The disclosure of Japanese Patent Application No. 2018-244648 filed on Dec. 27, 2018 and Japanese Patent Application No. 2018-244885 filed on Dec. 27, 2018, each including the specification, drawings and abstract, is incorporated herein by reference in its entirety.
The disclosure relates to gear units including a plurality of gears.
Japanese Unexamined Patent Application Publication No. 2014-35016 (JP 2014-35016 A) discloses a transmission ratio variable device that transmits the sum of rotation of an input shaft and rotation based on driving of a motor to an output shaft by using a differential mechanism. This transmission ratio variable device includes an oscillating gear mechanism as the differential mechanism. The oscillating gear mechanism includes a first gear that is rotated with the input shaft, a fourth gear that is rotated with an output shaft, and an oscillating gear. The oscillating gear includes a second gear meshing with the first gear and a third gear meshing with the fourth gear and is rotated about an axis tilted with respect to the axis of the first and fourth gears. With this configuration, the transmission ratio, which is the ratio between the input rotation angle and the output rotation angle, can be changed on the same axis.
In such a gear unit having an oscillating gear (more specifically, a gear that makes a precession motion) as the above oscillating gear mechanism, a gear that is rotated about a second axis tilted with respect to a first axis is disposed between two gears that are rotated about the first axis. For example, an input shaft is fixed to this gear. The input shaft has a main shaft portion whose central axis is a first axis and a cylindrical tilted shaft portion whose central axis is a second axis. The cylindrical tilted shaft portion is formed on a part of the main shaft portion. For example, when producing such a shaft body, namely a shaft body in which a main shaft portion and a tilted shaft portion are formed integrally, a first turning process is performed on a metal body to accurately form the tilted shaft portion. The rotation shaft of the metal body is then changed for a second turning process, and the second turning process is performed to accurately form the main shaft portion. The production process of this shaft body includes the above complicated process, and it is therefore not easy to produce a shaft body to be connected to a gear that makes a precession motion. This is a factor that affects, for example, improvement in production efficiency of gear units.
The disclosure provides a gear unit including a gear that makes a precession motion and capable of being efficiently produced.
An aspect of the present disclosure is a gear unit. The gear unit includes: a first gear and a second gear which are disposed about a first axis; an input shaft disposed so as to be rotatable about the first axis; and an intermediate gear disposed between the first gear and the second gear. The intermediate gear is disposed about a second axis tilted with respect to the first axis. The intermediate gear includes an inner ring portion and an outer ring portion disposed so as to be rotatable relative to the inner ring portion. The inner ring portion is configured to be rotated with rotation of the input shaft. The outer ring portion is configured to mesh with the first gear and the second gear.
The gear unit may further include a tilted shaft member that is a separate member from the input shaft and that is disposed between an inner peripheral surface of the inner ring portion and the input shaft. The tilted shaft member may include a tilted outer peripheral surface that is an outer peripheral surface parallel to the second axis, and may be configured to support the inner peripheral surface by the tilted outer peripheral surface to cause the intermediate gear to make a precession motion with rotation of the input shaft.
The gear unit may further include a third tilted member and a fourth tilted member that are attached to the input shaft. The third tilted member and the fourth tilted member may contact opposite surfaces of the inner ring portion in a direction of the second axis. The third tilted member and the fourth tilted member may be configured to hold the inner ring portion between the third tilted member and the fourth tilted member in such an attitude that the second axis is a central axis of the inner ring portion.
The disclosure thus provides a gear unit including a gear that makes a precession motion and capable of being efficiently produced.
Features, advantages, and technical and industrial significance of exemplary embodiments of the disclosure will be described below with reference to the accompanying drawings, in which like numerals denote like elements, and wherein:
Embodiments and modifications thereof will be described in detail below with reference to the accompanying drawings. The embodiments described below illustrate generic or specific examples. The numerical values, shapes, materials, components, arrangement and connection of the components, the order of steps of a production process, etc. described in the following embodiments are by way of example only and are not intended to limit the disclosure. Of the components in the following embodiments, those components which are not recited in the independent claim defining the most generic concept are described as optional components.
The figures are schematic illustrations that include, as necessary, emphasis, omission, and ratio adjustment in order to describe the present disclosure, and the illustrations may be different from the actual shape, positional relationship, and ratio. Expressions indicating relative directions and attitudes such as parallel and perpendicular are sometimes used in the following embodiments and claims. To be exact, these expressions include the case where the directions or the attitudes are different from the actual directions or attitudes. For example, two directions being parallel to each other not only means that the two directions are exactly parallel to each other but also means that the two directions are substantially parallel to each other, namely the two directions are parallel to each other with, for example, a variation of about a few percent.
First, the general configuration of a gear unit 1 according to a first embodiment will be described with reference to
The gear unit 1 is a device that changes a received rotation angle, rotational force, or rotational speed and outputs the changed rotation angle, rotational force, or rotational speed. In the present embodiment, the gear unit 1 functions as a reduction gear that rotates the output shaft 160 at a lower rotational speed than that of the input shaft 150.
As shown in
As shown in
As shown in
As shown in
In the gear unit 1 having a plurality of gears as described above, the intermediate gear 130 is fixed to the input shaft 150 that rotates about the first axis La. Specifically, the gear unit 1 includes a tilted shaft member 170 that is a separate member from the input shaft 150. The inner ring portion 131 of the intermediate gear 130 has a central opening 134, and as shown in
In the present embodiment, the tilted shaft member 170 has a first tilted member 171 and a second tilted member 172. A first auxiliary member 181 is disposed in contact with the first tilted member 171, and a second auxiliary member 182 is disposed in contact with the second tilted member 172. As shown in
In the present embodiment, the first gear 110, the second gear 120, and the intermediate gear 130 are accommodated in a housing 100, and the first gear 110 is fixed to the housing 100 with, for example, bolts 105 (see
In the present embodiment, Z1<Zm1 and Zm1=Zm2=Z2, where Z1 represents the number of first teeth 111, Z2 represents the number of second teeth 121, Zm1 represents the number of first intermediate teeth 136, and Zm2 represents the number of second intermediate teeth 138. For example, Z1=38 and Zm1=Zm2=Z2=40.
In this case, when the input shaft 150 is rotated, the intermediate gear 130 is rotated while maintaining its tilted attitude as shown in
The number Zm2 of the second intermediate teeth 138 of the outer ring portion 135 is the same as the number Z2 of the second teeth 121 of the second gear 120 (40), and the second gear 120 is rotated in phase with the outer ring portion 135. That is, when the outer ring portion 135 makes one full rotation, the second gear 120 also makes one full rotation together with the outer ring portion 135. That is, for every 20 full rotations of the input shaft 150, the outer ring portion 135 makes one full rotation, and the second gear 120 and the output shaft 160 also make one full rotation together with the outer ring portion 135. The second gear 120 is thus rotated differentially with respect to the first gear 110. That is, the gear unit 1 of the present embodiment is a reduction gear in which the input shaft 150 and the output shaft 160 are arranged coaxially and the reduction ratio is 1/20.
For example, the gear unit 1 with this configuration is used as a power assist reduction gear in a power steering system. In this case, a shaft of a power assist motor is disposed on the first axis La that is the rotation axis of the input shaft 150, and the shaft of the motor and the input shaft 150 are connected. For example, the output shaft 160 is disposed so as to apply a rotational driving force via a gear etc. or directly to a steering shaft connected to a steering wheel.
The gear unit 1 thus reduces the speed of rotation on the same axis as the shaft of the motor. Accordingly, in the case where the gear unit 1 is used as, for example, a power assist reduction gear in a column assist power steering system, a power assist motor can be disposed parallel to, or parallel to and coaxially with, the steering shaft. For example, this configuration reduces the possibility that the power assist motor may reduce flexibility in arrangement of instruments etc. around a steering column. Applications of the gear unit 1 are not limited to power assist applications for power steering systems. The gear unit 1 may be used as a device for changing the transmission ratio in various devices or machines. For example, the gear unit 1 may be used as a power assist or driving reduction gear in a moving body such as a bicycle or a motorcycle, or as a reduction gear for driving lifting and lowering, moving, etc. of an object in industrial machinery.
In the gear unit 1 with this configuration, the intermediate gear 130 that rotates one of the first gear 110 and the second gear 120 differentially with respect to the other is fixed to the input shaft 150 via the tilted shaft member 170 such that the intermediate gear 130 is in a tilted attitude with respect to the input shaft 150, as described above. The tilted shaft member 170 and its surrounding structure will further be described with reference to
As shown in
The gear unit 1 further includes the tilted shaft member 170 that is a separate member from the input shaft 150. The tilted shaft member 170 is disposed between the inner peripheral surface 134a of the central opening 134 of the inner ring portion 131 and the input shaft 150. As shown in, for example,
According to this configuration, the tilted shaft member 170, which is a separate component from the input shaft 150, is disposed between the input shaft 150 and the inner peripheral surface 134a of the inner ring portion 131. The input shaft 150 can therefore be formed only by the shape of rotational symmetry about the first axis La. Accordingly, unlike the case where a shaft body in which a main shaft portion and a tilted shaft portion are formed integrally, such as the conventional shaft body to which an oscillating gear is fixed, is produced, the input shaft 150 can be accurately produced by a series of turning processes without changing the rotation axis of a metal body between the turning processes. The gear unit 1 according to the present embodiment can therefore be efficiently produced. For example, production cost of the gear unit 1 is thus reduced, so that the gear unit 1 capable of changing the transmission ratio on the same axis can be mounted on, for example, relatively inexpensive products such as a bicycle and a motorcycle.
In the present embodiment, as shown in, for example,
According to this configuration, the tilted shaft member 170 is formed by two members, namely the first tilted member 171 and the second tilted member 172. As shown in
The tilted shaft member 170 disposed as described above is made of, for example, a resin such as polypropylene (PP), polycarbonate (PC), polyethylene (PE), polyphenylene sulfide resin (PPS), or polybutylene terephthalate (PBT). Accordingly, when the tilted shaft member 170 is inserted between the inner peripheral surface 134a of the inner ring portion 131 and the outer peripheral surface of the input shaft 150, the tilted shaft member 170 can be deformed such that its contact area with each of the inner ring portion 131 and the input shaft 150 is increased, without damaging the inner ring portion 131 and the input shaft 150. This also contributes to improving effectiveness or reliability in fixing the inner ring portion 131 to the input shaft 150 via the tilted shaft member 170.
As shown in, for example,
The expression “the first tilted member 171 and the second tilted member 172 have similar shapes and sizes” means that the shapes and sizes of the first and second tilted members 171, 172 are similar to such an extent that, for example, the first and second tilted members 171, 172 can be molded with the same mold or the first and second tilted members 171, 172 can be switched with each other, as described above. Based on this meaning, the word “similar” may be read as “the same.” That is, the first tilted member 171 and the second tilted member 172 need not necessarily have exactly or completely the same shape and size. The above description regarding the word “similar” also applies to the expression “the first auxiliary member 181 and the second auxiliary member 182 have similar shapes and sizes” described later.
The first tilted member 171 and the second tilted member 172 need not necessarily have similar shapes and sizes. In the case where the tilted shaft member 170 is formed by a plurality of members, the members may include two members having different sizes or shapes from each other.
In the present embodiment, the input shaft 150 has the flange portion 155 that restricts movement of the intermediate gear 130. The gear unit 1 further includes the lock nut 152. The lock nut 152 is an example of a pressing member that presses the tilted shaft member 170 toward the flange portion 155.
According to this configuration, the position of the intermediate gear 130 in the axial direction of the input shaft 150 (the direction parallel to the first axis La) is regulated by the flange portion 155 and the lock nut 152. Moreover, a pressure in the direction toward the flange portion 155 can be constantly applied to the tilted shaft member 170 by the lock nut 152. The tilted shaft member 170 inserted like a wedge between the inner peripheral surface 134a of the inner ring portion 131 and the outer peripheral surface of the input shaft 150 thus more effectively fixes the inner ring portion 131 and more effectively reduces the clearance between the inner ring portion 131 and the input shaft 150.
More specifically, in the present embodiment, as shown, for example, in
According to this configuration, for example, not the tilted shaft member 170 but the first auxiliary member 181 has a large surface that directly receives a pressing force from the lock nut 152. The shape of the tilted shaft member 170 can therefore be simplified. For example, the first auxiliary member 181 can be made of a resin, metal, etc. with higher rigidity than the material of the tilted shaft member 170. Accordingly, for example, when the lock nut 152 is firmly tightened, the first auxiliary member 181 that contacts the lock nut 152 will not be damaged and the tilted shaft member 170 is more reliably pushed into the clearance between the input shaft 150 and the inner ring portion 131.
The shapes and sizes of the flange portion 155 and the lock nut 152 are not limited to those shown in
In the present embodiment, as shown in
According to this configuration, as the first pressing surface 181a presses the first pressed surface 171a, a radially outward force is applied to the tilted shaft member 170. That is, a part of the pressing force applied from the lock nut 152 to the first auxiliary member 181 acts as a force pressing the tilted outer peripheral surface 170a of the tilted shaft member 170 against the inner peripheral surface 134a of the inner ring portion 131. The inner ring portion 131 is therefore more effectively fixed by the tilted shaft member 170.
The gear unit 1 according to the present embodiment further includes the second auxiliary member 182 disposed between the flange portion 155 and the tilted shaft member 170. As the lock nut 152 presses the tilted shaft member 170, the second auxiliary member 182 presses the tilted shaft member 170 toward the lock nut 152.
That is, the flange portion 155 is located on the opposite side of the tilted shaft member 170 from the lock nut 152, and the flange portion 155 presses the tilted shaft member 170 via the second auxiliary member 182 as a reaction to the pressing force of the lock nut 152. The tilted shaft member 170 is thus pushed into the clearance between the input shaft 150 and the inner ring portion 131 from both sides in the axial direction. The inner ring portion 131 is thus more effectively fixed by the tilted shaft member 170. Like the first auxiliary member 181, not the tilted shaft member 170 but the second auxiliary member 182 has a large surface that directly receives a pressing force from the flange portion 155. The shape of the tilted shaft member 170 can therefore be simplified. Like the first auxiliary member 181, the second auxiliary member 182 can be made of a resin, metal, etc. with higher rigidity than the material of the tilted shaft member 170. Accordingly, the tilted shaft member 170 is more reliably pushed into the clearance between the input shaft 150 and the inner ring portion 131 without causing damage to the second auxiliary member 182.
In the present embodiment, the first auxiliary member 181 and the second auxiliary member 182 have similar shapes and sizes. Specifically, as shown in
The arrangement of the auxiliary members that press the tilted shaft member 170 in the axial direction is not limited to the above description. For example, a plurality of auxiliary members may be disposed on at least one of the flange portion 155 side and the lock nut 152 side of the tilted shaft member 170. That is, two or more auxiliary members may be disposed next to each other in the circumferential direction about the second axis Lb.
In the present embodiment, as shown in
According to this configuration, as the second pressing surface 182a presses the second pressed surface 172a, a radially outward force is applied to the tilted shaft member 170. That is, a part of the pressing force applied from the flange portion 155 to the second auxiliary member 182 acts as a force pressing the tilted outer peripheral surface 170a of the tilted shaft member 170 against the inner peripheral surface 134a of the inner ring portion 131. The inner ring portion 131 is therefore more effectively fixed by the tilted shaft member 170.
The general configuration of a gear unit 10 according to a second embodiment will be described with reference to
The gear unit 10 is a device that changes a received rotation angle, rotational force, or rotational speed and outputs the changed rotation angle, rotational force, or rotational speed. In the present embodiment, the gear unit 10 functions as a reduction gear that rotates the output shaft 160 at a lower rotational speed than that of the input shaft 150.
As shown in
In
As shown in
As shown in
As shown in
In the gear unit 10 having a plurality of gears as described above, the intermediate gear 130 is fixed to the input shaft 150 that rotates about the first axis La. Specifically, the gear unit 10 includes the third tilted member 191 and the fourth tilted member 192 which are separate members from the input shaft 150. As shown in
In the present embodiment, the input shaft 150 has a flange portion that holds the inner ring portion 131 in a tilted attitude. Specifically, the input shaft 150 has a first flange portion 161 and a second flange portion 162 which are located next to each other in the direction of the first axis La. The third tilted member 191 is disposed between the first flange portion 161 and the inner ring portion 131, and the fourth tilted member 192 is disposed between the second flange portion 162 and the inner ring portion 131. The first flange portion 161 and the second flange portion 162 thus function as portions that assist the third tilted member 191 and the fourth tilted member 192 in holding the inner ring portion 131 therebetween (i.e., portions that apply a holding force). Accordingly, it can also be said that the first flange portion 161 and the second flange portion 162 hold the inner ring portion 131 therebetween via the third tilted member 191 and the fourth tilted member 192.
In the present embodiment, the input shaft 150 further has an intermediate flange portion 153 disposed between the first flange portion 161 and the second flange portion 162. The intermediate flange portion 153 is a portion that maintains the tilted attitude of the inner ring portion 131 with respect to the input shaft 150. As shown in
The third and fourth tilted members 191, 192 and their surrounding structures will be described in detail later with reference to
In the present embodiment, the first gear 110, the second gear 120, and the intermediate gear 130 are accommodated in a housing 100, and the first gear 110 is fixed to the housing 100 with, for example, bolts 105 (see
In the present embodiment, Z1<Zm1 and Zm1=Zm2=Z2, where Z1 represents the number of first teeth 111, Z2 represents the number of second teeth 121, Zm1 represents the number of first intermediate teeth 136, and Zm2 represents the number of second intermediate teeth 138. For example, Z1=38 and Zm1=Zm2=Z2=40.
In this case, when the input shaft 150 is rotated, the intermediate gear 130 is rotated while maintaining its tilted attitude as shown in
The number Zm2 of the second intermediate teeth 138 of the outer ring portion 135 is the same as the number Z2 of the second teeth 121 of the second gear 120 (40), and the second gear 120 is rotated in phase with the outer ring portion 135. That is, when the outer ring portion 135 makes one full rotation, the second gear 120 also makes one full rotation together with the outer ring portion 135. That is, for every 20 full rotations of the input shaft 150, the outer ring portion 135 makes one full rotation, and the second gear 120 and the output shaft 160 also make one full rotation together with the outer ring portion 135. The second gear 120 is thus rotated differentially with respect to the first gear 110. That is, the gear unit 10 of the present embodiment is a reduction gear in which the input shaft 150 and the output shaft 160 are arranged coaxially and the reduction ratio is 1/20.
For example, the gear unit 10 with this configuration is used as a power assist reduction gear in a power steering system. In this case, a shaft of a power assist motor is disposed on the first axis La that is the rotation axis of the input shaft 150, and the shaft of the motor and the input shaft 150 are connected. For example, the output shaft 160 is disposed so as to apply a rotational driving force via a gear etc. or directly to a steering shaft connected to a steering wheel.
The gear unit 10 thus reduces the speed of rotation on the same axis as the shaft of the motor. Accordingly, in the case where the gear unit 10 is used as, for example, a power assist reduction gear in a column assist power steering system, a power assist motor can be disposed parallel to, or parallel to and coaxially with, the steering shaft. For example, this configuration reduces the possibility that the power assist motor may reduce flexibility in arrangement of instruments etc. around a steering column. Applications of the gear unit 10 are not limited to power assist applications for power steering systems. The gear unit 10 may be used as a device for changing the transmission ratio in various devices or machines. For example, the gear unit 10 may be used as a power assist or driving reduction gear in a moving body such as a bicycle or a motorcycle, or as a reduction gear for driving lifting and lowering, moving, etc. of an object in industrial machinery.
In the gear unit 10 with this configuration, the intermediate gear 130 that rotates one of the first gear 110 and the second gear 120 differentially with respect to the other is fixed to the input shaft 150 via the third tilted member 191 and the fourth tilted member 192 such that the intermediate gear 130 is in a tilted attitude with respect to the input shaft 150, as described above. The third and fourth tilted members 191, 192 and their surrounding structures will further be described with reference to
When fixing the intermediate gear 130 to the input shaft 150, the input shaft 150 is first inserted into the central opening 134 of the inner ring portion 131 as shown in
The inner ring portion 131 is designed so that the inner ring portion 131 thus tilted about the Y-axis contacts the outer peripheral surface of the input shaft 150, the first flange portion 161, and the intermediate flange portion 153 on the left side of the first axis La in the section shown in
In order to maintain the attitude of the intermediate gear 130 with respect to the input shaft 150, the third tilted member 191 and the fourth tilted member 192 are attached to the input shaft 150 so as to hold the inner ring portion 131 of the intermediate gear 130 therebetween in the direction of the second axis Lb, as shown in
The third tilted member 191 and the fourth tilted member 192 have a curved shape conforming to the outer peripheral surface of the input shaft 150. More specifically, as shown in
As described above, the gear unit 10 according to the present embodiment includes the first gear 110, the second gear 120, the input shaft 150, the intermediate gear 130, the third tilted member 191, and the fourth tilted member 192. The first gear 110 and the second gear 120 are disposed about the first axis La. The input shaft 150 is disposed so as to be rotatable about the first axis La. The intermediate gear 130 is disposed about the second axis Lb between the first gear 110 and the second gear 120, and the second axis Lb is tilted with respect to the first axis La. The intermediate gear 130 includes the inner ring portion 131 and the outer ring portion 135 that meshes with the first gear 110 and the second gear 120. The inner ring portion 131 is rotated with rotation of the input shaft 150, and the outer ring portion 135 is disposed so as to be rotatable relative to the inner ring portion 131. The third tilted member 191 and the fourth tilted member 192 are attached to the input shaft 150 and contact the opposite surfaces of the inner ring portion 131 in the direction of the second axis Lb. The third tilted member 191 and the fourth tilted member 192 hold the inner ring portion 131 therebetween in such an attitude that the second axis Lb is the central axis of the inner ring portion 131.
According to this configuration, the third tilted member 191 and the fourth tilted member 192, which are separate components from the input shaft 150, are attached to the input shaft 150 to hold the intermediate gear 130 on the input shaft 150 and to allow the intermediate gear 130 to make a precession motion. The input shaft 150 can therefore be formed only by the shape of rotational symmetry about the first axis La. Accordingly, unlike the case where a shaft body in which a main shaft portion and a tilted shaft portion are formed integrally, such as the conventional shaft body to which an oscillating gear is fixed, is produced, the input shaft 150 can be accurately produced by a series of turning processes without changing the rotation axis of a metal body between the turning processes. The gear unit 10 according to the present embodiment can therefore be efficiently produced. For example, production cost of the gear unit 10 is thus reduced, so that the gear unit 10 capable of changing the transmission ratio on the same axis can be mounted on, for example, relatively inexpensive products such as a bicycle and a motorcycle.
More specifically, in the present embodiment, as shown in, for example,
The shapes and sizes of the first flange portion 161 and the second flange portion 162 are not limited to those shown in
In the present embodiment, as shown in, for example,
According to this configuration, each of the third tilted member 191 and the fourth tilted member 192 holds the inner ring portion 131 by a surface rather than by a point. This configuration thus improves stability of the attitude of the intermediate gear 130.
In the present embodiment, as shown in, for example,
According to this configuration, the third tilted member 191 is disposed along the first flange portion 161 in the circumferential direction of the input shaft 150, and the fourth tilted member 192 is disposed along the second flange portion 162 in the circumferential direction of the input shaft 150. That is, the third tilted member 191 is disposed between the first flange portion 161 and the inner ring portion 131 such that the third tilted member 191 efficiently receives the pressing force from the first flange portion 161. Similarly, the fourth tilted member 192 is disposed between the second flange portion 162 and the inner ring portion 131 such that the fourth tilted member 192 efficiently receives the pressing force from the second flange portion 162. This configuration improves stability of the attitude of the intermediate gear 130. Moreover, with this configuration, the third tilted member 191 can be inserted like a wedge between the inner ring portion 131 and the first flange portion 161. Similarly, the fourth tilted member 192 can be inserted like a wedge between the inner ring portion 131 and the second flange portion 162. The third tilted member 191 and the fourth tilted member 192 thus biases the inner ring portion 131 from opposite directions. This configuration also contributes to improvement in stability of the attitude of the intermediate gear 130.
In the present embodiment, as shown in, for example,
In the present embodiment, as shown in, for example,
As shown in, for example,
For example, the third tilted member 191 may have a plurality of protrusions 191b arranged in a direction along the outer peripheral surface of the input shaft 150. In this case, the edge of the central opening 134 of the inner ring portion 131 is engaged with the third tilted member 191 at a plurality of positions in the wide range in the longitudinal direction of the third tilted member 191 (the direction along the outer peripheral surface of the input shaft 150). The third tilted member 191 is thus more effectively restrained from falling off from the input shaft 150. Similarly, the fourth tilted member 192 may have a plurality of protrusions 192b arranged in a direction along the outer peripheral surface of the input shaft 150. In this case as well, the fourth tilted member 192 is more effectively restrained from falling off from the input shaft 150.
In the present embodiment, the third tilted member 191 and the fourth tilted member 192 have similar shapes and sizes. In the present embodiment, as shown in, for example,
The expression “the third tilted member 191 and the fourth tilted member 192 have similar shapes and sizes” means that the shapes and sizes of the third and fourth tilted members 191, 192 are similar to such an extent that, for example, the third and fourth tilted members 191, 192 can be molded with the same mold or the third and fourth tilted members 191, 192 can be switched with each other, as described above. Based on this meaning, the word “similar” may be read as “the same.” That is, the third tilted member 191 and the fourth tilted member 192 need not necessarily have exactly or completely the same shape and size.
The third tilted member 191 and the fourth tilted member 192 need not necessarily have similar shapes and sizes. For example, the third tilted member 191 and the fourth tilted member 192 may have different sizes or shapes from each other.
In the present embodiment, a part of each flange portion (161, 162, 153) which contacts the inner ring portion 131 is tapered in order to make it easier to maintain the attitude of the inner ring portion 131. The tapered part of each flange portion will be described with reference to
As shown in
That is, as shown in
Only one or two of the first flange portion 161, the second flange portion 162, and the intermediate flange portion 153 may have a tapered part. For example, at least one of the first flange portion 161 and the second flange portion 162 may have the tapered part 161a or 162a that contacts the inner ring portion 131.
Since the first flange portion 161 and the second flange portion 162 are disposed at such positions that the first flange portion 161 and the second flange portion 162 hold the inner ring portion 131 therebetween, the first flange portion 161 and the second flange portion 162 are very likely to actually contact the inner ring portion 131. Accordingly, the above effect of the tapered part is more likely to be obtained by forming a tapered part in at least one of the first and second flange portions 161, 162.
The tapered part 161a may be formed only in a part of the first flange portion 161 which contacts the inner ring portion 131 or may be formed in the peripheral edge of the first flange portion 161 along the entire circumference of the first flange portion 161. Forming the tapered part 161a in the peripheral edge of the first flange portion 161 along the entire circumference of the first flange portion 161 is easier as the tapered part 161a can be formed by turning. The same applies to the tapered parts 162a, 153a. That is, the tapered part 162a may be formed only in a part of the second flange portion 162 which contacts the inner ring portion 131 or may be formed in the peripheral edge of the second flange portion 162 along the entire circumference of the second flange portion 162. The tapered part 153a may be formed only in a part of the intermediate flange portion 153 which contacts the inner ring portion 131 or may be formed in the peripheral edge of the intermediate flange portion 153 along the entire circumference of the intermediate flange portion 153.
In the case where the input shaft 150 has the tapered parts 161a, 162a, 153a, the inner ring portion 131 need not necessarily contact all of the tapered parts 161a, 162a, 153a. For example, it is possible that the inner ring portion 131 may contact only one of the tapered parts 161a, 162a, 153a due to tolerance of the inner ring portion 131 and tolerance of the input shaft 150. Even in this case, the one of the tapered parts 161a, 162a, 153a which contacts the inner ring portion 131 contributes to improvement in stability of the attitude of the inner ring portion 131.
The gear unit according to the disclosure is described above based on the embodiments and modifications thereof. However, the disclosure is not limited to the above embodiments and modifications. Any forms of the disclosure which are implemented by applying various variations that occur to those skilled in the art to the embodiments or the modifications or by combining two or more of the components described above without departing from the spirit and scope of the disclosure fall within the scope of the disclosure.
For example, in the first embodiment, the tilted shaft member 170 need not necessarily be formed by a combination of a plurality of members and may be implemented by a single tubular member. The tilted shaft member 170 need not necessarily be divided in the circumferential direction of the input shaft 150 and may be divided in the axial direction of the input shaft 150. For example, the tilted shaft member 170 may be formed by a first tubular member disposed on the flange portion 155 side and a second tubular member disposed on the lock nut 152 side. In this case as well, each of the first tubular member and the second tubular member can be inserted like a wedge between the inner peripheral surface 134a of the inner ring portion 131 and the outer peripheral surface of the input shaft 150.
For example, a flame-retardant adhesive may be placed between the tilted shaft member 170 and at least one of the input shaft 150 and the inner ring portion 131 to increase the fixing force for fixing the inner ring portion 131 to the input shaft 150.
For example, in the case where required transmission torque is small, the flange portion 155, the lock nut 152, the first auxiliary member 181, and the second auxiliary member 182 may be omitted. In this case, it is preferable that the input shaft 150 be press-fitted in the first and second tilted members 171, 172 and the first and second tilted members 171, 172 be press-fitted in the inner ring portion 131. This configuration makes the clearance between the input shaft 150 and the first and second tilted members 171, 172 smaller than the clearance between the input shaft and the inner ring portion of the conventional gear unit due to the wedging effect.
In the first embodiment, the first gear 110 is fixed to the housing 100. However, the first gear 110 may be rotated about the first axis La. In this case, the output shaft 160 is rotated by the amount corresponding to the sum of rotation of the first gear 110 and differential rotation of the second gear 120 with respect to the first gear 110.
Regarding the first teeth 111, the first intermediate teeth 136, the second intermediate teeth 138, and the second teeth 121, the number of teeth and the shape of the teeth are not limited to those described and illustrated in the above embodiments and the figures. For example, the number of teeth, the shape of the teeth, etc. may be determined as appropriate according to the application of the gear unit 1, the capability required for the gear unit 1, the production cost of the gear unit 1, etc.
For example, in the second embodiment, the first flange portion 161 and the second flange portion 162 restrict movement of the third tilted member 191 and the fourth tilted member 192 in the direction away from the inner ring portion 131 along the first axis La. However, the input shaft 150 may not have the first flange portion 161 and the second flange portion 162. For example, the input shaft 150 may have an attachment groove formed in its outer peripheral surface along the entire circumference, and a C ring-shaped member may be fitted in the attachment groove, so that the third tilted member 191 or the fourth tilted member 192 is disposed on the input shaft 150. That is, the C ring-shaped member may have the same function as the first flange portion 161 and the third tilted member 191 according to the second embodiment. The C ring-shaped member may have the same function as the second flange portion 162 and the fourth tilted member 192 according to the second embodiment. In this case, the C ring-shaped member is preferably made of a metal in order to ensure that the C shaped-ring member has sufficient strength.
For example, each of the first flange portion 161 and the second flange portion 162 need not necessarily be a portion integral with the input shaft 150. An annular component, which is a separate component from the input shaft 150, may be attached as the first flange portion 161 or the second flange portion 162 to the input shaft 150. For example, a lock nut with a locking function, which is screwed on the input shaft 150, may be provided as the second flange portion 162. In this case, by tightening the second flange portion 162 with predetermined torque, the inner ring portion 131 can be fixed while pressing the third and fourth tilted members 191, 192. This improves stability of the attitude of the inner ring portion 131.
For example, the fixing force fixing the inner ring portion 131 to the input shaft 150 may be improved by placing, for example, a flame-retardant adhesive between the third and fourth tilted members 191, 192 and at least one of the input shaft 150 and the inner ring portion 131.
In the second embodiment, the first gear 110 is fixed to the housing 100. However, the first gear 110 may be rotated about the first axis La. In this case, the output shaft 160 is rotated by the amount corresponding to the sum of rotation of the first gear 110 and differential rotation of the second gear 120 with respect to the first gear 110.
Regarding the first teeth 111, the first intermediate teeth 136, the second intermediate teeth 138, and the second teeth 121, the number of teeth and the shape of the teeth are not limited to those described and illustrated in the above embodiments and the figures. For example, the number of teeth, the shape of the teeth, etc. may be determined as appropriate according to the application of the gear unit 10, the capability required for the gear unit 10, the production cost of the gear unit 10, etc.
The disclosure is useful as gear units that are mounted on, for example, moving bodies such as an automobile, and industrial machinery, etc.
Number | Date | Country | Kind |
---|---|---|---|
2018-244648 | Dec 2018 | JP | national |
2018-244885 | Dec 2018 | JP | national |