All publications, including patents and patent applications, mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.
The present invention generally relates to cavitational ultrasound therapy (e.g., Histotripsy). More specifically, the present invention relates to testing cavitational ultrasound transducers with gel phantoms.
Histotripsy is a non-invasive tissue ablation modality that focuses pulsed ultrasound from outside the body to a target tissue inside the body. Histotripsy mechanically damages tissue through cavitation of microbubbles.
Histotripsy is the mechanical disruption via acoustic cavitation of a target tissue volume or tissue embedded inclusion as part of a surgical or other therapeutic procedure. Histotripsy works best when a whole set of acoustic and transducer scan parameters controlling the spatial extent of periodic cavitation events are within a rather narrow range. Small changes in any of the parameters can result in discontinuation of the ongoing process.
Histotripsy is a new therapy modality and no methods currently exist to give an immediate indication of the spatial extent of tissue disruption. A range or workable parameters can be determined in the lab using in vitro and in vivo tissue disruption experiments with subsequent histological examination of the targeted tissue. This process can be time-consuming as histological slides take hours to days to process and read. While such experiments are necessary before clinical application, a quick “indicator” approach as a rapid check on system performance would be highly useful, particularly when a new optimized parameter set for particular clinical application is being designed.
In some embodiments, a cavitational damage indicator phantom is provided comprising a container, a gel disposed in the container, and an indicator disposed in the container, the indicator configured to change visibly during application of cavitational ultrasound energy to the indicator.
In some embodiments, the indicator is embedded between first and second layers of the gel. In other embodiments, the indicator comprises a layer having a thickness of less than 5 mm. In some embodiments, the gel comprises an agarose gel. In some embodiments, the indicator comprises a plurality of layers disposed in the container or in the gel. In additional embodiments, the indicator comprises a plurality of carbon particles. In some embodiments, the indicator comprises a plurality of microspheres. The microspheres can comprise polystyrene beads, or microencapsulated beads, for example. In one embodiment, the indicator comprises red blood cells.
In some embodiments, the visible change of the indicator can be detected by a human eye. In some embodiments, the visible change comprises the carbon particles becoming darker during application of cavitational ultrasound energy to the indicator. In additional embodiments, the visible change comprises a breakdown of the size of the carbon particles. In another embodiment, the visible change comprises spilling a pigment from the microspheres during application of cavitational ultrasound energy to the indicator.
In one embodiment, the container is at least partially transparent. In another embodiment, the gel is transparent or translucent.
A cavitational damage testing system is provided, comprising a tank filled with an acoustic medium, and a cavitational ultrasound phantom disposed in the tank, the cavitational ultrasound phantom comprising a container, a gel disposed in the container, and an indicator disposed in the container, the indicator configured to change visibly under application of cavitational ultrasound energy to the indicator.
In some embodiments, the indicator is embedded between first and second layers of the gel. In other embodiments, the indicator comprises a layer having a thickness <5 mm. In one embodiment, the gel comprises a transparent agarose gel.
In some embodiments, the indicator comprises a plurality of carbon particles. In other embodiments, the indicator comprises a plurality of microspheres. The microspheres can comprise polystyrene beads or microencapsulated beads. In another embodiment, the indicator comprises red blood cells.
In some embodiments, the cavitational damage testing system further comprises a mount disposed on or near the tank, the mount configured to receive a cavitational ultrasound transducer. In one embodiment, the mount is configured to align a focal point of the cavitational ultrasound transducer with the cavitational ultrasound phantom.
In one embodiment, the cavitational damage testing system further comprises a cavitational ultrasound therapy transducer configured to deliver cavitational ultrasound energy to the cavitational ultrasound phantom.
In another embodiment, the cavitational damage testing system further comprises an imaging system. The imaging system can be a high-speed video camera or an ultrasound imaging system, for example.
In some embodiments, the acoustic medium comprises degassed water.
A method of testing a Histotripsy transducer is provided, comprising applying Histotripsy energy to a Histotripsy phantom, and observing a visual change in the Histotripsy phantom.
In some embodiments, the visual change comprises a color change.
In another embodiment, the Histotripsy phantom comprises carbon particles disposed in a transparent gel and the visual change comprises observing the carbon particles change to a darker color.
In one embodiment, the Histotripsy phantom comprises microspheres disposed in a transparent gel and the visual change comprises releasing a dye from the microspheres during application of Histotripsy energy to the Histotripsy phantom.
In another embodiment, the method comprises, prior to the applying step, placing the Histotripsy phantom in a testing tank, and aligning a focal point of a Histotripsy transducer with the Histotripsy phantom.
In some embodiments, the applying Histotripsy energy step comprises applying Histotripsy energy to the Histotripsy phantom with the Histotripsy transducer.
In some embodiments, the Histotripsy phantom resembles a human prostate. In another embodiment, the visual change observed in the Histotripsy phantom is indicative of tissue damage to be expected during a Histotripsy procedure in a human patient.
Several novel methods, procedures, and devices for quick and inexpensive testing of cavitational ultrasound (e.g., such as Histotripsy) transducers are disclosed herein. The devices and methods can also allow preliminary testing of new acoustic parameter or acoustic scanning algorithms without the use of in vivo or excised tissues with subsequent histological studies, and without the need for tedious and time consuming hydrophone field pattern scanning.
The devices and methods described herein can also allow instantaneous verification of the efficacy of transducer and/or acoustic parameter sets, either via plain sight observation or microscopic observation prior to clinical application. The methods involve fabrication of optically transparent gels with indicator inclusions that are affected by incident Histotripsy ultrasound in a way that usefully mimics tissue damage to give immediate visual feedback of the volume and degree of damage produced. The indicator(s) can show up as a change in color or transparency produced by cavitation of the kind that produces tissue disruption or mechanical fractionation. Since the methods and devices described herein allow instant visual feedback, they can also be a useful research tool.
A useful indicator device, which may be referred to henceforth as a “phantom,” can be fabricated by embedding materials, agents, reagents, extracted cells, or processed tissue extracts (or fragments) in a transparent gel, which can be affected or changed immediately in some visible way by application of cavitational ultrasound (e.g., Histotripsy) energy to the indicator. Because the phantoms can be easily used and give immediate results under plain sight observation, these phantoms can be packaged and preserved for long shelf life to be used with Histotripsy systems.
The methods described herein can also be used to check on efficacy of acoustic parameter changes, and for testing new transducer spatial/temporal scan patterns and parameters. These methods lend themselves to rapid verification, even in the clinic, of the spatial extent of tissue damage expected for a given set of acoustic and scan parameters. Such indicator devices or phantoms can be useful adjuncts to commercially available Histotripsy systems and may be used as consumable products by those who have purchased Histotripsy systems.
By using the parameters intended for therapeutic application, a user can see in real time, or immediately after an exposure paradigm, the spatial extent and degree of tissue disruption that might be expected during the actual treatment. This can be seen visually (by the unaided eye), by a color change or transparency change of an indicator in the phantom that would indicate the volume extent of a lesion expected in the therapeutic application. A photographic or microscopic record can also be produced for further assessment at much higher resolution. Photographic or microscopic devices can be included with some embodiments of Histotripsy testing systems described herein.
The substrate for a viable indicator phantom can be a transparent gel consisting of an aqueous solution of a gelling agent (e.g., agarose, acrylamide, etc.) into which is placed an indicator which can be disrupted or changed in some way by cavitating histotripsy pulses. The change produces a color change in the affected volume showing through the transparent phantom exactly the volume affected by the transducer (with appropriate acoustic and scan parameter set) chosen for testing. Gel design can include such important parameters as melting temperature, optical transparency, hardness, mechanical stability, and shelf life of the product.
Referring now to the drawings,
The indicator can be cast into the gel in different geometries, e.g., in thin sheets or planes at high concentration with very transparent layers on top and bottom. Such a construct would allow a cross-section to be seen very clearly with boundary effects clearly assessed with just a glance or in more detail by macro-photography or microscopy. Multiple layers of indicators within the gel can allow such assessments to be made in different planes. Or, a whole volume-effect can be discerned if the indicator is distributed uniformly throughout the gel and container. Indicator shapes mimicking target volumes can also be cast in the container, allowing for practice phantoms useful in finding optimized histotripsy parameter sets. For example, an indicator can have the shape of a prostate. In some embodiments, scatterers can be added to the phantom to make the acoustic properties of the gel similar to soft tissue, including impedance and attenuation. The containers can also include skeletal models embedded in the gel (e.g., a skeletal model of the pelvis in the prostate indicator embodiment) designed to mimic ultrasound attenuation of surrounding bone and tissues.
Other variations are possible including gel phantoms with a monolayer of cells grown on a surface for surface erosion studies, or a monolayer grown on a surface overfilled with another transparent volume. This can be used to study the effects of Histotripsy on a layer of cells, perhaps producing a diffusion resistant barrier, useful for testing drug delivery modes for Histotripsy.
The indicator 106 can be configured to change visually during application of cavitational ultrasound (e.g., Histotripsy) energy to the indicator. The visual change of the indicator can be, for example, a color change (e.g., a change from white to red), a change in darkness (e.g., a change from light to dark or from dark to light), or a change in transparency (e.g., from transparent to translucent or opaque).
The tank can further include a mount configured to receive the Histotripsy transducer 210. In some embodiments, the mount is moveable to allow for alignment of focal point 220 of the Histotripsy transducer with the Histotripsy phantom, and more particularly, with the indicator 106 of the phantom. In other embodiments, the phantom itself can be mounted to a moveable mount, such as a mechanical arm, and the position of the transducer on the tank is fixed. In this embodiment, the phantom can be moved to align a focal point 220 of the transducer with the indicator of the phantom.
The Histotripsy testing system can also include an imaging system 218 to allow for photographic, microscopic, ultrasound, and/or video imaging of the phantom prior to, during, and after application of cavitational ultrasound (e.g., Histotripsy) energy. The imaging system can comprise a still camera, a video camera, an ultrasound imaging probe, and/or a microscope, for example.
Many types of indicators can be used in phantom 100 and system 200 of
Referring back to
Referring again to
In some embodiments of the dye beads, the dye can be a fluorescent dye which is quenched either in the encapsulated or un-encapsulated state, thus producing a clear or fluorescent volume when the enclosing capsules are disrupted by Histotripsy cavitation. This embodiment may require subsequent exposure to an excitation illumination for assay after the test procedure, most likely with ultraviolet light.
In yet another embodiment, the indicator can be a dye or fluorescent dye conjugated with the gel producing a material which cannot diffuse freely in the gel, which might then be exposed to Histotripsy sequences. The resulting cavitation can produce free radicals (e.g., active oxygen species, or hydroxyl radicals) all of which may bleach or chemically modify the indicator dye changing (or removing) its color or fluorescent activity. In any case, such modification would produce a volume easily seen as that which is affected by the cavitation activity.
Although not shown in the drawings, an alternate embodiment of an indicator can comprise polystyrene beads. The polystyrene beads can show a visual change between treated and untreated portions. However, since the polystyrene beads are semi-translucent, they can be more difficult to differentiate against the gel layers than the other embodiments described above.
In an additional embodiment the indicator 106 can comprise red blood cells. Application of cavitational ultrasound (e.g., Histotripsy) energy to a gel phantom having a red blood cell indicator can create changes to the indicator visible to the naked eye, as described above in the other embodiments. Histotripsy pulses, if adjusted for tissue disruption, will break up the red blood cells in a manner very similar to disruption of living tissue with the same boundary between affected and non affected tissue. When the red blood cells are disrupted, the gel is rendered clear (no pink color) in the disrupted volume clearly showing at one glance the spatial extent of the disrupted volume. This volume can show the extent of the cavitation activity and, therefore, the expected damage zone to be produced clinically. Therefore, a very quick visual test of the transducer can be possible immediately before treatment. Moreover, the boundary can be assessed by macro photography, or microscopy, to see boundary effects more clearly.
In other embodiments, gels with temperature indicators as well as cavitation indicators can be used for assessing possible thermal complications of certain (e.g., high PRF) parameters.
It is also important to note that the phantom can be engineered to give both visual (it is a transparent gel with specially formulated inclusions) as well as the same ultrasound imaging feedback as real tissue for different histotripsy dose. Thus one could fabricate a clear gel phantom which would look under ultrasound imaging just like the real tissue to be treated, (e.g., the prostate, uterine fibroid, breast cancer, etc.) Then, one could see instantly with the eye or ultrasound imaging how any new parameter set or focus scanning paradigm would likely work in vivo. Lesions in the phantoms show reduced echogenecity in B-mode images than untreated areas of the phantom.
The Histotripsy phantoms described herein can have two modes of application: a spatial indicator mode and a dose indicator mode. Spatial mode can give a look at the volume likely to be affected. Red blood cells or other mechanically disruptable (fragile) inclusions (including disruptable dyes or pigments) work well in spatial mode. These types of phantoms show virtually the same spatial indications of damage as real tissue but can be immediately and visually assessed without waiting for histology. The results are also clearly shown in ultrasound imaging, which is the same imaging to be used in vivo.
To obtain a dose phantom, some number of inclusions can be included in the transparent gel, each of which is progressively more resistant to mechanical disruption, even closely paralleling results in specific cells or tissues (i.e., important tissues and cell organelles can be identified along with their sensitivity to mechanical disruption). If “n” of these are identified, there would be “n” different inclusions. Then, for a given dose, or likely the number of pulses at a set intensity, PRF, and pulse width which is sufficient to disrupt 50% of a given structure compared to nearby untreated tissue. A phantom can then be examined (several modes of examination possible) which gives the percent of the different indicators which have been damaged. For example, indicators can be made with damage sensitivities similar to cell membranes, mitochondria, endoplasmic reticulum, and cell nuclei, as well as for complex tissue like vascular capillaries or glandular functional units.
Indicators can be assessed after exposure by looking optically for surviving structures (polymer beads for example) or by the fluorescent dye released with indicator fractionation. Multiple dyes of different color could be assessed in one shot by a spectrophotometer. Ultrasound can give the same image (with the proper phantom) as expected in tissue both treated and untreated.
Therefore, a given tissue under treatment (e.g., prostate or liver) can have a tissue specific phantom which would give some degree of confidence in final clinical result based on exposure and assessment of the phantom.
Methods of using a Histotripsy testing system, such as system 200 of
In one embodiment, a method of testing a Histotripsy transducer comprises applying cavitational ultrasound (e.g., Histotripsy) energy to a Histotripsy phantom and observing a visual change in the Histotripsy phantom. The Histotripsy phantom can be any of the phantoms described herein. For example, the Histotripsy phantom can comprise a transparent or translucent container filled with a gel (such as agarose gel), and can include an indicator disposed in the gel. The cavitational ultrasound (e.g., Histotripsy) energy can be applied by a Histotripsy transducer to the phantom.
In some embodiments, the method can further comprise inserting the phantom into a tank, filling the tank with an acoustic medium (such as degassed water), and directing the cavitational ultrasound (e.g., Histotripsy) energy through the acoustic medium towards the Histotripsy phantom to align a focal point of the Histotripsy transducer with an indicator of the phantom. In some embodiments, the Histotripsy transducer can be mounted to the tank, and the transducer and/or mount can be moved to align the focal point of the transducer with the indicator of the phantom. In other embodiments, the phantom itself can be mounted to the tank, and the phantom can be moved to align the indicator with the focal point of the transducer.
In some embodiments, the method can comprise observing a visual change in the Histotripsy phantom with the naked eye. The Histotripsy phantoms described herein advantageously allow direct visualization of changes to the phantom resulting from application of cavitational ultrasound (e.g., Histotripsy) energy without having to wait for histology. In other embodiments, the method can comprise observing the visual change in the Histotripsy phantom with a camera (such as a high-speed video camera), with an ultrasound imaging system, or with a microscope, for example.
In some embodiments, the method can comprise observing a visual change in a carbon particles indicator. In these embodiments, the areas or “lesions” within the phantom that receive cavitational ultrasound (e.g., Histotripsy) energy will darken in color as energy is applied. The method can comprise observing both efficacy and dosage of the Histotripsy therapy. In other embodiments, the method can comprise observing a visual change in a dye-bead indicator. In these embodiments, the areas or “lesions” within the phantom that receive cavitational ultrasound (e.g., Histotripsy) energy will change in color from transparent or translucent to the color of the dye contained within the beads (e.g., such as red, black, blue, yellow, etc). These methods can comprise observing both efficacy and dosage of the Histotripsy therapy. In yet additional embodiments, the method can comprise observing a visual change in a red blood cells indicator. In these embodiments, the areas or “lesions” within the phantom that receive cavitational ultrasound (e.g., Histotripsy) energy will change in color from red or pink to a lighter shade or to a transparent/translucent color as energy is applied.
In some embodiments, the phantom itself can be designed to resemble either visually or physically an organ or tissue to be treated. For example, the phantom can be shaped or include an indicator shaped to the size and tissue density of a human prostate. Applying energy from the Histotripsy transducer to the prostate shaped indicator can allow the user to test or verify various Histotripsy parameters and dosages before conducting an actual Histotripsy procedure. Other tissue shapes and tissue densities can be formed in the phantom, including shapes and densities similar to the liver, kidney, various tumors such as uterine fibroids, breast fibroadenomas, or carcinoma, for example.
As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.
This application claims the benefit under 35 U.S.C. 119 of U.S. Provisional Patent Application No. 61/244,619, filed Sep. 22, 2009, titled “Gel Phantoms for Testing Cavitational Ultrasound (Histotripsy) Transducers”. This application is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3679021 | Goldberg et al. | Jul 1972 | A |
4024501 | Herring et al. | May 1977 | A |
4117446 | Alais | Sep 1978 | A |
4269174 | Adair | May 1981 | A |
4277367 | Madsen et al. | Jul 1981 | A |
4351038 | Alais | Sep 1982 | A |
4406153 | Ophir et al. | Sep 1983 | A |
4440025 | Hayakawa et al. | Apr 1984 | A |
4453408 | Clayman | Jun 1984 | A |
4483345 | Miwa | Nov 1984 | A |
4549533 | Cain et al. | Oct 1985 | A |
4550606 | Drost | Nov 1985 | A |
4622972 | Giebeler, Jr. | Nov 1986 | A |
4641378 | McConnell et al. | Feb 1987 | A |
4689986 | Carson et al. | Sep 1987 | A |
4757820 | Itoh | Jul 1988 | A |
4791915 | Barsotti et al. | Dec 1988 | A |
4819621 | Ueberle et al. | Apr 1989 | A |
4829491 | Saugeon et al. | May 1989 | A |
4856107 | Dory | Aug 1989 | A |
4865042 | Umemura et al. | Sep 1989 | A |
4888746 | Wurster et al. | Dec 1989 | A |
4890267 | Rudolph | Dec 1989 | A |
4922917 | Dory | May 1990 | A |
4938217 | Lele | Jul 1990 | A |
4991151 | Dory | Feb 1991 | A |
4995012 | Dory | Feb 1991 | A |
RE33590 | Dory | May 1991 | E |
5014686 | Schafer | May 1991 | A |
5065751 | Wolf | Nov 1991 | A |
5080101 | Dory | Jan 1992 | A |
5080102 | Dory | Jan 1992 | A |
5091893 | Smith et al. | Feb 1992 | A |
5092336 | Fink | Mar 1992 | A |
5097709 | Masuzawa et al. | Mar 1992 | A |
5111822 | Dory | May 1992 | A |
5143073 | Dory | Sep 1992 | A |
5143074 | Dory | Sep 1992 | A |
5150711 | Dory | Sep 1992 | A |
5158070 | Dory | Oct 1992 | A |
5158071 | Umemura et al. | Oct 1992 | A |
5163421 | Bernstein et al. | Nov 1992 | A |
5209221 | Riedlinger | May 1993 | A |
5215680 | D'Arrigo | Jun 1993 | A |
5219401 | Cathignol et al. | Jun 1993 | A |
5230340 | Rhyne | Jul 1993 | A |
5295484 | Marcus et al. | Mar 1994 | A |
5316000 | Chapelon et al. | May 1994 | A |
5354258 | Dory | Oct 1994 | A |
5380411 | Schlief | Jan 1995 | A |
5409002 | Pell | Apr 1995 | A |
5431621 | Dory | Jul 1995 | A |
5435311 | Umemura et al. | Jul 1995 | A |
5443069 | Schaetzle | Aug 1995 | A |
5469852 | Nakamura et al. | Nov 1995 | A |
5474071 | Chapelon et al. | Dec 1995 | A |
5474531 | Carter | Dec 1995 | A |
5501655 | Rolt et al. | Mar 1996 | A |
5520188 | Hennige et al. | May 1996 | A |
5523058 | Umemura et al. | Jun 1996 | A |
5524620 | Rosenschein | Jun 1996 | A |
5540909 | Schutt | Jul 1996 | A |
5542935 | Unger et al. | Aug 1996 | A |
5558092 | Unger et al. | Sep 1996 | A |
5563346 | Bartelt et al. | Oct 1996 | A |
5566675 | Li et al. | Oct 1996 | A |
5573497 | Chapelon | Nov 1996 | A |
5580575 | Unger et al. | Dec 1996 | A |
5582578 | Zhong et al. | Dec 1996 | A |
5590657 | Cain et al. | Jan 1997 | A |
5601526 | Chapelon et al. | Feb 1997 | A |
5617862 | Cole et al. | Apr 1997 | A |
5648098 | Porter | Jul 1997 | A |
5666954 | Chapelon et al. | Sep 1997 | A |
5676692 | Sanghvi et al. | Oct 1997 | A |
5678554 | Hossack et al. | Oct 1997 | A |
5694936 | Fujimoto et al. | Dec 1997 | A |
5695460 | Siegel et al. | Dec 1997 | A |
5717657 | Ruffa | Feb 1998 | A |
5724972 | Petrofsky | Mar 1998 | A |
5743863 | Chapelon | Apr 1998 | A |
5759162 | Oppelt et al. | Jun 1998 | A |
5769790 | Watkins et al. | Jun 1998 | A |
5797848 | Marian et al. | Aug 1998 | A |
5823962 | Schaetzle et al. | Oct 1998 | A |
5827204 | Grandia et al. | Oct 1998 | A |
5836896 | Rosenschein | Nov 1998 | A |
5849727 | Porter et al. | Dec 1998 | A |
5873902 | Sanghvi et al. | Feb 1999 | A |
5879314 | Peterson et al. | Mar 1999 | A |
5932807 | Mallart | Aug 1999 | A |
5947904 | Hossack et al. | Sep 1999 | A |
6001069 | Tachibana et al. | Dec 1999 | A |
6022309 | Celliers et al. | Feb 2000 | A |
6036667 | Manna et al. | Mar 2000 | A |
6088613 | Unger | Jul 2000 | A |
6093883 | Sanghvi et al. | Jul 2000 | A |
6113558 | Rosenschein et al. | Sep 2000 | A |
6126607 | Whitmore, III et al. | Oct 2000 | A |
6128958 | Cain | Oct 2000 | A |
6143018 | Beuthan et al. | Nov 2000 | A |
6176842 | Tachibana et al. | Jan 2001 | B1 |
6308585 | Nilsson et al. | Oct 2001 | B1 |
6308710 | Silva | Oct 2001 | B1 |
6309355 | Cain et al. | Oct 2001 | B1 |
6318146 | Madsen et al. | Nov 2001 | B1 |
6321109 | Ben-Haim et al. | Nov 2001 | B2 |
6344489 | Spears | Feb 2002 | B1 |
6391020 | Kurtz et al. | May 2002 | B1 |
6413216 | Cain et al. | Jul 2002 | B1 |
6419648 | Vitek et al. | Jul 2002 | B1 |
6470204 | Uzgiris et al. | Oct 2002 | B1 |
6488639 | Ribault et al. | Dec 2002 | B1 |
6490469 | Candy | Dec 2002 | B2 |
6500141 | Irion et al. | Dec 2002 | B1 |
6506154 | Ezion et al. | Jan 2003 | B1 |
6506171 | Vitek et al. | Jan 2003 | B1 |
6508774 | Acker et al. | Jan 2003 | B1 |
6511428 | Azuma et al. | Jan 2003 | B1 |
6511444 | Hynynen et al. | Jan 2003 | B2 |
6522142 | Freundlich | Feb 2003 | B1 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6543272 | Vitek | Apr 2003 | B1 |
6559644 | Froundlich et al. | May 2003 | B2 |
6576220 | Unger | Jun 2003 | B2 |
6599288 | Maguire et al. | Jul 2003 | B2 |
6607498 | Eshel | Aug 2003 | B2 |
6612988 | Maor et al. | Sep 2003 | B2 |
6613004 | Vitek et al. | Sep 2003 | B1 |
6613005 | Friedman et al. | Sep 2003 | B1 |
6626854 | Friedman et al. | Sep 2003 | B2 |
6626855 | Weng et al. | Sep 2003 | B1 |
6635486 | Madsen et al. | Oct 2003 | B2 |
6645162 | Friedman et al. | Nov 2003 | B2 |
6648839 | Manna et al. | Nov 2003 | B2 |
6666833 | Friedman et al. | Dec 2003 | B1 |
6685640 | Fry et al. | Feb 2004 | B1 |
6685657 | Jones | Feb 2004 | B2 |
6705994 | Vortman et al. | Mar 2004 | B2 |
6719449 | Laugharn, Jr. et al. | Apr 2004 | B1 |
6719694 | Weng et al. | Apr 2004 | B2 |
6735461 | Vitek et al. | May 2004 | B2 |
6736814 | Manna et al. | May 2004 | B2 |
6770031 | Hynynen et al. | Aug 2004 | B2 |
6790180 | Vitek | Sep 2004 | B2 |
6852082 | Strickberger et al. | Feb 2005 | B2 |
6869439 | White et al. | Mar 2005 | B2 |
6890332 | Truckai et al. | May 2005 | B2 |
6929609 | Asafusa | Aug 2005 | B2 |
7004282 | Manna et al. | Feb 2006 | B2 |
7059168 | Hibi et al. | Jun 2006 | B2 |
7128711 | Medan et al. | Oct 2006 | B2 |
7128719 | Rosenberg | Oct 2006 | B2 |
7175596 | Vitek et al. | Feb 2007 | B2 |
7223239 | Schulze et al. | May 2007 | B2 |
7258674 | Cribbs et al. | Aug 2007 | B2 |
7273458 | Prausnitz et al. | Sep 2007 | B2 |
7273459 | Desilets et al. | Sep 2007 | B2 |
7300414 | Holland et al. | Nov 2007 | B1 |
7311679 | Desilets et al. | Dec 2007 | B2 |
7331951 | Eshel et al. | Feb 2008 | B2 |
7341569 | Soltani et al. | Mar 2008 | B2 |
7347855 | Eshel et al. | Mar 2008 | B2 |
7358226 | Dayton et al. | Apr 2008 | B2 |
7367948 | O'Donnell et al. | May 2008 | B2 |
7374551 | Liang et al. | May 2008 | B2 |
7377900 | Vitek et al. | May 2008 | B2 |
7442168 | Novak et al. | Oct 2008 | B2 |
7462488 | Madsen et al. | Dec 2008 | B2 |
7559905 | Kagosaki et al. | Jul 2009 | B2 |
7656638 | Laakso et al. | Feb 2010 | B2 |
20010039420 | Burbank et al. | Nov 2001 | A1 |
20010041163 | Sugita et al. | Nov 2001 | A1 |
20020045890 | Celliers et al. | Apr 2002 | A1 |
20020078964 | Kovac et al. | Jun 2002 | A1 |
20020099356 | Unger et al. | Jul 2002 | A1 |
20030092982 | Eppstein | May 2003 | A1 |
20030112922 | Burdette et al. | Jun 2003 | A1 |
20030157025 | Unger et al. | Aug 2003 | A1 |
20030221561 | Milo | Dec 2003 | A1 |
20040060340 | Hibi et al. | Apr 2004 | A1 |
20040127815 | Marchitto et al. | Jul 2004 | A1 |
20040138563 | Moehring et al. | Jul 2004 | A1 |
20040236248 | Svedman | Nov 2004 | A1 |
20040243021 | Murphy et al. | Dec 2004 | A1 |
20050038339 | Chauhan et al. | Feb 2005 | A1 |
20050154314 | Quistgaard | Jul 2005 | A1 |
20050283098 | Conston et al. | Dec 2005 | A1 |
20060060991 | Holsteyns et al. | Mar 2006 | A1 |
20060074303 | Chornenky et al. | Apr 2006 | A1 |
20060206028 | Lee et al. | Sep 2006 | A1 |
20060241466 | Ottoboni et al. | Oct 2006 | A1 |
20060241523 | Sinelnikov et al. | Oct 2006 | A1 |
20060264760 | Liu et al. | Nov 2006 | A1 |
20070010805 | Fedewa et al. | Jan 2007 | A1 |
20070016039 | Vortman et al. | Jan 2007 | A1 |
20070065420 | Johnson | Mar 2007 | A1 |
20070083120 | Cain et al. | Apr 2007 | A1 |
20070161902 | Dan | Jul 2007 | A1 |
20070219448 | Seip et al. | Sep 2007 | A1 |
20080013593 | Kawabata | Jan 2008 | A1 |
20080082026 | Schmidt et al. | Apr 2008 | A1 |
20080126665 | Burr et al. | May 2008 | A1 |
20080214964 | Chapelon et al. | Sep 2008 | A1 |
20080262345 | Fichtinger et al. | Oct 2008 | A1 |
20080262486 | Zvuloni et al. | Oct 2008 | A1 |
20080312561 | Chauhan | Dec 2008 | A1 |
20080319356 | Cain et al. | Dec 2008 | A1 |
20090030339 | Cheng et al. | Jan 2009 | A1 |
20090112098 | Vaezy et al. | Apr 2009 | A1 |
20090177085 | Maxwell et al. | Jul 2009 | A1 |
20090198094 | Fenster et al. | Aug 2009 | A1 |
20090211587 | Lawrentschuk | Aug 2009 | A1 |
20090227874 | Suri et al. | Sep 2009 | A1 |
20100069797 | Cain et al. | Mar 2010 | A1 |
20100125225 | Gelbart et al. | May 2010 | A1 |
20100286519 | Lee et al. | Nov 2010 | A1 |
20100317971 | Fan et al. | Dec 2010 | A1 |
20110040190 | Jahnke et al. | Feb 2011 | A1 |
20110172529 | Gertner | Jul 2011 | A1 |
20120010541 | Cain et al. | Jan 2012 | A1 |
20120029353 | Slayton et al. | Feb 2012 | A1 |
20120092724 | Pettis | Apr 2012 | A1 |
20120130288 | Holland et al. | May 2012 | A1 |
20120189998 | Kruecker et al. | Jul 2012 | A1 |
20120271167 | Holland et al. | Oct 2012 | A1 |
20130053691 | Kawabata et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
3544628 | Jun 1987 | DE |
3817094 | Nov 1989 | DE |
0017382 | Oct 1980 | EP |
0320303 | Jun 1989 | EP |
0332871 | Sep 1989 | EP |
0384831 | Aug 1990 | EP |
0755653 | Jan 1997 | EP |
2099582 | Dec 1982 | GB |
2010029650 | Feb 2010 | JP |
WO9406355 | Mar 1994 | WO |
WO 0232506 | Apr 2002 | WO |
Entry |
---|
Hall et al.; Imaging feedback of tissue liquefaction (histotripsy) in ultrasound surgery; IEEE Ultrasonic Symposium, Sep. 18-21, 2005, pp. 1732-1734. |
Cain, Charles A.; Histrotripsy: controlled mechanical sub-division of soft tissues by high intensity pulsed ultrasound (conference presentation); American Institute of Physics (AIP) Therapeutic Ultrasound: 5th International Symposium on Therapeutic Ultrasound; 44 pgs.; Oct. 27-29, 2005. |
Parsons et al.; Pulsed cavitational ultrasound therapy for controlled tissue homogenization; Ultrasound in Med. & Biol.; vol. 32; pp. 115-129; 2006. |
Roberts et al.; Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney; Journal of Urology; vol. 175; pp. 734-738; 2006. |
Xu et al.; A new strategy to enhance cavitational tissue erosion by using a high intensity initiating sequence; IEEE Trans Ultrasonics Ferroelectrics and Freq Control; vol. 53; pp. 1412-1424; 2006. |
Xu et al.; Controlled ultrasound tissue erosion: the role of dynamic interaction between insonation and microbubble activity; Journal of the Acoustical Society of America; vol. 117; pp. 424-435; 2005. |
Xu et al.; Controlled ultrasound tissue erosion; IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control; vol. 51; pp. 726-736; 2004. |
Xu et al.; Effects of acoustic parameters on bubble cloud dynamics in ultrasound tissue erosion (histotripsy); Journal of the Acoustical Society of America; vol. 122; pp. 229-236; 2007. |
Xu et al.; High Speed Imaging of Bubble Clouds Generated in Pulsed Ultrasound Cavitational Therapy Histotripsy; IEEE Trans Ultrason Ferroelectr Freq Control; ; vol. 54; No. 10; pp. 2091R2101; Oct. 2007. |
Xu et al.; Investigation of intensity threshold for ultrasound tissue erosion; Ultrasound in Med. & Biol.; vol. 31; pp. 1673-1682; 2005. |
Xu et al.; Optical and acoustic monitoring of bubble cloud dynamics at a tissue-fluid interface in ultrasound tissue erosion; Journal of the Acoustical Society of America; vol. 121; pp. 2421-2430; 2007. |
Hall et al.; U.S. Appl. No. 12/868,768 entitled “Micromanipulator Control Arm for Therapeutic and Imaging Ultrasound Transducers,” filed Aug. 26, 2010. |
Cain et al.; U.S. Appl. No. 12/868,775 entitled “Devices and Methods for Using Controlled Bubble Cloud Cavitation in Fractionating Urinary Stones,” filed Aug. 26, 2010. |
Appel et al.; Stereoscopic highspeed recording of bubble filaments; Ultrasonics Sonochemistry; vol. 11(1); pp. 39-42; Jan. 2004. |
Atchley et al.; Thresholds for cavitation produced in water by pulsed ultrasound; Ultrasonics.; vol. 26(5); pp. 280-285; Sep. 1988. |
Bland et al.; Surgical Oncology; McGraw Hill; Chap. 5 (Cavitron Ultrasonic Aspirator); pp. 461-462; Jan. 29, 2001. |
Burdin et al.; Implementation of the laser diffraction technique for cavitation bubble investigations; Particle & Particle Systems Characterization; vol. 19; pp. 73-83; May 2002. |
Holland et al.; Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment; J. Acoust. Soc. Am.; vol. 88(5); pp. 2059-2069; Nov. 1990. |
Huber et al.; Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter; Physics in Medicine and Biology; vol. 43 (10); pp. 3113-3128; Oct. 1998. |
Lauterborn et al.; Cavitation bubble dynamics studied by high speed photography and holography: part one; Ultrasonics; vol. 23; pp. 260-268; Nov. 1985. |
Miller et al.; A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective; Ultrasound in Medicine and Biology; vol. 22; pp. 1131-1154; (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 1996. |
Ohl et al.; Bubble dynamics, shock waves and sonoluminescence; Phil. Trans. R. Soc. Lond. A; vol. 357; pp. 269-294; (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 1999. |
Pishchalnikov et al.; Cavitation Bubble Cluster Activity in the Breakage of Kidney Stones by Lithotripter Shock Waves; J Endourol.; 17(7): 435-446; Sep. 2003. |
Porter et al.; Reduction in left ventricular cavitary attenuation and improvement in posterior myocardial contrast . . . ; J Am Soc Echocardiography; pp. 437-441; Jul.-Aug. 1996. |
Roy et al.; A precise technique for the measurement of acoustic cavitation thresholds and some preliminary results; Journal of the Acoustical Society of America; vol. 78(5); pp. 1799-1805; Nov. 1985. |
Sapozhnikov et al.; Ultrasound-Guided Localized Detection of Cavitation During Lithotripsy in Pig Kidney in Vivo; IEEE Ultrasonics Symposium, vol. 2; pp. 1347-1350; Oct. 7-10, 2001. |
Sokolov et al.; Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field; Journal of the Acoustical Society of America; vol. 110(3); pp. 1685-1695; Sep. 2001. |
Teofilovic, Dejan; U.S. Appl. No. 13/446,783 entitled “Systems and Methods for Obtaining Large Creepage Isolation on Printed Circuit Boards,” filed Apr. 13, 2012. |
Cain, Charles A.; U.S. Appl. No. 13/570,708 entitled “Lesion Generation Through Bone Using Histotripsy Therapy Without Aberration Correction,” filed Aug. 9, 2012. |
Cain et al.; U.S. Appl. No. 13/648,955 entitled “Pulsed Cavitational Therapeutic Ultrasound With Dithering,” filed Oct. 10, 2012. |
Cain et al.; U.S. Appl. No. 13/648,965 entitled “Imaging Feedback of Histotripsy Treatments with Ultrasound Transient Elastography,” filed Oct. 10, 2012. |
Avago Technologies; ACNV2601 High Insulation Voltage 10 MBd Digital Opotcoupler. Avago Technologies Data Sheet; pp. 1-11; Jul. 29, 2010. |
Number | Date | Country | |
---|---|---|---|
20110067624 A1 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
61244619 | Sep 2009 | US |