Geared haptic feedback element

Information

  • Patent Grant
  • 9779592
  • Patent Number
    9,779,592
  • Date Filed
    Monday, September 22, 2014
    10 years ago
  • Date Issued
    Tuesday, October 3, 2017
    7 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Pope; Daryl
    Agents
    • Brownstein Hyatt Farber Schreck, LLP
Abstract
A thin haptic feedback element suitable to provide a perceivable single pulse haptic feedback including an electromagnetic coil, a permanent magnet or other magnetic field source rotatably coupled to an eccentric mass through a torque-increasing drive train. The haptic feedback element may rapidly accelerate and decelerate the eccentric mass to produce a perceivable haptic feedback.
Description
TECHNICAL FIELD

This disclosure relates to haptic devices and, more particularly, to single-pulse haptic feedback elements for portable electronic devices.


BACKGROUND

Many modern electronic devices include haptic components to provide kinesthetic feedback to a user of the device. For example, an electronic device such a cellular telephone may include a vibration motor that may vibrate for a period of time to notify a user of an incoming telephone call. Electronic devices which may benefit from haptic components include cellular telephones, smart phones, personal digital assistants, tablet computers, laptop computers, track pads, wearable devices, and peripheral input devices such as keyboards, buttons, dials and computer mice.


Further, market demand for improved electronic devices has motivated advancements in device durability, thinness, and weight. As a result, internal components such as haptic devices are expected to occupy a smaller volume. Designing a haptic device that is durable, thin, and sufficiently powerful to enable the user to perceive the intended haptic effect presents several challenges. For example, many haptic devices require a cylindrical motor to drive a mass positioned eccentrically about the motor's axis. As the cylindrical motor spins, the eccentric mass experiences asymmetric forces causing a perceivable displacement of the mass and motor within a plane tangent to the axis of rotation. With a sufficiently high number of revolutions per minute, the cylindrical motor and eccentric mass are consistently and asymmetrically displaced. If the cylindrical motor is structurally coupled to the housing of an electronic device, this displacement may be perceived as a vibration.


However, due to the limited space within portable electronic devices having reduced thickness, a cylindrical drive motor and an eccentric mass are conventionally assembled so that the shaft of the drive motor is the axis of rotation of the eccentric mass. In this manner, the eccentric mass and drive motor may occupy a smaller space within the housing of portable electronic device. However, this configuration may limit the number of positions and orientations a haptic element may take within the housing.


Moreover, as a cylindrical drive motor decreases in size it also decreases in power and torque and may not have sufficient torque to spin an eccentric mass to a speed sufficient for a user to perceive a vibration. Similarly, the eccentric mass may also decrease in size such that displacement of the mass is no longer sufficient to cause a vibration of adequate magnitude to be perceived by a user. Accordingly, the dimensions, size, and shape of electronic devices including a cylindrical drive motor and eccentric mass may be undesirably constrained by the minimum size, shape, and torque requirements of the cylindrical drive motor and eccentric mass.


In other cases, a cylindrical drive motor with an eccentric mass may be undesirable or unsuitable as a haptic feedback element. For example, a single pulse or a series of distinct pulses may be desirable to notify a user of a particular event. As a result of relatively low torque produced by a relatively small drive motor, it may not be possible for a cylindrical drive motor to spin and stop an eccentric mass with sufficient speed to product a single pulse. As a result, a cylindrical vibration motor may be limited in both minimum size and the type of haptic feedback it may provide.


Accordingly, there may be a present need for a durable, thin, and high torque haptic feedback element suitable to provide both vibration and single pulse haptic feedback.


SUMMARY

Embodiments described herein may relate to or take the form of durable and thin haptic feedback elements suitable to provide a perceivable single pulse haptic feedback. Such embodiments may take the form of a haptic feedback element including an electromagnetic coil, a permanent magnet or other magnetic field source that is rotatable about a first axis positioned proximate the coil, a first gear fixedly coupled to the magnetic field source, a second gear rotatably coupled to the first gear, and a mass element fixedly coupled to the second gear positioned eccentrically to the second axis. The mass element may be a metal such as steel or tungsten.


In some embodiments, angular displace or rotation of the first gear may cause an angular displacement or rotation of the second gear. The gear ratio between the first and second gear may be 1:10 such that for every ten rotations of the first gear, the second gear may rotate once. In some embodiments, other gear ratios are contemplated.


Further embodiments may include an electromagnetic coil operable in at least two modes. In a first mode, the electromagnetic coil may include alternating or otherwise changing the direction of current, and therefore the magnetic field through the core, at a defined rate. In many cases, the varying magnetic field may cause the permanent magnet to rotate. In another embodiment, a second mode of the electromagnetic coil may include a direct current in order to provide a consistent magnetic field through the core, impeding further rotation of the permanent magnet.


In still further embodiments, more than one additional gear may be used. For example, a third gear may be positioned between the first gear and the second gear.


Embodiments described herein may also relate to or take the form of a method of providing haptic feedback including operations of receiving a request for haptic feedback, providing current of a first polarity to an electromagnetic coil magnetically proximate a rotatable magnetic field source, determining angle of rotation of the rotatable magnetic field source, providing current of a second polarity to the electromagnetic coil, and lastly applying a braking current to the electromagnetic coil. In some embodiments, an eccentric mass may be rotatably coupled to the magnetic field source.


In related embodiments, the operations of providing a current of a first polarity, determining an angle of rotation, and providing a current of a second polarity repeat a selected number of times prior to the operation of applying a braking current. The number of repetitions may be determined based on the angle of rotation of the eccentric mass. In some cases, the angle of rotation of the eccentric mass may be one tenth of the angle of rotation of rotatable magnetic field source such that for every ten rotations of the rotatable magnetic field source, the eccentric mass may rotate once.





BRIEF DESCRIPTION OF THE FIGURES

Reference will now be made to representative embodiments illustrated in the accompanying figures. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the described embodiments as defined by the appended claims.



FIG. 1 is a top plan view of the haptic feedback element showing an eccentric mass and gear in a first position.



FIG. 2 is a bottom isometric view of haptic feedback element employing a three-gear drive train.



FIG. 3 is a top plan view of the haptic feedback element as shown in FIG. 1, showing an eccentric mass and gear in a second position.



FIG. 4 is a top isometric view of haptic feedback element employing a two-gear drive train.



FIG. 5 is a process flow diagram of a method of providing haptic feedback.





The use of the same or similar reference numerals in different drawings indicates similar, related, or identical items.


DETAILED DESCRIPTION

Embodiments described herein may relate to or take the form of durable and thin haptic feedback elements suitable to provide a perceivable single pulse haptic feedback. Such embodiments may take the form of a haptic element including an electromagnetic coil, a permanent magnet or other magnetic field source that is rotatable. The rotatable magnetic field source may be coupled to an eccentric mass through a gear drive system. The gear drive system may sufficiently increase the torque at the eccentric mass such that the mass may rapidly reach a target rotation speed. In further embodiments, the haptic element may apply a braking force to a spinning eccentric mass so that the mass abruptly stops.



FIG. 1 is a top plan view of a haptic feedback element. As shown, the haptic feedback element 100 includes a housing 102, a coil 104, a stator core 106, a magnetic source rotor 108, a first gear 110, 114 an intermediate gear 112, an eccentric mass 114, and a large gear 116. The coil 104 may be wrapped around a portion of the stator core 106, which may take a substantially rectangular loop shape. The stator core may be a ferromagnetic material, such as steel. Within the stator core 106 may be a rotor aperture 118. The rotor aperture 118 may be circular and sized such that the magnetic source rotor 108 may be positioned and free to rotate therein. The magnetic source rotor 108 may include a shaft (not shown) which may connect to a bearing or bearing surface which may allow free rotation of the magnetic source rotor 108. Similarly, the large gear 116 may also include a shaft that may be connected to a separate bearing surface. Each of the bearing surfaces may be, for example, a jewel bearing, spherical roller bearing, needle roller bearing, toroidal roller bearing, or any other bearing surface such as an interface formed between dissimilar materials such as steel and brass.


The rotor aperture 118 may also include cogging notches 120a,120b, which may extend into the rotor apertures 118 a certain select distance. The cogging notches 120a and 120b may be diametrically opposed across rotor aperture 118, and may be positioned 45 degrees off a longitudinal axis defined by the portion of the stator core 108 containing the rotor aperture 118. The angular position from the longitudinal axis may vary between embodiments. In some embodiments, the cogging notches serve to ensure that, while at rest, the magnetic moment of the magnetic source rotor 108 is aligned in a direction that is not parallel to the magnetic field produced by the coil 104 and directed through the stator core 106. In this manner, when the coil is energized, the magnetic source rotor 108 will experience a rotational torque. Some embodiments may use different methods to achieve the same or similar effect. For example, small indentations may be formed in the stator core 106 along a sidewall of the rotor aperture 118, the rotor aperture 118 as an ellipsoid, or the two halves of the stator core 106 that define the rotor aperture 118 may be further offset.


The cogging notches 120a and 120b may, when no current is presented to the coil 104, encourage the magnetic source rotor 108 to rotate 45 degrees off the longitudinal axis defined by the portion of the stator core 106 containing the rotor aperture 118. On the other hand, when the coil 104 is energized with an electric current, magnetic flux may be focused within the stator core 106 such that a magnetic field may concentrate within the rotor aperture 118. This magnetic field may encourage the magnetic source rotor 108 to rotate to align tangent to the longitudinal axis or, in other words, to rotate 135 degrees. Once the current is cut to the coil 104, the cogging notches 120a and 118 will encourage the magnetic source rotor 108 to rotate an additional 45 degrees in the same direction as the previous motion. The motion of the magnetic source rotor 108 is described in detail below. The magnetic source rotor 108 may be biased to rotate in a single direction by the offset position of the cogging notches 120a and 120b. In some examples, the cogging notices 120a and 120b may be positioned to bias the magnetic source rotor 108 to clockwise rotation or to counterclockwise rotation. In still further examples, the cogging notices 120a and 120b may not be present. In still further examples, the magnetic source rotor 108 may be configured to rotate in either the clockwise or counterclockwise direction. The direction of rotation of the magnetic source rotor 108 may be determined by the direction of a magnetic field through the stator core 106. In related examples, the direction of the magnetic field through the stator core 106 may be rapidly alternated to encourage and control rotation of the magnetic source rotor 108.


The process of rotation of the magnetic source rotor 108 may start with the coil in an unenergized state. Because the magnetic source rotor 108 is a permanent magnet and because the stator core 106 may be constructed of ferromagnetic material, the magnetic source rotor 108 may be attracted to the stator core 106. In one example, the magnetic field from the magnetic source rotor 108 may be modeled, using Maxwell's equations, as single magnetic moment having a vector aligned from a south pole to the north pole. One may appreciate that the torque τ on this moment is equal to the magnitude of magnetic flux density B through the stator 106 multiplied by the magnitude of the magnetic moment m of the magnetic source rotor 108 multiplied by the sine of the angle θ between the stator and the magnetic source rotor:

τ=|B|×|m|×sin(θ)


One may appreciate that when the magnetic source rotor 108 is aligned with cogging notches 120a and 120b the angle θ is non-zero. In certain embodiments such as the embodiment shown in FIG. 1, the angle θ may be 45 degrees, or π/4 radians. Thus, because the coil 104 is not energized, and thus the magnetic flux density B through the stator 106 is therefore 0 T, the torque τ on the magnetic source rotor 108 when the coils is not energized is 0 Nm. However, when the coil 104 is subsequently energized, the magnetic flux density B which is aligned with the longitudinal direction of the stator is non-zero. As a result, non-zero torque τ is exerted on the magnetic source rotor 108, causing the magnetic source rotor 108 to rotate. One may further appreciate that by alternating the polarity of the current applied to the coil 104, the magnetic source rotor 108 may spin in a continuous fashion. In this manner, the system may function as a single phase synchronous motor. One may appreciate that by selecting a magnetic source rotor 108 with a strong magnetic field, the torque τ exerted on the magnetic source rotor 108 may increase. Similarly, increasing the current applied to the coil 104 may also increase the torque π exerted on the magnetic source rotor 108. In this manner, the haptic feedback element 100 may be designed so as to spin the large gear 116 and eccentric mass 114 with high torque and at high speed.


Coupled to the magnetic source rotor 108 may be a first gear 110. The first gear 110 may be meshed with an intermediate gear 112. The intermediate gear 112 may itself be meshed with a large gear 116. In this manner, when the magnetic source rotor 108 is caused to rotate, the intermediate gear 112 may in turn cause the large gear 116 to rotate. The gear ratio between the first gear 110 and the large gear 116 may be 1:10 such that when the magnetic source rotor 108 spins a full revolution, the large gear 116 spins a tenth of a revolution. Or, in another example, when the magnetic source rotor 108 spins ten revolutions, the large gear 116 may spin a single rotation. One may appreciate that torque at the large gear 116 may be greater than at the magnetic source rotor 108.


Coupled to the large gear may be an eccentric mass 114. In certain embodiments, the eccentric mass 114 may occupy half of the surface area of the large gear 116. In some embodiments, the eccentric mass may occupy more or less than half of the surface area of the large gear 116. As the large gear 116 spins, the eccentric mass 114 may experience asymmetric forces causing a perceivable displacement of the eccentric mass 114 and large gear 116 within a plane tangent to the rotational axis 122. By causing the magnetic field rotor 108 to spin, the eccentric mass 114 may also spin, causing the haptic element to perceivably vibrate.


In another embodiment, a braking force may be applied. For example, while the eccentric mass is spinning, the coil 104 may be presented with a constant current. One may appreciate that this will stop the magnetic source rotor 108 from rotating. In some embodiments, a current may be applied to the coil 104 that has the opposite direction of the current required to further accelerate the magnetic source rotor 108. If the magnetic source rotor 108 stops rotating, the intermediate gear 112 also stops, and thus the large gear 116 will also stop. The stoppage of the large gear 116 may be abrupt, on the order of a few milliseconds. In some embodiments, the stoppage period may be longer or shorter. One may appreciate, however, that an abrupt stoppage of the large gear 116 will also cause an abrupt stoppage of the eccentric mass 114. To release the built up momentum within the eccentric mass 114, the housing 102 may abruptly buck. If the braking force is applied after a single rotation of the large gear 116, the haptic element 100 may provide a single-shot haptic feedback. In still further examples, a braking force may be applied by reversing the current within the coil 104 so as to reverse the magnetic field through the stator core 106. In this manner, the magnetic field may oppose the direction of rotation of the magnetic source rotor 108, causing the magnetic source rotor 108 to brake.



FIG. 2 is a bottom isometric view of haptic feedback element 100 employing a three-gear drive train. As shown, the haptic feedback element 100 includes a housing 102 (not shown), a coil 104, a stator core 106, magnetic source rotor 108, an intermediate gear 112 (not shown), an eccentric mass 114, and the large gear 116 rotating about the bearing axis 122. In the illustrated embodiment, the eccentric mass 114 is oriented along one half of the large gear 116. In one embodiment described above, a single-shot haptic feedback may be desirable. In order to prevent the perception of vibration, the large gear 116 may be rotated for a single rotation only before a braking force may be applied. As previously noted, the braking force may not immediately stop the eccentric mass 114. Rather, the eccentric mass 114 and large gear 116 may take a portion of time to come to a complete stop. In some embodiments, the large gear 116 and eccentric mass 114 may take up to a quarter of a revolution to come to a complete stop. For example, FIG. 3 is a top plan view of the haptic feedback element as shown in FIG. 1.



FIG. 3 shows the haptic feedback element 100, the housing 102, the coil 104, the stator core 106, magnetic source rotor 108, the first gear 110, the intermediate gear 112, the eccentric mass 114, and the large gear 116 rotating about the bearing axis 122. Distinguishing from FIG. 1 is the orientation of the eccentric mass 114, shown rotated 90 degrees from the original position as shown in FIG. 1.



FIG. 4 is a top plan view of haptic feedback element employing a two-gear drive train. Similar to the embodiment shown in FIGS. 1 and 2, the embodiment of FIG. 3 may include within the haptic feedback element 400 a housing 402, a coil 404, a stator core 406, magnetic source rotor 408 including the first gear, the eccentric mass 410, and the large gear 412 rotating about the bearing axis 414. Distinguishing from FIGS. 1 and 2 is that no intermediate gear is present. Rotation of the magnetic source rotor 408 directly rotates the large gear 412.



FIG. 5 is a process flow diagram of a method of providing haptic feedback. The process may start at operation 500 in which a system receives a command to provide haptic feedback. Thereafter, a current may be applied to a coil at 502. Next, a sensor may determine or detect the position of the rotor in order to commutate the rotor at 504. In certain embodiments, the sensor may include a Hall effect sensor, a reed sensor, an optical sensor, or a current detector coupled to the coil. One may appreciate that any suitable sensor may be used.


For example, a Hall effect sensor may be used to assist in commutating the rotor. In such an example, the rotor may include at least one permanent magnetic field source, such that as the rotor rotates, the magnetic field source rotates as well. In this manner, the Hall sensor may the angular orientation of the rotor based on the orientation of the field generated by the magnetic field source. Once the rotor reaches a certain angle, the Hall sensor may indicate that the current to the coil may be reversed. In this manner, the current in the coil, may be commutated.


One may appreciate that commutating at 530 may repeat many times in order to achieve a select number of revolutions of the rotor. Next, a brake may be applied at 540 in order to stop the rotor from continued motion. In this manner, 540 may cause a haptic feedback of a single buck. In some embodiments, braking may consist of applying a current to the coil in order to produce a magnetic field which applies a torque on the rotor in the opposite direction that the rotor was previously spinning.


Embodiments described herein may relate to or take the form of durable and thin haptic feedback elements suitable to provide a perceivable single pulse haptic feedback. Such embodiments may take the form of a haptic feedback element including an electromagnetic coil, a permanent magnet or other magnetic field source that is rotatable. Through a gear drive system, torque may be increased before spinning an eccentric mass.


Although many embodiments described herein include a single-phase motors, one may appreciate that some embodiments are contemplated. For example, multi-phase motors or other continuous drive or stepper motors may be substituted for the single-phase motor embodiments described herein. For example, certain embodiments may include an eccentric mass or eccentrically weighted gear coupled to the rotating axis of an electric motor. When the motor rotates, the eccentric mass about a shaft or other axis, the element may experience axially asymmetric forces, displacing the mass within a plane perpendicular to the axis of rotation. After reaching a sufficient angular velocity, the displacement of the mass may be perceived as a sustained vibration. In other cases, a haptic element may be repeatedly activated and deactivated to simulate a pulsed vibration. In still further examples, the haptic element may spin up and immediately brake. For example, a braking for may be applied by reversing the polarity of power applied to the electric motor. In still further example, a braking element may engage with the teeth of one or more gears so as to cause the gear to immediately stop.


In still further embodiments, acoustic dampening features may be included to reduce the volume of sound produced by the operation of the haptic element. For example, a haptic element may spin at a frequency that may cause an undesirable high pitch sound to be heard. Such a sound may be unpleasant to those nearby. To account for acoustic effects of the operation of the haptic element, certain components of the haptic element may be constructed of materials selected, at least in part, for their acoustic properties. For example, one or more gears included within the haptic element may be constructed of plastic instead of metal. In another example, the manner in which the haptic element is powered may be changed. For example, the stator coil may be powered by a selected waveform. In some examples, the waveform may cause the teeth of each gear included within the haptic element to be consistently engaged, or otherwise in contact with one another. In other words, the gears may always be always pushing or always pulling against one another. In this manner, gear slippage and grinding (which may lead to undesired sound) may be substantially reduced or eliminated. In other examples, oils or other lubricants may be specially selected to reduce unwanted sounds.


In still further examples, the size of the gears and the gear ratios may be selected specifically to produce sounds above human hearing. For example, a gear ratio may be selected so that any sounds produced by the haptic element are above at least 20 KHz.


In other cases, alternate gear shapes may be selected in order to reduce residual unwanted sound. For example, cycloidal gears or helical gears. In still further embodiments, the gears may be attached to a linear actuator or other cam action gear arrangement such that rotation motion of the stator core is translated directly into linear motion. In such embodiments, the linear actuator may knock against the housing of the haptic element or electronic device in order to provide a single-shot haptic feedback.


Where components or modules of the invention are implemented in whole or in part using software, in one embodiment, these software elements can be implemented to operate with a computing or processing module capable of carrying out the functionality described with respect thereto.


Although the disclosure above is described in terms of various exemplary embodiments and implementations, it should be understood that the various features, aspects and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead can be applied, alone or in various combinations, to one or more of the some embodiments of the invention, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments but is instead defined by the claims herein presented.

Claims
  • 1. A haptic feedback element comprising: an electromagnetic coil having a core;a magnetic field source rotatable about a first axis, the magnetic field source positioned proximate the core;a first gear fixedly coupled to the magnetic field source;a second gear rotatably coupled to the first gear, the second gear rotatable about a second axis; anda mass element fixedly coupled to the second gear positioned eccentrically to the second axis; whereina first angular displacement of the first gear causes a second angular displacement in the second gear.
  • 2. The haptic feedback element of claim 1, wherein the first angular displacement is greater than one but less than ten times the second angular displacement.
  • 3. The haptic feedback element of claim 1, wherein the first angular displacement is ten times or greater the second angular displacement.
  • 4. The haptic feedback element of claim 1, wherein the electromagnetic coil operates in at least an operation mode and a brake mode.
  • 5. The haptic feedback element of claim 4, wherein the operation mode comprises an alternating a magnetic field through the core.
  • 6. The haptic feedback element of claim 4, wherein the brake mode comprises one of fixing a magnetic field through the electromagnetic coil, reversing a magnetic field through the electromagnetic coil, and alternating a magnetic field within the electromagnetic coil.
  • 7. The haptic feedback element of claim 1, wherein the magnetic field source comprises a permanent magnet.
  • 8. The haptic feedback element of claim 1, further comprising a third gear that rotatably couples the first gear to the second gear.
  • 9. The haptic feedback element of claim 1, wherein the eccentric mass is metal.
  • 10. A method of providing haptic feedback comprising: receiving a request for haptic feedback;providing current of a first polarity to an electromagnetic coil magnetically proximate a rotatable magnetic field source;providing current of a second polarity to the electromagnetic coil; andapplying a braking current to the electromagnetic coil that causes an eccentric mass rotatably coupled to the rotatable magnetic field source to decelerate.
  • 11. The method of claim 10, wherein the operations of providing a current of a first polarity and providing a current of a second polarity repeat a selected number of times prior to the operation of applying a braking current.
  • 12. The method of claim 11, wherein the selected number of repetitions is determined based on an angle of rotation of the eccentric mass.
  • 13. The method of claim 12, wherein the angle of rotation of the eccentric mass is one tenth of the angle of rotation of rotatable magnetic field source.
  • 14. The method of claim 10, wherein the rotatable coupling between the rotatable magnetic field source and the eccentric mass comprises at least a first gear.
  • 15. The method of claim 12, wherein the angle of rotation of the eccentric mass is determined at least in part by a magnetic field sensor.
  • 16. The method of claim 12, wherein the angle of rotation of the eccentric mass is greater than one tenth of the angle of rotation of rotatable magnetic field source.
  • 17. A haptic feedback element comprising: a single-phase stepping motor with a drive axis;a first gear fixedly coupled to the drive axis;a second gear rotatably coupled to the first gear, the second gear rotatable about an axis of rotation;a mass element fixedly coupled to the second gear positioned eccentrically to axis of rotation; anda commutator configured to operate the single-phase stepping motor synchronously.
  • 18. The haptic feedback element of claim 17, wherein a first angular displacement of the first gear causes a second angular displacement in the second gear.
  • 19. The haptic feedback element of claim 18, wherein the first angular displacement is greater than one but less than ten times the second angular displacement.
  • 20. The haptic feedback element of claim 17, wherein a first diameter of the first gear is less than a second diameter of the second gear.
TECHNICAL FIELD

This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/883,147 filed Sep. 26, 2013, entitled “Haptic Generator Employing a Gear Train,” and U.S. Provisional Patent Application No. 61/886,847 filed Oct. 4, 2013, entitled “Haptic Generator Employing a Gear Train,” both of which are incorporated by reference as if fully disclosed herein.

US Referenced Citations (360)
Number Name Date Kind
3001049 Didier Sep 1961 A
3390287 Sonderegger Jun 1968 A
3419739 Clements Dec 1968 A
4236132 Zissimopoulos Nov 1980 A
4412148 Klicker et al. Oct 1983 A
4414984 Zarudiansky Nov 1983 A
4695813 Nobutoki et al. Sep 1987 A
4975616 Park Dec 1990 A
5010772 Bourland Apr 1991 A
5245734 Issartel Sep 1993 A
5283408 Chen Feb 1994 A
5293161 MacDonald et al. Mar 1994 A
5365140 Ohya et al. Nov 1994 A
5434549 Hirabayashi et al. Jul 1995 A
5436622 Gutman et al. Jul 1995 A
5510584 Norris Apr 1996 A
5510783 Findlater et al. Apr 1996 A
5513100 Parker et al. Apr 1996 A
5587875 Sellers Dec 1996 A
5590020 Sellers Dec 1996 A
5602715 Lempicki et al. Feb 1997 A
5619005 Shibukawa et al. Apr 1997 A
5621610 Moore et al. Apr 1997 A
5625532 Sellers Apr 1997 A
5629578 Winzer et al. May 1997 A
5635928 Takagi et al. Jun 1997 A
5718418 Gugsch Feb 1998 A
5739759 Nakazawa et al. Apr 1998 A
5742242 Sellers Apr 1998 A
5783765 Muramatsu Jul 1998 A
5793605 Sellers Aug 1998 A
5812116 Malhi Sep 1998 A
5813142 Demon Sep 1998 A
5818149 Safari et al. Oct 1998 A
5896076 Van Namen Apr 1999 A
5907199 Miller May 1999 A
5951908 Cui et al. Sep 1999 A
5959613 Rosenberg et al. Sep 1999 A
5973441 Lo et al. Oct 1999 A
5982304 Selker et al. Nov 1999 A
5982612 Roylance Nov 1999 A
5995026 Sellers Nov 1999 A
5999084 Armstrong Dec 1999 A
6078308 Rosenberg et al. Jun 2000 A
6127756 Iwaki Oct 2000 A
6135886 Armstrong Oct 2000 A
6218966 Goodwin Apr 2001 B1
6222525 Armstrong Apr 2001 B1
6252336 Hall Jun 2001 B1
6342880 Rosenberg et al. Jan 2002 B2
6351205 Armstrong Feb 2002 B1
6373465 Jolly et al. Apr 2002 B2
6408187 Merriam Jun 2002 B1
6411276 Braun et al. Jun 2002 B1
6429849 An Aug 2002 B1
6438393 Surronen Aug 2002 B1
6444928 Okamoto et al. Sep 2002 B2
6455973 Ineson Sep 2002 B1
6465921 Horng Oct 2002 B1
6552404 Hynes Apr 2003 B1
6552471 Chandran et al. Apr 2003 B1
6557072 Osborn Apr 2003 B2
6642857 Schediwy Nov 2003 B1
6693626 Rosenberg Feb 2004 B1
6717573 Shahoian et al. Apr 2004 B1
6809462 Pelrine et al. Oct 2004 B2
6809727 Piot et al. Oct 2004 B2
6864877 Braun et al. Mar 2005 B2
6906697 Rosenberg Jun 2005 B2
6906700 Armstrong Jun 2005 B1
6906703 Vablais et al. Jun 2005 B2
6952203 Banerjee et al. Oct 2005 B2
6954657 Bork et al. Oct 2005 B2
6963762 Kaaresoja et al. Nov 2005 B2
6995752 Lu Feb 2006 B2
7005811 Wakuda et al. Feb 2006 B2
7016707 Fujisawa et al. Mar 2006 B2
7022927 Hsu Apr 2006 B2
7023112 Miyamoto et al. Apr 2006 B2
7081701 Yoon et al. Jul 2006 B2
7121147 Okada Oct 2006 B2
7123948 Nielsen Oct 2006 B2
7130664 Williams Oct 2006 B1
7136045 Rosenberg et al. Nov 2006 B2
7161580 Bailey et al. Jan 2007 B2
7162928 Shank et al. Jan 2007 B2
7170498 Huang Jan 2007 B2
7176906 Williams et al. Feb 2007 B2
7182691 Schena Feb 2007 B1
7194645 Bieswanger et al. Mar 2007 B2
7217891 Fischer et al. May 2007 B2
7218310 Tierling et al. May 2007 B2
7219561 Okada May 2007 B2
7253350 Noro et al. Aug 2007 B2
7333604 Zernovizky et al. Feb 2008 B2
7334350 Ellis Feb 2008 B2
7348968 Dawson Mar 2008 B2
7388741 Konuma et al. Jun 2008 B2
7392066 Hapamas Jun 2008 B2
7423631 Shahoian et al. Sep 2008 B2
7446752 Goldenberg et al. Nov 2008 B2
7469595 Kessler et al. Dec 2008 B2
7495358 Kobayashi et al. Feb 2009 B2
7508382 Denoue et al. Mar 2009 B2
7561142 Shahoian et al. Jul 2009 B2
7562468 Ellis Jul 2009 B2
7569086 Chandran Aug 2009 B2
7639232 Grant et al. Dec 2009 B2
7641618 Noda et al. Jan 2010 B2
7675253 Dorel Mar 2010 B2
7675414 Ray Mar 2010 B2
7679611 Schena Mar 2010 B2
7707742 Ellis May 2010 B2
7710399 Bruneau et al. May 2010 B2
7732951 Mukaide Jun 2010 B2
7742036 Grant et al. Jun 2010 B2
7788032 Moloney Aug 2010 B2
7793429 Ellis Sep 2010 B2
7793430 Ellis Sep 2010 B2
7798982 Zets et al. Sep 2010 B2
7868489 Amemiya et al. Jan 2011 B2
7888892 McReynolds et al. Feb 2011 B2
7893922 Klinghult et al. Feb 2011 B2
7919945 Houston et al. Apr 2011 B2
7929382 Yamazaki Apr 2011 B2
7946483 Miller et al. May 2011 B2
7952261 Lipton et al. May 2011 B2
7952566 Poupyrev et al. May 2011 B2
7956770 Klinghult et al. Jun 2011 B2
7961909 Mandella et al. Jun 2011 B2
8031172 Kruse et al. Oct 2011 B2
8044940 Narusawa Oct 2011 B2
8069881 Cunha Dec 2011 B1
8077145 Rosenberg et al. Dec 2011 B2
8081156 Ruettiger Dec 2011 B2
8082640 Takeda Dec 2011 B2
8098234 Lacroix et al. Jan 2012 B2
8123660 Kruse et al. Feb 2012 B2
8125453 Shahoian et al. Feb 2012 B2
8141276 Ellis Mar 2012 B2
8156809 Tierling et al. Apr 2012 B2
8174372 da Costa May 2012 B2
8179202 Cruz-Hernandez et al. May 2012 B2
8188623 Park May 2012 B2
8205356 Ellis Jun 2012 B2
8210942 Shimabukuro et al. Jul 2012 B2
8232494 Purcocks Jul 2012 B2
8248277 Peterson et al. Aug 2012 B2
8248278 Schlosser et al. Aug 2012 B2
8253686 Kyung et al. Aug 2012 B2
8255004 Huang et al. Aug 2012 B2
8261468 Ellis Sep 2012 B2
8264465 Grant et al. Sep 2012 B2
8270114 Argumedo et al. Sep 2012 B2
8288899 Park et al. Oct 2012 B2
8291614 Ellis Oct 2012 B2
8294600 Peterson et al. Oct 2012 B2
8315746 Cox et al. Nov 2012 B2
8344834 Niiyama Jan 2013 B2
8378797 Pance et al. Feb 2013 B2
8378798 Bells et al. Feb 2013 B2
8378965 Gregorio et al. Feb 2013 B2
8384679 Paleczny et al. Feb 2013 B2
8390594 Modarres et al. Mar 2013 B2
8395587 Cauwels et al. Mar 2013 B2
8398570 Mortimer et al. Mar 2013 B2
8411058 Wong et al. Apr 2013 B2
8446264 Tanase May 2013 B2
8451255 Weber et al. May 2013 B2
8461951 Gassmann et al. Jun 2013 B2
8466889 Tong et al. Jun 2013 B2
8471690 Hennig et al. Jun 2013 B2
8487759 Hill Jul 2013 B2
8515398 Song et al. Aug 2013 B2
8542134 Peterson et al. Sep 2013 B2
8545322 George et al. Oct 2013 B2
8547341 Takashima et al. Oct 2013 B2
8552859 Pakula et al. Oct 2013 B2
8570291 Motomura Oct 2013 B2
8575794 Lee et al. Nov 2013 B2
8587955 DiFonzo et al. Nov 2013 B2
8598893 Camus Dec 2013 B2
8599047 Schlosser et al. Dec 2013 B2
8599152 Wurtenberger et al. Dec 2013 B1
8600354 Esaki Dec 2013 B2
8614431 Huppi et al. Dec 2013 B2
8621348 Ramsay et al. Dec 2013 B2
8633916 Bernstein et al. Jan 2014 B2
8674941 Casparian et al. Mar 2014 B2
8680723 Subramanian Mar 2014 B2
8681092 Harada et al. Mar 2014 B2
8686952 Pope et al. Apr 2014 B2
8710966 Hill Apr 2014 B2
8723813 Park et al. May 2014 B2
8735755 Peterson et al. May 2014 B2
8760273 Casparian et al. Jun 2014 B2
8787006 Golko et al. Jul 2014 B2
8798534 Rodriguez et al. Aug 2014 B2
8836502 Culbert et al. Sep 2014 B2
8857248 Shih et al. Oct 2014 B2
8860562 Hill Oct 2014 B2
8866600 Yang et al. Oct 2014 B2
8928621 Ciesla et al. Jan 2015 B2
8948821 Newham et al. Feb 2015 B2
8970534 Adachi et al. Mar 2015 B2
8976141 Myers et al. Mar 2015 B2
9008730 Kim et al. Apr 2015 B2
9019088 Zawacki et al. Apr 2015 B2
9072576 Nishiura Jul 2015 B2
9083821 Hughes Jul 2015 B2
9092129 Abdo et al. Jul 2015 B2
9098991 Park et al. Aug 2015 B2
9131039 Behles Sep 2015 B2
9134834 Reshef Sep 2015 B2
9158379 Cruz-Hernandez et al. Oct 2015 B2
9189932 Kerdemelidis et al. Nov 2015 B2
9201458 Hunt et al. Dec 2015 B2
9235267 Pope et al. Jan 2016 B2
9274601 Faubert et al. Mar 2016 B2
9274602 Garg et al. Mar 2016 B2
9274603 Modarres et al. Mar 2016 B2
9300181 Maeda et al. Mar 2016 B2
9317116 Ullrich et al. Apr 2016 B2
9325230 Yamada et al. Apr 2016 B2
9357052 Ullrich May 2016 B2
9454239 Elias Sep 2016 B2
9477342 Daverman et al. Oct 2016 B2
9501912 Okandan Nov 2016 B1
9594450 Lynn et al. Mar 2017 B2
20030210259 Liu Nov 2003 A1
20040021663 Suzuki et al. Feb 2004 A1
20040127198 Roskind et al. Jul 2004 A1
20050057528 Kleen Mar 2005 A1
20050107129 Kaewell et al. May 2005 A1
20050110778 Ben Ayed May 2005 A1
20050118922 Endo Jun 2005 A1
20050217142 Ellis Oct 2005 A1
20050237306 Klein et al. Oct 2005 A1
20050248549 Dietz et al. Nov 2005 A1
20050258715 Schlabach Nov 2005 A1
20060154674 Landschaft et al. Jul 2006 A1
20060209037 Wang et al. Sep 2006 A1
20060239746 Grant Oct 2006 A1
20060252463 Liao Nov 2006 A1
20070099574 Wang May 2007 A1
20070152974 Kim et al. Jul 2007 A1
20070178942 Sadler et al. Aug 2007 A1
20070188450 Hernandez et al. Aug 2007 A1
20080084384 Gregorio et al. Apr 2008 A1
20080158149 Levin Jul 2008 A1
20080165148 Williamson Jul 2008 A1
20080181501 Faraboschi Jul 2008 A1
20080181706 Jackson Jul 2008 A1
20080192014 Kent et al. Aug 2008 A1
20080204428 Pierce et al. Aug 2008 A1
20080255794 Levine Oct 2008 A1
20090002328 Ullrich et al. Jan 2009 A1
20090115734 Fredriksson et al. May 2009 A1
20090120105 Ramsay et al. May 2009 A1
20090128503 Grant et al. May 2009 A1
20090135142 Fu et al. May 2009 A1
20090167702 Nurmi Jul 2009 A1
20090167704 Terlizzi et al. Jul 2009 A1
20090218148 Hugeback et al. Sep 2009 A1
20090225046 Kim et al. Sep 2009 A1
20090236210 Clark et al. Sep 2009 A1
20090267892 Faubert Oct 2009 A1
20090267920 Faubert et al. Oct 2009 A1
20090305744 Ullrich Dec 2009 A1
20090313542 Cruz-Hernandez et al. Dec 2009 A1
20100020036 Hui et al. Jan 2010 A1
20100053087 Dai et al. Mar 2010 A1
20100089735 Takeda et al. Apr 2010 A1
20100141606 Bae et al. Jun 2010 A1
20100152620 Ramsay et al. Jun 2010 A1
20100164894 Havskjold et al. Jul 2010 A1
20100188422 Shingai et al. Jul 2010 A1
20100194547 Terrell et al. Aug 2010 A1
20100231508 Cruz-Hernandez et al. Sep 2010 A1
20100231550 Cruz-Hernandez et al. Sep 2010 A1
20100265197 Purdy Oct 2010 A1
20100309141 Cruz-Hernandez et al. Dec 2010 A1
20100328229 Weber et al. Dec 2010 A1
20110053577 Lee et al. Mar 2011 A1
20110107958 Pance et al. May 2011 A1
20110121765 Anderson et al. May 2011 A1
20110128239 Polyakov et al. Jun 2011 A1
20110148608 Grant et al. Jun 2011 A1
20110163985 Bae et al. Jul 2011 A1
20110193824 Modarres et al. Aug 2011 A1
20110203912 Niu Aug 2011 A1
20110248948 Griffin et al. Oct 2011 A1
20110260988 Colgate et al. Oct 2011 A1
20110263200 Thornton et al. Oct 2011 A1
20110291950 Tong Dec 2011 A1
20110304559 Pasquero Dec 2011 A1
20120068957 Puskarich et al. Mar 2012 A1
20120075198 Sulem et al. Mar 2012 A1
20120092263 Peterson et al. Apr 2012 A1
20120126959 Zarrabi et al. May 2012 A1
20120127088 Pance et al. May 2012 A1
20120133494 Cruz-Hernandez et al. May 2012 A1
20120139844 Ramstein et al. Jun 2012 A1
20120256848 Madabusi Srinivasan Oct 2012 A1
20120268412 Cruz-Hernandez et al. Oct 2012 A1
20120274578 Snow et al. Nov 2012 A1
20120280927 Ludwig Nov 2012 A1
20120327006 Israr et al. Dec 2012 A1
20130002411 Henderson et al. Jan 2013 A1
20130027345 Binzel Jan 2013 A1
20130063356 Martisauskas Mar 2013 A1
20130106699 Babatunde May 2013 A1
20130120290 Yumiki et al. May 2013 A1
20130124076 Bruni et al. May 2013 A1
20130181913 Cole et al. Jul 2013 A1
20130191741 Dickinson et al. Jul 2013 A1
20130200732 Jun et al. Aug 2013 A1
20130207793 Weaber et al. Aug 2013 A1
20130217491 Hilbert et al. Aug 2013 A1
20130222280 Sheynblat et al. Aug 2013 A1
20130228023 Drasnin et al. Sep 2013 A1
20130261811 Yagi et al. Oct 2013 A1
20130300590 Dietz et al. Nov 2013 A1
20140035397 Endo et al. Feb 2014 A1
20140082490 Jung et al. Mar 2014 A1
20140091857 Bernstein Apr 2014 A1
20140197936 Biggs et al. Jul 2014 A1
20140232534 Birnbaum et al. Aug 2014 A1
20140247227 Jiang et al. Sep 2014 A1
20140267076 Birnbaum et al. Sep 2014 A1
20140267952 Sirois Sep 2014 A1
20150005039 Liu et al. Jan 2015 A1
20150061848 Hill Mar 2015 A1
20150090572 Lee et al. Apr 2015 A1
20150109215 Puskarich Apr 2015 A1
20150169059 Behles et al. Jun 2015 A1
20150194165 Faaborg et al. Jul 2015 A1
20150220199 Wang et al. Aug 2015 A1
20150227204 Gipson et al. Aug 2015 A1
20150296480 Kinsey et al. Oct 2015 A1
20150324049 Kies et al. Nov 2015 A1
20150349619 Degner et al. Dec 2015 A1
20160049265 Bernstein Feb 2016 A1
20160063826 Morrell et al. Mar 2016 A1
20160071384 Hill Mar 2016 A1
20160162025 Shah Jun 2016 A1
20160163165 Morrell et al. Jun 2016 A1
20160172953 Hamel et al. Jun 2016 A1
20160195929 Martinez et al. Jul 2016 A1
20160196935 Bernstein Jul 2016 A1
20160211736 Moussette et al. Jul 2016 A1
20160216764 Morrell et al. Jul 2016 A1
20160216766 Puskarich Jul 2016 A1
20160231815 Moussette et al. Aug 2016 A1
20160233012 Lubinski et al. Aug 2016 A1
20160241119 Keeler Aug 2016 A1
20160259480 Augenbergs et al. Sep 2016 A1
20160306423 Uttermann et al. Oct 2016 A1
20160371942 Smith, IV et al. Dec 2016 A1
20170038905 Bijamov et al. Feb 2017 A1
Foreign Referenced Citations (60)
Number Date Country
2015100710 Jul 2015 AU
2355434 Feb 2002 CA
1817321 Aug 2006 CN
101409164 Apr 2009 CN
102025257 Apr 2011 CN
102315747 Jan 2012 CN
102713805 Oct 2012 CN
103416043 Nov 2013 CN
104220963 Dec 2014 CN
19517630 Nov 1996 DE
10330024 Jan 2005 DE
102009038103 Feb 2011 DE
102011115762 Apr 2013 DE
0483955 May 1992 EP
1047258 Oct 2000 EP
1686776 Aug 2006 EP
2060967 May 2009 EP
2073099 Jun 2009 EP
2194444 Jun 2010 EP
2264562 Dec 2010 EP
2315186 Apr 2011 EP
2374430 Oct 2011 EP
2395414 Dec 2011 EP
2461228 Jun 2012 EP
2631746 Aug 2013 EP
2434555 Oct 2013 EP
H05301342 Nov 1993 JP
2002199689 Jul 2002 JP
2002102799 Sep 2002 JP
200362525 Mar 2003 JP
2004236202 Aug 2004 JP
20050033909 Apr 2005 KR
1020100046602 May 2010 KR
1020110101516 Sep 2011 KR
20130024420 Mar 2013 KR
200518000 Nov 2007 TW
201218039 May 2012 TW
201425180 Jul 2014 TW
WO 9716932 May 1997 WO
WO 0159588 Aug 2001 WO
WO 02073587 Sep 2002 WO
WO 03038800 May 2003 WO
WO 2006057770 Jun 2006 WO
WO 2007114631 Oct 2007 WO
WO 2008075082 Jun 2008 WO
WO 2009038862 Mar 2009 WO
WO 2009068986 Jun 2009 WO
WO 2009097866 Aug 2009 WO
WO 2009122331 Oct 2009 WO
WO 2009150287 Dec 2009 WO
WO 2010085575 Jul 2010 WO
WO 2010087925 Aug 2010 WO
WO 2011007263 Jan 2011 WO
WO 2012052635 Apr 2012 WO
WO 2012129247 Sep 2012 WO
WO 2013069148 May 2013 WO
WO 2013169299 Nov 2013 WO
WO 2013169302 Nov 2013 WO
WO 2014018086 Jan 2014 WO
WO 2015023670 Feb 2015 WO
Non-Patent Literature Citations (26)
Entry
U.S. Appl. No. 12/750,054, filed Mar. 30, 2010, Hill.
U.S. Appl. No. 12/887,455, filed Sep. 21, 2010, Puskarich et al.
U.S. Appl. No. 12/950,940, filed Nov. 19, 2010, Pance et al.
U.S. Appl. No. 13/630,867, filed Sep. 28, 2012, Bernstein.
U.S. Appl. No. 13/943,639, filed Jul. 16, 2013, Hill.
U.S. Appl. No. 14/059,693, filed Oct. 22, 2013, Puskarich.
U.S. Appl. No. 14/165,475, filed Jan. 27, 2014, Havskjold et al.
U.S. Appl. No. 14/512,927, filed Oct. 13, 2014, Hill.
U.S. Appl. No. 14/841,582, filed Aug. 31, 2015, Morrell et al.
U.S. Appl. No. 14/928,465, filed Oct. 30, 2015, Bernstein.
Astronomer's Toolbox, “The Electromagnetic Spectrum,” http://imagine.gsfc.nasa.gov/science/toolbox/emspectrum1.html, updated Mar. 2013, 4 pages.
Kim et al., “Tactile Rendering of 3D Features on Touch Surfaces,” UIST '13, Oct. 8-11, 2013, St. Andrews, United Kingdom, 8 pages.
U.S. Appl. No. 14/942,521, filed Nov. 16, 2015, Hill.
U.S. Appl. No. 14/910,108, filed Feb. 4, 2016, Martinez et al.
U.S. Appl. No. 15/045,761, filed Feb. 17, 2016, Morrell et al.
U.S. Appl. No. 15/046,194, filed Feb. 17, 2016, Degner et al.
U.S. Appl. No. 15/047,447, filed Feb. 18, 2016, Augenbergs et al.
Hasser et al., “Preliminary Evaluation of a Shape-Memory Alloy Tactile Feedback Display,” Advances in Robotics, Mechatronics, and Haptic Interfaces, ASME, DSC-vol. 49, pp. 73-80, 1993.
Hill et al., “Real-time Estimation of Human Impedance for Haptic Interfaces,” Stanford Telerobotics Laboratory, Department of Mechanical Engineering, Standford University, 6 pages, at least as early as Sep. 30, 2009.
Lee et al, “Haptic Pen: Tactile Feedback Stylus for Touch Screens,” Mitsubishi Electric Research Laboratories, http://wwwlmerl.com, 6 pages, Oct. 2004.
Nakamura, “A Torso Haptic Display Based on Shape Memory Alloy Actuators,” Massachusetts Institute of Technology, 2003, pp. 1-123.
U.S. Appl. No. 15/583,938, filed May 1, 2017, Hill.
U.S. Appl. No. 15/621,966, filed Jun. 13, 2017, Pedder et al.
U.S. Appl. No. 15/621,930, filed Jun. 13, 2017, Wen et al.
U.S. Appl. No. 15/622,017, filed Jun. 13, 2017, Yang et al.
U.S. Appl. No. 15/641,192, filed Jul. 3, 2017, Miller et al.
Provisional Applications (2)
Number Date Country
61883147 Sep 2013 US
61886847 Oct 2013 US