The current invention relates to gear shifter mechanisms for transmissions, and in particular to a gear shift assembly for a manual transmission of an automobile.
Manual shift transmissions found in typical automotive application represents one step of the two step mechanical torque multiplication process (the other step is the rear end differential unit) necessary for an internal combustion engine to operate within an RPM range wherein it produces an ideal level of torque and horsepower for optimal performance and mileage at the varying speeds the vehicle is to be operated. The typical internal combustion engine has torque and horsepower bands wherein the torque and horsepower produced will vary proportionally with the RPM. The typical modern gasoline internal combustion engine useable torque range begins at around 1500 RPM and peaks out at about 4500 RPM so that under ideal conditions, a driver wishes to keep engine RPM within that range or band of power until such time as the vehicle has attained a given desired speed. The rear end differential in a vehicle is usually a fixed drive ratio that cannot be altered unless it is mechanically modified. Therefore, in order to keep an engine RPM within a usable power band, the transmission provides the required varying gear ratios. In order for the driver to select the appropriate gear ratio inside the transmission for this purpose, a device known as a transmission shifter provides the driver with the necessary mechanical connection to the internal transmission gear selection mechanism.
By the early 1980's a new shifter linkage design began to emerge that replaced the external shift linkage design wherein the shift linkage functionality was built into the transmission case itself in the form of device called a rail gear selector as shown in
This new design vastly decreased the complexity of the shifter itself by internalizing shifter linkages which also removed them from exposure to the elements. The new shifter design (see
The resulting gear shifter itself as shown in
Current shifter designs consist of a simple central ball and socket mechanism. Protruding from the bottom of the central ball is a short rod ending with a spherically shaped tip at its base that is inserted into the socket mechanism of the transmission. Extending upwards in the opposite direction from the central ball of the ball and socket mechanism is a simple rectangular shaft that typically has threaded bolt holes so that a shifter handle can be bolted to it on one end and the other end of the shifter handle is threaded so that a shifter handle can be screwed on to its end.
Current shifter designs tend to be utilitarian and are designed to be made as inexpensively as possible. As a result, these designs are usually cosmetically unappealing and are typically concealed with some sort of leather or rubber boot so that only the actual shifter handle is visible inside the automobile interior. This cosmetically unappealing design is used regardless of the vehicle, even for vehicles costing hundreds of thousands of dollars.
According to the present disclosure, in one aspect thereof, a gear shift assembly is provided. The gear shift assembly includes a base having a central aperture for receiving a shift rod. The gear shift assembly also includes a generally cylindrical collar that extends upwardly from the base. A shift rod with a generally spherical tip at a first end for engaging a corresponding socket of a transmission is provided. The shift rod includes a handle at a second end. The shift rod passes through an inner gimbal sphere such that the inner gimbal sphere is positioned between the first and second ends of the shift rod. An outer gimbal sphere is provided that includes an upper outer truncated gimbal hemisphere and a lower truncated gimbal hemisphere. The outer gimbal sphere defines a generally spherical inner cavity for receiving the inner gimbal sphere.
The outer truncated gimbal sphere is supported in the collar such that the outer truncated gimbal sphere may pivot in the collar in a first direction when the shift rod is moved in the first direction. Further, the inner gimbal sphere is supported in the outer truncated gimbal sphere such that the inner gimbal sphere may pivot inside the outer truncated gimbal sphere in a second direction substantially perpendicular to the first direction when the shift rod is moved in the second direction. The assembly further includes a substantially rigid trim cap. The trim cap has upper and lower openings and a central passage extending therebetween. The shift rod passes though the trim cap with at least a portion of the inner gimbal sphere exposed though through the upper opening. In one embodiment, a portion of the outer gimbal sphere may be exposed through the upper opening. The trim cap engages the collar to secure the trim cap to base.
The present disclosure, in another aspect thereof, provides a gear shift assembly that includes a base that has a central aperture for receiving a shift rod therethrough. The base includes a plurality of openings for fastening the base to a transmission. A generally cylindrical collar that extends upwardly from the base has an upper wall, a threaded exterior surface, a plurality of spaced apart screw holes extending through the collar and the base, and two opposed semicylindrical openings formed in the top wall of the collar. An upper outer truncated gimbal hemisphere has a bottom wall with four semicylindrical recesses formed at ninety degree intervals in the bottom wall and a plurality of spaced apart screw holes extending into the bottom wall. A lower outer truncated gimbal hemisphere has a top wall with four semicylindrical recesses formed at ninety degree intervals in the top wall and a plurality of screw holes extending through the lower outer truncated gimbal hemisphere. A plurality of screws extend through the screw holes to secure the upper and lower gimbal spheres halves together such that the upper and lower outer gimbal hemispheres form an outer truncated gimbal sphere. The outer truncated gimbal sphere defines a generally spherical inner cavity that opens on opposed sides of the outer, truncated gimbal sphere with the semicylindrical recesses in opposed relationship to form four cylindrical pin receiving openings at ninety degree intervals around a circumference of the outer truncated gimbal sphere.
A shift rod having spherical tip at a first end thereof for engaging a corresponding socket of a transmission, a handle at a second end thereof and a pivot pin receiving opening formed between the first and second ends is provided. The inner gimbal sphere is positioned between the first and second ends of the shift rod with opposed openings aligned with the pin receiving opening of the shift rod. The inner gimbal sphere is received in the generally spherical inner cavity of the outer, truncated gimbal sphere with the shift rod passing through the collar and central aperture of the base. A first pivot pin extends through the inner gimbal sphere and shift rod. The pivot pin is positioned in opposed ones of the cylindrical pin receiving openings of the truncated outer gimbal sphere. Thus, the inner gimbal sphere may pivot inside the outer gimbal sphere in a first direction when the shift rod is moved in the first direction.
Second pivot pins are positioned in opposed ones of the cylindrical pin receiving openings and extend from the outer truncated gimbal sphere to engage the opposed semicylindrical openings formed in the top wall of the collar. Thus, the outer truncated gimbal sphere may pivot in the collar in a second direction substantially perpendicular to the first direction when the shift rod is moved in the second direction.
A plurality of springs are interposed between the base and the outer truncated gimbal sphere. The springs bias the outer truncated gimbal sphere and shifter shaft to a center position. A retaining ring is configured to fit over the upper outer truncated gimbal hemisphere. A plurality of screws extends through the base, the collar and engage the retaining ring to secure the outer, truncated gimbal sphere within the collar.
A substantially rigid trim cap, having a small diameter upper opening and a large diameter lower opening with a central passage extending between the upper opening and lower opening, is provided. The shifter shaft passes though the trim cap with at least a portion of the inner gimbal sphere exposed though through the small diameter upper opening. The trim cap has internal threads formed around the circumference passage at the lower end for engaging the outer threaded surface of the collar to secure the trim cap to the collar, thereby securing a trim plate to the base.
The present disclosure, in still another aspect thereof, provides a gear shift assembly comprising a frame, an outer gimbal member and an inner gimbal member. The frame has an upper exterior surface defining a substantially circular first aperture having a first inner diameter. The outer gimbal member is rotatably mounted to the frame to allow rotation relative to the frame about a first axis. An upper portion of the outer gimbal member has a ring-shaped exterior configuration defining a substantially circular outer surface having a second outer diameter and a substantially circular second aperture having a second inner diameter. The second outer diameter is substantially equal to the first inner diameter minus a clearance distance. The outer gimbal member is disposed within the frame such that the upper portion of the outer gimbal member is positioned within the first aperture. The inner gimbal member is rotatably mounted to the outer gimbal member to allow rotation relative to the outer gimbal member about a second axis. The second axis is oriented substantially perpendicular to the first axis. An upper portion of the inner gimbal member has an exterior configuration defining a substantially circular outer surface having a third outer diameter. The third outer diameter is substantially equal to the second inner diameter minus a clearance distance. The inner gimbal member is disposed within the outer gimbal member such that the upper portion of the inner gimbal member is positioned within the second aperture.
For a more complete understanding, reference is now made to the following description taken in conjunction with the accompanying Drawings in which:
Referring now to the drawings, wherein like reference numbers are used herein to designate like elements throughout, the various views and embodiments of a gear shift assembly are illustrated and described, and other possible embodiments are described. The figures are not necessarily drawn to scale, and in some instances the drawings have been exaggerated and/or simplified in places for illustrative purposes only. One of ordinary skill in the art will appreciate the many possible applications and variations based on the following examples of possible embodiments.
Referring again to
A pair of short pivot pins 62 are retained in the remaining two cylindrical pin receiving openings 54 in outer gimbal sphere 50. The ends of short pivot pin 62 are received in semi-cylindrical recesses 28 formed in collar 24. This configuration allows the shift rod, inner gimbal sphere and outer gimbal sphere to pivot from side to side within collar 24. A pair of followers 68 are received in springs 66 interposed between base 12 and the lower outer gimbal hemisphere 40. Springs 66 bias the outer hemisphere 50 and shift rod 14 to a center position. Followers 68 prevent springs 66 from wearing against the bottom of outer hemisphere 40.
Referring again to
It will be appreciated by those skilled in the art having the benefit of this disclosure that this gear shift assembly provides a gear shift assembly for a manual transmission of a vehicle. It should be understood that the drawings and detailed description herein are to be regarded in an illustrative rather than a restrictive manner, and are not intended to be limiting to the particular forms and examples disclosed. On the contrary, included are any further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments apparent to those of ordinary skill in the art, without departing from the spirit and scope hereof, as defined by the following claims. Thus, it is intended that the following claims be interpreted to embrace all such further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments.
This application claims the benefit of U.S. Provisional Application for Patent Ser. No. 61/034,247, filed Mar. 6, 2008, and entitled GEAR SHIFT ASSEMBLY, the specification of which is incorporated herein in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
61034247 | Mar 2008 | US |