Further advantages, features and details of the invention may be gathered from the following description of preferred exemplary embodiments and with reference to the drawing in which:
The base 2 has a width b and possesses a major axis A of length l. By contrast, the sliding block 3 is designed with a smaller width, this taking place by means of a setback 4. A sliding surface 5 is thereby formed, which runs at an angle w with respect to the major axis A.
A tension wheel 10 illustrated in
It is essential in this case that a major axis A2 runs at an angle b1 with respect to the radius R. The two sidewalls 12.1 and 12.2 likewise run at an angle with respect to the radius R.
The functioning of the present invention is explained in more detail with reference to
The actuator 1 engages with the sliding block 3 into the other recess 11, the sliding surface 5 of the sliding block 3 bearing against an obliquely set sidewall 12.1 of the recess 11.
If the gearwheel set 6/10 is then set in rotational movement, the actuator 1 presses outward under the action of the centrifugal force. If, for example, the actuator weighs 5 g, this weight increases to about 100 kg due to the centrifugal force at about 4000 revolutions of the gearwheel set. Under this weight, the actuator 1, when it slides radially outward, also presses with the sliding surface 5 against the sidewall 12.1 of the tension wheel 10. At the same time, the base 2 slips radially outward in the recess 8, so that the tension wheel 10 is rotated by an amount in relation to the basic wheel 6. An offset of the tooth 7.1, indicated by dots, of the tension wheel 10 with respect to the tooth 7 of the basic wheel 6 thereby takes place. As a result, a possible play in a gearwheel transmission is compensated. The offset takes place through the angle w2.
As soon as the rotational speed of the gearwheel set is reduced, the actuator 1 should also move back into its initial position again. This takes place preferably under the pressure of a helical spring, not shown in any more detail, which is inserted into a blind hole 14, indicated by dashes, in the actuator 1 and preferably in the base 2 there.
An essential parameter of the present invention is the angle w1 or w at which the sliding surface 5 or the major axis A2 of the recess 11 is set with respect to the radius R. The larger this selected angle becomes, the less pressure can be exerted on the tension wheel.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 028 181.0 | Jun 2006 | DE | national |