GDF-15 AS A DIAGNOSTIC MARKER FOR MELANOMA

Information

  • Patent Application
  • 20200386758
  • Publication Number
    20200386758
  • Date Filed
    May 18, 2020
    4 years ago
  • Date Published
    December 10, 2020
    4 years ago
Abstract
The present invention relates to methods for predicting the probability of survival of a human melanoma cancer patient based on levels of human GDF-15, and to apparatuses and kits which can be used in these methods.
Description
FIELD OF THE INVENTION

The present invention relates to methods for predicting the probability of survival of a human melanoma cancer patient, and to apparatuses and kits which can be used in these methods.


BACKGROUND

The serum level of lactate dehydrogenase (sLDH) is the most widely used prognostic biomarker in melanoma and has been incorporated in the AJCC staging system for melanoma patients with distant metastases since 2001 (Balch, C M et al., J Clin Oncol/19/3635-48. 2001). sLDH had been identified as an independent prognostic marker for patients with unresectable disease by different research groups (Sirott, M N et al., Cancer/72/3091-8. 1993; Eton, 0 et al., J Clin Oncol/16/1103-11. 1998; Manola, J et al., J Clin Oncol/18/3782-93. 2000). Results from a comprehensive meta-analysis based on a large pool of clinical studies (31,857 patients with various solid tumors) confirmed the consistent effect of elevated LDH on OS (HR=1.48, 95% Cl=1.43 to 1.53) across all disease subgroups and stages, with particular relevance for metastatic tumors. While the exact mechanism underlying tumor promotion by LDH remains unknown and may also be related to hypoxia and metabolic reprogramming via a Warburg effect, LDH also reflects high tumor burden (Zhang, J., Yao, Y.-H., Li, B.-G., Yang, Q., Zhang, P.-Y., and Wang, H.-T. (2015). Prognostic value of pretreatment serum lactate dehydrogenase level in patients with solid tumors: a systematic review and meta-analysis. Scientific Reports 5, 9800). Still, there is a need for improved prognostic biomarkers for melanoma patients.


Serum concentrations of S100B (sS100B) are widely used mainly in Europe to screen patients without evidence of disease to detect recurrences early (Pflugfelder, A et al., J Dtsch Dermatol Ges/11 Suppl 6/1-116, 1-26. 2013). A meta-analysis by Mocellin et al. summarized the evidence on the suitability of sS100B to predict patients' survival. Twenty-two series enrolling 3393 patients comprising all stages were included in this analysis. Serum S100B positivity was associated with significantly poorer survival in melanoma patients of all stages especially in the subgroup of stage I to III patients independent from other prognostic factors (Mocellin, S et al., Int J Cancer/123/2370-6. 2008). In prior studies, it was demonstrated that sS100B and sLDH had independent impact on prognosis of patients with distant metastases and the combined analysis of both markers might be used to select patients for complete metastasectomy (Weide, B et al., PLoS One/8/e81624. 2013; Weide, B et al., Br J Cancer/107/422-8. 2012). However, despite this large evidence, no worldwide consensus exists on its implementation in the routine clinical setting in melanoma patients.


Growth and Differentiation Factor-15 (GDF-15, also known as Macrophage Inhibitor Cytokine-1 (MIC-1), Placental TGF-β (PTGFβ), Placental Bone Morphogenetic Protein (PLAB), Nonsteroidal Anti-inflammatory Drug-Activated Gene (NAG1) or Prostate-Derived Factor (PDF) is over-expressed in tumor cells of several types of solid cancers (Mimeault, M et al., Br J Cancer/108/1079-91. 2013; Bock, A J et al., Int J Gynecol Cancer/20/1448-55. 2010; Zhang, L et al., Oral Oncol/45/627-32. 2009). GDF-15 is induced by a number of tumor suppressor pathways including p53, GSK-33, and EGR-1 (Wang, X et al., Biochem Pharmacol/85/597-606. 2013) and there is also evidence that GDF-15 itself can exert tumor suppressive effects, as shown in nude mouse xenograft models (Martinez, J M et al., J Pharmacol Exp Ther/318/899-906. 2006; Eling, T E et al., J Biochem Mol Biol/39/649-55. 2006) and in transgenic mice (Baek, S J et al., Mol Pharmacol/59/901-8. 2001). With regard to tumor cells both pro- and anti-apoptotic effects have been described for GDF-15 (Mimeault, M et al., Br J Cancer/108/1079-91. 2013; Baek, S J et al., Mol Pharmacol/59/901-8. 2001; Zimmers, T A et al., J Cancer Res Clin Oncol/136/571-6. 2010; Jones, M F et al., Cell Death Differ/2015) and a multitude of possible signaling pathways has been suggested (Mimeault, M and Batra S K, J Cell Physiol/224/626-35. 2010). Further complexity was added recently when the unprocessed pro-protein was shown to go into the nucleus where it altered TGF-beta dependent SMAD signaling and thereby transcription patterns (Min, K W et al., Oncogene/2015). In vivo, constitutive GDF-15 overexpression reduced tumor formation but increased metastasis in an animal model for prostate cancer (Husaini, Y et al., PLoS One/7/e43833. 2012). GDF-15 was further shown to induce cancer cachexia (Johnen, H et al., Nat Med/13/1333-40. 2007). Similarly, patent applications WO 2005/099746 and WO 2009/021293 relate to an anti-human-GDF-15 antibody (Mab26) capable of antagonizing effects of human GDF-15 (hGDF-15) on tumor-induced weight loss in vivo in mice. WO 2014/049087 and PCT/EP2015/056654 relate to monoclonal antibodies to hGDF-15 and medical uses thereof.


Clinically, a high GDF-15 serum level (sGDF-15) was found to correlate with the presence of bone metastases and poor prognosis in prostate cancer (Selander, K S et al., Cancer Epidemiol Biomarkers Prev/16/532-7. 2007). In colorectal cancer, patients with high plasma levels showed shorter time to recurrence and reduced overall survival (Wallin, U et al., Br J Cancer/104/1619-27. 2011). The allelic H6D polymorphism in the GDF-15 gene was further identified as independent predictor of metastasis at the time of diagnosis (Brown, DA, Clin Cancer Res/9/2642-50. 2003). The association between high sGDF-15 and poor outcome was further shown for thyroid, pancreatic, gastric, ovarian and other cancers (Mimeault, M and Batra S K, J Cell Physiol/224/626-35. 2010; Bauskin, A R et al., Cancer Res/66/4983-6. 2006; Brown, D A et al., Clin Cancer Res/15/6658-64. 2009; Blanco-Calvo, M et al., Future Oncol/10/1187-202. 2014; Staff, A C et al., Gynecol Oncol/118/237-43. 2010). Similar findings have also been reported for the level of GDF-15 tissue expression as assessed by immunohistochemistry (Wallin, U et al., Br J Cancer/104/1619-27. 2011). In melanoma, GDF-15 expression was found to increase from benign nevi over primary melanoma to melanoma metastases (Mauerer, A et al., Exp Dermatol/20/502-7. 2011; Boyle, G M et al., J Invest Dermatol/129/383-91. 2009). Serum concentrations of GDF-15 were indicative for metastasis in patients with uveal melanoma (Suesskind, D et al., Graefes Arch Clin Exp Ophthalmol/250/887-95. 2012) and correlated with stage in patients with cutaneous melanoma (Kluger, H M et al., ClinCancer Res/17/2417-25. 2011). Riker et al. compared gene expression in melanoma metastasis and primary tumor, and identified GDF-15 as the only soluble factor among the top 5 genes correlating with metastasis (Riker, A I et al., BMC Med Genomics/1/13. 2008). Boyle et al. (Boyle, G M et al., J Invest Dermatol/129/383-91. 2009) found by immunohistochemistry that 15 of 22 primary melanomas expressed low levels of GDF-15 whereas 16 of 16 melanoma metastasis showed strong expression. Furthermore, knock-down of GDF-15 in three melanoma cell lines results in decreased tumorigenicity in the same study. Before that, Talantov et al. (Talantov, D et al., Clin Cancer Res/11/7234-42. 2005) had already identified GDF-15 in melanoma metastases, but not in nevi and normal lymph nodes. Similar findings were reported in a study of Mauerer et al. who found GDF-15 to be preferentially expressed in metastatic tumors and in some primary melanomas, but not in melanocytic nevi (Mauerer, A et al., Exp Dermatol/20/502-7. 2011). However, a direct role of GDF-15 in metastasis has only been shown in prostate cancer where constitutive overexpression of GDF-15 slowed cancer development but increased metastases (Husaini, Y et al., PLoS One/7/e43833. 2012). Clinical relevance of GDF-15 serum levels in melanoma patients was reported in two studies. GDF-15 serum concentrations were associated with metastasis in a cohort of 188 patients with metastatic (n=170) or non-metastatic (n=18) uveal melanoma (Suesskind, D et al., Graefes Arch Clin Exp Ophthalmol/250/887-95. 2012). Finally, Kluger et al. reported a correlation between plasma levels of GDF-15 and stage in 216 patients with cutaneous melanoma (Kluger, H M et al., ClinCancer Res/17/2417-25. 2011). In contrast to these findings, however, some studies have suggested an anti-tumorigenic role of GDF-15 (see, for instance, Liu T et al: “Macrophage inhibitory cytokine 1 reduces cell adhesion and induces apoptosis in prostate cancer cells.” Cancer Res., vol. 63, no. 16, 1 Aug. 2003, pp. 5034-5040).


Thus, from the above-mentioned studies, and in view of the complex functional role of human GDF-15 (hGDF-15) in various cancers and its different effects on primary tumors and metastases in prostate cancer, it remained, however, unknown whether hGDF-15 could be used as a prognostic clinical marker for patient survival in melanoma.


Thus, there is a need in the art for prognostic biomarkers for melanoma, and in particular for improved prognostic biomarkers in melanoma, and for methods which allow to predict patient survival in melanoma more reliably.


DESCRIPTION OF THE INVENTION

The present invention meets the above needs and solves the above problems in the art by providing the embodiments described below:


In particular, in order to solve the above problems, the present inventors set out to investigate the impact of serum GDF-15 levels on overall survival (OS) of melanoma patients. In the course of these studies, the present inventors have surprisingly found that the probability of survival in melanoma patients significantly decreases with increasing hGDF-15 levels in the patient sera and vice versa. For instance, the inventors have shown that a high serum level of hGDF-15 is a potent biomarker for poor overall survival in tumor-free stage III and unresectable stage IV melanoma patients.


Thus, according to the invention, the probability of survival in melanoma patients inversely correlates with hGDF-15 levels.


Moreover, in the studies of the inventors, Cox regression analysis revealed that the knowledge of hGDF-15 serum levels adds independent prognostic information, e.g. if considered in combination with the M-category, and is superior to the established biomarker LDH in patients with distant metastasis.


Therefore, according to the invention, hGDF-15 levels can be used as a biomarker for the prediction of survival. This biomarker is advantageous, e.g. because it has a prognostic value that is independent of known biomarkers such as LDH. This means that if hGDF-15 levels are used for the prediction of melanoma patient survival according to the invention, they may, in a preferred aspect of the invention, be combined with additional biomarkers.


According to the invention, the combination of hGDF-15 levels as a biomarker with additional biomarkers such as LDH or S100B provides an improved prediction of survival, which is improved even when compared to the use of hGDF-15 levels alone.


Additionally, the use of hGDF-15 level as a biomarker is also advantageous because it allows to provide a prediction of survival that includes sub-groups of melanoma patients such as macroscopically tumor-free stage III patients, for which S100B represents the only available predictive and diagnostic marker.


Thus, the present invention provides improved means to predict survival of melanoma patients by providing the preferred embodiments described below:

  • 1. A method for predicting the probability of survival of a human melanoma patient, wherein the method comprises the steps of:
    • a) determining the level of hGDF-15 in a human blood sample obtained from said patient; and b) predicting said probability of survival based on the determined level of hGDF-15 in said human blood sample; wherein a decreased level of hGDF-15 in said human blood sample indicates an increased probability of survival.
  • 2. The method according to item 1, wherein step b) comprises comparing said level of hGDF-15 determined in step a) with a hGDF-15 threshold level, wherein said probability is predicted based on the comparison of said level of hGDF-15 determined in step a) with said hGDF-15 threshold level; and wherein a level of hGDF-15 in said human blood sample which is decreased compared to said hGDF-15 threshold level indicates that the probability of survival is increased compared to a probability of survival at or above said hGDF-15 threshold level.
  • 3. The method according to item 1 or 2, wherein the human blood sample is a human serum sample.
  • 4. The method according to item 3, wherein the hGDF-15 threshold level is a level selected from the range of between 1.1 ng/ml and 2.2 ng/ml, wherein the hGDF-15 threshold level is preferably a hGDF-15 level selected from the range of between 1.2 ng/ml and 2.0 ng/ml, wherein the hGDF-15 hGDF-15 threshold level is more preferably a hGDF-15 level selected from the range of between 1.3 ng/ml and 1.8 ng/ml, and wherein the hGDF-15 threshold level is still more preferably a hGDF-15 level selected from the range of between 1.4 ng/ml and 1.6 ng/ml.
  • 5. The method according to item 4, wherein the hGDF-15 threshold level is 1.5 ng/ml.
  • 6. The method according to item 3, wherein the hGDF-15 threshold level is a level selected from the range of between 3.3 ng/ml and 4.3 ng/ml, wherein the hGDF-15 threshold level is preferably a level selected from the range of between 3.6 ng/ml and 4.0 ng/ml, and wherein the hGDF-15 threshold level is more preferably 3.8.
  • 7. The method according to any one of the preceding items,
    • wherein step a) further comprises determining the level of lactate dehydrogenase in said human blood sample, and
    • wherein in step b), said probability of survival is also predicted based on the determined level of lactate dehydrogenase in said human blood sample; and wherein a decreased level of lactate dehydrogenase in said human blood sample indicates an increased probability of survival.
  • 8. The method according to item 7, wherein step b) comprises comparing said level of lactate dehydrogenase determined in step a) with a lactate dehydrogenase threshold level, wherein said probability is also predicted based on the comparison of said level of lactate dehydrogenase determined in step a) with said lactate dehydrogenase threshold level; and wherein a level of lactate dehydrogenase in said human blood sample which is decreased compared to said lactate dehydrogenase threshold level or is at said lactate dehydrogenase threshold level indicates that the probability of survival is increased compared to a probability of survival above said lactate dehydrogenase threshold level.
  • 9. The method according to any one of the preceding items,
    • wherein step a) further comprises determining the level of S100B in said human blood sample, and wherein in step b), said probability of survival is also predicted based on the determined level of S100B in said human blood sample; and wherein a decreased level of S100B in said human blood sample indicates an increased probability of survival.
  • 10. The method according to item 9, wherein step b) comprises comparing said level of S100B determined in step a) with a S100B threshold level, wherein said probability is predicted based on the comparison of said level of S100B determined in step a) with said S100B threshold level; and wherein a level of S100B in said human blood sample which is decreased compared to said S100B threshold level or is at said S100B threshold level indicates that the probability of survival is increased compared to a probability of survival above said S100B threshold level.
  • 11. The method according to any of the preceding items, wherein in step b), said probability of survival is also predicted based on the age of said patient; and wherein an increased age indicates a decreased probability of survival.
  • 12. The method according to item 11, wherein step b) comprises comparing said age of said patient to a threshold age, wherein said probability is predicted based on the comparison of said age of said patient with said threshold age; and wherein an age of said patient which is equal to or increased compared to said threshold age indicates that the probability of survival is decreased compared to a probability of survival below said threshold age.
  • 13. The method according to item 12, wherein said threshold age is selected from the range of 60 to 65 years.
  • 14. The method according to item 13, wherein said threshold age is 63 years.
  • 15. The method according to any one of the preceding items, wherein in step b), said probability of survival is also predicted based on metastasis; and wherein the presence of metastases in visceral organs other than lung indicates that the probability of survival is decreased as compared to the probability of survival when metastases are absent from visceral organs other than lung.
  • 16. The method according to any one of the preceding items, wherein the human melanoma patient is not a tumor-free melanoma stage IV patient.
  • 17. The method according to any one of the preceding items, wherein the human melanoma patient is a tumor-free stage III melanoma patient or an unresectable stage IV melanoma patient.
  • 18. The method according to any one of items 1-16, wherein the human melanoma patient is a stage IV melanoma patient.
  • 19. The method according to any one of items 1-16, wherein the human melanoma patient is a stage III melanoma patient.
  • 20. The method according to item 17, wherein the human melanoma patient is a tumor-free stage III melanoma patient.
  • 21. The method according to item 17, wherein the human melanoma patient is an unresectable stage IV melanoma patient.
  • 22. The method according to any of the preceding items, wherein step a) comprises determining the level of hGDF-15 by using one or more antibodies capable of binding to hGDF-15 or an antigen-binding portion thereof.
  • 23. The method according to item 22, wherein the one or more antibodies capable of binding to hGDF-15 or the antigen-binding portion thereof form a complex with hGDF-15.
  • 24. The method according to item 22 or 23, wherein the one or more antibodies comprise at least one polyclonal antibody.
  • 25. The method according to item 22, 23 or 24, wherein the one or more antibodies or the antigen-binding portion comprise at least one monoclonal antibody or an antigen-binding portion thereof.
  • 26. The method according to item 25, wherein the binding is binding to a conformational or discontinuous epitope on hGDF-15, and wherein the conformational or discontinuous epitope is comprised by the amino acid sequences of SEQ ID No: 25 and SEQ ID No: 26.
  • 27. The method according to item 25 or 26, wherein the antibody or antigen-binding portion thereof comprises a heavy chain variable domain which comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 3, a CDR2 region comprising the amino acid sequence of SEQ ID NO: 4 and a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5, and wherein the antibody or antigen-binding portion thereof comprises a light chain variable domain which comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 6, a CDR2 region comprising the amino acid sequence ser-ala-ser and a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7.
  • 28. The method according to any one of claims 1 to 27, wherein in step a), the level of hGDF-15 is determined by capturing hGDF-15 with an antibody or antigen-binding fragment thereof according to any one of claims 25 to 27 and by detecting hGDF-15 with a polyclonal antibody, or by detecting hGDF-15 with a monoclonal antibody or antigen-binding fragment thereof which binds to a different epitope than the antibody which captures hGDF-15.
  • 29. The method according to any one of the preceding items, wherein the method is an in vitro method.
  • 30. The method according to any one of the preceding items, wherein in step a), the level of hGDF-15 in the human blood sample is determined by an enzyme linked immunosorbent assay.
  • 31. The method according to any one of items 1-29, wherein in step a), the level of hGDF-15 in the human blood sample is determined by an electrochemiluminescence assay.
  • 32. The method according to item 31, wherein the electrochemiluminescence assay is a sandwich detection method comprising a step of forming a detection complex between
    • (A) streptavidin-coated beads;
    • (B) a biotinylated first antibody or antigen-binding portion thereof capable of binding to hGDF-15;
    • (C) hGDF-15 from the sample; and
    • (D) a ruthenium complex-labelled second antibody or antigen-binding portion thereof capable of binding to hGDF-15;
    • wherein said detection complex has the structure (A)-(B)-(C)-(D), and wherein the biotinylated first antibody or antigen-binding portion thereof binds to a first hGDF-15 epitope and the ruthenium complex-labelled second antibody or antigen-binding portion thereof binds to a second hGDF-15 epitope which is different from said first hGDF-15 epitope,
    • wherein the method further comprises a step of detecting the detection complex by measuring electrochemiluminescence,
    • and wherein the level of hGDF-15 in the human blood sample is determined based on the electrochemiluminescence measurement.
  • 33. An apparatus configured to perform the method according to any one of items 1-32.
  • 34. The apparatus according to item 25, wherein the apparatus is an electrochemiluminescence analyzer configured to perform the method according to item 31 or item 32.
  • 35. A detection kit comprising:
    • (i) streptavidin-coated beads;
    • (ii) a biotinylated first antibody or antigen-binding portion thereof capable of binding to hGDF-15;
    • (iii) recombinant hGDF-15, preferably in form of a buffered solution comprising recombinant hGDF-15, the buffered solution having a pH in the range of 4 to 7;
    • (iv) a ruthenium complex-labelled second antibody or antigen-binding portion thereof capable of binding to hGDF-15; and optionally
    • (v) instructions for use, preferably instructions for use in a method according to items 1-32; and preferably
    • (vi) a container containing said recombinant hGDF-15, wherein the surface of the container which is in contact with recombinant hGDF-15 is coated with a non-adhesive material.
    • wherein the biotinylated first antibody or antigen-binding portion thereof is capable of binding to a first hGDF-15 epitope and the ruthenium complex-labelled second antibody or antigen-binding portion thereof is capable of binding to a second hGDF-15 epitope which is different from said first hGDF-15 epitope.
  • 36. The detection kit according to item 35, wherein one of the first antibody or antigen-binding portion thereof capable of binding to hGDF-15 and second antibody or antigen-binding portion thereof capable of binding to hGDF-15 is an antibody or antigen-binding portion thereof according to any one of items 26 to 28.
  • 37. Use of a detection kit of any one of items 35 to 36 in an in vitro method for the prediction of the probability of survival of a human melanoma patient.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1C: Overall survival of distinct melanoma patient populations according to GDF-15 serum levels. Kaplan-Meier curves are shown for overall survival of 468 tumor-free stage III (FIG. 1A), 206 unresectable stage IV (FIG. 1B) and 87 tumor-free stage IV (FIG. 10) patients with either normal (<1.5 ng/mL) or elevated (1.5 ng/mL) GDF-15 levels. Censoring is indicated by vertical lines; p-values were calculated by log rank statistics. In FIGS. 1A and 1B, the upper curves are those for normal hGDF-15 levels, and the lower curves are those for elevated hGDF-15 levels.



FIG. 2: Combinations of S100B and GDF-15 serum levels and their correlation with overall survival of stage III patients. Using a Cox regression model, S100B and hGDF-15 levels were shown to independently predict prognosis of tumor-free stage III patients. Kaplan-Meier curves of overall survival for patients with different biomarker combinations are presented for 466 patients. Censoring is indicated by vertical lines. In FIG. 2, the highest curve is the curve for normal hGDF-15 levels and normal S100B levels, the 2nd highest curve is the curve for elevated hGDF-15 levels, the 2nd lowest curve is the curve for elevated S100B levels, and the lowest curve is the one for elevated hGDF-15 levels and elevated S100B levels.



FIGS. 3A-3C: Overall survival of unresectable stage IV patients according to combinations of serum levels of LDH and GDF-15, and the pattern of distant metastasis. The independent prognostic impact of GDF-15 serum levels on overall survival is illustrated for M-categories M1a/b (FIG. 3A) as well as for M1c patients (FIG. 3B). Broken lines indicate all patients of the given M-category. Continuous lines represent sub-groups with low (blue) or high (red) GDF-15 levels, respectively. Differences in OS between patients with high or low GDF-15 levels were significant for M1a/b and for M1c patients (log-rank p-values 0.047 and 0.003, respectively). In (FIG. 3C), overall survival is displayed according to the number of unfavorable values considering all 3 independent prognostic factors according to model 1 of Cox regression analysis (LDH levels, pattern of visceral metastasis, and GDF-15 levels). The order of curves (i.e. the order from the highest curve to the lowest curve) in the legend contained in panels (A) to (C) of the figure reflects the order of curves in the respective panels.



FIGS. 4A-4B: Overall survival correlates with GDF-15 serum levels in melanoma patients. 762 patients were randomly assigned to two cohorts. In the identification cohort (254 patients), different cut-off values were tested by Kaplan-Meier analysis and log rank tests to obtain the best possible discrimination between patients with high and low GDF-15 serum levels. Overall survival of patients of the identification cohort according to the optimized cut-off point (<1.5 ng/mL≤vs. ng/mL) is shown in (FIG. 4A). Differences in overall survival were confirmed in 508 patients of the validation cohort (FIG. 4B). Censoring is indicated by vertical lines; p-values were calculated by log rank statistics. In FIGS. 4A and 4B, the upper curves are those for normal hGDF-15 levels, and the lower curves are those for elevated hGDF-15 levels.



FIG. 5A-5C: Overall survival according to S100B serum levels. Kaplan-Meier curves are shown for overall survival of 466 tumor-free stage III (FIG. 5A), 193 unresectable stage IV (FIG. 5B) and 83 tumor-free stage IV (FIG. 5C) patients. Patients were categorized based on S100B serum levels (normal vs. elevated). Censoring is indicated by vertical lines; p-values were calculated by log rank statistics. In FIGS. 5A to 5C, the upper curves are those for normal S100B levels, and the lower curves are those for elevated S100B levels.



FIG. 6: Overall survival of stage III patients according to the number of unfavorable values considering serum levels of GDF-15, S100B, age, and sub-stage. Model 2 of Cox regression analysis (Table 2) revealed an independent negative prognostic impact for GDF-15 levels >1.5 ng/mL, for elevated S100B levels, for age <63 years, and for sub-stage IIIC. Patients were now stratified according to the number of unfavorable values among those four factors. The resulting Kaplan-Meier curves of overall survival are presented and censoring is indicated by vertical lines. The highest curve is the curve, wherein all factors are favorable. The 2nd highest curve is the curve, wherein one factor is unfavorable. The 3rd highest curve is the curve, wherein two factors are unfavorable. The 2nd lowest curve is the curve, wherein three factors are unfavorable. The lowest curve is the curve, wherein all factors are unfavorable.



FIG. 7: Overall survival of unresectable stage IV patients according to the number of unfavorable values considering serum levels of GDF-15, S100B, the pattern of distant metastasis, and age. Model 2 of Cox regression analysis (Table 3) revealed an independent negative prognostic impact for GDF-15 levels >1.5 ng/mL, for elevated S100B levels, for the metastatic involvement of visceral organs other than lung, and for age of 63 years or older. Patients were thus stratified according to the number of unfavorable factors. The resulting Kaplan-Meier curves for overall survival are shown and censoring is indicated by vertical lines. The highest curve is the curve, wherein all factors are favorable. The 2nd highest curve is the curve, wherein one factor is unfavorable. The 3rd highest curve is the curve, wherein two factors are unfavorable. The 2nd lowest curve is the curve, wherein three factors are unfavorable. The lowest curve is the curve, wherein all factors are unfavorable.



FIGS. 8A-8B: Overall survival subsequent to serum sampling of stage III patients according to combinations of different factors. A nomogram (FIG. 8A) was developed for tumor-free stage III patients using the nomogram function of R considering the relative impact of single independent factors according to multivariate analysis (sGDF-15, sS100B, pattern of loco-regional metastasis). A risk score ranging between 0 and 266 points was calculated for 466 stage III patients with complete data. In (FIG. 8B), Kaplan-Meier curves of overall survival subsequent to serum sampling is displayed for different risk score categories. Censoring is indicated by vertical lines.



FIGS. 9A-9D: Overall survival subsequent to serum sampling of unresectable stage IV patients according to combinations of different factors. GDF-15 serum levels have independent impact on overall survival of unresectable stage IV patients in addition to the M category. This is illustrated by the significant differences in OS according to sGDF-15 in both, M1a/b patients (FIG. 9A), and M1c patients (FIG. 9B). A nomogram (FIG. 9C) was developed for unresectable stage IV patients using the nomogram function of R considering the relative impact of single independent factors according to multivariate analysis (sGDF-15, sS100B, CNS involvement, and number of involved distant sites). A risk score ranging between 0 and 334 points was calculated for 193 unresectable stage IV patients with complete data. In (FIG. 9D), Kaplan-Meier curves of overall survival subsequent to serum sampling is displayed for different risk score categories. Censoring is indicated by vertical lines.



FIGS. 10A-10C: Correlations of sGDF-15 with stage/disease status and sLDH. Serum GDF-15 levels are shown for tumor-free stage III (n=468), tumor-free stage IV patients (n=87) and unresectable stage IV patients (n=206) (FIG. 10A). In unresectable stage IV patients, sGDF-15 is presented for according to the number of distant metastases (FIG. 10B) or stratified according to sLDH (FIG. 10C). Red bars indicate median levels of GDF-15; **p<0.01; *** p<0.001 using Mann Whitney tests.



FIGS. 11A-11B: Overall survival subsequent to serum sampling correlates with GDF-15 serum levels in melanoma patients. 761 patients were randomly assigned to two cohorts. In the identification cohort (254 patients), different cut-off values were tested by Kaplan-Meier analysis and log rank tests to obtain the best possible discrimination between patients with high and low GDF-15 serum levels. Overall survival subsequent to serum sampling of patients of the identification cohort according to the optimized cut-off point (<1.5 ng/mL vs. 1.5 ng/mL) is shown in (FIG. 11A). Differences in overall survival subsequent to serum sampling were confirmed in 507 patients of the validation cohort (FIG. 11B). Censoring is indicated by vertical lines; p-values were calculated by log rank statistics.



FIGS. 12A-12I: Association of sGDF-15, sS100B and sLDH with OS according to time-point of serum sampling in tumor-free stage III patients. Overall survival of tumor-free stage III patients according to sGDF-15 (left), sS100B (middle) and sLDH (right) according to the time point of last recurrence before serum sampling. Patients were categorized as being tumor-free for less than 6 months (FIGS. 12A-120), for between 6 months and 2 years (FIGS. 12D-12F) or for more than 2 years (FIGS. 12G-12I) since detection of last metastasis. Censoring is indicated by vertical lines; p-values were calculated by log rank statistics.



FIGS. 13A-13I: Association of sGDF-15, sS100B and sLDH with OS according to time-point of serum sampling in unresectable stage IV patients. Overall survival of unresectable stage IV patients according to sGDF-15 (left), S100B (middle) and LDH (right) according to the time span since diagnosis of stage IV disease. The first distant metastasis was detected within 6 months (FIGS. 13A-130), between 6 months and 2 years (FIGS. 13D-13F) and more than 2 years (FIGS. 13G-13I) before serum sampling. Censoring is indicated by vertical lines; p-values were calculated by log rank statistics.



FIGS. 14A-14C: Overall survival subsequent to serum sampling according to S100B serum levels. Kaplan-Meier curves are shown for overall survival subsequent to serum sampling of 466 tumor-free stage III (FIG. 14A), 83 tumor-free stage IV (FIG. 14B) and 193 unresectable stage IV (FIG. 14C) patients. Patients were categorized based on S100B serum levels (normal vs. elevated). Censoring is indicated by vertical lines; p-values were calculated by log rank statistics.





DETAILED DESCRIPTION OF THE INVENTION
Definitions and General Techniques

Unless otherwise defined below, the terms used in the present invention shall be understood in accordance with their common meaning known to the person skilled in the art.


The term “antibody” as used herein refers to any functional antibody that is capable of specific binding to the antigen of interest, as generally outlined in chapter 7 of Paul, W. E. (Ed.).: Fundamental Immunology 2nd Ed. Raven Press, Ltd., New York 1989, which is incorporated herein by reference. Without particular limitation, the term “antibody” encompasses antibodies from any appropriate source species, including chicken and mammalian such as mouse, goat, non-human primate and human. Preferably, the antibody is a humanized antibody. The antibody is preferably a monoclonal antibody which can be prepared by methods well-known in the art. The term “antibody” encompasses an IgG-1, -2, -3, or -4, IgE, IgA, IgM, or IgD isotype antibody. The term “antibody” encompasses monomeric antibodies (such as IgD, IgE, IgG) or oligomeric antibodies (such as IgA or IgM). The term “antibody” also encompasses—without particular limitations—isolated antibodies and modified antibodies such as genetically engineered antibodies, e.g. chimeric antibodies.


The nomenclature of the domains of antibodies follows the terms as known in the art. Each monomer of an antibody comprises two heavy chains and two light chains, as generally known in the art. Of these, each heavy and light chain comprises a variable domain (termed VH for the heavy chain and VL for the light chain) which is important for antigen binding. These heavy and light chain variable domains comprise (in an N-terminal to C-terminal order) the regions FR1, CDR1, FR2, CDR2, FR3, CDR3, and FR4 (FR, framework region; CDR, complementarity determining region which is also known as hypervariable region). The identification and assignment of the above-mentioned antibody regions within the antibody sequence is generally in accordance with Kabat et al. (Sequences of proteins of immunological interest, U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda, Md. 1983), or Chothia et al. (Conformations of immunoglobulin hypervariable regions. Nature. 1989 Dec. 21-28; 342(6252):877-83.), or may be performed by using the IMGTN-QUEST software described in Giudicelli et al. (IMGTN-QUEST, an integrated software program for immunoglobulin and T cell receptor V-J and V-D-J rearrangement analysis. Nucleic Acids Res. 2004 Jul. 1; 32 (Web Server issue):W435-40.), which is incorporated herein by reference. Preferably, the antibody regions indicated above are identified and assigned by using the IMGTN-QUEST software.


A “monoclonal antibody” is an antibody from an essentially homogenous population of antibodies, wherein the antibodies are substantially identical in sequence (i.e. identical except for minor fraction of antibodies containing naturally occurring sequence modifications such as amino acid modifications at their N- and C-termini). Unlike polyclonal antibodies which contain a mixture of different antibodies directed to either a single epitope or to numerous different epitopes, monoclonal antibodies are directed to the same epitope and are therefore highly specific. The term “monoclonal antibody” includes (but is not limited to) antibodies which are obtained from a monoclonal cell population derived from a single cell clone, as for instance the antibodies generated by the hybridoma method described in Köhler and Milstein (Nature, 1975 Aug. 7; 256(5517):495-7) or Harlow and Lane (“Antibodies: A Laboratory Manual” Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1988). A monoclonal antibody may also be obtained from other suitable methods, including phage display techniques such as those described in Clackson et al. (Nature. 1991 Aug. 15; 352(6336):624-8) or Marks et al. (J Mol Biol. 1991 Dec. 5; 222(3):581-97). A monoclonal antibody may be an antibody that has been optimized for antigen-binding properties such as decreased Kd values, optimized association and dissociation kinetics by methods known in the art. For instance, Kd values may be optimized by display methods including phage display, resulting in affinity-matured monoclonal antibodies. The term “monoclonal antibody” is not limited to antibody sequences from particular species of origin or from one single species of origin. Thus, the meaning of the term “monoclonal antibody” encompasses chimeric monoclonal antibodies such as humanized monoclonal antibodies.


“Humanized antibodies” are antibodies which contain human sequences and a minor portion of non-human sequences which confer binding specificity to an antigen of interest (e.g. human GDF-15). Typically, humanized antibodies are generated by replacing hypervariable region sequences from a human acceptor antibody by hypervariable region sequences from a non-human donor antibody (e.g. a mouse, rabbit, rat donor antibody) that binds to an antigen of interest (e.g. human GDF-15). In some cases, framework region sequences of the acceptor antibody may also be replaced by the corresponding sequences of the donor antibody. In addition to the sequences derived from the donor and acceptor antibodies, a “humanized antibody” may either contain other (additional or substitute) residues or sequences or not. Such other residues or sequences may serve to further improve antibody properties such as binding properties (e.g. to decrease Kd values) and/or immunogenic properties (e.g. to decrease antigenicity in humans). Non-limiting examples for methods to generate humanized antibodies are known in the art, e.g. from Riechmann et al. (Nature. 1988 Mar. 24; 332(6162):323-7) or Jones et al. (Nature. 1986 May 29-Jun. 4; 321(6069):522-5).


The term “human antibody” relates to an antibody containing human variable and constant domain sequences. This definition encompasses antibodies having human sequences bearing single amino acid substitutions or modifications which may serve to further improve antibody properties such as binding properties (e.g. to decrease Kd values) and/or immunogenic properties (e.g. to decrease antigenicity in humans). The term “human antibody” excludes humanized antibodies where a portion of non-human sequences confers binding specificity to an antigen of interest.


An “antigen-binding portion” of an antibody as used herein refers to a portion of an antibody that retains the capability of the antibody to specifically bind to the antigen (e.g. hGDF-15, PD-1, PD-L1 or CTLA4). This capability can, for instance, be determined by determining the capability of the antigen-binding portion to compete with the antibody for specific binding to the antigen by methods known in the art. The antigen-binding portion may contain one or more fragments of the antibody. Without particular limitation, the antigen-binding portion can be produced by any suitable method known in the art, including recombinant DNA methods and preparation by chemical or enzymatic fragmentation of antibodies. Antigen-binding portions may be Fab fragments, F(ab′) fragments, F(ab′)2 fragments, single chain antibodies (scFv), single-domain antibodies, diabodies or any other portion(s) of the antibody that retain the capability of the antibody to specifically bind to the antigen.


An “antibody” (e.g. a monoclonal antibody) or an “antigen-binding portion” may have been derivatized or be linked to a different molecule. For example, molecules that may be linked to the antibody are other proteins (e.g. other antibodies), a molecular label (e.g. a fluorescent, luminescent, colored or radioactive molecule), a pharmaceutical and/or a toxic agent. The antibody or antigen-binding portion may be linked directly (e.g. in form of a fusion between two proteins), or via a linker molecule (e.g. any suitable type of chemical linker known in the art).


As used herein, the terms “binding” or “bind” refer to specific binding to the antigen of interest (e.g. human GDF-15). Preferably, the Kd value is less than 100 nM, more preferably less than 50 nM, still more preferably less than 10 nM, still more preferably less than 5 nM and most preferably less than 2 nM.


The term “epitope” as used herein refers to a small portion of an antigen that forms the binding site for an antibody.


In the context of the present invention, for the purposes of characterizing the binding properties of antibodies, binding or competitive binding of antibodies or their antigen-binding portions to the antigen of interest (e.g. human GDF-15) is preferably measured by using surface plasmon resonance measurements as a reference standard assay, as described below.


The terms “KD” or “KD value” relate to the equilibrium dissociation constant as known in the art. In the context of the present invention, these terms relate to the equilibrium dissociation constant of an antibody with respect to a particular antigen of interest (e.g. human GDF-15) The equilibrium dissociation constant is a measure of the propensity of a complex (e.g. an antigen-antibody complex) to reversibly dissociate into its components (e.g. the antigen and the antibody). For the antibodies according to the invention, KD values (such as those for the antigen human GDF-15) are preferably determined by using surface plasmon resonance measurements as described below.


An “isolated antibody” as used herein is an antibody that has been identified and separated from the majority of components (by weight) of its source environment, e.g. from the components of a hybridoma cell culture or a different cell culture that was used for its production (e.g. producer cells such as CHO cells that recombinantly express the antibody). The separation is performed such that it sufficiently removes components that may otherwise interfere with the suitability of the antibody for the desired applications (e.g. with a therapeutic use of the anti-human GDF-15 antibody according to the invention). Methods for preparing isolated antibodies are known in the art and include Protein A chromatography, anion exchange chromatography, cation exchange chromatography, virus retentive filtration and ultrafiltration. Preferably, the isolated antibody preparation is at least 70% pure (w/w), more preferably at least 80% pure (w/w), still more preferably at least 90% pure (w/w), still more preferably at least 95% pure (w/w), and most preferably at least 99% pure (w/w), as measured by using the Lowry protein assay.


A “diabody” as used herein is a small bivalent antigen-binding antibody portion which comprises a heavy chain variable domain linked to a light chain variable domain on the same polypeptide chain linked by a peptide linker that is too short to allow pairing between the two domains on the same chain. This results in pairing with the complementary domains of another chain and in the assembly of a dimeric molecule with two antigen binding sites. Diabodies may be bivalent and monospecific (such as diabodies with two antigen binding sites for human GDF-15), or may be bivalent and bispecific (e.g. diabodies with two antigen binding sites, one being a binding site for human GDF-15, and the other one being a binding site for a different antigen). A detailed description of diabodies can be found in Holliger P et al. (““Diabodies”: small bivalent and bispecific antibody fragments.” Proc Natl Acad Sci USA. 1993 Jul. 15; 90(14):6444-8.).


A “single-domain antibody” (which is also referred to as “Nanobody™”) as used herein is an antibody fragment consisting of a single monomeric variable antibody domain. Structures of and methods for producing single-domain antibodies are known from the art, e.g. from Holt L J et al. (“Domain antibodies: proteins for therapy.” Trends Biotechnol. 2003 Nov.; 21(11):484-90.), Saerens D et al. (“Single-domain antibodies as building blocks for novel therapeutics.” Curr Opin Pharmacol. 2008 Oct.; 8(5):600-8. Epub 2008 Aug. 22.), and Arbabi Ghahroudi M et al. (“Selection and identification of single domain antibody fragments from camel heavy-chain antibodies.” FEBS Lett. 1997 Sep. 15; 414(3):521-6.).


The terms “significant”, “significantly”, etc. as used herein refer to a statistically significant difference between values as assessed by appropriate methods known in the art, and as assessed by the methods referred to herein.


In accordance with the present invention, each occurrence of the term “comprising” may optionally be substituted with the term “consisting of”.


The terms “cancer” and “cancer cell” is used herein in accordance with their common meaning in the art (see for instance Weinberg R. et al.: The Biology of Cancer. Garland Science: New York 2006. 850p., which is incorporated herein by reference in its entirety).


The cancers, for which a prediction of a clinical outcome, in particular a prediction of patient survival according to the present invention is provided, is melanoma. As used herein, the term “melanoma” is used in accordance with its general meaning known in the art. Melanomas are classified according to the AJCC staging system for melanoma patients with distant metastases since 2001 (Balch, C M et al., J Clin Oncol/19/3635-48. 2001). The melanoma stages referred to herein refer to this staging system. In a preferred aspect of the present invention in accordance with all of the embodiments of the present invention, the melanoma is not a uveal melanoma.


The melanoma patients, for which a prediction of survival according to the invention is provided, may be subject to a treatment of the melanoma. As used herein, terms such as “treatment of cancer” or “treating cancer” or “treatment of melanoma” or “treating melanoma” refer to a therapeutic treatment. As used herein, such treatments do not only include treatments of the melanoma itself but also palliative treatments. Such palliative treatments are known in the art and include, for instance, treatments which only improve the symptoms of the melanoma disease.


As referred to herein, a treatment of cancer can be a first-line therapy, a second-line therapy or a third-line therapy or a therapy that is beyond third-line therapy. The meaning of these terms is known in the art and in accordance with the terminology that is commonly used by the US National Cancer Institute.


A treatment of cancer does not exclude that additional or secondary therapeutic benefits also occur in patients. For example, an additional or secondary benefit may be an influence on cancer-induced weight loss.


As referred to herein, a “tumor-free” melanoma patient is a patient in which no primary tumor and no metastasis can be detected according to clinical standard methods known in the art. This, however, does not exclude that tumors (or micrometastases) exist in the patient, which are below the detection limit, or that tumor cells exist, which may form a new tumor.


Blood Samples:

As referred to herein, the term “blood sample” includes, without limitation, whole blood, serum and plasma samples. It also includes other sample types such as blood fractions other than serum and plasma. Such samples and fractions are known in the art.


Blood samples which are used for the methods according to the invention can be any types of blood samples which contain hGDF-15. Suitable types of blood samples containing hGDF-15 are known in the art and include serum and plasma samples. Alternatively, further types of blood samples which contain hGDF-15 can also be readily identified by the skilled person, e.g. by measuring whether hGDF-15 is contained in these samples, and which levels of hGDF-15 are contained in these samples, by using the methods disclosed herein.


Clinical Outcomes:

According to the invention, levels of hGDF-15 in human blood samples can be used to predict the probability of survival of a human melanoma patient.


Survival of patient groups can be analysed by methods known in the art, e.g. by Kaplan-Meier curves.


Appropriate time periods for the assessment of survival are known in the art and will be chosen by the skilled person with due regard to factors such as the respective stage of the melanoma.


For example, survival, preferably short-term survival, may, for instance, be predicted for time points of 6 months, 12 months and/or 18 months after the time point when the prediction was made. Alternatively, survival, preferably long-term survival, may, for instance, be assessed at a time point of 2 years, 3 years, 5 years and/or 10 years after the time point when the prediction was made.


Predicting the Probability of a Positive Clinical Outcome According to the Invention

For predicting the probability of a positive clinical outcome (e.g. survival) according to the invention, e.g. based on hGDF-15 levels, the methods for predicting, which are defined above in the preferred embodiments, are preferably used.


In order to practice the methods of the invention, statistical methods known in the art can be employed.


For instance, overall survival can be analyzed by Cox regression analysis.


Preferred statistical methods, which can be used according to the invention to generate statistical models of patient data from clinical studies, are disclosed in Example 1. It is understood that the statistical methods disclosed in Example 1 are not limited to the particular features of Example 1 such as the melanoma stage, the particular threshold levels chosen and the particular statistical values obtained in the Example. Rather, these methods disclosed in Example 1 can generally be used in connection with any embodiment of the present invention.


hGDF-15 Levels


In an advantageous aspect of the invention, there is an inverse relationship between hGDF-15 levels and the probability of a positive clinical outcome, in particular the probability of survival, in human melanoma patients. Thus, according to the invention, a decreased level of hGDF-15 indicates an increased probability of survival in human melanoma patients.


Thus, as used herein, terms such as “wherein a decreased level of hGDF-15 in said human blood sample indicates an increased probability of survival” mean that the level of hGDF-15 in said human blood sample and the probability of survival follow an inverse relationship. Thus, the higher the level of hGDF-15 in said human blood sample is, the lower is the probability of survival.


For instance, in connection with the methods for predicting according to the invention defined herein, hGDF-15 threshold levels can be used.


According to the invention, the inverse relationship between hGDF-15 levels and the probability of survival applies to any threshold value, and hence the invention is not limited to particular threshold values.


Preferable hGDF-15 threshold levels are hGDF-15 serum levels as defined above in the preferred embodiments.


Alternatively, hGDF-15 threshold levels according to the present invention can be obtained, and/or further adjusted, by using the above-mentioned statistical methods, e.g. the methods of Example 1.


An hGDF-15 threshold level may be a single hGDF-15 threshold level. The invention also encompasses the use of more than one hGDF-15 threshold level, e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10 or more hGDF-15 threshold levels.


For each single hGDF-15 threshold level of the one or more hGDF-15 threshold levels, a corresponding probability of survival can be predicted at a given time point.


hGDF-15 levels in blood samples can be measured by any methods known in the art. For instance, a preferred method of measuring hGDF-15 levels in blood samples including serum levels is a measurement of hGDF-15 levels by Enzyme-Linked Immunosorbent Assay (ELISA) by using antibodies to hGDF-15. Such ELISA methods are exemplified in Example 1, but can also include bead-based methods like the Luminex technology and others. Alternatively, hGDF-15 levels in blood samples including serum levels may be determined by known electrochemiluminesence immunoassays using antibodies to hGDF-15. For instance, the Roche Elecsys® technology can be used for such electrochemiluminesence immunoassays. Other possible methods would include antibody-based detection from bodily fluids after separation of proteins in an electrical field.


The median hGDF-15 serum level of healthy human control individuals is <0.8 ng/ml. The expected range is between 0.2 ng/ml and 1.2 ng/ml in healthy human controls (Reference: Tanno T et al.: “Growth differentiation factor 15 in erythroid health and disease.” Curr Opin Hematol. 2010 May; 17(3): 184-190.).


According to the invention, preferable hGDF-15 threshold levels are hGDF-15 serum levels as defined above in the preferred embodiments.


It is understood that for these hGDF-15 serum levels, and based on the disclosure of the invention provided herein, corresponding hGDF-15 levels in other blood samples can be routinely obtained by the skilled person (e.g. by comparing the relative level of hGDF-15 in serum with the respective level in other blood samples). Thus, the present invention also encompasses preferred hGDF-15 levels in plasma, whole blood and other blood samples, which correspond to each of the preferred hGDF-15 serum levels and ranges indicated above.


Lactate Dehydrogenase Levels

Lactate dehydrogenase levels in blood samples can be measured by any methods known in the art Lactate dehydrogenase (LDH) levels are typically measured in enzymatic units (U). One unit will reduce 1.0 μmole of pyruvate to L-lactate per minute at pH 7.5 at 37° C.




embedded image


Lactate and NAD+ are converted to pyruvate and NADH by the action of LDH. NADH strongly absorbs light at 340 nm, whereas NAD+ does not. The rate of increase in absorbance at 340 nm is directly proportional to the LDH activity in the sample. Thus, LDH units are preferably determined by measuring absorbance at 340 nm.


Various clinically accepted diagnostic tests are available for the measurement of LDH levels. In accordance with the present invention, tests which can be applied to melanoma will be selected based on known clinical standards. Isoform-specific tests for LDH can be performed according to methods known in the art.


In a further advantageous aspect of the invention, there is also an inverse relationship between lactate dehydrogenase (LDH) levels and the probability of a positive clinical outcome, in particular the probability of survival, in human melanoma patients. Thus, in an embodiment according to the invention, a decreased level of lactate dehydrogenase indicates an increased probability of survival in melanoma patients.


Thus, as used herein, terms such as “wherein a decreased level of lactate dehydrogenase in said human blood sample indicates an increased probability of survival” mean that the level of lactate dehydrogenase in said human blood sample and the probability of survival follow an inverse relationship. Thus, the higher the level of lactate dehydrogenase in said human blood sample is, the lower is the probability of survival.


For instance, in connection with the methods for predicting according to the invention defined herein, lactate dehydrogenase threshold levels can be used.


According to the invention, the inverse relationship between lactate dehydrogenase levels and the probability of survival applies to any threshold value, and hence the invention is not limited to particular threshold values.


Alternatively, lactate dehydrogenase threshold levels according to the present invention can be obtained, and/or further adjusted, by using the above-mentioned statistical methods, e.g. the methods of Example 1.


A lactate dehydrogenase threshold level may be a single lactate dehydrogenase threshold level. The invention also encompasses the use of more than one lactate dehydrogenase threshold level, e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10 or more lactate dehydrogenase threshold levels.


For each single lactate dehydrogenase threshold level of the one or more lactate dehydrogenase threshold levels, a corresponding probability of survival can be predicted.


According to the invention, preferable lactate dehydrogenase threshold levels are lactate dehydrogenase serum levels as defined above in the preferred embodiments.


In a very preferred embodiment, the lactate dehydrogenase threshold level is a clinically accepted threshold level which distinguishes between normal and elevated LDH levels in patients. Such very preferred clinically accepted threshold levels are known in the art, and will be chosen by the skilled person with regard to the particular specifications of the LDH test.


It is understood that for these lactate dehydrogenase serum levels, and based on the disclosure of the invention provided herein, corresponding lactate dehydrogenase levels in other blood samples can be routinely obtained by the skilled person (e.g. by comparing the relative level of lactate dehydrogenase in serum with the respective level in other blood samples). Thus, the present invention also encompasses preferred lactate dehydrogenase levels in plasma, whole blood and other blood samples, which correspond to each of the preferred lactate dehydrogenase serum levels and ranges indicated above.


S100B Levels

In a further advantageous aspect of the invention, there is also an inverse relationship between S100B levels and the probability of a positive clinical outcome, in particular the probability of survival, in human melanoma patients. Thus, in an embodiment according to the invention, a decreased level of S100B indicates an increased probability of survival in melanoma patients.


Thus, as used herein, terms such as “wherein a decreased level of S100B in said human blood sample indicates an increased probability of survival” mean that the level of S100B in said human blood sample and the probability of survival follow an inverse relationship. Thus, the higher the level of S100B in said human blood sample is, the lower is the probability of survival.


For instance, in connection with the methods for predicting according to the invention defined herein, S100B threshold levels can be used.


According to the invention, the inverse relationship between S100B levels and the probability of survival applies to any threshold value, and hence the invention is not limited to particular threshold values.


S100B threshold levels according to the present invention can, for instance, be obtained, and/or further adjusted, by using the above-mentioned statistical methods, e.g. the methods of Example 1.


An S100B threshold level may be a single S100B threshold level. The invention also encompasses the use of more than one S100B threshold level, e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10 or more S100B threshold levels.


In a very preferred embodiment, the S100B threshold level is a clinically accepted threshold level which distinguishes between normal and elevated S100B levels in patients. Such very preferred clinically accepted threshold levels are known in the art, and will be chosen by the skilled person with regard to the particular specifications of the S100B test.


For each single S100B threshold level of the one or more S100B threshold levels, a corresponding probability of survival can be predicted.


S100B levels in blood samples can be measured by any methods known in the art. Such methods include antibody-based assays. A preferred method of measuring S100B levels in blood samples a measurement of S100B serum levels by electrochemoluminescence assays, e.g. by using an Elecsys S100 electrochemiluminescence immunoassay. Further non-limiting examples of methods to measure S100B levels are given in Gonçalves et al.: “Biological and methodological features of the measurement of S100B, a putative marker of brain injury.” Clinical Biochemistry 41 (2008) 755-763).


Antibodies Capable of Binding to hGDF-15 which can be Used in Accordance with the Invention


The methods, apparatuses and kits of the invention may use one or more antibodies capable of binding to hGDF-15 or an antigen-binding portion thereof, as defined above.


It was previously shown that human GDF-15 protein can be advantageously targeted by a monoclonal antibody (WO2014/049087, which is incorporated herein by reference in its entirety), and that such antibody has advantageous properties including a high binding affinity to human GDF-15, as demonstrated by an equilibrium dissociation constant of about 790 pM for recombinant human GDF-15 (see Reference Example 1). Thus, in a preferred embodiment, the invention uses an antibody capable of binding to hGDF-15, or an antigen-binding portion thereof. Preferably, the antibody is a monoclonal antibody capable of binding to hGDF-15, or an antigen-binding portion thereof.


Thus, in a more preferred embodiment, the antibody capable of binding to hGDF-15 or antigen-binding portion thereof in accordance with the invention is a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the heavy chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence at least 90% identical thereto, and wherein the light chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7 or an amino acid sequence at least 85% identical thereto. In this embodiment, preferably, the antibody or antigen-binding portion thereof comprises a heavy chain variable domain which comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 3 and a CDR2 region comprising the amino acid sequence of SEQ ID NO: 4, and the antibody or antigen-binding portion thereof comprises a light chain variable domain which comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 6, and a CDR2 region comprising the amino acid sequence ser-ala-ser.


Thus, in a still more preferred embodiment, the antibody capable of binding to hGDF-15 or antigen-binding portion thereof in accordance with the invention is a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the antibody or antigen-binding portion thereof comprises a heavy chain variable domain which comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 3, a CDR2 region comprising the amino acid sequence of SEQ ID NO: 4 and a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5, and wherein the antibody or antigen-binding portion thereof comprises a light chain variable domain which comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 6, a CDR2 region comprising the amino acid sequence ser-ala-ser and a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7.


In another embodiment in accordance with the above embodiments of the monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, the heavy chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 1 or a sequence 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical thereto, and the light chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 2 or a sequence 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical thereto.


In another embodiment in accordance with the above embodiments of the monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, the heavy chain variable domain comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 3 and a CDR2 region comprising the amino acid sequence of SEQ ID NO: 4, and the light chain variable domain comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 6 and a CDR2 region comprising the amino acid sequence of SEQ ID NO: 7. In a preferred aspect of this embodiment, the antibody may have CDR3 sequences as defined in any of the embodiments of the invention described above.


In another embodiment in accordance with the monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, the antigen-binding portion is a single-domain antibody (also referred to as “Nanobody™”). In one aspect of this embodiment, the single-domain antibody comprises the CDR1, CDR2, and CDR3 amino acid sequences of SEQ ID NO: 3, SEQ ID NO: 4, and SEQ ID NO: 5, respectively. In another aspect of this embodiment, the single-domain antibody comprises the CDR1, CDR2, and CDR3 amino acid sequences of SEQ ID NO: 6, ser-ala-ser, and SEQ ID NO: 7, respectively. In a preferred aspect of this embodiment, the single-domain antibody is a humanized antibody.


Preferably, the antibodies capable of binding to human GDF-15 or the antigen-binding portions thereof have an equilibrium dissociation constant for human GDF-15 that is equal to or less than 100 nM, less than 20 nM, preferably less than 10 nM, more preferably less than 5 nM and most preferably between 0.1 nM and 2 nM.


In another embodiment in accordance with the above embodiments of the monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof binds to the same human GDF-15 epitope as the antibody to human GDF-15 obtainable from the cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH (DMSZ) under the accession No. DSM ACC3142. As described herein, antibody binding to human GDF-15 in accordance with the present invention is preferably assessed by surface plasmon resonance measurements as a reference standard method, in accordance with the procedures described in Reference Example 1. Binding to the same epitope on human GDF-15 can be assessed similarly by surface plasmon resonance competitive binding experiments of the antibody to human GDF-15 obtainable from the cell line B1-23 and the antibody that is expected to bind to the same human GDF-15 epitope as the antibody to human GDF-15 obtainable from the cell line B1-23.


In a very preferred embodiment, the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof is a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the binding is binding to a conformational or discontinuous epitope on human GDF-15 comprised by the amino acid sequences of SEQ ID No: 25 and SEQ ID No: 26. In a preferred aspect of this embodiment, the antibody or antigen-binding portion thereof is an antibody or antigen-binding portion thereof as defined by the sequences of any one of the above embodiments.


In a further embodiment in accordance with the above embodiments, antibodies including the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof can be modified, e.g. by a tag or a label.


A tag can, for instance, be a biotin tag or an amino acid tag. Non-limiting examples of such acid tag tags include Polyhistidin (His-) tags, FLAG-tag, Hemagglutinin (HA) tag, glycoprotein D (gD) tag, and c-myc tag. Tags may be used for various purposes. For instance, tags may be used to assist purification of the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof. Preferably, such tags are present at the C-terminus or N-terminus of the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof.


As used herein, the term “label” relates to any molecule or group of molecules which can facilitate detection of the antibody. For instance, labels may be enzymatic such as horseradish peroxidase (HRP), alkaline phosphatase (AP) or glucose oxidase. Enzymatically labelled antibodies may, for instance, be employed in enzyme-linked immunosorbent assays. Labels may also be radioactive isotopes, DNA sequences (which may, for instance, be used to detect the antibodies by polymerase chain reaction (PCR)), fluorogenic reporters and electrochemiluminescent groups (e.g. ruthenium complexes). As an alternative to labelling, antibodies used according to the invention, in particular an antibody capable of binding to human GDF-15 or the antigen-binding portion thereof, can be detected directly, e.g. by surface plasmon resonance measurements.


Methods and Techniques

Generally, unless otherwise defined herein, the methods used in the present invention (e.g. cloning methods or methods relating to antibodies) are performed in accordance with procedures known in the art, e.g. the procedures described in Sambrook et al. (“Molecular Cloning: A Laboratory Manual.”, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1989), Ausubel et al. (“Current Protocols in Molecular Biology.” Greene Publishing Associates and Wiley Interscience; New York 1992), and Harlow and Lane (“Antibodies: A Laboratory Manual” Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1988), all of which are incorporated herein by reference.


Binding of antibodies to their respective target proteins can be assessed by methods known in the art. The binding of monoclonal antibodies to their respective targets is preferably assessed by surface plasmon resonance measurements. These measurements are preferably carried out by using a Biorad ProteOn XPR36 system and Biorad GLC sensor chips, as exemplified for anti-human GDF-15 mAb-B1-23 in Reference Example 1.


Sequence Alignments of sequences according to the invention are performed by using the BLAST algorithm (see Altschul et al. (1990) “Basic local alignment search tool.” Journal of Molecular Biology 215. p. 403-410.; Altschul et al.: (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402., all of which are incorporated herein by reference). Preferably, the following parameters are used: Max target sequences 10; Word size 3; BLOSUM 62 matrix; gap costs: existence 11, extension 1; conditional compositional score matrix adjustment. Thus, when used in connection with sequences, terms such as “identity” or “identical” refer to the identity value obtained by using the BLAST algorithm.


Monoclonal antibodies according to the invention can be produced by any method known in the art, including but not limited to the methods referred to in Siegel D L (“Recombinant monoclonal antibody technology.” Transfus Clin Biol. 2002 Jan.; 9(1):15-22., which is incorporated herein by reference). In one embodiment, an antibody according to the invention is produced by the hybridoma cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH (DSMZ) at Inhoffenstraße 7B, 38124 Braunschweig, Germany, under the accession No. DSM ACC3142 under the Budapest treaty. The deposit was filed on Sep. 29, 2011.


Levels of human GDF-15 (hGDF-15) can be measured by any method known in the art, including measurements of hGDF-15 protein levels by methods including (but not limited to) mass spectrometry for proteins or peptides derived from human GDF-15, Western Blotting using antibodies specific to human GDF-15, strip tests using antibodies specific to human GDF-15, or immunocytochemistry using antibodies specific to human GDF-15. A preferred method of measuring hGDF-15 serum levels is a measurement of hGDF-15 serum levels by Enzyme-Linked Immunosorbent Assay (ELISA) by using antibodies to GDF-15. Such ELISA methods are exemplified in Example 1. Alternatively, hGDF-15 serum levels may be determined by known electrochemiluminesence immunoassays using antibodies to hGDF-15. For instance, the Roche Elecsys® technology can be used for such electrochemiluminesence immunoassays.


Apparatuses of the Invention

The invention also relates to the apparatuses defined above.


An apparatus of the invention can be any apparatus which is configured to perform the methods of the invention.


As used herein, the term “configured to perform” means that the apparatus us specifically configured for the recited method steps. For instance, an apparatus configured to perform a method which uses a particular threshold level will be specifically configured to use that particular threshold.


In a preferred embodiment, the apparatus is an electrochemiluminescence analyzer such as Cobas® analyzer. In this embodiment, if LDH is measured, this may, for instance, be measured on an additional apparatus, which is not an electrochemiluminescence analyzer, and which is configured to perform LDH measurements such as enzymatic tests. Thus, in a preferred aspect of this embodiment, the electrochemiluminescence analyzer of the invention is configured to perform the methods of the invention except for the measurements of LDH levels.


Kits of the Invention

The invention also relates to the kits defined above.


The recombinant hGDF-15 contained in the kits may be present in a form which can conveniently be used for calibration purposes. For instance, it may be present in the form of stock solutions which cover several concentrations in the range of 0 to 15 ng/ml, e.g. at least one concentration in the range of 0-1 ng/ml, at least one concentration in the range of 1-3 ng/ml, at least one concentration in the range of 3-6 ng/ml, and preferably at least one further concentration in the range of 6-10 ng/ml, and more preferably further comprising at least one further concentration in the range of 10-15 ng/ml.


Sequences

The amino acid sequences referred to in the present application are as follows (in an N-terminal to C-terminal order; represented in the one-letter amino acid code):









(Region of the Heavy Chain Variable Domain





comprising an FR1, a CDR1, an FR2, a CDR2 and an





FR3 region from the Polypeptide Sequence of





monoclonal anti-human GDF-15 mAb-B1-23):


SEQ ID No: 1


QVKLQQSGPGILQSSQTLSLTCSFSGFSLSTSGMGVSWIRQPSGKGLEWL





AHIYWDDDKRYNPTLKSRLTISKDPSRNQVFLKITSVDTADTATYYC





(Region of the Light Chain Variable Domain





comprising an FR1, a CDR1, an FR2, a CDR2 and an





FR3 region from the Polypeptide Sequence of





monoclonal anti-human GDF-15 mAb-B1-23):


SEQ ID No: 2


DIVLTQSPKFMSTSVGDRVSVTCKASQNVGTNVAWFLQKPGQSPKALIYS





ASYRYSGVPDRFTGSGSGTDFTLTISNVQSEDLAEYFC





(Heavy Chain CDR1 Region Peptide Sequence of





monoclonal anti-human GDF-15 mAb-B1-23):


SEQ ID No: 3


GFSLSTSGMG





(Heavy Chain CDR2 Region Peptide Sequence of





monoclonal anti-human GDF-15 mAb-B1-23):


SEQ ID No: 4


IYWDDDK





(Heavy Chain CDR3 Region Peptide Sequence of





monoclonal anti-human GDF-15 mAb-B1-23):


SEQ ID No: 5


ARSSYGAMDY





(Light Chain CDR1 Region Peptide Sequence of





monoclonal anti-human GDF-15 mAb-B1-23):


SEQ ID No: 6


QNVGTN





Light Chain CDR2 Region Peptide Sequence of





monoclonal anti-human GDF-15 mAb-B1-23:





SAS





(Light Chain CDR3 Region Peptide Sequence of





monoclonal anti-human GDF-15 mAb-B1-23):


SEQ ID No: 7


QQYNNFPYT





(recombinant mature human GDF-15 protein):


SEQ ID No: 8


GSARNGDHCPLGPGRCCRLHTVRASLEDLGWADWVLSPREVQVTMCIGAC





PSQFRAANMHAQIKTSLHRLKPDTVPAPCCVPASYNPMVLIQKTDTGVSL





QTYDDLLAKDCHCI





(human GDF-15 precursor protein):


SEQ ID No: 9


MPGQELRTVNGSQMLLVLLVLSWLPHGGALSLAEASRASFPGPSELHSED





SRFRELRKRYEDLLTRLRANQSWEDSNTDLVPAPAVRILTPEVRLGSGGH





LHLRISRAALPEGLPEASRLHRALFRLSPTASRSWDVTRPLRRQLSLARP





QAPALHLRLSPPPSQSDQLLAESSSARPQLELHLRPQAARGRRRARARNG





DHCPLGPGRCCRLHTVRASLEDLGWADWVLSPREVQVTMCIGACPSQFRA





ANMHAQIKTSLHRLKPDTVPAPCCVPASYNPMVLIQKTDTGVSLQTYDDL





LAKDCHCI





(human GDF-15 precursor protein + N-terminal and





C-terminal GSGS linker):


SEQ ID No: 10


GSGSGSGMPGQELRTVNGSQMLLVLLVLSWLPHGGALSLAEASRASFPGP





SELHSEDSRFRELRKRYEDLLTRLRANQSWEDSNTDLVPAPAVRILTPEV





RLGSGGHLHLRISRAALPEGLPEASRLHRALFRLSPTASRSWDVTRPLRR





QLSLARPQAPALHLRLSPPPSQSDQLLAESSSARPQLELHLRPQAARGRR





RARARNGDHCPLGPGRCCRLHTVRASLEDLGWADWVLSPREVQVTMCIGA





CPSQFRAANMHAQIKTSLHRLKPDTVPAPCCVPASYNPMVLIQKTDTGVS





LQTYDDLLAKDCHCIGSGSGSG





(Flag peptide):


SEQ ID No: 11


DYKDDDDKGG





(HA peptide):


SEQ ID No: 12


YPYDVPDYAG





(peptide derived from human GDF-15):


SEQ ID No: 13


ELHLRPQAARGRR





(peptide derived from human GDF-15):


SEQ ID No: 14


LHLRPQAARGRRR





(peptide derived from human GDF-15):


SEQ ID No: 15


HLRPQAARGRRRA





(peptide derived from human GDF-15):


SEQ ID No: 16


LRPQAARGRRRAR





(peptide derived from human GDF-15):


SEQ ID No: 17


RPQAARGRRRARA





(peptide derived from human GDF-15):


SEQ ID No: 18


PQAARGRRRARAR





(peptide derived from human GDF-15):


SEQ ID No: 19


QAARGRRRARARN





(peptide derived from human GDF-15):


SEQ ID No: 20


MHAQIKTSLHRLK





(GDF-15 peptide comprising part of the GDF-15





Epitope that binds to B1-23):


SEQ ID No: 25


EVQVTMCIGACPSQFR





(GDF-15 peptide comprising part of the GDF-15





Epitope that binds to B1-23):


SEQ ID No: 26


TDTGVSLQTYDDLLAKDCHCI






The nucleic acid sequences referred to in the present application are as follows (in a 5′ to 3′ order; represented in accordance with the standard nucleic acid code):









(DNA nucleotide sequence encoding the amino acid





sequence defined in SEQ ID No: 1):


SEQ ID No: 21


CAAGTGAAGCTGCAGCAGTCAGGCCCTGGGATATTGCAGTCCTCCCAGAC





CCTCAGTCTGACTTGTTCTTTCTCTGGGTTTTCACTGAGTACTTCTGGTA





TGGGTGTGAGCTGGATTCGTCAGCCTTCAGGAAAGGGTCTGGAGTGGCTG





GCACACATTTACTGGGATGATGACAAGCGCTATAACCCAACCCTGAAGAG





CCGGCTCACAATCTCCAAGGATCCCTCCAGAAACCAGGTATTCCTCAAGA





TCACCAGTGTGGACACTGCAGATACTGCCACATACTACTGT





(DNA nucleotide sequence encoding the amino acid





sequence defined in SEQ ID No: 2):


SEQ ID No: 22


GACATTGTGCTCACCCAGTCTCCAAAATTCATGTCCACATCAGTAGGAGA





CAGGGTCAGCGTCACCTGCAAGGCCAGTCAGAATGTGGGTACTAATGTGG





CCTGGTTTCTACAGAAACCAGGGCAATCTCCTAAAGCACTTATTTACTCG





GCATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAACGTGCAGTCTGAAGACTTGG





CAGAGTATTTCTGT





(DNA nucleotide sequence encoding the amino acid





sequence defined in SEQ ID No: 5):


SEQ ID No: 23


GCTCGAAGTTCCTACGGGGCAATGGACTAC





(DNA nucleotide sequence encoding the amino acid





sequence defined in SEQ ID No: 7):


SEQ ID No: 24


CAGCAATATAACAACTTTCCGTACACG






Examples

Reference Examples 1 to 3 exemplify an antibody to hGDF-15, which can be used in the methods, kits, and in the apparatuses according to the invention. This hGDF-15 antibody is a monoclonal antibody which is known from WO 2014/049087, which is incorporated herein by reference in its entirety.


Reference Example 1: Generation and Characterization of the GDF-15 Antibody B1-23

The antibody B1-23 was generated in a GDF-15 knock out mouse. Recombinant human GDF-15 (SEQ ID No: 8) was used as the immunogen.


The hybridoma cell line B1-23 producing mAb-B1-23 was deposited by the Julius-Maximilians-Universität Würzburg, Sanderring 2, 97070 Würzburg, Germany, with the Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH (DMSZ) at Inhoffenstraße 7B, 38124 Braunschweig, Germany, under the accession No. DSM ACC3142, in accordance with the Budapest Treaty. The deposit was filed on Sep. 29, 2011.


By means of a commercially available test strip system, B1-23 was identified as an IgG2a (kappa chain) isotype. Using surface plasmon resonance measurements, the dissociation constant (Kd) was determined as follows:


Binding of the monoclonal anti-human-GDF-15 antibody anti-human GDF-15 mAb-B1-23 according to the invention was measured by employing surface plasmon resonance measurements using a Biorad ProteOn XPR36 system and Biorad GLC sensor chips:


For preparing the biosensors recombinant mature human GDF-15 protein was immobilized on flow cells 1 and 2. On one flow cell recombinant GDF-15 derived from Baculvirus-transfected insect cells (HighFive insect cells) and on the other recombinant protein derived from expression in E. coli was used. The GLC sensor chip was activated using Sulfo-NHS (N-Hydroxysulfosuccinimide) and EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride) (Biorad ProteOn Amine Coupling Kit) according to the manufacturer's recommendation, the sensor surface was subsequently loaded with the proteins up to a density of about 600RU (1Ru=1 pg mm−2). The non-reacted coupling groups were then quenched by perfusion with 1M ethanolamine pH 8.5 and the biosensor was equilibrated by perfusing the chip with running buffer (10M HEPES, 150 mM NaCl, 3.4 mM EDTA, 0.005% Tween-20, pH 7.4, referred to as HBS150). As controls two flow cells were used, one empty with no protein coupled and one coupled with an non-physiological protein partner (human Interleukin-5), which was immobilized using the same coupling chemistry and the same coupling density. For interaction measurements anti-human GDF-15 mAb-B1-23 was dissolved in HBS150 and used in six different concentrations as analyte (concentration: 0.4, 0.8, 3, 12, 49 and 98 nM). The analyte was perfused over the biosensor using the one-shot kinetics setup to avoid intermittent regeneration, all measurements were performed at 25° C. and using a flow rate of 100 μl min−1. For processing the bulk face effect and unspecific binding to the sensor matrix was removed by subtracting the SPR data of the empty flow cell (flow cell 3) from all other SPR data. The resulting sensogram was analyzed using the software ProteOn Manager version 3.0. For analysis of the binding kinetics a 1:1 Langmuir-type interaction was assumed. For the association rate constant a value of 5.4±0.06×105 M−1s−1 (kon) and for the dissociation rate constant a value of 4.3±0.03×10−4 s−1 (koff) could be determined (values are for the interaction of anti-human GDF-15 mAb-B1-23 with GDF-15 derived from insect cell expression). The equilibrium dissociation constant was calculated using the equation KD=koff/kon to yield a value of about 790 pM. Affinity values for the interaction of GDF-15 derived from E. coli expression and the anti-human GDF-15 mAb-B1-23 differ by less than a factor of 2, rate constants for GDF-15 derived from insect cells and E. coli deviate by about 45% and are thus within the accuracy of SPR measurements and likely do not reflect a real difference in affinity. Under the conditions used the anti-human GDF-15 mAb-B1-23 shows no binding to human interleukin-5 and thus confirms the specificity of the interaction data and the anti-human GDF-15 mAb-B1-23.


The amino acid sequence of recombinant human GDF-15 (as expressed in Baculovirus-transfected insect cells) is:











(SEQ ID No: 8)



GSARNGDHCP LGPGRCCRLH TVRASLEDLG WADWVLSPRE







VQVTMCIGAC PSQFRAANMH AQIKTSLHRL KPDTVPAPCC







VPASYNPMVL IQKTDTGVSL QTYDDLLAKD CHCI






Thus, using surface plasmon resonance measurements, the dissociation constant (Kd) of 790 pM was determined. As a comparison: the therapeutically used antibody Rituximab has a significantly lower affinity (Kd=8 nM).


It was previously shown that mAb B1-23 inhibits cancer cell proliferation in vitro, and that mAb B1-23 inhibits growth of tumors in vivo (WO2014/049087).


Reference Example 2: mAb B1-23 Recognizes a Conformational or a Discontinuous Epitope of Human GDF-15

Epitope Mapping: Monoclonal mouse antibody GDF-15 against 13mer linear peptides derived from GDF-15


Antigen: GDF-15:









(SEQ ID No: 10)



GSGSGSGMPGQELRTVNGSQMLLVLLVLSWLPHGGALSLAEASRASFPGP






SELHSEDSRFRELRKRYEDLLTRLRANQSWEDSNTDLVPAPAVRILTPEV





RLGSGGHLHLRISRAALPEGLPEASRLHRALFRLSPTASRSWDVTRPLRR





QLSLARPQAPALHLRLSPPPSQSDQLLAESSSARPQLELHLRPQAARGRR





RARARNGDHCPLGPGRCCRLHTVRASLEDLGWADWVLSPREVQVTMCIGA





CPSQFRAANMHAQIKTSLHRLKPDTVPAPCCVPASYNPMVLIQKTDTGVS





LQTYDDLLAKDCHCIGSGSGSG





(322 amino acids with linker)






The protein sequence was translated into 13mer peptides with a shift of one amino acid. The C- and N-termini were elongated by a neutral GSGS linker to avoid truncated peptides (bold letters).


Control Peptides:











Flag:



(SEQ ID No:13)



DYKDDDDKGG, 78 spots;







HA:



(SEQ ID No:14)



YPYDVPDYAG,







78 spots (each array copy)






Peptide Chip Identifier:

000264_01 (10/90, Ala2Asp linker)


Staining Conditions:

Standard buffer: PBS, pH 7.4+0.05% Tween 20


Blocking buffer: Rockland blocking buffer MB-070


Incubation buffer: Standard buffer with 10% Rockland blocking buffer MB-070


Primary sample: Monoclonal mouse antibody GDF-15 (1 μg/μl): Staining in incubation buffer for 16 h at 4° C. at a dilution of 1:100 and slight shaking at 500 rpm


Secondary antibody: Goat anti-mouse IgG (H+L) IRDye680, staining in incubation buffer with a dilution of 1:5000 for 30 min at room temperature (RT)


Control antibodies: Monoclonal anti-HA (12CA5)-LL-Atto 680 (1:1000), monoclonal anti-FLAG(M2)-FluoProbes752 (1:1000); staining in incubation buffer for 1 h at RT


Scanner:
Odyssey Imaging System, LI-COR Biosciences

Settings: offset: 1 mm; resolution: 21 μm; intensity green/red: 7/7


Results:

After 30 min pre-swelling in standard buffer and 30 min in blocking buffer, the peptide array with 10, 12 and 15mer B7H3-derived linear peptides was incubated with secondary goat anti-mouse IgG (H+L) IRDye680 antibody only at a dilution of 1:5000 for 1 h at room temperature to analyze background interactions of the secondary antibody. The PEPperCHIP® was washed 2×1 min with standard buffer, rinsed with dist. water and dried in a stream of air. Read-out was done with Odyssey Imaging System at a resolution of 21 μm and green/red intensities of 7/7: We observed a weak interaction of arginine-rich peptides (ELHLRPQAARGRR (SEQ ID No:15), LHLRPQAARGRRR (SEQ ID No:16), HLRPQAARGRRRA (SEQ ID No:17), LRPQAARGRRRAR (SEQ ID No:18), RPQAARGRRRARA (SEQ ID No:19), PQAARGRRRARAR (SEQ ID No:20) and QAARGRRRARARN (SEQ ID No:21)) that are known as frequent binders, and with the basic peptide MHAQIKTSLHRLK (SEQ ID No:22) due to ionic interactions with the charged antibody dye.


After pre-swelling for 10 min in standard buffer, the peptide microarray was incubated overnight at 4° C. with monoclonal mouse antibody GDF-15 at a dilution of 1:100. Repeated washing in standard buffer (2×1 min) was followed by incubation for 30 min with the secondary antibody at a dilution of 1:5000 at room temperature. After 2×10 sec. washing in standard buffer and short rinsing with dist. water, the PEPperCHIP® was dried in a stream of air. Read-out was done with Odyssey Imaging System at a resolution of 21 μm and green/red intensities of 7/7 before and after staining of control peptides by anti-HA and anti-FLAG(M2) antibodies.


It was shown that none of the linear 13mer peptides derived from GDF-15 interacted with monoclonal mouse antibody GDF-15 even at overregulated intensities. Staining of Flag and HA control peptides that frame the array, however, gave rise to good and homogeneous spot intensities.


Summary:

The Epitope Mapping of monoclonal mouse GDF-15 antibody against GDF-15 did not reveal any linear epitope with the 13mer peptides derived from the antigen. According to this finding it is very likely that monoclonal mouse antibody GDF-15 recognizes a conformational or a discontinuous epitope with low affinity of partial epitopes. Due to the obvious absence of any GDF-15 signal above the background staining of the secondary antibody only, quantification of spot intensities with PepSlide® Analyzer and subsequent peptide annotation were omitted.


Reference Example 3: Structural Identification of Peptide Ligand Epitopes by Mass Spectrometric Epitope Excision and Epitope Extraction

The epitope of recombinant human GDF-15 which binds to the antibody B1-23 was identified by means of the epitope excision method and epitope extraction method (Suckau et al. Proc Natl Acad Sci USA. 1990 December; 87(24): 9848-9852.; R. Stefanescu et al., Eur.J.Mass Spectrom. 13, 69-75 (2007)).


For preparation of the antibody column, the antibody B1-23 was added to NHS-activated 6-aminohexanoic acid coupled sepharose. The sepharose-coupled antibody B1-23 was then loaded into a 0.8 ml microcolumn and washed with blocking and washing buffers.


Epitope Extraction Experiment:

Recombinant human GDF-15 was digested with trypsin for 2 h at 37° C. (in solution), resulting in different peptides, according to the trypsin cleavage sites in the protein. After complete digestion, the peptides were loaded on the affinity column containing the immobilized antibody B1-23. Unbound as well as potentially bound peptides of GDF-15 were used for mass spectrometry analysis. An identification of peptides by means of mass spectrometry was not possible. This was a further indicator that the binding region of GDF-15 in the immune complex B1-23 comprises a discontinuous or conformational epitope. In case of a continuous linear epitope, the digested peptides should bind its interaction partner, unless there was a trypsin cleavage site in the epitope peptide. A discontinuous or conformational epitope could be confirmed by the epitope excision method described in the following part.


Epitope Excision Experiment:

The immobilized antibody B1-23 on the affinity column was then incubated with recombinant GDF-15 for 2 h. The formed immune complex on the affinity column was then incubated with trypsin for 2 h at 37° C. The cleavage resulted in different peptides derived from the recombinant GDF-15. The immobilized antibody itself is proteolytically stable. The resulting peptides of the digested GDF-15 protein, which were shielded by the antibody and thus protected from proteolytic cleavage, were eluted under acidic conditions (TFA, pH2), collected and identified by mass spectrometry.


The epitope excision method using MS/MS identification resulted in the following peptides:
















Position




Peptide
in sequence
Mass
Ion/Charge







EVQVTMCIGACPSQFR
40-55
1769.91
590.50(3+)


(SEQ ID No: 25)








TDTGVSLQTYDDLLAKDCHCI
 94-114
2310,96
771:33(3+)


(SEQ ID No: 26)












The part of human GDF-15, which binds the antibody B1-23, comprises a discontinuous or conformational epitope. Mass spectrometry identified 2 peptides in the GDF-15 protein, which are responsible for the formation of the immune complex. These peptides are restricted to the positions 40-55 (EVQVTMCIGACPSQFR) and 94-114 (TDTGVSLQTYDDLLAKDCHCI) in the GDF-15 amino acid sequence. Thus, these two peptides comprise an epitope of the GDF-15 protein that binds to the antibody B1-23.


The present invention is illustrated by the following non-limiting Examples:


Example 1
Patients, Materials and Methods
Patients

Patients from the Department of Dermatology, University of Tubingen, Germany, with histologically confirmed melanoma were identified in the Central Malignant Melanoma Registry (CMMR) database which prospectively records patients from more than 60 dermatological centers in Germany. 761 patients, with (a) archived serum samples taken between January 2008 and February 2012, (b) available follow-up data, and (c) history or presence of loco regional or distant metastasis at the time point of blood draw were selected. The aims and methods of data collection by the CMMR have previously been published in detail (Lasithiotakis, K G et al., Cancer/107/1331-9. 2006). Data obtained for each patient included age, gender, the date of the last follow-up, and the date and cause of death, if applicable. All patients had given written informed consent to have clinical data recorded by the CMMR registry. The institutional ethics committee Tubingen has approved the study (ethic vote 125/2015B02). Age, the pattern of distant metastasis (stage IV patients only), sub-stage (IIIA vs. IIIB vs. IIIC; stage III patients only) according to the AJCC classification (Balch, C M et al., J Clin Oncol/27/6199-206. 2009), serum LDH and serum S100B (Elecsys S100 electrochemiluminescence immunoassay; Roche Diagnostics AG, Rotkreuz, Switzerland) were evaluated at the time of serum sampling. hGDF-15 serum concentrations were quantified in duplicates using a commercial ELISA kit according to the manufacturer's instructions (R&D systems, Wiesbaden, Germany):


Analysis of hGDF-15 Serum Levels by Enzyme-Linked Immunosorbent Assay (ELISA):


Human GDF-15 serum levels were measured by Enzyme-Linked Immunosorbent Assay (ELISA).


Buffers and Reagents:





    • Blocking solution: 1% BSA (fraction V pH 7.0, PAA) in PBS

    • Wash solution: PBS-Tween (0.05%)

    • Standard: human GDF-15 (stock concentration 120 μg/ml, from R&D Systems)

    • Capture antibody: Human GDF-15 MAb (Clone 147627) from R&D Systems, Mouse IgG2B (catalog #MAB957, from R&D Systems, stock concentration 360 μg/ml)

    • Detection antibody: Human GDF-15 Biotinylated Affinity Purified PAb, Goat IgG (catalog #BAF940, from R&D Systems, stock concentration 9 μl/ml)

    • Streptavidin-HRP (Catalog #DY998, from R&D Systems)

    • Substrate solution: 10 ml 0.1 M NaOAc pH6.0+100 μl TMB+2 μl H2O2

    • Stop solution: 1 M H2SO4





Analysis Procedure:
1. Plate Preparation:





    • a. The capture antibody was diluted to the working concentration of 2 μg/ml in PBS. A 96-well microplate (Nunc Maxisorp®) was immediately coated with 50 μl per well of the diluted capture antibody excluding the outer rows (A and H). Rows A and H were filled with buffer to prevent evaporation of the samples during the experiment. The plate was gently tapped to ensure that the bottom of each well was thoroughly covered. The plate was placed in a humid chamber and incubated overnight at room temperature (RT).

    • b. Each well was aspirated and washed three times with PBS-Tween (0.05%).

    • c. 150 μl of blocking solution was added to each well, followed by incubation at RT for 1 hour.

    • d. Each well was aspirated and washed three times with PBS-Tween (0.05%).





2. Assay Procedure:





    • a. Standards were prepared. GDF-15 was diluted in buffered blocking solution to a final concentration of 1 ng/ml (4.17 μl GDF+496 μl buffered blocking solution). 1:2 serial dilutions were made.

    • b. Duplicate samples 1:20 (6 μl+114 μl buffered blocking solution) were prepared.

    • c. 50 μl of diluted samples or standards were added per well, followed by incubation for 1 hour at RT.




























1
2
3
4
5
6
7
8
9
10
11
12







A
0
0
0
0
0
0
0
0
0
0
0
0


B
s1
s2
. . .








s12


C
s1
s2
. . .








s12


D
s13
s14
. . .








s24


E
s13
s14
. . .








s24


F
St
and
ard




dil
uti
on
s



G




se
rial








H
0
0
0
0
0
0
0
0
0
0
0
0











    • a. Each well was aspirated and washed three times with PBS-Tween (0.05%).

    • b. The detection antibody was diluted to a final concentration of 50 ng/ml (56 μl+10 ml buffered blocking solution). 50 μl of the diluted detection antibody was added to each well, followed by incubation for 1 hour at RT.

    • c. Each well was aspirated and washed three times with PBS-Tween (0.05%).

    • d. Streptavidin-HRP was diluted 1:200 (50 μl+10 ml blocking buffer). 50 μL of the working dilution of Streptavidin-HRP was added to each well, followed by incubation for 20 min at RT.

    • e. Each well was aspirated and washed three times with PBS-Tween (0.05%).

    • f. The substrate solution was prepared. 50 μL of substrate solution was added to each well, followed by incubation for 20 min at RT.

    • g. 50 μL of stop solution was added to each well.

    • h. The optical density of each well was determined immediately, using a microplate reader set to 450 nm.





3. Calculation of GDF-15 Serum Titer:





    • a. Each sample/GDF-15 standard dilution was applied in duplicate. To determine GDF-15 titer, the average of the duplicates was calculated and the background (sample without GDF-15) subtracted.

    • b. To create a standard curve, values from the linear range were plotted on an X-Y-diagram (X axis: GDF-15 concentration, Y axis: OD450), and a linear curve fit was applied. GDF-15 serum titer of the test samples was calculated by interpolating from the OD450 values of the standard dilutions with known concentration.

    • c. To calculate the final GDF-15 concentration of the samples, the distinct dilution factor was considered. Samples yielding OD values below or above the standard range were re-analyzed at appropriate dilutions.





Statistical Analysis

Follow-up time for survival analysis was defined from the date of blood sampling to the last follow-up or death. Cumulative survival probabilities according to Kaplan-Meier were calculated together with 95% confidence intervals (CIs) and compared using two-sided log-rank test statistics. For the analysis of OS, patients who were alive at the last follow-up were censored while patients who had died were considered an “event”. To analyze the impact of sGDF-15 on OS, patients were randomly assigned to two cohorts using a 1:2 ratio (identification and validation cohort, respectively). In the identification cohort different cut-off points were applied to categorize patients according to sGDF-15 into two balanced groups comprising 25% of patients each. Differences in OS between patients with high vs. low sGDF-15 were analyzed for each cut-off point and the one resulting in the lowest log rank p-value was selected, similarly to optimization algorithms published earlier (Camp, R L et al., Clin Cancer Res/10/7252-9. 2004). The optimal cut-off point as defined in the identification cohort was thereafter analyzed in 507 patients of validation cohort.


Cox proportional hazard regression analysis was used to calculate the relative effect considering additional prognostic factors in the entire patient cohort. Age was dichotomized according to the median age of patients. Serum S100B levels and sLDH were categorized as elevated vs. normal according to cut-off values as used in clinical routine (upper limit of normal 0.10 μg/I and 250 U/l, respectively). Patients with missing values were excluded from regression analysis. Results of the models were described by means of hazard ratios; p-values were based on the Wald test. All statistical analyses were carried out using the SPSS Version 22 (IBM SPSS, Chicago, Ill., USA).


Results
Patients

Patients' characteristics are shown in Table 1. A total of 761 melanoma patients (52.0% male) was analyzed. The median age was 63 years. The median follow-up for patients who died was 10.3 months and 45.3 months for patients who were censored.


Stage IV patients (n=293) were assigned to the M-categories M1c (n=206; 70.3%), M1b (n=51; 17.4%), or M1a (n=36; 12.3%) based on the site of distant metastases and on serum LDH (sLDH) (Balch, C M et al., J Clin Oncol/27/6199-206. 2009). The median survival estimate according to Kaplan Meier was 10.7 months. Survival probabilities were 46.4% at 1-year, 33.3% at 2-years, and 29.3% at 3-years.


A total of 468 stage III patients was included. Sub-stage was IIIA in 15.6%, IIIB in 37.2%, and IIIC in 47.2% of 422 patients with complete data for classification. Survival probabilities were 94.9% at 1-year, 85.0% at 2-years, and 72.8% at 5-years, respectively.


The median hGDF-15 serum concentration was 1.0 ng/mL considering all 761 patients (0.9 ng/mL for stage III vs. 1.5 ng/mL for stage IV patients). Mean sGDF-15 was 2.6 (1.1 ng/mL for stage III vs. 4.8 ng/mL for stage IV patients; p<0.001).


Overall Survival According to hGDF-15 Levels


Thirteen different cut-off points ranging from 0.7 ng/mL to 1.9 ng/mL at increments of 0.1 ng/mL were found to categorize patients of the identification cohort (n=254) according to sGDF-15 into two balanced groups (the smaller group had to comprise at least 25% of patients). The difference in prognosis was largest comparing 86 patients (33.9%) with hGDF-15 levels 1.5 ng/mL and poor OS to 168 (66.1%) patients with lower levels and favorable OS (p<0.001; FIG. 4A). The difference in OS applying this cut-off point for sGDF-15 was thereafter confirmed in the validation cohort (n=508; p<0.001; FIG. 4B).


This inverse correlation between sGDF-15 and OS was observed in tumor-free stage III patients and in unresectable stage IV patients (FIGS. 1A, 1B) but not in tumor-free stage IV patients (FIG. 10) considering all patients (both cohorts combined).


Considering stage III patients of both cohorts, the 1-, 2- and 5 year survival probability was 96.1%, 87.8% and 75.7% for those with sGDF-15 below 1.5 ng/mL (n=369, 78.8% of all stage III patients) but only 90.4%, 74.2% and 61.5% for patients with higher sGDF-15 (n=99, 21.2%) (Table 2).


For patients of both cohorts with unresectable distant metastases and high hGDF-15 levels the probability to survive one year after analysis was only 14.3%, but 45.0% for patients with low sGDF-15. Similarly, the 2-year and 5-year survival was 6.3% and 2.6% compared to 19.9% and 5.2%, respectively. Median survival was 5.7 months versus 11.0 months for unresectable stage IV patients with high and low sGDF-15, respectively (Table 3).









TABLE 1







Patient characteristics















Stage IV
Stage IV





Stage III
tumor-free
unresectable
Total




(n = 468)
(n = 87)
(n = 206)
(n = 761)
















Factor
Category
N
(%)
N
(%)
N
(%)
N
(%)



















Gender
Male
228
48.7
47
54.0
121
58.7
396
52.0



Female
240
51.3
40
46.0
85
41.3
365
48.0


Age
  ≤50 years
120
25.6
16
18.4
57
27.7
193
25.4



51-60 years
82
17.5
16
18.4
56
27.2
154
20.2



61-70 years
117
25.0
28
32.2
38
18.4
183
24.0



  ≥71 years
149
31.8
27
31.0
55
26.7
231
30.4













Median age
64 years
66 years
59 years
63 years
















Stage
IIIA
66
15.6




66
9.2


(AJCC
IIIB
157
37.2




157
22.0


2009)
IIIC
199
47.2




199
27.8



Stage III -
46





46




unknown











substage











IV, M1a


23
26.4
13
6.3
36
5.0



IV, M1b


21
24.1
30
14.6
51
7.1



IV, M1c


43
49.4
163
79.1
206
28.8


S100B
Normal
409
87.8
74
89.2
65
33.7
548
73.9



Elevated
57
12.2
9
10.8
128
66.3
194
26.1



Unknown
2

4

13

19



LDH
Normal
439
94.2
81
97.6
116
57.1
636
84.6



Elevated
27
5.8
2
2.4
87
42.9
116
15.4



Unknown
2

4

3

9



Visceral
Soft tissue


23
26.4
22
10.7
45
5.9


involve-
only










ment
Lung


21
24.1
36
17.5
57
7.5



Other organs


43
49.4
148
71.8
191
25.1



None
468





468
61.5



(stage III)





AJCC: American Joint Committee on Cancer; LDH: lactate dehydrogenase













TABLE 2







Overall survival in tumor-free stage III patients














Univariable analysis
Multivariable analysis






















1-year
2-year
5-year

Model 1
Model 2







survival
survival
survival

(n = 415)
(n = 415)
























rate
rate
rate
Log-

Wald

Wald







[95% CI]
[95% CI]
[95% CI]
rank
Hazard
test p-
Hazard
test p-


Factor
Total
Categories
n
%
(%)
(%)
(%)
p-value
ratio
value
ratio
value

























sLDH
466
Normal
439
94.2
95.3
[93; 97]
85.2
[82; 89]
73.4
[68; 78]
0.391
1

1





Elevated
 27
 5.8
91.7
[81; 103]
82.7
[67; 98]
63.6
[41; 87]

0.9
0.892
1.2
0.634


sS100B
466
Normal
409
87.8
96.9
[95; 99]
88.1
[85; 91]
76.1
[71; 81]
<0.001  
1

1





Elevated
 57
12.2
81.7
[71; 92]
63.5
[50; 77]
48.9
[32; 65]

3.2
<0.001
3.5
<0.001  





















Gender
468
Male
228
48.7
95.0
[92; 98]
85.8
[81: 91]
72.1
[65; 79]
0.894
Not considered


























Female
240
51.3
94.8
[92; 98]
84.1
[79; 89]
73.6
[67; 80]



1.0
0.893


Stage
422
IIIA
 66
15.6
96.9
[93; 101]
95.2
[90; 101]
79.7
[68; 91]
0.176
1

1





IIIB
157
37.2
96.0
[93; 99]
86.4
[81; 92]
71.9
[63; 81]









IIIC
199
47.2
92.2
[88; 96]
79.8
[74; 86]
69.0
[61; 77]

1.3
0.156
1.6
0.030





















Age
468
 <63 years
222
47.4
94.8
[92; 98]
85.3
[80; 90]
68.0
[60; 76]
0.196
Not considered
1.6
0.030
























 ≥63 years
246
52.6
94.9
[92; 98]
84.7
[80; 89]
77.3
[71; 83]



1



sGDF-15
468
<1.5 ng/mL
369
78.8
96.1
[94; 98]
87.8
[84; 91]
75.7
[70: 81]
0.001
1

1





≥1.5 ng/mL
 99
21.2
90.4
[84; 96]
74.2
[65; 83]
61.5
[51; 72]

2.3
<0.001
3.7
<0.001  





CI: confidence interval













TABLE 3







Overall survival in unresectable stage IV patients














Univariable analysis
Multivariable analysis
























1-year
2-year
5-year

Model 1
Model 2








survival
survival
survival

(n = 203)
(n = 193)

























Median
rate
rate
rate
Log-
Haz-
Wald
Haz-
Wald







survival
[95% CI]
[95% CI]
[95% CI]
rank
ard
test p-
ard
test p-


Factor
Total
Categories
n
%
(months)
(%)
(%)
(%)
p-value
ratio
value
ratio
value


























sLDH
203
Normal
116
57.1
 9.2
36.2
[27; 45]
16.3
[10; 23]
 0.0
[00; 00]
<0.001
1  

1  





Elevated
 87
42.9
 4.0
12.6
[06; 20]
 5.7
[01; 11]
 4.6
[00; 09]

1.6
  0.002
1.1
0.442






















sS100B
193
Normal
 65
33.7
10.2
46.2
[34; 58]
26.1
[15; 37]
 4.8
[00; 13]
<0.001
Not considered
1  


























Elevated
128
66.3
 5.2
12.5
[07; 18]
 3.1
[00; 06]
 1.6
[00; 04]



1.8
0.003






















Gender
206
Male
121
58.7
 7.4
27.3
[19; 35]
10.7
[05; 16]
 3.7
[00; 09]
  0.961
Not considered
1  


























Female
 85
41.3
 7.6
24.7
[16; 34]
12.9
[06; 20]
 3.5
[00; 08]



1.0
0.954


Pattern
206
Soft-
 58
28.2
10.0
43.1
[30; 56]
24.0
[13; 35]
10.6
[02; 19]
<0.001
1  

1  



of distant

tissue/lung
















metastasis

Other
148
71.8
 6.1
19.6
[13; 26]
 6.8
[03; 11]
 1.8
[00; 05]

1.8
<0.001
1.7
0.005




visceral




































Age
206
 <63 years
118
57.3
 7.7
32.2
[24; 41]
16.9
[10; 24]
 4.3
[00; 11]
  0.006
Not considered
0.7
0.044

























 ≥63 years
 88
42.7
 6.6
18.2
[10; 26]
 4.5
[00; 09]
 2.3
[00; 05]



1  



sGDF-15
206
<1.5 ng/mL
 80
38.8
11  
45.0
[34; 56]
19.9
[11; 29]
 5.2
[00; 13]
<0.001
1  

1  





≥1.5 ng/mL
126
61.2
 5.7
14.3
[08; 20]
 6.3
[02; 11]
 2.6
[00; 06]

1.7
<0.001
1.7
0.002





CI: confidence interval; nr.: not reached













TABLE 4







Overall survival of tumor-free stage IV patients (both cohorts combined)
























Median






























survival




5-year survival






















time
1-year survival rate
2-year survival rate
rate [95% CI]
Log-rank


Variable
Total
Categories
n
%
(months)
[95% CI] (%)
[95% CI] (%)
(%)
p-value






















LDH
83
Normal
81
97.6
n.d
95.1
[90; 100]
86.4
[79; 94]
68.6
[57; 80]
0.471




Elevated
2
2.4
n.d
n.d
n.d
n.d
n.d
n.d
n.d



S100B
83
Normal
74
89.2
n.r.
95.9
[91; 100]
89.2
[82; 96]
73.2
[62; 85]
0.008




Elevated
9
10.8
43.9
88.9
[68; 109]
66.7
[36; 97]
53.5
[19; 87]



Gender
87
Male
47
54.0
n.r.
97.7
[94; 102]
85.1
[75; 95]
68.2
[53; 83]
0.749




Female
40
46.0
n.r.
92.5
[84; 101]
87.5
[77; 98]
71.2
[56; 87]



Pattern of
87
Soft-
44
50.6
n.r.
97.7
[93; 102]
86.4
[76; 97]
72.5
[58; 87]
0.822


visceral

tissue/Lung












metastasis

Other visceral
43
49.4
n.r.
93.0
[85; 101]
85.9
[75; 96]
67.2
[51; 83]



Age
87
<63 years
36
41.4
n.r.
94.4
[87; 102]
80.4
[67; 93]
61.7
[45; 78]
0.066




≥63 years
51
58.6
n.r.
96.1
[91; 101]
90.2
[82; 98]
75.8
[62; 89]



GDF-15
87
<1.5 ng/mL
64
73.6
n.r.
93.8
[88; 100]
85.9
[77; 94]
72.1
[60; 84]
0.651




≥1.5 ng/mL
23
26.4
n.r.
100
[100; 100]
87.0
[73; 101]
62.5
[39; 86]






LDH: lactate dehydrogenase;


Cl: confidence interval;


n.r.: not reached;


n.d.: not determinable







The Relative Prognostic Impact of sGDF-15 in Stage III Patients


Cox regression analyses of the entire cohort of stage III patients were performed to determine the relative impact of sGDF-15 compared to other prognostic factors (Table 3). In the first model the three biomarkers sGDF-15, sS100B, and sLDH were included to allow for direct comparison. Results were adjusted for sub-stage, as univariate analysis had revealed a trend towards better OS for sub-stages IIIA/B versus IIIC (p=0.088). In addition to elevated sGDF-15 (HR 2.3; p<0.001), elevated sS100B was strongly associated with poor OS (FIG. 5A) and had independent negative impact on prognosis (HR 3.2; p<0.001) in multivariable analysis. One year survival rates were highest with 97.4% for patients with favorable results in both biomarkers in strong contrast to 56.2% for those with both markers elevated. The survival probabilities after one year of patients with either elevated sS100B or high sGDF-15 were 88.4% or 95.1%, respectively. In the second model age and gender were additionally considered. Here, stage IIIC and age>63 years had independent negative impact on prognosis in addition to sGDF15 and sS100B. The number of unfavorable values considering those 4 factors was strongly associated with survival (FIGS. 5A-5C). As expected for stage III melanoma, sLDH showed no correlation with outcome in neither model.


The Relative Impact of hGDF-15 Levels in Stage IV Patients


In stage IV patients without evidence of disease at the time point of blood sampling (n=87), no prognostic relevance was observed for sGDF-15. Neither the pattern of distant metastasis, nor sLDH were associated with OS (Table 4). Instead, sS100B was the only prognostic factor in this patient population (FIG. 5C). Looking at 203 thoroughly characterized stage IV melanoma patients with unresectable tumor burden, we applied Cox regression analysis to investigate the relative prognostic impact of sGDF-15 compared to other factors. In the first model, sGDF-15 was compared to the pattern of distant metastases and sLDH, which are both considered as prognostic factors in the AJCC classification (Table 3). Like in stage III melanoma, sGDF-15 had a strong independent impact on OS (HR 1.7; p<0.001) in conjunction with the pattern of distant metastases (HR 1.8; p<0.001) and sLDH (HR 1.6; p=0.002). The independent impact of sGDF-15 levels was evident both in M1a/b (FIG. 3A) and in M1c patients (FIG. 3B). The number of unfavorable values considering the three independent factors sLDH, sGDF-15 and the pattern of distant metastasis was strongly associated with OS (FIG. 3C). Thereby, 47% of patients fell into a newly identified subgroup with an extremely poor (3.3%) probability to survive 1 year. The multivariate model 2 considered all analyzed variables (Table 3). Here, sS100B replaced sLDH as significant prognostic parameter and age had additional independent impact. Stratification according to the number of unfavorable factors considering sS100B, the M-category, hGDF-15, and age allowed identification of an 8% sub-group of patients with favorable prognosis and 1-year OS of 81.3%. In contrast, 16% of patients showing unfavorable values in all 4 independent factors had the poorest prognosis with a 1-year OS of 3.2% (FIG. 7).


Example 2: Alternative Evaluation of the Patient Samples Described in Example 1

As an alternative Example in accordance with the invention, the same patient samples, which were already described in Example 1, were evaluated in an alternative manner, as described in the following:


Patients, Materials and Methods:
Patients

Patients from the Department of Dermatology, Tubingen, Germany, with histologically confirmed melanoma were identified in the Central Malignant Melanoma Registry (CMMR) database (Lasithiotakis et al., 2006). 761 patients, with (a) archived serum samples taken between January 2008 and February 2012, (b) available follow-up data, and either (c) history of loco-regional or (d) history or presence of distant metastasis at the time point of blood draw were selected. Serum used for analysis of sGDF-15 was sampled during routine blood draws for analysis of sS100B stage was defined according to the AJCC classification (Balch et al., 2009), serum LDH and serum S100B (Elecsys S100 electrochemiluminescence immunoassay; Roche Diagnostics, Rotkreuz, Switzerland) were categorized as elevated vs. normal according to cut-off values used in clinical routine (upper limits of normal 0.10 μg/I and 250 U/l, respectively). Distant soft tissue/lymph nodes, lung, brain, liver, bone, and other visceral organs were considered for the calculation of the number of involved distant sites. Thus the number could be between 1 and 6 for each stage IV patient. GDF-15 serum concentrations were quantified in duplicates using a commercial ELISA kit according to the manufacturer's instructions (R&D systems, Wiesbaden, Germany).


All patients had given written informed consent to have clinical data recorded by the CMMR registry. The institutional ethics committee Tubingen has approved the study (ethic vote 125/2015B02).


Statistical Analysis

Follow-up time was defined from the date of blood sampling to the last follow-up or death. Survival probabilities according to Kaplan-Meier were calculated together with 95% confidence intervals and compared using two-sided log-rank tests. Patients who were either alive at the last follow-up or died from reasons other than melanoma were censored. Patients were randomly assigned to two cohorts using a 1:2 ratio. In the identification cohort, differences in OS between patients with high vs. low sGDF-15 were analyzed for cut-off points which yield two balanced groups comprising 25% of patients each. Then, the cut-off point resulting in the lowest log rank p-value was selected, similar to optimization algorithms published earlier (Camp et al., 2004) and thereafter analyzed in the validation cohort.


Cox regression analysis was used excluding patients with missing values. Results of the multivariable models were described by means of HRs; p-values were based on the Wald test. Combination models were developed using the nomogram function in the survival package for R. Differences in sGDF-15 according to prior systemic treatments were analyzed by Mann-Whitney U Testing. All statistical analyses were carried out using SPSS Version 22 (IBM SPSS, Chicago, Ill., USA) and R 3.2.1 (R Foundation for Statistical Computing, Vienna Austria).


Results:
Patients

Patients' characteristics are shown in Table 5. A total of 761 melanoma patients was analyzed. The median follow-up for patients who died was 10.3 months and 45.3 months for patients who were alive at the time point of last follow-up.


Stage IV patients (n=293) were assigned to the M-categories M1c (n=206; 70.3%), M1b (n=51; 17.4%), or M1a (n=36; 12.3%). The median survival estimate according to Kaplan Meier was 10.7 months. Survival probabilities were 46.4% at 1 year, 33.3% at 2 years, and 29.3% at 3 years. Assessment for stage IV patients was within 12 weeks in 84 (28.7%), or within 12 months after first occurrence of distant metastasis in 96 (32.7%), or at later time points in 113 patients (38.6%). At the respective time-point 87 patients (29.7%) had no evidence of disease while 206 (70.3%) had unresectable tumor.


A total of 468 stage III patients was included. Sub-stage was IIIA in 15.6%, Ill B in 37.2%, and IIIC in 47.2% of 422 patients with complete data for classification. Survival probabilities were 94.9% at 1-year, 85.0% at 2-years, and 72.8% at 5-years, respectively. The time point of assessment was within 12 weeks for 55 patients (11.8%), within 12 months after first occurrence of loco regional metastasis for 100 (21.4%), or later for 313 patients (66.9%). None of the stage III patients had evidence of disease at the respective time point.


GDF-15 Serum Levels According to Stage, Tumor Burden and Prior Treatments

Median sGDF-15 was 1.0 ng/mL considering all 761 patients (0.9 ng/mL for stage III vs. 1.5 ng/mL for stage IV patients). Stage IV patients with clinical or radiologic evidence of tumor had higher median sGDF-15 (2.1 ng/mL) than tumor-free stage IV or tumor-free stage III patients (both 0.9 ng/mL; FIG. 10A). Among tumor-free stage IV patients, median sGDF-15 was not different between 13 patients who had ongoing complete responses after systemic treatments and 74 patients who were tumor-free after metastasectomy of distant metastases (both 0.9 ng/mL). sGDF-15 correlated with sLDH and the number of involved distant sites in unresectable stage IV patients (FIGS. 10B and 10C). In general, median sGDF-15 was not different in patients who had received systemic treatment within the last 4 weeks or any time before blood sampling (Table 8). A separate analysis about the impact of pre-treatment with chemotherapy, ipilimumab, other immunotherapy, BRAF/MEK inhibitors, or other systemic treatments showed lower sGDF-15 after BRAF/MEK inhibitors and a trend towards higher levels after ipilimumab in unresectable stage IV patients. No significant impact of prior systemic treatments was observed in tumor-free stage IV patients. A small but significant difference in sGDF-15 was observed comparing tumor-free stage III patients who had prior adjuvant treatment with Interferon-a to those without (0.8 ng/mL vs. 0.9 ng/mL; Table 8).


Overall Survival According to GDF-15 Levels

Thirteen different cut-off points of sGDF-15 ranging from 0.7 ng/mL to 1.9 ng/mL were tested in the identification cohort (n=254). The most significant difference in prognosis was observed when 86 patients (33.9%) with sGDF-15 ng/mL and poor OS were compared to 168 (66.1%) patients with lower levels and favorable OS (p<0.001; FIG. 11A). The difference in OS using this cut-off point was thereafter confirmed in the validation cohort (n=507; p<0.001; FIG. 11B). A comparison of patient characteristics between the identification and the validation cohorts is provided in Table 9.


This inverse correlation between sGDF-15 and OS was observed in tumor-free stage III patients and in unresectable stage IV patients (FIGS. 1A, 1B) but not in tumor-free stage IV patients (FIG. 10) considering patients of both cohorts.


Among stage III patients, the 1-, 2- and 5-years OS probability was 96.1%, 87.8% and 75.7% for those with sGDF-15<1.5 ng/mL but only 90.4%, 74.2% and 61.5% for patients with higher sGDF-15 (Table 6 and Table 10). The association with OS was significant for patients who had been tumor-free for up to 6 months before serum sampling, or for 6 to 24 months. No difference in OS was observed for patients, who had been tumor-free for more than 24 months (FIGS. 12A-12I).


For patients with unresectable distant metastases and sGDF-15 ng/mL the 1-year OS probability was only 14.3%, but 45.0% for those with low sGDF-15. Similarly, the 2-year and 5-year survival was 6.3% and 2.6% compared to 19.9% and 5.2%, respectively (Table 7 and Table 11). The association with OS was significant for patients whose assessment was within 6 months and between 6 and 24 months after first diagnosis of distant metastasis but not for those, who had been in stage IV for more than 24 months (FIGS. 13A-13I).


The Relative Prognostic Impact of sGDF-15 in Stage III Patients


Cox regression analysis of all tumor-free stage III patients was performed to determine the relative impact of sGDF-15 compared to other prognostic factors. The hazard ratio (HR) was 2.2 (p<0.001) for patients with sGDF15 ≤1.5 ng/mL when adjusted for the sub-stage according to American Joint Committee on Cancer (Table 6; model 1). In model 2, which considered a broad spectrum of factors, elevated sS100B was strongly associated with poor OS (FIG. 14A) and had independent negative impact on OS (HR 4.0; p<0.001) in addition to elevated sGDF-15 (HR 2.7; p<0.001) and the pattern of loco-regional metastasis (HR=4.1; p<0.001 for combined lymph-node and intransit/satellite involvement, HR=2.4; p=0.002 for lymph-node involvement only; Table 6). To obtain an individual risk score, a nomogram accounting for the relative impact of these three factors was developed (FIG. 8A). Two years OS was 96.1% for patients without lymph node involvement, normal sS100B, and sGDF-15<1.5 ng/mL (risk score 0), but only 40.2% for those with a risk score >175 (FIG. 8B). No significant associations with OS were observed for age, gender, sLDH, sub-stage, ulceration, or tumor thickness. OS was not different between patients who received prior adjuvant systemic treatments compared to those without (Table 6). A similar impact of sGDF-15 on OS was observed, if the analysis was limited to stage III patients of the validation cohort (Table 12).


The Relative Impact of GDF-15 Levels in Stage IV Patients

sGDF-15 had independent impact on OS among the entire cohort of stage IV patients (n=293). As expected, a prominent impact of the disease status at the time-point of serum sampling was observed (unresectable disease HR=8.6; p<0.001 vs. tumor-free; Table 13). Thus, unresectable stage IV patients and those which were tumor-free after metastasectomy or complete responses upon prior systemic treatments were analyzed separately.


In tumor-free stage IV patients (n=87), no impact on OS was observed for sGDF-15 (Table 14). Instead, increased sS100B (FIG. 14B), involved distant sites, and no prior systemic treatments were associated with poor OS in univariate and multivariate analysis. None of 13 patients with ongoing complete responses following systemic treatments died during follow-up. If the analysis was limited to the subgroup of patients who were tumor-free after complete metastasectomy the same factors remained independently associated with OS (Table 15).


Looking at 206 unresectable stage IV patients (Table 7), elevated sGDF-15 had a strong independent negative impact on OS (HR 1.9; p<0.001) in addition to the M category (HR 1.6; p<0.001 for M1c). The association of sGDF-15 with OS was evident both in M1a/b (FIG. 9A) and in M1c patients (FIG. 9B). In more detailed multivariable model 2, elevated sGDF-15, elevated sS100B (FIG. 14C), CNS involvement, and involved distant sites were independently associated with poorer OS (Table 7). Strong differences in OS were observed according to the nomogram-based risk score accounting for the relative impact of these four factors. 31.1% of patients with a risk score <100 had a 1-year OS of 48.3%. In contrast, none of 21.2% of patients who had a risk score 250 survived the first year after serum sampling (FIGS. 9C, 9D). Despite being associated with OS in univariate analysis, sLDH and the pattern of distant metastasis had no additional impact on OS when considered together with the other factors. OS of patients who received prior systemic treatment was not different compared to those without (Table 7) and a similar independent impact of sGDF-15 on OS was observed, if the analysis was limited to unresectable patients who were treatment-naïve (Table 16), or to those of the validation cohort only (Table 17). In patients with CNS-involvement GDF-15, sLDH and sS100B were associated with OS in univariate analysis but not independent factors when analyzed in combination (Table 18).









TABLE 5







Patient characteristics















Stage IV
Stage IV





Stage III
tumor-free
unresectable
Total




(n = 468)
(n = 87)
(n = 206)
(n = 761)
















Factor
Category
N
(%)
N
(%)
N
(%)
N
(%)



















Gender
Male
228
48.7
47
54.0
121
58.7
396
52.0



Female
240
51.3
40
46.0
85
41.3
365
48.0


Age
≤50 years
120
25.6
16
18.4
57
27.7
193
25.4



51-60 years
82
17.5
16
18.4
56
27.2
154
20.2



61-70 years
117
25.0
28
32.2
38
18.4
183
24.0



≥71 years
149
31.8
27
31.0
55
26.7
231
30.4













Median age
64 years
66 years
59 years
63 years
















Stage
IIIA
66
15.6




66
9.2


(AJCC
IIIB
157
37.2




157
22.0


2009)
IIIC
199
47.2




199
27.8



Stage III - unknown











sub-stage
46





46




IV, M1a


23
26.4
13
6.3
36
5.0



IV, M1b


21
24.1
30
14.6
51
7.1



IV, M1c


43
49.4
163
79.1
206
28.8


sS100B
Normal
409
87.8
74
89.2
65
33.7
548
73.9



Elevated
57
12.2
9
10.8
128
66.3
194
26.1



Unknown
2

4

13

19



sLDH
Normal
439
94.2
81
97.6
116
57.1
636
84.6



Elevated
27
5.8
2
2.4
87
42.9
116
15.4



Unknown
2

4

3

9



Visceral
Soft tissue only


23
26.4
22
10.7
45
5.9


involvement
Lung


21
24.1
36
17.5
57
7.5



Other organs


43
49.4
148
71.8
191
25.1



None (stage III)
468





468
61.5


Prior
Interferon-α(adjuvant)
228
48.7
35
32.4
67
32.5
330
37.6


systemic
Chemotherapy
6
1.3
18
16.7
119
57.8
141
16.1


treatments
lpilimumab


5
4.6
11
5.3
16
1.8



BRAF/MEK inhibitors




16
7.8
16
1.8



Immunotherapy other
5
1.1
17
15.7
34
16.5
56
6.4



than ipilimumab











Other
1
0.2
2
1.9
6
2.9
9
1.0



None
232
49.6
31
28.7
47
22.8
310
35.3


Ulceration
Yes
156
38.8
22
36.1
54
44.3
232
39.7



No
246
61.2
39
63.9
68
55.7
353
60.3



Unknown
66

26

84

176



Pattern of
Only satellite/intransit
131
28.5
8
13.6
28
20.1
167
23.0


locoregional
Only lymph nodes
252
54.8
30
50.8
64
46.0
346
47.7


metastasis
Both
77
16.7
21
35.6
47
33.8
145
20.0



Distant metastasis


19

49

68
9.4



only











Unknown
8

9

18

35



Breslow's
≤1.00 mm
48
12.5
7
12.7
20
17.2
75
13.5


tumor
1.01-2.00 mm
123
32.0
18
32.7
25
21.6
166
29.9


thickness
2.01-4.00 mm
136
35.4
16
29.1
41
35.3
193
34.8



>4.00 mm
77
20.1
14
25.5
30
25.9
121
21.8



Unknown
84

32

90

206



CNS
Yes


14
16.1
77
37.4
91
12.0


involvement
No


73
83.9
129
62.6
202
26.5


Number of
1


50
57.5
50
24.3
100
13.1


involved
2


24
27.6
53
25.7
77
10.1


distant sites
3


8
9.2
51
24.8
59
7.8



≥4


5
5.7
52
25.2
57
7.5





Abbreviations:


AJCC, American Joint Committee on Cancer;


CNS, central nervous system;


LDH, lactate dehydrogenase;


sLDH, serum level of lactate dehydrogenase; sS100B, S100B in serum.













TABLE 6







Overall survival subsequent to serum sampling in tumor-free stage III patients

























Multivariable analysis
















Univariable analysis


Model 2 (n = 374)























1-year
2-year
5-year

Model 1 (n = 417)

Wald




















Total



survival
survival
survival rate
Log-rank
Hazard
wald test
Hazard
test p-


Factor
(n = 468)
Categories
n
%
rate (%)*
rate (%)*
(%)*
p-value
ratio
p-value
ratio
value





















sLDH
466
Normal
439
94.2
95.3
85.2
73.4
0.391
Not considered
1





Elvated
27
5.8
91.7
82.7
63.6


1.2
0.698


sS100B
466
Normal
409
87.8
96.9
88.1
76.1
<0.001
Not considered
1





Elevated
57
12.2
81.7
63.5
48.9


4.0
<0.001


Gender
468
Male
228
48.7
95.0
85.8
72.1
0.894
Not considered
1





Female
240
51.3
94.8
84.1
73.6


1.2
0.468


















Stage
422
IIA
66
15.6
96.9
95.2
79.7
0.176
1

Not considered





















IIB
157
37.2
96.0
86.4
71.9

1.3
0.460






IIC
119
47.2
92.2
79.8
69.0

1.6
0.152




















Age
468
≤50 years
120
25.6
96.4
87.8
71.2
0.093
Not considered
1





51-60 years
82
17.5
95.1
84.5
66.1
0.093
Not considered
1.3
0.487




61-70 years
117
25.0
96.5
88.0
81.8


1.2
0.557




≥71 years
149
31.8
92.4
80.6
70.7


1.3
0.490



















sGDF-15
468
<1.5 ng/mL
369
78.8
96.1
87.8
75.7
0.001
1

1





≥1.5 ng/mL
99
21.2
90.4
74.2
61.5

2.2
<0.001
3.3
<0.001


















Ulceration
402
No
246
61.2
94.0
87.6
75.1
0.221
Not considered
1





Yes
156
38.8
94.1
81.3
68.6


1.2
0.471


Pattern of
460
Only
131
28.5
96.8
90.8
80.1
<0.001
Not considered
1



locoregional
460
satelite/
131
28.5
96.8
90.8
80.1






metastasis

intransit













Only lymph
252
54.8
95.1
87.8
76.9


1.7
0.127




nodes













Both
77
16.7
91.8
72.3
53.1


4
<0.001


Breslow's
34
≤1.00 mm
48
12.5
93.7
86.7
71.3
0.396
Not considered
1



tumor

1.01-2.00 mm
123
32.0
94.1
89.4
77.5
0.396

1.7
0.143


thickness

2.01-4.00 mm
136
35.4
93.1
83.8
73.4


1.7
0.155




>4.00 mm
77
20.1
95.9
78.1
66.7


1.5
0.336


Prior adjuvant
468
Yes
236
50.4
95.6
85.4
73.6
0.821
Not considered
1



systemic

No
232
49.6
93.1
84.6
72.1
0.821

1.0
0.849


treatment





Abbreviations:


sGDF-15, serum levels of growth and differentiation factor 15;


sLDH, serum level of lactate dehydrogenase, sS100B, S100B in serum.


*The 95% confidence intervals are presented in Table 10.













TABLE 7







Overall survival subsequent to serum sampling in unrespectable stage IV patients

























Multivariable analysis
















Univariable analysis


Model 2 (n = 193)























1-year
2-year
5-year

Model 1 (n = 203)

Wald




















Total



survival
survival
survival rate
Log-rank
Hazard
wald test
Hazard
test p-


Factor
(n = 206)
Categories
n
%
rate (%)*
rate (%)*
(%)*
p-value
ratio
p-value
ratio
value





















sLDH
203
Normal
116
57.1
36.2
16.3
0.0
<0.001
Not considered
1





Elevated
87
42.9
12.6
5.7
4.6


1.3
0.202


sS100B
193
Normal
65
33.7
46.2
26.1
4.8
<0.01
Not considered
1





Elevated
128
66.3
12.5
3.1
1.6


1.9
0.003


Gender
206
Male
121
58.7
27.3
10.7
3.7
0.961
Not considered
1





Female
85
41.3
24.7
12.9
3.5


1.0
0.846


Pattern of
206
Soft-tissue/
58
28.2
43.1
24.0
10.6
<0.001
Not considered
1




















distant

lung












metastasis

Other
148
71.8
19.6
6.8
1.8



1.0
0.915




















visceral











Age
206
≤50 years
57
27.7
31.6
21.1
0.0
0.010
Not considered
1





51-60
56
27.2
33.9
4.5
10.2


1.2
0.392




61-70
38
18.4
10.5
0.0
0.0


1.5
0.103





















years














≥71 years
55
26.7
23.6
7.3
3.6



1.3
0.232


sGDF-15
206
<1.5 ng/mL
80
38.8
45.0
19.9
5.2
<0.001
1

1





≥1.5 ng/mL
126
61.2
14.3
6.3
2.6

1.9
<0.001
1.5
0.036


















M-category
206
M1a/b
43
20.9
46.5
25.4
9.1
0.001
1

Not considered





















M1c
163
79.1
20.9
8.0
2.9

1.6
<0.001




















CNS
206
No
129
62.6
31.0
15.5
4.9
<0.001
Not considered
1



involvement

Yes
77
37.4
18.2
5.2
2.6


1.6
0.013


Number of
206
1
50
24.3
44.0
20.0
4.6
<0.001
Not considered
1



involved

2
53
25.7
34.0
17.0
10.6


1.1
0.562


distant

3
51
24.8
21.6
7.8
2.0


1.5
0.035


sites

≥4
52
25.2
5.8
1.9
1.9


1.9
0.035


Prior systemic
206
Yes
134
65.0
25.4
12.6
6.3
0.703
Not considered
1



treatment

No
72
65.0
27.8
9.7
0.0


1.1
0.693





Abbreviations:


CNS, cnetral nervous system;


sGDF-15, serum levels of growth and differentiation factor 15;


sLDH, serum level of lactate dehydrogenase;


sS100B, S100B in serum.


*The 95% confidence intervals are presented in Table 11.













TABLE 8







GDF-15 serum levels according to systemic treatments applied












Within 4 weeks before blood draw
Any time before blood draw






















% of
Median




% of
Median





n
patients
sGDF-15
p-value

n
patients
sGDF-15
p-value





















Stage IV unrespectable
Any systemic treatment
Yes
98
47.6
1.6
0.579
Yes
134
65.0
1.8
0.336


(n = 206)

No
108
52.4
1.7

No
72
35.0
1.4




Chemotherapy
Yes1
76
36.9
1.8
0.329
Yes
119
57.8
1.9
0.104




No
129
62.6
1.5

No
67
42.2
1.3




Ipilimumab
Yes
5
2.4
7.4
0.058
Yes
11
5.3
4.9
0.122




No
201
97.6
1.5

No
195
94.7
1.6




BRAF/MEK inhibition
Yes
15
7.3
0.7
0.010
Yes
16
7.8
1.0
0.035




No
191
92.7
1.8

No
190
92.2
1.8




Immunotherapy other
Yes2
13
6.3
1.5
0.845
Yes
35
17.0
1.7
0.677



than ipilimumab
No
191
92.7
1.7

No
171
83.0
1.6




Other
Yes
2
1.0
1.6
0.863
Yes
6
2.9
3.1
0.300




No
204
99.0
1.7

No
200
97.1
1.6



Stage IV tumor-free
Any systemic treatment
Yes
3
3.4
2.1
0.418
Yes
33
37.9
1.3
0.075


(n = 87)

No
84
96.6
0.9

No
54
62.1
0.8




Chemotherapy
Yes
2
2.3
1.8
0.820
Yes
18
20.7
1.1
0.297




No
85
97.7
0.9

No
69
79.3
0.9




Ipilimumab
Yes
0
0


Yes
5
5.7
1.3
0.693




No
87
100
0.9

No
82
94.3
0.9




BRAF/MEK inhibition
Yes
0
0


Yes
0
0






No
87
100
0.9

No
87
100
0.9




Immunotherapy other
Yes
2
2.3
2.6
0.069
Yes
17
19.5
1.3
0.151



than ipilimumab
No
85
97.7
0.9

No
70
80.5
0.8




Other
Yes
0
0


Yes
2
2.3
1.0
0.947




No
87
100
0.9

No
85
97.7
0.9



Stage III
Any systemic adjuvant
Yes
65
13.9
0.9
0.998
Yes
236
50.4
0.8
0.029


(n = 468)
treatment
No
403
86.1
0.9

No
232
49.6
0.9




Interferon-α (adjuvant)
Yes3
61
13.2
0.9
0.387
Yes
228
48.7
0.8
0.023




No
402
86.8
0.9

No
240
51.3
0.9





1: data not available in one patient,


2: not available in two patients,


3: not available in five patients













TABLE 9







Patient characteristics













Identification
Validation





Cohort
Cohort
Total




(n = 254)
(n = 507)
(n = 761)














Factor
Category
N
(%)
N
(%)
N
(%)

















Gender
Male
133
52.4
263
51.9
396
52.0



Female
121
47.6
244
48.1
365
52.0


Age
≤50 years
67
22.4
97
19.1
154
20.2



51-60 years
57
22.4
97
19.1
154
220.2



61-70 years
52
20.5
131
25.8
183
24.0



≥71 years
78
30.7
153
30.2
231
30.4












median age
61 years
64 years
63 years














Stage
IIIA
23
9.8
43
8.9
66
9.2


(AJCC 2009)
IIIB
47
20.1
110
22.9
157
22.0



IIIC
58
24.8
141
29.3
199
27.8



Stage III- unknown sub-
20

26

46




IV, M1a
15
6.4
21
4.4
36
5.0



IV, M1b
24
10.3
27
5.6
51
7.1



IV, M1c
67
28.6
139
28.9
206
28.8


sS100B
Normal
196
79.7
352
71.0
548
73.9



Elevated
50
20.3
144
29.0
194
26.1



Inknown
8

11

19



sLDH
Normal
209
83.3
427
85.2
636
84.6



Elevated
42
16.7
74
14.8
116
15.4



Unknown
3

6

9



Visceral involvement
Soft tissue only
16
15.1
29
15.5
45
5.9



Lung
26
24.5
31
16.6
57
7.5



Other organs
64
60.4
127
67.9
191
25.1



None (stage III)
148

320

468
61.5


Prior systemic treatments
Interferon-α (adjuvant)
104
34.9
226
38.8
330
37.5



Chemotherapy
47
15.8
96
16.5
143
16.2



Ipilimumab
6
2.0
10
1.7
16
1.8



BRAF/MEK inhibitors
7
2.3
9
1.5
16
1.8



Immunotherapy other than
25
8.4
32
5.5
57
6.5



ipilimumab
25
8.4
32
5.5
57
6.5



Other
3
1.0
6
1.0
9
1.0



None
106
35.6
204
35.0
310
35.2


Clinical situaion
Stage III tumor-free
148
58.3
320
63.1
468
61.5



Stage IV tumor-free
34
13.4
53
10.5
87
11.4



Stage IV unresectable
72
28.3
134
26.4
206
27.1


Ulceration
Yes
87
45.3
145
36.9
232
39.7



No
105
54.7
248
63.1
353
60.3



Unknown
62

114

176



Pattern of locoregional
Only satellite/intransit
56
22.0
111
21.9
167
21.9


metastasis
Only lymph nodes
114
44.9
232
45.8
346
45.5



Both
48
18.9
97
19.1
145
19.1



Distant metastasis only
24
9.4
44
8.7
68
8.9



Unknown
12
4.7
23
4.5
35
4.6


Breslow's tumor
≤1.00 mm
21
11.5
54
14.5
75
13.5


thickness
1.01-2.00 mm
52
28.6
114
30.6
166
29.9



2.01-4.00
65
35.7
128
34.3
193
34.8



>4.00 mm
44
24.2
77
20.6
121
21.8



Unknown
72

134

206



CNS involvement
Yes
34
32.1
57
30.5
91
31.1


(Stage IV only)
No
72
67.9
130
69.5
202
68.9


Number of involved
1
41
38.7
59
31.6
100
34.1


distant sites
2
24
22.6
53
28.3
77
26.3


(Stage IV only)
3
19
17.9
40
21.4
59
20.1



≥4
22
20.8
35
18.7
57
19.5
















TABLE 10







Overall survival subsequent to serum sampling in tumor-free stage III patients













Univariable analysis
























Median
























Total



Survival
1-year survival
2-year survival
5-year survival
Log-rank


Factor
(n = 468)
Categories
n
%
(months)
rate [95% Cl] (%)
rate [95% Cl] (%)
rate [95% Cl] (%)
p-value






















sLDH
466
Normal
439
94.2
n.r.
95.3
[93; 97]
85.2
[82; 89]
73.4
[68; 78]
0.391




Elevated
27
5.8
n.r.
91.7
[81; 100]
82.7
[67; 98]
63.6
[41; 87]



sS100B
466
Normal
409
87.8
n.r.
96.9
[95; 99]
88.1
[85; 91]
76.1
[71; 81]
<0.001




elevated
57
12.2
n.r.
81.7
[71; 92]
63.5
[50; 77]
48.9
[32; 65]
<0.001


Gender
468
Male
228
48.7
n.r.
95.0
[92; 98]
85.8
[81; 91]
72.1
[65; 79]
0.894




Female
240
51.3
n.r.
94.8
[92; 98]
84.1
[79; 89]
73.6
[67; 80]



Stage
422
IIIA
66
15.6
n.r.
96.9
[93; 100]
95.2
[90; 100]
79.7
[68; 91]
0.176




IIIB
157
37.2
n.r.
96.0
[93; 99]
86.4
[81; 92]
71.9
[63; 81]





IIIC
199
47.2
n.r.
9.2
[88; 96]
79.8
[74; 86]
69.0
[61; 77]



Age
468
≤50 years
120
25.6
n.r.
96.4
[93; 100]
87.8
[82; 94]
71.2
[61; 81]
0.093




51-60 years
82
17.5
n.r.
95.1
[90; 100]
84.5
[76; 93]
66.1
[53; 79]





61-70 years
117
25.0
n.r.
96.5
[93; 100]
88.0
[82; 94]
81.8
[74; 90]





≥71 years
149
31.8
n.r.
92.4
[88; 97]
80.6
[74; 87]
70.7
[62; 79]



sGDF-15
468
≤1.5 ng/mL
369
78.8
n.r.
96.1
[94; 98]
87.8
[84; 91]
75.7
[70; 81]
0.001




≥1.5 ng/mL
99
21.2
n.r.
90.4
[84; 96]
74.2
[65; 83]
61.5
[51; 72]



Ulceration
402
No
246
61.2
n.r.
94.0
[91; 97]
87.6
[83; 92]
75.1
[60; 78]
0.221




Yes
156
38.8
n.r.
94.1
[90; 98]
81.3
[75; 88]
68.6
[69; 812]



Pattern of
460
Only
131
28.5
n.r.
96.8
[94; 100]
90.8
[86; 96]
80.1
[72; 88]
<0.001


locoregional
460
satelite/intransit












metastasis

Only lymph nodes
252
54.8
n.r.
95.1
[92; 98]
72.3
[62; 83]
53.1
[38; 68]



Breslow's
384
≤1.00 mm
48
12.5
n.r.
93.7
[87; 100]
86.7
[77; 97]
71.3
[56; 86]
0.396


tumor

1.01-2.00 mm
123
32.0
n.r.
94.1
[90; 98]
89.4
[84; 95]
77.5
[69; 87]



thickness

2.01-4.00 mm
136
35.4
n.r.
93.1
[89; 98]
83.8
[77; 90]
73.4
[65; 82]





>4.00 mm
77
20.1
n.r.
95.9
[91; 100]
78.1
[68; 88]
66.7
[55; 79]



Prior adjuvant
468
Yes
236
50.4
n.r.
95.6
[94; 99]
85.4
[81; 90]
73.6
[67; 80]
0.821


systemic

No
232
49.6
n.r.
93.1
[90; 96]
84.6
[80; 90]
72.1
[65; 79]






Cl: confidence interval;


n.r.: not reached.













TABLE 11







Overall survival subsequent to serum sampling in unresectable stage IV patients













Univariable analysis
























Median
























Total



Survival
1-year survival
2-year survival
5-year survival
Log-rank


Factor
(n = 206)
Categories
n
%
(months)
rate [95% Cl] (%)
rate [95% Cl] (%)
rate [95% Cl] (%)
p-value






















slDH
206
Normal
116
57.1
9.2
36.2
[27; 45]
16.3
[10; 23]
0.0
[0, 0]
<0.001




Elevated
87
42.9
4.0
12.6
[6; 20]
5.7
[1; 11]
4.6
[0; 9]



sS100B
193
Normal
65
33.7
10.2
46.2
[34; 58]
26.1
[15; 37]
4.8
[0; 13]
<0.001




Elevated
128
66.3
5.2
12.5
[7; 18]
3.1
[0; 6]
1.6
[0; 4]



Gender
206
Male
121
58.7
7.4
27.3
[19; 35]
10.7
[5; 16]
3.7
[0; 9]
0.961




Female
85
41.3
7.6
24.7
[16; 34]
12.9
[6; 20]
3.5
[0; 8]



Pattern of
206
Soft-tissue/
58
28.2
10.0
43.1
[30; 56]
24.0
[13; 35]
10.6
[2; 19]
<0.001


distant

lung












metastasis

Other
148
71.8
6.1
19.6
[13; 26]
6.8
[3; 11]
1.8
[0; 5]





visceral












Age
206
≤50 years
57
27.7
7.6
31.6
[20; 44]
21.1
[11; 32]
0.0
[0; 0]
0.010




51-60 years
56
18.4
8.5
33.9
[22; 46]
4.5
[2; 24]
10.2
[2; 18]





61-70 years
38
18.4
6.6
10.5
[1; 20]
0.0
[0; 0]
0.0
[0; 0]





≥71 years
55
26.7
7.0
23.6
[12; 35]
7.9
[0; 14]
3.6
[0; 9]



sGDF-15
468
≤1.5 ng/mL
80
38.8
11
45.0
[34; 56]
19.9
[11; 29]
5.2
[0; 13]
<0.001




≥1.5 ng/mL
126
61.2
5.7
14.3
[8; 20]
6.3
[2; 11]
2.6
[0; 6]



M-category
206
No
43
20.9
11.6
46.5
[32; 61]
25.4
[12; 38]
9.1
[0; 18]
0.001




Yes
163
79.1
6.6
20.9
[15; 27]
8.0
[4; 12]
2.9
[0; 6]



CNS
206
No
129
62.6
8.5
31.0
[23; 39]
15.5
[9; 22]
4.9
[0; 10]
<0.001


involvement

Yes
77
37.4
4.7
18.2
[10; 27]
5.2
[0; 10]
2.6
[0; 6]



Number of
206
1
55
24.3
9.2
44.0
[30; 58]
20.0
[9; 31]
4.6
[0; 12]
<0.001


involved

2
53
25.7
7.8
34.0
[21; 47]
17.0
[7; 27]
10.6
[2; 19]



distant sites

3
51
24.8
6.4
21.6
[10; 33]
7.8
[1; 15]
2.0
[0; 6]





≥4
52
25.2
4.0
5.8
[0; 12]
1.9
[0; 6]
1.9
[0; 6]



Prior systemic
206
Yes
134
65.0
6.8
25.4
[18; 33]
12.6
[7; 18]
6.3
[2; 11]
0.703


treatment

No
72
35.0
8.6
27.8
[17; 38]
9.7
[3; 17]
0.0
[0; 0]






Cl: confidence interval.













TABLE 12







Overall survival of tumor-free stage III patients in the validation cohort



























Multivariable analysis















Univariable analysis
Model 1 (n = 294)
Model 2 (n = 263)



















Total



1-year survival
5-year survival
Log-rank
Hazard
Wald test
Hazard
Wald test


Factor
(n = 320)
Categories
n
%
rate [95% Cl] (%)
rate 95% [Cl] (%)
p-value
ratio
p-value
ratio
p-value






















sLDH
318
Normal
300
94.3
95.5
[93; 98]
73.6
[68; 80]
0.439
Not considered
1





Elevated
18
5.7
94.1
[83; 100]
56.8
[25; 89]


1.0
0.980


sS100B
318
Normal
274
86.2
97.7
[96; 100]
76.7
[71; 83]
<0.001
Not considered
1





Elevated
44
13.8
80.7
[69; 93]
47.2
[28; 66]


4.3
<0.001


Gender
320
Male
160
50.0
94.8
[92; 98]
71.4
[63; 80]
0.907
Not considered
1























Female
160
50.0
95.4
[92; 99]
74.2
[66; 82]



1.5
0.218



















Stage
294
IIIA
43
14.6
97.7
[93; 100]
88.8
[76; 100]
0.087
1

Not considered






















IIIB
110
37.4
96.2
[93; 100]
67.2
[56; 79]

2.8
0.053






IIIC
141
48.0
92.6
[88; 97]
70.0
[61; 79]

2.9
0.044





















Age
320
≤50 years
77
24.1
97.2
[93; 100]
77.0
[66; 88]
0.465
Not considered
1























51-60 years
52
16.3
96.2
[91; 100]
63.6
[46; 81]



1.3
0.544




61-70 years
85
26.6
95.1
[90; 100]
78.2
[69; 88]



1.2
0.665




≥71 years
106
33.1
93.2
[88; 98]
69.0
[58; 80]



1.3
0.615


sGDF-15
320
≤1.5 ng/mL
252
78.8
95.9
[93; 98]
76.2
[70; 83]
0.014
1

1





≥1.5 ng/mL
68
21.3
92.1
[86; 99]
59.9
[46; 73]

2.1
0.005
2.8
0.005



















Ulceration
282
No
182
64.5
94.3
[91; 98]
74.1
[66; 82]
0.514
Not considered
1





Yes
100
35.5
94.8
[91; 99]
69.8
[58; 81]


1.4
0.295


Pattern of
318
Only
90
28.3
97.7
[95; 100]
80.0
[70; 90]
<0.001
Not considered
1



locoregional

satellite/












metastasis

intransit














only lymph
172
54.1
95.2
[92; 98]
75.1
[67; 83]


2.0
0.091




nodes














Both
56
17.6
90.5
[83; 98]
53.2
[38; 69]


5.3
<0.001


Breslow's
269
<1.00 mm
38
14.1
94.7
[88; 100]
63.6
[44; 83]
0.532
Not considered
1



tumor

1.01-2.00 mm
87
32.3
94.0
[89; 99]
79.1
[68; 90]


2.2
0.078


thickness

2.01-4.00 mm
93
34.6
92.2
[87; 98]
72.1
[61; 93]


1.9
0.173




>4.00 mm
51
19.0
97.9
[94; 100]
71.7
[58; 68]


1.7
0.299


Prior adjuvant
320
Yes
161
50.3
96.9
[94; 100]
74.7
[67; 82]
0.777
Not considered
1



systemic

No
159
49.7
93.3
[90; 97]
71.2
[63; 80]


1.1
0.640


treatment





LDH: lactate dehydrogenase;


Cl: confidence interval.













TABLE 13







Overall survival subsequent to serum sampling in all stage IV patients



























Multivariable analysis















Univariable analysis
Model 1 (n = 293)
Model 2 (n = 276)



















Total



1-year survival
5-year survival
Log-rank
Hazard
Wald test
Hazard
Wald test


Factor
(n = 293)
Categories
n
%
rate [95% Cl] (%)
rate 95% [Cl] (%)
p-value
ratio
p-value
ratio
p-value






















sLDH
286
Normal
197
68.9
60.4
[54; 67]
45.1
[38; 52]
<0.001
Not considered
1





elevated
89
31.1
14.6
[7; 22]
7.5
[2; 13]


1.3
0.195


sS100B
276
Normal
139
50.4
72.7
[65; 80]
60.4
[52; 59]
<0.001
Not considered
1





elevated
137
49.6
17.5
[11; 24]
7.0
[3; 11]


2.0
0.001


Gender
293
Male
168
57.3
47.0
[40; 55]
31.3
[24; 38]
0.525
Not considered
1























Female
125
42.7
46.4
[38; 55]
36.7
[28; 45]



1.0
0.993



















Disease
293
tumor-free
87
29.7
95.4
[91; 100]
86.2
[79; 93]
<0.001
Not considered
1





















status

unresectable
206
70.3
26.2
[20; 32]
11.6
[7; 16]



8.6
<0.001



















Pattern of
293
Soft-tissue/lung
102
34.8
66.7
[58; 76]
51.9
[42; 62]
<0.001
Not considered
1



distant

Other visceral
191
65.2
36.1
[30; 43]
24.4
[18; 31]


1.1
0.692




















metastasis
































Age
293
≤50 years
73
24.9
46.6
[35; 58]
36.9
[26; 48]
0.684
Not considered
1























51-60 years
72
24.6
45.8
[36; 57]
26.2
[16; 36]



1.2
0.481




61-70 years
66
22.5
48.5
[36; 61]
37.8
[26; 50]



1.4
0.143




≥71 years
82
28.0
46.3
[36; 57]
34.0
[24; 44]



1.2
0.334


sGDF-15
293
≤1.5 ng/mL
144
49.1
69.4
[62; 77]
49.2
[41; 57]
<0.001
1

1





≥1.5 ng/mL
149
50.9
27.5
[20; 35]
18.6
[12; 25]

2.3
<0.001
1.5
0.017



















M-category
293
M1a/b
87
29.7
72.4
[63; 82]
56.2
[46; 67]
<0.001
1

Not considered






















M1c
206
70.3
35.9
[29; 43]
24.1
[18; 30]

2.1
<0.001





















CNS
293
No
202
68.9
54.5
[48; 61]
41.4
[35; 48]
<0.001
Not considered
1



involvement

Yes
91
31.1
29.7
[20; 39]
16.5
[9; 24]


1.7
0.03


Number of
293
1
100
34.1
70.0
[61; 79]
54.8
[45; 65]
<0.001
Not considered
1



involved

2
77
26.3
53.2
[42; 64]
36.4
[26; 47]


1.5
0.053


distant sites

3
59
20.1
30.5
[19; 42]
16.6
[7; 26]


1.9
0.018




≥4
57
19.5
14.0
[5; 23]
10.5
[3; 19]


2.2
0.005


Prior
293
No
126
43.0
55.6
[37; 64]
39.4
[31; 48]
0.042
Not considered
1



systemic

Yes
167
57.0
40.1
[33; 48]
29.9
[23; 37]


1.3
0.059


treatment





LDH: lactate dehydrogenase;


Cl: confidence interval.













TABLE 14







Overall survival subsequent to serum sampling of tumor-free stage IV patients



























Multivariable analysis















Univariable analysis
Model 1 (n = 87)
Model 2 (n = 83)



















Total



1-year survival
5-year survival
Log-rank
Hazard
Wald test
Hazard
Wald test


Factor
(n = 87)
Categories
n
%
rate [95% Cl] (%)
rate 95% [Cl] (%)
p-value
ratio
p-value
ratio
p-value





















sLDH
83
Normal
81
97.6
95.1
[90; 100]
86.4
[79; 94]
0.471
Not considered
Not considered





















elevated
2
2.4
n.d
n.d
n.d
n.d






sS100B
83
Normal
74
89.2
95.9
[91; 100]
89.2
[82; 96]
0.008
Not considered
1





elevated
9
10.8
88.9
[68; 100]
66.7
[36; 97]


4.0
0.663


Gender
87
Male
47
54.0
97.7
[94; 100]
85.1
[75; 95]
0.749
Not considered
1























Female
40
46.0
92.5
[84; 100]
87.5
[77; 98]



1.3
0.938



















Pattern of
87
Soft-tissue/lung
44
50.6
97.7
[93; 100]
86.4
[76; 97]
0.822
Not considered
1



distant

Other visceral
43
49.4
93.0
[85; 100]
85.9
[75; 96]


1.1
0.938




















metastasis
































Age
87
≤50 years
16
18.4
100.0

93.8
[82; 100]
0.528
Not considered
1























51-60 years
16
18.4
87.5
[71; 100]
68.8
[46; 92]



1.2
0.827




61-70 years
28
32.2
100.0

89.3
[78; 100]



1.2
0.831




≥71 years
27
31.0
92.6
[83; 100]
88.9
[77; 100]



1.2
0.813


sGDF-15
87
≤1.5 ng/mL
64
73.6
93.8
[88; 100]
85.9
[77; 94]
0.651
1

1





≥1.5 ng/mL
23
26.4
100
[100; 100]
87.0
[73; 100]

1.2
0.651
1.0
0.969



















M-category
87
M1a/b
44
50.6
97.7
[93; 100]
86.4
[76; 97]
0.822
1

Not considered






















M1c
43
49.4
93.0
[85; 100]
85.9
[76; 96]

1.1
0.821





















CNS
87
No
73
83.9
95.9
[91; 100]
87.6
[80; 95]
0.428
Not considered
1



involvement

Yes
14
16.1
92.9
[79; 100]
78.6
[57; 100]


1.2
0.790


Number of
87
1
50
57.5
96.0
[91; 100]
90.0
[82; 98]
0.013
Not considered
1



involved

≥2
37
42.5
94.6
[87; 100]
81.0
[68; 94]


4.6
0.004


distant sites














Prior
87
Yes
33
37.9
97.0
[91; 100]
97.0
[91; 100]
0.003
Not considered
1



systemic

No
54
62.1
92.6
[86; 100]
79.5
[69; 90]


8.9
0.001


treatment





LDH: lactate dehydrogenase;


Cl: confidence interval.













TABLE 15







Overall survival of stage IV patients who were tumor-free after complete metastasectomy



























Multivariable analysis















Univariable analysis
Model 1 (n = 74)
Model 2 (n = 71)



















Total



1-year survival
2-year survival
Log-rank
Hazard
Wald test
Hazard
Wald test


Factor
(n = 74)
Categories
n
%
rate [95% Cl] (%)
rate 95% [Cl] (%)
p-value
ratio
p-value
ratio
p-value





















sLDH
71
Normal
70
98.6
94.3
[89; 100]
84.2
[76; 93]
0.679
Not considered
Not considered





















elevated
1
1.4
n.d
n.d
n.d.
n.d






sS100B
71
Normal
63
88.7
95.2
[90; 100]
87.3
[79; 96]
0.008
Not considered
1





elevated
8
11.3
87.5
[65; 100]
62.5
[29; 96]


3.6
0.023


Gender
74
Male
39
52.7
97.4
[93; 100]
82.0
[70; 94]
0.614
Not considered
1























Female
35
47.3
91.4
[82; 100]
85.7
[74; 97]



1.1
0.893



















Pattern of
74
Soft-tissue/lung
39
52.7
97.4
[93; 100]
84.6
[73; 96]
0.563
Not considered
1



distant

Other visceral
35
47.3
91.4
[82; 100]
82.7
[70; 95]


1.2
0.809




















metastasis
































Age
74
≤50 years
15
20.3
100

93.3
[81; 100]
0.624
Not considered
1























51-60 years
15
20.3
86.7
[70; 100]
66.7
[43; 91]



1.7
0.405




61-70 years
23
31.1
100

87.0
[73; 100]



1.2
0.810




≥71 years
21
28.4
90.5
[78; 100]
85.7
[71; 100]



1.1
0.906


sGDF-15
74
≤1.5 ng/mL
56
75.7
92.9
[86; 100]
83.9
[74; 94]
0.442
1

1





≥1.5 ng/mL
18
24.3
100

83.3
[66; 100]

1.4
0.562
1.0
1.0



















M-category
74
M1a/b
39
52.7
97.4
[93; 100]
84.6
[73; 96]
0.563
1

Not considered






















M1c
35
47.3
91.4
[82; 100]
82.7
[70; 95]

1.3
0.562





















CNS
74
No
60
81.1
95.0
[90; 100]
84.9
[76; 94]
0.738
Not considered
1



involvement

Yes
14
18.9
92.9
[79; 100]
78.6
[57; 100]


1.1
0.849


Number of
74
1
45
60.8
95.6
[90; 100]
88.9
[80; 98]
0.003
Not considered
1



involved

≥2
29
39.2
93.1
[94; 100]
75.7
[60; 91]


3.4
0.16


distant sites





LDH: lactate dehydrogenase;


Cl: confidence interval.


n.d.: not done.













TABLE 16







Overall survival of stage IV patients who were tumor-free after complete metastasectomy



























Multivariable analysis















Univariable analysis
Model 1 (n = 72)
Model 2 (n = 66)



















Total



1-year survival
2-year survival
Log-rank
Hazard
Wald test
Hazard
Wald test


Factor
(n = 72)
Categories
n
%
rate [95% Cl] (%)
rate 95% [Cl] (%)
p-value
ratio
p-value
ratio
p-value






















sLDH
71
Normal
44
63.8
31.8
[18; 46]
11.4
[2; 21]
0.135
Not considered
1





elevated
25
36.2
20.0
[4; 36]
8.0
[0; 19]


1.7
0.160


sS100B
71
Normal
26
39.4
38.5
[20; 57]
19.2
[4; 365
0.055
Not considered
1





elevated
40
60.6
17.5
[6; 29]
5.0
[0; 12]


1.2
0.658


Gender
74
Male
43
59.7
27.9
[15; 47]
11.6
[2; 21]
0.407
Not considered
1























Female
29
40.3
27.6
[11; 44]
6.9
[0; 16]



2.2
0.010



















Pattern of
74
Soft-tissue/lung
26
36.1
26.9
[10; 44]
11.5
[0; 24]
0.715
Not considered
1



distant

Other visceral
46
63.9
28.3
[15; 41]
8.7
[1; 17]


1.7
0.179




















metastasis
































Age
74
≤50 years
20
27.8
40.0
[19; 62]
25.0
[6; 44]
0.059
Not considered
1























51-60 years
16
22.2
37.5
[14; 61]
6.3
[0; 18]



1.3
0.512




61-70 years
11
15.3
9.1
[0; 26]
0.0
[0; 0]



1.7
0.265




≥71 years
25
34.7
20.0
[4; 36]
4.0
[0; 12]



1.5
0.315


sGDF-15
74
≤1.5 ng/mL
33
45.8
45.5
[29; 63]
15.2
[0; 26]
0.006
1

1





≥1.5 ng/mL
39
54.2
12.8
[2; 23]
5.1
[2; 17]

4.2
0.012
2.2
0.015



















M-category
74
M1a/b
18
25.0
33.3
[12; 55]
11.1
[3; 21]
0.348
1

Not considered






















M1c
54
75.0
25.9
[14; 38]
9.3
[0; 14]

1.1
0.759





















CNS
74
No
51
70.8
27.5
[15; 40]
11.8
[5; 33]
0.047
Not considered
1



involvement

Yes
21
29.2
28.6
[9; 48]
4.8



2.2
0.022


Number of
74
1
31
43.1
41.9
[25; 60]
19.4

0.008
Not considered
1



involved

2
16
22.2
31.3
[9; 54]
0.0
[0; 0]


2.3
0.049


distant

3
12
16.7
16.7
[0; 38]
8.3
[0; 24]


2.7
0.033


sites

≥4
13
18.1
0.0
[0; 0]
0.0
[0; 0]


3.5
0.18





LDH: lactate dehydrogenase;


Cl: confidence interval.













TABLE 17







Overall survival subsequent to serum sampling of tumor-free stage IV patients



























Multivariable analysis















Univariable analysis
Model 1 (n = 134)
Model 2 (n = 128)



















Total



1-year survival
2-year survival
Log-rank
Hazard
Wald test
Hazard
Wald test


Factor
(n = 134)
Categories
n
%
rate [95% Cl] (%)
rate 95% [Cl] (%)
p-value
ratio
p-value
ratio
p-value






















sLDH
83
Normal
79
59.4
32.9
[23; 43]
12.7
[5; 20]
0.001
Not considered
1





elevated
54
40.6
11.1
[3; 20]
5.6
[0; 12]


1.3
0.180


sS100B
83
Normal
34
26.6
47.1
[30; 64]
23.5
[9; 38]
<0.001
Not considered
1





elevated
94
73.4
12.8
[6; 20]
3.2
[0; 7]


2.0
0.003


Gender
87
Male
72
53.7
22.2
[13; 32]
8.3
[2; 15]
0.756
Not considered
1























Female
62
46.3
25.8
[15; 37]
11.3
[3; 19]



1.0
0.912



















Pattern of
87
Soft-tissue/lung
33
24.6
36.4
[20; 53]
18.2
[5; 31]
0.014
Not considered
1



distant

Other visceral
101
75.4
19.8
[12; 28]
6.9
[2; 12]


1.3
0.377




















metastasis
































Age
87
≤50 years
37
27.6
27.0
[13; 41]
21.6
[8; 35]
0.022
Not considered
1























51-60 years
34
25.4
35.3
[19; 51]
8.8
[0; 18]



1.5
0.156




61-70 years
30
22.4
10.0
[0; 21]
0.0
[0; 0]



1.3
0.295




≥71 years
33
24.6
21.2
[7; 35]
6.1
[0; 14]



1.4
0.261


sGDF-15
87
≤1.5 ng/mL
51
38.1
41.2
[28; 55]
13.7
[4; 23]
0.001
1

1





≥1.5 ng/mL
83
61.9
13.3
[6; 21]
7.2
[2; 13]

1.8
0.002
1.8
0.018



















M-category
87
M1a/b
21
15.7
42.9
[22; 64]
19.0
[2; 36]
0.034
1

Not considered






















M1c
113
84.3
20.4
[13; 28]
8.0
[3; 13]

1.6
0.066





















CNS
87
No
88
65.7
26.1
[17; 35]
11.4
[5; 18]
0.023
Not considered
1



involvement

Yes
46
34.3
19.6
[8; 31]
6.5
[0; 14]


1.6
0.038


Number of
87
1
28
20.9
42.9
[25; 61]
17.9
[4; 32]
0.024
Not considered
1



involved

2
38
28.4
26.3
[12; 40]
10.5
[1; 20]


1.3
0.451


distant

3
34
25.4
20.6
[7; 34]
8.8
[0; 18]


1.3
0.543


sites

≥4
34
25.4
8.8
[0; 18]
2.9
[0; 9]


1.9
0.110


Prior
87
Yes
88
65.7
27.3
[18; 37]
12.5
[6; 19]
0.820
Not considered
1



systemic

No
46
34.3
21.7
[10; 34]
4.3
[0; 10


1.1
0.516


treatment





LDH: lactate dehydrogenase;


Cl: confidence interval.













TABLE 18





Overall survival of unresectable stage IV patients with CNS involvement





















Univariable analysis















Total



1-year survival
2-year survival
Log-rank


Factor
(n = 77)
Categories
n
%
rate [95% Cl] (%)
rate 95% [Cl] (%)
p-value



















sLDH
76
Normal
37
48.7
32.4
[17; 48]
10.8
[1; 21]
<0.001




elevated
39
51.3
2.6
[0; 8]
0.0
[0; 0]



sS100B
73
Normal
18
24.7
38.9
[16; 61]
16.7
[0; 34]
0.001




elevated
55
75.3
5.5
[0; 12]
0.0
[0; 0]



Gender
77
Male
47
61.0
21.3
[10; 33]
6.4
[0; 124
0.893




Female
30
39.0
13.3
[1; 26]
3.3
[0; 10]



Age
77
≤50 years
23
29.9
26.1
[8; 44]
13.0
[0; 27]
0.711




51-60 years
24
31.2
12.5
[0; 26]
4.2
[0; 12]





61-70 years
16
20.8
12.5
[0; 29]
0.0
[0; 0]





≥71 years
14
18.2
21.4
[0; 43]
0.0
[0; 0]



sGDF-15
77
≤1.5 ng/mL
27
35.1
37.0
[19; 55]
11.1
[0; 23]
0.001




≥1.5 ng/mL
50
64.9
8.0
[1; 16]
2.0
[0; 6]



Number of
77
1
5
6.5
40.0
[0; 83]
0.0
[0; 0]
0.265


involved

2
15
19.5
33.3
[9; 57]
13.3
[0; 31]



distant sites

3
25
32.5
16.0
[2; 30]
4.0
[0; 12]





≥4
32
41.6
9.4
[0; 20]
3.1
[0; 9]



Prior
77
Yes
56
72.7
14.3
[5; 24]
5.4
[0; 11]
0.929


systemic

No
21
27.3
28.6
[9; 48]
4.8
[0; 14]



treatment
















Multivariable analysis














Model 1 (n = 74)
Model 2 (n = 71)
Model 3 (n = 76)
Model 4 (n = 73)


















Hazard
Wald test
Hazard
Wald test
Hazard
Wald test
Hazard
Wald test



Factor
ratio
p-value
ratio
p-value
ratio
p-value
ratio
p-value


















sLDH
1

Not considered
1

Not considered


















1.8
0.062


3.1
<0.001

















sS100B
1

Not considered
Not considered
1



















1.9
0.187




3.2
0.001



Gender
1

1

1

1





1.2
0.517
1.1
0.726
1.0
0.966
1.3
0.310



Age
1

1

1

1





1.0
0.953
1.1
0.778
1.2
0.654
1.1
0.869




1.2
0.581
1.2
0.525
1.1
0.692
1.3
0.422




1.2
0.599
1.3
0.519
1.1
0.812
1.5
0.317















sGDF-15
1

1

Not considered
Not considered


















1.5
0.365
2.3
0.006







Number of
1

1

1

1




involved
2.1
0.326
1.2
0.799
2.2
0.208
2.9
0.116



distant sites
1.3
0.683
1.6
0.385
1.6
0.634
1.5
0.528




1.5
0.663
1.4
0.525
1.4
0.700
1.7
0.438



Prior
1

1

1

1




systemic
1.3
0.480
1.4
0.306
1.3
0.331
1.0
0.940



treatment





LDH: lactate dehydrogenase;


Cl: confidence interval.






Summary:

In the current study, the inventors surprisingly found that the serum concentration of hGDF-15 is a powerful prognostic biomarker for patients with metastatic melanoma.


For instance, the inventors found that hGDF-15 serum concentrations above 1.5 ng/mL most strongly predicted poor overall survival in a cohort of 761 patients with metastatic melanoma.


In tumor-free stage III patients, no world-wide accepted prognostic biomarkers are used in daily clinical routine. Estimation of the individual prognosis is mainly based on clinical and histopathological characteristics considered for the definition of the sub-stages IIIA, IIIB, or IIIC, respectively (Balch, C M et al., J Clin Oncol/27/6199-206. 2009). Serum LDH does not harbor prognostic information in tumor-free patients after surgery of loco-regional metastases (Wevers, K P et al., Ann Surg Oncol/20/2772-9. 2013). Serum levels of S100B are only analyzed for early detection of recurrences mainly in Europe (Pflugfelder, A et al., J Dtsch Dermatol Ges/11/563-602. 2013), despite a large body of evidence of its prognostic impact in melanoma patients (Mocellin, S et al., Int J Cancer/123/2370-6. 2008). In the current study, the inventors surprisingly found that sGDF15 and sS100B are both independent prognostic markers for these patients and are greatly superior to the clinical sub-stage for the identification of patients who will likely die from the disease.


The analysis of sGDF-15 alone allowed to identify 21% of all tumor-free stage III patients with high serum concentrations, who had a 2-fold increased risk to die within three years after blood draw compared to patients with low levels (33% vs 16%, respectively). The combined consideration of sGDF-15 and sS100B increased the proportion of patients at risk from 21% (sGDF-15 elevated irrespective of sS100B) to 31% (either one or both biomarkers elevated) and further enlarged the difference in OS between biomarker categories. In detail, the risk to die within 3 years with normal sS100B and low sGDF-15 was only 14% compared to 33% for patients with at least one biomarker elevated. The blood draw was taken at times without clinical or radiological evidence of disease in these patients thereby especially the combined analysis of both biomarkers may allow to identify patients which might profit from more intense surveillance or adjuvant therapies.


Thus, according to the invention, the use of hGDF-15 as a biomarker for the prediction of survival, e.g. in combination with S100B as a further biomarker, is highly advantageous even for sub-groups of melanoma patients, for which no reliable prognosis of survival has yet been available.


In unresectable stage IV melanoma patients, the pattern of visceral metastasis and sLDH are regularly used to classify patients into prognostically different M-categories M1a, M1b, or M1c (Balch, C M et al., J Clin Oncol/27/6199-206. 2009). In the present study, the consideration of sGDF-15 in combination with these two established prognostic factors significantly improved the estimation of prognosis for the individual patient (HR 1.7; p<0.001; pattern of visceral metastasis: HR 1.8; p<0.001; sLDH: HR 1.6; p=0.002) and allowed the identification of a relevant subgroup (comprising 30% of all patients with unresectable distant metastasis) with an extremely poor probability to survive 1 year (3.3%). In contrast, the worst biomarker category without consideration of sGDF-15 (visceral metastases other than lung and elevated sLDH; 35% of all unresectable stage IV patients) indicated a 1-year survival estimate of 8.3%. The additional consideration of sGDF-15 added prognostic information for M1a/b as well as for M1c patients. The gain in prognostic information based on the consideration of sGDF-15 is valuable for patient counselling and stratification within clinical trials, and might impact the individual risk/benefit assessment for therapeutic decisions. Considering the availability (and emergence) of various therapeutic options for advanced melanoma and the inevitable trade-off between efficacy and side effects, enhanced prognosis prediction most likely becomes instrumental for the further guidance of individualized therapy.


In conclusion, according to the invention, sGDF-15 is a powerful prognostic biomarker in patients with melanoma such as metastatic melanoma.


In tumor-free stage III patients the consideration of sGDF-15 alone or in combination with sS100B allows to identify individuals with increased risk to die from disease who might profit from more intense patient surveillance or adjuvant treatments. In patients with unresectable stage IV melanoma sGDF-15, sLDH and the pattern of visceral metastasis are independent prognostic factors. The combined consideration of these three factors improves the individual estimate of prognosis compared to the M-category alone and may influence individualized treatment decisions.


INDUSTRIAL APPLICABILITY

The apparatuses and the kits according to the present invention may be industrially manufactured and sold as products for the itemed prediction methods, in accordance with known standards for the manufacture of diagnostic products. Accordingly, the present invention is industrially applicable.


REFERENCES



  • Arbabi Ghahroudi M et al.: “Selection and identification of single domain antibody fragments from camel heavy-chain antibodies.” FEBS Lett. 1997 Sep. 15; 414(3):521-6.

  • Ausubel et al.: “Current Protocols in Molecular Biology.” Greene Publishing Associates and Wiley Interscience; New York 1992.

  • Baek, S J; Okazaki, R; Lee, S H; Martinez, J; Kim, J S; Yamaguchi, K; Mishina, Y; Martin, D W; Shoieb, A; McEntee, M F; Eling, T E. Nonsteroidal anti-inflammatory drug-activated gene-1 over expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology/131/1553-60. 2006

  • Baek, S J; Kim, K S; Nixon, J B; Wilson, L C; Eling, T E. Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol Pharmacol/59/901-8. 2001

  • Balch, C M; Gershenwald, J E; Soong, S J; Thompson, J F; Atkins, M B; Byrd, D R; Buzaid, A C; Cochran, A J; Coit, D G; Ding, S; Eggermont, A M; Flaherty, K T; Gimotty, P A; Kirkwood, J M; McMasters, K M; Mihm, M C, Jr.; Morton, D L; Ross, M I; Sober, A J; Sondak, V K. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol/27/6199-206. 2009

  • Balch, C M; Buzaid, A C; Soong, S J; Atkins, M B; Cascinelli, N; Coit, D G; Fleming, I D; Gershenwald, J E; Houghton, A, Jr.; Kirkwood, J M; McMasters, K M; Mihm, M F; Morton, D L; Reintgen, D S; Ross, M I; Sober, A; Thompson, J A; Thompson, J F. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol/19/3635-48. 2001

  • Bauskin, A R; Brown, D A; Kuffner, T; Johnen, H; Luo, X W; Hunter, M; Breit, S N. Role of macrophage inhibitory cytokine-1 in tumorigenesis and diagnosis of cancer. Cancer Res/66/4983-6. 2006

  • Blanco-Calvo, M; Tarrio, N; Reboredo, M; Haz-Conde, M; Garcia, J; Quindos, M; Figueroa, A; Anton-Aparicio, L; Calvo, L; Valladares-Ayerbes, M. Circulating levels of GDF15, MMP7 and miR-200c as a poor prognostic signature in gastric cancer. Future Oncol/10/1187-202. 2014

  • Bock, A J; Stavnes, H T; Kempf, T; Trope, C G; Berner, A; Davidson, B; Staff, A C. Expression and clinical role of growth differentiation factor-15 in ovarian carcinoma effusions. Int J Gynecol Cancer/20/1448-55. 2010

  • Boyle, G M; Pedley, J; Martyn, A C; Banducci, K J; Strutton, G M; Brown, D A; Breit, S N; Parsons, P G. Macrophage inhibitory cytokine-1 is overexpressed in malignant melanoma and is associated with tumorigenicity. J Invest Dermatol/129/383-91.2009

  • Brown, D A; Lindmark, F; Stattin, P; Baiter, K; Adami, H O; Zheng, S L; Xu, J; Isaacs, W B; Gronberg, H; Breit, S N; Wiklund, F E. Macrophage inhibitory cytokine 1: a new prognostic marker in prostate cancer. Clin Cancer Res/15/6658-64. 2009

  • Brown, D A; Ward, R L; Buckhaults, P; Liu, T; Romans, K E; Hawkins, N J; Bauskin, A R; Kinzler, K W; Vogelstein, B; Breit, S N. MIC-1 serum level and genotype: associations with progress and prognosis of colorectal carcinoma. Clin Cancer Res/9/2642-50. 2003

  • Camp, R L; Dolled-Filhart, M; Rimm, D L. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res/10/7252-9. 2004

  • Chothia C et al.: Conformations of immunoglobulin hypervariable regions. Nature. 1989 Dec. 21-28; 342(6252):877-83.

  • Clackson T et al.: “Making antibody fragments using phage display libraries.” Nature. 1991 Aug. 15; 352(6336):624-8.

  • Eisenhauer et al.: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer. 45, No. 2, January 2009, pp 228-47.

  • Eling, T E; Baek, S J; Shim, M; Lee, C H. NSAID activated gene (NAG-1), a modulator of tumorigenesis. J Biochem Mol Biol/39/649-55. 2006

  • Eton, O; Legha, S S; Moon, T E; Buzaid, A C; Papadopoulos, N E; Plager, C; Burgess, A M; Bedikian, A Y; Ring, S; Dong, Q; Glassman, A B; Balch, C M; Benjamin, R S. Prognostic factors for survival of patients treated systemically for disseminated melanoma. J Clin Oncol/16/1103-11. 1998

  • Giudicelli V et al.: IMGTN-QUEST, an integrated software program for immunoglobulin and T cell receptor V-J and V-D-J rearrangement analysis. Nucleic Acids Res. 2004 Jul. 1; 32 (Web Server issue):W435-40.

  • Gongalves et al.: “Biological and methodological features of the measurement of S100B, a putative marker of brain injury.” Clinical Biochemistry 41 (2008) 755-763).

  • Harlow and Lane: “Antibodies: A Laboratory Manual” Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1988.

  • Holliger P et al.: ““Diabodies”: small bivalent and bispecific antibody fragments.” Proc Natl Acad Sci USA. 1993 Jul. 15; 90(14):6444-8.

  • Holt L J et al.: “Domain antibodies: proteins for therapy.” Trends Biotechnol. 2003 Nov.; 21(11):484-90.

  • Huh, S J; Chung, C Y; Sharma, A; Robertson, G P. Macrophage inhibitory cytokine-1 regulates melanoma vascular development. Am J Pathol/176/2948-57. 2010

  • Husaini, Y; Qiu, M R; Lockwood, G P; Luo, X W; Shang, P; Kuffner, T; Tsai, V W; Jiang, L; Russell, P J; Brown, D A; Breit, S N. Macrophage inhibitory cytokine-1 (MIC-1/GDF15) slows cancer development but increases metastases in TRAMP prostate cancer prone mice. PLoS One/7/e43833. 2012

  • Johnen, H; Lin, S; Kuffner, T; Brown, D A; Tsai, V W; Bauskin, A R; Wu, L; Pankhurst, G; Jiang, L; Junankar, S; Hunter, M; Fairlie, W D; Lee, N J; Enriquez, R F; Baldock, P A; Corey, E; Apple, F S; Murakami, M M; Lin, E J; Wang, C; During, M J; Sainsbury, A; Herzog, H; Breit, S N. Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat Med/13/1333-40. 2007

  • Jones P T et al.: “Replacing the complementarity-determining regions in a human antibody with those from a mouse.” Nature. 1986 May 29-Jun. 4; 321(6069):522-5.

  • Jones, M F; Ling Li, X; Subramanian, M; Shabalina, S A; Hara, T; Zhu, Y; Huang, J; Yang, Y; Wakefield, L M; Prasanth, K V; Lal, A. Growth differentiation factor-15 encodes a novel microRNA 3189 that functions as a potent regulator of cell death. Cell Death Differ//2015

  • Kabat et al.: Sequences of proteins of immunological interest, U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda, Md. 1983.

  • Kluger, H M; Hoyt, K; Bacchiocchi, A; Mayer, T; Kirsch, J; Kluger, Y; Sznol, M; Ariyan, S; Molinaro, A; Halaban, R. Plasma markers for identifying patients with metastatic melanoma. ClinCancer Res/17/2417-25. 2011

  • Köhler G and Milstein C: “Continuous cultures of fused cells secreting antibody of predefined specificity.” Nature. 1975 Aug. 7; 256(5517):495-7.

  • Lasithiotakis, K G; Leiter, U; Gorkievicz, R; Eigentler, T; Breuninger, H; Metzler, G; Strobel, W; Garbe, C. The incidence and mortality of cutaneous melanoma in Southern Germany: trends by anatomic site and pathologic characteristics, 1976 to 2003. Cancer/107/1331-9. 2006.

  • Liu T et al: “Macrophage inhibitory cytokine 1 reduces cell adhesion and induces apoptosis in prostate cancer cells.” Cancer Res., vol. 63, no. 16, 1 Aug. 2003, pp. 5034-5040.

  • Ma J, Tang X, Sun W W, Liu Y, Tan Y R, Ma H L, et al. (2016) Mutant GDF15 presents a poor prognostic outcome for patients with oral squamous cell carcinoma. Oncotarget 7:2113-22.

  • Manola, J; Atkins, M; Ibrahim, J; Kirkwood, J. Prognostic factors in metastatic melanoma: a pooled analysis of Eastern Cooperative Oncology Group trials. J Clin Oncol/18/3782-93. 2000

  • Marks J D et al.: “By-passing immunization. Human antibodies from V-gene libraries displayed on phage.” J Mol Biol. 1991 Dec. 5; 222(3):581-97.

  • Martinez, J M; Sali, T; Okazaki, R; Anna, C; Hollingshead, M; Hose, C; Monks, A; Walker, N J; Baek, S J; Eling, T E. Drug-induced expression of nonsteroidal anti-inflammatory drug-activated gene/macrophage inhibitory cytokine-1/prostate-derived factor, a putative tumor suppressor, inhibits tumor growth. J Pharmacol Exp Ther/318/899-906. 2006

  • Mauerer, A; Roesch, A; Hafner, C; Stempfl, T; Wild, P; Meyer, S; Landthaler, M; Vogt, T. Identification of new genes associated with melanoma. Exp Dermatol/20/502-7. 2011

  • Mimeault, M; Johansson, S L; Batra, S K. Marked improvement of cytotoxic effects induced by docetaxel on highly metastatic and androgen-independent prostate cancer cells by downregulating macrophage inhibitory cytokine-1. Br J Cancer/108/1079-91. 2013

  • Mimeault, M; Batra, S K. Divergent molecular mechanisms underlying the pleiotropic functions of macrophage inhibitory cytokine-1 in cancer. J Cell Physiol/224/626-35. 2010

  • Min, K W; Liggett, J L; Silva, G; Wu, W W; Wang, R; Shen, R F; Eling, T E; Baek, S J. NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene//2015

  • Mocellin, S; Zavagno, G; Nitti, D. The prognostic value of serum S100B in patients with cutaneous melanoma: a meta-analysis. Int J Cancer/123/2370-6. 2008

  • Paul, W. E. (Ed.).: “Fundamental Immunology” 2nd Ed. Raven Press, Ltd., New York 1989.

  • Pflugfelder, A; Kochs, C; Blum, A; Capellaro, M; Czeschik, C; Dettenborn, T; Dill, D; Dippel, E; Eigentler, T; Feyer, P; Follmann, M; Frerich, B; Ganten, M K; Gartner, J; Gutzmer, R; Hassel, J; Hauschild, A; Hohenberger, P; Hubner, J; Kaatz, M; Kleeberg, U R; Kolbl, O; Kortmann, R D; Krause-Bergmann, A; Kurschat, P; Leiter, U; Link, H; Loquai, C; Loser, C; Mackensen, A; Meier, F; Mohr, P; Mohrle, M; Nashan, D; Reske, S; Rose, C; Sander, C; Satzger, I; Schiller, M; Schlemmer, H P; Strittmatter, G; Sunderkotter, C; Swoboda, L; Trefzer, U; Voltz, R; Vordermark, D; Weichenthal, M; Werner, A; Wesselmann, S; Weyergraf, A J; Wick, W; Garbe, C; Schadendorf, D. Malignant melanoma S3-guideline “diagnosis, therapy and follow-up of melanoma”. J Dtsch Dermatol Ges/11 Suppl 6/1-116, 1-26. 2013

  • Pflugfelder, A; Kochs, C; Blum, A; Capellaro, M; Czeschik, C; Dettenborn, T; Dill, D; Dippel, E; Eigentler, T; Feyer, P; Follmann, M; Frerich, B; Ganten, M K; Gartner, J; Gutzmer, R; Hassel, J; Hauschild, A; Hohenberger, P; Hubner, J; Kaatz, M; Kleeberg, U R; Kolbl, O; Kortmann, R D; Krause-Bergmann, A; Kurschat, P; Leiter, U; Link, H; Loquai, C; Loser, C; Mackensen, A; Meier, F; Mohr, P; Mohrle, M; Nashan, D; Reske, S; Rose, C; Sander, C; Satzger, I; Schiller, M; Schlemmer, H P; Strittmatter, G; Sunderkotter, C; Swoboda, L; Trefzer, U; Voltz, R; Vordermark, D; Weichenthal, M; Werner, A; Wesselmann, S; Weyergraf, A J; Wick, W; Garbe, C; Schadendorf, D. S3-guideline “diagnosis, therapy and follow-up of melanoma”—short version. J Dtsch Dermatol Ges/11/563-602. 2013

  • Remington's Pharmaceutical Sciences, Ed. A R Gennaro, 20th edition, 2000, Williams & Wilkins, P A, USA.

  • Riechmann L et al.: “Reshaping human antibodies for therapy.” Nature. 1988 Mar. 24; 332(6162):323-7.

  • Riker, A I; Enkemann, S A; Fodstad, O; Liu, S; Ren, S; Morris, C; Xi, Y; Howell, P; Metge, B; Samant, R S; Shevde, L A; Li, W; Eschrich, S; Daud, A; Ju, J; Matta, J. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics/1/13. 2008

  • Roth, P; Junker, M; Tritschler, I; Mittelbronn, M; Dombrowski, Y; Breit, S N; Tabatabai, G; Wick, W; Weller, M; Wischhusen, J. GDF-15 contributes to proliferation and immune escape of malignant gliomas. Clin Cancer Res/16/3851-9. 2010

  • Saerens D et al.: “Single-domain antibodies as building blocks for novel therapeutics.” Curr Opin Pharmacol. 2008 Oct.; 8(5):600-8. Epub 2008 Aug. 22.

  • Sambrook et al.: “Molecular Cloning: A Laboratory Manual.”, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1989.

  • Selander, K S; Brown, D A; Sequeiros, G B; Hunter, M; Desmond, R; Parpala, T; Risteli, J; Breit, S N; Jukkola-Vuorinen, A. Serum macrophage inhibitory cytokine-1 concentrations correlate with the presence of prostate cancer bone metastases. Cancer Epidemiol Biomarkers Prev/16/532-7. 2007

  • Siegel D L: “Recombinant monoclonal antibody technology.” Transfus Clin Biol. 2002 Jan.; 9(1):15-22.

  • Sirott, M N; Bajorin, D F; Wong, G Y; Tao, Y; Chapman, P B; Templeton, M A; Houghton, A N. Prognostic factors in patients with metastatic malignant melanoma. A multivariate analysis. Cancer/72/3091-8. 1993

  • Staff, A C; Bock, A J; Becker, C; Kempf, T; Wollert, K C; Davidson, B. Growth differentiation factor-15 as a prognostic biomarker in ovarian cancer. Gynecol Oncol/118/237-43. 2010

  • Stefanescu R. et al., Eur.J.Mass Spectrom. 13, 69-75 (2007)

  • Suckau et al. Proc Natl Acad Sci USA. 1990 December; 87(24): 9848-9852.

  • Suesskind, D; Schatz, A; Schnichels, S; Coupland, S E; Lake, S L; Wissinger, B; Bartz-Schmidt, K U; Henke-Fahle, S. GDF-15: a novel serum marker for metastases in uveal melanoma patients. Graefes Arch Clin Exp Ophthalmol/250/887-95. 2012

  • Talantov, D; Mazumder, A; Yu, J X; Briggs, T; Jiang, Y; Backus, J; Atkins, D; Wang, Y. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res/11/7234-42. 2005

  • Wallin, U; Glimelius, B; Jirstrom, K; Darmanis, S; Nong, R Y; Ponten, F; Johansson, C; Pahlman, L; Birgisson, H. Growth differentiation factor 15: a prognostic marker for recurrence in colorectal cancer. Br J Cancer/104/1619-27. 2011

  • Wang, X; Baek, S J; Eling, T E. The diverse roles of nonsteroidal anti-inflammatory drug activated gene (NAG-1/GDF15) in cancer. Biochem Pharmacol/85/597-606. 2013

  • Weide, B; Richter, S; Buttner, P; Leiter, U; Forschner, A; Bauer, J; Held, L; Eigentler, T K; Meier, F; Garbe, C. Serum S100B, lactate dehydrogenase and brain metastasis are prognostic factors in patients with distant melanoma metastasis and systemic therapy. PLoS One/8/e81624. 2013

  • Weide, B; Elsasser, M; Buttner, P; Pflugfelder, A; Leiter, U; Eigentler, T K; Bauer, J; Witte, M; Meier, F; Garbe, C. Serum markers lactate dehydrogenase and S100B predict independently disease outcome in melanoma patients with distant metastasis. Br J Cancer/107/422-8. 2012

  • Weinberg R. et al.: The Biology of Cancer. Garland Science: New York 2006.850p.

  • Wevers, K P; Kruijff, S; Speijers, M J; Bastiaannet, E; Muller Kobold, A C; Hoekstra, H J. 5-100B: a stronger prognostic biomarker than LDH in stage IIIB-C melanoma. Ann Surg Oncol/20/2772-9. 2013

  • Zhang, J., Yao, Y.-H., Li, B.-G., Yang, Q., Zhang, P.-Y., and Wang, H.-T. (2015). Prognostic value of pretreatment serum lactate dehydrogenase level in patients with solid tumors: a systematic review and meta-analysis. Scientific Reports 5, 9800.

  • Zhang, L; Yang, X; Pan, H Y; Zhou, X J; Li, J; Chen, W T; Zhong, L P; Zhang, Z Y. Expression of growth differentiation factor 15 is positively correlated with histopathological malignant grade and in vitro cell proliferation in oral squamous cell carcinoma. Oral Oncol/45/627-32. 2009

  • Zhou, Z; Li, W; Song, Y; Wang, L; Zhang, K; Yang, J; Zhang, W; Su, H; Zhang, Y. Growth differentiation factor-15 suppresses maturation and function of dendritic cells and inhibits tumor-specific immune response. PLoS One/8/e78618. 2013

  • Zimmers, T A; Gutierrez, J C; Koniaris, L G. Loss of GDF-15 abolishes sulindac chemoprevention in the ApcMin/+mouse model of intestinal cancer. J Cancer Res Clin Oncol/136/571-6. 2010

  • WO 2005/099746

  • WO 2009/021293

  • WO 2014/049087

  • PCT/EP2015/056654


Claims
  • 1-37. (canceled)
  • 38. A method for treating melanoma in a patient in need thereof, the method comprising the steps of: (a) determining the level of hGDF-15 in a blood sample obtained from a patient who is receiving or has received treatment for melanoma; and(b) if the level of hGDF-15 in the blood sample is more than 1.1 ng/ml, administering an adjuvant therapy to the patient and/or placing the patient under an intensified surveillance protocol.
  • 39. The method of claim 38, wherein the adjuvant therapy is administered if the level of hGDF-15 in the blood sample is between 1.1 ng/ml and 2.2 ng/ml.
  • 40. The method of claim 38, wherein the adjuvant therapy is administered if the level of hGDF-15 in the blood sample is between 1.2 ng/ml and 2.0 ng/ml.
  • 41. The method of claim 38, wherein the adjuvant therapy is administered if the level of hGDF-15 in the blood sample is between 1.3 ng/ml and 1.8 ng/ml.
  • 42. The method of claim 38, wherein the adjuvant therapy is administered if the level of hGDF-15 in the blood sample is more than 1.5 ng/ml.
  • 43. The method of claim 38, wherein the adjuvant therapy is administered if the level of hGDF-15 in the blood sample is between 3.3 ng/ml and 4.3 ng/ml.
  • 44. The method of claim 38, wherein the adjuvant therapy is administered if the level of hGDF-15 in the blood sample is between 3.6 ng/ml and 4.0 ng/ml.
  • 45. The method of claim 38, wherein the adjuvant therapy is administered if the level of hGDF-15 in the blood sample is more than 3.8 ng/ml.
  • 46. The method of claim 38, wherein the adjuvant therapy comprises BRAF/MEK inhibitors, or an immunotherapy, optionally ipilimumab.
  • 47. The method of claim 38, wherein the patient is a stage III or a stage IV melanoma patient.
  • 48. The method according to claim 47, wherein the melanoma patient is a tumor-free stage III patient or an unresectable stage IV melanoma patient.
  • 49. The method of claim 38, wherein the human blood sample is a human serum sample.
  • 50. The method of claim 38, wherein step (a) comprises determining the level of hGDF-15 by using one or more antibodies capable of binding to hGDF-15 or an antigen-binding portion thereof.
  • 51. The method according to claim 50, wherein one or more of the antibodies or an antigen-binding portion thereof binds to a conformational or discontinuous epitope on hGDF-15, optionally wherein the conformational or discontinuous epitope is comprised by the amino acid sequences of SEQ ID No: 25 and SEQ ID No: 26.
  • 52. The method according to claim 50, wherein one or more of the antibodies or an antigen-binding portion thereof comprises a heavy chain variable domain which comprises: a CDR1 region comprising the amino acid sequence of SEQ ID NO: 3,a CDR2 region comprising the amino acid sequence of SEQ ID NO: 4,and a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5, and wherein the antibody or antigen-binding portion thereof comprises a light chain variable domain which comprises:a CDR1 region comprising the amino acid sequence of SEQ ID NO: 6,a CDR2 region comprising the amino acid sequence ser-ala-ser, anda CDR3 region comprising the amino acid sequence of SEQ ID NO: 7.
  • 53. The method of claim 50, wherein the level of hGDF-15 in the human blood sample is determined by an enzyme linked immunosorbent assay.
  • 54. The method of claim 38, wherein step (a) further comprises determining the level of S100B in said human blood sample, and wherein the adjuvant therapy is administered to the patient if the level of S100B is determined to be above a threshold level and the level of hGDF-15 is more than 1.1 ng/ml.
  • 55. The method of claim 38, wherein step (a) further comprises determining the level of LDH in said human blood sample, and wherein the adjuvant therapy is administered to the patient if the level of LDH is determined to be above a threshold level and the level of hGDF-15 is more than 1.1 ng/ml.
  • 56. The method of claim 38, wherein step (a) further comprises determining the level of S100B and LDH in said human blood sample, and wherein the adjuvant therapy is administered to the patient if the level of S100B is determined to be above a threshold level, the level of LDH is determined to be above a threshold level, and the level of hGDF-15 is more than 1.1 ng/ml.
  • 57. A method for treating melanoma in a patent in need thereof, the method comprising the steps of: (a) selecting a patient that is receiving or has received treatment for melanoma and has a blood level of hGDF-15 that is more than 1.1 ng/ml; and(b) administering an adjuvant therapy to the patient and/or placing the patient under an intensified surveillance protocol.
Priority Claims (1)
Number Date Country Kind
1517528.4 Oct 2015 GB national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/765,187, filed Mar. 30, 2018, which is a 35 U.S.C. § 371 filing of International Patent Application No. PCT/EP2016/073521, filed Sep. 30, 2016, which claims priority to Great Britain Patent Application No. 1517528.4, filed Oct. 2, 2015. The entire disclosures of each of the aforementioned applications are incorporated herein by reference in their entirety.

Continuations (1)
Number Date Country
Parent 15765187 Mar 2018 US
Child 16876482 US