The present invention generally relates to a gear pump, a pumping apparatus including the gear pump, and an aircraft fuel system including the gear pump. In particular, the present invention relates to a gear pump that promotes pumping efficiency by cooling bearings thereof with lightly pressurized liquid feed, a pumping apparatus including the gear pump, and an aircraft fuel system including the gear pump.
Typical gas turbine engine fuel supply systems include a fuel source, such as a fuel tank, and one or more pumps that draw fuel from the fuel tank and deliver pressurized fuel to the fuel manifolds and fuel nozzles in the engine combustor via a main supply line. These pumps may include an aircraft or tank level pump, a boost pump, and a high pressure pump. The boost pump is typically a centrifugal pump and the high pressure pump is typically a gear pump, though in some applications the high pressure pump may also be a centrifugal pump. In aircraft fuel systems, the pressurized fuel is provided from the boost pump to the high pressure pump.
Gear pumps generally include a pump housing, with a first gear and a second gear disposed in the pump housing. The first gear and the second gear have gear teeth that are meshed in a mesh region, with rotation of the first gear and the second gear pressurizing liquid feed, such as fuel in the fuel supply systems. In this regard, the pump housing generally defines an inlet cavity adjacent to the first gear and the second gear on one side of the mesh region, and a pump outlet adjacent to the first gear and the second gear on an opposite side of the mesh region from the inlet cavity. The pump outlet includes high pressure liquid feed due to pressurization of the liquid feed by rotation of the first gear and the second gear, whereas the inlet cavity includes liquid feed at lower pressures than at the pump outlet.
The first gear and the second gear each generally include trunnions on opposite sides of the first gear and the second gear for supporting the first gear and the second gear during rotation. Due to rotation of the first gear and the second gear, the trunnions generally generate high temperatures attributable to friction, and a cooling flow of liquid feed is generally employed to cool the trunnions. The trunnions are generally cooled by returning a portion of the high pressure liquid feed from the pump outlet, along a surface of the trunnions, and out to the inlet cavity, thereby exploiting a pressure differential between the pump outlet and the inlet cavity to drive flow of the liquid feed along the surface of the trunnions. However, cooling the trunnions with high pressure liquid feed from the pump outlet negatively impacts pump efficiency.
Other techniques for cooling trunnions in gear pumps have been proposed that employ liquid feed from the inlet cavity. One such technique relies upon low pressure zones created in the mesh region as the gear teeth separate to draw liquid feed into channels disposed in the mesh region and that urge the liquid feed from the inlet cavity to the surface of the trunnions. Another such technique relies upon location of channels that provide liquid feed to the surface of the trunnions in an inertial flow path of liquid feed into the inlet cavity, with suction from rotation of the first gear and second gear drawing the liquid feed into the inlet cavity and with inertia of the liquid feed causing the liquid feed to flow into the channels instead of to the first gear and the second gear. However, such techniques often provide inconsistent cooling of the trunnions because the rate of fluid flow to the trunnions is dependent upon multiple factors, including the rotational speed of the gears and dynamic fluid flow profiles within the gear pumps.
Accordingly, it is desirable to provide a gear pump that promotes efficiency in pressurizing liquid feed, such as fuel, by cooling the trunnions with liquid feed from a low-pressure inlet cavity of the gear pump, while avoiding inconsistent cooling associated with existing gear pumps that cool trunnions with liquid feed from the low-pressure inlet cavity. It is also desirable to provide a pumping apparatus and an aircraft fuel system including the gear pump. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description of the invention and the appended claims, taken in conjunction with the accompanying drawings and this background of the invention.
A gear pump, pumping apparatus, and aircraft fuel system are provided. In an embodiment, a pumping apparatus includes a boost pump, in fluid communication with a source of liquid feed, configured to pressurize the liquid feed to produce a lightly pressurized liquid feed. A gear pump, in fluid communication with the boost pump, is configured to receive the lightly pressurized liquid feed from the boost pump and to further pressurize the lightly pressurized liquid feed to produce a high pressure liquid feed. The gear pump includes a pump housing, a first gear, and a second gear. The first gear and the second gear have gear teeth and are disposed in the pump housing. The gear teeth of the first gear and the gear teeth of the second gear are meshed in a mesh region and the first gear and the second gear each include respective trunnions on opposite sides thereof. An inlet cavity is defined in the pump housing adjacent to the first gear and the second gear, on one side of the mesh region. The inlet cavity is configured to urge the lightly pressurized liquid feed to the first gear and the second gear. A pump outlet is defined in the pump housing adjacent to the first gear and the second gear, on an opposite side of the mesh region from the inlet cavity. The pump outlet is configured to convey the high pressure liquid feed from the gear pump. A bearing is configured to support at least one trunnion of the first gear and/or the second gear. A bearing interface is defined between the bearing and the at least one trunnion. A flow path is defined between the bearing interface and the inlet cavity to provide the lightly pressurized liquid feed to the bearing interface under pressure from the boost pump.
In another embodiment, an aircraft fuel system includes a fuel tank, a boost pump, a gear pump, and a main fluid line. The boost pump is in fluid communication with the fuel tank and is configured to receive fuel from the fuel tank and to pressurize the fuel from the fuel tank to produce a lightly pressurized fuel. The gear pump is in fluid communication with the boost pump and is configured to receive the lightly pressurized fuel from the boost pump and to further pressurize the lightly pressurized fuel to produce a high pressure fuel. The main fuel line is in fluid communication with the gear pump and is configured to receive the high pressure fuel from the gear pump. The gear pump includes a pump housing, a first gear, and a second gear. The first gear and the second gear have gear teeth and are disposed in the pump housing. The gear teeth of the first gear and the gear teeth of the second gear are meshed in a mesh region and the first gear and the second gear each include respective trunnions on opposite sides thereof. An inlet cavity is defined in the pump housing adjacent to the first gear and the second gear, on one side of the mesh region. The inlet cavity is configured to urge the lightly pressurized liquid feed to the first gear and the second gear. A pump outlet is defined in the pump housing adjacent to the first gear and the second gear, on an opposite side of the mesh region from the inlet cavity. The pump outlet is configured to convey the high pressure liquid feed from the gear pump. A bearing is configured to support at least one trunnion of the first gear and/or the second gear. A bearing interface is defined between the bearing and the at least one trunnion. A flow path is defined between the bearing interface and the inlet cavity to provide the lightly pressurized liquid feed to the bearing interface under pressure from the boost pump.
In another embodiment, a gear pump includes a pump housing, a first gear, and a second gear. The first gear and the second gear have gear teeth and are disposed in the pump housing. The gear teeth of the first gear and the gear teeth of the second gear are meshed in a mesh region and define travel patterns. The first gear and the second gear each include respective trunnions on opposite sides thereof. An inlet cavity is defined in the pump housing adjacent to the first gear and the second gear, on one side of the mesh region. The inlet cavity is configured to urge the lightly pressurized liquid feed to the first gear and the second gear. A pump outlet is defined in the pump housing adjacent to the first gear and the second gear, on an opposite side of the mesh region from the inlet cavity. The pump outlet is configured to convey the high pressure liquid feed from the gear pump. A bearing is configured to support at least one trunnion of the first gear and/or the second gear. A bearing interface is defined between the bearing and the at least one trunnion. A flow path is defined between the bearing interface and the inlet cavity. An opening to the flow path from the inlet cavity is radially spaced from the travel patterns of the gear teeth of the first gear and the gear teeth of the second gear. The opening is configured for flow of the pressurized liquid feed into the flow path transverse to a direction of pressurized liquid feed flow into the inlet cavity to provide the lightly pressurized liquid feed to the bearing interface.
The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.
A gear pump, pumping apparatus, and aircraft fuel system are provided herein. The pumping apparatus includes the gear pump and a boost pump. While the pumping apparatus and the gear pump are not limited any particular system, in an embodiment, the gear pump and pumping apparatus are included in the aircraft fuel system. The boost pump is in fluid communication with a source of liquid feed, and the gear pump is in fluid communication with the boost pump. The gear pump is configured to receive lightly pressurized liquid feed from the boost pump and to further pressurize the lightly pressurized liquid feed to produce a high pressure liquid feed. The gear pump includes a first gear and a second gear having trunnions on opposite sides of the first gear and the second gear. A bearing is configured to support at least one trunnion of the first gear and/or the second gear and a bearing interface is defined between the bearing and the at least one trunnion. The gear pump promotes efficiency in pressurizing liquid feed, such as fuel in the aircraft fuel system, by cooling the trunnions with the lightly pressurized liquid feed from a low-pressure inlet cavity of the gear pump instead of with the high pressure liquid feed from a pump outlet of the gear pump. The lightly pressurized liquid feed is provided to the bearing interface through a flow path that is defined between the bearing interface and the inlet cavity. To avoid inconsistent cooling, the lightly pressurized liquid feed is provided to the bearing interface under pressure from the boost pump of the pumping apparatus, which lightly pressurizes the liquid feed to the gear pump to also minimize cavitation during operation of the gear pump. By lightly pressurized liquid feed, or lightly pressurizing, it is meant that the boost pump elevates the pressure of the liquid feed above a pressure of the liquid feed from the source of liquid feed, but below a pressure of the high pressure liquid feed that exits the gear pump. Providing the lightly pressurized liquid feed to the bearing interface does not materially reduce the pressure of the lightly pressurized liquid feed to the gear pump and, therefore, has an immaterial impact on minimizing cavitation during operation of the gear pump. Thus, in addition to lightly pressurizing the liquid feed to avoid cavitation in the gear pump, the lightly pressurized liquid feed, under pressure from the boost pump, is also used to cool at least one trunnion in the gear pump. Because the lightly pressurized liquid feed is provided to the bearing surface under pressure from the boost pump, location of an opening to the flow path is unrestricted in the inlet cavity and can be positioned to avoid impact on flow of lightly pressurized liquid feed to the first gear and the second gear.
An exemplary embodiment of an aircraft fuel system will now be described with reference to
The gear pump 16 is in fluid communication with the boost pump 12, such as through the interconnecting fluid line 21, is configured to receive the lightly pressurized fuel from the boost pump 12 and to further pressurize the lightly pressurized fuel to produce a high pressure fuel. For example, in an embodiment, the gear pump 16 produces the high pressure fuel having a pressure of from about 1500 to about 9000 KPa. The main fuel line 18 is in fluid communication with the gear pump 16 and is configured to receive the high pressure fuel from the gear pump 16. A fuel filter 20 is optionally disposed between the boost pump 12 and the gear pump 16, within the interconnecting fluid line 21 that connects the boost pump 12 and the gear pump 16. As set forth in further detail below, pressure from the boost pump 12 is also used to provide lightly pressurized fuel for cooling within the gear pump 16. A metered flow valve 22 may be disposed after the gear pump 16 and prior to the main fuel line 18 for controlling fuel flow out of the aircraft fuel system 10, and the metered flow valve 22 may be controlled by a computer control module 24 of the aircraft. A bypass valve 29 may be disposed in the main fuel line 18 prior to the metered flow valve 22 and after the gear pump 16.
Referring to
Referring to
Referring to
As partially shown in
In an embodiment, and as shown in
Referring to
As shown in
Referring to
In an embodiment, and as shown in
Referring to
While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention. It being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2775209 | Albright | Dec 1956 | A |
2955537 | Gaubatz | Oct 1960 | A |
3073251 | Weigert | Jan 1963 | A |
3622212 | Laumont | Nov 1971 | A |
3894813 | Cooper | Jul 1975 | A |
4038000 | Dworak | Jul 1977 | A |
4090820 | Teruyama | May 1978 | A |
4160630 | Wynn | Jul 1979 | A |
4265602 | Teruyama | May 1981 | A |
4392798 | Bowden | Jul 1983 | A |
4553915 | Eley | Nov 1985 | A |
4629405 | Hidasi et al. | Dec 1986 | A |
4859161 | Teruyama et al. | Aug 1989 | A |
4927343 | Lonsberry | May 1990 | A |
4974702 | Yokomachi et al. | Dec 1990 | A |
6280164 | Kalt et al. | Aug 2001 | B1 |
6524088 | Kasai et al. | Feb 2003 | B2 |
6996970 | Lorenz | Feb 2006 | B2 |
20030053923 | Eaton et al. | Mar 2003 | A1 |
20080063554 | Gifford et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
1978224 | Oct 2008 | EP |
572967 | Oct 1945 | GB |
1149279 | Apr 1969 | GB |
1177922 | Jan 1970 | GB |
04-036082 | Feb 1992 | JP |
09317656 | Dec 1997 | JP |
WO0019067 | Apr 2000 | WO |
Entry |
---|
Positive Displacement Rotary Gear Pumps, Gorman-Rupp Pumps, GRpumps.com, 2009. |
EP Search Report for Application No. 13167324.6 Dated Feb. 1, 2016. |
EP Examination Report for Application No. 13167324.6 Dated Feb. 22, 2016. |
Number | Date | Country | |
---|---|---|---|
20130320147 A1 | Dec 2013 | US |