This disclosure relates to a wellbore tool for gauging a wellbore and sampling solids in the wellbore.
Gauge cutters are commonly used in petroleum industry for ensuring accessibility of tubing/casing/liner prior to running any other sub-surface tools inside the well. A gauge cutter is a tool with a round, open-ended bottom which is milled to an accurate size. Large openings above the bottom of the tool allow for fluid bypass while running in the hole. Often a gauge ring will be the first tool run on a slickline operation. A gauge cutter can also be used to remove light paraffin that may have built up in the casing and drift runs also. For sampling or removing the paraffin or any other mechanical debris, formation sand, scale sand bailer is used.
Certain aspects of the subject matter described can be implemented as a wellbore gauge cutter apparatus. The apparatus includes a first body. The first body defines a first opening. The first body includes a snap ring. The apparatus includes a second body. The second body includes a gauge cutter configured to dislodge solids from an inner wall of a wellbore. The snap ring of the first body is configured to hold a relative position of the second body to the first body in a closed position in response to the snap ring contacting the second body. The first body and the second body cooperatively define an inner volume. The second body defines a second opening. The apparatus includes a shear pin that passes through the second opening and extends into the first body. The shear pin is configured to hold the relative position of the second body to the first body in an open position while the shear pin is intact. The second body is configured to be able to move relative to the first body in response to the shear pin being sheared. The apparatus includes a hollow cylindrical divider disposed within the inner volume. The hollow cylindrical divider defines an inner bore. In the open position, the apparatus defines a first flow path for fluids and solids to pass through the apparatus. The first flow path is defined through the first opening, through the inner bore of the hollow cylindrical divider, and through the gauge cutter. In the open position, the apparatus defines a second flow path for fluids and solids to pass through the apparatus. The second flow path is defined through the first opening, through an annulus surrounding the hollow cylindrical divider, and through the gauge cutter. In the closed position, the second flow path is closed, such that solids remain in the annulus surrounding the hollow cylindrical divider.
This, and other aspects, can include one or more of the following features. In some implementations, the first body includes a first uphole end and a first downhole end. In some implementations, the first opening is located between the first uphole end and the first downhole end. In some implementations, the snap ring is located between the first opening and the first downhole end. In some implementations, the second body includes a second uphole end and a second downhole end. In some implementations, the second body includes an outer wall that extends from the second uphole end to the second downhole end. In some implementations, the second opening is located on and extends through the outer wall. In some implementations, the gauge cutter is located at the second downhole end. In some implementations, the snap ring has an outer profile that complements an inner profile of the second body. In some implementations, the snap ring is configured to hold the relative position of the second body to the first body in the closed position in response to the snap ring contacting the inner profile of the second body. In some implementations, the hollow cylindrical divider defines multiple apertures. In some implementations, the first body includes a connector head located at the first uphole end. In some implementations, the connector head is configured to interface with a sucker rod or wireline. In some implementations, the first body includes a magnet. In some implementations, the magnet is disposed on an outer surface of the first body. In some implementations, the apparatus includes a sensor unit. In some implementations, the sensor unit includes a casing-collar locator, an inclination sensor, a pressure sensor, a temperature sensor, or any combination of these.
Certain aspects of the subject matter described can be implemented as an apparatus. The apparatus includes a first body, a second body, a shear pin, and a divider. The first body includes a coupling. The second body includes a cutter blade. The coupling is separated from contact with the second body in an open position. The coupling is configured to couple the first body to the second body in a closed position in response to the coupling contacting the second body. The first body and the second body cooperatively define an inner volume. The shear pin extends from the second body and into the first body. The shear pin is configured to hold the position of the second body relative to the first body in the open position while the shear pin is intact. The second body is configured to be able to move relative to the first body in response to the shear pin being sheared. The divider is disposed within the inner volume. The divider defines an inner bore. In the open position, the apparatus defines first and second flow paths for fluids and solids to pass through the apparatus. The first flow path is defined through the first body and through the inner bore of the divider. The second flow path is defined through the first body and through an annulus surrounding the divider. In the closed position, the second flow path is closed, such that solids remain in the annulus surrounding the divider.
This, and other aspects, can include one or more of the following features. In some implementations, the divider is threadedly coupled to the first body. In some implementations, the cutter blade is a gauge cutter configured to dislodge solids from an inner wall of a wellbore. In some implementations, the coupling includes a snap ring that has an outer profile that complements an inner profile of the second body. In some implementations, the divider is cylindrical and defines multiple apertures. In some implementations, the first body includes a connector head configured to interface with a sucker rod or wireline. In some implementations, the first body includes a magnet disposed on an outer surface of the first body. In some implementations, the apparatus includes a sensor unit that includes a casing-collar locator, an inclination sensor, a pressure sensor, a temperature sensor, or any combination of these.
Certain aspects of the subject matter described can be implemented as a method. The method is implemented by a gauge cutter apparatus that includes a first body, a second body, a shear pin, and a divider. The first body includes a snap ring. The second body includes a gauge cutter. The first body and the second body define an inner volume. The divider is disposed within the inner volume. The inner volume is separated by the divider into a first flow path through the apparatus and a second flow path through the apparatus. The first flow path is defined through an inner bore of the divider. The second flow path is defined through an annulus surrounding the divider. The second body is coupled to the first body by the shear pin, thereby securing a position of the second body relative to the first body in an open position. During a downhole motion of the apparatus through a tubing in a wellbore, a material is cut by the gauge cutter from an inner wall of the tubing, such that the material is released from the inner wall of the tubing. In response to the gauge cutter cutting the material from the inner wall of the tubing, the shear pin is sheared, thereby allowing the second body to move relative to the first body. During the downhole motion of the apparatus through the tubing, the second body is contacted by the snap ring. In response to the snap ring contacting the second body, the position of the second body relative to the first body is secured in a closed position, thereby closing the second flow path, such that the second flow path ends with the annulus surrounding the divider. During an uphole motion of the apparatus through the tubing, the material is separated by the divider into the first flow path through the apparatus and the closed second flow path into the annulus surrounding the divider. A sample of the material is collected in the annulus surrounding the divider.
This, and other aspects can include one or more of the following features. In some implementations, the first body is disconnected from the second body to access the collected sample. In some implementations, the collected sample is analyzed using an x-ray diffraction test, an acid test, or any combination of these.
The details of one or more implementations of the subject matter of this disclosure are set forth in the accompanying drawings and the description. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
The wellbore gauge cutter apparatus may be used in wellbores to dislodge, scrape, or clean debris from the inner walls of a wellbore casing, or other tubular structure in the wellbore. The apparatus includes a sampling body with sampling collectors or screens that are permeable to fluids. The sampling collectors retain a portion of the particles suspended in the fluid for later analysis at the surface. In use, the apparatus undergoes a running-in-hole (RIH) operation to dislodge debris from an inner wall of the casing. The debris, for example, in the form of particles, is suspended in a fluid in the casing. The apparatus then undergoes a pulling out of hole (POOH) operation in which a portion of the fluid in the casing flows through the gauge cutter apparatus. Another portion of the fluid with suspended particles in the casing flows into the apparatus, and the particles remained trapped within the gauge cutter apparatus. At the surface, the apparatus can be opened to access the collected sample for further analysis.
The apparatus samples the debris dislodged by the apparatus in a single trip. The apparatus may increase the speed of cutting and debris sampling and may reduce errors by eliminating the need to switch tools between runs. Further, the apparatus protects the collected sample during cutting and transportation to the surface, so that the samples may be accurately analyzed. Analyzing the sample can also determine the chemical compositions and natures of the particles. A fit-for-purpose removal well intervention can be designed around the chemical composition and, if applicable, the positions of the particles relative to the wellbore.
The second body 120 includes a cutter blade 121. In the open position (while the shear pin 130 is intact), the second coupling 123 is separated from contact with the second body 120. Once the shear pin 130 has been sheared, the apparatus 100 is referred to as being ‘activated’. Once the apparatus 100 has been activated, the second body 120 is free to move relative to the first body 110. In response to contacting the second body 120, the second coupling 123 is configured to couple the first body 110 to the second body 120 in a closed position. If the second body 120 moves close enough to the first body 110, such that the second coupling 123 of the first body 110 contacts the second body 120, the second coupling 123 snaps to the second body 120 and holds the position of the second body 120 relative to the first body 110 in the closed position. For example, after the shear pin 130 has been sheared, the second body 120 can slide longitudinally toward the first body 110, and once the second coupling 123 contacts the second body 120, the second coupling 123 couples the first body 110 and the second body 120 together in the closed position.
The first body 110 and the second body 120 cooperatively define an inner volume. The divider 140 is disposed within the inner volume. The divider 140 defines an inner bore 141. In the open position, the apparatus 100 defines a first flow path for fluids and solids to pass through the apparatus 100 and a second flow path for fluids and solids to pass through the apparatus 100. The solids can be, for example, solids that have been dislodged by the cutter blade 121 from an inner wall of a wellbore while the apparatus 100 travels through the wellbore. The first flow path is defined through the first body 110 and through the inner bore 141 of the divider 140. The second flow path is defined through the first body 110 and through an annulus 143 surrounding the divider 140. In the open position, both the first flow path and the second flow path are open, such that fluids and solids can pass through the apparatus 100. In the closed position, an end of the second flow path is obstructed by the second body 120 being coupled to the first body 110 by the second coupling 123, thereby closing the second flow path. In the closed position, solids that flow into the annulus 143 remain in the annulus 143. Therefore, in the closed position, the annulus 143 serves as a sampling volume for the apparatus 100.
The cutter blade 121 can have a hollow frustoconical shape, such that fluids and solids can flow through it. In some implementations, the cutter blade 121 is a gauge cutter that is configured to dislodge solids from an inner wall of a wellbore (for example, an inner wall of a tubing disposed in the wellbore). An end of the cutter blade 121 scrapes, cuts, or scours the inner wall of the wellbore as the apparatus 100 travels through the wellbore. In some implementations, the cutter blade 121 is integrally formed with the second body 120. In some implementations, the cutter blade 121 is connected to the second body 120 (for example, by mounting or releasable attachment). In some implementations, the cutter blade 121 is detachable from the second body 120 and replaceable by a different cutter blade. In such implementations, the connection between the cutter blade 121 and the second body 120 can be a snap fit connection, magnetic connection, bolted connection, tongue and groove connection, or any other mechanical connection known in the art. As shown in
The first body 110 can have an uphole end 110a and a downhole end 110b. In some implementations, the first body 110 defines an opening 111 located between the uphole end 110a and the downhole end 110b. In some implementations, the first body 110 includes a connector head 113 located at the uphole end 110a. The connector head 113 can be configured to interface with a sucker rod, coiled tubing, or a wireline (for example, an electric line, a braided line, or a slickline). In some implementations, the second coupling 123 is located between the opening 111 and the downhole end 110b. The second body 120 can have an uphole end 120a and a downhole end 120b. The second body 120 can have an outer wall 120c that extends from the uphole end 120a to the downhole end 120b. The downhole end 120b of the second body 120 can be an open end. Therefore, in some implementations, the inner volume is open to the environment in which the apparatus 100 is located (for example, downhole within a wellbore) via the opening 111 of the first body 110 and the downhole end 120b of the second body 120. In some implementations, the cutter blade 121 is located at the downhole end 120b of the second body 120. In some implementations, the second coupling 123 is a snap ring that has an outer profile that complements an inner profile of the second body 120. In some implementations, the second body 120 defines an opening 125 located on and extending through the outer wall 120c. In some implementations, the shear pin 130 passes through the opening 125 and extends into the first body 110.
In some implementations, the divider 140 is a hollow cylindrical divider. In some implementations, the divider 140 is threadedly coupled to the first body 110. In some implementations, the first flow path is defined through the opening 111, through the inner bore 141 of the divider 140, and through the cutter blade 121. In some implementations, the second flow path is defined through the opening 111, through the annulus 143, and through the cutter blade 121. In the closed position, an end of the second flow path is closed, such that fluids and solids cannot flow into or out of the second flow path through the cutter blade 121. For example, the second body 120 being coupled to the first body 110 by the second coupling 123 closes off communication between the annulus 143 and the cutter blade 121. In some implementations, the divider 140 is permeable to fluids and configured to filter solids of smaller than a predetermined size. For example, the divider 140 can be or include a screen, a permeable partition, a flexible membrane, a rigid membrane, a filter, a fabric mesh, a wire mesh, or any combination of these. For example, the divider 140 can define multiple apertures 140a. The apertures 140a are open spaces through which fluid and solids of smaller than a predetermined size may flow. In some implementations, a width of each of the apertures 140a is in a range of from about 0.1 millimeters (mm) to about 15 mm or from about 0.5 mm to about 10 mm. The width of the apertures 140a can be adjusted to account for larger or smaller solid sizes. The apertures 140a can have a circular shape, a slot/rectangular shape, or any other shape. In some implementations, the apertures 140a have the same shape. In some implementations, the shapes of the apertures 140a vary. The divider 140 can be entirely rigid, entirely flexible, or both rigid and flexible, for example, at different portions of the divider 140. In some implementations, the divider 140 is made of an elastic, stretchable material. In some implementations, the divider 140 is made of plastic, metal, fabric, polymer, elastomer, or any combination of these.
For example, solids that are sufficiently large for conducting analysis may remain in the annulus 143, while solids that are too small for conducting analysis may pass through the apparatus 100. For example, solids with a maximum dimension that is greater than about 10 mm or greater than about 15 mm that flow into the annulus 143 may remain in the annulus 143, while solids with a maximum dimension that is less than about 10 mm or less than about 15 mm may flow out of the annulus 143, through the apertures 140a of the divider 140, into the first flow path, and out of the apparatus 100. In some implementations, the apparatus 100 includes a stop that prevents the second body 120 from moving longitudinally away from the first body 110 past the original position of the second body 120 relative to the first body 110 when the shear pin 130 was intact. In such implementations, once the apparatus 100 is activated and between the open and closed positions, the second body 120 is free to slide longitudinally relative to the first body 110 across the range r labeled in
In
In
The sampling volume (volume of annulus 143) can be adjusted by increasing dimension(s) (for example, longitudinal length and/or diameter) of the first body 110, the second body 120, or both the first body 110 and the second body 120. In some implementations, the longitudinal length of the divider 140 is also increased. In some implementations, the diameter of the divider 140 is decreased. In some implementations, the volume of the annulus 143 (sampling volume) is at least about 0.3 liters (L) or at least about 0.5 liters. In some implementations, the volume of the annulus 143 (sampling volume) is in a range of from about 0.1 L to about 1.5 L, a range of from about 0.3 L to about 1 L, or a range of from about 0.5 L to about 0.75 L. In some implementations, the volume of the annulus 143 (sampling volume) is greater than 1.5 L (see, for example,
The cutting capability of the apparatus 100 can be adjusted by increasing dimension(s) (for example, diameter) of the second body 120, the cutter blade 121, or both the second body 120 and the cutter blade 121. As mentioned previously, in some implementations, the cutter blade 121 can be replaced by a cutter blade of a different size, such that the apparatus 100 can accommodate a differently sized tubing.
The apparatus 600 can include a sensor unit 603. In some implementations, as shown in
At block 704, the second body 120 is coupled to the first body 110 by the shear pin 130. The shear pin 130 secures a position of the second body 120 relative to the first body 110 in the open position at block 704. In some implementations, the shear pin 130 passes through the opening 125 of the second body 120 and extends into the first body 110 to couple the second body 120 to the first body 110 at block 704. The apparatus 100 remains in the open position while the shear pin 130 is intact.
At block 706, a material is cut from an inner wall of a tubing in a wellbore by the cutter blade 121 during a downhole motion of the apparatus 100 through the tubing. Cutting the material from the inner wall of the tubing at block 706 releases the material from the inner wall of the tubing.
In response to cutting the material from the inner wall of the tubing at block 706, the shear pin 130 is sheared at block 708. For example, cutting the material from the inner wall of the tubing by the cutter blade 121 at block 706 can impart a force on the shear pin 130 and cause the shear pin 130 to shear at block 708. Shearing the shear pin 130 at block 708 decouples the first and second bodies 110, 120, such that the second body 120 is allowed to move relative to the first body 110.
At block 710, the second body 120 is contacted by the second coupling 123 during the downhole motion of the apparatus 100 through the tubing. In response to the second coupling 123 contacting the second body 120 at block 710, the position of the second body 120 relative to the first body 110 is secured in the closed position, and the second flow path is closed at block 712. For example, the second coupling 123 re-couples the second body 120 to the first body 110, such that the position of the second body 120 relative to the first body 110 is secured once again. Once re-coupled, the contact between the first and second bodies 110, 120 can close off an end of the second flow path, such that the second flow path ends with the annulus 143. In the closed position, fluids and solids are prevented from flowing from the annulus 143 and directly out of the apparatus 100 through the downhole end 120b of the second body 120.
At block 714, the material (cut from the inner wall of the tubing at block 706) is separated by the divider 140 during an uphole motion of the apparatus 100 through the tubing. The material is separated into the first flow path through the apparatus 100 and the closed second flow path into the annulus 143 at block 714.
At block 716, at least a portion (sample) of the material (that flows into the annulus 143 at block 714) is collected (retained) in the annulus 143 (sampling volume). In some implementations, the first body 110 is disconnected from the second body 120 to access the sample collected at block 716. In some implementations, the sample collected at block 716 is analyzed using an x-ray diffraction test, an acid test, or both.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of what may be claimed, but rather as descriptions of features that may be specific to particular implementations. Certain features that are described in this specification in the context of separate implementations can also be implemented, in combination, in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations, separately, or in any sub-combination. Moreover, although previously described features may be described as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can, in some cases, be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
As used in this disclosure, the terms “a,” “an,” or “the” are used to include one or more than one unless the context clearly dictates otherwise. The term “or” is used to refer to a nonexclusive “or” unless otherwise indicated. The statement “at least one of A and B” has the same meaning as “A, B, or A and B.” In addition, it is to be understood that the phraseology or terminology employed in this disclosure, and not otherwise defined, is for the purpose of description only and not of limitation. Any use of section headings is intended to aid reading of the document and is not to be interpreted as limiting; information that is relevant to a section heading may occur within or outside of that particular section.
As used in this disclosure, the term “about” or “approximately” can allow for a degree of variability in a value or range, for example, within 10%, within 5%, or within 1% of a stated value or of a stated limit of a range.
As used in this disclosure, the term “substantially” refers to a majority of, or mostly, as in at least about 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%, 99.99%, or at least about 99.999% or more.
Values expressed in a range format should be interpreted in a flexible manner to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a range of “0.1% to about 5%” or “0.1% to 5%” should be interpreted to include about 0.1% to about 5%, as well as the individual values (for example, 1%, 2%, 3%, and 4%) and the sub-ranges (for example, 0.1% to 0.5%, 1.1% to 2.2%, 3.3% to 4.4%) within the indicated range. The statement “X to Y” has the same meaning as “about X to about Y,” unless indicated otherwise. Likewise, the statement “X, Y, or Z” has the same meaning as “about X, about Y, or about Z,” unless indicated otherwise.
Particular implementations of the subject matter have been described. Other implementations, alterations, and permutations of the described implementations are within the scope of the following claims as will be apparent to those skilled in the art. While operations are depicted in the drawings or claims in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed (some operations may be considered optional), to achieve desirable results. In certain circumstances, multitasking or parallel processing (or a combination of multitasking and parallel processing) may be advantageous and performed as deemed appropriate.
Moreover, the separation or integration of various system modules and components in the previously described implementations should not be understood as requiring such separation or integration in all implementations, and it should be understood that the described components and systems can generally be integrated together or packaged into multiple products.
Accordingly, the previously described example implementations do not define or constrain the present disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of the present disclosure.