1. Field of the Invention
The present invention relates to a gear-shifting mechanism for vehicles, especially to a gear-shifting mechanism for vehicles that can output in two directions and can be adapted for a transmission in the right or the left of the vehicle.
2. Description of the Prior Arts
To vehicles used for all terrains, a gear-shifting mechanism is ordinary mounted in an engine of the vehicles. The gear-shifting mechanism has a crankcase and a gearbox. The gearbox is connected to the crankcase. The crankcase has a crankshaft, a shift lever, a transmission hub, a shift fork and a gear assembly. The shift lever has an output end protruding through the crankcase and connected to a transmission of the all-terrain vehicle. The transmission hub is connected to the shift lever. The shift fork is connected to the transmission hub. The gear assembly is connected to the shift fork. A user can control and actuate the transmission, and the transmission moves the shift lever, the transmission hub, the shift fork and the gear assembly in sequence.
However, the gearbox is connected to the crankcase so that the shift lever only can protrude out of a side surface of the crankcase opposite to the gearbox. If the gearbox lies in right of the crankcase, the shift lever must protrude out of the left of the crankcase and the transmission must lie in the left of the all-terrain vehicle. If the gearbox lies in left of the crankcase, the shift lever must protrude out of the right of the crankcase and the transmission must lie in the right of the all-terrain vehicle. As a result, the conventional gear-shifting mechanism for the all-terrain vehicle can only output in the direction opposite to the gearbox and is limited in the applicability when installed on various vehicles.
To overcome the shortcomings, the present invention provides a gear-shifting mechanism for vehicles to mitigate or obviate the aforementioned problems.
The main objective of the present invention is to provide a gear-shifting mechanism for vehicles that can output in two directions and can be adapted for a transmission in the right or the left of the vehicle.
The gear-shifting mechanism for vehicles has a crankcase, a gearbox and a reserved room. The crankcase has a crankshaft, a shift lever, a transmission hub, a shift fork, a gear assembly, a first case and a second case. The first case has a first hole segment corresponding to the shift lever. The second case corresponds to the first case and has a second hole segment corresponding to the shift lever. The gearbox is connected to the crankcase and has a driving wheel assembly, a body and a cover. The driving wheel assembly is actuated by the crankshaft. The body is connected to the first case. The cover is mounted on the body. The reserved room is formed between the first case and the body. The crankcase further has a shaft hole formed through the first hole segment, or the crankcase further has a shaft hole formed through the second hole segment, or the crankcase further has two shaft holes respectively formed through the first hole segment and the second hole segment.
The shift lever is connected to a transmission of an all-terrain vehicle. Because the reserved room is formed between the first case of the crankcase and the body of the gearbox, the shift lever can protrude out of the first case and is mounted into the reserved room to connect to a transmission between the crankcase and the gearbox. Besides, the shift lever also can protrude out of the second case to connect to a transmission opposite to the gearbox. As a result, the shift lever can output in two directions, applicable for the gearbox in left or right of the crankcase. An engine connected to the gear-shifting mechanism is applicable for various vehicles.
Other objectives, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
With reference to
With reference to
The gearbox 20 is connected to the crankcase 10 and has a body 21, a cover 22 and a driving wheel assembly 23. The body 21 is connected to the first case 11 of the crankcase 10. The cover 22 is mounted on the body 21. The driving wheel assembly 23 is actuated by the crankshaft 13.
The reserved room 30 is formed between the first case 11 and the body 21. In a preferred embodiment, the reserved room 30 is formed between the first surface 191 of the first case 11 and an outside surface of the body 21.
In a preferred embodiment, the crankcase 10 has a single shaft hole, which is a first shaft hole 181. The first shaft hole 181 is formed on the first surface 191 of the protrusion 19. The shift lever 14 has a first output end 141 protruding out of the first shaft hole 181 and mounted in the reserved room 30.
In a preferred embodiment, the crankcase 10 has a single shaft hole, which is a second shaft hole 182. The second shaft hole 182 is formed on the second surface 192 of the protrusion 19. The shift lever 14 has a second output end 142 protruding out of the second shaft hole 182.
In a preferred embodiment, the crankcase 10 has two shaft holes, and the shaft holes respectively are a first shaft hole 181 and a second shaft hole 182. The first shaft hole 181 is formed on the first surface 191 of the protrusion 19. The second shaft hole 182 is formed on the second surface 192 of the protrusion 19. The shift lever 14 has a first output end 141 and a second output end 142. The first output end 141 protrudes out of the first shaft hole 181 and is mounted in the reserved room 30. The second output end 142 protrudes out of the second shaft hole 182.
With reference to
With reference to
With reference to
With reference to
When the transmission is in the right of the vehicle, the transmission is connected to the second output end 142 of the shift lever 14 to actuate the shift lever 14. The shift lever 14 rotates the transmission hub 15 by the sector rack 143 and the gear. The transmission hub 15 rotates and actuates the shift fork 16. The shift fork 16 actuates the gear assembly 17 to shift gears.
To sum up, because the reserved room 30 is formed between the first case 11 of the crankcase 10 and the body 21 of the gearbox 20, the shift lever 14 can protrude out of the first case 11 to be inserted into the reserved room 30 to connect to a transmission between the crankcase 10 and the gearbox 20, or can protrude out of the second case 12 to connect to a transmission opposite to the gearbox 20. As a result, the shift lever 14 can output in two directions, applicable for the gearbox 20 in left or right of the crankcase 10. An engine connected to the gear-shifting mechanism can be adapted for various vehicles.
Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and features of the invention, the disclosure is illustrative only. Changes may be made in the details, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
100222814 | Dec 2011 | TW | national |