This application is the U.S. National Phase of PCT Appln. No. PCT/DE2016/200097 filed Feb. 18, 2016, which claims priority to DE 102015206063.2 filed Apr. 2, 2015, the entire disclosures of which are incorporated by reference herein.
The present disclosure concerns a gear for a gear train, such as for a planetary gear mechanism.
WO03/056141A1 describes a gear. The gear, divided into two axially adjacent spur gears, has a torsion spring in the form of a circular ring segment, wherein a slot is formed between the two peripherally mutually opposing spring ends, in which slot two cams engage which are each assigned to one of the two spur gears, wherein one of the cams is assigned to one of the two spring ends and the other cam is assigned to the other spring end. When the gear is mounted in the gear mechanism, the two spur gears mesh play-free with the engaged gear. In the installed rotational position of the two spur gears, the cams arranged peripherally behind each other are offset to each other in the peripheral direction, such that the cams push the spring ends of the torsion spring apart, enlarging the slot. The pretension and stiffness of the torsion spring are essential for smooth operation of such a gear mechanism. If a large pretension and large stiffness are required, a correspondingly large torsion spring must be provided and pretensioned. In many applications, the installation space available for the torsion spring is very limited, so enlargement is only possible within limits.
An object of the present disclosure is to improve the pretension of the gear.
This object may be achieved with the gear according to the disclosure and Figures.
The gear according to the disclosure for a gear train, such as for a planetary gear mechanism, may be divided into two axially adjacent spur gears. This gear is for example configured as a planet wheel for a planetary gear mechanism. The teeth of the two spur gears may mesh with a mating gear, for example with a ring gear of said planetary gear mechanism: a respective tooth of the two spur gears engages in a common tooth gap of the mating gear, wherein the one tooth of the one spur gear can lie play-free on the tooth of the mating gear delimiting the tooth gap, and the other tooth of the other spur gear can lie play-free on the other tooth of the mating gear delimiting the tooth gap.
Furthermore, according to the disclosure, a torsion spring in the form of a circular ring segment may be provided, wherein between the two peripherally mutually opposing spring ends, a slot is formed in which two cams engage which are each assigned to one of the two spur gears, wherein one of the cams is assigned to one of the two spring ends and the other cam is assigned to the other of the two spring ends.
Because, according to the disclosure, the two cams may be arranged at least substantially without overlap in the axial direction, the advantages presented below may be achieved. When the torsion spring is not under stress and the slot is therefore at its smallest, the two cams can be arranged axially behind each other because of the at least substantially overlap-free arrangement in the axial direction, and engage in the slot of the stress-free torsion spring. The smaller the slot, the stiffer the torsion spring may be. A further advantage may be that a radial drifting of the torsion spring under load is reduced. The smaller the slot, the lower the tendency of the torsion spring to drift radially. In other words, the disclosure may allow as small as possible an opening angle between the two spring ends delimiting the slot.
In contrast, with the known pretensioned gears, the cams overlap axially and the two cams are arranged peripherally behind each other. This successive arrangement consequently requires a large slot when the torsion spring is not under tension, so that the torsion spring can be mounted stress-free between the two spur gears.
If now the two spur gears are twisted relative to each other, the two cams press the spring ends apart, enlarging the slot. Because of the smaller slot with the arrangement according to the disclosure, torsion springs of the same size can have a better stiffness than with the known arrangement.
The term “substantially overlap-free” in the sense of the disclosure means for example that the two cams may have a step or stop at their mutually facing free ends which intermesh axially. These steps may be composed such that in one direction of rotation of the two spur gears, the steps meet each other with form-fit so that twisting in this direction is not possible. In this contact position, the two cams may be arranged lying perfectly axially behind each other, e.g., aligned with each other. In the opposite direction of rotation, a twisting of the spur gears is possible in order to set the desired pretension of the torsion spring.
It may however be favorable to arrange the cams completely overlap-free in the axial direction. This means that the two spur gears can be twisted in both directions of rotation in order to set the desired pretension of the torsion spring.
For mounting purposes, the two spur gears may be brought to a rotational position in which the two cams are arranged behind each other, e.g., without a peripheral offset to each other. In this position, the cams take up the smallest possible space in the peripheral direction; in this rotational position, the torsion spring may be arranged stress-free, wherein both cams engage in the slot of the torsion spring.
The cams preferably each have a peripheral extension which is the same size as or smaller than the peripheral extension of the slot of the torsion spring. In this way, the torsion spring can be mounted between the two spur gears without spring deflections.
A perfect alignment of the torsion spring may be achieved if, on their mutually facing end faces, the spur gears have bearing faces for axial mounting of the torsion spring. An axial extension of each cam, between the bearing face of the assigned spur gear and the free cam end of this cam, is smaller than the axial extension of the torsion spring. The two cams jointly have an axial extension, between the bearing faces of the spur gear and the free cam ends, which is smaller than the axial extension of the torsion spring. If the torsion spring is arranged axially play-free between the two spur gears, an axial spacing may be formed between the two cams, i.e. the cams do not touch each other.
The torsion spring may have an approximately rectangular cross-sectional profile which is arranged in arcuate fashion about a rotation axis of the gear, wherein the torsion spring may be formed flat.
In one embodiment, the two spur gears may be arranged on a common bearing bolt, wherein at least one of the two spur gears is arranged rotatably on the bearing bolt. The two spur gears may be identical in structure; the two spur gears may be arranged freely rotatably on the bearing bolt. The cams may each be connected integrally with an assigned spur gear.
A further measure for improving the stiffness may be that contact faces for the cams, formed on the two spring ends, are arranged on the radially outer end of the spring ends, wherein the contact faces are delimited radially inwardly by clearances at the spring ends. The further radially out the force application point lies, the stiffer the spring behaves, because of the lever ratios. The clearances ensure defined force application points radially on the outside.
The contact faces and the clearance faces forming the clearances may be arranged at an angle to each other, wherein an extension of the contact face in the radial direction lies in a region which amounts to at least 80% and most 100% of an external diameter of the torsion spring formed as a circular ring segment.
The load-free torsion spring with the respective contact face may span a flat face in which the rotation axis of the gear also lies. In this case, an optimal force transmission in the circumferential direction can be ensured.
Also, at their peripheral ends, the cams with the respective flat cam faces may each span a plane in which the rotation axis of the gear lies.
The wall thickness of the torsion spring in the radial direction may have a great influence on its stiffness. For this reason, it is favorable to make optimal use of the installation space available.
The torsion spring may therefore have an outer diameter which is the same size as or greater than the root circle diameter of the gear. An optimally dimensioned torsion spring may have an outer diameter which extends approximately up to the tip circle diameter of a mating gear meshing with the gear. In this case, structurally a maximum stiffness is achieved for a given inner diameter and given axial thickness of the torsion spring. The inner diameter may extend approximately up to the outer diameter of the bearing bolt on which the two spur gears are arranged.
The pretension force of the torsion spring may be dimensioned sufficiently large to keep the influence of an impulse under a load direction change in the gear mechanism as small as possible. Under a load change, firstly a slight relative twist of the two spur gears takes place until the one tooth flank of the one spur gear—which was exposed before the load change—comes into contact with the assigned tooth of the engaging mating gear. Further force transmission now takes place evenly over the two spur gears. According to the disclosure, with an adequately large pretension force, said contact produces only a negligible noise.
The disclosed gear is particularly suitable for use in planetary gear mechanisms of a roll stabilizer. Roll stabilizers for motor vehicles stabilize the vehicle superstructure on cornering and reduce its rolling.
Such roll stabilizers for multitrack motor vehicles may be configured as active stabilizers and equipped with a divided torsion bar, between the mutually facing ends of which an actuator is arranged for transmission of a torsion moment. The actuator may have a housing which is connected to the one torsion bar part and houses a motor and a planetary gear mechanism connected to the motor, the gear output of which is connected to the other torsion bar part, wherein planet wheels of the planetary gear mechanism intermesh with a ring gear connected rotationally fixedly to the housing.
In such active roll stabilizers, disruptive rattling noises may be observed in operation, which are transmitted as body-borne sound to the passenger compartment. The disclosure solves the problem of disruptive rattling noises by the use of gears according to the disclosure as planet wheels in the planetary gear mechanism of the actuator. The gears according to the disclosure may stand in play-free engagement with the ring gear and with the sun wheel; it may be advantageous to form all planet wheels as gears according to the disclosure. Depending on application however, it may be sufficient if just one or some of the planet wheels are formed as gears according to the disclosure. If the planetary gear mechanism has several planetary gear stages, it may be sufficient to equip just one stage with the gears according to the disclosure. It may however be necessary in some cases to equip all planet wheels of all planetary gear stages with the gears according to the disclosure.
The disclosure is now explained in more detail with reference to embodiments described in a total of 13 figures. In the figures:
The thrust washers in the gears according to the disclosure may be omitted depending on application.
It can also be seen from
Both contact faces 21 each overlap both cams 17 in the axial direction. The two cams 17 are arranged substantially axially aligned for mounting of the torsion spring 14. Depending on the design of the cams, a pretension of the torsion spring 14 can be set in both directions of rotation. The extension of the two cams 17 in the peripheral direction is slightly smaller than the extension of the slot 18 of the unloaded torsion spring 14. Consequently, assembly of the planet wheel 9 is simple. The peripheral play of the two cams 17 in the slot is dimensioned such that the spur gears 11 can twist relative to each other by an angle which is smaller than half the pitch of the spur gear.
In
The contact faces 21 extend over a height h which extends radially in a region as far radially out as possible at the spring end 20. In the exemplary embodiment, this region lies in a portion which amounts to between 80% and 100% of the outer diameter of the torsion spring 14. The further the attack point of the force is spaced radially from the rotation axis of the planet wheel 9, the better the torsion spring 14 can transmit the torque.
For the installation and function of the gear according to the disclosure as a planet wheel in the planetary gear mechanism, reference is made to
The initial twist φi of the two spur gears 11 (
The teeth 23 of the planet wheels 9 engage in the tooth gaps 25 of the ring gear 10 (
Similarly, the planet wheels 9 engage in the tooth gaps of the sun wheel so that play-free engagement of the planet wheels with the sun wheel is guaranteed.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 206 063 | Apr 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2016/200097 | 2/18/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/155715 | 10/6/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4640147 | Yasukawa | Feb 1987 | A |
4745823 | Morita | May 1988 | A |
8621951 | Meier | Jan 2014 | B2 |
20020128098 | Mott | Sep 2002 | A1 |
20100242649 | Vandewal | Sep 2010 | A1 |
20130145878 | Kim | Jun 2013 | A1 |
20140360300 | Viechtbauer | Dec 2014 | A1 |
20150151604 | Park | Jun 2015 | A1 |
20150198205 | Van Lieshout | Jul 2015 | A1 |
20150316135 | Schnolzer | Nov 2015 | A1 |
20150354669 | Ekoz | Dec 2015 | A1 |
20180086172 | Breton | Mar 2018 | A1 |
20180087602 | Koch | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
1840252 | Oct 1961 | DE |
20104777 | Oct 2001 | DE |
102012211725 | Jun 2013 | DE |
03056141 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20180087645 A1 | Mar 2018 | US |