The present invention relates to a method and apparatus to remove nicks, burrs, scales from heat-treat process, and other surface defects from mechanical gears.
The conventional gear burnishing process involves the use of three burnishing gears and a subject (“to be finished”) gear arranged in a star pattern, with the subject gear in the geometric center. The burnishing gears located at 4 and 8 o'clock have fixed centers, and the burnishing gear at 12 o'clock is vertically moveable to allow for the installation and removal of the subject gear. During the burnishing process, the subject gear is rotationally driven, while at same time, moved axially in a reciprocating fashion. The reciprocating axial motion of the subject gear is intended to maximize its profiled tooth contact with the adjacent burnishing gears and flatten any surface defects. The shortcoming of this system is that because of machining tolerances, and other production procedures, the subject gear tooth and the burnishing gears' teeth only make contact at high points rather than full-length contact, rendering the system inefficient.
In a gear burnishing system having a plurality of burnishing gear positions arranged in a star pattern with a subject gear held in its geometric center, the improvement in which a burnishing gear is formed as a “scraper” gear axially retained in position on a shaft at at least one burnishing gear position, wherein the scraper gear is retained on the shaft rotationally by a keyway formed in an inner bore of the scraper gear which is wider by a predefined “gap” than a corresponding key formed on the shaft such that the scraper gear can move angularly by a small amount for maximum contact on the subject gear. The wider keyway allows the scraper gears to increase contact with the subject gear manifold, whereas in the current system there is point contact only.
In a preferred embodiment, a number of scraper gears are arranged in a stack retained on the shaft. With a scraper blade located at the end of each tooth, a subject gear will be subjected to a number of contacts equal to two times the number of gears per stack at each stack location. Both ends of each scraper gear are beveled along the peripheral edges in such a fashion as to cause the end condition of each tooth to be raked and to create knife blades. The bevels also cause peripheral gaps between the scraper gears in the stack which serve the function of trapping debris as they traverse the subject gear during the burnishing process.
The preferred embodiment of the invention is further configured to equalize the blade angles by creating at the end of each tooth a recess with compound angles. One of the angular surfaces equates the angles of the shaving blades, and the other provides the gap needed for debris entrapment.
As further refinements in the preferred embodiment, the scraper gears, individually or as an assembly, can incorporate a spherical type bearing for limited gimbal movement to assure that the burnishing action will follow the lead crown whenever present on the subject gear. The scraper gear is mounted on opposite sides by a pair of bearings to obtain the limited gimbal movement on the shaft.
To facilitate loading and unloading, and to locate a variety of subject gears in the best position, the scraper gear stacks are mounted on adjustable slides which can be adjusted then locked in place to adjust the center distance between them.
Other objects, features, and advantages of the present invention will be explained in the following detailed description of the invention having reference to the appended drawing.
The method and apparatus in this invention are configured to remove material during gear burnishing rather than pressing it into the subject tooth profile. The conventional setup is used with three burnishing gear positions arranged in a star pattern, and the subject gear held in the geometric center. However, rather than a single burnishing gear, a number of specially designed narrower “scraper” gears will replace the burnishing gears located at the 4 and 8 o'clock positions. Preferably, each stack of narrower scraper gears at the 4 and 8 o'clock positions will consist of the same number of gears. The pressure gear at the 12 o'clock position remains the same as in the conventional method.
As shown in
In the conventional arrangement, because of the helix angle of the subject gear, the scraper blades will make contact with only one tooth flank (face) at a time. A flank may be defined as the grooved surface of a tooth profile. The end condition of a tooth on a helical gear with flat end faces will have a blade with an acute angle on one flank, and a blade with an obtuse angle on the adjacent flank. The same condition exists at the distal end of the tooth. If such gears were used in the burnishing stack, then cutting or shaving of material on the subject gear will occur on one flank only, leaving defects on the other.
In a preferred embodiment of this invention, as shown in
As further shown in
The following further refinements may be made in the preferred embodiment. Referring to
To facilitate loading and unloading, and to locate a variety of subject gears in the best position, the burnishing gears at position 4 and 8 o'clock are mounted on adjustable slides 54 which can be adjusted then locked in place to adjust the center distance between the scraper gear stacks. Each adjustable slide will have a simplified and cost effective “U” shape mounting for the burnishing gears, which is less complicated and less costly than even a fixed mounting. This capability in conjunction with the actual size (diameter) of the burnishing -gears will locate the subject gear in the best position to receive the pressure and rotation from the burnishing gear on the pressure arm at the 12 o'clock position.
The disclosed improvements provide the specially designed scraper gears with unique cutting or scraping features that will remove unwanted surface flaws from helical and other types of gears in the final stages of production. This invention will allow end users to increase yield and reduce scrap.
It is understood that many modifications and variations may be devised given the above description of the principles of the invention. It is intended that all such modifications and variations be considered as within the spirit and scope of this invention, as defined in the following claims.
This U.S. patent application claims the priority filing date of U.S. Provisional Application 60/884,699 filed on Jan. 12, 2007, of the same title and by the same inventor in the present application.
Number | Date | Country | |
---|---|---|---|
60884699 | Jan 2007 | US |