The present invention relates to embodiments of a geared interface having non-linear feedback. Some pneumatic control valves do not have linear feedback when a cam/cam follower structure is part of the valve. As an operator moves the handle of this type of pneumatic control valve, the torque required to move the handle increases non-linearly as more air is delivered to the system through the valve. As valves move from pneumatic control devices to electronic control devices, there is a desire to maintain the non-linear feedback felt by the driver as he actuates the electronic valve so that the torque similarly increases as an electronic valve is moved between a first position and a second position.
Various embodiments of an apparatus for an actuating mechanism comprise a first member having a first axis, the first member having a generally spherical surface on a first half of the first axis and a generally ellipsoidal surface on a second half of the first axis, the first member rotatable around a centerpoint of the first axis; a second member having a second axis and a generally ellipsoidal surface, the second member matingly engaging the first member at the first member ellipsoidal surface; and a torsion spring coupled to the second member; wherein the first member is actuated manually to move the second member and the torsion spring torque increases as the first member is rotated.
In accordance with another aspect, various embodiments of a method of providing nonlinear feedback to an operator comprise rotating a first member having an elliptical surface; matingly engaging a second member at an elliptical portion to rotate the second member around its centerpoint; restricting the rotation of the second member via a biasing member; and increasing the torque provided at the first member in a nonlinear manner as the first member is rotated from a first position to a second position.
In the accompanying drawings which are incorporated in and constitute a part of the specification, embodiments of the invention are illustrated, which, together with a general description of the invention given above, and the detailed description given below, serve to exemplify the embodiments of this invention.
The first member 12 has an axis A with a centerpoint for rotation. The first member 12 has an aperture 22 at the centerpoint of rotation on axis A. A pin (not shown) may be inserted into the aperture 22 when the gear apparatus is installed in a housing 30. The first member 12 is not shaped symmetrically around axis A. The first member 12 has a generally ellipsoidal surface 20 on one side of axis A and a generally spherical surface 16 on the opposite side of axis A from the generally ellipsoidal surface 20. The generally spherical surface 16 presents a uniform surface to the operator of the actuation mechanism 10 through the housing 30. The generally spherical surface 16 includes a nodule 18 that extends past the housing 30. The housing 30 also serves as a stop for the rotational motion of the first member 12.
In one example, a magnet 32 is placed on the first member 12 and rotates with the first member 12. The magnet 32 interfaces with a sensing device such as a Hall Effect sensor, optical sensor or other sensor type that can measure the angle of rotation of the first member 12. The sensor is stationary with respect to the first member 12 and may be installed in the housing 30. The sensor detects the position of the magnet 32 and transmits a signal to a controller (not shown) that is indicative of the rotation of the first member 12. The rotation relates to the amount of air the operator desires to transmit to the system via control of the actuation mechanism 10. The magnet 32 may be installed in the housing 30 or another stationary location with respect to the first member 12.
The second member 14 has an axis B and is generally symmetrical around axis B. An aperture 26 is located at the center point of rotation of the second member 14. A distance d1 exists between the aperture 22 of the first member 12 and the aperture 26 of the second member 14. A pin (not shown) may be inserted in the aperture 26. The second member may be coupled to the housing 30. The second member 14 has a generally ellipsoidal surface 24.
A biasing member 28 is attached to the second member 14 about the aperture 26. The biasing member 28 may be a torsion spring. The biasing member 28 increases the torque in a non-linear manner as the second member 14 is rotated. The biasing member 28 allows for higher precision in the first stages of motion of the first member 12 and slows the application rate of the actuation mechanism 10 to mimic a pneumatic valve. As the first member 12 reaches the end of its range of motion, the torque required to move the first member 12 increases greatly.
The first member 12 and the second member 14 may preferably be made from the same material. In one example, the material is a plastic material, such as glass filled nylon, to ensure stability. The first member 12 and the second member 14 may be molded from a plastic material.
In
The nodule 18 is used as a manual means to rotate the first member 12. The nodule may be sized to fit a thumb or may be connected to another manual means of rotating the first member 12, such as a lever. A gap in the housing 30 is sized to accommodate the rotation of the first member 12.
The second member 14 rotates in response to the rotation of the first member 12. The movement of second member 14 from the released position in
The biasing member 28 acts against the rotation of the first member 12 to increase the torque required to rotate the first member 12. However, the elliptical interface between the first member and the second member interact to increase the torque required in a non-linear manner. The torque required to move the first member 12 from the first position to the second position is between about five (5) inches pounds and about ten (10) inch pounds. The purpose is to provide a slower apply feel and more precision at the initial rotation.
While the present invention has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention, in its broader aspects, is not limited to the specific details, the representative apparatus, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.
Number | Name | Date | Kind |
---|---|---|---|
4028019 | Wildhaber | Jun 1977 | A |
4031345 | Garcia | Jun 1977 | A |
4545402 | Lyons | Oct 1985 | A |
4606369 | McKay | Aug 1986 | A |
4838226 | Matsuzawa | Jun 1989 | A |
4844708 | Lopez | Jul 1989 | A |
4867002 | Bouchet | Sep 1989 | A |
5758684 | Hudson | Jun 1998 | A |
5809780 | de Jong | Sep 1998 | A |
5950765 | Person | Sep 1999 | A |
6048186 | Kitano | Apr 2000 | A |
6095488 | Semeyn, Jr. | Aug 2000 | A |
6974119 | Brendle | Dec 2005 | B2 |
7038846 | Mandella | May 2006 | B2 |
7066301 | Oh | Jun 2006 | B2 |
7575285 | Bobby | Aug 2009 | B2 |
8312785 | Breeser | Nov 2012 | B2 |
8840197 | Eberling | Sep 2014 | B2 |
9227312 | Wang | Jan 2016 | B2 |
20060058105 | Evans | Mar 2006 | A1 |
20070056558 | Kondo | Mar 2007 | A1 |
20070279401 | Ramstein | Dec 2007 | A1 |
20080245174 | Fischer | Oct 2008 | A1 |
20120137996 | Yang | Jun 2012 | A1 |
20130133763 | Sulmone | May 2013 | A1 |
20140290974 | Eriksson | Oct 2014 | A1 |
20160159334 | Lichtenburg | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1050643 | Nov 2000 | EP |
2090483 | Aug 2009 | EP |
07277173 | Oct 1995 | JP |
Entry |
---|
Bendix Commercial Vehicle Systems LLC, “Bendix TCS-9000 Control Brake Valve,” Service Data Sheet, Jun. 2005, 4 pages, Bendix Commercial Vehicle Systems LLC, Elyria OH USA. |
International Searching Authority, “Notification of Transmittal of the International Search Report and the WRitten Opinion of the International Searching Authority,” Search Report, dated Dec. 15, 2017, 12 pages, European Patent Office, Rijswijk Netherlands. |
Number | Date | Country | |
---|---|---|---|
20180073661 A1 | Mar 2018 | US |