The invention concerns a gearshift clutch in a manual transmission for selection of at least one gearwheel, said gearshift clutch comprising at least one clutch element that is rotatable about an axis of rotation of the gearshift clutch, which clutch element, for transmitting torques about the axis of rotation, meshes at least temporarily and at least partially through at least one first tooth profile made of a metallic material with at least one second tooth profile made of a metallic material within the gearshift clutch, one of said first and second meshing tooth profiles being temporarily displaceable parallel to the axis of rotation in the other of said first and second meshing tooth profiles, so that friction occurs between said first and second meshing tooth profiles.
Gearshift clutches of the pre-cited type are the known selector sleeve or dog clutches with which, for selecting gears in manual transmissions, one gearwheel, but preferably two gearwheels can be selectively engaged. A separable positive connection is established with gearshift clutches as a rule between a transmission shaft and the selected gearwheel. Through this connection, torques resulting from the power flow in the transmission are transmitted from the transmission shaft to the gearwheel, or vice versa.
A common gearshift clutch of a generic type is described in DE 198 32 729 A1. For transmitting the torques, the individual clutch elements like the selector sleeve, the sleeve carrier and the clutch gearing on the gearwheel, engage positively with one another through gearings. The selector sleeve is seated either directly on the transmission shaft or, as is the case in DE 198 32 729 A1, on the sleeve carrier and is fixed in peripheral direction against rotation but can slide parallel to the axis of rotation of the gearshift clutch on the transmission shaft or the sleeve carrier. For this purpose, the selector sleeve engages through a tooth profile into a corresponding counter tooth profile on the transmission shaft or on the sleeve carrier. The flanks of the teeth of the tooth profiles extend parallel to the axis of rotation. For selection of a gear, the selector sleeve, permanently guided in the counter gearing on the sleeve carrier, moves parallel to the axis of rotation till the, or a further tooth profile on the selector sleeve meshes with the tooth profile of the clutch gearing. During the selection movement, frictional forces between the flanks of the teeth of the tooth profiles of the sleeve carrier and the selector sleeve that move against each other, and between the flanks of the tooth profiles of the selector sleeve and the clutch gearing that mesh with each other, have to be overcome. In the case of synchronized gearshift clutches, additional forces are produced by the friction on the sliding flanks of the selector sleeve and the locking gearing of the outer synchronizer ring when the tooth profile of the selector sleeve travels through a tooth profile of the locking gearing after synchronization. Particularly in the first hours of operation of new vehicles, the selection forces resulting from the friction are relatively high because the meshing clutch elements, or the clutch elements destined to be meshed with each other, have still to work in with each other. Gear shifting is often rough or sluggish at the beginning. The comfort of gear selection is diminished.
By gearings, tooth profiles and teeth are to be understood all elements such as wedge profiles, wedges, claws and serrations that are suited for forming permanent or separable positive connections for transmitting torques in gearshift clutches. Such tooth profiles and their teeth are generally made of iron or steel, for example of case-hardening steels, and are hardened at least on the surface.
It is an object of the invention to provide a gearshift clutch with which the aforesaid drawbacks can be avoided. This applies in particular to the first hours of operation of new vehicles in which, in some cases, it is still hard to move the meshing mechanical parts against each other that therefore have to work in with each other first.
This and other objects and advantages of the invention will become obvious from the following detailed description.
The invention achieves the above objects by the fact that at least one of the tooth profiles of the clutch elements in the gearshift clutch comprises a sliding coating on the surface of the metallic material for reducing friction. Such coatings are permanent or are configured for the run-in phase on at least one of the meshing tooth profiles or of the tooth profiles destined to mesh with each other. Such coatings also facilitate the running-in of the clutch elements that initially move only sluggishly on each other. Preferably both the tooth profiles that rub against each other are provided with a sliding coating of the same or of a different composition.
According to one feature of the invention, the sliding coating is a metal phosphate coating. Metal phosphate coatings are coatings that are deposited by phosphatizing methods on the base material at least on the gearing of the clutch elements, but preferably on the entire clutch element. Phosphatizing is a chemical/electrochemical method in which thin layers of fine- or coarse-grained and water-insoluble phosphates are deposited out of phosphoric acid solutions by immersion or spraying methods on metal surfaces. Because the metal phosphate coatings are produced by a chemical reaction with the base metal (iron or steel of the gearing), they are firmly anchored in the metal surface of the base metal and comprise a large number of voids and capillaries. This property imparts an optimal ability to the phosphate coatings to absorb oils and solid lubricant particles. Such coatings have proved to be effective as sliding coatings and connecting and carrier coatings. With a thickness of 2 μm to 15 μm (may also go up to about 20 μm), they are applied as an anticorrosive coating for transportation and storage, as a sliding coating and/or as an adhesive coating for further sliding coatings. They have a fine to coarse crystalline appearance (depending on the method) and impart to the material the ability to absorb oil and lubricants so that an efficient corrosion protection is guaranteed. They can be used on clutch elements comprising tooth profiles of iron or steel as a base material such as, for example, standard case-hardening steels made to DIN 17210, for instance, 16MnCr5, 20MnCr5, 15CrNi6, 18CrNi8, 41Cr4. The following coatings can be used:
Preferably used are manganese phosphate coatings. The process of phosphatizing itself can be followed by oiling with an emulsion. Such an oiling is sufficient for a short-term corrosion protection during transportation and storage of the clutch elements, so that an additional advantage is created.
Further features of the invention described below relate to possible alternatives to the aforesaid metal phosphate coatings as sliding coatings for use on tooth profiles:
Depending on their composition and individual constituents, the aforesaid coatings are applied by the most different of methods. The following methods may be mentioned by way of example: the so-called drying-on method, galvano-electrolytic, chemico-autocatalytic, or chemical deposition without external current, by cathodic sputtering, thermal methods, by spraying, spraying with laser beam, molten bath spraying, powder flame or wire flame spraying, arc or plasma spraying, vapor deposition (e.g. in vacuum), dipping methods, varnishing, (e.g. wet varnishing).
According to further propositions of the invention, at least the tooth profile of the selector sleeve comprises the sliding coating of the invention.
The selector sleeve is preferably seated on a selector sleeve carrier, or directly on a transmission shaft and meshes through the coated tooth profile either with a tooth profile of the sleeve carrier or of the transmission shaft. A further clutch element is the sleeve carrier whose tooth profile oriented toward the selector sleeve likewise comprises a sliding coating. Preferably, both the tooth profile of the selector sleeve and the tooth profile of the sleeve carrier that mesh with each other comprise sliding coatings of the same or of different chemical composition. According to a further feature of the invention, the tooth profile of the clutch gearing likewise comprises a sliding coating. Also included are selector sleeves that comprise more than one of the mentioned tooth profiles, for example, one tooth profile for meshing with the selector sleeve carrier and a further tooth profile for meshing with the clutch gearing. Preferably, both the tooth profiles of the selector sleeve comprise a sliding coating.
FIGS. 2 to 5 show examples of embodiment of the individual clutch elements of the gearshift clutch of
A synchronizer device integrated in the gearshift clutch 1 comprises synchronizer rings 9, 10, 11 and 12, 13, 14, that adjoin the sleeve carrier 5 along the axis of rotation 2a. The outer synchronizer rings 11 and 14 comprise respective tooth profiles 11a and 14a whose locking teeth 11b and 14b unblock the movement of the selector sleeve 6 along the axis of rotation 2a after synchronization. The tooth profile 6a of the selector sleeve travels through the tooth profile 11a or 14a of the outer synchronizer ring 11 or 14, as the case may be.
Number | Date | Country | Kind |
---|---|---|---|
DE 102 30 189.1 | Jul 2002 | DE | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP03/06870 | Jun 2003 | US |
Child | 11029791 | Jan 2005 | US |