A gas turbine engine typically includes a fan section, a compressor section, a combustor section and a turbine section. Air entering the compressor section is compressed and delivered into the combustion section where it is mixed with fuel and ignited to generate a high-speed exhaust gas flow. The high-speed exhaust gas flow expands through the turbine section to drive the compressor and the fan section. The compressor section typically includes low and high pressure compressors, and the turbine section includes low and high pressure turbines.
The high pressure turbine drives the high pressure compressor through an outer shaft to form a high spool, and the low pressure turbine drives the low pressure compressor through an inner shaft to form a low spool. The inner shaft may also drive the fan section. A direct drive gas turbine engine includes a fan section driven by the inner shaft such that the low pressure compressor, low pressure turbine and fan section rotate at a common speed in a common direction.
A speed reduction device such as an epicyclical gear assembly may be utilized to drive the fan section such that the fan section may rotate at a speed different than the turbine section so as to increase the overall propulsive efficiency of the engine. In such engine architectures, a shaft driven by one of the turbine sections provides an input to the epicyclical gear assembly that drives the fan section at a speed different than the turbine section such that both the turbine section and the fan section can rotate at closer to optimal speeds.
Although geared architectures have improved propulsive efficiency, turbine engine manufacturers continue to seek further improvements to engine performance including improvements to thermal, transfer and propulsive efficiencies.
In one exemplary embodiment, a gas turbine engine includes a combustor. A turbine section is in fluid communication with the combustor. The turbine section includes a fan drive turbine and a second turbine. The fan drive turbine includes a plurality of turbine rotors. A fan includes a plurality of blades rotatable about an axis and a ratio between the number of fan blades and the number of fan drive turbine rotors is between about 2.5 and about 8.5. A speed change system is driven by the fan drive turbine for rotating the fan about the axis. The fan drive turbine has a first exit area at a first exit point and rotates at a first speed. The second turbine section has a second exit area at a second exit point and rotates at a second speed, which is faster than the first speed. A first performance quantity is defined as the product of the first speed squared and the first area. A second performance quantity is defined as the product of the second speed squared and the second area. A performance ratio of the first performance quantity to the second performance quantity is between about 0.5 and about 1.5.
In a further embodiment of the above, the first bearing assembly and the second bearing assembly include roller bearings.
In a further embodiment of any of the above, a compressor section that includes a first compressor driven by the fan drive turbine through the first shaft and a second compressor section driven by the second turbine through the second shaft. The first bearing supports an aft portion of the first shaft and the second bearing supports an aft portion of the second shaft.
In a further embodiment of any of the above, a forward portion of each of the first and second shafts are supported by a thrust bearing assembly.
In a further embodiment of any of the above, the performance ratio is above or equal to about 0.8.
In a further embodiment of any of the above, the speed change system includes a gearbox. The fan and the fan drive turbine both rotate in a first direction about the axis and the second turbine section rotates in a second direction opposite the first direction.
In a further embodiment of any of the above, the speed change system includes a gearbox. The fan, the fan drive turbine section, and the second turbine section all rotate in a first direction about the axis.
In a further embodiment of any of the above, the speed change system includes a gearbox. The fan and the second turbine section both rotate in a first direction about the axis and the fan drive turbine rotates in a second direction opposite the first direction.
In a further embodiment of any of the above, the speed change system includes a gearbox. The fan is rotatable in a first direction and the fan drive turbine, and the second turbine section rotates in a second direction opposite the first direction about the axis.
In a further embodiment of any of the above, a fan pressure ratio across the fan is less than about 1.5.
In a further embodiment of any of the above, the fan has 26 or fewer blades.
In a further embodiment of any of the above, fan drive turbine has between about 3 and 6 stages.
In a further embodiment of any of the above, a pressure ratio across the fan drive turbine is greater than about 5:1.
In a further embodiment of any of the above, further including a thrust in pounds force (lbf) produced by the engine at a sea level take-off condition and a volume (in3) of the turbine section. The thrust divided by the turbine section volume is greater than about 1.5 lbf/in3 and less than or equal to about 5.5 lbf/in3.
In a further embodiment of any of the above, the second turbine includes at least two stages and performs at a first pressure ratio and the fan drive turbine includes more than two stages and performs at a second pressure ratio less than the first pressure ratio.
In a further embodiment of any of the above, the fan drive turbine includes a first aft rotor attached to a first shaft and the second turbine includes a second aft rotor attached to a second shaft and a first bearing assembly and a second bearing assembly are disposed axially aft of the combustor with the first bearing assembly being disposed axially aft of a first connection between the first aft rotor and the first shaft, and the second bearing assembly being disposed axially forward of a second connection between the second aft rotor and the second shaft.
In a further embodiment of any of the above, the fan drive turbine is one of three turbine rotors. The fan drive turbine drives the fan. The other of the turbine rotors each drive a compressor rotor of a compressor section.
In a further embodiment of any of the above, the speed change system is positioned intermediate a compressor rotor and a shaft driven by the fan drive turbine.
Although the different examples have the specific components shown in the illustrations, embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from one of the examples in combination with features or components from another one of the examples.
These and other features disclosed herein can be best understood from the following specification and drawings, the following of which is a brief description.
Although the disclosed non-limiting embodiment depicts a turbofan gas turbine engine, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines; for example a turbine engine including a three-spool architecture in which three spools concentrically rotate about a common axis such that a low spool enables a low pressure turbine to drive a fan via a gearbox, an intermediate spool enables an intermediate pressure turbine to drive a first compressor of the compressor section, and a high spool enables a high pressure turbine to drive a high pressure compressor of the compressor section.
The example engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.
The low speed spool 30 generally includes an inner shaft 40 that connects a fan 42 and a low pressure (or first) compressor section 44 to a low pressure (or first) turbine section 46. The inner shaft 40 drives the fan 42 through a speed change device, such as a geared architecture 48, to drive the fan 42 at a lower speed than the low speed spool 30. The high-speed spool 32 includes an outer shaft 50 that interconnects a high pressure (or second) compressor section 52 and a high pressure (or second) turbine section 54. The inner shaft 40 and the outer shaft 50 are concentric and rotate via the bearing systems 38 about the engine central longitudinal axis A.
A combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. In one example, the high pressure turbine 54 includes at least two stages to provide a double stage high pressure turbine 54. In another example, the high pressure turbine 54 includes only a single stage. As used herein, a “high pressure” compressor or turbine experiences a higher pressure than a corresponding “low pressure” compressor or turbine.
The example low pressure turbine 46 has a pressure ratio that is greater than about 5. The pressure ratio of the example low pressure turbine 46 is measured prior to an inlet of the low pressure turbine 46 as related to the pressure measured at the outlet of the low pressure turbine 46 prior to an exhaust nozzle.
A mid-turbine frame 58 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 58 further supports bearing systems 38 in the turbine section 28 as well as setting airflow entering the low pressure turbine 46.
The core airflow C is compressed by the low pressure compressor 44 then by the high pressure compressor 52 mixed with fuel and ignited in the combustor 56 to produce high speed exhaust gases that are then expanded through the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 58 includes vanes 60, which are in the core airflow path and function as an inlet guide vane for the low pressure turbine 46. Utilizing the vane 60 of the mid-turbine frame 58 as the inlet guide vane for low pressure turbine 46 decreases the length of the low pressure turbine 46 without increasing the axial length of the mid-turbine frame 58. Reducing or eliminating the number of vanes in the low pressure turbine 46 shortens the axial length of the turbine section 28. Thus, the compactness of the gas turbine engine 20 is increased and a higher power density may be achieved.
The disclosed gas turbine engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the gas turbine engine 20 includes a bypass ratio greater than about six (6), with an example embodiment being greater than about ten (10). The example geared architecture 48 is an epicyclical gear train, such as a planetary gear system, star gear system or other known gear system, with a gear reduction ratio of greater than about 2.3.
In one disclosed embodiment, the gas turbine engine 20 includes a bypass ratio greater than about ten (10:1) and the fan diameter is significantly larger than an outer diameter of the low pressure compressor 44. It should be understood, however, that the above parameters are only exemplary of one embodiment of a gas turbine engine including a geared architecture and that the present disclosure is applicable to other gas turbine engines.
A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet. The flight condition of 0.8 Mach and 35,000 ft., with the engine at its best cruise fuel consumption relative to the thrust it produces—also known as “bucket cruise Thrust Specific Fuel Consumption (‘TSFCT’)” is the industry standard parameter of pound-mass (lbm) of fuel per hour being burned divided by pound-force (lbf) of thrust the engine produces at that minimum bucket cruise point.
“Low fan pressure ratio” is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane (“FEGV”) system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.50. In another non-limiting embodiment the low fan pressure ratio is less than about 1.45.
“Low corrected fan tip speed” is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram °R)/518.7)0.5]. The “Low corrected fan tip speed”, as disclosed herein according to one non-limiting embodiment, is less than about 1150 ft/second.
The example gas turbine engine includes the fan 42 that comprises in one non-limiting embodiment less than about 26 fan blades. In another non-limiting embodiment, the fan section 22 includes less than about 18 fan blades. Moreover, in one disclosed embodiment the low pressure turbine 46 includes no more than about 6 turbine stages schematically indicated at 34. In another non-limiting example embodiment the low pressure turbine 46 includes about 3 or more turbine stages. A ratio between the number of fan blades 42 and the number of low pressure turbine stages is between about 2.5 and about 8.5. The example low pressure turbine 46 provides the driving power to rotate the fan section 22 and therefore the relationship between the number of turbine stages 34 in the low pressure turbine 46 and the number of blades 42 in the fan section 22 disclose an example gas turbine engine 20 with increased power transfer efficiency.
Increased power transfer efficiency is provided due in part to the increased use of improved turbine blade materials and manufacturing methods such as directionally solidified castings, and single crystal materials that enable increased turbine speed and a reduced number of stages. Moreover, the example low pressure turbine 46 includes improved turbine disks configurations that further enable desired durability at the higher turbine speeds.
Referring to
In the following figures nomenclature is utilized to define the relative rotations between the various sections of the gas turbine engine 20. The fan section is shown with a “+” sign indicating rotation in a first direction. Rotations relative to the fan section 22 of other features of the gas turbine engine are further indicated by the use of either a “+” sign or a “−” sign. The “−” sign indicates a rotation that is counter to that of any component indicated with a “+” sign.
Moreover, the term fan drive turbine is utilized to indicate the turbine that provides the driving power for rotating the blades 42 of the fan section 22. Further, the term “second turbine” is utilized to indicate the turbine before the fan drive turbine that is not utilized to drive the fan 42. In this disclosed example, the fan drive turbine is the low pressure turbine 46, and the second turbine is the high pressure turbine 54. However, it should be understood that other turbine section configurations that include more than the shown high and low pressure turbines 54, 46 are within the contemplation of this disclosure. For example, a three spool engine configuration may include an intermediate turbine (not shown) utilized to drive the fan section 22 and is within the contemplation of this disclosure.
In one disclosed example embodiment (
Counter rotating the low pressure compressor 44 and the low pressure turbine 46 relative to the high pressure compressor 52 and the high pressure turbine 54 provides certain efficient aerodynamic conditions in the turbine section 28 as the generated high speed exhaust gas flow moves from the high pressure turbine 54 to the low pressure turbine 46. The relative rotations in the compressor and turbine sections provide approximately the desired airflow angles between the sections, which improve overall efficiency in the turbine section 28, and provide a reduction in overall weight of the turbine section 28 by reducing or eliminating airfoils or an entire row of vanes.
Referring to
In one disclosed example embodiment shown in
In another example gas turbine engine shown in
Referring to
In this example embodiment, a first forward bearing assembly 70 is supported on a portion of the static structure schematically shown at 36 and supports a forward end of the inner shaft 40. The example first forward bearing assembly 70 is a thrust bearing and controls movement of the inner shaft 40 and thereby the low spool 30 in an axial direction. A second forward bearing assembly 72 is supported by the static structure 36 to support rotation of the high spool 32 and substantially prevent movement along in an axial direction of the outer shaft 50. The first forward bearing assembly 70 is mounted to support the inner shaft 40 at a point forward of a connection 88 of a low pressure compressor rotor 90. The second forward bearing assembly 72 is mounted forward of a connection referred to as a hub 92 between a high pressure compressor rotor 94 and the outer shaft 50. A first aft bearing assembly 74 supports the aft portion of the inner shaft 40. The first aft bearing assembly 74 is a roller bearing and supports rotation, but does not provide resistance to movement of the shaft 40 in the axial direction. Instead, the aft bearing 74 allows the shaft 40 to expand thermally between its location and the bearing 72. The example first aft bearing assembly 74 is disposed aft of a connection hub 80 between a low pressure turbine rotor 78 and the inner shaft 40. A second aft bearing assembly 76 supports the aft portion of the outer shaft 50. The example second aft bearing assembly 76 is a roller bearing and is supported by a corresponding static structure 36 through the mid turbine frame 58 which transfers the radial load of the shaft across the turbine flow path to ground 36. The second aft bearing assembly 76 supports the outer shaft 50 and thereby the high spool 32 at a point aft of a connection hub 84 between a high pressure turbine rotor 82 and the outer shaft 50.
In this disclosed example, the first and second forward bearing assemblies 70, 72 and the first and second aft bearing assemblies 74, 76 are supported to the outside of either the corresponding compressor or turbine connection hubs 80, 88 to provide a straddle support configuration of the corresponding inner shaft 40 and outer shaft 50. The straddle support of the inner shaft 40 and the outer shaft 50 provide a support and stiffness desired for operation of the gas turbine engine 20.
Referring to
Moreover the positioning of the aft bearing 76 may also eliminate the need for other support structures such as the mid turbine frame 58 as both the high pressure turbine 54 is supported at the bearing assembly 76 and the low pressure turbine 46 is supported by the bearing assembly 74. Optionally the mid turbine frame strut 58 can provide an optional roller bearing 74A which can be added to reduce vibratory modes of the inner shaft 40.
Referring to
The roller bearing assembly 86 supports the aft portion of the outer shaft 50 on the inner shaft 40. The use of the roller bearing assembly 86 to support the outer shaft 50 eliminates the requirements for support structures that lead back to the static structure 36 through the mid turbine frame 58. Moreover, the example bearing assembly 86 can provide both a reduced shaft length, and support of the outer shaft 50 at a position substantially in axial alignment with the connection hub 84 for the high pressure turbine rotor 82 and the outer shaft 50. As appreciated, the bearing assembly 86 is positioned aft of the hub 82 and is supported through the rearmost section of shaft 50. Referring to
Positioning of the first aft bearing 74 forward of the connection 80 can be utilized to reduce the overall length of the engine 20. Moreover, positioning of the first aft bearing assembly 74 forward of the connection 80 provides for support through the mid turbine frame 58 to the static structure 36. Furthermore, in this example the second aft bearing assembly 76 is deployed in a straddle mount configuration aft of the connection 84 between the outer shaft 50 and the rotor 82. Accordingly, in this example, both the first and second aft bearing assemblies 74, 76 share a common support structure to the static outer structure 36. As appreciated, such a common support feature provides for a less complex engine construction along with reducing the overall length of the engine. Moreover, the reduction or required support structures will reduce overall weight to provide a further improvement in aircraft fuel burn efficiency.
Referring to
By incorporating a true air-turning vane 60 into the mid turbine frame 58, rather than a streamlined strut and a stator vane row after the strut, the overall length and volume of the combined turbine sections 46, 54 is reduced because the vane 60 serves several functions including streamlining the mid turbine frame 58, protecting any static structure and any oil tubes servicing a bearing assembly from exposure to heat, and turning the flow entering the low pressure turbine 46 such that it enters the rotating airfoil 100 at a desired flow angle. Further, by incorporating these features together, the overall assembly and arrangement of the turbine section 28 is reduced in volume.
The above features achieve a more or less compact turbine section volume relative to the prior art including both high and low pressure turbines 54, 46. Moreover, in one example, the materials for forming the low pressure turbine 46 can be improved to provide for a reduced volume. Such materials may include, for example, materials with increased thermal and mechanical capabilities to accommodate potentially increased stresses induced by operating the low pressure turbine 46 at the increased speed. Furthermore, the elevated speeds and increased operating temperatures at the entrance to the low pressure turbine 46 enables the low pressure turbine 46 to transfer a greater amount of energy, more efficiently to drive both a larger diameter fan 42 through the geared architecture 48 and an increase in compressor work performed by the low pressure compressor 44.
Alternatively, lower priced materials can be utilized in combination with cooling features that compensate for increased temperatures within the low pressure turbine 46. In three exemplary embodiments a first rotating blade 100 of the low pressure turbine 46 can be a directionally solidified casting blade, a single crystal casting blade or a hollow, internally cooled blade. The improved material and thermal properties of the example turbine blade material provide for operation at increased temperatures and speeds, that in turn provide increased efficiencies at each stage that thereby provide for use of a reduced number of low pressure turbine stages. The reduced number of low pressure turbine stages in turn provide for an overall turbine volume that is reduced, and that accommodates desired increases in low pressure turbine speed.
The reduced stages and reduced volume provide improve engine efficiency and aircraft fuel burn because overall weight is less. In addition, as there are fewer blade rows, there are: fewer leakage paths at the tips of the blades; fewer leakage paths at the inner air seals of vanes; and reduced losses through the rotor stages.
The example disclosed compact turbine section includes a power density, which may be defined as thrust in pounds force (lbf) produced divided by the volume of the entire turbine section 28. The volume of the turbine section 28 may be defined by an inlet 102 of a first turbine vane 104 in the high pressure turbine 54 to the exit 106 of the last rotating airfoil 108 in the low pressure turbine 46, and may be expressed in cubic inches. The static thrust at the engine's flat rated Sea Level Takeoff condition divided by a turbine section volume is defined as power density and a greater power density may be desirable for reduced engine weight. The sea level take-off flat-rated static thrust may be defined in pounds-force (lbf), while the volume may be the volume from the annular inlet 102 of the first turbine vane 104 in the high pressure turbine 54 to the annular exit 106 of the downstream end of the last airfoil 108 in the low pressure turbine 46. The maximum thrust may be Sea Level Takeoff Thrust “SLTO thrust” which is commonly defined as the flat-rated static thrust produced by the turbofan at sea-level.
The volume V of the turbine section may be best understood from
The power density in the disclosed gas turbine engine is much higher than in the prior art. Eight exemplary engines are shown below which incorporate turbine sections and overall engine drive systems and architectures as set forth in this application, and can be found in Table I as follows:
Thus, in example embodiments, the power density would be greater than or equal to about 1.5 lbf/in3. More narrowly, the power density would be greater than or equal to about 2.0 lbf/in3. Even more narrowly, the power density would be greater than or equal to about 3.0 lbf/in3. More narrowly, the power density is greater than or equal to about 4.0 lbf/in3. Also, in embodiments, the power density is less than or equal to about 5.5 lbf/in3.
Engines made with the disclosed architecture, and including turbine sections as set forth in this application, and with modifications within the scope of this disclosure, thus provide very high efficient operation, and increased fuel efficiency and lightweight relative to their thrust capability.
An exit area 112 is defined at the exit location for the high pressure turbine 54 and an exit area 110 is defined at the outlet 106 of the low pressure turbine 46. The gear reduction 48 (shown in
PQltp=(Alpt×Vlpt2) Equation 1:
PQhpt=(Ahpt×Vhpt2) Equation 2:
where Alpt is the area 110 of the low pressure turbine 46 at the exit 106, Vlpt is the speed of the low pressure turbine section; Ahpt is the area of the high pressure turbine 54 at the exit 114, and where Vhpt is the speed of the high pressure turbine 54.
Thus, a ratio of the performance quantity for the low pressure turbine 46 compared to the performance quantify for the high pressure turbine 54 is:
(Alpt×Vlpt2)/(Ahpt×Vhpt2)=PQltp/PQhtp Equation 3:
In one turbine embodiment made according to the above design, the areas of the low and high pressure turbines 46, 54 are 557.9 in2 and 90.67 in2, respectively. Further, the speeds of the low and high pressure turbine 46, 54 are 10179 rpm and 24346 rpm, respectively. Thus, using Equations 1 and 2 above, the performance quantities for the example low and high pressure turbines 46,54 are:
PQltp=(Altp×Vlpt2)=(557.9 in2)(10179 rpm)2=57805157673.9 in2 rpm2 Equation 1:
PQhpt=(Ahpt×Vhpt2)=(90.67 in2)(24346 rpm)2=53742622009.72 in2 rpm2 Equation 2:
and using Equation 3 above, the ratio for the low pressure turbine section to the high pressure turbine section is:
Ratio=PQltp/PQhpt=57805157673.9 in2 rpm2/53742622009.72 in2 rpm2=1.075
In another embodiment, the ratio is greater than about 0.5 and in another embodiment the ratio is greater than about 0.8. With PQltp/PQhpt ratios in the 0.5 to 1.5 range, a very efficient overall gas turbine engine is achieved. More narrowly, PQltp/PQhpt ratios of above or equal to about 0.8 provides increased overall gas turbine efficiency. Even more narrowly, PQltp/PQhpt ratios above or equal to 1.0 are even more efficient thermodynamically and from an enable a reduction in weight that improves aircraft fuel burn efficiency. As a result of these PQltp/PQhpt ratios, in particular, the turbine section 28 can be made much smaller than in the prior art, both in diameter and axial length. In addition, the efficiency of the overall engine is greatly increased.
Referring to
The bore radius 122 is that radius between an inner most surface of the bore and the axis. The live disk radius 124 is the radial distance from the axis of rotation A and a portion of the rotor supporting airfoil blades. The bore width 126 of the rotor in this example is the greatest width of the rotor and is disposed at a radial distance spaced apart from the axis A determined to provide desired physical performance properties.
The rotors for each of the low compressor 44 and the low pressure turbine 46 rotate at an increased speed compared to prior art low spool configurations. The geometric shape including the bore radius, live disk radius and the bore width are determined to provide the desired rotor performance in view of the mechanical and thermal stresses selected to be imposed during operation. Referring to
Accordingly, the increased performance attributes and performance are provided by desirable combinations of the disclosed features of the various components of the described and disclosed gas turbine engine embodiments.
The embodiments 200, 300 of
Although an example embodiment has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. For that reason, the following claims should be studied to determine the scope and content of this disclosure.
This application is a continuation in part of U.S. application Ser. No. 14/609,909 filed on Jan. 30, 2015, which is a continuation in part of U.S. application Ser. No. 13/645,665 filed on Oct. 5, 2012, which is a continuation in part of U.S. application Ser. No. 13/363,154 filed on Jan. 31, 2012 and claims priority to U.S. Provisional Application No. 61/653,780 filed on May 31, 2012.
Number | Name | Date | Kind |
---|---|---|---|
2608821 | Hunsaker | Sep 1952 | A |
2748623 | Hill | Jun 1956 | A |
3033002 | Davis | May 1962 | A |
3111005 | Howell et al. | Nov 1963 | A |
3526092 | Steel | Sep 1970 | A |
3673802 | Krebs et al. | Jul 1972 | A |
3713748 | Langley | Jan 1973 | A |
3729957 | Petrie et al. | May 1973 | A |
3747343 | Rosen | Jul 1973 | A |
3754484 | Roberts | Aug 1973 | A |
3861139 | Jones | Jan 1975 | A |
4463553 | Boudigues | Aug 1984 | A |
4660376 | Johnson | Apr 1987 | A |
4809498 | Giffin, III et al. | Mar 1989 | A |
4827712 | Coplin | May 1989 | A |
5010729 | Adamson et al. | Apr 1991 | A |
5074109 | Mandet et al. | Dec 1991 | A |
5307622 | Ciokajlo et al. | May 1994 | A |
5971706 | Glista et al. | Oct 1999 | A |
6339927 | DiPietro, Jr. | Jan 2002 | B1 |
6378308 | Pflüger | Apr 2002 | B1 |
6381948 | Klingels | May 2002 | B1 |
6619030 | Seda et al. | Sep 2003 | B1 |
6669393 | Schilling | Dec 2003 | B2 |
6708482 | Seda | Mar 2004 | B2 |
6732502 | Seda et al. | May 2004 | B2 |
6855089 | Poulin et al. | Feb 2005 | B2 |
7219490 | Dev | May 2007 | B2 |
7409819 | Henry | Aug 2008 | B2 |
7513103 | Orlando et al. | Apr 2009 | B2 |
7594404 | Somanath et al. | Sep 2009 | B2 |
7600370 | Dawson | Oct 2009 | B2 |
7685808 | Orlando et al. | Mar 2010 | B2 |
7694505 | Schilling | Apr 2010 | B2 |
7716914 | Schilling | May 2010 | B2 |
7721549 | Baran | May 2010 | B2 |
7765786 | Klingels et al. | Aug 2010 | B2 |
7832193 | Orlando et al. | Nov 2010 | B2 |
7882693 | Schilling | Feb 2011 | B2 |
7926259 | Orlando et al. | Apr 2011 | B2 |
8015828 | Moniz et al. | Sep 2011 | B2 |
8061969 | Durocher et al. | Nov 2011 | B2 |
8083472 | Maguire | Dec 2011 | B2 |
8091371 | Durocher et al. | Jan 2012 | B2 |
8191352 | Schilling | Jun 2012 | B2 |
8747055 | McCune et al. | Jun 2014 | B2 |
8756908 | Sheridan et al. | Jun 2014 | B2 |
8899915 | McCune et al. | Dec 2014 | B2 |
20030163983 | Seda et al. | Sep 2003 | A1 |
20030163984 | Seda et al. | Sep 2003 | A1 |
20050279100 | Graziosi et al. | Dec 2005 | A1 |
20060101804 | Stretton | May 2006 | A1 |
20060130456 | Suciu et al. | Jun 2006 | A1 |
20060179818 | Merchant | Aug 2006 | A1 |
20060288686 | Cherry et al. | Dec 2006 | A1 |
20070012026 | Dev | Jan 2007 | A1 |
20070022735 | Henry et al. | Feb 2007 | A1 |
20080098718 | Henry et al. | May 2008 | A1 |
20080148881 | Moniz et al. | Jun 2008 | A1 |
20080190095 | Baran | Aug 2008 | A1 |
20090056306 | Suciu et al. | Mar 2009 | A1 |
20090056343 | Suciu et al. | Mar 2009 | A1 |
20090080700 | Lau et al. | Mar 2009 | A1 |
20090090096 | Sheridan | Apr 2009 | A1 |
20090145102 | Roberge et al. | Jun 2009 | A1 |
20090229242 | Schwark | Sep 2009 | A1 |
20090288384 | Granitz et al. | Nov 2009 | A1 |
20100005810 | Jarrell et al. | Jan 2010 | A1 |
20100080700 | Venter | Apr 2010 | A1 |
20100126141 | Schilling | May 2010 | A1 |
20100132376 | Durocher et al. | Jun 2010 | A1 |
20100326050 | Schilling et al. | Dec 2010 | A1 |
20120017603 | Bart et al. | Jan 2012 | A1 |
20130192191 | Schwarz et al. | Aug 2013 | A1 |
20130192196 | Suciu et al. | Aug 2013 | A1 |
20130195621 | Schwarz et al. | Aug 2013 | A1 |
20130195648 | Schwarz et al. | Aug 2013 | A1 |
20130287575 | McCune et al. | Oct 2013 | A1 |
20130318998 | Schwarz et al. | Dec 2013 | A1 |
20130336791 | McCune et al. | Dec 2013 | A1 |
20140020404 | Sheridan et al. | Jan 2014 | A1 |
20140130479 | Schwarz et al. | May 2014 | A1 |
20140196472 | Kupratis et al. | Jul 2014 | A1 |
20140234079 | McCune et al. | Aug 2014 | A1 |
20150096303 | Schwarz et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
1340902 | Sep 2003 | EP |
1712738 | Oct 2006 | EP |
1921290 | May 2008 | EP |
2013102191 | Jul 2013 | WO |
Entry |
---|
Mattingly et al., Aircraft Engine Design, 2002, America Institute of Aeronautics and Astronautics, 2nd Edition, p. 292. |
Jane's Aero-Engines, Issue Seven, Copyright 2000, pp. 510-512. |
Guha, Optimum Fan Pressure Ratio for Bypass Engines with Separate or Mixed Exhaust Streams, 2001, Journal of Propulsion and Power, vol. 17, No. 5, September-October. |
Ciepluch et al., “Quiet, Powered-Lift Propulsion”, NASA Conference Publication 2077, Nov. 14-15, 1978. |
Mattingly et al., Aircraft Engine Design, 2002, American Institute of Aeronautics and Astronautics, 2nd Edition. |
Sessions, Ron, “Turbo Hydra-Matic 350 Handbook”, 1985, The Berkley Publishing Group, pp. 24-25. |
International Search Report and Written Opinion for PCT Application No. PCT/US2013/023719 mailed Apr. 4, 2013. |
International Search Report and Written Opinion for PCT Application No. PCT/US2013/023724 mailed Mar. 26, 2013. |
International Search Report and Written Opinion for PCT Application No. PCT/US2013/023730 mailed Mar. 12, 2013. |
http://www.gereports.com/ges-breakthrough-genx-debuts-at-the-paris-air-show/ dated Jun. 15, 2009 and viewed Jan. 23, 2012. |
http://www.geaviation.com/engines/commercial/genx/2b—fett.html viewed Jan. 28, 2012. |
Article—“Gears Put a New Spin on Turbofan Performance,” printed from MachineDesign.com website. |
Article—“Gas Power Cycle—Jet Propulsion Technology, a Case Study,” from MachineDesign.com website. |
Baskharone, Erian, “Principles of Turbomachinery of Air-Breathing Engines,” 2006, Cambridge University Press, pp. 261-263. |
International Search Report and Written Opinion for PCT Application No. PCT/US13/23715 mailed on Aug. 20, 2013. |
International Search Report and Written Opinion for PCT Application No. PCT/US13/23603 mailed on Aug. 27, 2013. |
International Search Report and Written Opinion for PCT Application No. PCT/US2013/023559 mailed on Nov. 5, 2013. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/023559 mailed Aug. 14, 2014. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/023715 mailed Aug. 14, 2014. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/023719 mailed Aug. 14, 2014. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/023724 mailed Aug. 14, 2014. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/023730 mailed Aug. 14, 2014. |
Nagendra, S., “Optimal rapid multidisciplinary response networks: RAPIDDISK”. 2005, Stuct Multdick Optim 29, 213-231. |
Kandebo, “Geared-Turbofan Engine Design Targets Cost, Complexity”, Aviation Week & Space Technology, New York, Feb. 23, 1998. |
European Search Report for EP Application No. 13777804.9 dated Oct. 20, 2015. |
European Search Report for EP Application No. 13778330.4 dated Oct. 15, 2015. |
European Search Report for EP Application No. 13744335.4 dated Oct. 6, 2015. |
European Search Report for EP Application No. 13743283.7 dated Oct. 5, 2015. |
European Search Report for EP Application No. 13743042.7 dated Aug. 14, 2015. |
Number | Date | Country | |
---|---|---|---|
20150192071 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61653780 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14609909 | Jan 2015 | US |
Child | 14662505 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13645665 | Oct 2012 | US |
Child | 14609909 | US | |
Parent | 13363154 | Jan 2012 | US |
Child | 13645665 | US |