The present invention relates to a gear pump and a method for realising it.
Gear pumps are known that comprise a casing internally of which a housing compartment of a pair of cogwheels is provided. The compartment comprises two opposite bases and a lateral wall which develops between the two bases.
The pump further comprises an aspirating conduit and a delivery conduit of the fluid to be treated.
The delivery conduit:
This solution is not free of drawbacks since zones of the seating exhibiting small degrees of curvature and close to the delivery conduit are particularly subject to significant tensions that are responsible for breakages.
In this context, the technical task that underpins the present invention is to provide a pump and a method that obviate the above-mentioned drawbacks.
In particular, the aim of the present invention is to provide a pump and a method for realising it that improves the reliability of the pump and extends its working life.
The set technical task and the specified aims are substantially attained by a pump and a method for realising it, comprising the technical characteristics set down in one or more of the accompanying claims.
Further characteristics and advantages of the present invention will more fully emerge from the non-limiting description of a preferred but not exclusive embodiment of a pump and a method for realising it, as illustrated in the accompanying drawings, in which:
In the accompanying figures reference number 1 denotes a gear pump. By “gear pump” is meant a pump which exploits the change of volume caused by the enmeshing of two bodies located in a compartment for causing an aspiration of or a thrust on a fluid. These, in general terms, are however well known in the technical sector. In the preferred embodiment the gears are a pair of cogwheels. The gears might be one with external teeth and the other with internal teeth. More in general, the two cogwheels might be revolving bodies which interact with one another, but do not have the profile of a revolving body (for example a lobe pump).
The pump 1 comprises a pair of gears 2 (preferably cogwheels) reciprocally enmeshing and destined to interact with a fluid crossing the pump 1.
The pump 1 also comprises a housing seating 3 of said gears 2. The housing seating 3 comprises a rest plane 30 of a shim 4.
The shim 4 further enables facilitating the movement of at least one of said gears 2, minimising wear thereon.
The pump 1 comprises an aspirating conduit 9 of the fluid to be treated which opens into the housing seating 3.
The pump 1 further comprises a delivery conduit 6 which develops from said housing seating 3. The delivery conduit 6 comprises an inlet mouth 60. As shown in
The delivery conduit 6 has an arched shape. It is typically C-shaped. The arched shape is very important as it gives maximum flexibility in the positioning of an outlet mouth 61 of the delivery conduit 6 (compare for example
The inlet mouth 60 of the delivery conduit 6 is at a distance from an intersection 7 between the rest plane 30 of the shim 4 and remaining parts of the housing seating 3. The rest plane 30 is a plane on at least a portion of which the shim 4 rests.
This enables distancing the delivery conduit 6 and the inlet mouth 60 (on which significant pressures act) from said intersection 7 (which normally has small degrees of curvature which in any case facilitate the concentration of the tensions). In this way the positioning of the greater stresses is prevented from being positioned at zones which by virtue of the geometry thereof induce a concentration of the tensions.
Further, the presence of the delivery conduit 6 at the intersection 7 will be avoided, which delivery conduit 6 normally has a relatively rough surface which therefore might facilitate the appearance of cracks with respect to a surface provided with a better surface finishing. In fact the surfaces contributing to the definition of the intersection 7 will be subject to a surface finishing using machine tools that reduces the roughness thereof and also reduces the risk of cracks appearing.
The housing seating 3 also comprises a first and a second base 31, 32 which develop transversally (preferably perpendicularly) to a direction 20 parallel to the rotation axis of at least one of said gears 2. The first base 31 comprises the rest plane 30 of the shim. As illustrated in
The housing seating 3 comprises a lateral surface 33 interposed between the first and the second base 31, 32. The inlet mouth 60 of the delivery conduit 6 is entirely fashioned in said lateral surface 33.
The minimum distance of the inlet mouth 60 of the delivery conduit 6 of said intersection 7 is preferably greater than 10 millimetres.
The aspirating conduit 9 also opens into said housing seating 3. The aspirating conduit 9 typically opens in said housing seating 3 from an opposite side with respect to the side in which the inlet mouth 60 of the delivery conduit 6 is fashioned.
The pump 1 comprises a cover 5 that defines the second base 32 of the housing seating 3 opposite the first base 31. The cover 5 thus contributes to delimiting the housing seating 3.
The lateral surface 33 and the rest plane 30 of the shim 4 have a surface finish that is better than a surface finish of an initial portion of said delivery conduit 6. The degree of roughness of the lateral surface 33 and the rest plane 30 of the shim 4 is therefore lower than that of an initial portion of said delivery conduit 6. The presence of a surface having a better surface finishing at the intersection 7 contributes to reducing the risk of cracking.
The minimum distance of the inlet mouth 60 from an intersection between a rest plane of any shim and remaining parts of the housing seating 3 is advantageously greater than 0 and preferably greater than 10 millimetres.
The pump 1 comprises a monolithic first body 8 in which the delivery conduit 6 and the aspirating conduit 9 are fashioned and which comprises:
The first body 8 also comprises a lateral surface 83 that connects the first and the second surface 81, 82.
In a constructional solution illustrated in
In a constructional solution illustrated in
In a constructional solution illustrated in
In this regard it is specified that the solution of
As illustrated by the various constructional solutions described in the foregoing, the outlet mouth 61 imposes on the fluid a theoretical direction of outflow which can be parallel or perpendicular to the direction 20 (which due to the way it is defined is parallel to the rotation axis of at least one of said gears 2).
The present invention further relates to a method for production of gear pump (which advantageously has one or more of the above-described characteristics).
The method comprises a step of realising the first body 8 which at least partly identifies a housing seating 3 of gears 2 destined to interact with a fluid that crosses the pump 1.
The method also includes realising a cover 5 which contributes to delimiting the housing seating 3. The cover 5 is removably connected to the first body 8.
The method advantageously comprises a step of inserting a shim 4 internally of said housing seating 3.
The method further comprises a step of inserting a pair of gears 2 (preferably cogwheels) which reciprocally enmesh internally of said housing seating 3. The shim 4 described in the foregoing prevents the dragging between at least one of said gears and the first body 8.
The step of realising the first body 8 which at least partly identifies the housing seating 3 further comprises a step of realising an arched portion of a delivery conduit 6 which develops from said housing seating 3 with an inlet mouth 60 which:
The step of realising the first body 8 comprises at least steps of:
i) realising a first rough body 80 by moulding, said first body 80 comprising a first base 31 from which a lateral surface 33 develops in which the inlet mouth 60 of the delivery conduit 6 is fashioned;
ii) carrying out a finishing of said first base 31 and of the lateral surface 33 using a machine tool; the rest plane 30 of the shim 4 being fashioned at the first base 31 by means of a further surface machining using a machine tool.
The step of realising by moulding the first rough body 80 also comprises a step of realising said portion of delivery conduit 6. The delivery conduit 6 is internal of the first body 8.
The cover 5 is preferably made by moulding.
The step of realising by moulding the first rough body 80 also comprises a step of realising an aspirating conduit 9 which conveys the fluid to be treated into the housing seating 3. The aspirating conduit 9 is also internal of the first body 8.
The step of realising said delivery conduit 6 that develops from the housing seating 3 includes realising a blind channel 600 which develops from said inlet mouth 60 up to an end 62 opposite said inlet mouth 60.
The method further comprises a step of realising, using a machine tool, an outlet 61 of the delivery conduit 6 from the first body 8. According to the specific requirements, the outlet 61 of the delivery conduit 6 can be made at different points of the blind channel 600.
In the particular solution illustrated in
In an alternative solution (see for example
The present invention provides important advantages.
Firstly it enables reducing the tensions on the pump, increasing the reliability and working life of the pump 1.
The invention as it is conceived is susceptible to numerous modifications and variants, all falling within the scope of the inventive concept by which it is characterised. Further, all the details can be replaced with other technically-equivalent elements. In practice, all the materials used, as well as the dimensions, can be any according to requirements.
Number | Date | Country | Kind |
---|---|---|---|
102015000016193 | May 2015 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2016/052725 | 5/12/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/185329 | 11/24/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2236980 | Ungar | Apr 1941 | A |
3796523 | Albrecht et al. | Mar 1974 | A |
7997885 | Allum | Aug 2011 | B2 |
8398381 | Schumann | Mar 2013 | B1 |
9046102 | Naganuma et al. | Jun 2015 | B2 |
9309885 | Blechschmidt | Apr 2016 | B2 |
20130156625 | Schumann | Jun 2013 | A1 |
20140030132 | Naganuma et al. | Jan 2014 | A1 |
20140255234 | Schumann | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
202370833 | Aug 2012 | CN |
103573617 | Feb 2014 | CN |
203604194 | May 2014 | CN |
102012206699 | Oct 2013 | DE |
H11270469 | Oct 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20180119695 A1 | May 2018 | US |