Qo, and a second electrode of the third NOR transistor TORF3 may be connected to a second voltage end. A control electrode of the fourth NOR transistor TORF4 may be connected to the second clock signal end, a first electrode of the fourth NOR transistor TORF4 may be connected to the output node Qo, and a second electrode of the fourth NOR transistor TORF4 may be connected to the second voltage end. The first voltage end is configured to input a first voltage VDD, and the second voltage end is configured to input a second voltage VSS.
The control phase inverter INV1 may include a first control phase inverting transistor Tcp1 and a second control phase inverting transistor Tcp2. A control electrode of the first control phase inverting transistor Tcp1 may be connected to the output node Qo, a first electrode thereof may be connected to the first voltage end, and a second electrode thereof may be connected to a first end of the input node control transmission gate Tg2. A control electrode of the second control phase inverting transistor Tcp2 may be connected to the output node Qo, a first electrode thereof maybe connected to the first end of the input node control transmission gate Tg2, and a second electrode thereof may be connected to the second voltage end.
The input node control transmission gate Tg2 may include a first control transmission transistor Tct1 and a second control transmission transistor Tct2.
The first output phase inverter INVO1 may include a first reverse-phase output transistor Tinv1 and a second reverse-phase output transistor Tinv2. A control electrode of the first reverse-phase output transistor Tinv1 may be connected to the output node Qo, a first electrode of the first reverse-phase output transistor Tinv1 may be connected to the first voltage end, and a second electrode of the first reverse-phase output transistor Tinv1 may be connected to the first node N1. A control electrode of the second reverse-phase output transistor Tinv2 may be connected to the output node Qo, a first electrode of the second reverse-phase output transistor Tinv2 may be connected to the first node N1, and a second electrode of the second reverse-phase output transistor Tinv2 may be connected to the second voltage end.
The normal-phase output phase inverter INVOP may include a first normal-phase output phase inverting transistor Tp1 and a second normal-phase output phase inverting transistor Tp2. A control electrode of the first normal-phase output phase inverting transistor Tp1 may be connected to the first node N1, a first electrode thereof may be connected to the first voltage end, and a second electrode thereof may be connected to the reverse-phase gate driving signal output end Gn_PM. A control electrode of the second normal-phase output phase inverting transistor Tp2 may be connected to the first node N1, a first electrode thereof may be connected to the reverse-phase gate driving signal output end Gn_PM, and a second electrode thereof may be connected to the second voltage end.
The first reverse-phase output phase inverter INVON1 may include a first reverse-phase output phase inverting transistor Tn1 and a second reverse-phase output phase inverting transistor Tn2. A control electrode of the first reverse-phase output phase inverting transistor Tn1 may be connected to the first node N1, a first electrode thereof may be connected to the first voltage end, and a second electrode thereof may be connected to the second node N2. A control electrode of the second reverse-phase output phase inverting transistor Tn2 may be connected to the first node N1, a first electrode thereof may be connected to the second node N2, and a second electrode thereof may be connected to the second voltage end.
The second reverse-phase output phase inverter INVON2 may include a third reverse-phase output phase inverting transistor Tn3 and a fourth reverse-phase output phase inverting transistor Tn4. A control electrode of the third reverse-phase output phase inverting transistor Tn3 may be connected to the second node N2, a first electrode thereof may be connected to the first voltage end, and a second electrode thereof may be connected to the normal-phase gate driving signal output end Gn_NM. A control electrode of the fourth reverse-phase output phase inverting transistor Tn4 may be connected to the second node N2, a first electrode thereof may be connected to the normal-phase gate driving signal output end Gn_NM, and a second electrode thereof may be connected to the second voltage end.
In
In the circuit in
In actual use, the p-type transistor may be charged rapidly and the n-type transistor may be discharged rapidly. As shown in
The present disclosure further provides in some embodiments a gate driving method for the above-mentioned gate driving unit. A display period includes an input stage, an output stage and a resetting stage arranged sequentially. The gate driving method includes: at the input stage, controlling, by the input circuitry, the input end to be electrically connected to the input node under the control of the first clock signal, controlling, by the output control circuitry, a potential at the output node to be a first level under the control of a potential at the input node and the second clock signal, and controlling, by the output circuitry, the normal-phase gate driving signal output end to output the first level and controlling the reverse-phase gate driving signal output end to output a second level in accordance with the potential at the output node; at the output stage, controlling, by the input circuitry, the input end to be electrically connected to, or electrically disconnected from, the input node under the control of the first clock signal so as to maintain the potential at the input node as the first level, controlling, by the output control circuitry, the potential at the output node under the control of the potential at the input node and the second clock signal, controlling, by the input node control circuitry, the potential at the input node to be maintained as the first level in accordance with the potential at the output node under the control of the second clock signal, and controlling, by the output circuitry, the normal-phase gate driving signal output end to output the normal-phase gate driving signal and controlling the reverse-phase gate driving signal output end to output the reverse-phase gate driving signal in accordance with the potential at the output node; and at the resetting stage, controlling, by the input circuitry, the input end to be electrically connected to the input node under the control of the first clock signal, controlling, by the input node control circuitry, the output node to be electrically disconnected from the input node under the control of the second clock signal, controlling, by the output control circuitry, the potential at the output node to be the first level under the control of the potential at the input node and the second clock signal, and controlling, by the output circuitry, the normal-phase gate driving signal output end to output the first level and controlling the reverse-phase gate driving signal output end to output the second level in accordance with the potential at the output node.
In the embodiments of the present disclosure, the first level may be, but not limited to, a low level, and the second level may be, but not limited to, a high level.
During the implementation, the first level may also be, but not limited to, a high level, and the second level may also be, but not limited to, a low level.
To be specific, at the output stage, the controlling, by the output control circuitry, the potential at the output node under the control of the potential at the input node and the second clock signal may include: when a potential of the second clock signal is the first level, controlling, by the output control circuitry, the potential at the output node to be the second level; and when the potential of the second clock signal is the second level, controlling, by the output control circuitry, the potential at the output node to be the first level. At the output stage, the controlling, by the output circuitry, the normal-phase gate driving signal output end to output the normal-phase gate driving signal and controlling the reverse-phase gate driving signal output end to output the reverse-phase gate driving signal in accordance with the potential at the output node may include: when the potential at the output node is the second level, controlling, by the output circuitry, the normal-phase gate driving signal output end to output the second level and controlling the reverse-phase gate driving signal output end to output the first level; and when the potential at the output node is the first level, controlling, by the output circuitry, the normal-phase gate driving signal output end to output the first level and controlling the reverse-phase gate driving signal output end to output the second level.
During the implementation, the display period may further include a maintenance stage after the resetting stage, and the maintenance stage may include at least one maintenance time period including a first maintenance sub-stage and a second maintenance sub-stage. The gate driving method may further include: at the first maintenance sub-stage, inputting the second level to the input end, enabling the first clock signal to be at the second level, enabling the second clock signal to be at the first level, controlling, by the input circuitry, the input end to be electrically disconnected from the input node under the control of the first clock signal, controlling, by the output control circuitry, the potential at the output node to be the first level under the control of the potential at the input node and the second clock signal, controlling, by the input node control circuitry, the potential at the input node to be maintained as the second level in accordance with the potential at the output node under the control of the second clock signal, and controlling, by the output circuitry, the normal-phase gate driving signal output end to output the first level and controlling the reverse-phase gate driving signal output end to output the second level in accordance with the potential at the output node; and at the second maintenance sub-stage, inputting the second level to the input end, enabling the first clock signal to be at the first level, enabling the second clock signal to be at the second level, controlling, by the input circuitry, the input end to be electrically connected to the input node under the control of the first clock signal, controlling, by the output control circuitry, the potential at the output node to be the first level under the control of the potential at the input node and the second clock signal, controlling, by the input node control circuitry, the output node to be electrically disconnected from the input node under the control of the second clock signal, and controlling, by the output circuitry, the normal-phase gate driving signal output end to output the first level and controlling the reverse-phase gate driving signal output end to output the second level in accordance with the potential at the output node.
The present disclosure further provides in some embodiments a gate driving circuitry including a plurality of levels of the above-mentioned gate driving units. Apart from a first-level gate driving unit, an input end of a current-level gate driving unit is connected to a reverse-phase gate driving signal output end of a previous-level gate driving unit.
In some embodiments of the present disclosure, the gate driving circuitry may further include a first part of gate driving units and a second part of gate driving units arranged alternately. A first clock signal input end of each of the first part of gate driving units may be connected to the first clock signal end, and a second clock signal input end of each of the first part of gate driving units may be connected to the second clock signal end. A first clock signal input end of each of the second part of gate driving units may be connected to the second clock signal end, and a second clock signal input end of each of the second part of gate driving units may be connected to the first clock signal end.
The first part of gate driving units may be odd-numbered gate driving units in the plurality of levels of gate driving units, and the second part of gate driving units may be even-numbered gate driving units in the plurality of levels of gate driving units. For example, as shown in
As shown in
In
In
As shown in
The present disclosure further provides in some embodiments a display device including the above-mentioned gate driving circuitry.
The display device in the embodiments of the present disclosure may be any product or member having a display function, e.g., mobile phone, flat-panel computer, television, display, laptop computer, digital photo frame or navigator.
The above embodiments are for illustrative purposes only, but the present disclosure is not limited thereto. Obviously, a person skilled in the art may make further modifications and improvements without departing from the spirit of the present disclosure, and these modifications and improvements shall also fall within the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201910280077.1 | Apr 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/079839 | 3/18/2020 | WO | 00 |