The present disclosure relates to a voltage generating circuit, and more particularly to a gate voltage generating circuit.
Typically, a gate voltage generating circuit is connected to a gate electrode of a transistor switch for turning on/off this transistor switch, such that the gate voltage generating circuit supplies a high level voltage to turn on the transistor switch. A charge pump circuit is usually used as the gate voltage generating circuit. The charge pump circuit may supply a specific voltage higher than the voltage required to turn on the transistor switch, so as to keep pulling down the resistance between a drain electrode and a source electrode of the transistor switch and reduce the power consumption.
However, prior to accessing the charge pump circuit, a period of charging time is needed to charge the charge pump circuit in order to reach a voltage to turn on the transistor switch. Such charging time is a bottleneck of whether an electrical apparatus is ready for instant use.
The present invention discloses a gate voltage generating circuit to provide a gate voltage to a transistor switch. The gate voltage generating circuit comprises a first voltage generating circuit and a second voltage generating circuit. The first voltage generating circuit supplies a first voltage to a gate electrode of the transistor switch. The second voltage generating circuit supplies a second voltage to the gate electrode of the transistor switch. The second voltage is larger than a voltage to turn on the transistor switch. The first voltage is larger than the second voltage.
In an embodiment, the first voltage generating circuit is a charge pump circuit. The first voltage generating circuit further comprises a first diode. An anode of the first diode couples with the charge pump circuit. The cathode of the first diode couples with the gate electrode of the transistor switch.
In an embodiment, the second voltage is generated by a power supply. The second voltage generating circuit further comprises a second diode. An anode of the second diode couples with the second voltage. The cathode of the second diode couples with the gate electrode of the transistor switch.
Accordingly, the second voltage is generated by a power supply circuit. There is no charging time required for charging the second voltage generating circuit to generate the second voltage. Therefore, the switching velocity is enhanced. Moreover, the first voltage from the first voltage generating circuit is larger than the second voltage, so that, after the transistor switch is turned on, the resistance between a drain electrode and a source electrode of the transistor switch is pulled down to reduce the power consumption.
In order to make the foregoing as well as other aspects, features, advantages, and embodiments of the present disclosure more apparent, the accompanying drawings are described as follows:
Reference will now be made in detail to the present embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
In this embodiment, the second voltage is generated by a power supply circuit. There is no any charging time needed to charge the second voltage generating circuit 104 to generate the second voltage to turn on the transistor switch 106. Therefore, the switching velocity of the transistor switch 106 is enhanced. Moreover, after the transistor switch 106 is turned on by the second voltage V2, the first voltage V1 higher than the second voltage V2 generated by the first voltage generating circuit 102 is continuously supplied to the gate electrode of the transistor switch 106, so that the resistance between a drain electrode and a source electrode of the transistor switch 106 is pulled down and the power consumption of the transistor switch 106 is reduced.
Accordingly, the first voltage generating circuit and the second voltage generating circuit are adopted to supply the gate voltage of the transistor switch. The second voltage from the second voltage generating circuit is generated by a power supply circuit. There is no any charging time needed to charge the second voltage generating circuit to generate the second voltage to turn on the transistor switch. Therefore, the switching velocity of the transistor switch is enhanced. Moreover, the first voltage generated by the first voltage generating circuit is higher than the second voltage. The first voltage is continuously supplied to the gate electrode of the transistor switch after the transistor switch is turned on, so that the resistance between a drain electrode and a source electrode of the transistor switch is pulled down and the power consumption of the transistor switch is reduced.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the present disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims.