Gating the activation and tuning the Ca2+ frequency response of CaM kinase II

Information

  • Research Project
  • 8928635
  • ApplicationId
    8928635
  • Core Project Number
    R01GM101277
  • Full Project Number
    5R01GM101277-04
  • Serial Number
    101277
  • FOA Number
    PA-10-067
  • Sub Project Id
  • Project Start Date
    9/30/2012 - 12 years ago
  • Project End Date
    8/31/2017 - 7 years ago
  • Program Officer Name
    NIE, ZHONGZHEN
  • Budget Start Date
    9/1/2015 - 9 years ago
  • Budget End Date
    8/31/2017 - 7 years ago
  • Fiscal Year
    2015
  • Support Year
    04
  • Suffix
  • Award Notice Date
    9/21/2015 - 9 years ago

Gating the activation and tuning the Ca2+ frequency response of CaM kinase II

DESCRIPTION (provided by applicant): Gating the activation and tuning the Ca[2+] frequency response of CaM kinase II Ca[2+] functions as a second messenger for many signaling molecules, including neurotransmitters, hormones and growth factors. One of the central mediators of Ca[2+]/CaM action is the multifunctional CaM kinase II (CaMKII), a ubiquitous Ser/Thr protein kinase that phosphorylates dozens of key cellular proteins and enzymes in the cytosol, plasma membrane, and nucleus. The kinase has been the focus of considerable attention because i) it has a unique architecture with 12 kinase subunits that determine its Ca[2+]/CaM sensing, intracellular targeting, and substrate specificity; ii) it displays a form of molecular memory in which Ca[2+]-dependent autophosphorylation at a Thr residue and/or oxidation at a nearby Met residue switches it to a Ca[2+]-independent (autonomous) state that participates in neuronal memory and other functions; iii) it can respond to the frequency of Ca[2+]-linked stimulation, such as heart rate, and modifies cell function accordingly. Understanding the mechanism and structural basis by which CaMKII decodes the frequency of Ca[2+] spikes is therefore critical to understanding both its physiological and pathological functions. Based on a recent crystal structure and functional analysis of the kinase we hypothesize that the kinase undergoes an equilibrium between a compact structure where its catalytic domains are tightly packed into a central hub composed of its association domain and a more extended structure that is more readily activated by CaM. We will test whether the length of linker sequences between the catalytic and association domains tune the kinase to different frequencies of Ca[2+] spikes and how this is affected by oxidation. We will further examine the effects of gating of the autoinhibitory domain by a pharmacological inhibitor and by a SNP that is associated with increased risk of sudden cardiac arrest. We propose to test its remarkable properties by determining whether the kinase decodes the frequency of Ca[2+] stimuli delivered to cardiomyocytes to increase its autophosphorylation and phosphorylation of its substrates. Finally, we will use our structural and regulatory insights to develop an activator of CaMKII that can be used to evaluate and discover and delineate new CaMKII functions in diverse cell types.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R01
  • Administering IC
    GM
  • Application Type
    5
  • Direct Cost Amount
    190000
  • Indirect Cost Amount
    56115
  • Total Cost
    225038
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
  • Funding ICs
    NIGMS:225038\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    NTRC
  • Study Section Name
    Neurotransporters, Receptors, and Calcium Signaling Study Section
  • Organization Name
    ALLOSTEROS THERAPEUTICS, INC.
  • Organization Department
  • Organization DUNS
    831512020
  • Organization City
    SUNNYVALE
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    940891202
  • Organization District
    UNITED STATES