The present disclosure relates to gear pumps, and more particularly to gear pumps for aircraft fuel systems.
Gear pumps are commonly used to pressurize fluid using intermeshed gears. As the gears rotate teeth of the gears come into contact with one another at an engagement location, confining therebetween a fluid portion. The gears then rotate to a disengagement position, the teeth displacing the fluid portion confined therebetween between the engagement position and the disengagement position. Between the engagement location and disengagement location leading faces of successive teeth of one gear are in sliding contact with trailing faces of successive teeth of the other gear, and confine therein the fluid portion in an inter-tooth volume divided into a forward portion and a trailing portion by a backlash gap between the trailing face of one tooth and a leading face of the other gears. As the gears rotate toward the disengagement position, the volumes of the forward and trailing portions of the inter-tooth volume change. The volume change causes pressure change within the inter-tooth volume that is typically relieved by fluid flow through the inter-tooth gap. In some gear pumps fluid flow through the backlash gap can induce pressures changes within the inter-tooth volume that cause localized vapor bubbles to form and collapse, potentially eroding surfaces and structures bounding the inter-tooth volume. Such erosion can change the inter-tooth volume geometry and influence pump performance.
Such conventional methods and systems have generally been considered satisfactory for their intended purpose. However, there is still a need in the art for improved gear pump devices. The present disclosure provides a solution for this need.
A gear pump includes a drive gear with drive gear teeth and a driven gear with driven gear teeth. The drive gear is rotatably disposed about a drive gear axis. The driven gear is rotatably disposed about a driven gear axis and is intermeshed with the drive gear such that a plurality of driven gear teeth are in sliding contact with a plurality of the driven gear teeth. One or more of the drive gear teeth or the driven gear teeth define within the tooth interior a cavity. The cavity is in fluid communication through an orifice with an inter-tooth volume defined between the contacting drive gear teeth and driven gear teeth such that fluid flows through the orifice to reduce cavitation within fluid confined within the inter-tooth volume.
In certain embodiments, the gear tooth can have a line of action defined along a leading flank of the tooth. The line of action can separate a root portion of the gear tooth flank and a working portion of the gear tooth flank. The orifice can be disposed on the working portion of the gear tooth flank. The orifice can be disposed on the root portion of the gear tooth flank. The orifice can be disposed on both the working portion and the root portion of the gear tooth flank such that the line of action of the gear tooth flank intersects the orifice. It is contemplated that the orifice can define a flow area with a circular shape, a rectangular shape, an elliptical shape, or any other shape as suitable for an intended application.
In accordance with certain embodiments, the orifice can be a first orifice, and the leading flank of the gear tooth can define a second orifice fluidly coupling the interior cavity with the external environment. Both the first orifice and the second orifice can be disposed on the working portion of the gear tooth flank. Both the first orifice and the second orifice can be disposed on the root portion of the gear tooth flank. The first orifice can be on the working portion of the gear tooth flank, and the second orifice can be on the root portion of the gear tooth flank. The line of action of the gear tooth can intersect the first orifice, and the second orifice can be disposed on the working portion of the gear tooth flank or the root portion of the gear tooth flank.
It is also contemplated that, in accordance with certain embodiments, the cavity can be a variable volume cavity. A compressible insert can be fixed within the cavity. The compressible insert can include a polymeric material, a fluoropolymer elastomer, or a fluoro-silicone material. Either or both of the drive gear and the driven gear can include a metal or metal alloy, such as carbon steel, stainless steel, a nickel alloy, an aluminum alloy, a cobalt-chromium, or any other suitable alloy. Either or both of the drive gear and the driven gear can include a plurality of interfused layers, such layers fused to one another using a selective laser sintering technique, a direct metal laser sintering technique, a selective laser melting technique, an electron beam melting technique, or any other suitable additive manufacturing technique.
A gear pump assembly includes a housing with an inlet and an outlet, a drive gear disposed between the inlet and the outlet, a driven gear with teeth intermeshed with teeth of the drive gear and disposed between the inlet and the outlet, and first and second bearing carriers disposed on axially opposite sides of the drive gear and the driven gear. The bearing carriers rotatable support the drive gear along a drive gear axis and the driven gear along a driven gear axis. Each of the teeth of the drive gear define within the respective tooth interior an internal cavity that is in fluid communication with the inlet and the outlet through an orifice defined in a leading flank of the tooth to flow fluid through the orifice and reduce cavitation within fluid disposed within the housing.
A method of controlling cavitation includes confining fluid flanks of intermeshed gear teeth, receiving fluid within a cavity defined within one of the gear teeth responsive to pressure increase in the fluid confined between the intermeshed gear teeth, and discharging fluid from the cavity responsive to pressure decrease in fluid confined between the intermeshed gear teeth.
These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of a gear pump in accordance with the disclosure is shown in
Referring to
With reference to
Drive gear 102, drive gear shaft 26, drive shaft bearings 30, first bearing carrier 34, and second bearing carrier 36 are disposed within housing 38. Drive gear 102 is fixed to drive gear shaft 26. Drive gear shaft 26 is rotatably supported for rotation about drive shaft axis A by drive shaft bearings 30. Drive shaft bearings 30 are seated within first bearing carrier 34 and second bearing carrier 36. First bearing carrier 34 and second bearing carrier 36 are fixed within housing 38 on axially opposite ends of drive gear 102. Drive gear shaft 26 is operably connected to a source of mechanical rotation, such as a motor or an accessory gearbox 24.
Driven gear 104, driven gear shaft 28, and driven shaft bearings 32 are also disposed within housing 38. Driven gear 104 is fixed to driven gear shaft 28 and is intermeshed with drive gear 102 between inlet 118 and outlet 120. Driven gear shaft 28 is rotatably supported for rotation about drive shaft axis B by driven shaft bearings 32. Driven shaft bearings 32 are seated within first bearing carrier 34 and second bearing carrier 36 on axially opposite ends of driven gear 104. While illustrated in
With reference to
Rotation of drive gear 102 and intermeshed driven gear 104 within pumping chamber 160 drives fluid about a periphery of gear pump chamber 160, causing fluid exiting outlet 120 to have greater pressure than fluid entering inlet 118. Rotation of drive gear 102 and intermeshed driven gear 104 can also cause localized regions of low fluid pressure to develop within the gear pump chamber, such as at a location proximate to disengagement position (ii) where teeth of drive gear 102 and driven gear 104 unmesh. Under certain pump operating conditions, fluid pressure proximate to disengagement position (ii) can approximate the fuel vapor pressure and cause fuel vapor to form within the region of low fluid pressure, which can lead to bubble formation within the fluid. As will be appreciated by those of skill in the art in view of the present disclosure, such bubbles generally collapse after formation and generate shock waves that travel through the fluid and impact gear pump structures bounding the fluid. The shock waves can erode the surfaces gear pump structures bounding pumping chamber 160, potentially reducing pump efficiency.
With reference to
With respect to receiving high-pressure fluid from a region of high pressure, attention is directed to a first drive gear tooth 130A. As first drive gear tooth 130A comes into contact with first driven gear tooth 140A a leading flank of first drive gear tooth 130A comes into contact with a trailing flank of driven gear tooth 140A proximate to engagement position (i). The contacting flanks confine a fluid portion within an inter-tooth volume 138. As drive gear 102 and driven gear 104 rotate the trailing flank of first driven gear tooth 140A slides upwards (relative to
Inter-tooth volume 138 is initially in fluid communication with cavity 150A through the orifice leading to cavity 150A. Consequently, as inter-tooth volume 138 gets smaller and the fluid confined therein increases in pressure, a high-pressure fluid flow 170 enters cavity 150A through an orifice 152A of first drive gear tooth 130A. High-pressure fluid flow 170 continues to charge cavity 150A with high-pressure fluid until such time as rotation of drive gear 102 and driven gear 104 causes the trailing flank of driven gear tooth 140A to occlude orifice 152A, at which point high-pressure fluid flow 170 ceases. This is illustrated with the positional arrangement of second drive gear tooth 130B and second driven gear tooth 140B, where the trailing flank of second drive gear tooth 140B occludes (i.e. blocks) orifice 152B, thereby preventing fluid flow into cavity 150B defined within second drive gear tooth 130B. As will be appreciated by those of skill in the art in view of the present disclosure, the trailing flank of second drive gear tooth 140B blocks second drive gear tooth orifice 152B for a portion of rotation of drive gear 102, causing the high pressure fluid retained therein to be displaced at pressure from a location proximate engagement position (i) to a location proximate tooth disengagement position (ii).
It is contemplated that the orifice leading into gear tooth retain the high-pressure fluid charge becomes unblocked at a rotational position proximate a region of low fluid pressure within pumping chamber. In this respect attention is directed to third drive gear tooth 130C, where orifice 152C to cavity 150C is unblocked, and from which a flow of high-pressure fluid issues as a discharge flow 172 into the region of low fluid pressure proximate disengagement position (ii). As will be appreciated by those of skill in the art in view of the present disclosure, the rotational position where the orifice becomes unblocked is determined by the location of the orifice—which in the illustrated exemplary embodiment is in the root of the tooth—thereby allowing the unblocking to coincide with arrival of the tooth at a region within pumping chamber 160 otherwise prone low pressure and, hence, cavitation. Issue of discharge flow 172 into low-pressure fluid region reduces the propensity of dissolved gases in fluid resident in the region of low fluid pressure to form bubbles. As this locally increases fluid pressure, the likelihood of cavitation erosion is reduced as the propensity of the fluid pumped by the gear pump to flash into a two-phase flow mixture from the pressure drop that takes place as the drive gear and driven gear teeth unmesh is reduced.
With reference to
As high-pressure fluid enters a gear tooth cavity, shown with high-pressure fluid flow 170 entering first drive gear tooth 150A, high-pressure fluid flow 170 exerts pressure on the insert. The force causes the compresses compressible insert 260, displacing a surface of compressible insert 260 from an expanded position 264 (shown in solid outline) to a compressed position 266 (shown in dashed outline). This loads compressible insert 260 with a spring force that, when the cavity orifice becomes unblocked, accelerates discharge of high-pressure fluid from the gear tooth cavity, as shown in an exemplary manner with discharge flow 172 issuing from third gear tooth cavity 150C.
It is contemplated that compressible material 262 include be a lightweight compressible material, such as a polymeric, a fluoro-silicone, and/or a fluoropolymer material.
Advantageously, embodiments of gear pumps having such compressible materials can retain their mechanical integrity and elasticity in corrosive environments while further reducing the net bulk modulus of the fluid and enhancing the accumulator effect of the tooth cavity. Examples of suitable fluoro-silicone materials include those marketed under the tradename Silastic®, available from Dow Corning Corporation of Midland, Mich. Examples of suitable fluoropolymer materials include those marketed under the tradename Viton®, available from E. I. Du Pont De Nemours & Company of Wilmington, Del.
With reference to
It is contemplated that first layer 370 may be interfused with second layer 372 using an additive manufacturing technique, such as a selective laser sintering technique, a direct metal laser sintering technique, a selective layer melting technique, an electron beam melting technique, or any other suitable additive manufacturing technique. Such techniques allow for drive gear 302 to include a metal of metallic alloy material 380, such as carbon steel, stainless steel, a cobalt-chromium material, a nickel-based alloy, a titanium-based alloy, and/or an aluminum alloy by way of non-limiting example.
With reference to
Referring to
Referring to
Referring to
Referring to
Referring to
The methods and systems of the present disclosure, as described above and shown in the drawings, provide for gear pumps with superior properties, including reduced or substantially eliminated cavitation during fluid pumping. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.
Number | Name | Date | Kind |
---|---|---|---|
1870192 | Butler | Aug 1932 | A |
3953160 | Bottoms | Apr 1976 | A |
3981646 | Bottoms | Sep 1976 | A |
4097206 | Schonherr | Jun 1978 | A |
4233005 | Bottoms et al. | Nov 1980 | A |
4290739 | Korse | Sep 1981 | A |
4682938 | Riordan | Jul 1987 | A |
4934913 | Pippes | Jun 1990 | A |
5288556 | Lemelson | Feb 1994 | A |
6042352 | Halter et al. | Mar 2000 | A |
6123533 | McBurnett et al. | Sep 2000 | A |
6312241 | Kamamoto et al. | Nov 2001 | B1 |
7481633 | White, Jr. | Jan 2009 | B2 |
7654806 | Hanst et al. | Feb 2010 | B2 |
7878781 | Elder | Feb 2011 | B2 |
8137085 | Ni et al. | Mar 2012 | B2 |
8672657 | Masuda et al. | Mar 2014 | B2 |
9068568 | Heitz et al. | Jun 2015 | B2 |
20050112012 | Marheineke | May 2005 | A1 |
20060024155 | Blatchford et al. | Feb 2006 | A1 |
20070178003 | Zhu et al. | Aug 2007 | A1 |
20120141316 | Wakefield et al. | Jun 2012 | A1 |
20130319153 | Ni | Dec 2013 | A1 |
20130320147 | Lewis et al. | Dec 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20170198694 A1 | Jul 2017 | US |