The present invention relates to a gearshift device for a multiple-gear change box of a vehicle, and more particularly to a gearshift device with a locked gearshift rod that is guided for movement in a linear and/or axial direction.
Different solutions for guiding and locking of gearshift and/or machine elements arranged in gear change boxes are known in the art. For example, German publication no. DE 41 16 823 C2 describes a selector shaft which is non-rotatably supported for axial displacement and has associated therewith a linear guide which has a plurality of roller ball arranged around the periphery of the selector shaft and guided on the selector shaft in axial grooves, wherein the roller balls are guided on the outside of an outer ring. The unit which is also referred to as a longitudinal ball guide is stationary, for example secured on the wall of the gear housing and enables a longitudinal guiding of the selector shaft. A separate locking device is associated with the selector shaft with an axial offset to the longitudinal ball guide. The locking device interlocks with local recesses on the selector shaft for achieving precise shift positions. The separate arrangement of the roller bearing and the locking device is not only more difficult to assemble, but also requires a larger installation space.
It would therefore be desirable to provide a compact gearshift device which can be more easily assembled and which allows several machine elements or gearshift rods to be guided and locked simultaneously.
According to one aspect of the invention, a gearshift module includes both a roller bearing and a locking device housed in at least one housing. The roller bearing includes rolling elements which are arranged parallel to a longitudinal center plane or center axis of the gearshift rods in a rectangular opening of a housing. With this arrangement, a gearshift rod or several gearshift rods arranged in parallel with a rectangular cross-sectional profile can be guided by the rolling elements. In addition, a locking device which is axially offset from the roller bearing is integrated in the gearshift module. For this purpose, the locking device has a configuration wherein a separate locking element is associated with each gearshift rod. With the invention, several selector rods arranged in a plane are centrally supported and/or guided in a gearshift module and can be locked in specified shift positions. Such gearshift module is particularly advantageous for a multiple-gear gear change box, for example a gear change box having more than five gears. The gearshift rods are guided in a very compact space and can be operated separately, requiring minimal mounting space. The shift module according to the invention can also be easily handled during assembly, since it can be pre-mounted before insertion into the gearbox.
According to an advantageous embodiment, the roller bearing of a shift module includes axially spaced-apart cylindrical rolling elements which are inserted into a cage. The cage is surrounded by a housing or integrated in the housing, to provide a longitudinal guide for the rolling elements. In accordance with the rectangular shape of the cutout, the rolling elements are arranged in two mutually offset horizontal and two mutually offset vertical parallel tracks, to form a rectangular cutout, which enable the gearshift rods to be guided with minimal friction.
The manufacturing costs of the cage can advantageously be reduced by assembling the cage from individual cage elements. Preferably, the cage elements are configured so that the wall thickness or the width of the gearshift rod is identical to the width of a cage element. The individual cage elements can be formfittingly connected with each other, for example, with a snap connection or secured with a dovetail guide. This makes possible a modular construction of cages, wherein a number of cage elements is assembled into a cage that corresponds to the number of gearshift rods. The gearshift module of the invention can be employed for gearshift rods with a rectangular cross-sectional profile, including gearshift rods with a square cross-sectional profile.
Advantageously, the gearshift rods are supported without play for improving the quality of the guide. A crowned or embossed rolling element track can be employed which can be formed directly during the manufacture of the housing without cutting. Alternatively or in addition, the gearshift rod may also be constructed with embossments in a region of the roller bearing to effect the play-free support. A housing with stamped clearance zones, in which resilient tongues engage, can also provide a play-free support, with the rolling elements supported by the resilient tongues.
The gearshift module of the invention includes the roller bearing and the locking device which are each integrated in a housing and together form an assembly. Advantageously, the housing is formed as a deep-drawn part which enables manufacture without cutting and hence reduces cost, in particular when shift modules are manufactured in large numbers.
In an alternative embodiment, the invention includes a shift module with at least one housing manufactured of plastic. Preferably, this is the housing for the locking device. The invention also includes a shift module, in which both the housing for the locking device as well as the housing for the roller bearing are made of plastic.
The housings are preferably joined by a flange connection, which is advantageously configured so as to include bores for fastening screws configured to stationarily secure the entire shift module, for example on the gear housing. Alternatively, the housings are rigidly connected in the region of the flange connection, preferably by a weld, or are formfittingly secured by a releaseable snap connection.
For forming a locking element, the locking device of the shift module according to the invention includes a spring-biased locking ball, which interlocks with a corresponding recess of the gearshift rod, for attaining precisely defined shift positions. Advantageously, the locking element is securely mounted in a two-stage housing.
Other features and advantages of the present invention will be more readily apparent upon reading the following description of currently preferred exemplified embodiments of the invention with reference to the accompanying drawing, in which:
a shows a detail of
b shows a detail of
a shows a detail of
While the invention has been illustrated and described in connection with preferred embodiments shown and described in detail, it is not intended to be limited to the details shown since various modifications and structural changes may be made without departing in any way from the spirit of the present invention. The embodiments were chosen and described in order to best explain the principles of the invention and practical application to thereby enable a person skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
Number | Date | Country | Kind |
---|---|---|---|
101 43 360 | Sep 2001 | DE | national |
This application is a continuation-in-part of prior filed U.S. application Ser. No. 10/232,463, filed Aug. 30, 2002, now abandoned which claims the priority of German Patent Application, Serial No. 101 43 360.3, filed Sep. 4, 2001, pursuant to 35 U.S.C. 119(a)–(d), and claims the benefit of prior filed provisional application, Appl. No. 60/317,168, filed Sep. 5, 2001, pursuant to 35 U.S.C. 119(e), the subject matter of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2023796 | Sorensen et al. | Dec 1935 | A |
2520453 | Burmist | Aug 1950 | A |
3003827 | Hentschke | Oct 1961 | A |
3927919 | Bunzli | Dec 1975 | A |
3971599 | Shio | Jul 1976 | A |
4515415 | Szenger | May 1985 | A |
4544212 | Parzefall et al. | Oct 1985 | A |
4567785 | Reynolds et al. | Feb 1986 | A |
4592249 | Lehmann et al. | Jun 1986 | A |
4898566 | Hakansson | Feb 1990 | A |
5140866 | Schetter et al. | Aug 1992 | A |
5161926 | Schulz | Nov 1992 | A |
5707153 | Steinberger et al. | Jan 1998 | A |
5718515 | Furuhashi | Feb 1998 | A |
6027426 | Holman | Feb 2000 | A |
6474868 | Geyer et al. | Nov 2002 | B1 |
6948401 | Zernickel et al. | Sep 2005 | B1 |
Number | Date | Country |
---|---|---|
41 16 823 | Nov 1992 | DE |
Number | Date | Country | |
---|---|---|---|
20050241426 A1 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
60317168 | Sep 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10232463 | Aug 2002 | US |
Child | 11175482 | US |