The present disclosure relates to a geared motor, in particular for driving an adjusting device, which is coupled thereto in terms of drive, for furniture components. The geared motor comprises a driving motor, at least one gear stage, which is formed from gear components, for reducing the motor speed, and with a single- or multi-part housing.
The geared motor under discussion is considered an extremely small drive, since the power is significantly below 1 kW. In a preferred embodiment, the geared motor is used in order to adjust an adjusting device for items of furniture, for example a slatted frame, a bed or part of a bed, or an armchair. Geared motors of this type are customarily provided with a gear stage. The gear stage comprises a worm which can be driven by the driving motor and a worm wheel meshing with the worm. The worm wheel then serves as a driving element for a drive train. The drive train may comprise a spindle which can be driven by the worm wheel, and a spindle nut which is placed on to the spindle and is secured against rotation. However, the driving wheel could also have an internal threaded bore into which a spindle is inserted. The spindle could be secured against rotation such that the entire geared motor including the gear stage moves on the spindle. Drives of this type are referred to as linear drives. However, it is also possible that the worm wheel drives a shaft, and therefore the drive is a rotational drive. However, it is also possible that a further gear stage is connected downstream of the worm wheel.
The drive trains are preferably designed in such a manner that the drive is self-locking, i.e. a load moment which is in effect is maintained when the driving motor is switched off. However, the drives under discussion require relatively great adjustment speeds and/or relatively large adjustment loads which result in the drive train no longer being self-locking. Braking elements are then integrated into the drive train, the braking elements are designed in such a manner that the load which is in effect is maintained when the driving motor is switched off. Although such solutions have proven successful, they are complicated structurally and are an obstacle to the requirement for a compact construction. The drives and geared motors under discussion should always be of extremely compact design, since the installation spaces are relatively small.
The present gear motor is based on the object of providing a geared motor which is designed simply structurally and which is extremely compact and to which different drive trains which are not themselves able to be self-locking can be connected.
The object set is achieved by a mechanical load moment lock being operatively connected to a gear stage of the geared motor.
The load moment lock is now integrated into the geared motor, and therefore the drive train connected downstream is formed exclusively from the components present. It is particularly advantageous if the load moment lock is operatively connected to the output element of the first gear stage connected downstream of the driving motor. It is furthermore particularly advantageous if the load moment lock is designed as a spring element, preferably is designed as a single-piece and annular spring element. This takes into account the fact that, in the preferred exemplary embodiment, the output element of each gear stage is a rotating gear component.
A structurally simple solution, also with regard to the torques to be transmitted, arises if the braking element is designed as a spring element with a plurality of coils.
The spring element may then be designed in such a manner that it expands in one rotational direction of the associated output element and therefore generates a braking force. However, it may also be designed in such a manner that it expands in one rotational direction of the output element and contracts in the other rotational direction. In the process, the braking force may be increased or reduced.
It is furthermore provided that a cylindrical attachment or at least two webs lying on a circle is or are fitted to or integrally formed on the output element of the respective gear stage. The spring element is placed onto the attachment or onto the webs or in that the attachment or the webs is/are operatively connected to the load moment lock.
In many embodiments of the geared motor under discussion, the housing is manufactured from a plastic. It is therefore provided, in a further refinement, that the braking element or the spring element is inserted into a ring of a metallic material. However, the ring may be omitted if the housing is composed of metal, for example of steel.
According to another embodiment, it is provided that the output element of the gear stage equipped with the braking element is connected in a rotationally fixed manner to a bushing, and that the spring element is placed onto the bushing. It is furthermore provided that a respective rolling contact bearing is arranged in the housing, on both sides of the output element. In a further refinement, it is provided that the housing which accommodates the motor and the gear components, is of single-piece design. However, it is likewise conceivable that the housing part which accommodates the driving motor and the housing part which accommodates the gear components are screwed or otherwise joined to each other.
In a further embodiment, it is also provided that a switchable clutch, for example a claw clutch, is arranged between the output element of the gear stage equipped with the braking element or of a following gear stage and the drive train connected downstream. In this case, the clutch may be switched manually and/or electrically and/or may switch itself automatically. In the last-mentioned case of automatic switching, the claws are designed in the manner of serrations such that the force is transmitted only in one rotational direction, and therefore the claw clutch acts as a free wheel. Depending on the design of the drive train, a connecting part can be fitted to or integrally formed on the housing which accommodates the gear components. The connecting part would be connected, for example, fixedly to the housing. As a result, said housing could be flanged to another housing part or to an item of furniture.
The geared motor under discussion may be used as a driving element for very different adjusting devices. It is therefore also provided, in a further refinement, that the gear stage having the braking element is assigned a free wheel. The free wheel could be designed, in turn, as a spring element. As a result, it would be possible that, for example, the lowering of a connected component can take place when the driving motor is switched off.
Irrespective of the particular design of the geared motor, the drive is designed in such a manner that all of the forces are removed via the housing.
The housing of the geared motor comprises at least one shaped part. In this case, a plurality of shaped parts can be connected to one another such that the gear housing is designed as a closed housing. The abutting surfaces of the housing can be provided with sealing elements in order to avoid, for example, penetration of liquids and solids into the interior of the housing. In a further embodiment, the gear housing comprises at least one web-like, open structure. It is possible for a plurality of structures to be constructed and assembled in the form of a lattice. In this embodiment, the sealing of the housing parts can be omitted, since a further housing is pulled over the gear housing in order to protect the gear and the gear components against dirt and moisture.
Depending on the particular application of the geared motor, the housing of the geared motor is provided with attachments and/or recesses in order to fix a further drive train to the geared motor and/or in order to fasten the geared motor on or in an item of furniture or on or in a first furniture component.
In this case, the drive train which is fitted to the gear housing is preferably formed by a spindle drive which is formed from at least one threaded spindle, a spindle nut placed thereon and a furniture component operatively connected thereto. In this case, the first and second furniture components are moved relative to each other by the geared motor. In another embodiment, the output element of the geared motor is provided with a profiled internal bore. The profiled internal bore can be formed by an internal threaded section and/or by a polygonal profile, for example in the form of a hexagonal socket. In a development of this embodiment, the housing of the geared motor is provided with at least one opening through which is guided a threaded spindle or a profiled rod which is operatively connected to the profiled internal bore of the output element of the geared motor.
In the case of the previously described geared motor, the housing or at least one housing part is provided with attachments and/or recesses. As a result, webs, forks, journals or recesses with transverse bores can be fitted to/provided on or integrally formed on the gear housing in order to fix the geared motor on or in an item of furniture or in a furniture component. Furthermore, bores, recesses, pockets or journals can also be fitted to/provided on or integrally formed on the gear housing or parts of the gear housing in order to fasten a drive train, for example in the form of a threaded spindle drive, to the gear housing.
The load moment lock mentioned at the beginning is formed by a driving body, an output body, a braking body and a frictional body. In this case, the driving body, the output body and the braking body are mounted in a rotating manner while the frictional body is connected fixedly to the gear housing or is formed by a section of the gear housing. In a preferred embodiment, the driving body is formed by a worm wheel and the braking body is formed by a braking spring, comprising a helically coiled wire section with angled wire ends. The output body is operatively connected to a clutch, a threaded spindle, a profiled rod or a train of gears connected downstream. In this case, the outside diameter of the braking body is somewhat larger than the inside diameter of the frictional body, and therefore the braking body can be fitted to the frictional body under a spring prestress.
The driving body and the output body have claws which engage in one another. A play is provided circumferentially between the claws such that the driving body and the output body can move relative to each other by a corresponding angle. The claws are operatively connected here to the angled end sections of the braking spring in the manner of a driver. The claws of the driving body are operatively connected irrespective of the rotational direction to first surfaces of the angled end sections in such a manner that the spring prestressing described at the beginning is reduced.
The claws of the output body are operatively connected to the second surfaces of the angled end sections of the braking body in such a manner that, upon a rotation from the direction of the output element connected downstream of the output body, a reinforcement of the spring prestress takes place, thereby increasing the friction between the braking body and the frictional body.
The components used are usually manufactured from a plastic. A further embodiment therefore provides that the claws of the driving body and/or of the output body, at least in the region of contact with the first and/or the second surfaces of the angled end sections of the braking element, inserts of a higher strength material, for example metal inserts, are inserted into or fitted to the claws.
The invention is explained in more detail with reference to the attached drawings, in which:
The gear mechanism is also equipped with a load moment lock in the form of a braking spring 21 which comprises a plurality of coils. The braking spring 21 is inserted into a bushing 22. The gear mechanism is designed in such a manner that, when an adjustment force bears on the fork head 14, the braking spring 21 expands and thus produces a braking force. According to the illustration of
The worm wheel 19 is equipped with three claws or 19 A, B, C which engage in corresponding intermediate spaces 34A, B, C of cylindrical porting of the output body 34. The claws 19 A, B, C may be part of the bushing 20. As a result, the parts can rotate relative to one another. If the torque is introduced by the worm wheel 19, the spring stress is reduced, and therefore the braking spring 21 can rotate freely at the same time. If, however, the torque is introduced by the output body 34, the braking spring 21 expands, thereby resulting in the braking effect.
The driving arrangement equipped with the geared motor can be equipped with a switchable free wheeling clutch or a switchable claw clutch in a manner not illustrated specifically. An actuating means is then provided which is operatively connected to at least one part of the claw clutch 28 or to at least one part of the free wheel ring 30. When the actuating means is actuated, the claws are disengaged, and therefore the driving connection with the driving motor 25 is disconnected. The actuation of the actuating means can take place or be transmitted by a manually actuable or by an electrically driven means.
In a particularly simple embodiment, it is provided, according to
In the case of the geared motor 10, the latter can be considered a composite unit comprising the driving motor 25 and the gear stage or the gear mechanism. In this case, parts of the motor mounting or of the motor housing can be assigned to the gear housing 16, as seen in terms of operation. Such an embodiment is extremely cost-effective with regard to installation and the use of material. Such an embodiment could be based on the fact that the driving motor 25 no longer forms an independent functional unit.
The free wheel ring 30 has a profiled bore and forms the output element of the gear mechanism. The motor 25 and the gear mechanism may form a virtually common housing. By analogy, an open motor without an independent function is produced. The bearing bracket of the driving motor could be part of the housing for the gear mechanism.
In
If a torque is produced on the driving side, for example by means of the worm wheel 19, then the output body 34 is rotated by means of the claws. The claws here are shaped in such a manner that the frictional force between the braking spring 21 and the bushing 20 or the profiled ring 31 is reduced.
The output body 34 is operatively connected to the spindle 12 or to a profiled rod. If a torque is introduced on the output side into the output body 34, for example by the spindle 12, then the claws of the output body 34 act on the angled end regions of the braking spring 21 in such a manner that the frictional force between the braking spring 21 and the bushing 20 or the profiled ring 31 is increased.
A linear unit with a spindle, which is not self-locking, can be coupled to the gear mechanism or gear stage driven by the driving motor 25. If the fork head 14 is then moved manually, the free wheel is actuated by the too things being disengaged. The lifting tube of the linear unit can be pulled out by hand.
The worm 18 can be placed onto the motor shaft in a manner not illustrated specifically. The rotationally fixed connection can take place, for example, by adhesive bonding or pressing. Furthermore, it is possible for the motor shaft to be divided, but with a coupling again being required. This could also take place, for example, by means of the worm 18. One section of the motor shaft would then be assigned to the worm 18 and the other to the armature of the driving motor 25. The separation of the motor shaft could be located within or outside the housing.
The invention is not restricted to the exemplary embodiments illustrated. It is essential that a braking spring 21 which forms a load moment lock is integrated in the gear components forming the gear mechanism.
Number | Date | Country | Kind |
---|---|---|---|
20 2005 011 632.7 | Jul 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/064064 | 7/10/2006 | WO | 00 | 2/5/2008 |