FIELD OF THE INVENTION
The invention relates to materials and methods for biosynthesis of fostriecin, fostriecin derivatives and analogs, and other useful polyketides. The invention finds application in the fields of molecular biology, chemistry, recombinant DNA technology, human and veterinary medicine, and agriculture.
BACKGROUND OF THE INVENTION
Polyketides are complex natural products that are produced by microorganisms such as fungi and mycelial bacteria. There are about 10,000 known polyketides, from which numerous pharmaceutical products in many therapeutic areas have been derived, including: adriamycin, epothilone, erythromycin, mevacor, rapamycin, tacrolimus, tetracycline, rapamycin, and many others. However, polyketides are made in very small amounts in microorganisms and are difficult to make or modify chemically. For this and other reasons, biosynthetic methods are preferred for production of therapeutically active polyketides. See PCT publication Nos. WO 93/13663; WO 95/08548; WO 96/40968; WO 97/02358; and WO 98/27203; U.S. Pat. Nos. 4,874,748; 5,063,155; 5,098,837; 5,149,639; 5,672,491; 5,712,146 and 6,410,301; Fu et al., 1994, Biochemistry 33: 9321-26; McDaniel et al., 1993, Science 262: 1546-1550; Kao et al., 1994, Science, 265: 509-12, and Rohr, 1995, Angew. Chem. Int. Ed. Engl. 34: 881-88, each of which is incorporated herein by reference.
Biosynthesis of polyketides may be accomplished by heterologous expression of Type I or modular polyketide synthase enzymes (PKSs). Type I PKSs are large multifunctional protein complexes, the protein components of which are encoded by multiple open reading frames (ORF) of PKS gene clusters. Each ORF of a Type I PKS gene cluster can encode one, two, or more modules of ketosynthase activity. Each module activates and incorporates a two-carbon (ketide) unit into the polyketide backbone. Each module also contains multiple ketide-modifying enzymatic activities, or domains. The number and order of modules, and the types of ketide-modifying domains within each module, determine the structure of the resulting product. Polyketide synthesis may also involve the activity of nonribosomal peptide synthetases (NRPSs) to catalyze incorporation of an amino acid-derived building block into the polyketide, as well as post-synthesis modification, or tailoring enzymes. The modification enzymes modify the polyketide by oxidation or reduction, addition of carbohydrate groups or methyl groups, or other modifications.
In PKS polypeptides, the regions that encode enzymatic activities (domains) are separated by linker regions. These regions collectively can be considered to define boundries of the various domains. Generally, this organization permits PKS domains of different or identical substrate specificities to be substituted (usually at the level of encoding DNA) from other PKSs by various available methodologies. Using this method, new polyketide synthases (which produce novel polyketides) can be produced.
It will be recognized from the foregoing that genetic manipulation of PKS genes and heterologous expression of PKSs can be used for the efficient production of known polyketides, and for production of novel polyketides structurally related to, but distinct from, known polyketides (see references above, and Hutchinson, 1998, Curr. Opin. Microbiol. 1: 319-29; Carreras and Santi, 1998, Curr. Opin. Biotech. 9: 403-11; and U.S. Pat. Nos. 5,712,146 and 5,672,491, each of which is incorporated herein by reference).
One valuable class of polyketides includes fosteriecin and its analogs. Fostriecin (CI-920) is a structurally novel phosphate ester produced by Streptomyces pulveraceus having potent antitumor activity. Fostriecin's antitumor activity is believed to result from selective inhibition of protein phosphatase 2A (PP2A) and protein phosphatase 4 (PP4). Both synthetic and naturally produced analogs of fostriecin with similar activities have been described. See, e.g., Lewy et al., 2002, “Fostriecin: Chemistry and Biology” Current Medicinal Chemistry 9: 2005-2032, and references cited therein, for additional information regarding fostriecin and its analogs.
The chemical structure of fostriecin and congeners PD 113,270 and PD 113, 271, as reported by Lewy et al., 2002, is shown below:
- 1. Fostriecin
- 2. PD 113, 270
- 3. PD 113, 271
Phase I clinical trials of fostriecin were halted due to the unpredictable chemical purity and storage instability of the compound. Accordingly, there is a need for methods for producing fostriecin and both known and novel analogs with sufficient purity and, preferably, with superior storage stability. Fostriecin is synthesized by a modular PKS and modification enzymes.
There is a need for recombinant nucleic acids, host cells, and methods of using those host cells to produce polyketides including but not limited to fostriecin and fostriecin analogs.
These and other needs are met by the materials and methods provided by the present invention.
SUMMARY OF THE INVENTION
The present invention provides recombinant nucleic acids encoding polyketide synthases and polyketide modification enzymes. The recombinant nucleic acids of the invention are useful in the production of polyketides, including but not limited to fostriecin and fostriecin analogs and derivatives, in recombinant host cells.
In nature, the biosynthesis of fostriecin is performed by a modular PKS, the fostriecin polyketide synthase, and polyketide modification enzymes. Nucleic acids encoding the PKS, modification enzymes, and other polypeptides, have been cloned and characterized. The present invention provides polypeptide, modules, and domains of the fostriecin polyketide synthase, and corresponding nucleic acid sequences encoding them and/or parts thereof. Such compounds are useful, for example, in the production of hybrid PKS enzymes and the recombinant genes that encode them. The present invention also provides post-synthesis modification enzymes, and other proteins involved in fostriecin biosynthesis, and corresponding nucleic acid sequences encoding them and/or parts thereof.
The present invention provides these nucleic acid sequences in isolated, synthetic or recombinant form, including but not limited to isolated form sequences incorporated into a vector of the chromosomal DNA of a host cell.
The present invention also provides recombinant host cells that contain the nucleic acids of the invention. In one embodiment, the host cell provided by the invention is a Streptomyces host cell that produces a fostriecin modification enzyme and/or a domain, module, or protein of the fostriecin PKS. Methods for the genetic manipulation of Streptomyces are described in Kieser et al, “Practical Streptomyces Genetics,” The John Innes Foundation, Norwich (2000), which is incorporated herein by reference in its entirety.
Accordingly, there is provided a recombinant PKS wherein at least 10, 15, 20, or more consecutive amino acids in one or more domains of one or more modules thereof are derived from one or more domains of one or more modules of fostriecin polyketide synthase. In an embodiment at least an entire domain of a module of fostriecin polyketide synthase is included. Representative fostriecin PKS domains useful in this aspect of the invention include, for example, KR, DH, ER, AT, ACP and KS domains. In one embodiment of the invention, the PKS assembled from polypeptides encoded by DNA molecules that comprise coding sequences for PKS domains, wherein at least one encoded domain corresponds to a domain of fostriecin PKS. In such DNA molecules, the coding sequences are operably linked to control sequences so that expression therefrom in host cells is effective. In this manner, fostriecin PKS coding sequences or modules and/or domains can be made to encode PKS to biosynthesize compounds having antibiotic or other useful bioactivity other than fostriecin.
In one aspect, the invention provides a recombinant DNA molecule comprising a sequence encoding at least one domain, and optionally one or more modules, of fostriecin polyketide synthase polypeptide. In an embodiment, the recombinant DNA molecule includes a sequence encoding an open reading frame encoding a polypeptide encoded by fosA, fosB, fosC, fosD, fosE or fosf or encoding a conservative variant of such a polypeptide. In an embodiment, the recombinant DNA molecule encodes a modified fostriecin polyketide synthase polypeptide in which at least one fostriecin PKS domain is inactivated.
In one aspect, the invention provides a recombinant DNA molecule that encodes a chimeric polyketide synthase (PKS) module composed of at least a portion of fostriecin PKS and at least a portion of a second PKS for a polyketide other than fostriecin.
DNA molecules of the invention may be integrated into a host cell chromosome, or into a recombinant vector such as an expression vector in which the DNA molecule is operably linked to a promoter.
In one aspect, the invention provides a host cell comprising a recombinant DNA molecule as described above.
In one aspect, the invention provides a recombinant Streptomyces pulveraceus cell in which at least one domain-encoding region of an endogenous fostriecin polyketide synthase gene is deleted or otherwise inactivated. In an embodiment, the domain has been replaced by a different PKS domain. Also provided is a recombinant Streptomyces pulveraceus cell in which at least polypeptide-encoding ORF of the fostriecin polyketide synthase gene cluster is deleted or otherwise inactivated.
In one aspect, the invention provides an isolated, synthetic or recombinant DNA molecule having a sequence encoded by the insert of pKOS279-117.1F70; pKOS279-117.3F45; pKOS279-117.2F15; or pKos279-117.5F58. The DNA molecule may contain sequence encoding a complete fostriecin PKS module or domain.
The invention provides a method of producing a polyketide by culturing a cell under conditions under which the cell produces the polyketide, where the cell contains a recombinant polynucleotide synthase that contains at least one domain from the Streptomyces pulveraceus fostriecin polyketide synthase, and where the cell does not make the polyketide in the absence of the recombinant polynucleotide. In one embodiment, the domain is encoded by a subsequence of SEQ ID NO:1 or a sequence that hybridizes under stringent conditions to a subsequence of SEQ ID NO:1. In one embodiment the cell is not Streptomyces pulveraceus. In an embodiment, the polyketide is fostriecin, PD 113,270 or PD 113, 271.
The invention provides a method of producing a polyketide by recombinantly modifying a gene in the fostriecin PKS gene cluster of a cell comprising the gene cluster to produce a recombinant cell, or obtaining a progeny of the recombinant cell and growing the cell, or progeny, under conditions whereby a polyketide other than fostriecin is synthesized by the cell. Non-limiting examples of such modifications include (a)substitution of a fostriecin AT domain with an AT domain having a different specificity; (b) inactivation of a domain of a fostriecin polyketide synthase module, where the domain is selected from the group consisting of a KS domain, an AT domain, an ACP domain, a KR domain, a DH domain, and an ER domain; or, (c) substitution of KS domain, an ACP domain, a KR domain, a DH domain, or an ER domain with a domain having a different specificity.
The aforementioned methods can also include the step of recovering the synthesized polyketide. The recovered polyketide may be chemically modified and/or formulated for administration to a mammal.
These and other aspects of the present invention are described in more detail in the Detailed Description of the Invention, below.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1A, 1B and 1C show the organization of the fostriecin PKS biosynthetic gene cluster.
FIG. 2 shows hypothetical roles for the nine modules of the fostriecin polyketide synthase complex (modules 0-8)) by showing hypothetical PKS-bound intermediates, the product released from the PKS (in brackets) and the result of post-PKS modification enzymes (symbolized by three arrows).
FIG. 3 shows the approximate relationship of cosmids from “overlap family 1,” encoding the fostriecin PKS gene cluster as estimated during cloning.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides recombinant materials for the production of polyketides including, but not limited to, fostriecin and its derivatives and analogs. In an aspect, the invention provides recombinant nucleic acids encoding at least one domain of a fostriecin polyketide synthase. In another aspect, the present invention provides recombinant nucleic acids encoding an enzyme involved in fostriecin biosynthesis or post synthesis modification. Methods and host cells for using these nucleic acid sequences to produce or modify a polyketide in recombinant host cells are also provided. Given the valuable properties of fostriecin and its derivatives and analogs, means to produce useful quantities of these molecules in a highly pure form is of great value. The nucleotide sequences of the fostriecin biosynthetic gene cluster encoding domains, modules and polypeptides of fostriecin polyketide synthase, and modifying enzymes, and other polypeptides can be used, for example, to make both known and novel polyketides. Further, the fostriecin modifying enzymes can be used to modify other polyketides and produce derivatives with enhanced solubility and/or bioactivity. The compounds produced using methods of the invention may be used, without limitation, as antitumor agents or for other therapeutic or research uses, as intermediates for further enzymatic or chemical modification, as agents for in vitro inhibition of protein phosphatase and/or for other therapeutic, industrial and agricultural purposes.
The polynucleotides encoding fostriecin PKS domains, modules and polypeptides, and encoding fostriecin modifying proteins of the present invention were isolated from Streptomyces pulveraceus as described in Example 1. Tables 1-4, and FIG. 1 describe the genes or open reading frames of the fostriecin polyketide synthase gene cluster and the encoded polypeptides, modules and domains. These tables and figure also describe the characteristics of non-coding sequences and sequences encoding other genes of the fostriecin gene cluster, including genes encoding regulatory proteins, transport proteins, and others.
It will be understood that each reference herein to a nucleic acid sequence is also intended to refer to and include the complementary sequence, unless otherwise stated or apparent from context. Provided with the nucleic acid sequences disclosed herein, it will be trivial for the reader to immediately determine the sequence of a complementary stand based on base-pairing rules (e.g., A:T, A:U, C:G). Similarly, provided with the nucleic acid sequences disclosed herein one of skill can easily, by reference to the genetic code, identify open reading frames and the amino acid sequences of encoded polypeptides.
Table 1, below, describes the positions of fostriecin polyketide synthase polypeptides, modules and domains with reference to the DNA sequence set forth in Table 3 (SEQ ID NO:1). “Complement” indicates that the polypeptide sequence is encoded by the complement of SEQ ID NO: 1. Abbreviations used in the table, and elsewhere in the specification, include: ketosynthase (“KS”) domain or activity; acyltransferase (“AT”) domain or activity; acyl carrier protein (“ACP”) domain or activity; ketoreductase (“KR”) domain or activity, a dehydratase (“DH”) domain or activity; enoylreductase (“ER”) domain or activity; thioesterase (“TE”).
TABLE 1
|
|
Fostriecin polyketide synthase ORFs, Modules and Domains
Position in SEQ ID NO: 1
ORF# aacoding strand (nucleotide pair)
|
fosC3542Modules 3-4complement(56750 . . . 67378)
KS3complement(65783 . . . 67063)
AT3complement(64382 . . . 65431)
DH3complement(63770 . . . 64357)
KR3complement(62039 . . . 62839)
ACP3complement(61757 . . . 62014)
KS4complement(60401 . . . 61678)
AT4complement(59054 . . . 60067)
KR4complement(57368 . . . 58105)
ACP4complement(57014 . . . 57271)
fosD1738Module 5complement(51497 . . . 56713)
KS5complement(55328 . . . 56605)
AT5complement(53942 . . . 54994)
KR5complement(52241 . . . 52918)
ACP5complement(51809 . . . 52066)
fosE3537Modules 6-7;complement(40820 . . . 51433)
KS6complement(50024 . . . 51334)
AT6complement(48608 . . . 49648)
DH6complement(47993 . . . 48574)
KR6complement(46151 . . . 47017)
ACP6complement(45854 . . . 46114)
KS7complement(44474 . . . 45754)
AT7complement(43058 . . . 44098)
KR7complement(41429 . . . 42229)
ACP7complement(41093 . . . 41350)
fosF1932Module 8 and TE;complement(34979 . . . 40774)
KS8complement(39428 . . . 40672)
AT8complement(38003 . . . 39079)
KR8complement(36212 . . . 37009)
ACP8complement(35912 . . . 36169)
TEcomplement(34979 . . . 35911)
fosA3414Modules 0-1complement(17358 . . . 27602)
KS0qcomplement(26019 . . . 27278)
AT0complement(24722 . . . 25640)
ACP0acomplement(24414 . . . 24671)
ACP0bcomplement(24039 . . . 24296)
KS1complement(22701 . . . 23990)
AT1complement(21336 . . . 22394)
DH1complement(20715 . . . 21302)
ER1complement(18813 . . . 19685)
KR1complement(17952 . . . 18797)
ACP1complement(17631 . . . 17891)
fosB1880Module 2complement(11623 . . . 17265)
KS2complement(15883 . . . 17163)
AT2complement(14455 . . . 15576)
DH2complement(13855 . . . 14424)
KR2complement(12247 . . . 13026)
ACP2complement(11920 . . . 12177)
|
In one aspect of the invention, purified and isolated DNA molecules are provided that comprise coding sequences for one or more domains or modules of a Streptomyces pulveraceus fostriecin polyketide synthase. Examples of such encoded domains include fostriecin polyketide synthase KR, DH, ER, AT, ACP, and KS domains. In one aspect, the invention provides DNA molecules which sequences encoding one or more polypeptides of fostriecin polyketide synthase are operably linked to expression control sequences that are effective in suitable host cells to produce fostriecin, its analogs or derivatives, or novel polyketides. In one aspect, the complete set of synthase-encoding genes is provided.
In one aspect, the invention provides an isolated or recombinant DNA molecule comprising a nucleotide sequence that encodes at least one domain, alternatively at least one module, alternatively at least one polypeptide, involved in the biosynthesis of a fostriecin.
In one aspect, the invention provides an isolated or recombinant DNA molecule encoding a polypeptide or portion thereof, including a PKS module or domain, encoded in the Streptomyces pulveraceus fostriecin polyketide synthase gene cluster sequence.
In one aspect, the invention provides an isolated or recombinant DNA molecule encoding a complete polypeptide, module or domain comprising an amino acid sequence encoded in SEQ ID NOS: 1, 23, 27 or 33, or a conservatively modified variant thereof. In one aspect, the invention provides an isolated or recombinant DNA molecule encoding a subsequence from a polypeptide, module or domain comprising an amino acid sequence encoded in SEQ ID NOS: 1, 23, 27 or 33, or a conservatively modified variant thereof. The subsequence may comprise a sequence encoding a catalytically active fragment (having an activity characteristic of the domain, e.g., AT, KR, KS, DH, ER, ACP, TE activity) of a PKS module or domain. The DNA molecule may comprise a sequence encoding a polypeptide involved in post-synthesis modification of the fostriecin precursor or encoding another polypeptide of the fostriecin gene cluster.
In one aspect, the invention provides the present invention provides an isolated or recombinant DNA molecule comprising a nucleotide sequence that encodes an open reading frame, module or domain having an amino acid sequence identical or substantially similar to an ORF, module or domain encoded by an ORF of the fostriecin polyketide synthase cluster sequence. A polypeptide, module or domain having a sequence substantially similar to a reference sequence may have substantially the same activity as the reference protein, module or domain (e.g., when integrated into an appropriate PKS framework using methods known in the art).
In an embodiment, the invention provides a nucleotide sequence that encodes a polypeptide, such as a conservatively modified variant of a polypeptide, module or domain involved in the biosynthesis of a fostriecin, and comprises at least 10, 20, 25, 30, 35, 40, 45, or 50 contiguous base pairs identical to a sequence of SEQ ID NOS: 1, 23, 27 or 33. In one aspect, the invention provides an isolated or recombinant DNA molecule comprising a nucleotide sequence that encodes at least one polypeptide, module or domain that comprises at least 10, 15, 20, 30, or 40 contiguous residues of a corresponding polypeptide, module or domain comprising a sequence of SEQ ID NOS: 1, 23, 27 or 33.
It will be understood that, due to the degeneracy of the genetic code, a large number of DNA sequences encode the amino acid sequences of the domains, modules, and proteins of the fostriecin PKS, the enzymes involved in fostriecin modification and other polypeptides encoded by the genes of the fostriecin biosynthetic gene cluster. The present invention contemplates all such DNAs. For example, it may be advantageous to optimize sequence to account for the codon preference of a host organism. The invention also contemplates naturally occurring genes encoding the fostriecin PKS and modifying (or “tailoring”) enzymes that are polymorphic or other variants.
As used herein, a conservatively modified variant of a protein or fragment (e.g., domain) has substantial sequence identity to a reference amino acid sequence or is encoded by a DNA substantial sequence identity to a reference nucleic acid sequence.
The terms “substantial identity,” “substantial sequence identity,” or “substantial similarity” in the context of nucleic acids, refers to a measure of sequence similarity between two polynucleotides. Substantial sequence identity can be determined by hybridization under stringent conditions, by direct comparison, or other means. For example, two polynucleotides can be identified as having substantial sequence identity if they are capable of specifically hybridizing to each other under stringent hybridization conditions. Other degrees of sequence identity (e.g., less than “substantial”) can be characterized by hybridization under different conditions of stringency. “Stringent hybridization conditions” refers to conditions in a range from about 5° C. to about 20° C. or 25° C. below the melting temperature (Tm) of the target sequence and a probe with exact or nearly exact complementarity to the target. As used herein, the melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half-dissociated into single strands. Methods for calculating the Tm of nucleic acids are well known in the art (see, e.g., Berger and Kimmel, 1987, Methods In Enzymology, Vol. 152: Guide To Molecular Cloning Techniques, San Diego: Academic Press, Inc. and Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd Ed., Vols. 1-3, Cold Spring Harbor Laboratory). Typically, stringent hybridization conditions for probes greater than 50 nucleotides are salt concentrations less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion at pH 7.0 to 8.3, and temperatures at least about 50° C., preferably at least about 60° C. As noted, stringent conditions may also be achieved with the addition of destabilizing agents such as formamide, in which case lower temperatures may be employed. Exemplary conditions include hybridization at 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO4 pH 7.0, 1 mM EDTA at 50° C.; wash with 2×SSC, 1% SDS, at 50° C.
Alternatively, substantial sequence identity can be described as a percentage identity between two nucleotide or amino acid-sequences. Two nucleic acid sequences are considered substantially identical when they are at least about 70% identical, or at least about 80% identical, or at least about 90% identical, or at least about 95% or 98% identical. Two amino acid sequences are considered substantially identical when they are at least about 60%, sequence identical, more often at least about 70%, at least about 80%, or have at least about 90% sequence identity. Percentage sequence (nucleotide or amino acid) identity is typically calculated using art known means to determine the optimal alignment between two sequences and comparing the two sequences. Optimal alignment of sequences may be conducted using the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2: 482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48: 443, by the search for similarity method of Pearson and Lipman (1988) Proc. Nail. Acad. Sci. U.S.A. 85: 2444, by the BLAST algorithm of Altschul (1990) J. Mol. Biol. 215: 403-410; and Shpaer (1996) Genomics 38: 179-191, or by the Needleham et al. (1970) J. Mol. Biol. 48: 443-453; and Sankoff et al., 1983, Time Warps, String Edits, and Macromolecules, The Theory and Practice of Sequence Comparison, Chapter One, Addison-Wesley, Reading, Mass.; generally by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.; BLAST from the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). In each case default parameters are used (for example the BLAST program uses as defaults a wordlength (W) of 11, the BLOSUM62 scoring matrix (see Henikoff(1992) Proc. Natl. Acad.
Sci. USA 89: 10915-10919) alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands).
As discussed in Example 1, the gene cluster sequences disclosed herein were determined from the inserts of cosmids pKOS279-117.1 F70, pKOS279-117.3F45, pKOS279-117.2F15, and pKos279-117.5F58. Accordingly, the invention provides an isolated or recombinant DNA molecule comprising a sequence from the insert of one or more of these cosmids. In an embodiment, the isolated or recombinant DNA molecule encodes a polypeptide or portion thereof, such as a module or domain. In an embodiment, the isolated or recombinant DNA molecule comprises at least 10, 20, 30, 40, 50 or 100 basepairs having a sequence of the cosmid insert.
The invention methods may be directed to the preparation of an individual polyketide. The polyketide may or may not be novel, but the method of preparation permits a more convenient or alternative method of preparing it. The resulting polyketides may be further modified to convert them to other useful compounds. Examples of chemical structures of that can be made using the materials and methods of the present invention include PD 113,270 and PD 113, 271, other known analogs, such as those described in Lewy et al., 2002, “Fostriecin: Chemistry and Biology” Current Medicinal Chemistry 9: 2005-2032 and the references cited therein, and novel molecules produced by modified or chimeric PKSs comprising a portion of the fosteriecin PKS sequence, molecules produced by the action of polyketide modifying enzymes from the fosteriecin PKS cluster on products of other PKSs, molecules produced by the action on products of the fosteriecin PKS of polyketide modifying enzymes from other PKSs, and the like.
As noted, in one aspect the invention provides recombinant PKS wherein at least 10, 15, 20, 30, or more consecutive amino acids in one or more domains of one or more modules thereof are derived from one or more domains of one or more modules of fostriecin polyketide synthase.
In one aspect, the invention provides a recombinant polyketide synthase derived from a naturally occurring PKS. A PKS “derived from” a naturally occurring PKS contains the scaffolding encoded by all the portion employed of the naturally occurring synthase gene, contains at least two modules that are functional, and contains mutations, deletions, or replacements of one or more of the activities of these functional modules so that the nature of the resulting polyketide is altered. This definition applies both at the protein and genetic levels.
Particular embodiments include those wherein a KS, AT, KR, DH, or ER has been inactivated (e.g., by deletion or other mutation), mutated to change its activity, and/or replaced by a version of the activity from a different PKS or from another location within the same PKS. Embodiments include derivatives where at least one noncondensation cycle enzymatic activity (KR, DH, or ER) has been inactivated (e.g., by deletion or other mutation) wherein any of these activities has been added or mutated so as to change the ultimate polyketide synthesized. There are at least five degrees of freedom for constructing a polyketide synthase in terms of the polyketide that will be produced. See, U.S. Pat. No. 6,509,455 for a discussion.
As can be appreciated by those skilled in the art, polyketide biosynthesis can be manipulated to make a product other than the product of a naturally occurring PKS biosynthetic cluster. For example, AT domains can be altered or replaced to change specificity. The variable domains within a module can be deleted and or inactivated or replaced with other variable domains found in other modules of the same PKS or from another PKS. See e.g., Katz & McDaniel, Med Res Rev 19: 543-558 (1999) and WO 98/49315. Similarly, entire modules can be deleted and/or replaced with other modules from the same PKS or another PKS. See e.g., Gokhale et al., Science 284: 482 (1999) and WO 00/47724 each of which are incorporated herein by reference. Protein subunits of different PKSs also can be mixed and matched to make compounds having the desired backbone and modifications. For example, subunits of 1 and 2 (encoding modules 1-4) of the pikromycin PKS were combined with the DEBS3 subunit to make a hybrid PKS product (see Tang et al., Science, 287: 640 (2001), WO 00/26349 and WO 99/6159).
It will be appreciated that an amino acid sequence of a protein or domain can be changed without eliminating or substantially changing the function or activity of the wild-type protein or domain, for example, by making conservative substitutions of amino acids. The present invention encompasses polypeptides that are conservatively modified variants of a polypeptide encoded in SEQ ID NO:1 and retain the activity of the wild-type polypeptide. Such polypeptides can be identified by routine screening methods. For example, a polypeptide having a substitution or combination of substitutions relative to wild-type can be prepared by mutation of DNA encoding the fostriecin cluster polypeptide or domain, and the effect (if any) of the sequence modification can be assessed by expressing the protein in a suitable host cell under conditions in which fostriecin is produced in the cell when the unmodified protein is expressed.
This assay can be carried out in Streptomyces pulveraceus by modification of endogenous genes or, alternatively, polynucleotides modified in vitro can be expressed in heterologous hosts as described elsewhere herein. Production of fostriecin at a level not less that 60% of the level produced by the wild-type sequence, preferably at least 80%, and most preferably not less than 95% of the level produced by the wild-type sequence is indicative that the modified polypeptide or domain has the same activity as the unmodified-parent. The invention includes such modified polypeptides and the nucleic acid sequences encoding them.
In other embodiments, a domain or other region of a fostriecin polyketide synthase polypeptide can be removed or otherwise inactivated or replaced with a different PKS domain.
Mutations can be introduced into PKS genes such that polypeptides with altered activity are encoded. Polypeptides with “altered activity” include those in which one or more domains are inactivated or deleted, or in which a mutation changes the substrate specificity of a domain, as well as other alterations in activity. Mutations can be made to the native sequences using conventional techniques. The substrates for mutation can be an entire cluster of genes or only one or two of them; the substrate for mutation may also be portions of one or more of these genes. Techniques for mutation include preparing synthetic oligonucleotides including the mutations and inserting the mutated sequence into the gene encoding a PKS subunit using restriction endonuclease digestion. (See, e.g., Kunkel, T. A. Proc Natl Acad Sci USA (1985) 82: 448; Geisselsoder et al. BioTechniques (1987) 5: 786.) Alternatively, the mutations can be effected using a mismatched primer (generally 10-20 nucleotides in length) that hybridizes to the native nucleotide sequence (generally cDNA corresponding to the RNA sequence), at a temperature below the melting temperature of the mismatched duplex. The primer can be made specific by keeping primer length and base composition within relatively narrow limits and by keeping the mutant base centrally located. (See Zoller and Smith, Methods in Enzymology (1983) 100: 468). Primer extension is effected using DNA polymerase. The product of the extension reaction is cloned, and those clones containing the mutated DNA are selected. Selection can be accomplished using the mutant primer as a hybridization probe. The technique is also applicable for generating multiple point mutations. (See, e.g., Dalbie-McFarland et al. Proc Natl Acad Sci USA (1982) 79: 6409). PCR mutagenesis can also be used for effecting the desired mutations.
Random mutagenesis of selected portions of the nucleotide sequences encoding enzymatic activities can be accomplished by several different techniques known in the art, e.g., by inserting an oligonucleotide linker randomly into a plasmid,
In addition to providing mutated forms of regions encoding enzymatic activity, regions encoding corresponding activities from different PKS synthases or from different locations in the same PKS synthase can be recovered, for example, using PCR techniques with appropriate primers. By “corresponding” activity encoding regions is meant those regions encoding the same general type of activity—e.g., a ketoreductase activity in one location of a gene cluster would “correspond” to a ketoreductase-encoding activity in another location in the gene cluster or in a different gene cluster; similarly, a complete reductase cycle could be considered corresponding—e.g., KR/DH/ER could correspond to KR alone.
If replacement of a particular target region in a host polyketide synthase is to be made, this replacement can be conducted in vitro using suitable restriction enzymes or can be effected in vivo using recombinant techniques involving homologous sequences framing the replacement gene. One such system involving plasmids of differing temperature sensitivities is described in PCT application WO 96/40968. Another useful method for modifying a PKS gene (e.g., making domain substitutions or “swaps”) is a RED/ET cloning procedure developed for constructing domain swaps or modifications in an expression plasmid without first introducing restriction sites. The method is related to ET cloning methods (see, Datansko & Wanner, 2000, Proc. Natl. Acad. Sci. U.S.A. 97, 6640-45; Muyrers et al, 2000, Genetic Engineering 22: 77-98). The RED/ET cloning procedure is used to introduce a unique restriction site in the recipient plasmid at the location of the targeted domain. This restriction site is used to subsequently linearize the recipient plasmid in a subsequent ET cloning step to introduce the modification. This linearization step is necessary in the absence of a selectable marker, which cannot be used for domain substitutions. An advantage of using this method for PKS engineering is that restriction sites do not have to be introduced in the recipient plasmid in order to construct the swap, which makes it faster and more powerful because boundary junctions can be altered more easily.
In a further aspect, the invention provides methods for expressing chimeric or hybrid PKSs and products of such PKSs. For example, the invention provides (1) encoding DNA for a chimeric PKS that is substantially patterned on a non-fostriecin producing enzyme, but which includes one or more functional domains, modules or polypeptides of fostriecin PKS; and (2) encoding DNA for a chimeric PKS that is substantially patterned on the fostriecin PKS, but which includes one or more functional domains, modules, or polypeptides of another PKS or NRPS.
With respect to item (1) above, in one embodiment, the invention provides chimeric PKS enzymes in which the genes for a non-fostriecin PKS function as accepting genes, and one or more of the above-identified coding sequences for fostriecin domains or modules are inserted as replacements for one or more domains or modules of comparable function. Construction of chimeric molecules is most effectively achieved by construction of appropriate encoding polynucleotides. In making a chimeric molecule, it is not necessary to replace an entire domain or module accepting of the PKS with an entire domain or module of fostriecin PKS: subsequences of a PKS domain or module that correspond to a peptide subsequence in an accepting domain or module, or which otherwise provide useful function, may be used as replacements. Accordingly, appropriate encoding DNAs for construction of such chimeric PKS include those that encode at least 10, 15, 20, 40 or more amino acids of a selected fostriecin domain or module.
Recombinant methods for manipulating modular PKS genes to make chimeric PKS enzymes are described in U.S. Pat. Nos. 5,672,491; 5,843,718; 5,830,750; and 5,712,146; and in PCT publication Nos. 98/49315 and 97/02358. A number of genetic engineering strategies have been used with DEBS to demonstrate that the structures of polyketides can be manipulated to produce novel natural products, primarily analogs of the erythromycins (see the patent publications referenced supra and Hutchinson, 1998, Curr Opin Microbiol. 1: 319-329, and Baltz, 1998, Trends Microbiol. 6: 76-83). In one embodiment, the components of the chimeric PKS are arranged onto polypeptides having interpolypeptide linkers that direct the assembly of the polypeptides into the functional PKS protein, such that it is not required that the PKS have the same arrangement of modules in the polypeptides as observed in natural PKSs. Suitable interpolypeptide linkers to join polypeptides and intrapolypeptide linkers to join modules within a polypeptide are described in PCT publication WO 00/47724.
A partial list of sources of PKS sequences for use in making chimeric molecules, for illustration and not limitation, includes Avermectin (U.S. Pat. No. 5,252,474; MacNeil et al., 1993, Industrial Microorganisms: Basic and Applied Molecular Genetics, Baltz, Hegeman, & Skatrud, eds. (ASM), pp. 245-256; MacNeil et al., 1992, Gene 115: 119-25); Candicidin (FRO008) (Hu et al., 1994, Mol. Microbiol. 14: 163-72); Epothilone (U.S. Pat. No. 6,303,342); Erythromycin (WO 93/13663; U.S. Pat. No. 5,824,513; Donadio et al., 1991, Science 252: 675-79; Cortes et al., 1990, Nature 348: 176-8); FK-506 (Motamedi et al., 1998, Eur. J. Biochem. 256: 528-34; Motamedi et al., 1997, Eur. J. Biochem. 244: 74-80); FK-520 (U.S. Pat. No. 6,503,737; see also Nielsen et al., 1991, Biochem. 30: 5789-96); Lovastatin (U.S. Pat. No. 5,744,350); Nemadectin (MacNeil et al., 1993, supra); Niddamycin (Kakavas et al., 1997, J. Bacteriol. 179: 7515-22); Oleandomycin (Swan et al., 1994, Mol. Gen. Genet. 242: 358-62; U.S. Pat. No. 6,388,099; Olano et al., 1998, Mol. Gen. Genet. 259: 299-308); Platenolide (EP Pat. App. 791,656); Rapamycin (Schwecke et al., 1995, Proc. Natl. Acad. Sci. USA 92: 7839-43); Aparicio et al., 1996, Gene 169: 9-16); Rifamycin (August et al., 1998, Chemistry & Biology, 5: 69-79); Soraphen (U.S. Pat. No. 5,716,849; Schupp et al., 1995, J. Bacteriology 177: 3673-79); Spiramycin (U.S. Pat. No. 5,098,837); Tylosin (EP 0 791,655; Kuhstoss et al., 1996, Gene 183: 231-36; U.S. Pat. No. 5,876,991). Additional suitable PKS coding sequences remain to be discovered and characterized, but will be available to those of skill (e.g., by reference to GenBank).
The fostriecin PKS-encoding polynucleotides of the invention may also be used in the production of libraries of PKSs (i.e., modified and chimeric PKSs comprising at least a portion of the fostriecin PKS sequence. The invention provides libraries of polyketides by generating modifications in, or using a portion of, the fostriecin PKS so that the protein complexes produced by the cluster have altered activities in one or more respects, and thus produce polyketides other than the natural fostriecin product of the PKS. Novel polyketides may thus be prepared, or polyketides in general prepared more readily, using this method. By providing a large number of different genes or gene clusters derived from a naturally occurring PKS gene cluster, each of which has been modified in a different way from the native PKS cluster, an effectively combinatorial library of polyketides can be produced as a result of the multiple variations in these activities. Expression vectors containing nucleotide sequences encoding a variety of PKS systems for the production of different polyketides can be transformed into the appropriate host cells to construct a polyketide library. In one approach, a mixture of such vectors is transformed into the selected host cells and the resulting cells plated into individual colonies and selected for successful transformants. Each individual colony has the ability to produce a particular PKS synthase and ultimately a particular polyketide. A variety of strategies can be devised to obtain a multiplicity of colonies each containing a PKS gene cluster derived from the naturally occurring host gene cluster so that each colony in the library produces a different PKS and ultimately a different polyketide. The number of different polyketides that are produced by the library is typically at least four, more typically at least ten, and preferably at least 20, more preferably at least 50, reflecting similar numbers of different altered PKS gene clusters and PKS gene products. The number of members in the library is arbitrarily chosen; however, the degrees of freedom outlined above with respect to the variation of starter, extender units, stereochemistry, oxidation state, and chain length is quite large. The polyketide producing colonies can be identified and isolated using known techniques and the produced polyketides further characterized. The polyketides produced by these colonies can be used collectively in a panel to represent a library or may be assessed individually for activity. See, for example,
Colonies in the library are induced to produce the relevant synthases and thus to produce the relevant polyketides to obtain a library of candidate polyketides. The polyketides secreted into the media can be screened for binding to desired targets, such as receptors, signaling proteins, and the like. The supernatants per se can be used for screening, or partial or complete purification of the polyketides can first be effected. Typically, such screening methods involve detecting the binding of each member of the library to receptor or other target ligand. Binding can be detected either directly or through a competition assay. Means to screen such libraries for binding are well known in the art. Alternatively, individual polyketide members of the library can be tested against a desired target. In this event, screens wherein the biological response of the target is measured can be included.
As noted above, the DNA compounds of the invention can be expressed in host cells for production of proteins and of known and novel compounds. Preferred hosts include fungal systems such as yeast and prokaryotic hosts, but single cell cultures of, for example, mammalian cells could also be used. A variety of methods for heterologous expression of PKS genes and host cells suitable for expression of these genes and production of polyketides are described, for example, in U.S. Pat. Nos. 5,843,718 and 5,830,750; WO 01/31035, WO 01/27306, and WO 02/068613; and U.S. patent application Ser. Nos. 10/087,451 (published as U.S. 2002000087451); 60/355,211; and 60/396,513 (corresponding to published application 20020045220).
Appropriate host cells for the expression of the hybrid PKS genes include those organisms capable of producing the needed precursors, such as malonyl-CoA, methylmalonyl-CoA, ethylmalonyl-CoA, and methoxymalonyl-ACP, and having phosphopantotheinylation systems capable of activating the ACP domains of modular PKSs. See, for example, U.S. Pat. No. 6,579,695. However, as disclosed in U.S. Pat. No. 6,033,883, a wide variety of hosts can be used, even though some hosts natively do not contain the appropriate post-translational mechanisms to activate the acyl carrier proteins of the synthases. Also see WO 97/13845 and WO 98/27203. The host cell may natively produce none, some, or all of the required polyketide precursors, and may be genetically engineered so as to produce the required polyketide precursors. Such hosts can be modified with the appropriate recombinant enzymes to effect these modifications. In one embodiment the host cell is a bacterium. In another embodiment the host cell is a fungus, such as a yeast cell. Suitable host cells include Streptomyces, E. coli, yeast, and other prokaryotic hosts which use control sequences compatible with Streptomyces spp. Examples of suitable hosts that either natively produce modular polyketides or have been engineered so as to produce modular polyketides include but are not limited to actinomyctes such as Streptomyces coelicolor, Streptomyces venezuelae, Streptomyces fradiae, Streptomyces ambofaciens, and Saccharopolyspora erythraea, eubacteria such as Escherichia coli, myxobacteria such as Myxococcus xanthus, and yeasts such as Saccharomyces cerevisiae.
In sone embodiments, any native modular PKS genes in the host cell have been deleted to produce a “clean host,” as described in U.S. Pat. No. 5,672,491.
Host cells can be selected, or engineered, for expression of a glycosylatation apparatus (discussed below), amide synthases, (see, for example, U.S. patent publication 20020045220 “Biosynthesis of Polyketide Synthase Substrates”). For example and not limitation, the host cell can contain the desosamine, megosamine, and/or mycarose biosynthetic genes, corresponding glycosyl transferase genes, and hydroxylase genes (e.g., picK, megK, eryK, megF, and/or eryF). Methods for glycosylating polyketides are generally known in the art and can be applied in accordance with the methods of the present invention; the glycosylation may be effected intracellularly by providing the appropriate glycosylation enzymes or may be effected in vitro using chemical synthetic means as described herein and in WO 98/493-15, incorporated herein by reference. Glycosylation with desosamine, mycarose, and/or megosamine is effected in accordance with the methods of the invention in recombinant host cells provided by the invention. Alternatively and as noted, glycosylation may be effected intracellularly using endogenous or recombinantly produced intracellular glycosylases. In addition, synthetic chemical methods may be employed.
Alternatively, the aglycone compounds can be produced in the recombinant host cell, and the desired modification (e.g., glycosylation and hydroxylation) steps carried out in vitro (e.g., using purified enzymes, isolated from native sources or recombinantly produced) or in vivo in a converting cell different from the host cell (e.g., by supplying the converting cell with the aglycone).
Modification or tailoring enzymes for modification of a product of the fostriecin PKS, a non-fostriecin PKS, or a chimeric PKS, can be those normally associated with fostriecin biosynthesis or “heterologous” tailoring enzymes. Tailoring enzymes can be expressed in the organism in which they are naturally produced, or as recombinant proteins in heterologous hosts. In some cases, the structure produced by the heterologous or hybrid PKS may be modified with different efficiencies by post-PKS tailoring enzymes from different sources. In such cases, post-PKS tailoring enzymes can be recruited from other pathways to obtain the desired compound.
In some embodiments, the host cell expresses, or is engineered to express, a polyketide “tailoring” or “modifying” enzyme. Once a PKS product is released, it is subject to post-PKS tailoring reactions. These reactions are important for biological activity and for the diversity seen among polyketides. Tailoring enzymes normally associated with polyketide biosynthesis include oxygenases, glycosyl- and methyltransferases, acyltransferases, halogenases, cyclases, aminotransferases, and hydroxylases.
In the case of fostriecin biosynthesis, tailoring enzymes include P450 hydroxylases for addition of hydroxyl groups. The PKS is expected to initially produce hydroxyls at C3, C5, C9 and C11, with the C9 hydroxyl further modified by phosphorylation, the C5 hydroxyl further reacting to help create the 6-membered lactone ring, and the C3 hydroxyl being removed by dehydration in the creation of a double bond between C2 and C3. In addition hydroxyls at C8 and C18 (and C4 in PD 113, 271) are expected to be introduced by post-PKS-acting accessory proteins. The fostriecin gene cluster encodes three cytochrome-P450-hydroxylase homologs (FosG, FosJ and FosK). Based on apparent homology between FosJ and the PlmT4 P450 hydrolase encoded in the Streptomyces phoslactomycin synthase gene cluster, apparent homology between FosK and the PlmS2 P450 hydrolase encoded in the Streptomyces phoslactomycin synthase gene cluster, evidence that PlmS2 is responsible for cyclohexyl modification at C18 but not C8 of the polyketide phoslactomycin, and the presence of hydroxyls at the tertiary C8 of fostriecin and the tertiary C8 of phoslactomycin, FosJ may produce the C8 hydroxyl of fostriecin. FosG and/or FosK are expected to modify the C4 and C8 positions, with perhaps a specific P450 for each site. The phosphorylation of the hydroxyl group at C9 is predicted to be accomplished by FosH, a distant homolog of homoserine kinases. ORF7 encodes a type II thioesterase.
The P450 hydroxylases and kinase of the fostriecin PKS gene cluster can be expressed heterologously to modify polyketides produced by non-fostriecin polyketide synthases or can be inactivated in the Fostriecin producer.
In addition to biosynthetic accessory activities, secondary metabolite clusters often code for activities such as transport and regulation. FosI appears to be a permease having a transport function. ORF1 and ORF3 are putative transcriptional regulators. ORF1 is a homolog of MarR-family transcriptional regulators, including SC07709, SC07639 and SC00447 from Streptomyces coelicolor. ORF3 is a homolog of LuxR family transcriptional regulators.
ORF2 is a homolog of a conserved family, including SC7708, SC6340 and SC5938 from Streptomyces coelicolor, and SAV1967 and SAV0886 from S. avermitilis. ORF4 is a homolog of a conserved family, including PlmT2 from the phoslactomycin biosynthetic cluster, SAV4898 from Streptomyces avermitilis and SC04633 from S. coelicolor. ORF5 is a homolog of BorL from the borrelidin biosynthetic cluster. ORF6 encodes a homolog of the product of plu4507 from Photorhabdus luminescens subsp. laumondii TTO1, and has some similarity to 3-hydroxy-3-methylglutaryl coenzyme A reductases. ORF8 encodes a homolog of chaperone protein HtpG (heat shock protein HtpG) from Streptomyces coelicolor.
Tables 2 and 4 describe the characteristics of open reading frames of the fostriecin polyketide synthase gene cluster. Table 2 shows the position of each ORF relative to SEQ ID NO: 1, as well as identifying certain homologous proteins.
TABLE 2
|
|
ORFs Encoding Additional Polypeptides Encoded in the Fostriecin polyketide synthase Cluster
aminoPosition in SEQ ID NO: 1
ORFacidsputative functioncoding strand(nucleotide pair)homology% identity
|
orf1165MarR-familySEQ ID NO 1(72775 . . . 73272)SC07709 (142 aa; 43%43%/137aa
transcriptionalidentity/137 aa),
regulatorSC07639 and SC00447
from Streptomyces
coelicolor
orf2213complement(72055 . . . 72696)SC7708 (216 aa; 48%48%/216aa
identity/192 aa),
SC6340 and SC5938 from
Streptomyces coelicolor
orf3967LuxR-familycomplement(68498 . . . 71401)PikD (Streptomyces29%/977aa
transcriptionalvenezuelae)
regulator
orf4295unknowncomplement(67600 . . . 68487)PlmT2 from the41%/212aa
phoslactomycin
biosynthetic cluster
fosG409P450; possible C8 orcomplement(33643 . . . 34872)ORF4 from the mitomycin48%/395aa
C4-hydroxylaseC biosynthetic cluster
in Streptomyces
lavendulae
fosH316polyketide kinasecomplement(32552 . . . 33502)PlmT5 from the43%/259aa
phoslactomycin
biosynthetic cluster
fosI444polyketide exportcomplement(31111 . . . 32445)PlmS4 from the50%/431aa
phoslactomycin
biosynthetic cluster
[COG0477: Permeases of
the major facilitator
superfamily]
fosJ420P450; possible C4- orcomplement(29742 . . . 31004)PlmT4 from the54%/397aa
C8-hydroxylasephoslactomycin
biosynthetic cluster
fosK398P450; possible C18-SEQ ID NO 1(28443 . . . 29639)PlmS2 from the57%/404aa
hydroxylasephoslactomycin
biosynthetic cluster
orf5538complement(7892 . . . 9508)BorL from the30%/536aa
borrelidin biosynthetic
cluster
orf6781homology to 3-hydroxy-complement(5550 . . . 7895)plu4507 from39%/774aa
3-methylglutarylPhotorhabdus
coenzyme A reductasesluminescens subsp.
laumondii TTO1
orf7258thioesterase (TEIIcomplement(3840 . . . 4616)AveG (Streptomyces52%/238aa
family)avermitilis)
orf8633chaperone protein htpGcomplement(1424 . . . 3325)HtpG (Streptomyces79%/638aa
(heat shock proteincoelicolor)
htpG)
|
*fosG, H, I, J and K were previously called ORFs 1, 2, 3, 4 and 5
|
It will be apparent to the reader that a variety of recombinant vectors can be utilized in the practice of aspects of the invention. As used herein, “vector” refers to polynucleotide elements that are used to introduce recombinant nucleic acid into cells for either expression or replication. Selection and use of such vehicles is routine in the art. An “expression vector” includes vectors capable of expressing DNAs that are operatively linked with regulatory sequences, such as promoter regions. Thus, an expression vector refers to a recombinant DNA or RNA construct, such as a plasmid, a phage, recombinant virus or other vector that, upon introduction into an appropriate host cell, results in expression of the cloned DNA. Appropriate expression vectors are well known to those of skill in the art and include those that are replicable in eukaryotic cells and/or prokaryotic cells and those that remain episomal or those which integrate into the host cell genome.
The vectors used to perform the various operations to replace the enzymatic activity in the host PKS genes or to support mutations in these regions of the host PKS genes may be chosen to contain control sequences operably linked to the resulting coding sequences in a manner that expression of the coding sequences may be effected in an appropriate host. Suitable control sequences include those which function in eukaryotic and prokaryotic host cells. If the cloning vectors employed to obtain PKS genes encoding derived PKS lack control sequences for expression operably linked to the encoding nucleotide sequences, the nucleotide sequences are inserted into appropriate expression vectors. This can be done individually, or using a pool of isolated encoding nucleotide sequences, which can be inserted into host vectors, the resulting vectors transformed or transfected into host cells, and the resulting cells plated out into individual colonies.
Suitable control sequences for single cell cultures of various types of organisms are well known in the art. Control systems for expression in yeast are widely available and are routinely used. Control elements include promoters, optionally containing operator sequences, and other elements depending on the nature of the host, such as ribosome binding sites.
Particularly useful promoters for prokaryotic hosts include those from PKS gene clusters which result in the production of polyketides as secondary metabolites, including those from Type I or aromatic (Type II) PKS gene clusters. Examples are act promoters, tcm promoters, spiramycin promoters, and the like. However, other bacterial promoters, such as those derived from sugar metabolizing enzymes, such as galactose, lactose (lac) and maltose, are also useful. Additional examples include promoters derived from biosynthetic enzymes such as for tryptophan (trp), the β-lactamase (bla), bacteriophage lambda PL, and T5. In addition, synthetic promoters, such as the tac promoter (U.S. Pat. No. 4,551,433), can be used.
As noted, particularly useful control sequences are those which themselves, or with suitable regulatory systems, activate expression during transition from growth to stationary phase in the vegetative mycelium. The system contained in the plasmid identified as pCK7, i.e., the actI/actIII promoter pair and the actII-ORF4 (an activator gene), is particularly preferred. Particularly preferred hosts are those which lack their own means for producing polyketides so that a cleaner result is obtained. Illustrative control sequences, vectors, and host cells of these types include the modified S. coelicolor CH999 and vectors described in PCT publication WO 96/40968 and similar strains of S. lividans. See U.S. Pat. Nos. 5,672,491; 5,830,750, 5,843,718; and 6,177,262, each of which is incorporated herein by reference.
Other regulatory sequences may also be desirable which allow for regulation of expression of the PKS sequences relative to the growth of the host cell. Regulatory sequences are known to those of skill in the art, and examples include those which cause the expression of a gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Other types of regulatory elements may also be present in the vector, for example, enhancer sequences.
Selectable markers can also be included in the recombinant expression vectors. A variety of markers are known which are useful in selecting for transformed cell lines and generally comprise a gene whose expression confers a selectable phenotype on transformed cells when the cells are grown in an appropriate selective medium. Such markers include, for example, genes which confer antibiotic resistance or sensitivity to the plasmid. Alternatively, several polyketides are naturally colored, and this characteristic provides a built-in marker for screening cells successfully transformed by the present constructs.
The various PKS nucleotide sequences, or a mixture of such sequences, can be cloned into one or more recombinant vectors as individual cassettes, with separate control elements or under the control of a single promoter. The PKS subunits or components can include flanking restriction sites to allow for the easy deletion and insertion of other PKS subunits so that hybrid or chimeric PKSs can be generated. The design of such restriction sites is known to those of skill in the art and can be accomplished using the techniques described above, such as site-directed mutagenesis and PCR. Methods for introducing the recombinant vectors of the present invention into suitable hosts are known to those of skill in the art and typically include the use of CaCl2 other agents, such as divalent cations, lipofection, DMSO, protoplast transformation, conjugation, and electroporation.
Thus, the present invention provides recombinant DNA molecules and vectors comprising those recombinant DNA molecules that encode all or a portion of the fostriecin PKS and/or fostriecin modification enzymes and that, when transformed into a host cell and the host cell is cultured under conditions that lead to the expression of said fostriecin PKS and/or modification enzymes, results in the production of polyketides including but not limited to fostriecin and/or analogs or derivatives thereof in useful quantities. The present invention also provides recombinant host cells comprising those recombinant vectors.
Suitable culture conditions for production of polyketides using the cells of the invention will vary according to the host cell and the nature of the polyketide being produced, but will be know to those of skill in the art. See, for example, the examples below and WO 98/27203 “Production of Polyketides in Bacteria and Yeast” and WO 01/83803 “Overproduction Hosts for Biosynthesis of Polyketides.”
The polyketide product produced by host cells of the invention can be recovered (i.e., separated from the producing cells and at least partially purified) using routine techniques (e.g., extraction from broth followed by chromatography).
The compositions, cells and methods of the invention may be directed to the preparation of an individual polyketide or a number of polyketides. The polyketide may or may not be novel, but the method of preparation permits a more convenient or alternative method of preparing it. It will be understood that the resulting polyketides may be further modified to convert them to other useful compounds. For example, an ester linkage may be added to produce a “pharmaceutically acceptable ester” (i.e., an ester that hydrolyzes under physiologically relevant conditions to produce a compound or a salt thereof). Illustrative examples of suitable ester groups include but are not limited to formates, acetates, propionates, butyrates, succinates, and ethylsuccinates.
The polyketide product can be modified by addition of a protecting group, for example to produce prodrug forms. A variety of protecting groups are disclosed, for example, in T. H. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, Third Edition, John Wiley & Sons, New York (1999). Prodrugs are in general functional derivatives of the compounds that are readily convertible in vivo into the required compound. Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in “Design of Prodrugs,” H. Bundgaard ed., Elsevier, 1985.
Similarly, improvements in water solubility of a polyketide compound can be achieved by addition of groups containing solubilizing functionalities to the compound or by removal of hydrophobic groups from the compound, so as to decrease the lipophilicity of the compound. Typical groups containing solubilizing functionalities include, but are not limited to: 2-(dimethylaminoethyl)amino, piperidinyl, N-alkylpiperidinyl, hexahydropyranyl, furfuryl, tetrahydrofurfuryl, pyrrolidinyl, N-alkylpyrrolidinyl, piperazinylamino, N-alkylpiperazinyl, morpholinyl, N-alkylaziridinylmethyl, (1-azabicyclo[1.3.0]hex-1-yl)ethyl, 2-(N-methylpyrrolidin-2-yl)ethyl, 2-(4-imidazolyl)ethyl, 2-(1-methyl-4-imidazolyl)ethyl, 2-(1-methyl-5-imidazolyl)ethyl, 2-(4-pyridyl)ethyl, and 3-(4-morpholino)-1-propyl. Solubilizing groups can be added by reaction with amines. Typical amines containing solubilizing functionalities include 2-(dimethylamino)-ethylamine, 4-aminopiperidine, 4-amino-1-methylpiperidine, 4-aminohexahydropyran, furfurylamine, tetrahydrofurfurylamine, 3-(aminomethyl)-tetrahydrofuran, 2-(amino-methyl)pyrrolidine, 2-(aminomethyl)-1-methylpyrrolidine, 1-methylpiperazine, morpholine, 1-methyl-2(aminomethyl)aziridine, 1-(2-aminoethyl)-1-azabicyclo-[1.3.0]hexane, 1-(2-aminoethyl)piperazine, 4-(2-aminoethyl)morpholine, 1-(2-amino-ethyl)pyrrolidine, 2-(2-aminoethyl)pyridine, 2-fluoroethylamine, 2,2-difluoroethylamine, and the like.
In addition to post synthesis chemical or biosynthetic modifications, various polyketide forms or compositions can be produced, including but not limited to mixtures of polyketides, enantiomers, diastereomers, geometrical isomers, polymorphic crystalline forms and solvates, and combinations and mixtures thereof can be produced.
Many other modifications of polyketides produced according to the invention will be apparent to those of skill, and can be accomplished using techniques of pharmaceutical chemistry.
Prior to use the PKS product (whether modified or not) can be formulated for storage, stability or administration. For example, the polyketide products can be formulated as a “pharmaceutically acceptable salt.” Suitable pharmaceutically acceptable salts of compounds include acid addition salts which may, for example, be formed by mixing a solution of the compound with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, hydrobromic acid, sulfuric acid, fumaric acid, maleic acid, succinic acid, benzoic acid, acetic acid, citric acid, tartaric acid, phosphoric acid, carbonic acid, or the like. Where the compounds carry one or more acidic moieties, pharmaceutically acceptable salts may be formed by treatment of a solution of the compound with a solution of a pharmaceutically acceptable base, such as lithium hydroxide, sodium hydroxide, potassium hydroxide, tetraalkylammonium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, ammonia, alkylamines, or the like.
Prior to administration to a mammal the PKS product will be formulated as a pharmaceutical composition according to methods well known in the art, e.g., combination with a pharmaceutically acceptable carrier. The term “pharmaceutically acceptable carrier” refers to a medium that is used to prepare a desired dosage form of a compound. A pharmaceutically acceptable carrier can include one or more solvents, diluents, or other liquid vehicles; dispersion or suspension aids; surface active agents; isotonic agents; thickening or emulsifying agents; preservatives; solid binders; lubricants; and the like. Remington's Pharmaceutical Sciences, Fifteenth Edition, E. W. Martin (Mack Publishing Co., Easton, Pa., 1975) and Handbook of Pharmaceutical Excipients, Third Edition, A. H. Kibbe ed. (American Pharmaceutical Assoc. 2000), disclose various carriers used in formulating pharmaceutical compositions and known techniques for the preparation thereof.
The composition may be administered in any suitable form such as solid, semisolid, or liquid form. See Pharmaceutical Dosage Forms and Drug Delivery Systems, 5th edition, Lippicott Williams & Wilkins (1991). In an embodiment, for illustration and not limitation, the polyketide is combined in admixture with an organic or inorganic carrier or excipient suitable for external, enteral, or parenteral application. The active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, pessaries, solutions, emulsions, suspensions, and any other form suitable for use. The carriers that can be used include water, glucose, lactose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea, and other carriers suitable for use in manufacturing preparations, in solid, semi-solid, or liquified form. In addition, auxiliary stabilizing, thickening, and coloring agents and perfumes may be used.
It will be appreciated by those of skill that recombinant polynucleotides and polypeptides of the invention have a variety of uses, including, but not limited to, those described above and including use as probes and primers (e.g., for gene amplification or targeting) or as enzymes, or components of enzymes, useful for the synthesis or modification of polyketides. Recombinant polypeptides encoded by the fostriecin PKS gene cluster are also useful as antigens for production of antibodies. Such antibodies find use for purification of bacterial (e.g., Streptomyces pulveraceus) proteins, detection and typing of bacteria, and particularly, as tools for strain improvement (e.g., to assay PKS protein levels to identify “up-regulated” strains in which levels of polyketide producing or modifying proteins are elevated) or assessment of efficiency of expression of recombinant proteins. Polyclonal and monoclonal antibodies can be made by well known and routine methods (see, e.g., Harlow and Lane, 1988, ANTIBODIES: A LABORATORY MANUAL, COLD SPRING HARBOR LABORATORY, New York; Koehler and Milstein 1075, Nature 256: 495). In selecting-polypeptide sequences for antibody induction, it is not to retain biological activity; however, the protein fragment must be immunogenic, and preferably antigenic (as can be determined by routine methods). Generally the protein fragment is produced by recombinant expression of a DNA comprising at least about 60, more often at least about 200, or even at least about 500 or more base pairs of protein coding sequence, such as a polypeptide, module or domain derived from a fostriecin polyketide synthase (PKS) gene cluster. Methods for expression of recombinant proteins are well known. (See, e.g., Ausubel et al., 2002, Current Protocols In Molecular Biology, Greene Publishing and Wiley-Interscience, New York.)
EXAMPLES
The following examples are provided to illustrate, but are not intended to limit, the present invention.
Example 1
Cloning and Sequencing of Gene Cluster for Fostriecin Biosynthesis
Growth of Organism and Extraction of Genomic DNA.
For genomic DNA extraction, a spore stock of Streptomyces pulveraceus subsp. fostreus ATCCC 31906 was used to inoculate 35 ml of Tryptitone Soy Broth (TSB) liquid media. After two days growth in 30° C., a 10 ml portion of the cell suspension was centrifuged (10,000×g). The pellet was suspended into 3.5 ml of buffer 1(Tris, 50 mM, pH7.5; 20 mM EDTA, 150 μg/ml RNase (Sigma-Aldrich) and 1 mg/ml of lysozyme (Sigma)). After incubation of the mixture at 37° C. for 30 min, the salt concentration was adjusted by adding 850 μl 5 M NaCl solution, then the mixture was extracted two times with phenol:chloroform:isoamylaclohol (25: 24: 1, vol/vol) with gentle agitation followed by centrifugation for 10 min at 3500×g. After precipitation with 1 vol of isopropanol, the genomic DNA knot was spooled on a glass rod and redissolved in 500 μl of water.
Genomic Library Preparation
Approximately 10 μg of genomic DNA was partially digested with Sau3A1 (1 hr incubation using dilutions of the enzyme) and the digested DNA was run on an agarose gel with DNA standards. One of the conditions used was found to have generated fragments of size 30-45 kb. The DNA from this digestion was ligated with pSuperCos-1 (Stratagene), pre-linearized with BamHI and XbaI and the ligation mixture was packaged using a Gigapack XIII (Stragene) in vitro packaging Kit and the mixture was subsequently used for infection of Escherichia coli DH5α employing protocols supplied by the manufacturer.
Identification of Fostriecin Biosynthetic Gene Cluster
To find the gene cluster for fostriecin biosynthesis, cosmids from 1 IX 95 E. coli transductants resulted from the above ligation mixture were sequenced with using convergent primersT7cos (5′-CATAATACGACTCACTATAGGG) [SEQ ID NO: 21] and T3cos-1 (5′-TTCCCCGAAAAGTGCCAC) [SEQ ID NO: 22]. After BLAST analysis, the sequences revealed 28 cosmids carrying DNA fragment encoded type I or type II PKS (polyketide synthase) genes at either of ends or both ends. Based on sequence and restriction enzyme maps of the 21 cosmids most likely related to modular PKS, most could be assigned to two major groups (“overlap family 1” and “overlap family 3”). Since overlap family 3 carries genes (homologous to gdmI and K) for methoxymalonyl-ACP, which is not needed for the biosynthesis of fostriecin, we focused on overlap family 1 (See FIG. 2). Based on the relation of among these cosmids, we chose to sequence pKOS279-117.3F70, pKOS279-117.3F45, pKOS279-117.2F15, and pKos279-117.5F58 from the overlap family 1. Other cosmids in this family were pKOS279-127.11 F54; pKOS279-127.10F6; pKOS279-127.10F75; pKOS279-127.3F46; pKOS279-127.5F58.
DNA Sequencing
In initial sequencing efforts the sequence of inserts of three cosmids (pKOS279-117.1F70, pKOS279-117.3F45 and pKOS279-117.2F15) was determined. The results of this sequencing effort are provided in the appended sequence listings (which are part of and incorporated into this specification) as SEQ ID NOs: 23, 27 and 33. Small gaps in the sequence indicated as “x” or “n.” Complete or partial open reading frames (ORFs) encoded by these sequences can be determined by reference to the genetic code and are also provided in SEQ ID NOs: 24-26,28-32 and 34-36. Complete sequencing was carried out using (pKOS279-117.1F70, pKOS279-117.3F45, pKOS279-117.2F15, and pKos279-117.5F58).
TABLE 3
|
|
FOSTRIECIN SYNTHASE GENE CLUSTER
from Streptomyces pulveraceus subsp. fostreus ATCC31906
source 1 . . . 18774 from pKos279-117.1F70
source 18651 . . . 29679 from pKos279-117.3F45
source 28694 . . . 29679 from pKos279-117.2F15
source 29683 . . . 53913 from pKos279-117.3F45
source 29683 . . . 66484 from pKos279-117.2F15
source 58636 . . . >73984 from pKos279-117.5F58
29680 . . . 29682 is an unsequenced
fragment of putative hairpin terminator″
|
|
1AGGCCGACGG GCAGTGCCCG CGGCGTATCG GTGGCCGCCC ACGCGCGGGC GGGGAACGCA
|
61CGGACGGCCC CCGCGGCGAG CGCGGCCACG GGCAGCGCCG ATCCTGCGCC GAGGAAGCCG
|
121GGCCGGCTGA AGGCGGGATG GGGGCGGGGG GTGGGCGAGT CGGGGCCGTG AGGGGTGGGC
|
181GAGTCGGGGC CGTGGGGGGT GGTCTGACTG GCCAACGGAG TACTCCTTCA CACACGTCGG
|
241GCGAAGCAGG ACGGCTCAGC TGTACGGCGG ACAGGGACGG GAGCGACCGG TCCCGAAGCG
|
301GGATTGAAAC GTTTCAATAA GGTGGTGCGG TCGTACGGTA CGAGAGTGAC CAAGGGGGGT
|
361CAAGGGGTTC GGCACACCGT TTGGGACGGC CCCACGCCCG CCTCGCGCGC ACCTCGGCGC
|
421ACTCGCCACG CACACTCGGC CTCGAACACC CGGCGAGGAA GCCCGTGGGA TCGGCAGGAT
|
481CCGGCGACAG CGGCTGCGGA GCGCGGTGAC GCACACTGGG AAAGGCACCC CATCGAGGTG
|
541CTCCGAGATC GTCGAGGGAA CCGTAGGCGG CCGGGATCCT GCGGCACGGA CCGGGAGGGC
|
601CATGACACCA GGTACGACAC CAGGTATACC CGGACGACGG TCGGGCGCAC TGCGTCGGCA
|
661TGCCGTGCGC CTCCTGGCGA AGCCGAGAGG CCGCCCCGCA CCGGCCCCTC CCCCGCGCTC
|
721CGCCCAGCTG CGGGCGCTCA CCGCCCTGCT GGACGAGGCG GTGGCGGCGC AGGCACCGGC
|
781GGACCGGAGG GTGGCGGCCT GCGGCGAACC GGGCCCCCTC GCCGGGCAGA CCGCCCGGGA
|
841AGCCGGACGG CAGTACAGGG TCCTGCACGG GCTGCACGCG CGCGTGCGCG ATCTGCCGCT
|
901GACGGAGGCC GATCTCGTCC GGGCCCAGGA GTACGCGGGA CGCCTGCTCT CCTACGGCCA
|
961GTGGATGATG CGCGAGGCCA TGGACCTCGC CTTCCCCTCG AACCCGCGTC CGAGCGTCGA
|
1021GGCGGCCGGG CTCCACCTCA ACGGCCTGGG AAGGCCCGCC GACGACCTGC GCAGGCTCCG
|
1081CGACGCCCTC CGCTCCGAGT GCGGCGGCGG ACGGGCGGGT CGAGGGCACT GAGCCGGAGG
|
1141GCCGTCGCGG ACGGTGGTCC GCGTCGTACG GGAGCGGGCC GCACCGGTCA AGGGCAGGAC
|
1201GCCGCAGAGC TCTGCGATCC GGCCGTCGCG GGCGGTGCGG TGCGGTTCGG CGCGGTCGCA
|
1261CGCGTTCGGT GCGGTTCGGT GCCGTGACGC GGTCGGCCGA CCGTCATGGG CGGCGGCGCC
|
1321GACGCGTACC CGGGCCCCTT CCGGCCGAGA GCCGGATACG CGTCGAGGCC GCCGGTCCGG
|
1381TGGACGCCGC CGTCCGGCTC GGCGGCCGGC GGCGCTGTCC GGCTCAGCGA AGCGTGCGCT
|
1441CCAGTCGCTC CGCCACCAGC TTCACGAAAC GCCCCGGGTG CGTCGGCCGC CCGCGCTCCG
|
1501CGAGCACCGC GAGTCCGTAC AGCAGGTCGG CGGTCTCGGC GAGCCCGGAG CGGTCCTCAC
|
1561CCTCCTGGTA GGCCTGGTTC AGGCCCTGGA CCAGGGGGTG GGCGGGGTTG AGTTCGAGGA
|
1621TCCGCCGGGC GGACGGAATC TCCTGGCCCA TGGCCCGGTA CATGCTCTCC AGCGCCGGGG
|
1681TGAGGTCATG GGCGTCGGAG ACGACACAGG CCGGGGAGAC GGTCAGCCGG GTCGACAGGC
|
1741GGACGTCCTT CATCTCCTCC CCGAGGTGTT CCTTCATCCA GCCCAGCAGA GCGGCGTACG
|
1801TCTCGGCCTG CTTCTCCCGC CCGCCGTCGG CCTGTTCGCC GCCCTGGACG TCGAGATCGA
|
1861TCTCGGCCTT GGCGACGGAC CTCAGCCGCT TGCCCTCGAA CTCGGCCACG ACGTCGACCC
|
1921ACACCTCGTC GACGGGGTCG GTGAGCAGGA GGACCTCAAG ACCCCGGTCC CGGAACGCCT
|
1981CCATGTGCGG GGAGTTCTCG ATGGTCTGCC GGGACGCGCC GGTCATGTAG TAGATGTCGT
|
2041CGTGGGCTTC CTTCATCCGC TCCAGGTACT GCTGGAGCGT GGTCGGCGTC TCCTCGGCGT
|
2101GGGTGCTGGC GAAGGACGGC ACGGCCAGCA GGGCGTCGCG GTCGTCGGTG TCGCCGAGGA
|
2161AGCCCTCCTT CAGTACGGCG CCGAACTCCC GCCAGAACGC GGCGTACTTG TCGGCGTCGT
|
2221TCGCCTTCAT CTCCTTGACC GAGGACAGGA CCTTCTTGGT CAGCCGGCGC TGGATCATCC
|
2281GGATGTGCCG GTCCTGCTGG AGGATGTCCC GGGAGACGTT GAGCGAGAGG TCCTGCGCGT
|
2341CGACGACACC CTTGACGAAG CGGAGGTGGG GCGGCAGCAG CGCCTCGCAG TCGTCCATGA
|
2401TCAGTACGCG CTTGACGTAC AGCTGCAGAC CGCGGCGGAA GTCCCGGGTG AACAGGTCGT
|
2461GGGGCGCGTG AGCGGGAAGG AACAGCAGCG CCTGGTACTC GAAGGTGCCC TCGGCCTGGA
|
2521GGCGGATCGT CTCGAGGGGG TGGGGCCAGT CGTGGCTGAC GTGCTTGTAC AGCTCGTGGT
|
2581ACTCGTCGTC GGAGACCTCG TCGGGCGAGC GTGCCCACAG CGCGTTCATC GAGTTCAGCG
|
2641TCTCGGGTTC GGGCGTTTCC TCGCCGTCGG TCGCCTGCGG GAGGAGCCGG ACCGGCCAGG
|
2701TGATGAAGTC GGAGTACCGC TTGACGATCT CCTTGATGTT CCAGGCGGAG GTGTAGTGGT
|
2761GCAGTTGGTC GTCGGGGTCG GCCGGCTTGA GGTGGAGCGT GACGGCACTG CCCTGCGGCA
|
2821GGTCGTCGAC CGTCTCCAGG GTGTAGGTGG CGTCACCGCG CGACGACCAC CGCGTGCCGC
|
2881TGCGCTCCCC GGCACGCCGG GTCACCAGGG TCATCTCGTC GGCCACCATG AAGCCGGAGT
|
2941AGAAAGCGAC GGCGAACTGT CCGATGAGGC CGTCGGCCCC GGCCGCGTCC TGCGCCTCCT
|
3001TCAGCTCCTG GAGGAAGGCG GCCGTGCCCG AATTGGCGAT GGTGGCGATG AGCTTGGCGA
|
3061CCTCGTCGTA CGACATCCCG ATGCCGTTGT CCCGCACGGT GAGCGTACGG GCCTTCTGGT
|
3121GGAGCTCGAT CTCGATGTGC GGGTCGGACG TGTCGGCGTC GAGCCCGTCG TCCCGCAACG
|
3181CGGCGAGACG CAGCTTGTCG AGCGCGTCGG AGGCGTTGGA GACGAGCTCG CGCAGGAAGA
|
3241CGTCCTTGTT CGAGTAGACC GAGTGGATCA TCAGCTGGAG CAGCTGGCGT GGTTCTACCT
|
3301GGAACTCGAA CGTTTCGGTC GCCATGCTTC GTATTCCTCA CAGGTTCCTG GGTGGCCGAA
|
3361TCGGGCGAGA GCCACTGTAA GACACCAAGT CGGCGCATTG TCACCGCCGT TCGCCGCGCG
|
3421GCGTCCGCAT CTGCGTCTGC GTCTGCGTCA GACCTCGCCG TGGGCGCGCC TGCCCCGGCC
|
3481GTCCCGCCAG GACGTGGGGC AGGTGCCCCG CGCGGTCGCG GCCCCGGCGT CGGCGAACAC
|
3541GGGCGCTCCA GCCGCCTTCG GAAGGCATCC CGGATGCGGA GCGGAGACCT TCGAACACGC
|
3601CGGTCCTGAC CCGGTCGCAC GCCCCTGCTC CGGCTCGCTC CCGGGGATCC GGCACAATCG
|
3661GACCGCGGAC CGACGGCCGC ATGCGCCTTC CTGGTGTGGT GCCGGACGGA GCCGTGGGAT
|
3721CTGCGCTCCT ACGGCCACGT CGTCAAGCTG GAGCAGGAAC GTCTCGCCTA CCGGGCCCGC
|
3781CGCACTCCCG CTTCGGCCGC TCCTGTCGCC GCAAGGCCCC GGCGACGCCC ACCGCCCCAT
|
3841CACACGTACG GAGGGGCGAC CAGCAAGGTG TTGCGGATCG CCTCGACGAT CTCAGGCTGG
|
3901TGCTGCACCA GGTAGAAGTG GCCGCCCGGC AGCAGTGTCA GGTCGAACGA ACCGGCGGTG
|
3961TGGTCGGCCC ACAGGTTCAT CTGGCCCTCG TCGACCTTCG GGTCCTGCGC GCCGAGGAAG
|
4021CCGCGGATGG GACAGGCCAC AGGCGGGCCG GGCACGTAGC GGTAGGTCTC GATGAGGGGG
|
4081TACTCGTTGC GCAGCGGGGG CATGATCATC TCGATGATCT CGGGATCGTC GAACATCCGG
|
4141GTGTCCGTGC CCTCCAGGCC GCGCAGTTCG GCCAGCACGT CTTCCTGCGA CATGGCGTGC
|
4201ACCCGCTCGG CGCGGTTGAC CGACGGGGCG CCGCGGCCAG ACGCGAAGAG CGCCGTCACC
|
4261GGCGTCGTGG AGTCCTCGAG GAGGCGGATG ACCTCGAAGG CCACCGCCGC CCGCATGCTG
|
4321TGCCCGAAGA ACGCCGTCGG TACGGGCGGT TCTCCGCACA GCGCCTCGGC GACGTGGGCG
|
4381GGGAGGTCTT GCAGCGTGGC GGGGAACGGG TCGGCCCTGC GGTCCTGCGG CCCCGGGTAC
|
4441TGGACGGCGA CGATGTCGAT CTCCGGGGCC AGGGCACGCG CGAGCGGCAT GTAGAAGCTG
|
4501GCGGAACCGC CCGCGTGCGG CAGGCAGACG AGCCGGTGGC GGGCGTCCGG GGCGTTCGTG
|
4561TAACGGCGCA GCCACGCCTG CCGGTCCGTG GACGGTTTCG GGGTCGGGGC GTACATCAAG
|
4621GTTTCTCCAG AGTGCGGAAG GCGAAGCGCC GAGGCGGAGG TCGCCCGCGG CGGTGGGTGC
|
4681GTCAGTGGGC GACCGCGGCC CCCGGTTCGG TGACCGCGGT GTGCTGCTCC ATGACCCGGC
|
4741TCGGACGCGC CGGCCCTGTC ACCGGCGCCC GAGCCTGTGT GTCCAGTCCC AGCAGGCCGG
|
4801CCACCTCGTC GGCGACGGAC GTCGCGTCGC GGCCGACGCA GTCGACCCGG TGCACGGTGA
|
4861CGCGGCCGGA GAGCGCGTCG AGCACGTCGT CGTAGGCGTG GGCGAGCCCG GTGAGCAGCC
|
4921GGGCGTCCTC GTGCAGTTCG GTGCCGTTCC GGCGGCTGCG GGTGCGCCGC AGTGCCTCGT
|
4981CGACCGGCAG TCGGAGCCGT ACCACGGCGT CCGGCGGGGC GGTCGAGAAC ATGTCGGCCA
|
5041GGCGCTGCGC CAGTTCCTCG CGGGGCGCGG CGGCGAGCCG CAGCAGGTCC AGGCCGAGCG
|
5101CCCACGGATC CGTACCGCCC GAGCAGGCCT CCAGCCAATC CCGCACCTCG CGCGCGGTCT
|
5161CCGGACCCTG CTCCGCCCAC CAGCGCCGGA CGGCGTCGCC GGGATCGGGA TCGCCCGCGA
|
5221TCCGCGCGAA CATCGGCAGA TAGACGAGGG GGTCGACCAG CGGGTGCCTG TCCGCCAGGA
|
5281CGATCGCGCC ACGCTGCGTG GCGCGGCGCT CGGCCGGGGC GTACTGGGAC AGTTGCAGAT
|
5341AGAGCACCGC GACCTTCAGC GGCGAACTGC CGATCAGGTC CGCGGCGGCG GACGCCCGCG
|
5401CCAGGTGCAG GGAGCGCGTC GCCTCGGGGC TGTCCGGGTC CTCGTGCGCG CGGATCGCGT
|
5461GGACGACGGA AACGCCGGGC ACGGTGCTCA GCAGCCGCGC CACCGTCGTC TTGCCGGTGG
|
5521CGTCGATGCC CACCAGGGCG GCCCGCATCT CACTCACCGT CCCGGGCGGC TTCCAGGTTC
|
5581CACAGGTGGA ACGTGGTGTC CAGCACGGCC GGGAGGAACG GCAGTTCCCG GTGGCTGTGC
|
5641GCGGCGGTGT ACAGCTGGAG GCGGCTCAGG AGCATCTCAC GCAGCGCGAG CCCGTAGCGG
|
5701CGCCGCCACT GTTCCGGCTG CGGCACGGTC GCGTCCGGTC CGGCCGCGGC GGCGACCGCG
|
5761GCGCGGTGCA CCTCCAGATG GTGGTCGACC TCGTCGGTGG TGCTGTGCGG GGTGAGGGTG
|
5821AAGGCCAGCA GTTCGGCCAG GTCGCGCTGG GGCACTGCGA CGGTGGCCAG CTCCCAGTCG
|
5881TAGGCGGTGA CGCGTTCGCT CTGTCGGCTG ATGTTGCGGG GGTTGAAGTC GTTGTGGACG
|
5941AGTGTGCGGG GCATCGCGTC CATCTCCTGC ACCCAGAACT GCGCCTCGGC CGCCGCCGCG
|
6001AGCGCCGTCC TGGTGCGCTG CGGCGTCATC AGTTCGGGCA GTTCCGCGGC GTTGTGGCGG
|
6061ACCAGCGCGT CCCACAGTTC GCGTGCGTTG ACGAGGTGGG CGGTCGTGCC GTCGCGGTAG
|
6121AGCCAGCGCT CGGCCAGGAT GTGCTGGTCG CGTCCGAGCC AGTGCCCGTG CACGGGGGCG
|
6181ATGGCGCGCA GCGCGCGGTC CAGGTCGGTG CGGCTCCACG GCCCGGTCGT GATGTCGAGG
|
6241CGTTCCATGA GGATCACGTA CGCTTGGCGC GCCTCGTCCT GGATGATGCC GTAGCAGACC
|
6301GGGAGCAGGC TGGTCAGTAC GCCTTCGGGC CGCCGGAAGA CGGCCAGTTC GCGCCGGTGG
|
6361GCGGCAGGGA AGTGGCTGCC GCCGCCCCAG GTCTCGCAGG CCGAGGACAC CTCGGGGCCG
|
6421CACAGCGAGG CGATCCGGCC GATGCCGGCG GCGATGTCCT CGCCCCGCGG TTTGGCCTTC
|
6481GCCACCAGTT CGGCGGTGGT CTGCGGGCGG TCGTCCTCGG TCCAGCTCAC GGTGATGGGG
|
6541ATGACGCCGG TCAGCTTGCG CCGTTCGCCG AGGGCGCGGA GTTCGGTGGA GATGCCGTCG
|
6601CCGACCATCG CCGGCGGCCG TACGACGTCG GTGACGCGCA GCCGGGGGCT GTGGAGCCGC
|
6661TCGGCCATGG CCGGCTGGAG GAGGCCGGGG CGGAGGTCGT CGGCGCGCAG CCAGTCCACC
|
6721CGCCGGGCCC GGCCCAGCCG CCGGTGCGCA TCGGCGAACT GGCCGCTGAC CAGGGCCGAC
|
6781GCGGTCGACA CGTCGAGCGC CAGGGCGAAG CCGGCGATGA TCTCGGCCAG CGGGGCCGTG
|
6841CCGCCTTCGC CGCGGCATCC GAGGACACCG AGCCAGTCGC GCTGGTCGGG CAGGCCGGTG
|
6901CCGCCGCCGA CGGTGCCGAT CACGAGGTTC GGCAGCAGGA GCGTCGCGAT CAGGTCGTCG
|
6961CCGTCGGAGT CGAAGGAGAG CACGGACACA GCGGACTCGT GCACGCAGGC GATGTCGTGT
|
7021CCGGTGGCCA CGAACAGCGC GGGGATCACG TTGGCGGCGT TGATGCCGTA CCCGGTGATG
|
7081CCGGCCTGCT GGGCTCCGAT GACGGGGACC CGGTGTCCGC GGGCGATCGC CGCCGGGGTG
|
7141GTCTTCAGGA CCGAGGCGAC CACGTCGCCG GGGATGACGC ACTCGGCGGT GACCCGGGTG
|
7201CCGCGGCGGG CGAGCAGCGA GACCGAGCTG ACCTTCTTGT CACTGCTCAG GTTGCCTTCG
|
7261AGCAGCGTGT TCCGCGGTCG CAGCCCGGGC TCGTCGGCGA GCACCTGGTT CAGCCAGGTG
|
7321CAGATCTGCC AGGTGGCCGC GGTGGTCATG TTCTGTCCGG GCGCGTCCGC GGTCTCGAAG
|
7381ACGAACGGCA CGTGCAGGTA GCGGCCGATC TGGTACGGGT CGACCGCGAC GAGCCGGGCG
|
7441TGCTGCGAGA CCAGCCGGAC CTGGTCCTCC AGCTGCGGGC GGCGGGTGCC GAGCCACCGG
|
7501CTGAAGCGGG CGGCGCCGGC CAGGTCGTCG AACTCGAAGG CGGGCGCGCG GCTCATCCGC
|
7561TGGGAGAGCA CCCGGGTGGA CACTCCGCCG GCCAGGCTCA GGGCGCGTGC GCCGCGGGAG
|
7621GCGGAGGCTA CGAGCGCGCC CTCGGTGGTG GCCATCGGGG CGACGACGGC TTCCCGGACG
|
7681CCCTGGCCGC GGAACTGCAG CGGTCCGGCG AGCCCCACCG GGACCTCGAC CGATCCGGCG
|
7741AAGTTCTCCA GGTTCCCGGT CAGCGACGCG GCCTCGATCG CCGTGTGTGC GGCGGAATCG
|
7801AGGGTCGCGC CGGTCCGGGC GAGCAGCCAT GCCAGCCGCG CTGCGCGGGC CTGTTCGGTG
|
7861TACCGGCCAC GGCCCGGTAT CGCGTCGTCG GTCACGCGTG TGCCCTTTCG TCGGCGGTGA
|
7921TCCGCGCCCA GCTGTCGGGC GCGGGCTGGA AGATCCTGTC CTTGACGCGG GTGCGGCGCT
|
7981GGCCGGAGCG GATCGCGTGC TCCCACTCGC GCTGGAAGGC GTCCTGGTGC ACCTGGAGCA
|
8041CCTCGACGGG GGCCAGGGCT CCGGCGTCGC GCGCCGCGCG GTATCCGTCG GCGGTCTCGC
|
8101CCAGGTGCTT GTCCAGCAGC GTCGCGAAAC CGGCGGGCAG CGGTCCCGGC AGTGCGGAGG
|
8161CGATCGCCGC GCGGAACCGG TCCGTTCCGG TCTCGACCGT CGCGTTGCGC AGCTCCGCCG
|
8221CGGTGTCGGC CAGGGTGCCG GCCAGGGCGC GGACCACCGC GCGTTCCGTC AGGTCCACGC
|
8281CGGCGGCCGT GCGCAGCACG TCACGTCCGG TGTAGGCGAT GCGCGGCGTA CGCCCGACGT
|
8341GGTCGACGAC GTGCACGACG TCGTTGACGG GGCACCGGTA CAGACCGCCG ATGTGGCTGA
|
8401GTACGAGGTG GTAGTCGCGG CCGGGTTCGA GTTCGGCGGC GGTCACGGTC GGGCTGTCCT
|
8461CGCGGATCGG GTCGGCGGCG TCGGCGAACT CGAAGTAGCA GCCGGGCAGA TAGAGCGGGG
|
8521CGGGGTTGGG ATGGTCGTCG ACGGGGACGG CGACCGGGCC CTCCGAGGAT CCGATCGGCG
|
8581CGGCGAACAG GCGTACGCCG GGACCGTAGC GTTCGCGCAC GCGTGGCAGG TAGAGCGAGG
|
8641CGAGGGCGCT GTTCCACGCG ACGGCGGCCC GGAGGTTGGG GCACAGGTGG TACGGATCCA
|
8701GGACGCCGTA CTCGTCGGCG CGGCGCGCGA TCTGCTCGGC GCGCCGCGGA TCGGGCGTGG
|
8761TGTGCGGCAC TCCGCCGACC GTGCCGCGGG CGATCTCCTC GACGATCCGG GGCCACTGGG
|
8821CGGCCAGTTG GTGGGGCAGC CGGGCGATCA GGGCCGGGTT GACGCCGATC AGGACCTTGA
|
8881TGTGGCGTTC GGCGGCGAGC CGCAGTTGAA GGTATGCCCG CTCCCACGGG TCGGCGTCGG
|
8941AGAGCTGCTC GGGGATCGTG GCCCAGGCGG CGCCGTCCTC CGGCCGGGCG CCCTCGCCGA
|
9001AGAGGCGGTG GTCGATCTGG CTGGGGCCCA GATGCGGCCG GCCGTCGGCG GTGCGCGCGT
|
9061GCGGCGAGGT CGGATCGCGC CACAGGTTCA GCACGCCGCC GGGGTCCGCG GCGAGGTCGG
|
9121GGAACGCGCC GAGCAGGACG GCGAAACTGG CGTGGTAGAA GGGCAGGAAG CAGCGTTTCA
|
9181TGTAGGTGGG CGTGACCGGG ATGCGCTTCT CCTGGCGGGT GCTGGCGCTG GAGGAGAAAA
|
9241ACGCGACCGG CCGCTCGGCG GTCAGGACCC CGTCCTCGCC GGCAATCGCC CGCTCGATCC
|
9301AGGGACCGAA CGCGTTCTGC GTGCGGATCG GCAGGGCCTT GCGGAACTCC TCGGCGCCGC
|
9361TTCGCTCGTT CAGGCCGTGC TCGCGCAGGT AGCTCGTCGC ACCGTTCGCC GCGAGGAGTT
|
9421CCGCGAGGAC CGTCTGCTGG GTCTGGTCGG GGTGGTCGAG CGTGGCGAGG AACCTGTGGT
|
9481GTTCGGTCAG AATGGGTTCG GTGTGCAAGC TTTCCCTCCA GCGCGGTCGG AGAAGAGGGC
|
9541TCCGTACAGG CGGAGCCGCT CGGGGTCGGC GGTGTCGTGC GTGATCCGGC TGTCGACGGG
|
9601GTGGGGACGG GCCGGGTCGA GCGCGGCGCG CAGCCGCGGT GGGTCGAGCG CCGGGCGGTG
|
9661CGTCACGTGC ACGGTGTCGC CGGGACGGAC CAGACCGCGC AGGGCGGCCT CGGGGAAGAG
|
9721GTGATGGGTG TGGACGAGGT AGTCCAGGAC GGTGACGTCC GCGGTCGCCA TCACGGCCTC
|
9781GGCCCGGAAT CCGGTGTCGG GGCCGGGCAG CCGCACGGTG AAGGGCTCCG GCGCGGGGGC
|
9841CGGTGCCGGA GCCGTGAAGG CGCGGAACAG CCGTGCCAGG TTCTTCAGTT GCGGCGTCGG
|
9901CACCGGGCCG TACCAGCTCA GCGCGTTGTC GGGGGTCGCG TACCCGTCCG GGAACCGGGC
|
9961CGCCACCGTG GCGGGCCGGC CCGCCAGGAA GATGGTGCGG GTGAACGTCC GCAGGCATGC
|
10021GTCGGCCGGC TGCTCGGGGA GCGAGAGCGC GAAGTCGAGG AGGCCGCGGA CGAAGGACTG
|
10081GGGGGTGAGG GrGTCCACCA GGACCGCCAC GGTGTGGAAG TGGTGTCCCG GTTGGTCGTC
|
10141GAGGGGGGCC AGGCGGGCCG CCGCGGAGGC TTGCAGCAAC GTGTGGAGCG AACCATGCGG
|
10201GTCTTCGACG TCCGGGAGGT CGATGTCCGG GAGCGCGGGG TCGCTCACGC GGGGTGGGGT
|
10261CTGTCCGGTC ATACGAGCAC CTCGCGCAAC AGGGCGGGCA GCGGCGCCGG GCGCGGTCCG
|
10321AGCAGCGAGC AGGCCAGGCG GTGCGGGTCG ACATAGCCGT GCGGGCTGAG CGGCAGTACC
|
10381GGGTCCTCCC GTTCGTCCGA CGGCCCCAGG GCCAGGATCC GGGCCGCGCG CCCGACGCAG
|
10441CGGCGCAGCA GGTCGATCCG GAAGGACTGG CTGCACTGCC GGTCGAGCAG ACCGACGAAG
|
10501TAGAGGCGCA TGCCGAGCCG GTAGGCGTCG GCGTCCGCGG AGGCGGAGAT GGCCGACAGG
|
10561TCCGAGAGCG TCGAGCCGGT CCACCCGCCG TACTTGCTGG AGACGACCTT GCCGCCGATC
|
10621GGCACCCGGG TGAGCGGGAG CCGGGTGGTG TGGGCGCCGA ACTCGGCCAG GATCCGGTCA
|
10681AGGAGCAGGT AGTCGACGCC GAGCCCTTCG TCGAAGAGCA GGAGGAAGAG CCTGCCGGGC
|
10741GCGACGGCGG GCAGCAGCGA GCGCAGGATC GGGAGCAGGT AGTTCGCGTG GCCGTCCGTC
|
10801GAGACGATCT GCCGGATCGG CACGCCCCAG CGGGCGCCGT CCAGGTAGAC GGGCCCGCCG
|
10861TGCGGCCTGT GGTCGATGAG CAGCCCGCGG TCCGCGAGGG CCGCCAGGGC GCGCTGCTCC
|
10921GAGCAGGTCA GCGGGCGGGT GTCGGTCAGG CCGGGGTCGC GCACGTGCAG CAGGTCGAGT
|
10981TCGGTGCGCC ACAGCTCCAG CAGGCGGTGG GAGGCCGGAT GGATCCAGCC GTCCCGGTGG
|
11041ATCCGGGCGA AGTAGGGGTC GAGTGCGCGG GGGTGGGTCG TCGGACGGCC GCGGTGGAAC
|
11101TGGAGGTAGC GCCGGCCGAT CGCGGTCTCG TCCTCGCCGG AGCAGTCCGT GTCCGGTTCC
|
11161GTGGGGTCCA GGTGGTTCCA GAACGCCGTG GTCTGGGTCG TGAGCGTGGA CATCCGGGGA
|
11221TTCCAGACCA GGGTGGTGGG GCCGAGGGTG GCCGTCGCCT TGAACAGGGC GTCGGCCCAC
|
11281AGCAGGCCTT TGACATGGGT GGGGGTCAGC GGGTTGGTGG GGGTGATCGT CACCGGGGCG
|
11341ATCACGAACT CCCTCGCGGC GCGGCGGGCG CCGGGATGCG CGCGGTGTGC GCGGCTCGCG
|
11401GGTGTGGGCG GGCCGGTCGT CGCGGTTCGT ACGGTGCTCG GGGTGCGCAC GGTGCTCGAG
|
11461GTGCGCAGGG TGGTGCTCAT GGATGGCTCC TGTCGATGTC TGCCGCGACC GGGCGGACGA
|
11521GGTCGTGCGC GGCGCGCGAC ATGCCGGTCG CGGCGCAGGA CGTGCCGGTT GCGGCGCGCG
|
11581CCGCGTGGGC CGTGACGCGC GCCGCGTTCG AATCGACAGC GGTCACGACG TGGTCGGCCG
|
11641GGACGGGTCG GACGCCGTCC CGTCGGAGGC CCCGTATTCG GCGTGGAGGA ACTGCATGAG
|
11701GTCGGTCGCG CTCGCCGTCT CCAGGTCATC GGTGCCGGAG TTCCTGCCGG CTCCCCCGGC
|
11761TCCGGTGGCC GTGCCGGAGA GCCGGTCCAG GAGCGCGGAG AGACGGGTGG CGAGCGCGGC
|
11821CCGGGTGTCT GCCGGTGTGA ACGGCGAGAG CACCTTGGCG TCAAGGCGGT CGAAATCCTC
|
11881GAGGACCGGA CCGTCGTCGG CGGGGGCTTC CTCGAGGTGC AGTTCCGTGA GCAGCCGCTC
|
11941GGCGAGCGAC TCGGGCGTGG GGTGGTCGAA CGCCAGCGTG GCCGGCAGCC GGGCGCCGAC
|
12001GAGTTCGCCG AGCCTGTTCC GCAGCTCCAC GGACATCATC GAGTCGAAGC CGAGTTCCCG
|
12061CAGCGCCCGG TCCGCCTGCA CCTGTTGCGG GTCGCCCCGC CCGATGAGCT GCGCCACGTG
|
12121GGTGCGCACG ACGTGGAGCA GTACGGGCAG CCGCTCGTCG TCGGGCAGCG CGCCCACCCG
|
12181GTCCTTCAGC GCGCCCGCGG TGGTGCCCGC GCCGGGGAGG GCGGGGGACG CTGCGTCCCG
|
12241GCCGCCGCCC GCCGTGTCCG CGGGCGCGAA TCCGCTGAGC AGCGGGCTGG GGCGAAGGAC
|
12301GGTGAACGCG GGGAGGAAGC GCGACCAGGC CACGTCCACC ACGACCGGGT CGGTGTCGCC
|
12361CGGCACGGCG CGCTCGAGCG CTTCGACGGG GCTGGGCACG GCGAGCGGGA GCAGCCCGGG
|
12421CTTGCGCAGT TCCCGGTCCT CGTACTCGGT GACCATGCCG CCGCCCGACC AGGGCCCCCA
|
12481GGCGATGGAG ACGGCGGACG CGCCCCGCTC GCGGCGTCGG CGGGCGAGCG CGTCGAGGCA
|
12541GGCGTTGCCC GCGGCGTAGG CGGCCTGGTC CGCGGCGCCC CAGATCCCGG CGATGGAGGA
|
12601GAACATGACG AACTCGTCGG CGTCGGGCAG CAGTTCGTCG AGCAACAGCG CGCCGTTCAC
|
12661CTTCGCCGCC ATGTCGGTCT CGAAAGCCTC GGGGTCGACG TCCGCGATGC GCGCGTACCG
|
12721GATCACGCCG GCGGCGTGGA CGAGGGTACG CACCGGGTCG TCCTCGGCAT CAAGACGGGA
|
12781GAGCAGTTGC GTGACGGCGG TGCGGTCGGT GATGTCGATC GCCGCGGCTT CGGCCCGGAC
|
12841GCCCGATTCG CCGAGTTCTG CCAGGAGTTC GGCGGCACGG GGTGACTCGG CGCCGCGGCG
|
12901GGAGAGCAGG ACCAGGCGGT CGGCCGTGCC GAGAGCGGCG AGGGGGCGGG GGACGTGCGC
|
12961GCCCAGGCCG CCGGTTCCGC CGGTGATCAG GACGGTGCGC TTGGGCTGCC AGGTTCCCGC
|
13021GTCGGCCGCG GGTGCGGTGC CGAGCCGGCG GGCCCACAGG CGCCCGTGGC GCACCGGGAG
|
13081CTGGTCCTCG GGGCCATGGC CGGTGAGCAC GCCGGCGAGC AGACGTGCGG TGGTCCGCCC
|
13141GGCGTTGTCG TCAGCCGTCC CGAGGTCGGC CGTCTCCGGA ACGTCGACGA GTCCGGCCCA
|
13201GCGCGAAGGG AGTTCGAGGG CGGCGACCCG GCCGAGCCCC CAGGCGCCCG CCGCGGCCAC
|
13261GTGCGTCGCG GGGTCGTGGA CACCGACGCC GACCGCGCCG CTGGTCACGC ACCAGACCGG
|
13321CGCGTCGAGC CGCTCGGTCT CCCGCAGCGC GGGGAGCAGT TCGGAGGCGT CGGCGGGGCA
|
13381GACGAGCACG CCTTCGAGCG GTGTCGAGGC CGATGCATCC CATTCGGTGG ACGTGAGGAC
|
13441GTGCTCGAAC AGCTCGGCGA GTCCGGGGCG TGCGGTGCCG AAGAGCAGCC AGGTGCCGGG
|
13501CACGCGCTCG GCGATCCGCG CGTGGCTCAG CGGCTCCCAC CGCACGGCGA AGGTCGCGGC
|
13561CTGTCCGACG GCCCCTTCGG CCGCCTGGAG CTGTGTGCGC TCCACGGCGC GCAGGATCAG
|
13621CGATTGCATG GCGAGGACCG GGGTTCCGGC GGCGTCCGTG ATCCACACCG AGGTCGCGTC
|
13681CGGCCGCGGG CGCAGCCGTA GGCGGACGCG CCGCACGTCC GTGGCGAAGA GGGTGACGCC
|
13741GCCGAAGGAG AAGGGCAGGC GCACCTCGTC GTCGGTCTCG TAGAAGCTGC GGGTGATGGG
|
13801CAGGGCGTGC AACGAGGCGT CCAGCAGAGC GGGGTGGGCG CCGAAGCCGT AGGGCTGGTC
|
13861GTGGGGCAGG ACGACCTGCG CGAAGAGATC GTCGCCGCGC CGCCACAGCG CCTTGAGCGA
|
13921CCGGAAGGCG GGGCCGTACT CGTAGCCGCG CTCGGCGAGG TCCGGGTAGA ACGTGTCACC
|
13981GGGGATCTGT TCCGCGCCCG CGGGCGGCCA CACCGCGCCG GTCCAGTCGG GCGTGAAGCC
|
14041GTCGGTGTCC ACGCGGGAGG CGGTCACGAC GCCGGTGGCG TGCAGCGTCC AGTCCTCGCC
|
14101CGGCGTACGC GTGCGGATCA GCAGTTCGCG CTCGCGGCCC TGGTCGGGTG CGACCCAGAC
|
14161CTGGAGGTCG CGGGCCCGGC CGCCCGGGAA CACCATCGGG GCGCGCAGGA CGAGTTCTTC
|
14221GACGCGGCCC GCGCCGACCG CGCGCGCGGC CTCCAGCGCG AGTTCCACGA ATCCGGTGCC
|
14281GGGCAGCAGC AGGGTGCCCA TGACGGCGTG GTGGGGCAGC CACGGGTCCG TGCCGGGCGC
|
14341GAGGCGGCCG GAGAACAGGA CGCCGCCCCC GCCGGGGAGG TGCGTGCGCT GGGACAGCAT
|
14401CGGGTGCGGC AGCGCGTCGG CCCCGGCGCC GGGGCCGGTA CCCGAGGACG GGGCCGTCAG
|
14461CCAGTAGTTC TCGTGCTGGA AGGGGTAGGT GGGCAGGTCG AGGTCCGGGA CCGTGGCGCT
|
14521GCCGCGCTCG TGTCCGCGGC CGTCGGCGGT ATCGGCGTTG TCGGCGTCCG CCTCGGCATG
|
14581GTCGGCGAAC CAGGTGACCG GCGTCCCGGT CACGTGCAGG GTCGCAAGGG CCCTGAGGAA
|
14641CGTGTCGGGC TCGGGCTGCC CGGCACGCAG CGTCGGCACG AGCGCCGCGG GAGCGGCGGA
|
14701CGCGTCCTCG AGTGTCTCGG CGGCGAGCGG CGGGAGTGTG GGGTGCGCGG TGAGTTCGAG
|
14761GTAGCGGGTG GTGCCGAGTC CGTGCAGGGT GGTGACGGCG TCGGGGTGGC GGACGGTGTG
|
14821GCGCAGCTGT TCGGTCCAGT GGTCGGCGGT CGTGATCCGG TCCTGCTCGG CGAGCAGTCC
|
14881GGTGAGCGTC GAGACGATGG GAATGCGCGG CGCGCGGTAC GTGAGCCCCG CCGCGATGCG
|
14941GCGGAACTCG TCCAGGATCT GGTCCTGGTG CGGACTGTGG AAGGCGTGGC TGACGGTCAG
|
15001CCGCCTGCTC CTGATCCCCC GCTCCGCCAG CTGTGCGGCG ATGTCCGCGA GGACCTCGGG
|
15061ATCACCGGAC AGGACGGTCG ACTCCGGCGC GTTGACCGCC GCGAGCGAGA CGACGTCCTC
|
15121ACGCCCCGCC ACGAGACCCC GCGCGGTGGC CTCGCCGGCC TGGAGGGCGA GGATGGTGCC
|
15181GGGGGTGGTG ATCTGCTGCA TCAGACGGGC CCGGTGGAAG ACCAGGGTGG CCGCATCAGC
|
15241CAAAGAGAGC ATCCCGGCGG CATGCGCCGC GGACAGCTCA CCGATCGAAT GCCCCACCAG
|
15301ATGGTCCGGC CGCACACCGA ACGACTCCAG CAGCCGGAAC AACGCGGTGT GCAGAACGAA
|
15361CAACGCCGGC TGCGTGAACG CGGTCCGGTT CAGCAGTTCC GCCCCCTCCG ACCCCGGCCC
|
15421CGCGAACATG ACCTCACGCA GGGAGCGGCC CAGCAGGGGA TCGAAGACCG CACAGGCCTC
|
15481ATCGACGGCA GCGGCGAACA CGGGATACGA CGCATACAAC TCCCGCCCCG CACCCGGGCG
|
15541TTGACTGCCC TGACCGGAGA ACAGGAACGC AGTCCTGCCC GTGGTGACCT GCCCGCGGAC
|
15601GAGGCTCGGG TGCCCGGAGC CCGACGCGAG CGCCGACAAC GCCTCGGTCA GTCCGGCACG
|
15661GTCGGCGCCG ATGAGGGCGG CGCGCTGCTG GAACTGCGAC CGGGTCGTCG CGAGCGCGCG
|
15721GGCGAGGTGA CCGGTGCCGG TCTGCGGGCG GGCGGCGAGG AACTCCGTCA GGCGGTCGGC
|
15781CTGCGCGCGC AGCGGGTCGG GGCTTTTCGC GGAGACCAGC CATACGGCGG GGTCTGCGGA
|
15841GTCGGCTTCG GCCTCGTACG CGGTCCGCTC CTTGAGCGGA GGCTCTTCGA GGATCAGGTG
|
15901CGCGTTGGTA CCACTGATCC CGAACGACGA CACGGCGGCA CGACGCGGCC GCTCCCCCGC
|
15961CTCCCAGACG ACCGGCCCGG TCAACAACCT GACCTCACCC GCCTCGGAGT CCACATGGGG
|
16021CGAAGGCTCG TCGACATGCA AGGTCCTGGG AAGCACCCCG CCCCGCATCG CCATGACCAT
|
16081CTTGATCACA CCACCCACAC CCGGCGCGGC CTGCGTGTGC CCGATGTTCG ACTTCAGCGA
|
16141ACCGAGCCAC AACGGACGAC CCTCGAACCG GCCCTGTCCA TAGGTGGCCA GCAACGCCTG
|
16201CGGGTCGATC GGGTCACCGA GCGTGGTGCC GGTGCCGTGC GCCTCGACGG GGTCGATGTC
|
16261GGCGGCCTCG AGCCCGGCGT CGGCCAGGGC CTGACGGATC ACCCGCTGCT GCGAGGGGCC
|
16321GTTCGGCGGG GTCAGACCAT TGCTCGCACC GTCCTGATTG ACCGCCGAGC CGCGAATGAC
|
16381CGCGAGCACA CGGTGCCCGT TGGGCCGCGC GTCACCGAGA CGTTCGAGCA CCAGCATGCC
|
16441CACACGCTCG CCCCACGGCG TACCGTCCGC CGGCGCCGCG AACGACTTGC ACCGTCGGTC
|
16501CGGCGCCAGG CCCCGCTGCC GGCTGAACTC CACGAAGGTG CCGGGGTTCG CCATCACCGT
|
16561CACGCGGCCG GCCAGCGCCA CGTCGCACTC GCCCGAGCGC AGCGCCTGCG TCGCCAGATG
|
16621GATGGCGACC AGCGAGGAGG AGCACGCGGT GTCGAGCGTG ACCGCCGGGC CCTCCAGGCC
|
16681CAGCGTGTAG GCGATCCGGC CGGACAGGAC GCTGGTCGTG GTGCCGGTCA GCAGGTGACC
|
16741GCTGACTCCC TGCCCCGTCG CCTCGTACAG GCGCGGCGCG TACTCCTGCG GCATCACGCC
|
16801GACGAACACG CCGGCCCGGC TCCCGGCGAG GCTCAGCGGA TCGATGCCGG CCCGCTGCAC
|
16861CGCCTCCCAC GAGGTCTCCA GCACAAGGCG CTGCTGGGGG TCGATGGGCA AGGCCTCACG
|
16921GCGGCTGATG CCGAAGAACG GCGCGTCGAA CTGTCCGGCG TCGTGCAGGA AGCGTCCCTC
|
16981CCGGACGTAC ACCTTGCCCT CGGCGTGCGG GTCGGGGTCG TAGAGCCGCT CCAGGTCCCA
|
17041GCCACGTCGC GAGGGGAATC CGCTCACCGC GTCGATTCCC CCGGCGGCCA GCTCCCACAA
|
17101CTGCTCCGGG TCCGTCACGC CGCCCGGATA ACGGCATGCC ATGCCGAGGA TCGCGATCGG
|
17161TTCCCGCTTG CGTGCCTCGA TGTCCCTGAT GCGCAGGCGC GTCTGGTGCA GGTCGGCGGT
|
17221GACCCGCTTG AGGTAGTCGC GGAGCTTGTC GTCGTTCGCT GGCATGGAGG AACCTGCGCC
|
17281TTGTGCGTGT TCTGCATCGC GCGGCCGGTC CGGTGGGACC GACCGCGCGG CGTGGCGGAG
|
17341TCGGACTGGG GGGACCGTCA GGTCAGTCCG AGTTCGTTGT CGATGAAGTC GAAGATCTCG
|
17401TCGTCGCTGG CCGACTCGAA TCGGTCGGTG GCCCCGGCGG CGTCCTCGGC GTCCGGCCGG
|
17461CCCGCTTCCT GCCGGCCGTG CAGCCACACG AGCAGGTCCT CGAGGCGGGC GGTGAACGGG
|
17521GTGAGTGTCG CCTCGTCCGC GTCGGTGGCG ATCGCCGTGT CCACCAGCCG GTCCAGTTCG
|
17581GCGAGGACCG CCAGGCTGTC GGACGTGGCA GTCCGCGGGG TCTGCGAGGC CAGTCGCGTG
|
17641TAGAGGAAGT CGGCCACGGC CAAGGGCGTC GGGTGGTCGA AGATCAGTGT GCCGGGGAGC
|
17701CGCAGACCGC TGACGGCACC GAGCCGGTTG CGCAGCTCCA ACGCGGTGAG CGAGTCGAAG
|
17761CTCAGCTCCT TGAATCTCCG CTCCGGGTCC ACCGTCGCCG CGGTCGCGTG TCCCAGGACC
|
17821GCCGCGGCGC TGTCCTGAAG CAGCTCCAGC AGCATCCGTC GTCGCGCGGC CTCGGTCGGC
|
17881AGTTCGGCCA CGCGCCGGGC CAGGTCCGGT CCCGCGTCCA CCGCGGTCTG GCGCGGTGCG
|
17941GGGAGGCGGG CGCCGTCGGC TGTTGCGGCG GCCTGTGGCA GACGCCGTAC GGGCCGGGCC
|
18001GGTGCGACGT GCCGGAACAG CAGCGGCACC TCGGCGACGT CCCCCGCTCT CCCGGCACCA
|
18061CGGGCGCTTT CGGCCAGGGC CGCGAGGTCG AGCCGTACCG GCACCAGGGC CGGTACCGCC
|
18121GCGTCGCGCG TGGCGTCGAA GAGGGCGAGG CCCTCGTCGG TGGACAGGGG CAGTACGCCG
|
18181GTGCGTGCCA TCCGGTTCAG ATCGGTCGCG CTCAACGCCT GCGTCATACC GCCGGCGGCG
|
18241TGCTCCCAGG GGCCCCACGC CGCGGCGACC GCGGGCAGCC CGCACCGGTG TCGGGGGTAT
|
18301GCGGCCAGAC CGTCCAGGAA GGCGTTCGCG GCGGCGTAGT TGCCCTGTCC GGCGTGGCCG
|
18361ATCACTCCGG CGACGGACGA GAACAGTACG AAAGCCGACA GGTCGGCGTG GGCGGTGAGT
|
18421TCGTGCAGAT TCCACGCCGC GTCCGCCTTG GGCCGCAGCA CGGTGTCGAG CGGCTCGGGC
|
18481GTCAGTGCTT CGACCGGGGC GTCGTCGAGC ACGCCCGCGG CGTGCACCAG GGCGGTCAGT
|
18541GGATGCGCCT CCGGGACCGC AGCGACGACC CGCGCCAGCG CCGTGCGGTC CGGCGCGTCG
|
18601CAGGCCTCGA CGGTCACCTC GACGGCGCCC GCCGCGCGCA GTTCCGCGAC GATCTCGGTC
|
18661ACGCCCTCGG CGGCCGGGCC GCGCCGCCCG GTGAGCAGCA GTCGCCTGAC GCCGTGCCGG
|
18721GTGACGAGGT GGCGGGCCAC GTTGCCGCCC AGCGCGCCCG TGCCGCCGGT GATCAGGACG
|
18781GTCCCCTCCG GGTCCAGCGG CGCCGGGACG GTGAGGACGA CCTTGCCGAC GTGGCGGGGC
|
18841CGGCTCAGGT GCCGGAACGC GTCCTGCGCG CGCCGCACGT CCCACGCGGC GACCGGGAGC
|
18901GGACGCAGCG CGCCGCGCTC GAACAGCTCC GTCAGCTCGC CCAGCATGGC GCCGACGTGC
|
18961GGGGGTTCCA GCTTCGTCAG ATCGAACGAG CGGTGGTCGA CGCCCGGGTG CCGGGCGGCG
|
19021ACCGCCTCGG AGTCGGGGGT GTCGGTGCTG CCCGTGTCGA CGAACCGGCC GCCGGACGAC
|
19081AGCAGCCGCA GCGAGGCGTC CACGGCGTCT CCGGCCGGGC AGTCGAGTAC CACGTCCACG
|
19141GCGGCGCCGC CGGTCGCGGC CCGGAACCGG GCCGCGAACT CCTGGGTGTG CGACGGCGCG
|
19201AGGTGCGTGT CGTCGAGCCC ATGTGCACCC AGGTCCGCCC ATTCGCCGGG GCCCGCTGTG
|
19261CCGAACACGT CGGCGCCCCG GTGCCGGGCG AGCTGCGCCG CCGCCAGGCC GAGGCCGTCG
|
19321GCCACCGAGT GGATCAGCAG CCGCTCGCCC GGTACGACGG CGGCCAGTTC GACGAGTGCG
|
19381TGATAGGCCG TCAGGAACGC GACGGGCACC GACGCGGCCT GCGTGAACGT CCAGCCCGCC
|
19441GGGATACGAG CGAGGGTGTG CGGCTCCGCC ACGGCCTGGG GGCGGAAGTT GCCGGTGAGC
|
19501AGGCCGAACA CCCGGTCGCC GACGGCGAGA TCGGACACGC CGGGGGCGGT CTCGGTGACC
|
19561ACACCCGCGC CTTCGAGCCC GAGGATGTCG TGGTCCGGCG GTGTGTGGCG GGCGAGGACC
|
19621GGGGCGCGGA GATCGAGTCC GGCGGCGCGC ACCGCGATCC TCACCTGCCC GGTGGCGAGC
|
19681GGGGCGCGCT GGGGCGCCCG GACCTGCTCG GCGACGTCGG GCGGTGCGGG CGACGGGACG
|
19741TCGGCGTCCT GCGCGGCGCG AGGGAGTCGC GGTACGAGCA CCTCGCCGTC GCGCACCGCG
|
19801AGTTGCGGTT CGCCGGTGCG CAGGGCGGCG GGCAGGGCGG CGTATCCGTC GGACGGGTCG
|
19861CCGTCGATGT CGACGAGGGT GAAGCAGCCC GGGTTCTCGG TCTGGGCGGT GCGCACCAGG
|
19921CCCCAGGCGG TGGCCTGCGG CAGGCCGAGT GCGTCCGGCG CCGTCGCCGG GGCCGTCGCA
|
19981TCGTGCGTGA CGAGGAGCAG GCGGCCGACC GTGAGGGCGG GCGGGTCGAG CCAGGACGTG
|
20041AGGAGGGCGA GCGTGCGGCG GGCGACGGCG TGCGCGCCGG CCGCACCTCC TTCGTGCTCT
|
20101CGCGTCCGCT CTCCTTCGTG GGGCGGAAGT TCGGCTCCGT GCGCAGCGAG ATCGGCGAGC
|
20161ACGACGGACG GGTGCGGGTC ACCGTTCTCG ATGCCGTGGA CCAGGGCGTC GAGGTTCGGG
|
20221TACGTGCGGA TGTCGACCGC GTCGGCCGCC AGCGTGGAGA GCGGATCGGG CACGGGGCTC
|
20281CGACCGATGA GCGCCGACTG CTCCGGCGCG TCCGGAGCCG CGGCGCCGAC CGGTGCCGCT
|
20341GCCGGTGTGG CGGACGAGTC GACGTGGTAG AGCGACCGGG GTCCGGCCGG TTGCGTGCCG
|
20401GAGCCGTCGC TCAACCGGTC CAACACCACG GGACGCAGGG ACAGTTCCCC TGCGGTCAGT
|
20461ATGAGGGGGC CGGACGGATC GCTCGCGACG ACGCGGACGG TGGTCGGCCC GGTCCGGGTG
|
20521AACCGGACCC GCAGCGCGGT GGCGCCCAGC GCGTGCAGGG CGACATCGCC CCAGGAGAAG
|
20581GGCAGCAGCG TGCCCGAGGC ATCGGTTCCG GACACCCCGT CCGCGAGCAG TCCGCTGCGC
|
20641AGCAGGGCGT GCAGCGAGGC GTCGAGCAGC GCCGGGTGCA CCGAGAACCG GTCCACGTCG
|
20701TCCGAGGCGG CGGCATCGTC ACCCAGCTCG ACCTGTGCGA ACACGTCATC GTCCGTGCGC
|
20761CACGCGGCGG TCAGCAACCG GAAGTCGGGG CCGTACTCGT AGCCGGTCAG GGCCAGAGCG
|
20821GGGTAGAGGT CCGTCAGGTC GACCGGCGCC GCGTCGGCGG GCGGCCACTG CGGTGCACGG
|
20881TCCGCGGCGT CGGGCGCCTC GGTGGGCCCC AGGGCTCCGC TCGCGTGCCG GGTGCAGGAG
|
20941GACGAGCCGG AGGCGTCGTC GCCGGCGGGC GCCGGGCGCG AATGGACGGC GAAGGCGCGC
|
21001AGGCCGGACT CGTCCGCCTC CTGGACGGTC ACCGGGATGT CGACGCCGCG CTCGCGGGGC
|
21061AGCACGAGCG GTGCCTGAAG CGCGAGTTGC GCGACAGCCG GGTGCTCCCC CGCGCCGTCC
|
21121GACGCGGCAT GCAGCACCAG ATCGAGCAGG GCGGTGCCGG GCAGCAGCGT CGTGCCGTGG
|
21181ATCGCATGAT CGGCGAGCCA GGGGTGCGTG AGCGTGCCGA TACGCCCGGT GTGGACGAAG
|
21241CCGCCGCCCT CGGGCAGTTC GACGGCCGCC GCGAGCAGCG GATGCGGCGT GCGCGTCAGC
|
21301CCGGCCTGCG TGACATCGGC GCGCGGCGCG GGCGGCGTGA GCCAGTAACG CTCGCGCTGG
|
21361AAGGCGTACG TGGGCAGTTC GGGCAGAGCA GCGGAGCGAG GGCCGGGGAG TGCCGGCCAG
|
21421GGGACGTCGG CACCGCTCGT GTGCAGGGTC GCGAGGGCGC GCAGCAGGGC GTCGTGCTCC
|
21481GGCCGTCCGT GGCGCAGCAC CGGGACCAGA GCCGCGGGGC TCTCCTCCAG GGTCTCGGCG
|
21541ACCAGCGTGG CCAGCGTCGG AGTGGGAGTG AGTTCGAGGT AGCGGGTGGT GCCGAGCCCG
|
21601TGCAGGGTGG TGACGGCATC GGCGTGGCGG ACGGTGCGGC GCAGCTGTTC GGTCCAGTAG
|
21661TCGGCGGTCG TGATCCGGTC CTGCTCGGCG AGCAGTCGGG TGAGCGTCGA GACGATGGGA
|
21721ATGCGCGGGG CCCGGTACGT GAGCCGCGCC GCGATCCGGC GGAACTCGTC CAGGATCTGG
|
21781TCCTGGTGCG GACTGTGGAA GGCGTGACTG ACGGTCAGCC GCCTGGTCCT GATCCCCCGC
|
21841TCCGCCAGCT GTGCGGCGAT GTCCGCGAGG ACCTCGGGAT CACCGGACAG GACGGTCGAC
|
21901TCCGGCGCGT TGACCGCCGC GAGCGAGACC ACGTCCTCAC GCCCCGCCAC GAGACCCCGC
|
21961GCGGTGGCCT CGCCGGCCTG GAGGGCGAGC ATGGTGCCGG GCGTGGTGAT CTGCTGCATC
|
22021AGACGGGCCC GGTGGAAGAC CAGCGTGGCC GCATCCGCCA AAGAGAGCAT CCCGGCGGCA
|
22081TGCGCCGCGG ACAGCTCACG GATCGAATGC CCCACCAGAT GGTCCGGCCG CACACCGAAC
|
22141GACTCCAGGA GCCGGAACAA CGCGGTGTGC AGAACGAACA ACACCGGCTG CGTGAACGCG
|
22201GTCCGGTTCA GCAGTTCCGC CCCCTCCGAC CCCGGCCCCG CGAACATGAC CTCACGCAGC
|
22261GAGCGGCCCA GCAGCGGATC GAAGAGCGCA CACGCCTCAT CGACGGCAGC GGCGAACACG
|
22321GGATACGACG CATACAACTC CCGCCCCGCA CCCGGGCGCT GACTGCCCTG ACCGGAGAAC
|
22381AGGAACGCAG TCCTGCCCAC CGTGGCCCGA CCACGTACCA CCATGGGATG CCCGGCACCC
|
22441GAGGCAAGCG CGGACAGCGC CTCGGCGAGT GCGTCCCGGT CCTGGGCGAC GACCGCCGCC
|
22501CGGTGGTCGA AGTGCGTACG GCCGGTGGCC AGGGCCCGAG CGGCCCGGCG GATGCCGACC
|
22561TCCGTCCGGG TCCTGGCGAA CTCGGCCAGC CGGCCGGCCT GTTCCCCGAG CGCGTCGGCT
|
22621TTCTTCGCGG AGACCAGCCA TACGGCGGGG TCTGCGGAGT CGGCTTCGGC CTCGTACGCG
|
22681GTCCGCTCCT TGACCGGAGG CTCTTCGAGG ATCAGGTGCG CGTTGGTACC ACTGATCCCG
|
22741AACGACGACA CGGCGGCACG ACGCGGCCGC TCCCCCGCCT CCCAGACGAC CGGCCCGGTC
|
22801AACAGCCTGA CCTCACCCGC CTCCCAGTCC ACATGCGGCG AAGGCTCGTC CACATGCAAG
|
22861GTCCTGGGAA GCAGCCCGCC CCGCATCGCC ATGACCATCT TGATCACACC ACCCACACCC
|
22921GCCGGGGCCT GCGTGTGCCC GATGTTGGAC TTCAGCGAAC CGAGCCACAA CGGACGACCC
|
22981TCCGACCGAC CGTGTCCATA GGTGGCCAGC AACGCCCGTG CCTCGATCGG GTCAGCGAGC
|
23041GCCGTTCCCG TCGCATGAGC CTGGACGGCG TGGACATCGG GGGCCTCCAG CCCCGCGTCG
|
23101GCCAGGGCCT GAGGGATCAC CCGCTGCTGG GACGGGCCGT TCGGCGCGGT CAGACCATTG
|
23161CTCGCACCGT CCTGATTGAC CGCCGAGCCG CGAATGACCG CGAGGACACG GTGCCCGTTG
|
23221CGCCGCGCGT CACCGAGACG TTCGAGCACC AGCATGGCCA CACGCTCGGC CCATGAGGTG
|
23281CCGTGGGCGG CGGCGGAGAA CGACTTGCAC CGTCCGTCGC CCGCGAGGCG GCGCTGCCTC
|
23341GCGAATTCGA GGAACATGCC GGGGCTCGCC ATGACGGCGG CGCCGCCTGC GAGCGCCAGT
|
23401TCGCATTCGC CGTTACGCAG CGACGGGGGG GCGAGGTGCG CGGCGACGAG CGACGACGAG
|
23461CAGGGGGTGT CCACCGTCAT CGCGGGGCCG TCGAACCCGA AGGTGTAGGC GATGCGTCCG
|
23521GAGGCCACGG TGACGGTGCT GCCGGTCAGC AGATAGCCGC CGACGCTTCC CGCCGTCTCG
|
23581GGGAGCGTCT CGTGCAGCCG GGGGCCGTAT TCCATGGCCG TCGGGCCGAC GAACACGCCG
|
23641GTGCGGCTTC CGGCCAGGCC GGTCGGGTCG ATGCCGGCCC GCTCCACGGC CTCCCAGGAG
|
23701GTCTCCAGCA GGAGACGCTG CTGCGGGTCG ACGGCCAGGG GCTCGCGGGG CGAGATGCCG
|
23761AAGAACTGCG CGTCGAACCG GTCGGCGTCG TAGAGGAAAC CGCCCTCGCG CGCGTAGGTC
|
23821CGGCCCGGTG CGTCGGGGTC CGGGTCGTAG AGGCCCTCCA GGTCCCAGCC ACGGTTCTCG
|
23881GGGAACACGT GGATCGCGTC GGCGGCCTCG GCGACAAGCT GCCACAGGGC TTCGGGGGAA
|
23941TCGGCGGCGC CGGGGTAACG GCAGGCCATG CCGACGATCG CGATCGGCTC GTCGGAGACC
|
24001GAGGGCGGCG ACGTGGCGTC GCTCTGCGTG GTACGGGCCA GCTCCGCTCC CAGCACTCGT
|
24061GCCAGGGCTC GTGGCGTCGG AGTGTCGTAC AACAGGGTTG CCGGCAGGCT CAGTTGGAGC
|
24121ACAGCGGCCA GCCGGTCGCA CAGGTCCTCC GCGGACTGCG ACTCCAGGCC GAGATCGTTG
|
24181AAGGAGCGGG CCAGGTCCAC TTCGCGCGGA TCGGAGTGAC CGAGCAGCGC CGCCGCCTCG
|
24241TCACGGATGA GGTCCAGCAA CTGCTCGTCA CGCCCGGCAG GAGCGGCCTC GACCAGCCCT
|
24301CGCAGCCAGT CGGAGTCCCG CACGGACGCG GGTGCGGAGA CAGCGGACGT CTTCTCCGGG
|
24361CGGGCCGTGA CGGCCGATGC GGCCGACGCG GTGGCACGCC GCGCGGCACC CTTCAACTCC
|
24421AGACCCAACA CCTGCGCGAG GACCTTCGGC GTCGGGCTCT CGTACAACAG CGTTGCGGGC
|
24481AGACGCAGTT GCAGCACGGA ACCCAACCGC TCGACCAACT CCACACCCGA CGCCGACTCC
|
24541AGGCCGAGGT CCTTGAACGA GCGGGCGAGA TGCACTTCGC GCGGATCGGA GTGACCGAGC
|
24601ACCGCCGCCG CCTCGTCACG GATGAGGTCC AGCAACTGCT CGTCACGCCC GGCAGGAGCG
|
24661GGCTCGACCA GCCCTCGCAG CCAGTCGGAG TCCCGCACGG ACGCAGACGC GGACACAGGG
|
24721GGCCCGGAGG CGGGCACAGC GGCGCCAGCG GGAGCAGCAG GGTTCGGCGT CGGAACGGCG
|
24781GCAGCGCCCT GGCGTGCCAC GGGCGCGGAC GTCGGCGTGG GCTCGGGCCA ATACCGGCGC
|
24841CGGTCGAAGG CGTAGCCGGG CAGTTCGACG CGGCGCGCCG CCGGAAGGCC GTAGAGCGCC
|
24901GGCCAGTCGA CGGCAGCGCC CCGCACGTGC GCGGCGGCGA GCGAGGACAG CAGCCGCGGC
|
24961CGGCCGCCGT CGCCGCGGCC CAGGGCGGGA ATGCCGACCG CGCCCGCGGC GTCGAGGAGT
|
25021TCCAGGATCT CGGGCGGCAG CACGGCGTGC GGGCCGACCT CGATGAAGAC GGTGTGCCCG
|
25081TCGTCCATCA GTTCCTCGAC GGGCGGATGG AAGGGCGCCG GCTGCCGGAA GTTGCGGTAG
|
25141CAGTGGTCCG CGTCCAGGGC GGGGGTGTCC ACCGGACCGC CGAGGGTCGT CGACTGGAAG
|
25201CGCGTCCGGC TCGGCGTGGG CTCGATGCCG CTCAGCTCGT CGAGGAGCGC GTCGCGCACC
|
25261GCCTCGGCCT GCTCGCCGTG CGCACGGCCG CGTGCGACGA CGAGAGCCGC GGCGTCCTGG
|
25321AGGGTGAGCG CGCCGATGCT GTACGCGGCG GCGATTTCGC CCGCGGCGTG GCCGAGCACG
|
25381GCATGGGGCT GGACGCCGAG CGTGCGCCAG GTGTGCGCGA GGGCGGTCGT GACGGCGAAC
|
25441AGCACGGGCT GGACGTGGTC GGGGGTGTCC GGCAGGGTCT CCGGACCGGT GAGGTGGTCG
|
25501AGGAGGGACC AGCCGGTGAG CGGGTCGAGG GCGGCGGCGG CGGCCTCCAC GTGCTCGCGG
|
25561AAGACGGGCA GGGTCGCCAT CAGGTCGCGG ACCGTGCCGG CCCACTGCAC GCCCTGGCCG
|
25621GGAAACACGA ACACGGTCTT GGGCCCGGTG CCGGGCGTGG TGCCGGTCCC GGGGTCGGGC
|
25681GGGGTGCCGC GCAGCAGGCC GTCCGAGGGG CGGCCCTGCG CGAGGGTGCG CAGCTGGGAG
|
25741AGCAGGGCGG ACCGGTCGCC GCCGAACGCG GCGGCGGGGT GCTCGTGATG CGTGCGAATG
|
25801GTGGCCAGGC CGCGCGCCAC GGTGGCGGCG TCCAGCTCGG GGTGCTGCTC CAGGTGCGCG
|
25861GCGAGGGCCG CGGGCTGACC GCGCAGCGCC GCCTCGCTGC GCGCGGAGAT CAGCCACGGC
|
25921GACGCGACGT GCTGCGGGAC GGCAACGGGA ACAGGAAGGG TCGCGGGCGG GGCCGCCGAT
|
25981GACGTCGCGG GTGACGGCGC CGACGACTCG GCCGGGGCGT CGCAGAGCAC GACGTGGCAG
|
26041TTGGTGCCGC CCATGCCGAA CGAGCTGACG CGTGCGACGA TCCGACCGTC CGGGCGCGGC
|
26101CACGGTGTCA GCCCGACCTG GACGCGCAGG CTGAGCTCGT CGAAGGCGAT CTTCGGGTTC
|
26161GGCGTGACGA AGTTCAGGCT CGGCGGCAGC TTCCGGTGCC GGATGGCCAG AGCCGTCTTG
|
26221ACCAGGCCCA CCACGCCCGA AGCACCCTCG AGATGCCCGA TGTTGGTGTT CGCGGAGCCC
|
26281ACCAGCAGCG CGTTGTCGGC CACCCGGCCC ACGCGCGCGC CGAAGGCGGT GCCGAGCGCC
|
26341GCCGCCTCTA TCGGGTCGCC CACGGCGGTG CCCGTGCCGT GCAGTTCCAC GTACTGCACG
|
26401TCGCGGGGGG CCACGTCCGC CTGCCGGCAG GCGGCGCGCA GCAGCTCCGT CTGCGCGGGC
|
26461GCGCTGGGCA CCGTCAGTCC GTCGGTGGCG CGGTCGTTGT TGACGGCGCT GCCCCGGATG
|
26521ACGCAGTACA CGAAGTCGCC GTCGGCACGG GCCTGTTCCA GCGGCTTGAG TACGACCAGT
|
26581GCGCGGCCCT CGCCGCGAAC GTACCCGTTG GCCCGCGCGT CGAAGGTGTG GCAGCGGGCG
|
26641TCGGGCGAGA GGGCGCCGAA GCTCATCGAC GCGGCCATGC CGTCCGGCGC GGCGATCAGG
|
26701TTCACGCCGC CCGCCAGCGC CACCCGCGAG TCGCCGCGGC GCAGGCTCTC GCAGGCGAGG
|
26761TGCACGGCGA CCAGCGACGA GGCCTGCGCG GCGTCCAGGG TCATGCTGGG GCCGCGCAGG
|
26821CCCAGCGTGT ACGACACACG GTTCGGGATG AGCCCACGGC CCATGCCGGT CATCGTGTGC
|
26881TGGTTGAAGG AGGCGGTTCC GGCCCGGGCG ACGACGCTGC GGTAGTCGTC CCAGATCGCT
|
26941CCGACGAACA CTCCGGTGCC GCTGCCGCCG AGCGAGGCGG GGACGATCGC GGCGTCCTCC
|
27001AGCGGCTGCC AGCTCAGTTC CAGCATCAGC CGCTGCTGGG GGTCCATCGC CCGTGCCTCG
|
27061TGCGGCGAGA TACCGAAGAA CCCGGGGTCG AAGGTGTCGA TCCGGTCCAG GTAGGCGCGG
|
27121TACCGGGCCG CACCGGTGGG CGTGGCGGCC GGGTCGGGCC AGCGGTCGGC GGGCGTCTCG
|
27181CCCACCGCGT CCACGCCCTC GCTCAGCAGC CGCCAGAAAG TCGCAGGGTC CGGAGCCGGC
|
27241GGCAGCCGAC AGGCCATACC GACGACGGCG ATGGGCATGA ACCCTTCAGA GATGAAGCGC
|
27301ACCCTCGACG GATATGGAGG AGTCGCCGCG GTGGGCGGCG GGCCGGCCGA GCGTCTCCAA
|
27361CGACGGAAGG AAGTCGAGCT CTTCCAGCGG ACGATCGGTG AAGAAGCGCG CGATCGTCTC
|
27421GGCCCAGTCG GCGGCAGGCG CGAGGAACAC GAGATGGTCG GCCTCCGGGA TGACGGCGAA
|
27481CAGCGCACCC TCGATCTCGG CGGGCAGGGC GCGCGCGCCC TCCATGGTGG CGAAGGTGTC
|
27541GTGCTCCCCG ACCAGGCACA GGCTGGGTAC GCCGCTGATG CCGCCGGGCA GGACGGCATC
|
27601ATCCTGGAGG AGGAGGTCCG AGACGTTGAG GTAGCCGGGA AGATCGGGCT CCTCGATCGT
|
27661GCTGAAGCGA CCGTTGAGGG CCGTGCGGAC GATTTCACGG TTGCGCACCG TGACCGCGGG
|
27721GTGCAGGCAC ATGAGCAGGT CCAGCAGACC TTCGGCGAAC TCGGCGAAGC GGCCCGCCGT
|
27781GAGGATCGGA TACATCTGCG TCATCCGCTC CCGGTTGCGC GGCGGGCAGT CGGCGGCGCC
|
27841GGCCAGGACG AGACGGGAGA CCCGCGACGG GCTCTGCTGG GCGTAGCGGT AGGCCGGCGG
|
27901GAATCCGTTG CTGATCCCCA GCAGGTTCAC ACGCGGCAGC CCCAGCTCGT CGATGAGGTG
|
27961GGCGAGGGCT TCGGTCTGGA CGTCATAGCG GCCTTCGGCG GGCACGGGGT CCGCCGTGCG
|
28021CGAGCCCGGC AGATCCACAC AGACGATGGT GGCCGTGTCC TGCCAGTACT TGTCGAACCG
|
28081CCGGTAGCTG AACTTGTCCT GGTACGCACC GGACAGCACA ACAAAAGGCT CGGTGACCGG
|
28141TGCTTCGCAT TCGACCATCC GGTAGCTGAA CGCAAGACCT TTGTAATGAA GCTCTTCGAG
|
28201CTGCTCGCGC GGATTTCCGG CGCCCACGGA TCAGCTCCTC GAATTTCGGG CGGATGTGCA
|
28261CGGACGGACA ACGGATACAC GTCGGTGCAT GAGCCCGATC TTTGTCGCCG GCCAGGGCAC
|
28321CGACAACCCC TATTTCCCCC CTTAGCCGAA CCGGCTTGCC GGATCGGAGG TGGTCGGAGC
|
28381TGCGAGATGA GTCCCGATAC GAATCCTCTC CAGATTCACC CCCTGGCACA CGACCCATCG
|
28441ACATGTATTC TCGGCGTATG CCCATCATCG AACTTGGCGA ATACGGGCCA GACTTTCTCG
|
28501CAGATCGTTA CCCGTATTAC GCGAAACTCC GCGAGGAGGG ACGCGTGCAC GAGGTACGGG
|
28561CCCCGGACGG CTATCGATTC TGGCTGATCG TCGGATATGC CGAGGGGCGC GCCGCCCTGA
|
28621CCGATTCGCG GCTGGTCAAG GCACGCGACA CGATGGCGAC GTCCGAGGCG TCGCCACTGG
|
28681GCAAGCATGT GCTGATCGCC GACCCGCCGG ACCACACCCG GCTGCGCAAG CTGATCTCCC
|
28741GGGAGTTCAC CGTGCGGCGG GTGGACAACC TGCGCCCGCG CATCCAGGAA CTCACCGACG
|
28801ACTTGGTGGA CGTCATGCTG CCGGCGGGGC GGGCCGACCT GGTGGAGGCG CTGGCCCGGC
|
28861CGCTGCCGAT GGCCGTGCTG TGCGAACTGC TCGGAGTGCC GAACGCCGAC CGGGACGAGT
|
28921TCCACTCCTG GGCCAAGGGC ATCCTCGCGC CGCAGAACGG GAGCGAGACG CACACGGCCG
|
28981TCAAGGCCTT GATGAGTTAT CTCGACGACC TGATCGAGGA CAAGCGGCAC GGAGAGCCCA
|
29041CCGGTGACCT GCTGTCGGGT GTCATACGCA CCACCATGGA GAAGGGCGAC CGCCTCTCCT
|
29101CGGAGGAAGT GCGCTCCACG GCCTTCGTCC TGATGATCGC CGGACACGAG ACGACGGCGA
|
29161ACGTCATCTC CAACGGAACG CGGGCGCTGC TCACGCACCG GGACCAACTG GACCTGCTGC
|
29221GCTCCGACAT GGACCTCCTC GACGGCGCCG TCGAGGAGAT GCTCCGCTAC GACGGCTCGC
|
29281TGGAGAGCAC GACCAAGCGG TTCACCGGTG TGCCGGTCCA GATCGGCGAC ACGGTCATCC
|
29341CGCCGGGCGA GACGGTGCTG GTCAGCCTCG CGTCGGCGGA CCGCGACCCG GCGAACTTCG
|
29401ACGACCCCGA CCGCTTCGAC ATCCGTCGCG GCACCCCGGC CGGCGTCGGC CACCTCGCGT
|
29461TCGGGCACGG GATCCACTAC TGCCTGGGAG CCTCACTCGC CCGCGCAGAG GGCCGGATCG
|
29521CGTTCCGCGC GCTGCTGGAG CGCTGCCCCG ACCTCGAACT CGACCCCGAG GCACCGCCGT
|
29581TCGAGTGGAT GCCGGGGGTT CTGGTCCGGG GCGTGCAGCG GTTGTCGCTG CGCTGGTAGG
|
29641CCGAAGAGAG GCACGTATAC GGATGCAACG GCGAAGCGGN NNCCGCTTCG CGATGAGGGT
|
29701GTGACCGCCG ACGGTGTGGC TGTCGGCGGC ATGACCACTC GTCACCAGGT GACGGGCAGG
|
29761CTCTTCGCTC CCTGGACGTC AAGTCCCGTG GAGAACGGGA TCTCGTTCGG CGCGACGGCC
|
29821AGGCGCAGCT GCGGGATGCG GCTGAACAGC CGTCCGTAGA CCACCTCCAG CTCCATGCGT
|
29881GCCACGCTGT GCGCGACGGA CAGGTGGATG GCGGAGGCGA AGGCGAGGTG GTCGGGGGCC
|
29941GACCGCTGGA TGTCCAGGTC GTCGGGGCGC TCGTACACCG ATTCGTCCCG GTCGGCTGAG
|
30001CTGATCAGGC AGATGATTCC GTCGCCGGGC CGGATGGTCT GCCCGCCGAT CTCGATCTCC
|
30061TCCACCGCCA CGCGCTTGGG CGCGAACTCG GCGACGGTGA GGTAGCGCAG CAGTTCCTCG
|
30121GTGGCCGCCG CGGCCCGTTC GGGCTCCTTG GGCAGCAGGG CGGCCTGCTC GGGGTGGCCG
|
30181AGCAGCGCCA GCACAGCGGT GGTGATGATC TTGACGGTGG TGTCGTATCC GGCGCCGAGC
|
30241AGCAGCCCGA TCTGCATGAG CAGGTTCGTC TCCGTGAGCC TGCCTTCGTC GGCGAAGCCG
|
30301ACCAGGCGGC TGACGATGTT GCGGTCCGGT TCCGCACGGC GCAGTTCGAC CAGTTCCTTG
|
30361AGCTGCTCGA ACAGTTCACG GCGGGCGGCG ACGGCGGTTT CGGCGGAGCC GTCCTCGTCG
|
30421AACAGCCGGG CGGTGGTCTC GCCGAACCGG GCCATCGCCT CGGCAGGCAC CGCGAGCAGC
|
30481CAGCCGACGA CCGTCGACGG GACAGGAGGG GCCAGCGCCG GCACGAGGTC GGCGGGGGTC
|
30541GGGCCCTCCA GCATCCGGTC GATGAGCCCG TCGACGAGCT GCTCGGTCGC CGGACGCAGC
|
30601GCCGGCACCC GCTTGATCAG GAAGTGCGGC GCGAGCATCC GCCGGAGTTC GGTGTGGTCG
|
30661GGCGGGTCCA TCCGGCCCAG CGGCCGTACG CCGCCCTCCG CGGTGTTCAT GGCCTTCGCG
|
30721ACCTCACTCA GCCATGGGAA ACGGGGGTTG AGCGCGTCCA CGCTGGCCCG GGAGTCGGAG
|
30781AGGATCTTGC GCACGTCCTC GTGCCGGCTG ATCAGCCAGG CCTCCCGCCC GTTGTAGAGC
|
30841CGCGCCTTGG ACACCGGCTG CTCGGCGCGC AACGTGCGGT AGACGGGCGG GGGATCCATC
|
30901GGGCAGCCGG GCGCCTTCGG CATCGGATAT GCCGGCGGCG TCTCGGAGGA GCTGTCCGTC
|
30961GTCAGGGGCG GTGTACCGGT GGGCACGGCG TCGGTCGAGG TCATCGTGGC GACCCTCCTG
|
31021GGAAGACTTC TGGTGGGGTG GTTCTGTCGC GGCGGGCGCG TGTCACGTTT CGACAGGCCT
|
31081GGGCGCGCGT CACATCTCGG TGGGTGGGTG TCATGCCCTG GCCGACACAA GCCCGTGGTT
|
31141CCGTTCGGCC CGCTTCGAGC CGATGTACGA GAGGACCGTC GCGCACAGCG CGAGGGCGGC
|
31201GCCGACCGCG ACCGACGTGG CAGGACCCGA GGCCTCCAGC AGCACGCCGG TCACCGGCAT
|
31261GCTGAGCGCG GGGCCGCCGG TGCCGGCGGT GGCCAGCCAG CCGAAGGCTT CCGCCCGGCG
|
31321CTGCTGCGGC ACCGCTCCGG ACACCTGCGG GAAGTTGCCG GCCATGCTCG GGGCGATGGC
|
31381GGTGCCACCG AGGAAGAGCA CGACCAGCAC GAGCCAGACC GGAGCGGTTT CGGTGACCGG
|
31441CGGCAGCAGC AGCGCGAGCA GCGCCATGCC GACTGCCATC GCCGCGAACC GGGCGCTGTG
|
31501CGGCACGTCC TTGCGCAGGG CGCCCATGCC GAAGCCGCCG ACCACGGATC CGATCGTCCA
|
31561GCATGCGATG AGCACGCCGG ACAGTCCGGA CTCGTGGCTG TCGCGGGCCC AGGCGACCAG
|
31621GGAGAGGTTC ACCGAGAAGA GGGCGGCCAT CATCACCAGG GTCACGACGA TGGCGAGGGT
|
31681GAACTTCGGC AGGGGGAAGA GGGTACGTCG CTCCTCGGGC TCCGGTGCGG ATGCTCTCGT
|
31741GACCGCGGAC GCCGACGTGG CCGTGTCTCC TTCCGTGCCG GCGTGCGCTC CCGTTTCCGC
|
31801TGCTGTCCGC GTCTCTGGTT GTGGTTTCGC GGCGGTCCGC TCCGCCCCGC CGCGGATCCC
|
31861GGCGCTGCCC AGCGCGGCGG CGAAGGCGAG CGCGCCGAGG AACGCCACGA CGCCGCACGC
|
31921GATGACGGCG TATCCGGGGT CGAGGGCGGT CACGAGCAGT GAGGTGAGCA GCGGCCCGGT
|
31981GGTCTGCACC ACCTCCGAGC CGGTGGCCTC CAGTGTGAAC AGCGTGCGGG CGAGTTCGCC
|
32041GGGCACGATC TTGGGCCACA CCGGGCGGCT GACCTGCGAG ATGGGCACGG TGCTCATTCC
|
32101GGTGAGCAGG GCGACCAGCA CCGCGATCGG CCAGCCGCCG CCCGGCACGG TGCGGGTCAT
|
32161CGTCACCAGT GCACCGAGGC CGACGAGGTA GCCGATGCCG GTCAGGACCA GCAGCTTGCG
|
32221GACCGCGCCC CGGTCCGCGG CGCGGCCCCG GGCGGGTCCG ACGAGCGCCT GCCCCGCGGT
|
32281GAGCGCCCCG CCGAGCACGC CGGCGGCGAC GTAGGAATCG CTCGAGCCGA CCAGCACCAG
|
32341CGTGAGGCCG ATCGGCAGCA TGGAGACGTT GAGGCGGGGC AGCATGGACC AGAGGAACAG
|
32401GCGCGGCAGG TGCGGAATGC CTGCCAATGC CTTGTAGGAC TTCACGGTTC ACACCCTGTT
|
32461TCGCAAGTCA TGACGCATAC GCGCCCGCCG TGCGGTTCGG CGCCGGCGGA CGCTGCGTCT
|
32521TGATCAGGTC TCTTCGGACG TTCGGGGCCG CTCAGAAAAC CTGGAAACGG GCGGCGATGC
|
32581GGTCGGCGTT GTCGGGGTTC TGCCGGGCCC GCTCGATCAG CTTCTCGTTG CTCCAGGTGC
|
32641TGGCGGTGGT GGCTGTCTCG TCGCCCGCGT TCTGGCGTGC GGGGTAGATC CAGCCCTCGG
|
32701CGGCGCAGCG GAACCGGAGG ATGTCGGCGA GGAAACGGAG TTCGGCCCGG TCGGCGGGCG
|
32761CCTCCTCGAA GTAGCCGCGC ACGAGCGGCT CGCCGTCCGT GTCGTCCTCC AAGTAGCTGA
|
32821GTGTGGTGGC CAGTTCCAGC ATGCAGGGTG CGTACATGGC CTCCGACCAG TCGAGCAGAG
|
32881CCGCGGTGTC GCCGAGGACC CGGAACTCCT TGGCCGCGGC GTCGGAGTTG ATCAGGCCGA
|
32941TGGTCAGGTC GTCGGGCGAC AGCGCGCCGC CCGCCTGCTG CAGCGTGCGC CGGATCCAGT
|
33001GGTGTGGCTT GAGGAAGTCC TGTTCGAGCA GGAAGAGTTC GAGCACCTCG TTCCAGCGCG
|
33061GCACGCCCTC GGGGACGGGG GCGTGCAGCA GGACGGAGTC GATCCGTCCG AGGGTCCGGC
|
33121CGACGGCGCG CAGGTGGGCC GGGTGGGTCT CGTCGACACG CTCACCGTCG AGGTAGGTCA
|
33181GCAGGCTGTA GCAGAAGTCG CCCTGATAGG CGGTGACTTC TCCGCCGGTG GTCGGCAGCG
|
33241GGCCGCCGGC GGCGATGCCG TGCCGCTCCA CCTCCTGGGC CAGCAGGAGT CGTGCGGTGA
|
33301GCTTCGGCCC CATGTCCTTG CGGAGGGCCT TGACGACGTG GCGTACGCCG TGGTGCCGGA
|
33361GGAGGTAGGT GTGGGAGCTG TACCCCTCGT CTCCGGGCAG CCGCTCCCAC GGCTCGACGG
|
33421TCCAGTCCTG CCAGCCCCAG AGGGTCAGCG GCAGGTCGTG CGCTTCGGGT ACCGCGGCTG
|
33481CGGCGTCGGT CGATTCCGGC ATTGAAGGGG TTTTCGTTGT CTGGTCGTGA TGTTCCGAGT
|
33541TCCATGTCCG ACGGCCGCGC GGTCGCGGGG TCGCGCGGTC GCGCGGTCGC GCGGTCGCGC
|
33601GGTGGCGCGG TCGCGGCATC ATGTGGTCAT GTGGTCATGC GGTCACGGGG CAGGGTCATG
|
33661GTCCGCGGGC GCGTCCCAGG CGACGGGGAG CGAATTGACG CCGTACACCA CGGAGTTCGC
|
33721GCGGAACTCG ATGTCCTCGA AGGGCACGGC GAGGCGGAGC GTGGGGAAGC GGTCGAACAG
|
33781GCGCAGGTAG GTCACCTTCA TCTCGACGCT GGCGAGGTGG TGGCCGATGC ACAGGTGGAT
|
33841GCGGTGGCCG AACGCCAGGT TGCGCTCCTC CGCCCGGTCG AGGCGCAGCC GGTGCGGGTC
|
33901GGTGTAGAGC TCCGGGTCGT GGTTGGCCGC GGCCATCGAA CCGACCACGG TCTCGCGCGC
|
33961CTTGATGAGG TGCGCGCCGA TCTCCACGTC CTCGGTCGCC AGGCGGGCGA AGTTGAACTG
|
34021CACGATGGAC AGGTAGCGCA GCAGTTCCTC GACGGCGGTG TCGATGAGCG ACGGATCGGA
|
34081GGGCAGGAGG GCGAGCTGGT GCGGGTTGCG CAGCGGGGCC AGGGTGGCGA GGCTGAGGAT
|
34141GTTCGAGGTC GACTCGTGCC CGGCCATCAG CATCAGGGCG CACATTCGGG CGATCTCGAA
|
34201CTCGGATATC CGGTCCTTCT CCTCCGCTGG ATCGAGCAGA TCGCTGATCA GGTCGTCCGA
|
34261CGGGTTCTTC TTCTTGTCCT CGATCAGGTC CAGCATGAAC TTGGTGCCTT CGAGGACGGT
|
34321GCGCTGCTGC TCCTCGTCGG ACAGTTGGGT GTCGAGGATG CTCAGGGACC AGCGCTGGAA
|
34381GTCGTCGCGC GCGTCGTAGG GCACGCCGAG CAGGTCGCAG ATGATGAGCG ACGGGATGGG
|
34441CAGGGCGTAG GCGGTGACGA GGTCGACCGG GCCGCCCGCC GTCTCCTCCA TCCGGTCCAG
|
34501GTGCTCACGG GTGTACTGCT CGATCTTCGG CTCAAGAGCC TTGATCTTCC GGACCGCGAA
|
34561ACGGCTCGCG GCCAGTCGCC GGTAACGGGT GTGGTCCGGC GGGTCCATGG TGAAGAAGGC
|
34621GCCGGGCAGC GGCGTGGGGC GGCCCTCGGT ACGACGAGTG CGGGCGGCCT TCTCCCGGAC
|
34681CGAGCTGAAG GACGGGTTCG CCAGCATCGC CTTGACGTCC GCATGGCGGG TGAGCAGCCA
|
34741GCCCTGGTTG CCGTCCGGGA AGGCGATGGG ACTCACGGGC GCCTCGGCGC GCACGTTCGC
|
34801GTAGCCGTCC GGGGGGCTGA AGGGGTCGCT GCGGTGCAGG GGCAGGCCCT GCAGGAGAGA
|
34861AAGAGTGTTC ATGGTCGTCC TTCCTCAGAG GGCGTCGGTG TTTCGAGTCG GTGCGTACTG
|
34921AGGGGTGCGG AGTGGTACGG GGCGGGCGCG GACGCGCGGC GGCCCCGTAC CTGCTCGATC
|
34981AGGGCCGGGT GAGGCCCGGC GTACGGCTCA GCCACTCGTC CACCGCCGCG GCCGTGGTCT
|
35041CGGAGAATTC GCCGATCATG GTGCAGTGGT CGCCCGGCAC CTGCGTCTCC TCGTGGTCGA
|
35101GGGGCCACGC CGCCTGCGAG TCGGGGCCGG CCATGGGTTC CTCGGGGGAA CCCGGGATGC
|
35161AGCTGTCCGG GCGGACGAAG AGAGTCGGCA CGGCGAGTTG CCGGGGCTGC CAGCCGCGGA
|
35221ACATACCGCG GTACGTACCG AGGGCGGTGA GGCCGTCGTA GTGCATCGAC GTGAACCGCA
|
35281TCCGGCGCTC GACGACCTCG TAGGTCATGG CCTTGCGCAT CTCCAGCGTC ATGCTGTCGG
|
35341GCGGGTAGGT GTCCAGCAGG ACGACGCCGA CCGGGCCTGT TCCGCGCTCC TCCAGCCAAG
|
35401TGGCGGCGGC CTGGGCGAGC CAGCCGCTGG ACGAGTAGCC GAGCAGCGCG TACGGCCGGC
|
35461CGTCCGCCGC ACGCAGCACC GCCTCCGCCA GTGTCTCGAT CAGCAGCTCC AGGGAAGCGG
|
35521CGAGAGGCTC GCCGGCCATG AAGCCCGGGA CGGTGACCAC GGAGACCCGG CGGCGGCCAC
|
35581GGAAGTGGTT GGCGAGGCGG GCGAACTGGA GCGAGCCGTC CAGGGGCGCG AACGGCGGGA
|
35641AGGAGAGGAG CTGCGGCTCC GCCTCGCCGT GGCCGAGGGT GGTGACGTGC GCGCCGCGGC
|
35701CCAGGTCCTC GGCGCCGTGG AATCTGGTGC GCAGGGCGGA GGCGCTGCTG AGGAAGGCCT
|
35761CGACCTCCTG CATCCGGGCT TGCAACGAGA GCTTGCGGTA GATGCCGACG ACGGAGTCGT
|
35821TGGAGTCCTG CGGCGGCGCG GCGGCCAGGG AGGCGGACGG CGCCGCGGAC ACGCCGGGCG
|
35881CCGGTGACGC GCCGGCGTGG CCGCCCGGCG CGGCATTGTC CAGCAGATGG GTCACCAGGG
|
35941CGCCGAGCGT CGGATGGTCG AACACCAGGG AGCTGGGCAG CGCCAGGCCG GTCAACACGG
|
36001TCAGCCGGCC GCGCAGTTCG ACCGCGGCCA GGGAGTCGAA GCCGAGCGCC AGGAACTCCT
|
36061GGTCCTCGGT GATCGTGCCG GCGTCCGCGT GCCCGAGGAC GCGCGCGGCG TGGCGACGGA
|
36121CGATATCGAG GACGTAAGGG CGCTGATCGG CGAGCGGAAG GTCCGGCAGG CGCTGCCATT
|
36181CGCCGGGCTG CGCGGCACCG GTGGGTCCGG CATCGGGGTG TCCGGCACCG GACTCCGTAT
|
36241CGTCGAAGTC GGCGAACAGG TGGTTCGGCC GGCCCGCGGT GAAGACGCCG ATGAACCGTG
|
36301GCCAGTCCAG GTCCGCGACG ACGATGGCGG TGTCCTCCTG CCTGACCGCC CGGTCGAGGG
|
36361CGGTGGTGGC CAAGCGCGGG GTGAGCGGCC GAAGGCCCCG GCGCTGCATC TCCTGCGGGA
|
36421ACTGTTCTCC GGCCATGCCG CCGCCGCTCC AGGGCCCCCA GGCCAGCGTG GTGGCGGCGG
|
36481CGCGGCGGGG GCGGCGGCGC TCGACCAGCG CGTCCAGGAA GGCGTTCCCG GCCGCGTACG
|
36541CACCGCCGCG GGTGGTGGCC GAGGTCCCCG CGATGGACGA GTAGACGACG AACGCGGCGA
|
36601GTCGGTCGCC CAGCACCTCG TCCAGGATGA GGGCACCGGT GACCTTCGCG TCGACGACGG
|
36661CGGCGAATTC GGTCGCGTCG AGATCAGCCA GCGGATGTTC GGCCGCCACG CCCGCCGTGT
|
36721GCACGACCGC ACCGACGGGG GCACCGCGGC CGGCCAGGTC GGGGGCGAGC GCCGGGAGCT
|
36781CGTCGCGGCT GGTCACGTCG GAGGACACCA GGTCCACCGT GGCACCGTGG GCGGCCAGTT
|
36841CGGCCCGCAG GTCCGCGGCG CCGGGGGCGT CGGGCCCCTG GCGGCTGGCG AGGACGAGGT
|
36901GCGGGGCACC CTGCTCGGCG AGCCGACGCG CCGTGTGCGC GCCGAGGGCG CCGGTGCCTC
|
36961CCGTGATGAG GACCGAGCCG TGCGACCACC AGGGTTCGCG CGCGGCGGGC GGCTGCGGAT
|
37021CACCGGTCCG CCCGGTGGCG TCGGCCCCCT CCGGGGCGAC GAGGGATTCC GGGGCGACGG
|
37081GGCGTACGGG CTCGGGTGCG CCGTCCGGGC CTGGGGGCCG CAGGCGGCGC ACCCGTGCTC
|
37141CGTCGGCACG CAGCGCGACC TGGTCCTCAC CACTGGATCC GGCCAGCAGC GCCGCCAGGC
|
37201CGAAGGAGGC CTCGGCCGTC GCGGCGAGGG CGTGCCCGTC TGCCGCGGAC AGGTCGGGCG
|
37261CGGGCAGGTC GACCAGGCCG CCCCACAGGG TGGGGTGTTC GAGGGCCGCG ACCCGTCCGA
|
37321GGCCCCAGAC CTGGGCCTGC CACGGGTCGG GAGCGTCGTC GGACGCCGTC GCGCGGACCG
|
37381CTCCGCGGGT GAGCGTCCAC AACCGGGTCG CGCTCCAGCC CGTGTCGAGC AGCGCTTGGA
|
37441GAAGGCACAC GGAGGCCCAG GCGCCGGAGC CGACGCCGCG CGGCCCGGTG TGCTCGCGGC
|
37501CGGACAGGGC GAGCAGCGAG ACCACTCCGG CGGGAGTGTC GTCGAGCCCG TTCAGCAGCT
|
37561TGGCGATGGT CTGGCGGTCG ATGTCCTCGG GCGCGAGGGA CAGCGACTTC ACCTCGGCGC
|
37621CGGCATCGGT CAGCACCCGA CGCACCTCGC CGTGCAGCCC GTCGTGCAGC CCGTCGTTGT
|
37681CGAGCAGGTG GCCCGCGCGC AGGTCGCCTT CGGGTACGAC GATCAGCGAG GTGCCGTGCA
|
37741GGGTGGCGGG CCCCTCGGGG GCGTGCTGCG CGGTCGGCCG CTCCCAGGCG ACGCGATAGC
|
37801GCCATCCGTC CGTCTCGGAG GCCTCGATGT GCGTCTGGTG CCAGTCGCCG AGCGCGGGCA
|
37861GGACGGTGTG CAGCGGAGCG TCGGGGTCCA CGCCGAGGTC GCTCGCCAGC CGCTGGAGGT
|
37921CCTGTTCCTG GACGACCTTC CAGAACGCGC CGTCGCTCCC GGCCGTCCGG GATGCCGCCG
|
37981ATCCGGGCCG GACGGAGGCG CCCTTGAGCC AGTGGTGTTC GTGCTGGAAG GCGTAGGTGG
|
38041GGAGTTCACG GGCGAGGTCG TCGGCCCGGC CGAGAGCGGT CCAATCGACC TGGTGACCAC
|
38101GCGCGTGCAC CCGGGCCAGC ATGCCGAGGA ACGCCCGGGT GTCCGTGGAA CGCCGGCTCA
|
38161GCGTGGGCAC GAACGCCACG TCCCGCGCCG CCGAGTCCCG CTCGGCGGAC GCGGCGCGCA
|
38221CGCGCTCGCC CAGCGCCGTC AGGACGGGGT CGGGCCCGAG TTCGACGACG GTCGCGACGC
|
38281CCTGGGCCAG GACCGCGCCG ACTCCGTCCC CGAACCGCAC CGCTTCGCGC ACGTGCCGCA
|
38341CCCAGTACTC CGGCGAGCAC AGCTCCTCGG CGTCCGCGAT CGTGCCGGTC ACGTTGGACA
|
38401CGACCGGAAT CGACGGGGCA CGGAACTCCA CCTGCGCCAG CACGTCCGCG AACTCGGCGA
|
38461GCATCGGCTC CATCAACGGC GAATGGAACG CGTGGCTGAC CGCCAACGCC CGTGTGCGCC
|
38521GCCCCCGTCC GGCAAAGATG TCCGCGATCT GGTCCACCGC GGCGTCCTGA CCGGACACGA
|
38581CCACAGCCCC TGGAGCGTTC ACGGCTGCCA GCGACACCAT GCCCCCGGCA GCCGCCACAT
|
38641CCGCGACGAG CGGCGCGACC TCCTCCTCGG TGGCCTCCAC CGCCACCATC CGCCCACCCG
|
38701ACGGCAACGA ACCCATCAAC CGGGCCCGGG CCACCACCAC CCGCACCGCA TCCGCCAACG
|
38761ACCACACACC CGCCACATAC GCGGCGGACA ACTCCCCCAG CGAATGCCCG ATCAACACAT
|
38821CCGCACGCAC ACCGAAAGAC TCCGCCAGCC GATACAACGC CACCTCGACC GCGAACAACG
|
38881CAGGCTGAGC AACCCCCGTA TCCTCCAAAA CCCCCGCATC ATCACCGAAG ACCACCCCAA
|
38941GCAGCTCTGC TCCCGTCTGC GCCTCGACCT CCGCACACAC CTCGTCCAAC GCAGCCGCGA
|
39001AGACCGGGAA CCGCCCATAC AACTCACGCC CCATCCCCGG ACGCTGCGAG CCCTGACCCG
|
39061AGAACGCCAC ACCCACACCA CCAGCGACAC GACGCTCAAA CACCACACCA CCGGCAGCGG
|
39121AACCGTCACC CCGCGCAACC CCACCCACAC CGGCCAACAA CTCGTCCAAC GACCCACCAC
|
39181TGACCACAGC ACTGTGATCG AACACCGAAC GCGACGACAC CAACGCCAGA CCCACACCCC
|
39241CCACATCCAG CGCACCACCC CCGCGTCCCG CCACGAACGC CGCAAGCCGC GCCGCCTGAG
|
39301CCCGCACCGC ACCCTCAGTA CGACCCGACA CAACCCACGG CAACTCCCCA GCAACCACCA
|
39361GCGCTTGAGT GGACTCCACC GGAACCTGAG CGGACCCCAC CGGAGCTTCA GTGGATTCCA
|
39421CGGGCTCGTG CTCCAGGATC ACGTGCGCGT TCGTCCCGCT GATACCGAAC GACGACACAC
|
39481CCGCCCGCCG CGCACGACCC GTCTGCGGCC ACTGCCGAGC CCGCGTCAAC AACTCCACCG
|
39541CACCCGCAGA CCAATCCACA TGCGGCGACG GCTGCGACAC ATGCAACGTC CGCGGCAACA
|
39601CCCCGTGCCG CATCGCCATC ACCATCTTGA TCACGCCACC GACACCGGCA GCCGCCTGCG
|
39661TATGACCGAT GTTCGACTTC AACGACCCCA GCCACAACGG ACGGCCCTCC GCCCGGCCCT
|
39721GCCCGTACGT CGCGATCAAC GCCTGCGCCT CGATCGGATC ACCCAGCCTC GTCCCCGTCC
|
39781CGTGCGCCTC CATCACATCC ACGTCCGACG TCGACAACCC CGCACCCGCC AACGCCCGCA
|
39841CGATCACCCG CTGCTGCGAG GGACCGTTCG GCGCCGTCAA CCCGTTCGAC GCACCGTCCT
|
39901GGTTCACCGC ACTGCCCCGC ACCACCGCCA ACACCTCGTG CCCGTTGCGC CGCGCGTCCG
|
39961ACAAACGCTC CAGCACCACC ACACGCACAG CCTCGGACCA GCCCGTCCCC TCCGCATCCG
|
40021CGGAAAAAGA ACGACACCGG CCGTCCGCCG ACAGAGGACC CTGACGACCG AACTCCACGA
|
40081AGGCGTACGG CGTCGCCATC ACCGTCACAC CACCCGCGAG CGCCAACGAA CACTCCCCCG
|
40141CACGCAACGA CTGCACCGCC AGATGCAACG CCACGAACGA CGACGAACAC GCCGTGTCCA
|
40201CCGTCACCGC AGGAGCCTCG AACCCGAACG AATACGAGAC CCGGCCCGAG ATGACGGAGC
|
40261TGGCCGATCG CGTTCCGCCG AGGCCTTCGG GCGCGTCGAC GATCTCCGTG CCGACCAGGC
|
40321CGTAGCCCTG GACGGCGCCG CGCATGAAGA CGCCAACCGG CTTGCCGCGC AACGAGTCGG
|
40381CGCTGATGCC GGACCGCTCC ACCGCCTCCG AGCAGGTGTC CAGGGCGATG CGCTGCTGGG
|
40441GGTCCATGGC GGCGGCATCG CGCGGCGAGA TGCCGAAGAA GCCCGCGTCG AACTGCGCGG
|
40501CGTCGTGCAG GAACCGGCCG CCCGCGGCAG GCAGTCGTCC GAGGTCCGAG CCGCGGTGGG
|
40561CCGGGAACGG CGAGATCGCG TCCCGCCCCT CGGCGACCAG TCGCCACAGG TCCTCGGGCG
|
40621AGGCAACCCG GCCCGGATAC TTGCAGGCCA TGCCGACGAG CGCGATCGGC TCGTTCCCGG
|
40681CTGCCTCGAG TTCGCGCAGC CGGCCGCGGG TAGGCAGCAG ATCGCCGGTC AGTTCCTTGA
|
40741CGTAGTGGGG AAGCTTGTCT TCGTTGGTGG ACACGGTGCG CCAGCTCCTT GTTGGTGCTG
|
40801AGGTTTGCGA ACGCCGGCGT CAGGAGATGC GGAATTCCTT CTCGATCAGA TCGAAGAGCT
|
40861GATCGTCGGT TGCCGAGTCG AGTTGCTGGG GAGCTGTTTC CGCCGCGCCG GAGGCGGCGG
|
40921TGGGCTCGTC GTCGGCGTTC TGGAACCTGG TCAACAGGTT GGAAAGCCGC AGGGTGATAC
|
40981GGCCGCGGGC GGCCGGGTCG GACCCGGCGT CGAGCGCGGC GAGGGCCGCT TCGAGCCGGT
|
41041CCAGCTCACC GAGGACCGCC GACGCGCCCG ACGCGGCGCC GAGCCGCTCC GCGAGGGCGG
|
41101TCGCGACGAC CTGTGCCAGG GCCGCGGGCG TGGGGTGGTC GAAGACGAGC GTGGCGGGCA
|
41161GCTTGAGGCC GGTGAGCTTT TCGAGCCGCT GCCGCAGACG GACTGCAGCC AGCGAGTCGA
|
41221ACCCGAGTTC CTGGAAAGGG CGTTCCGGCT CGATCGTGCC GCCCGAGGCG TGCCCGAGTT
|
41281CCGCGGCGGC CTGCGTGCAG ACGGTCTCCA GCAGCACGCG TCGGGGTTCC CCGCCGGACA
|
41341GCGCGGTCCA GCGGGCGAGG AAGGGGGTGG CCCCTGCGGT ACCGGCGTCG CTGTCGCCCG
|
41401GGCCGGAGAC GTCGTCCGCA CCGGCCGTGC CGGCCGCCGT CCCGTCCGCG CCGACGCCGC
|
41461CGCGTTCCGT TTGCACGGTG CGGAGCGGGT CGAACAGGGG GCTCGGACGG TTGACGGTGA
|
41521AGATGTCGGC CAGGCGTGAC CAGTCGATGT CGGCGAGGAC GACGGTGCCG TAGTCCGCCC
|
41581TCACGACGCG GCCGAACGCG GCGACGGCCT CCTCCGGGTC GAGCGCGCTG ACGCCGCGGG
|
41641CCTGCATCTC CCGTGTGAGG CGTTCGTCGG CCATGCCGCC CCCGCCCCAG GGGCCCCAGG
|
41701CGAGGGCGGT GCCGGGACGT CCCTGGGCGC GCGGCGGCTC GATCAGCGCG TCGAGATGCG
|
41761CGTTTCCTGC GGCGTAGGCA CCGGCACGAG CGCTGCCCCA GACCCCGGCG ATGGAGGAGT
|
41821AGACGACGAA CGCGGCGAGT CCGTCGCCCA AGACCTCATC GAGGACCTGC GCGCCGACGA
|
41881CCTTCGCGCG TACGACGGCG GCGTAGCCGT CCTCGTCGAG CTCCGCGAGC GGCAGTTCCG
|
41941AGGCGACGCC CGCGGTGTGG ACCACGGTGC TGAGCGGCGT TCCCGCGTCG GCAAGCCTGT
|
42001CCCGGAGGGC GGCGAGGGCC ACGGCGTCGG TGACGTCGCA GGACTCGACG ACGACGTCGG
|
42061CACCCCGCTC CTCGAGTTCC GTGCGCAGCG CGGCCACCGC GGGTGCGGCA GGGCCCTGAC
|
42121GGCTGGTGAG GACGAGGGTC CGCGCGCCGT TCCGGGCGAG CCAGCGCGCC GTCTGCGCGC
|
42181CGAGGGCGCC GGTGCCGCCG GTGATCAGGA CGGAGCCGTC GGTCGAGGGC GCCGTGGAGC
|
42241CGGTCTCCGG CTCCGGCACG CTCGTGGGTA CCGTGCCGCG GATCAGCCGA CGACCGAGCA
|
42301ACAGCTGGCC TCGCAGGGCG ATTTGGTCGT CACCGGTGGT GTTGGCAAGG GCAGCGGCAA
|
42361GGCCGGTGAG GTGCGCTGCG GGACTCGTAC CGGAGACGTC GATCAGACCG CCCCAGAGGG
|
42421TGGGGTGTTC GAGGGCCGCG ACCCGTCCGA GGCCGCAGAC CTGGGCCTGC CACGGGTCCG
|
42481GCGCCGCGTC GTCGGCCTGC GCACACACCG CGTCGCACGT GAGGGCCCAT ACGCGGGTGT
|
42541CGACTCCCGC GTCCTGCACG GTGTGCAGGA GATCGAGCAC GGCCAGGGCG CCGGTCGCGA
|
42601TGCGGCGCTC CCGGTCGCCG TCGCGCTGGG CGCCGACCGC GGGCAGGCAG AGCACGCCGC
|
42661GGGGCGGCAC TGCGGCCAGC CGTGCGCGCA GCTCGGCCGT CTGGCACCGC TCCACGCGCG
|
42721CCCCCGGGTC GACGAGCGCG TTTTCGACCG CAATTACGAG GTCCGGTTGG ACGGGCTCGC
|
42781CGGGCACCGC GACCAGCCAC GTGCCGTCGA GCGGCACCGC GTCCGTCGGC GACGGAAGCT
|
42841CCGTCCAGGA GACGCGGTAG CGCAGGGCGT CGGCCGCTGG GAGCCGGGCC TGTTCCCTGG
|
42901ACCAGGTCTG GAGCGCGGGC AGCACCGCGG TGAGCGGCGC GTCCGGCGCG AGGCCGAGGG
|
42961TATGGGCGAG GCGGTCGACG TCCTGCTGCG CGACCGCGTT CAGGAGTACG GCCTGCTCCG
|
43021GGACGTGCTC GACGACGCCG GGCTCGGGCG CGGGGGCGTC GAGCCAGTAA CGCTGATGCT
|
43081GGAAGGGGTA GGTGGGGAGT TCACGGGCGA GGTCGTTCGG CCGGCCGAGA GCGGTCCAGT
|
43141CGAGCTGGTG ACGACGCGCG TGCACCCGGG CCAGAGCCGT CAGGAAACCG TTCACATCAC
|
43201CCGTCCGCCG CCCCAGGGTG GGCAGGAACA CGGCACCGTT GTCGACGACT CCCGGATGCG
|
43261AGGGACCCAT CGCCGTCAAC ACCGGCTCGG GCCCCAGCTC GACAACGGTC GCGACGCCCT
|
43321GCGCCAGGAC CGCACGGACC CCGTCCCCGA ACCGCACCGC TTCCCGCACG TGCCGCACCC
|
43381AGTACTCCGG CGAGCACAAC TCCGCAGCGG ATGCGACCTC ACCCGTCACG TTCGACACGA
|
43441CCGGAATCGA CGGGGCACGG AACTCCACGC GCGCCAGCAC GTGCGGGAAC CCGGGGAGCA
|
43501TCGGCTCCAT CAACGGCGAA TGGAACGCGT GCGAGACACG AAGACGAGTC GCACGACGCC
|
43561CTCCGCCGCG CGCCCGGTCC ACCACCGCCT GAACGGCACC CTCCAGACCC GAAACAACCA
|
43621CCGCCGCCGG CCCGTTGACA GCAGCGATCA GCGCACCGTC CACCAGCCAG CGGGACACCT
|
43681CCTCCTCGGT GGCCTCCACC GCCACCATCC GGCCACCCGA CGGCAACGAA CGCATCAACC
|
43741GGCCCCGGGC CACCACCACC CGCACCGCAT CCGCCAACGA CCACACAGCC GCCACATACG
|
43801CGGCGGACAA CTCCCCCAGC GAATGCCCGA TCAACACATC CGCACGCACA CCGAAAGACT
|
43861CCGCCAGCCG ATACAACGCC ACCTCGACCG GGAACAACGC AGGCTGAGCA AGCCCCGTAT
|
43921CGTCCAAAAC CCGCGCATCA TCACCGAAGA CCACCGAAAG CAGCTCTGCT CCCGTCTGCG
|
43981CCTCGACCTC CGCACAGACC TCGTCCAACG CAGCCGCGAA GACCGGGAAC CGCCCATACA
|
44041ACTCACGCCC CATCCGCGGA CGCTGCGAGC CCTGACCCGA GAACGCCACA CCCACACCAC
|
44101CCGCGACACG ACGCTCAAGC ACCACACCAC CGGCAGCGGA ACCGTCACCC CGCGCAACCC
|
44161CACCCACACC GGCCAACAAC TCGTCCAACG ACCCACCACT GACCACAGCA CTGTGATCGA
|
44221ACACCGACCG CGACGACACC AGCGCCAGAC CCACACCCCC CACATCCAGC GCCCCCGCAC
|
44281CGCCCCCGCG TCCCGCCACG AACGCCGCAA GCCGCGCCGC CTGAGCCCGC ACCGCACCCT
|
44341CAGTACGACC CGACACAACC CACGGCAACT CCCCAGCAAC CAACGGAGCT TCAGTGGACT
|
44401CCACCCGAGC CTGCACAGAC CCCACCGGAA CCTGAGCGGA CCCCACCGGA GCTTCAGTGG
|
44461ATTCCACGGG CTCGTGCTCC AGGATCACGT GCGCGTTCGT CCCGCTGATA CCGAACGACG
|
44521ACACCCCCGC CCGCCGCGCA CGACCCGTCT CCGGCCACTG CCGAGCCCGC GTCAACAACT
|
44581CCACCGCACC CGCAGACCAA TCCACATGCG GCGACGGCTG CGACACATGC AACGTCCGCG
|
44641GCAACACCCC GTGCCGCATC GCCATCACCA TCTTGATCAC ACCACCCACA CCGGCAGCCG
|
44701CCTGCGTATG ACCGATGTTC GACTTCAACG ATCCCAGCCA CAACGGACGG CCCTCCGCCC
|
44761GGCCCTGCCC GTACGTCGCG ATCAACGCCT GCGCCTCGAT CGGATCACCC AGCCTCGTCC
|
44821CCGTCCCGTG CGCCTCGACC GCGTCCACAT CCGCCACGGA AAGTCCCGCG CCCGCCAGTG
|
44881CCTGGCGAAT CACGCGCTGC TGGGACGGGC CGTTCGGCGC CGTGAGCCCG TTCGACGCAC
|
44941CGTCCTGGTT CACCGCACTA CCCCGCACCA CCGCCAACAC CTCGTGCCCG TTGCGCCGCG
|
45001CGTCCGACAA ACGCTCCAGC ACCACCACAC CCACACCCTC GGACCAACCG GTGCCCGATG
|
45061CGTCGGCGGA GAACGAACGG CACCGGCCGT CGACGGCCAG TCCGCCGTGG CGTCCGAACT
|
45121CCACGAACGC GTACGGCGTC GCCATCACCG TCACGCCACC GGCGAGCGCC ATCGAGCACT
|
45181CCCCCGCACG CAACGACTGT GCCGCCAGAT GCATCGCGAC CAGCGACGAC GAACACGCCG
|
45241TGTCCACCGT CACCGCAGGA CCCTCGAACC CGAACGAGTA CGAGACCCGT CCCGACGCGA
|
45301TGCTGCCGGA GCTTCCGTTG CTGATGTAGC CCTCGTACCC CTGCGGCGAG CGGTTCAGGT
|
45361GGCGGGCGCC GTAGTCGTTG TACATGACGC CCATGAACAC GCCGGTGCGG CTGCCGGTGA
|
45421GCGTCTCCGG CCGGGTGCCG GCCGACTCCA GGGCCTCCCA GGAGGTCTCC AGGAGCAGTC
|
45481GCTGCTGCGG GTCGGTCGCG GTCGCCTCGC GTGGCGAGAT GCCGAAGAAC TCCGCGTCGA
|
45541ACTGGGCCGC GTCGTGCAGG AACCCGCCCT CACGGGTGTA CGTCTTGCCG GGCTGCTGCG
|
45601GGTCCGGGTC GTAGATGCCG TCGAGGTCCC AGCCGCGGTC GGCCGGGAAC GGCGAGATGG
|
45661CGTCCCGCCC CTCGGCCACC AGCCGCCACA GGTCCTCGGG CGAGGCAACC CCGCCCGGAT
|
45721ACTTGCAGGC CATGCCGACG ATGACGATCG GGTCGTCGCC CGCATCCTGC GGATGGCTCG
|
45781CCGACGCCCG CGCCGCGGGC TCGGCGACCG CGAGCGCGGT GGACCCGGCC GGCTCCCCGA
|
45841CGACTCCGCG AGCGAGTTCG TCGTACAGGA ATTCCGCGAC CGCGAGCGGA GTCGGGTGGT
|
45901CGAAGACCAG CGTCGCCGGA AGGCGCACGC CGGTGGCGGC GCCGAGCTGG TTGCGCAGTT
|
45961CGACGGCGGT GAGGGAGTCG AGGCCGAGCC GGTTGAACGG CTGGGCGCGG TCGACGGCCT
|
46021CGCGGTCGGC GTGTCCGAGC ACGTACGCGA CCTTCTCCGC GACGAGGCCG CCGAGGATCT
|
46081GAAGGCGCTC CTCGCGGTCG GCCACGCGAA GCTCGGCGAG CAGCGGCGCG CTCGCGCTGC
|
46141CGGCGGTCGC CGCGGTGCCG CCGGCCACAC GGGAAGAGGG TCGGGGCCTG GTGCTGACGA
|
46201CCGCTTGGAA GACGGCGGGC AGCGATCCGG CCGCGGCCTG CTCGTCGAGG ACGGGGGCGT
|
46261TCAGCCGGGC GGGCACGAGC AGGCCGTCGG CGTGCGTTCC GACGGTCTCC GGGCCGGCCT
|
46321CCGAAGCGCC GAAGGCTGCG CCGGCTGCTG CGAGAGCGGC GTCGAACAGC GTGACGCCCT
|
46381GTTCGCGGCT GATCTCCAGG AGGCCGGTGC GCTTCAGCCG GGCCACGTTG GCCCGGTCGA
|
46441GCTCCGCGGT CATCCCGCCC TCGGTGCTCC ACAGGCCCCA CGCGAGCGAG ACGCCCGGCA
|
46501GCCCGAGCGC CCGGCGCCGA CGCGCCAGTG CGTCGAGGAA GGCGTTGGCT GCGGCGTAGT
|
46561TGGCCTGTCC GGCCCCGCCG AAGACACCGG CGACCGAGGA GAACAGGACG AACGCGGAGA
|
46621GGGGGGCCGG CGACGTCAGG TCGTGGAGGT GCAGCGCGGC GTCGGCCTTC GCGCGCAGCA
|
46681GCTTCGTCAG CTGCGCGGGA GTGAGGGATT CGAGGAGCCC GTCGTCGAGT ACGCCCGCGG
|
46741TGTGGACCAC GCCGGTGAGC GGATGGTCGC CCGGTACGCC GGCGAGCAGT TCGGCGACGG
|
46801CGGAGCGGTC GGACATGTCG CAGGCGGCGA GCGTCACGTC GGGCCCGAGT GGTTCCAGTT
|
46861CCGCGATGAG CTCGGCGGCG CCCGGGGCGT CCGGACCACG GGGGCTGGTC AGCAGCAGGT
|
46921GCCGCACTCC GTGGACGGTG ACGAGGTGGC GGGCGAAGAG CGAGCCGAGG TCGCCGGTGC
|
46981CACCGGTGAT CAGGACCGTT CCCTCGCCGG AGAAGGCGGG GGCGTGGGCG GAGCCATCGG
|
47041CGTCGGTCGT CTCGGGGGCC GCGATCGGGC GGAGTCGCGG GACGGAGGGG ACCCCGGCAC
|
47101GGAGCGCGAT CTGCGGGTGC GCGACGACGC CGGTGCCCGT GCCGATGTCT GTGCCGTTGC
|
47161CGGTGCCGAG CAGCGTCGGC AGGGCGCGCA GCGAGGCCTC CTCCCCGTCG GTGTCGATCA
|
47221GGCGGAACCG GCCCGGGTGC TCAAGCTGGG CGGTGCGTAT CAGGCCGCCC ACGGCGGGGG
|
47281ACGCCAGGTC GACGGCTGCG GCCTCGGCCG CGTCGACCGC GAGCGCACCG CGGGTGAGCA
|
47341GGGTCGCGGT GACGGATGCG AAGCGCGGCT GCTTCAGCCA GTCCTGGAGG AGATGGAGGA
|
47401GCGTCTGCGT CCGCTGATGG GTGGCCGCGG CGATGTCGCC GTCCAGTCCG CCCAGGGCGG
|
47461GCAGCGCTAT CAGGACGTCA GGAGGCGCCT CGGCCGGATC GGGGTCGATG GCGGCGGCGA
|
47521GGGCTGGGAG GTCGGCGTGG CGGCGCGCCG GAACGGATTC GACGGACCAG TCGGCGCCGA
|
47581GGTCGAGGAG CGCCAATCCG GTCCCGGAGG CGGACACGGC CGCAGACACA GCGGAACCGG
|
47641CGCTTTGCAG CGGCGACGAC GCGATGCCGT ACAGCGATTC GACGGTCGAC ACGCGGGCCG
|
47701AGCGAAGCTG CTCCAGCGTC ACGGGACGGA GCGCCAGCGA CCGCACGGTG GCGAGTGCCG
|
47761CCCCCGCCTC GTCCAGCAGC TCCACGGAGG TCGCGCCCTC ACCGAGGCGG CGTATGCGGA
|
47821CCGGGGCCGA ACTCACGGCG GTGGCGTGCA GGGTGACGCC GCTCCAGGAG AACGGCAGAT
|
47881GGCACTCGTC CTGCCCGGAC AGCAGGTGGG GCAGCGCGAG CGAGTGCAGG GCGGTGTGCA
|
47941GGAGCGCCGG ATGGATGCTG AAACGCCCGG CGTCGTCCGT CTGCCGGGTG GGCAGACGGA
|
48001CTTCGGCGTA GACGGTGTCG CCGTGCCGCC ACGCCGTGTG CAGCCCGCGG AACGCGGGAG
|
48061CGTAGTCGAA TCGGAGGCCG ATCAACCGCT CGTAGACGGC ATCGAGGTCG ACCGGTGTGG
|
48121CCCCGCGCGG AGGCCATGCC TGCACCTGCG ACGGCTCCGG GGCGAGCACC GGGGCCGGCT
|
48181CCGCCGCGTC GGAACGGAGG GTGCCGGTGG CGTGCCGGGT CCAGGGGGCG TCCTCGGCGG
|
48241CGTGGACAGG GCGGGAGTGC ACGGTGATCG CACGGCCGCC GCCGGCCGCC TCGGCCTCGC
|
48301CGACCAGGAC CTGCACGACG TGGGCCGACC GGCCGTCGAG GATGAGCGGC GCCTCCAGCG
|
48361TGAGTTCCTC GACGGCCGCG CAGCCCACGC GGGCCGCGGC GGTGAAGGCG AGTTCGAGGA
|
48421ACGCGGTCCC GGGCAGCAGC GTCGAGCCGA GCACGACGTG GTCGCCGAGC CACGGGTGGG
|
48481TTCCCGGGGA GATCGTGCCG GTCAGCACTG TGCCACCGGT GCCGGGCAAG GTGACCGCGG
|
48541CGCCGAGGAA CGGGTGGTCG ACGGCGCGCA TACCGAGGTG CGCGGCGTCG ACGGAGGCGG
|
48601CATTGCCGGC AAGCCAGTGG TGTTCGTGCT GGAAGGCGTA GGTGGGGAGT TCACGGGCGA
|
48661GGTCGTTCGC CCGGCCGAGC GCGGTCCAGT CGACCTGGTG ACCACGCGCG TGCACCCGGG
|
48721CCAGAGCCGT CAGGAAACCG TTCACATCAC CCGTCCGCGG CCCCAGGGTG GGGAGGAACA
|
48781CGGCACCGTT CTGGACGACT CCCGGATGCG AGGCACCCAT CGCCGTCAAC ACCGCCTCGG
|
48841GCCCCAGCTC GACAACGGTC GCGACGCCCT GCGCCAGGAC CGCACCGACC CCGTCCCCGA
|
48901ACCGCACCGC TTCCCGCACG TGCCGCACCC AGTACTCCGG CGAGCACAAC TCCGCAGCGG
|
48961ATGGGACCTC ACCCGTCACG TTCGACACGA CCGGAATCGA CGGGGCACGG AACTCCACCC
|
49021GCGCGAGCAC CTGCGCGAAC CCGGGGAGCA TCGGCTCCAT CAACGGCGAA TGGAACGCGT
|
49081GGGAGACACG AAGACGAGTC GCACGACGCC GTCCCCCGCG CGCCCGCTCC ACCACCGCCT
|
49141CAACGGCACC CTCCACACCC GAAACAACCA CCGCCGCCGG CCCGTTGACA GCAGCGATCA
|
49201CCGCACCGTC CAGCAGCCAG CCCGACACCT CCTCCTCGGT GGCCTCCACC GCCACCATGC
|
49261GCCCACCGGA CGGCAACGAA CCCATCAACC GGCCCCGGGC CACCACCACC CGCAGCGCAT
|
49321CCGCCAACGA CCACACACCC GCCACATACG CGGCGGACAA CTCCCCCAGC GAATGCCCGA
|
49381TCAACACATC CGCACGCACA CCGAAAGACT CCGCCAGCCG ATACAACGCC ACCTCGACCG
|
49441CGAACAACGC AGGGTGAGCA ACCCCCGTAT CCTCCAAAAC CCCCGCATCA TCACCGAAGA
|
49501CCACCGAAAG CAGCTGTGCT CCCGTCTGCG CCTCGACCTC CGCACACACC TCGTCCAACG
|
49561CAGCCGCGAA GAGGGGGAAC CGCCCATACA ACTGACGCCC CATGCCCGGA CGCTGCGAGC
|
49621CCTGACCCGA GAACGCCACA CCGACACCAC CCGCGACACG AGGCTCAAGC ACCACACCAC
|
49681CGGCAGCGGA ACCGTCACCC CGCGCAACCC CACCCACACC GGCCAACAAC TCGTCCAACG
|
49741ACCCACCACT GACCACAGGA CTGTGATCGA ACACCGACCG CGACGACACC AGCGCCAGAC
|
49801CCACACCCCC CACATCCAGC GCCCCCGCAC CGCCCCCGCG TCCCGCCACG AACGCCGCAA
|
49861GCCGCGCCGC CTGAGCCCGC ACCGCACCCT CAGTACGACC CGACACAACC CACGGCAACT
|
49921CCCCAGCAAC CAACGGAGCT TCAGTGGACT CCACCCGAGC CTGCACAGAC CCCACCGGAA
|
49981CCTGAGCGGA CCCGACCGGA GCTTCAGTGG ATTCCACGGG GTCGTGGTCC AGGATCACGT
|
50041GCGCGTTCGT CCCGCTGATA CCGAACGACG ACACACCCGC CCGCCGCGCA CGACCCGTGT
|
50101CCGGCCACTG CCGAGCCCGC GTCAACAACT CCACCGCACG CGCAGAGCAA TCCACATGCG
|
50161GCGACGGCTG CGACACATGC AACGTCCGCG GGAAGACCCC GTGCCGCATC GCCATCACCA
|
50221TCTTGATCAC ACCACCCACA CGGGCAGCCG CCTGCGTATG ACCGATGTTC GACTTCAACG
|
50281ACCCCAGCCA CAAGGGAGGG CGCTCCGCCC GGCCCTGGCC ATACGTCGCG ATCAACGCCT
|
50341GCGCCTCGAT CGGATCACCC AGCCTCGTCC CCGTCGCGTG CGCCTGCATC ACATCGACGT
|
50401CGGACGTCGA CAACGCCGCA CCCGCCAACG CCCGCAGGAT CACGGGCTGC TGCGACGGAC
|
50461CGTTCGGCGC CGTCAACCCG TTCGACGCAC CGTCCTGGTT CACCGCACTG CCCCGCACCA
|
50521CCGCCAACAC GTCGTGCCCG TTGCGCCGCG CGTCCGAGAA ACGCTCCAGC ACCACCACAC
|
50581CCACACCCTC CGACCAGCCC GTCCCCTCCG CATCCGCGGA AAAAGAACGA CACCGGCCGT
|
50641CCGCCGACAG ACCACCCTGA CGACCGAACT CCACGAACGC GTACGGCGTC GCCATCACCG
|
50701TCACACCACC CGCGAGCGCC AACGAACACT CCCCCGCACG CAACGACTGC ACCGCCAGAT
|
50761GCAACGCCAC CAACGACGAC GAACACGCCG TGTCCACCGT CACCGCAGGA CCCTCGAACC
|
50821CGAACGAATA CGAAAGGCGT CCGGAGAGCA CGGAGCTGGC GTTGCCGGTG ATGAGGAATC
|
50881CGGAGGCCTC GGTCGCACGG GACTCGCGCA GGTGTCCGAG GTAGTCCTGC ATGCCGGCGC
|
50941CGATGAACAC GCCGGTGTCG CCGCCGCGCA GCGACTCGGG GACGATGCCG GTGCGCTCGA
|
51001TCGCCTCCCA CGAGGTCTCC AGCAGCAGCC GCTGCTGGGG GTCCATGGCG GCGGCCTCGC
|
51061GCGGCGAGAT GCCGAAGAAG CCCGCGTCGA ACTCCGCGGC GTCGTGCAGG AACCCACCGC
|
51121CCGCGGTGAG CAGCCCGTCG GGAGCGGACG TCGAGCCGTC ACCGGCCACC CCGCCACTGG
|
51181CCGGCCCGGC GCCGACGCCG TCGAGGTCCC AGCCGCGGTC GGCCGGGAAC GGCGAGATCG
|
51241CGTCCCGCCC CTCGGCCACC AACTCCCACA GGTCCTCGGG CGAGGCCACC CCGCCCCGAT
|
51301ACTTGCAGGC CATGCCGACG ACGGCGATGG GTTCCCGGGC CGCGTCTTCG ACGTCCTGGA
|
51361GCCCACCACC CGTCTCGTGC AGCTCGGCGC TGACGCGCTT CAGGTAATCC AACAGCTGGT
|
51421TCTCGGATGC CATTTCCCGC TCTCCCCATC AATTCCCGGA GGGTTCTCCA CTTGCCGCCG
|
51481ACGACTCAGG ACTCGTCTAT CCCGGGCCCT CCAGCGGGGA GATGCCGAGC TGCCGGGTGA
|
51541CGAAGTCGAG GACTTCGTCC TCGGTGGCCG ACTCCAGCAG CGCCCCCGTG TCCGGTGTGC
|
51601CCCTCTCGGA CGAGGACCCG GAGGGCGAGG AGAACATCAC CGTCTCGGAA GCGGACCGTT
|
51661TGCCTTCCCA GCCGTCCGCG AGCGCCCTGA GCCGGGACGC CGCGGCCTTC CGCAGGGCGG
|
51721CGTCCAGCCG GAGTTCCTCG AGGCTCTGCG CCACTCGGTA CAGCTCGGCG AGGGCGGATT
|
51781CCGCGGTGAC GGCCCGCTCC TCCGGCTGGA TCAGGCCGTG CAGTTGCGCG GCGAGTGCCT
|
51841TGGGCGTCGG GTGGTCGAAG ACCATCGTGG CGGCCAGGTC CACGCCCGCG GCCCGCTGCA
|
51901GTCTGTTCCG CAGCGCCATC GCGGTCATCG AGTCGATCCC CAGCTCCTTG AAGGGCTGGT
|
51961CGACGGCGAG GGCGGCGGGC TCGGCGTAGC CGAGCACCGC CGCCGCGTGA TCACGGACGG
|
52021TGTCCAGGAG CAGGCGGTCC GCGTCGGTCC GCGCCATGCC GGGCAGTCGC CGGGCGAGCG
|
52081TGGGACCACC CGCGCCGCCC GCGCCGTCGG AACGCCCGGC GTCGGAGCCG TCGTCCGCGG
|
52141CTTCCCCGGA TCGTGCGAAT GCGGCGAGCA GCGGGCTGGG CCGGGCCGCG GTGAAGCCGT
|
52201CGGCGAACAG CGGCCATTCG ATCTCGGCCA GCACCTGGCT CGCGGGGCCG TCCTGGGCCA
|
52261GCGCGAGGTC GAGGGCCCGC ACCCCGAGTT CGGGCTCGAT CGGCGGCAGT CCGTTGCGCC
|
52321GCATCCGCTG TTCCGTGGCC GCGTCGACCA GACCGCCGCC GCCCCAGGGC CCCCAGGCGA
|
52381TCGAGAGGGC CGGGAGGCCC GCGGCGCGGC GGTGCTCGGC GACGGCGTCG AGCACCGCGT
|
52441TGGCCGCGGC GTAGTTGCCC TGGCCGATGC CGCCGACGGT ACCGACGAAG CCGGAGTAGA
|
52501GCACGAACGA CGACAGGTTC AGGCCGGCGG TCAGTTCGTG CAGGTGCCAG GCGCCGAGCG
|
52561CCTTGGGGCC GAGAACCGCG TCGAGCCGGT CGGCGTCCAG GTTCTCCAGT GCGGCGTCGT
|
52621CGAGGACCGC CGCCGCGTGC ACCACGGAGA CGAGCGGCCC GTCGGCCGGT ACCCACTCCA
|
52681GCAGGGCGCG TACGGCCTCG CCGTCGGCGA GATCGCAGGC GGCGATCGTC ACGCGCGCGC
|
52741CCATGCTCTC GAGGTCGGCG CCAAGTCCGT CCGCGTCCAG CGCCTCAGGA CCGCGGCGGC
|
52801TGGTGAGCAG CAGATGTTGC CCGCCCTGCG CCGCCAGCCG GCGGGCCAGG CGGCTGCCGA
|
52861GGGCGCCGGT GCCGCCGGTG ATCAGGACCG TGCCCTCGCG CGGCCACACC GCATCCGCGC
|
52921CCACGTTCCC GTCCGTGTCC GTGTCCGTGT CCGTGTCCGA CAGGGAAACC TGACCGCCGT
|
52981CGCGTCCGCC GGTCGTGGGG TCCGGCAGCC GGAACGGGGT GCGGACGAGG CGTCGGGCGA
|
53041GCACGCCCGT CGGGCGCAGC GCGAGTTGGT CCTCGTCGCC CGGGTCGGCC AGCACCGCGC
|
53101AGAGCTGAGC GGCGGTGGCG GCGTCCGGCG CGGTCCGTCC GTCCTGCCCG TCGGCCTCAC
|
53161GGGGCGCACG GGGCAGGTCG ATCAGACCGC CCCACAGCGT GGGGTGTTCG AGGGCGGCGA
|
53221CGCGGCCGAG GCCCCAGACC GCGGCGGCGT GCGGTGCCGC CGGAGGGTCG GTCGGGTCCG
|
53281TTCCCACGGC GCCGTGCGTG AGGCACCACA GCCGGCCCGG CAGGTTTGTC TGCGCGAGCG
|
53341CCCGCACCAG GAGCGTCCTC CCGGCCAGGC CGCGCCCGAC CGCGGGGCGT CCAGGTAGCG
|
53401GGCGGTGGTC GAGCGCGAGC AGGGAGAGGA TCCCGGGCGG CCGGGCATCG GCCGCCGCGG
|
53461CGTGCAGCGA CGGGGCCCAT GCGGCCGGGT CGGTGTCCTC GCGCGGGTCG AGTTCCACGA
|
53521GCAGCGCCCG GCCGCCCGCG GCCTCGACGG CGTCGAGCAC CGACGCGACG AGCCGGTGGT
|
53581CGGGGGCGAA TCGGTGCTCG GCGCCGGGTA TGGCGAGCAG CCAGGTGCCG GCGAGGGGGG
|
53641GGACGGCGCC CGGGGCGTGC AGGACCGGCT CCCAGCGGAC GCCGTAGCGC CAACTGCCCA
|
53701GCCGTGCGTG CTCCAGGTGG TCGCGCCGCC ATGCCGCGAG GGCGGGCAGC AGGGCGTCCG
|
53761CCGACTCGCC GTCCTTCAGC CCGAG6GCGT CCAGGAGCGC GGCGGGGTCG GCCTCCAGCG
|
53821CCTCCCACAG ACCCGAGTCG GCCGCCTGCG CGGCATGCGG CGCGGACGCT CCGGCCAGGG
|
53881CCGAGGGGCG CCCGCCCCGG CCGGCCTCGG ATCCGGCCCC GGAGCCATTC GTGGTGCGCG
|
53941GCGTCGGCGA GAAGCGGCTG CGCTGGAAGG GATAGGTGGG CAGGTGGGTC ACCCGGCCGT
|
54001CGCTGTCGCG CAGCAGGGCG GCCCAGTCCA CGTCGAGACC GTGCACCCAG CCCTCGGGAG
|
54061CCGAGGTGAG GAAGCGGTCG GCTCCGCCCG GGTCGCGGGG CAGCGTCGGC ACGGTCGCCG
|
54121GTCGGACGCC CGCCTCCTCC GCGGTGCGTT CCATCGCCGC GGTGAGCAGC GGGTGCGGGC
|
54181TGATTTCGAC GAATACGGCG TCCCCGGACT CGGCGAGGCG GCGGACCGCG GCCTCGAACT
|
54241CCACCGGGGC CCGGAGGTTG CGCACCCAGT ACTCCGCGGT CAGTTCGCCG TCGCGGACCG
|
54301GCTCGCGGGT GAGGGTGGAC AGCATCTCGA CCTCGGGGCG GCCCGGTGCG ACGTCCGCGA
|
54361GCTCCGTCAG GATCCGCGGG CCGATCCGGT GGACGTGCGG CGAGTGCGAC GCGTAGTCGA
|
54421CCGCGATCCG CCGGAGGCGC ACGTTGTCGG CCTCGCAGAC GGTGAAGAAC TCGTCCAGCG
|
54481CGTCGGCGTC GCGGGACACC ACGGTGGCCT CGGGGCCGTT GGCGGCGGCG AGGAAGACGC
|
54541GGCCTTGGAA GGGCGCGAGG CGGGGGGCGG TCTCGGCTCG GCCGAGCGCG ACGGACAGCA
|
54601TGCCGCCGGC GCCCGCGATC CCGGTCAGCG TGGGGCTGCG CAAGGCCAGG ATCTTCGCGG
|
54661CGTGTTCGAG GCTGAGGGCG CCCGCGACGC AGGCCGCCGC GACCTCGCCC TGGGAGTGGC
|
54721CGACCACCGT GTGGGGGCGG ACGCCGACGG AGCGGCACAG CTCGGCCAGG GACACCATCA
|
54781TCGCGAACAG CACGGGCTGG AGGAGGTCGA CCCGGTCCAG GGACGGTTCG GCGGGGTCGC
|
54841CGTTCAGCAC GTCGAGGAGC GACCAGTCGA CGTGCGGGGC GAGCGCGTCG GCGCAGTCGC
|
54901GCACCCGCGC GGCGAACACC GGCGAGCTGT GCAGCAGTTC GCGAGCCATG GCGGCCCACT
|
54961GCGCGCCCTG TCCGGGGAAG ACGAACACCA CCCGGCGGCG AGGGGCTGCG GCGCCGTCAC
|
55021CGTCCACCCG GTTCGCGCTC GGCACGCCCG GGGCCAGCGA CTCGAGTTCG GCGACGACCG
|
55081TCGGACGGTC GCCGCCGAGC ACGACGGCCC GCTGCTCGAA GGCCGTCCTG GTCGTCGCGA
|
55141GCGACAGCGC CACATCGGCC AGGGGCGACT CGTCGGCGGT CAGGCGCCTG GCGATCAGCG
|
55201GGGCCTGGGC CGACAGGGCG TCGGGGGTGC GTGCGGAGAC CAGGAAGGGC AGAACTCCCG
|
55261ATCCCTGAGC CGGAGTTCCG GTGCCCTTGG CCGTCGGCGC GGGTACGTCC GGTTCCGGGT
|
55321CGGGGGCCTG TTCGAGGATC ACGTGTGCGT TGGTGGCGCT GATGCCGAAG GACGAGATGC
|
55381CGGCGCGGCG GGGCCGGTCG GTCCGCGGCC ACGGCTGTGC CTCGGTGAGC AGGCGGACGG
|
55441CGCCCGCCGA CCAGTCGACG TGCGTGGCCG GCCGGTCGAC GTGCAGCGTG CGCGGCAGCA
|
55501CGCCGTCGCG CATGGCCATC ACCATCTTGA TGATGCCGCC GACCCCGGCC GCGCCCTGCG
|
55561TGTGACCCAG GTTCGACTTC AACGAACCAA GCCAGAGCGG GCGTTCGGCC GGGTGCTCGC
|
55621GCCCGTAGGT GGCGAGCAGC GCCCGTGCCT CGATCGGGTC GCCGAGCGTC GTGCCGGTGC
|
55681CGTGCGCCTC CACGACGTCG ACGTCTGCGG CCTGGACCTG CGCGTCCTGG AGGGCGCGCC
|
55741AGATCACGCG CTCCTGCGCG GGGGCGCTCG GCGCGGCCAG ACCGTTGGAC GCGCCGTCCT
|
55801GGTTGACCGC CGAACCGCGC ACGACGGCCA GCACGCGGTG CCCGTTGCGC TGCGCGTCCG
|
55861AGAGGCGTTC GAGGACAAGC ATGCCGGCGC CCTCACCCCA GGAGGTGCCG TCGGCGGCGT
|
55921CCGCGAAGGA CTTGCTGCGG CCGTCCGCGG CGAGGGCACG CTGCCGGGAG AACTCGGTGA
|
55981AGGTGATGGG CGTCGGCATG ACTGTGACGC CGCCTGCGAG CGCCAGCGAG CATTCGCGGC
|
56041GGCGCAGCGA CTGGGCGGCC AGATGCAGCG CCACCAGCGA CGACGAGCAG GCGGTGTCGA
|
56101TCGTGACCGG GGGCCCGGAC AGCCCGAGGG CGTAGGAGAC ACGGCCCGAG ACGACGGGGC
|
56161TGTTGTTGCC CCTCACGAGG TAGGCCTCGT ACTCCTCGGA CGAGGCCTGC AAGGGCACGT
|
56221CGTAGAACGA GTAGTAGGCG CCGGTGAACA CGCCGGTCTC GCTCTCGGGC AGCGTGTCCG
|
56281GGGCGATGCC GGCGCGCTCC AGGGACTCCC AGGCCACTTC GAGCATGAGG CGCTGCTGCG
|
56341GGTCCATGGC GACGGCCTCG CGGGGCGAGA GGGCGAAGAA ACGTGCGTCG AACCAGGCGG
|
56401CGCCGTGCAG GAACCCGCCC TCGCGGACGT ACGAGGTGCC CTCGTCGGTG CCGTCGCCGG
|
56461CGAAGAGCGC GTGGAGGTCC CAGTCCCGGT CCTTGGGGAA GGCGCCGATC GCGTCGCGGC
|
56521CCGTGCGCAC CAGGTCCCAC AGCGCCTCGG GGGAGTCGGA GCCGCCGGGG AAGCGGCAGC
|
56581CCATGCCCAC GATCGGGATG GGCTCGGTGG CGCGGCGCTC GGTGTCCTTC AGGCGCCGGC
|
56641GGGAGTCCTG GAGGTCGCCG GTGACCTTCC CCAGCGCCTG AAGAAGCTGT TCCTGGCTTA
|
56701CGTCGTCAGA CATCCACGCG AGCGTTTTCC ACTGTCGGGC AAAGCACTGT CACTCGAAGC
|
56761CCTTCTCGAT CAGCGCCAGC AGGTCGGAGG CGCTGGGGGT CGCGATGGCC GCGCCGCCGT
|
56821CCGTGTCGTC GTCCGCGGCT TGTGCGGCCG GTTCGGTGTC GCGGGGTGTC TCGCGCAGCC
|
56881GGGCGGCCAG CGCGCCGAGC CGGGTGGCGA GCCGGTCCCG GTCGGCGGCG GAGCCTTCGA
|
56941GGTCCGCGAG CGACCGCTCC AGCGAGGCGA GGTCGGCCAG GGCGCGGGCG GCCTGTCCGC
|
57001CGCCGTCCGG GACGGCTTGG CGGCAGAGGA ACGCGGCGAC GTCGGTCGGC GTCGGATGCT
|
57061CGTAGACGAG CGTGGCGGGC AGGTCGAGAC CGGTGGACTC GCGCAGCCGG GTGCGGAGTT
|
57121CGACGGCCAT GAGGGAGTCG AAGCCGAGGT CCTTGAAGGC GTGGTGCGGC GCGACGTCCC
|
57181GGGCCGCGGC GTGACCGAGC ACGGCGGCGA TCTGGGCGCG CACTAGGTCG AGCGCGACGC
|
57241GCTGCTGTTC GTCGGGACTG TGGCCGGCCA GCACTTTGGC GAAGTCCGGC GTGGTGCCGC
|
57301GGGTCTCGTC GGTGCCCGGA CCCGCGCCGG TGAGGCCGGC GAGGTCGGAG GCGGCACCGG
|
57361GCACCGGAAC GAGTCGGGCG AGCAGCGGGC TGGGGCGGGC GGCGGTGAAG ACGGCGGTGA
|
57421AGCGTCCCCA GTCGACGTCC GCGACGGTGA CCGTGGTGTC GCCGTGCCGC AGCGCCCGGT
|
57481CCAGGGCGGT GACGGCGAGT TCCGGCGCCA TCGGGGCGAT GCCGAGTCGG CGCAGGTCGT
|
57541CACCGAAGCT CCCGGCAGGC ATGCCGCCGC CGTCCCAGGG GCCCCAGGCG ATGGCCTTGC
|
57601CTGCGGCGCC CCGGGCGCGG CGCCGCTCCA TCAGCGCGTC GACATGCGCG TTCGAGGGGG
|
57661CGTAGGCGCC GCGGGACGCG TTGCCCCAGA CGGCTGCGAC GGAGGTGAAG GCGACGAACG
|
57721CCGACAGGCC GTCGCCGAAG AGCTCGTCGA GGTTGCGGGC GCCGGTCACC TTCGGCGCCA
|
57781TGACGGTCGG GAAGGTGTCG GCGTCGAGCG CGGCGACGGG GTTCTGGTCC CCGGTGCCCG
|
57841CGGCGTGCAC CACCGCGGCG AGGGGCGTGT CCGCGGCGGC GAACCGGGCG GCCAGTTCCT
|
57901CGACGTCGGC CCGGCGGGAG ACGTCGCAGT CCGCGAGGAC GAGTTCGGTG CCGTGCCGCG
|
57961CCAGTTCGGC GCGGAGCCGG TGCGCGTCGG CGAAGCCACT GGCGCGGGGG CTGGCGAGCA
|
58021CGACGATGGG CGCGCCGGAC TCGGCGAGCC GGCGGGCGGT GTGGACGGCG AGGGCGCCGG
|
58081TGCCGGTGAT CAGCACCGGT CCCGAGGACC ACAGGTCCGC GTCCTCGGTG TCCTCGGCGG
|
58141GCCGTTCGTG GGGGCTCACG GTCGGCTCGG CGCGGGTCAG GCGCGGGGCG TGGACGCTGT
|
58201CGTCCCGCAG CGCGAGCTGG TCGTCGCCGC CGGATCGCCC GGCGAGGACG GCGGCCAGCC
|
58261GGGCGAGCCC GCCGCAGCCG AGGGGATCGT CGTCCGTGCT CGCCGCGAGG TCGATCAACG
|
58321CGCCCCAGAG TCCCGGGTGT TCGAGTCCGA CGACCCGGCC GAGGCCCCAG ACCTGGGCCT
|
58381GCCACGGGTC CGGCGCCGCG TCACTCTCCA GCGCCCGCAC CGGGCCACGG GTCAGGGTCC
|
58441ACAGCGGCGG GTCCGTGCGG CCCGTGTCGA GCAGAGCCTG TACGAGCAGC AGGGTGGCGT
|
58501CCGCGGCGGC CGACACGCCG TCGCGGCGCG CGGTCTCACC GCTCGGCCAG GGCAGGGCGA
|
58561GCACGCCCGC GAACCGCTCG TCCGACGCCG GGGTCCGGTC CAGTTGCCGG GCGAGTTCCT
|
58621TCGCCAGGGT CGCGCGATCG GCGGTCGCCA CGTCGACCGT CAGGAGGCGG GTCGTCGCGC
|
58681CCGCGTGGGC.CAGTGCGGCC GTGACGGCGT CGGCGAGCGC GGCCGACGCG CGGTCTTCGG
|
58741CGGTGTCGGC GTCGGATTCG GGGGCGACGA TGAGCCAGGT GCCGTCAAGT GCCGCCGCCG
|
58801GGGGCGCGGC GTCCGGAAGA CGTTCCCAGG TGACGTCGTA GCGCCACCTG TCGGTTCTGG
|
58861CGATCATGTC CTGTCCGCGC CGCCAGTTGC CGAGCGCGGG GAGCACGGCG CTCACCGGCG
|
58921CGTCGGCGCC GAGGCCGAGC GTGGGGGCCA GGCGGTCGAG GTTCTGCTCC TCGACGACCT
|
58981GCCAGAACGC CGTGTCCTCC GCGCTGTGCG TGCCGTCCGG CGCGGCCGGA ACGTCCGCCG
|
59041TGTCCGGTGC GGCGTCCAGC CAGTAGCGCC GGTGCCGGAA GGCGTACGTC GGCAGTGCGA
|
59101CACGCCGGGC GCGGGGCGTG AGCGCGGTCC AGTCGACCGG CACGCCGTTG ACGTAGGTCC
|
59161GGCTCAGCGC GGTCAGCACG GTCGCCGCCT CCGGCCGGCC GCGCCGGGAG GAGGCCGCGA
|
59221CGGGCCGAGT CCCCTCGAAC AGCGGCGTCA GGGCGGCGTC CGGGCCGATC TCGATCAGCA
|
59281CGTCCGCGTC CGGCAGGCCG CGCACCGCGT CGGCGAAGCG CACCGCGCGC CGCGCGTGCT
|
59341CGATCCAGTA CTCGGGGGTG TCGAAGGCGT GCGTGGTGTC CGCGGCCGGG CTGACCTGGA
|
59401TCTCGGCCGG GTGGAAGGTG AGGCCGTCGA CCACGGCGGC GAACTGCGCA AGCATCGGTT
|
59461CCATCAGCGG GGAGTGGAAC GCATGGCTCA CCGGCAGCCG GGTCGTCCTG CGGCCCTCGC
|
59521CGCGCCAGTG CTGCGCGATG CGCGTGACCG CGTCCTCGGC TCCCGAGACG ACGACCGCGG
|
59581AAGGCCCGTT CACCGCCGCG ATCTCGGCTT CGGAAGTGTC CAGGAGGTAG GCGAGGCTCG
|
59641CGGCGACCTC GTCGTCGGTC GCGTGGATCG CGACCATCGC GCCGCCCTCG GGCAGCGCCT
|
59701GCATCAGGCG TCCGCGGGCG ACCACGAGCC GGGCGGCGTC CTCGACGGAC AGCACGCCGG
|
59761CGACCACGGC CGCCGCGATC TCCCCGACGG AGTGCCCGGC GAGGGCCGAG AACTCGACGC
|
59821CCCACGACAT CCACAGTCGC GCCATGGCGA GTTCGAAGGC GAACAGGGCG GGCTGCGCGA
|
59881ACTCGGTTCG CTCCAGCACC TCCGCGGGCT CCTGCCACAG TACGTCGCGC AGCGGACGTC
|
59941CGAGCAGGGG GTGGATCACG TCGCAGATGT CGTCCAGGGC GGCGGCGAAC ACCGGGAAGT
|
60001GCTCGGCGAG TTGACGCCCC ATCGCGGGCC GCTGTGCTCC CTGGCCGGAA AACAGCGCCG
|
60061CGGCCCGTGT GCCGCCCGTG GTGCCGGCCT CGGGACCGGT GACCGCCTCG GCCGGGTGCA
|
60121CCGCGTCCGG GGTACCGAGG GCCGCGAGCG CACCGAGCAG GCCGTCGCGG TCCTCCGCGA
|
60181CGACCACCGC GCGGTGGTGG AAGTCGCTGG GCGTGGCGGC CAGCGAATAC GCCACGTCCC
|
60241GGAGACCGAG TCCGGGGTTG GCGAGCAGGT GGCCGTGCAG GGCTCGGGCC TGTGCGTGCA
|
60301GACCGTCCCG CGTACGGGCG TTGACGGGGA TCGCGACGGC GACGGGGGCG TCGTCGTCCG
|
60361TAGCGGCCTC GGGGCTCTGC GGCACGTGCC GCGCGTCGCC CTCTTCCAGG ACCACGTGCG
|
60421CGTTCGTGCG GCTGATGCCG AACGACGACA CCGCCGCCAG CCGGGGACGC TCCGTGCGCG
|
60481GCCAGGGCCG TTCCTCCGTC AGCAGCTCCA GCGCGCCCGC CGACCAGTCC ACGTCGCTGG
|
60541AGGGCTTCTC GGCGTGCAGG GTCCTGGGCA GCAGTTCGTG GCGCAGCGCC TGCACCATCT
|
60601TGATCACGCC GCCGACACGC GCCGCCGCCT GGGCATGGCC GATGTTCGAC TTGAGGGAGC
|
60661CGAGGTACAC CGGGCGGCCT GCCGGAGGCC GCGCGCCGTA CTCGGCGAGC ACGGCCTGCG
|
60721CCTCGATCGG GTCGCCGAGC CGGGTGGCGG TGCCGTGCGC CTCGACCGCA TCGACGTCGG
|
60781CGGCGGGGAC GCGCGCCTGC TCCAGCGCGG CCTGGATGAC GCGGTGCTGG GCCGGCCGGT
|
60841TCGGGGCGGT CAGACCGTTG GACGGGCCGT CCTGGTTCAC CGCGGAGCCG CGCACCACGG
|
60901CCAGGACGTC GTGCCCGAGG CGCGGCGCGT GGGAGAGCCG TTCCACCGCG AGCACGCGCA
|
60961CGCCCTCGGC CCAGCCGGTG CCGTGCGCGT CGTCGGAGAA CGACTTGCAG CGGCCGTCCG
|
61021CGGCCAGGCC GCCCTGGCGG GCGAACTCGA CGAAGAGGTG CGGCGAGGCC ATGACGGTCG
|
61081CCCCGCCCGC GAGGGGGAGA TCGCATTCGC CCGCGCGCAG TGCCTGGCAG GCCAGGTGCA
|
61141GGGCGACGAG GGAGGACGAG CAGGCGGTGT CCAGGGTGAC CGCGGGGCCT TCGAGACCGA
|
61201GCAGATAGGA GACCCGGCCG GAGATCACGC TGTTGCTGTT GGCGATCCGG ATGATGCCTT
|
61261CGAGGGTCTC CGGGGTGCCG TTCAGCCTGC TGAAGTAGTC GTTGTACATG ACGCCCGCGA
|
61321ACACAGCGGT GCGGCTGCCG CGCAGCGTCT TGGGGTCGAT CCCGGCGTGC TCGACGCTCT
|
61381CCCAGGGTGC CTCCAGCAGG AGCCGCTGCT GCGGGTCCAT CGGCAGCGCC TCGCGGGGAG
|
61441GGATGCCGAA GAAGGCGGCG TCGAACCCGG CGGGGTCGTC GAGGAATCCG CCGCCACGGG
|
61501CGTACGTGGT GCCGGTCGCG GCGGGGTCGG GGCTGTAGAT GGGCGTCAGG TCCCAGCCGC
|
61561GGTCGGCGGG GAAGGGCGCG ATGGCGTCAC GGCCCTCGGC CAGCAGCCGC CAGAGGTCGT
|
61621CGGGCGGGCT GACGCCGCCG GGGTAGCGGC AGGCCATGGC GACGATCGCG ATGGGCTCGT
|
61681CCCGCTCCGT CCTGCCGGTG GTGAAGTCGG GCTTCCTGTC GGGCATTACG GTGTCGCCGG
|
61741TCCCCGTGGG CGGTGCGAGC CGTATTTCCA GGTGGCGGGC GAGCGCGGCC GACGTCGGGT
|
61801GGTCGAAGAC GAGCGTCGCG GGGAGGTGGA CACCGGTCTC GGCGGAGAGC CGGTTGCGCA
|
61861GTTGCACCGA CATGAGCGAG TCGAAGCCCA GCTCGCCGAG CGGGCGATCG GCGTCGATCC
|
61921GGCCCGCGTC GGCGTGGCCG ACCGCCGCGG CGATCTCGGC GCGCACAAGG TCGAGGAGAT
|
61981CCGTGCCCCG GTAGGCGGAC CGCGCGGGGC GCGCCCCTGC GGCGGCGCGG GGCGCGGCGC
|
62041CGGACGATGC CGCGCCGCGC GCCCGTACGA GGTCGGTGAA CAGCGGGGCC GGGCGGACGG
|
62101CGGTGAACAG CGGCAGGAAC CGCGACCAGG CGACGTCCGC GAGGAGGCAG TCGGTGCCGA
|
62161GCGCGAGCGA GCGGGCCAGC GCGGTCACGG CGTCGGCCGC GGGCAGCGGG ATCAGGCCGC
|
62221TGCGACGGAA CCGCTGTTCC CGGGTCGCGT CCAGCATGCC GCCGCCCGCC CACGGTCCGA
|
62281AGGCGAGGGA CGTCGCGGCG CGGCCCTGGG CACGGCGGCG CGCGGCGAGC GCGTCCAGTG
|
62341CGGCGTTGCC GGCGCCGTAC CGGGCCTGCC CGGGGGCGCC CCAGATTCCG GATACGGAGG
|
62401AGAAGAGGAG GAAGGCATCG AGGCCGGCGT CGGCGAGCAC GTCGTCGAGG ACGAGGGCGC
|
62461CGCGCGTCTT CGCGTCGAGC ACGGCGCGGA AGTCGTCCGC ATCCGTCTCC AGCAGCGGGG
|
62521CCTCGTGCGC GATGCCGGCG GCGTGGAAGA CGGCGCGGAT CGGCGCGCCC GACGCCGCGG
|
62581CCTCCTGGAC GACAGCGGCC ATCGCGGCGC GGTCGGCGGT GTCGGCGGCG ACGACGCGCA
|
62641CCGGGACGCC GGTGGGGGAC AGCTCCTCCA GCAGCTCCGC GGCGCCGGGC GGTTCGGGGC
|
62701CGCGGCGGGA GACCAGCAGC AACGAGCATC CGTCCGCGAC CTGTTGCGTT GCGGACCCGG
|
62761CCGCCAGTCC CGCGACCCAG CGGGCGACGT GCCCGCCGAG CGCCCCCGTG CCGCCGGTGA
|
62821TCAGCACCGT GCCGGAGGGC TGCCAGTGCG TGAGGTCCTG GTTCGGCGCC GGGTCGTTGT
|
62881CCGGTGCGGA CCTGACGACG GGTGGTACCT CGAGCCCGTC GCCCGCCACG CGTACCTGGT
|
62941CCTCCCGGGT GTCCCCGGCG AGGAGGGCGG CCAACTGTCC GAGGGGCGGT TCGGCGCCGT
|
63001CGGCAGGCAG GTCGATCAAG CCGCCCCAGG TATCGGGCAG TTCGAGGGCG GCGGCGCGGC
|
63061CGGCTCCCCA GACCGCCGCG GCGTCCGGGT CGGTGCCGCT GTCCCGGGTC AGGCACCACA
|
63121CCTTGGCGGT CACGCGGGCG TCGGTGAGCG CCTGGAGCGC GGTCAGCAGG GTCTCGGGGC
|
63181GGTCCGCGAA GCACAGTAGG CCCGCGAAGC CGTCGGCGAT CGCGTCGGCC GGCTGAGCGG
|
63241AGAGGGGGCA GAGGGCGGAC GCGAGCGTGG CGCGGTCCGC GGCCTCGTGC GGCGGGACGG
|
63301TCACGGTGTG CTCGACGAGT TCGCCCACCC ACGCGGGGAT GTCCGACGCG CCGTCCGCCG
|
63361CCGCGGGCGG GACGACCAGC CAGGTGCCCG GCACGGGGAC GGTACGCGGC GCGAGGTCGG
|
63421CGGGCTGCCA TGTCAGCTCG TACCGCAGCC GGTCGAGGGC GGCGTCGGCC TGCGCCGACA
|
63481ACCGGGCCGG GTCCGCCTCG CGGAGCACCA GCTCGCGGAC GGTGACGACC GGCTCTCCGT
|
63541CGCTCGTCAG CGCGTCCAGC CGCGCGCTGT GCCCCGCAGT GCGCAGCCGG AGCCGTATCG
|
63601GGGCGCCGTC CGCGGTGGCC GAGCCCCGCG ACGGGCACAG GGTGGCACCG TTGAAGGCGA
|
63661ACGGCAGCCG GATCCGCCGG CTCTCGTCCC CGGTCAGGGC GAGCGGGTGC AGCGCGGCGT
|
63721CGAGCAGCGC CGGGTGGATG CCGAAGCGCC CGTCGTACCG GCCGTCGGGC AGCGCGACCT
|
63781CGGAGAACAG GTCGTCGCCC GCCCGCCATA CGGCACGCAG GCCGCGGAAG GCGGGTGCGT
|
63841AGCCGTAGCC GCGGTCGGCC AGATCCGCGT ACAGGTGGTG GACCGGTACG GGTTGCGCCC
|
63901CGGCGGGCGG CCACGCGCGC ACGGCCCAGT CGACGTCGCT GTGTTCGGGC TCGTGAGGTT
|
63961CATGTCGTTC CGGCAGGGGC TCCGTGAGTG TCCCGGTGAC GTGCACCGTC CACTGGCCTG
|
64021GCACGTGGCC CGTCGCCTGC CGCGCGCGAA TCGTCAGGTC AGGAGCGGCC GTCCCTTCCG
|
64081ACGGGCCGAC GCAGACCTGA ACGTCCGGGC CGCCGTCGCC CGGCACCAGC GGGGCCTGGA
|
64141TGACGAGTTC GGAGATCTCA CGGCAGCCCG CCTGCCGGGG GGGCTGTGCG GCCAGTTCGA
|
64201CGAAGCGCGC GCCGGGGAAC AGGACGCTGC CGGGTATCGG GTGGTCCGCG AGCCACGGGT
|
64261CGGCGGACGG GGAGATGTGG CCGGTGAGCA CGAGGCCGCC GGGGCCGGGC AGTTCCACCG
|
64321CGCCGGACAG CAGCGGGTGC GCGAGCGGGT CGGTCCCGGC ACCGGCGGTC GCCCGGGGCG
|
64381GCGCGAGCCA GTAGGTGTGG CGTTGGAACG CGTACGGAGG CAGGTCGACG AGGGGCGCGG
|
64441CGGGCAGCAG CGGCGCCCAG TCGACGCGCA GGCCGTGTGC GTAGGCCTGG GCGAGGGTGG
|
64501TGAGGACGGT GTGCGTCTCG GACCGGTCGC GCCGGGTGCT GGCGAGGACG GTACGCCCGT
|
64561CGTCCCCATG GGCCTGCGCA GCACCCACCA TCGGTGCGAG GAGGGCGTCC GGGCCGATCT
|
64621CCACGAGGAC GTCGGCGGCG GCGAGGCCGC GGACCGCGTC GTGGAAACGG ACCGCGTTGC
|
64681GGGCGTGGTC GATCCAGTAG TCCGCGCTGT GGAAGGGGTG GTGGCTCGCC GCCGAGGCCG
|
64741CGATAGGAGT CTTCGGAATG CTGAAGGTCA GGCCCCTGAC GACCTCGGCG AAGTCGTCGA
|
64801GCATGGGCTC CATCAGAGCG GAGTGGAAGG CGTGGCTGAC ACGCAGGCGC GTCGTACGGC
|
64861GTGCGGGACC GCGCCAGATC TCGCCCACGC GCTCCACGGC GTCGAGCGCA CCCGAGACGA
|
64921GGACGGCATC GGGCCCGTTG ACGGCGGCGA TGTCCACGGC GCGGTCGGCC GCGTGCGGAC
|
64981CGTCCGTGAC CGTGGCCAGC GTTTCGGCCG CCTCCGTCTC GCTCGCCGCG ATCGCGAGCA
|
65041TCGCCCCGCC CTGGGGCAGC GCCTGCATCA ACCGGCCTCG GGCCACGACG AGTCGGGCGG
|
65101CGTCCTGAAG GGTGAGCACC TCGGCGACGA CCGCGGCGGC GATCTCCCCG ACGGAGTGGC
|
65161CGGCGAGGGC GGTGAAGGTC ACGCCCCAGG ACTGCCACAG GCGTGCCAGA GCGAATTCGA
|
65221AGGCGAACAG GGCGGGTTGC GCGAACTCGG TGCGGGCGAC GGTCTGTGCG TCGGACTCCC
|
65281ACATCACCTC TCGCAGGGGG CGCCCGAGGA GCGGGTCGAC GCAGGCGCAC ACCTGGTCGA
|
65341GCGGGGCGGC GAAGGCCGGG AAGTGCGCGT CGAGTTCGCG GCCCATGCCG GGCCGCTGCG
|
65401CACCCTGGCC GGTGAACAGC GCGGCGACCC GTCCGGCGCC CGCCTCGACC GGGGCGGTGT
|
65461CGGCGAGCCC GGCGAGCAGG CCCGCGCGGT CCCCGGCGAG CGCGACGCGG TGGGCGAACA
|
65521GCGACCTGTG GTCCACGAGG TTGCGGGCGG CGTCCACGAT CGGCAGCCCG GGGTGGAGCG
|
65581CCAAGTGGTC AGGCAGCGCG GTCGCCTGGG CCCGGGCCGC TTCGGGCGTC TTGCCGGAGA
|
65641CGACCACCGG GACGGCGACG CGCGGGCAGT CCTGGCCGTT CGCGGCGGAG TCCTGATCCA
|
65701CGGACCGCCG GGTGTTCGCG GCGGAACCCT GGCCCGCGAG CCGCTGCGCG TCCGCGGTCG
|
65761CACCCGCGTC CTCGGACACG AACTCCTCGA GGATGACGTG CGCGTTGGTG CCGCTCATGC
|
65821GGAACGACGA GATGCCCGCC CGGCGCGGGC CGGCCGGGGC GTCCCATTCC CGGGCCTGCG
|
65881CGAGCAGCCG CACCGTTGGG GCCGACCAGT CCACCTCGGT CGTGGGGTTC TCCGCGTACA
|
65941GGCTGGTGGG CATGACGCCG TGGCGCATCG CCTGCACCAT CTTGATGACG CCCGCGACAC
|
66001CGGCCGCCGC CTGTGTGTGC GCGAGGTTCG ACTTGAGCGA GCCGAGGTAG AGCGGGCGGC
|
66061CGGCCCGGCG GCTGCGCCCG TAGGTGGCCA TCAGCGCCTG TGCGTCGATG GGGTCGCCGA
|
66121GCCGGGTGCC GGTGCCGTGC GCCTCGACGA CGTCGACCTC GTCGGCCGAG AGCCCTGCGC
|
66181TGCTCAGGGC CGTCTCGATG AGGCGCTGCT GAGCCGGGCC GCTCGGTGCG GTCAGGCCGT
|
66241TGGACGCGCC GTCCTGGTTC ACCGCGGACC CACGCACCAC GGCCAGCACA CGGTGGCCCA
|
66301GCCGCCGGGC GTCCGACAGC CGCTCCAGAG CCAGGACGCC CACGCCCTCC GACCATCCGG
|
66361TGCGGTCGCC GTCGTCGGCG AAGGAGCGGC AGCGCCCGTC GGTGGAGACG ACCCGCTGGC
|
66421GGCTGTACTC GATGAAGAAC AGGGGGCTGG ACATCACCGC GACGCCGCCG GCCAGCGCGA
|
66481GATCGCACTC GCCGCTGCGC AGCGCCTGCG CGGCCAGGTG CAGCGAGACC AGCGAGGAGG
|
66541AGCAGGCGGT GTCGACCGTG ACCGCGGGGC CTTCGAACCC GTACAGGTAC GAGACCCGGC
|
66601CGACTGCCAT GCTGCCCGCG CTGCCCGAGT GGATATAGCC GTCGTATCCG TCGGGCGCGG
|
66661CCGTGGCGAA CCGGCCGCCG TAGTCGTGGT GCATGACGCC GGTGAACACG CCCGTCCGGC
|
66721TGCCGCGCAG GGTCGCCGGG GGAATGCCCG CGTCCTCCAA GGCCCGCCAG GTCGTCTCCA
|
66781GCAGCAGCCG CTGTTGGGGG TCCATGGAGA AGGCCTCGCG GGGGCTGAGC CCGAAGAAGT
|
66841CGGCGTCGAA CAGGTCGATG TCGCGGAGGA ATCCGCGCTC GCGCGTATAC GAACGGGCGG
|
66901TCGCGTCGGG GTCGGGGTCG TAGAGGGCTG CGACGTCGCA GCCCCGGTCC GTCGGGAAGC
|
66961CGGTGATCGC GTCGCGTCCC TCGGCCACCA GGTCCCACAG CTCCTCGGGC GAGGTCACCC
|
67021CGCCCGGGTA GCGGCAGCTC ATGCCGACGA TCGCGATCGG CTCGCGGGCC GGGGCCTCCG
|
67081CATCGCGCAG CCGGGATCGC GTACGTTGCA GGTCGGGGGT CACCTTCCGC AGGTAGTCGA
|
67141CGAGCTGCTG TTGGTCAGTC ATGTTCCTCG CCCATCGGCG TACGGCGGGT TCGCTGGCTT
|
67201CGCGAACCCG GCATCGAATG AACTGCACGA GCCCGCCGAC CGGATCGAAT CCGGCGGTCT
|
67261TCGTCTCGGC TCTCAATGCG GGGCGGACTG CGGCGGCCGT GCCGAATCGG ATTTCTTCGA
|
67321TCCAAGCACG GAAACAGCGG CGCCCCCTAC TCAGGCACCC CCCTAAAACA CCCGGCATGG
|
67381GCTTCGGTTG GGGTTGGACC AGGGGTGATG CGGCAGCGCC GGATGGGCGG GCACGGCATG
|
67441CAAGAGGCGG GCGGGGGCAG CGGGGATCGC GGCCGGCGCC CGGCGCGGTT CAGTCGTCCC
|
67501CAGGGAACCG TGGATCAATG GCTCCACGAA CCACGGATCT ACGGATCTGG AGGGAACTGG
|
67561AGGGGATACG GATCCGGAGG GGACACCAGA ATTCAGGATT CAGGAAGCCG GTGAGTCGGC
|
67621ACGGTTCTCG GCGGCTCCCT CGGCACGCTC TTCGGCACAC CACCATGGCG GCTGTACGGT
|
67681GGGCTGGGGG ACCGAGCCGA GAGCGGCCCG GATGGGCTGG GCGCCCGCCG AGACGGGCAG
|
67741CACGCCGCGC ACCGGCTCCG GCGCGAACAG CGCCTCGCAG ATCGTGTCGG CGAGATCCGT
|
67801CCTGGAGACC GTGCCCTCGG GCTGCGGGTC GGCGCGGCCG CGTACCGTGA CCAGGCCGGT
|
67861GGCCGGGGAG TTGTCGAGCA TCCCGGGACG CAGCACGCAC CAGTCCAGGT CGTGTCCGGC
|
67921GAGCTTCCGC TCCACGTCCC GGTTCTCCGC GAGGTACGAC TCCAGCTCGT CACCGAGCCT
|
67981GGTGTGCAGC TCGTCGTCGG GCAGATATGC GCTGACCAGG ACGAAGCGCC GGATGCCGAC
|
68041CAACTGCGCG ACCCCCATCA ACTCCCCTAC GAGCGAGGTG GACGAGGTGT CCGTGGCGTC
|
68101CGGGCCCCAG GCGGTCCCGG TGGCCACGGC GATCCCGCCG CAGTCGCCCA TCGCCCGTAG
|
68161CGCCGCGGGG CTGGTCCTGT GCGCCTCGGA CGCGATCACC AGCGGGTCTG TCCCTGCGGC
|
68221CCGCAACGAC TCGCTGTGCC CGGCCTCCCC GATGAGCCCC ACCGGGGTCA GGCCGCGGGC
|
68281GAGGATCGAC TCGGCGAGCC GCCGGCCCAG GGCGCTCGTG ACGGCGAGGA CGACGACGTT
|
68341GTTCTTCCCC GCCATCGGCC CCGCCTGCGC CGTCCGTGCG GCTTCCGCCC TCAGCGCGGC
|
68401ATCGGCTGTC CGCGGGGCGT CCGCCGTCTC ATCGGCTTTC GATATCGGGA TGTTCGAGAT
|
68461GTCTTCTTTC ATCGGCTCGG TCGCCATATC AGTCCGCTCA CGCCACGTCC TGGATTTCCG
|
68521CGGGCGTGTG GTCCGGAGCA CCGCGCGATT CGACGATGGC GCCGATCTCG GCGCGGCGGG
|
68581TGATATCAAA TTTTCGGTAA ATACGGGTCA AGTGCTGTTC AATGGTGCTC GCGGTGACGT
|
68641AGAGCGACTC CGCGATTTCG CGGTTCGTGT ATCCCTGAGC CGCCATTCTG GCGACATTCC
|
68701ACTCGGCGGG GGTGAGGCTG CGCCCGTCGC GTCGTGCCGG GGGCGGCGGG ACCTTGCGCC
|
68761TCGCCTGCGA TCCGCCGGAC ATCTCCGCAA GCGCCCACTG CGCCCCGCAG CCGCGCGCCG
|
68821TCTTCTCGGC GAGCCGCATC GTCTTACGAC CGCCGGCCAG GTCTCCGGTG TGCTTGTAGA
|
68881TCTGCGCGAG CTGGCCGAGC GCGCGGGCGT ATTCGAGTTC GTCGCCGCAG GACTGGAGAA
|
68941CGGCGATGGA TTTCCGGCAC GCCAGCGCCC GTTCCCCCGG CGGGACCGTC GCCACCCGCA
|
69001GGCGCAGCCC GATGCCGCGC GCCCGGGTGT TCGAGTCCGG CGAGAACGCC AGCTGCTCGT
|
69061CGATGAGCTC CGCCGCCTCG GCGTACTCGT CCAGCTTCAG CAGCGCCTCC GCGAGGTCCA
|
69121GGCGCCACGG CACCAGGCCC GGCATCTCCA TGCCCCAGGC CGTGAGGATG GCGCCGCAGC
|
69181TGCGGAAATC CGCGACGGCG GCGCGCAGGG CGCCGGTCGC CAGCCGGAAA GGCCCGCGGG
|
69241CGCGCAGGTA CACCAGGCGG TACGGGCTGG CCAGGTCCGC CTCGGTCATC GGGCGGGCGA
|
69301GTTGCGCGGC TGCCTCCTCG AAGCGTCCTT GCTCGGTCAG CATCAGCGGG GACAGGCCGC
|
69361GCGGCAGACC GGCGAGCACG CCCCACCGGT CCGCGTCCCA GCGCTCGAAG CCGCGGCGCA
|
69421CGGCCGTCTG GGCCGCGACG AGGTCACCCT TCCAGCAGGC AGCGACCGCC TCGGCCACGC
|
69481TGAGCATGGA GGCCAGCGGC AGCGGCATAC GTTCGTTGTC GGCGAGGGCG GCGTTGTGGG
|
69541CGAGGGCGGC GTACCAGGGG GCGCGCGGGT CGAGTCGTCC CGTCGCCATC AGGCAGAACA
|
69601GCGCCACGAG CATCGGCTCC AGGCTCGAAT AGTCGAAGTT GGCGGACTGG AGGATCTCCT
|
69661CCGCGCAGGT CACCGCGGCT TCCGCGTCTT TCACGGCCTT CGCGGAACCT GCGGAATCCG
|
69721CGGAACCCGT GGGCCGTGGA CCGGAGTTCG GCGCATCGGA GCACTGGACG CCCGGGGCGA
|
69781GCAGCCACGA GAGCCGTTGC GCGCTGGACA GCCACGAGAA TCCCTCGGCG ATCAGCTGGG
|
69841GGTGCGGCTG GTGGTCGGGC GCGGGCGCGT CCGGGCAGGC GTCGGGGAAC AGATGACGCA
|
69901ACCACAGCCC GCTGAGCGTT CTCTGGACCT CGGCACGGAC ATCCGCGGCG CCGAGGGCGT
|
69961CGCCGGGACT GACAGGACCG ACAGCGTTGC CGCGTCCAGG CGCGGGTTCG GCCAGGCGCA
|
70021GCATGTCGGA CGCCTGGGCC ATCTCGCCGT GTCTGGCCAG ATGCCGGGAG AGACGGGCTA
|
70081ACGAACCCGG CTTGAAAGTG CCGTCGGACG CGGCAGCCGC CAGGCGCCGC AGCCGCGGTG
|
70141CGGTGAGCGC CGGGTCCATC CACCACACCA TGTCGGTGAT CCGGACGCCG GCCTCCTCCC
|
70201GCAGGTCGGG CCCGGAGCCC CAGAACGAGG CGGACTCCAG GAGTTGGACA GCCAGCCGGT
|
70261GCCGGCCGAG ACGCGAGGCG TGCTCGGCGG CCTCATAGAG GACCCCACCC GCCCAGGGCT
|
70321GCGGCGCGAT CCCGGCCTCG TGCAGATACG GAGCGATCTC CCAGGCGGGC ACGCCCTGTT
|
70381CGTGCAGGAC CTGGGCGGCA CGCAGCCGTA AGGACCGCAG TGGCGCGGGG TGCGTGGACC
|
70441AGAGGACGGC GTCGCGCAGA TACGGATGGA GGGTCATGTC GGGGCGCACG ATCCCGCTCG
|
70501CGATGGCCTG GCCCGCCACG TGGGAGACGT ACTCGGCATC CTTCTCCAGC ACGTTGCACA
|
70561GCCGCTGGGG TGTGCACTGC GCGTCGAGGA CCGCGACGGC CTCCACCAGG TTCATCACCT
|
70621CACGGGAGGT GTGCTCGCGG AGCCGCCGGG CCAGGCCGGC CGACGGAGGT CCGTCCGGCG
|
70681CGTCCGGATC CCGGGCGATC GCGGCCGCGG CCTCGTGCAG CATCGCGAGG GTCAGGGCCG
|
70741GGTTGCGGCC GGTGATCGGA TGGATCGCCT CTGCCAGAGG GTCGGCGCGG GGGGCGGGGA
|
70801CGCGGGCGCG CGCCAGTTCA GCGACCGCGG CCCGGCCCAG CGGCCGTACG CGAACGCGCT
|
70861CCGCCCAACC CGCGGCGAGC TCACGCAGTT CATCGACGAT CGAGGGCACC GTAGCGGCGC
|
70921TGACGCCGGT CAGCAGGACC CTGATCCTTC CGGTGTGCGT GAGGCGGACC ACCTCGCGGA
|
70981CGAACACCTG GGATTCGGGG GCCAGCAGGT CCGTCTCGTC CACCGCCAGC AGCAGCGAGC
|
71041GGGTGGCGGC GGCCACGAGG CGCCGCGCGT GGTCGCCGGG CTCTCGCGCG CCGAACTCGC
|
71101CCAGTTCCTC GGCGTATCCG ACGCCGCACA GACTGCCGCG CACGGTCAGG ACGCCGATCC
|
71161CCATCCGTCG CGCTTCGGCG CACGCCGCTT CCAGCAAGGC CGTCTTGCCG CACAGGGCAG
|
71221GGGCCTCGAT CACGCAGAGC CCGGCGCTGT CGGCCGGACG GCGTCGCAGC CATCGTCCTA
|
71281GTTCGGCGAG CTCTCCATCG CGGTCGACGA GAGACACCGC ACAATTCGAC TCGGACCCGG
|
71341AACTCGGCTT GGGCCGGCAA CTCGACCTGA ACACCGGGTT ACCACCGCCG GGTCGAGTCA
|
71401TGGTTCACAC ATCGACGTCC CCGCGCGGCC GCCGCATATA ACACGCGGTG GACGTCTCGC
|
71461GGGCCCTGAC AACGCGACAG GTGGTCAGCC CGCCCGTTCA GGGTGTAAGC GACAGCTTTC
|
71521ATGGCTTCGT CTTTCGAAAG AGTGGATCGG CGGGCACGAA GGTGACCGCT GCTTTTGCCG
|
71581TGGGCGACAG AGCGAGTGCA CAGCAAAGCG GTCCCCCAGT GCCTGGGCCC ATCGCCGGCG
|
71641AATGAAAGGG TGGGCCGGCG CGATGGTCAA GTCATGCCGG CGGGGCGACA GACGGAGTGC
|
71701GGGCCGCGCT GAGCAGGTCC GGTCCGGTCC GGTTCATCGT CCCCGTGACG CGACGACGCA
|
71761GAGGCGGGCG TCCGGTGGGA CGCTTCGGAG CGAATTGCAT GATGAGACGT TCCCCCGTTG
|
71821CGTAGTGCGG CCCACCGACC CCGGTACCGG CTGCCCTTTT CTGAATTCTT GCCCAACAGA
|
71881CATGTGCGAT GGGGGATCAG GTTGGTCAAC AATGAGTTAA CCCTATGTGA GGTGAGGACA
|
71941GCATGCTGCA AGGGCGTGGT CGAGTTGGCG ACATCCGGAC GCCGACCGGC CTCGGCCGCG
|
72001GTGAACGTCA GCATCCCGCG GCCTACCGGC GCAGGGCAGC ACAGCCGACC GGGCTCACAC
|
72061GGTGATCGCC TCCCCCTCCG GGACGATGGT CAGAGGCACC TCGGTCAGCG CCGCCGGGCT
|
72121GAGGAACCGG GCCATCGACT CCTGACCGGT CCGGCTGAGC ATGATCTCGT GGATCTGGAC
|
72181GAGACGGTTG GGGGGGACCT CGCGTACGTA GTCGGCCGCC CGGCCGAGCT GGGTCCACGG
|
72241CCCGCTGGTG GGCAGCAGCA GCGTGTCGAG GGGCGCGGGC GGTACGTGGT ACGCGTCGCC
|
72301GGGGTGGTGG ACCCGGCCGT CGACGAGGTA GCCGACGTTG GTGACGCGGG GGATGTCGCG
|
72361GTGGATCGCG GCATGCAGGT CGCCGGACAC CGCCACGTCA AAACCGGCGA CGTCGAGGCG
|
72421GTCGCCGTCC GCGACCGCGA CGACCTGGCC GCGCCGGGCC GCGCAGCGTC CGACCACACG
|
72481GACCGGTCCG TAGACCCGCA GGCCGGGGCG GGCGTCCAGG GCCCGGGCGA TCAGGTCCTC
|
72541GTCGAAGTGG TCGAAGTGGT CGTGCGTGAT CAGGAGGGCG TCGGCGGCGG CGACCACCTC
|
72601GTTCGCGTCA GGGGTGAACG TGCCTGGGTC GATGGCGATC CGCCCACCGT CGTTGACCAG
|
72661CGACACACAT GCGTGGGCGT GCTTGATCAG CTGCACTGCC GGCTCCTATC GGTGTGATGT
|
72721ACAGGGTGCA CTGTAATACA GTCGCCCCTG TACTCTTTTG CTAGACTGGG GGGTGTGAAC
|
72781GACGCGCGTT CGAACGAACC GGCCCCCCTC CCCGACGAGT TGGCGGTCCG CCTCCGGGCG
|
72841GTTGTCGGCA CCCTGGTCCG TAGCGCCCGT ACCGTCGATC GGCTCGCATC CGTTCCGGCG
|
72901GCGGTGCTCG GCCTCCTCGA CACGCGGGGG CCGATGACCA CGGCCGACCT GGCGGCGACC
|
72961CGCGGAGTGC GCCACCAGAC GATGGCCGCG ACCGTCAGGG AACTGACCGA GGCCGGGTTC
|
73021CTGGCCTCAC GCACCGATCC GGGCGATGCC CGGAGGAAGG TCCTCGCTCT GACGAAAGCG
|
73081GGGAAGAAGG CGCTCGACAC GGACCGCCGT CAGCGCGTCG GCGTGCTTGC CGACGCGCTG
|
73141GAGGAAACGC TGGACGATGA GGAGCGGGGC GCCTTGGCGC ACGCCCTTGA CCTCATCGAT
|
73201CGGATCAGCG GCAGCATGCG GGGGGGCGAC TCCTTCTCCG GCGAGCGCGA GTTCAACACC
|
73261GGAGCATGGT GACGAGGCCG GAGTAGCCTG CTCCGGCTGG TTTAGGCGCG TTTTCCACGC
|
73321GCGCGCGAAC GCGTGGGGGT TGTCGAACAT GACGTTGTGG CCGGTGTCCG GGACGATGCG
|
73381GAGCTTCACC CCCGCGCTCT CCGCAGCCCG TCCCTGCCGG GCAGTTCGCC GCGCGGGTCG
|
73441CCCTGAAGGC GGATGCGTTC CATGCGTGCC CGCTCGGGCA TCACCCCCAT CGCCGGGCCG
|
73501GTGCCGCGAT AGAGGTCAAA TGGCTGAGAA GTCCCTGGTG CGAGCGGATC CGTCGCCGCT
|
73561ACCCGCGCGA GGGCGGCATG GACCAGCTCC ACCTCGAGCT CCCCGGACGT GCCTCCGCGC
|
73621CGGCCAACAC CACCAAGACG ACGTCTCGTT GACCGGCTGC ACCACAAGAA AGGACATAAT
|
73681CCCGATCTCG CTGGTTCGTC GGCGGCCCGG GGTGCCCGTT GAACGGTCGT GAACCGGGCT
|
73741GAACGAGACG GAAACCGGGA CGGCCCGTAC GGGGCGTTGT CAGTGGCCTT ACCTCGTGCC
|
73801GCATCAGACA GCGTTCACCC TGTAGCACCC CGGGAAAAGT CGTCGAAACA GTCTCCCTGC
|
73861AGGAACCGAG GATGGCCCGC CTCCGGCCCT TGACGGCTGG CTGGGCGGAC GCGGACTCGG
|
73921GGGCTAGAGT GGGTTGCTTG CCGGTGGCCT CCGGGGCTCG CAACGGCCCG TCCCAGCCGT
|
73981CGCC
|
TABLE 4
|
|
|
FOSTRIECIN SYNTHASE GENE CLUSTER
|
|
|
ORF 8
|
MATETFEFQVEARQLLQLMIHSVYSNKDVFLRELVS
SEQ ID NO.: 19
|
NASDALDKLRLAALRDDGLDADTSDPHIEIELDQKA
|
RTLTVRDNGIGMSYDEVGKLIGTIANSGTAAFLQEL
|
KEAQDAAGAEGLIGQFGVGFYSGFMVADEMTLVTRR
|
AGERSGTRWSSRGEGTYTLETVDDVPQGSAVTLHLK
|
PADADDQLHDYTSAWKIKEIVKRYSDFITWPVRLLP
|
QATDGEETPEPETLNSMKALWARSRDEVSDDEYHEL
|
YKHVSHDWRDPLETIRLQAEGTFEYQALLFLPAHAP
|
HDLFTRDFRRGLQLYVKRVLIMDDCEALLPPHLRFV
|
KGVVDAQDLSLNVSREILQQDRHIRMIQRRLTKKVL
|
SSVKEMKANDADKYAAFWREFGAVLKEGLLGDTDDR
|
DALLAVASFASTHAEETPTTLQQYVERMKEGQDDIY
|
YMTGASRQTIENSPHMEAFRDRGLEVLLLTDPVDEV
|
WVDVVGEFEGKRLRSVAKGEIDLDVQGGEQADGGRE
|
KQAETYAALLGWMKEHLGEEMKDVRLSTRLTVSPAC
|
VVSDAHDLTPALESMYRAMGQEIPSARRILELNPAH
|
PLVQGLNQAYQEGEDRSGLAETADLLYGLAVLAEGG
|
RPTHPGRFVKLVAERLERTLR*″
|
|
ORF7
|
MYAPTPKPSTDRQAWLRRYTNAPDARHRLVCLPHAG
SEQ ID NO.: 18
|
GSASFYMPLARALAPEIDIVAVQYPGRQDRRADPFP
|
ATLQDLAAHVAEALCGEPAVPTAFFGHSMGAAVAFE
|
VIRLLEDSTTPVTALFASGRGAPSVNRGERVHAMSQ
|
EDVLAELRGLEGTDSRMFDDPEIIEMIMPPLRNDYR
|
LIETYRYVPGPPVACPIRGFLGAQDPKVDEGEMKLW
|
ADHTAGSFDLTLLPGGHFYLVQHQPEIVEAIRNTLL
|
VAPPYV*″
|
|
ORF6
|
MTDDAIPGRGRYTEQARAARLAWLLARTGATLDSAA
SEQ ID NO.: 17
|
HTAIEAASLTGNLENFAGSVEVPVGLAGPLQFRGQG
|
VREAVVAPMATTEGALVASASRGARALSLAGGVSTR
|
VLSQRMSRAPAFEFDDLAGAARFSRWLGTRRPQLED
|
QVRLVSQHARLVAVDPYQIGRYLHVRFVFETADAAG
|
QNMTTAATWQICTWLNEVLADEPGLRPRNTLLEGNL
|
SSDKKVSSVSLLAGRGTRVTAECVIPGDVVASVLKT
|
TPAAIARGHRVAVIGGQQAGMTGYGINAANVIAALF
|
VATGQDIACVHESAVSVLSFDSDGDDLIATLLLPNL
|
VIGTVGGGTGLPDQRDWLGVLGCRGEGGTARLAEII
|
AGFALALDVSTASALVSGQFADAHRRLGRARRVDWL
|
RADDLGPGLLQPAMAERLDSPRLRVTDVVRAPAMVG
|
DGISTELGALGERRKLTGVIPMTVSWTEDDGPQTTA
|
ELVAKAKPRGEEIAAGIGRIASLCGPEVSSAWETWG
|
GGSDFPAAHRRELAVFRRPEGVLTSLLPVCYGIIED
|
EAREAYVILMERLDITTGPWSRTDVDRALRAIAPVH
|
GHWLGRDQQILAEGWLYRDGTTAHLVKARELWEALV
|
RHNAAELPELMTPQRTRTALAAAAEAEFWVQEMDAM
|
PRTLVHNDFNPRNISRQSERVTAYDWELATVAVPQR
|
DLAELLAFTLTPHSTTDEVDHHLEVHRAAVAAAAGP
|
DATVPQPEQWRRGYGLALREMLLSRLQLYTAAHSHR
|
ELPFLPAVLDTTFHLWNLEAARDGE*″
|
|
ORF5
|
MHTERILTEHHRFLATLDHPEQTQQTVLAELLAANG
SEQ ID NO.: 16
|
ATSYLREHGLNERSGAEEFRKALPIRTQNAFGPWIE
|
RAIAGEDGVLTAERPVAFFSSSGSTGQEKRIPVTPT
|
YMKRCFLPFYHASFAVLLGAFPDLAADPGGVLNLWR
|
DPTSPHARTADGRPHLGPSQIDHRLFGEGGGPEDGA
|
AWATIPEQLSDADPWERAYLQLRLAAERDIKVLIGV
|
NPALIAGLPHQLAAQWPRIVEEIARGTVGGVPHTTP
|
DPRRAEQIARRADEYGVLDPYHLWPNLRAAVAWNSA
|
LASLYLPRVRERYGPGVRLFAAPIGSSEGPVAVPVD
|
DHPNAAPLYLPGCYFEFADAAEPIREDSPTVTAAEL
|
EPGRDYHLVLSHIGGLYRCAVNDVVHVVDHVGRTPR
|
IAYTGRDVLRTAGGVDLTERAVVRALAGTLADTGAE
|
LRNATVETGTDRFRAAIASALPGPLPAGFATLLDKH
|
LGETADGYRAARDAGALAPVEVLQVHQDAFQREWEH
|
AIRSGQRRTRVKDRIFQPAPDSWARITADERAHA*″
|
|
FosB (module 2)″
|
MPANDDKLRDYLKRVTADLHQTRLRIRDIEARKREP
SEQ ID NO.: 7
|
IAIVGMACRYPGGVTDPEQLWELAAGGIDAVSGFPS
|
GRGWDLEGLYDPDPDAEGKVYVREGGFLHDAGQFDA
|
PFFGISRREALAIDPQQRLVLETSWEAVERAGIDPL
|
SLAGSRAGVFVGVMPQEYGPRLYEATGQGVSGHLLT
|
GTTTSVLSGRIAYTLGLEGPAVTLDTACSSSLVAMH
|
LATQALRSGECEVALAGGVTVMANPGTFVEFSRQRG
|
LAPDGRCKSFAAAADGTAWGEGVGMLVLERLGDARR
|
NGHRVLAVIRGSAVNQDGASNGLTAPNGPSQQRVIR
|
QALADAGLEAADIDAVEAHGTGTTLGDPIEAQALLA
|
TYGQGRFEGRPLWLGSLKSNIGHTQAAAGVGGVIKM
|
VMAMRGGVLPRTLHVDEPSPHVDWEAGEVRLLTGPV
|
VWEAGERPRRAAVSSFGISGTNAHLILEEPPVKERT
|
AYEAEADSADPAVWLVSAKSPDALRAQADRLTEFLA
|
ARPQTGTGHLARALATTRSQFEQRAALIGADRAGLT
|
EALSALASGSGHPSLVRGQVTTGRTAFLFSGQGSQR
|
PGAGRELYASYPVFAAAVDEACAVFDPLLGRSLREV
|
MFAGPGSEGAELLNRTAFTQPALFVLHTALFRLLES
|
FGVRPDHLVGHSIGELSAAHAAGMLSLADAATLVFH
|
RARLMQQITTPGTMLALQAGEATARGLVAGREDVVS
|
LAAVNAPESTVLSGDPEVLADIAAQLAERGIRSRRL
|
TVSHAFHSPHQDQILDEFRRIAAGLTYRAPRIPIVS
|
TLTGLLAEQDRITTADHWTEQLRHTVRHADAVTTLH
|
GLGTTRYLELTAHPTLAPLAAETLEDASAAPAALVP
|
TLRAGQPEPDTFLRALATLHVTGTPVTWFADHAEAD
|
ADNADTADGRGHERGRATVPHLDLPTYPFQHENYWL
|
TAPSSGTGPGAGADALPHPMLSQRTDLPGGGGVLFS
|
GRLAPGTDPWLPDHAVMGTLLLPGTGFVELALEAAR
|
AVGAGRVEELVLRAPMVFPGGRARDLQVWVAPDQGG
|
ERELLIRTRTPGEDWTLHATGVVTASRVDTDGFTPD
|
WTGAVWPPAGAEQIPGDTFYPDLAERGYEYGPAFRS
|
VKALWRRGDDLFAEVVLPEDQPYGFGAHPALLDASL
|
HALPITRSFYETDDEVRLPFSFGGVSLFATDVRRVR
|
VRLRPRPEATSVWITDAAGTPVLAMESLILRAVERT
|
QLQAAEGAVGQAATFAVRWEPLSEARIAERVPGTWL
|
LFGTARPGLAELFEHVLTSTEWDASASTPVEGVLVC
|
PADASELLAALRETERLDAPVWCVTSGAVGVGVDDP
|
ATDVAAAGAWGLGRVAALELPSRWAGLVDVPETADL
|
GTADDNAGRTTARLLAGVLTGDGAEDQLAVRDGRLW
|
ARRLGTAPAADAGTWQPKGTVLITGGTGGLGAHVAR
|
RLAALGTADRLVLLSRRGAESPGAAELLAELGESGV
|
RAEAAAIDITDRTAVTQLLSRLDAEDDPVRTVVHAA
|
GVIRYARIADVDPEAFETDMAAKVNGALLLDELLPD
|
ADEFVMFSSIAGIWGAADQAAYAAGNACLDALARRR
|
RERGASAVSIAWGPWSGGGMVTEYEDRELRKRGLLP
|
LAVPSAVEALERAVPGDTDPVVVDVAWSRFLPAFTV
|
LRPSPLLSGFAPADTAGGGRDAASAALPGAGTTAGA
|
LKDRVGALPEDERLPVLLDVVRTHVAQLIGRGDPQQ
|
VQADRALRELGFDSMMSVELRNRLGELVGARLPATL
|
AFDHPTPESLAERLLTELDLDEAPADDGPVLEDFDR
|
LEAKVLSPFTPADTRAALATRLSALLDRLSGTGTGA
|
GGAGRNSGTDDLETASASDLMQFLDAEYGASDGTAS
|
DPSRPTTS*″
|
|
FosA (modules 0-1)
|
MMPSCPAASAAYPACAWSGSTTPSPPWRARAPWPPR
SEQ ID NO.: 6
|
SRVRCSPSSRRPTISCSSGVPPSGPRRSRASSPIVR
|
WKSSTSLRRWRRSAGPPRTAATPPYPSRVRFMSEGF
|
MPIAVVGMACRLPAAPDPATFWRLLSEGVDAVGETP
|
ADRWPDAAGTPTGAARYGAYLDRIDTFDPGFFGISP
|
HEARAMDPQQRLMLELSWEALEDAAIVPASLGGSGT
|
GVFVGAIWDDYRSVVARAGTASFNQHTMTGMGRGLI
|
ANRVSYTLGLRGPSMTVDAAQASSLVAVHLACESLR
|
RGESRVALAGGVNLIAAPEGMAASMSFGALSPDGRC
|
HTFDARANGYVRGEGGALVVLKPLEQARADGDFVYC
|
VIRGSAVNNDGATDGLTVPSAPAQTELLRAACRQAD
|
VAPGDVQYVELHGTGTAVGDPIEAAALGTAFGAGVG
|
RVADNALLVGSAKTNIGHLEGASGVVGLVKTALAIR
|
HRKLPPSLNFVTPNPKIAFDELSLRVQVGLTPWPRP
|
DGPIVAGVSSFGMGGTNCHVVLCDAPAESSAPSPAT
|
SSAAPPATVPVPVAVPQDVASPWLISARSEAALRGQ
|
AAALAAHLEQHPELDAATVARGLATIRTHHEHRAAA
|
FGGDRSALLSELRTLAQGRPSDGLLRGTAPDPGTGT
|
TPGTGPKTVFVFPGQGVQWAGTVRDLMATLPVFREH
|
VEAAAAALDPLTGWSLVDHLTGPETLPDTPDHVQPV
|
LFAVTTALAHTWRTLGVQPHAVLGHAAGEIAAAYSI
|
GALTLQDAAALVVARGRAHGEQAEAVRDALLDELSG
|
IEPRPSGTRFQSTTLGGPVDTAALDADHWYRNFRQP
|
APFHPAVEELMDDGHTVFIEVGPHAVLPPEILELLD
|
AAGAVGIPALGRGDGGRPRLLSSLAAAHVRGAAVDW
|
PALYGLPAARRVELPGYAFDRRRYWPEPTPTSAPVA
|
RQGAAAVPTPNPAAPAGAAVPASGPPVSASASVRDS
|
DWLRGLVEAAPAGRDEQLLDLIRDEAAAVLGHSDPR
|
EVDLARSFKDLGLESASGVELVERLGSVLQLRLPAT
|
LLYESPTPKVLAQVLGLELKGAARRATASAASAVTA
|
RPEKTSAVSAPASVRDSDWLRGLVEAAPAGRDEQLL
|
DLIRDEAAAVLGHSDPREVDLARSFNDLGLESQSAE
|
DLCERLAAVLQLSVPATLLYDSPTPRALARVLGAEL
|
AGTTQSDATSAASVSDEPIAIVGMACRYPGAADSPE
|
ALWQLVAEGADAIDVFPENRGWDLEGLYDPDPDAPG
|
RTYAREGGFLYEADRFDAQFFGISPREALAVDPQQR
|
LLLETSWEAVERAGIDPTGLAGSRTGVFVGATAMEY
|
GPRLHETVPETAGSVGGYLLTGSTVSVASGRIAYTF
|
GFEGPAMTVDTACSSSLVAAHLAARSLRNGECELAL
|
AGGAAVMASPGMFVEFARQRGLAGDGRCKSFSAAAD
|
GTSWAEGVGMLVLERLGDARRNGHRVLAVIRGSAVN
|
QDGASNGLTAPNGPSQQRVIRQALADAGLEAADVDA
|
VEAHGTGTALGDPIEARALLATYGQGRSEGRPLWLG
|
SLKSNIGHTQAAAGVGGVIKMVMAMRGGVLPRTLHV
|
DEPSPHVDWEAGEVRLLTGPVVWEAGERPRRAAVSS
|
FGISGTNAHLILEEPPVKERTAYEAEADSADPAVWL
|
VSAKKADALGEQAGRLAEFARTRTEVGIRRAARALA
|
TGRTHFDHRAAVVAQDRDALAEALSALASGAGHPMV
|
VRGRATVGRTAFLFSGQGSQRPGAGRELYASYPVFA
|
AAVDEACAVFDPLLGRSLREVMFAGPGSEGAELLNR
|
TAFTQPVLFVLHTALFRLLESFGVRPDHLVGHSIGE
|
LSAAHAAGMLSLADAATLVFHRARLMQQITTPGTML
|
ALQAGEATARGLVAGREDVVSLAAVNAPESTVLSGD
|
PEVLADIAAQLAERGIRSRRLTVSHAFHSPHQDQIL
|
DEFRRIAAGLTYRAPRIPIVSTLTGLLAEQDRITTA
|
DYWTEQLRRTVRHADAVTTLHGLGTTRYLELTPTPT
|
LATLVAETLEESPAALVPVLRHGRPEHDALLRALAT
|
LHTSGADVAWPALPGPRSAALPELPTYAFQRERYWL
|
TPPAPRADVTQAGLTGTPHPLLAAAVELPEGGGFVH
|
TGRIGTLTHPWLADHAIHGTTLLPGTALLDLVLHAA
|
SDGAGEHPAVAELALQAPLVLPGERGVDIRVTVQEA
|
DESGLRAFAVHSRPAPAGDDASGSSSWTRHASGALG
|
PTEAPDAADRAPQWPPADAAPVDLTDLYPALALTGY
|
EYGPDFRLLTAAWRTDDDVFAQVELGDDAAASDDVD
|
RFSVHPALLDASLHALLRSGLLADGVSGTDASGTLL
|
PFSWGDVALHALGATALRVRFTRTGPTTVRVVASDP
|
SGALILTAGELSLRPVVLDRLSDGSGTEAGGPRSLY
|
HVEWSATPAAAPVGAAAPDAPEQWALIGRSPVPDPV
|
STLAAEAVDIRTYPNLDALVHGTENGDPHPSVVLAD
|
LAAHGAELPAHEGERTGEHEGGAAGAHAVARRTLAL
|
LTSWLDAPALTVGRLVLVTHDATAAATAPDALGLPQ
|
ATAWGLVRSAQTENPGCFTLVDIDGDPSDGYAALPA
|
ALRTGEPQLAVRDGEVLVPRLARAAQDADVPWPAPA
|
DVAEQVGAAQRAPLGTGQVRIAVRAAGVDLRAPVLA
|
RDTPPDHDILGLEGAGVVTETGPGVSDLAVGDRVFG
|
LLTGNFGPQAVAERDTLARIPAGWTFTQAASVPVAF
|
LTAYHALVELAAVVPGERLLIHSVADGVGLAAAQLA
|
RHRGAEVFGTAGPGEWADLRAHGLDDTHLAPSHTQE
|
FAARFRAATGGAGVDVVLDCPAGDAVDASLRLLSSG
|
GRFVETGRTDTPDSEAVAARHPGVDHRSFDLTKLEP
|
AHVGAMLGELTELFERGALRPLPVAAWDVRRAQDAF
|
RHLSRPRHVGKVVLTVPAPLDPEGTVLITGGTGALG
|
GNVARHLVTRHGVRRLVLTGRRGPAAEGVTEIVAEL
|
PAAGAVEVTVEACDAADRTALARVVAAVPEAHPLTA
|
VVHAAGVLDDAPVEALTPERLDTVLRPKADAAWNLH
|
ELTAHADLSAFVLFSSVAGVIGHAGQGNYAAANAFL
|
DGLAAYRRHRCGLPAVAAAWGPWEHAAGGMTQALSA
|
TDLNRMARTGVLPLSTDEGLALFDATRDAAVPAVVP
|
VRLDLAALAESAGGAGRAGDVAEVPLLFRHVAPARP
|
VRRLPQAAATADGARLPAPRQTAVDAGPDLARRVAE
|
LPTEAARRGMLLELVQDSAAAVLGHATAATVDPERR
|
FKELSFDSLTALELRNRLGAVSGLRLPGTLIFDHPT
|
PLAVADFLYTRLASQTPRTATSDSLAVLAELDRLVD
|
TAIATDADEATLTRFTARLEDLLVWLHGRQEAGRPD
|
AEDAAGATDRFESASDDEIFDFIDNELGLT*″
|
|
FosK
|
MYSRRMPIIELAEYGPDFLADPYPYYAKLREEGPVH
SEQ ID NO.: 15
|
EVRAPDGYRFWLIVGYAEGRAALTDSRLVKARDTMA
|
TSEASPLGKHVLIADPPDHTRLRKLISREFTVRRVD
|
NLRPRIQELTDDLLDVMLPAGRADLVEALARPLPIA
|
VLCELLGVPNADRDEFHSWAKGILAPQNPTETHTAV
|
KALMSYLDDLIEDKRHGEPTGDLLSGLIRTSIENGD
|
RLSSEEVRSTAFLLMIAGHETTANLISNGTRALLTH
|
RDQLDLLRSDMDLLDGAVEEMLRYDGSLESTTKRFT
|
GVPVQIGDTVIPPGETVLVSLASADRDPANFDDPDR
|
FDIRRGTPAGVGHLAFGHGIHYCLGASLARAEGRIA
|
FRALLERCPDLELDPEAPPFEWMPGVLVRGVQRLSL
|
RW*″
|
|
Fos J
|
MTSTDAVPTGTPPLTTDSSSETPPAYPMPKAPGCPM
SEQ ID NO.: 14
|
DPPPVYRTLRAEQPVSKARLYNGREAWLISRHEDVR
|
KILSDSRASVDALNPGFPWLSEVAKAMNTAEGGVRP
|
LGRMDPPDHTELRRMLAPHFLIKRVRALRPATEELV
|
DGLIDRMLEGPSPADLVPALARPVPSTVVGWLLGVP
|
AEAMAREGETTARLEDEDGSAETAVAARGELEEQLK
|
ELVELRRAEPDGNIVSRLVGFADEGRLTETNLLMQI
|
GLLLGAGYDTTVKMITTGVLALLGHPEQAALLAKEP
|
ERAAGATEELLRYLTVAEFAPKRVAVEEIEIGGQTI
|
RPGDGIICLISSADRDESVYERPDELDIQRSARDHL
|
AFGSGIHLCVGHSVARMELEVVYGRLFSRIPQLRLA
|
VAPNEIPFSRGLDVQGAKSLPVTW*″
|
|
FosI
|
MKSYKALAGIPHLPRLFLWSMLARLNVSMLPIGLTL
SEQ ID NO.: 13
|
VLVGWSDSYVAAGVLGGALTAGQALVGPARGRAADR
|
GAVRKLLVLTGIGYLVGLGALVTMTRTVPGGGWPIA
|
VLVALLTGMSTVPISQVSRAVWPKIVPGELGRTLFT
|
LEATGSEVVQTTGPLLTSLLVTALDPGYAVIACGVV
|
AFVGALAFAAALGSAGIRGGAERTAAKPQAETGTAA
|
ETGADAGTEGDTATSASAVTRASAPEPEERRTLFAL
|
PKFTLAIVVTLVMMAALFSVNLSLVAWARDSHESGL
|
SGVLIACWTIGSVVGGFGMGALRKDVPHSARFAANA
|
VGMALLAVLLPPVTETAPVWLVLVVLFLGGTAIAPS
|
MAGNFAQVSGAVPQERRAEAFGWLATAGTGGAALSM
|
PVTGVLLEASGPATSVAVGAALALCATVLSYIGSKR
|
AERNDGLVSARA*″
|
|
FosH
|
MPESTDAAAAVPEAHDLPLTLWGWQDWTVEPWERLP
SEQ ID NO.: 12
|
GDEGYSSHTYLVRHDGVRHVVKAVRKDMGPKLTAGL
|
LVAQEVERHGIAAGGPLPTTGGEVTAYQGDFCYSLL
|
TYLDGERVDETDPAHLRAVGRTLGRIDSVLLHAPVP
|
EGVPRWNEVLELFLLEQDFLKGHDWIRRTLEQAGGA
|
LSPDDLTIGLINCDAAAKEFRVLGDTAGLLDWSEAM
|
YAPCMLELATTLSYLEDETDGEPLVRGYFEEGPADR
|
AELGFLADILRFRCAAEGWIYAARQNAGDETGTTAS
|
TWSNEKLIERARQNAENADRIAARFQVF*″
|
|
FosG″
|
MNTLSLLQGLPLHRSDPFSPPDGYAKVRAEAPVSPI
SEQ ID NO.: 11
|
AFPDGNQGWLLTRHADVKAMLANPSFSSVREKAART
|
RRTEGRPTPLPGAFFTMDPPDHTRYRRLAASRFAVR
|
KIKALEPKIEQYTREHLDRMEETGGGPVDLVTAYAL
|
PIPSLIICDLLGVPYDARDDFQRWSLSILDTELSEE
|
EQQRTVLEGTKFMLDLIEDKKKNPSDDLISDLLDPA
|
EEKDRISEFEIAGMCGLMLMAGHESTSNMLSLGTLA
|
ALRNPDQLALLRSDPSLIDTAVEELLRYLSIVQFNF
|
ARLATEDVEIGGQLIKACETVVGSMAAANHDPEVYT
|
DPHRLRLDRAEERNLAFGHGIHLCIGHQLARVEMKV
|
TYLRLFERFPTLRLAVPFEDIEFRANSVVYGVNSLP
|
VAWDAPADHDPAP*″
|
|
FosF(module 8 and thioesterase)
|
MSTNEDKLRHYVKELTGDLLRTRGRLRELEAAGNEP
SEQ ID NO.: 5
|
IALVGMACKYPGGVASPEDLWRLVAEGRDAISPFPA
|
DRGWDLGRLPAAGGGFLHDAAEFDAGFFGISPRDAA
|
AMDPQQRIALETCWEAVERSGISADSLRGKPVGVFM
|
GGAVQGYGLVGTEIVDAPEGVGGTGSASSVISGRVS
|
YSFGFEGPAVTVDTACSSSLVALHLAVQSLRAGECS
|
LALAGGVTVMATPYAFVEFGRQGGLSADGRCRSFSA
|
DAEGTGWSEGVGVVVLERLSDARRNGHEVLAVVRGS
|
AVNQDGASNGLTAPNGPSQQRVIVRALAGAGLSTSD
|
VDVMEAHGTGTRLGDPIEAQALIATYGQGRAEGRPL
|
WLGSLKSNIGHTQAAAGVGGVIKMVMAMRHGVLPRT
|
LHVSQPSPHVDWSAGAVELLTRARQWPQTGRARRAG
|
VSSFGISGTNAHVILEHEPVESTEAPVGSAQVPVES
|
TQALVVAGELPWVVSGRTEGAVRAQAARLAAFVAGR
|
GGGALDVGGVGLALVSSRSVFDHSAVVSGGSLDELL
|
AGVGGVARGDGSAAGGVVFERRVAGGVGVAFSGQGS
|
QRPGMGRELYGRFPVFAAALDEVCAEVEAQTGAELL
|
GVVFGDDAGVLEDTGVAQPALFAVEVALYRLAESFG
|
VRADVLIGHSLGELSAAYVAGVWSLADAVRVVVARA
|
RLMGSLPSGGRMVAVEATEEEVAPLVADVAAAGGMV
|
SLAAVNAPGAVVVSGQDAAVDQIADIFAGRGRRTRA
|
LAVSHAFHSPLMEPMLAEFADVLAQVEFRAPSIPVV
|
SNVTGTIADAEELCSPEYWVRHVREAVRFGDGVGAV
|
LAQGVATVVELGPDPVLTALGERVRAASAERDSAAR
|
DVAFVPTLSRRSTDTRAFLGMLARVHARGHQVDWTA
|
LGRADDLARELPTYAFQHEHHWLKGASVRPGSAASR
|
TAGSDGAFWKVVQEQDLQRLASDLGVDPDAPLHTVL
|
PALGDWHQTHIEASETDGWRYRVAWERPTAQHAPEG
|
PATLHGTWLIVVPEGDLRAGHLLDNDGLHDGLHGEV
|
RRVLTDAGAEVKSLSLAPEDIDRQTIAKLLNGLDDT
|
PAGVVSLLALSGREHTGPRGVGSGAWASVCLLQALL
|
DTGWSATRLWTLTRGAVRATASDDAPDPWQAQVWGL
|
GRVAALEHPTLWGGLVDLPAPDLSAADGHALAATAE
|
ASFGLAALLAGSSGEDQVALRADCARVRRLRPAGPD
|
GAPEPVRPVAPESLVAPEGADATGRTGDPQPPAARE
|
PWWSHGSVLITGGTGALGAHTARRLAEQGAPHLVLA
|
SRQGPDAPGAADLRAELAAHGATVDLVSCDVTSRDE
|
VAALAADLAGRGAPVGAVVHTAGVAAEHPLADLDAT
|
EFAAVVDAKVTGAVILDEVLGDGLAAFVVYSSIAGT
|
WGSTRGGAYAAGNAFLDALVERRRARRAAATTLAWG
|
PWSGGGMAGEEFRQEMQRRGLRPLTPRLATTALDRA
|
VRQEDTAIVVADLDWPRFIGVFTAGRPNHLFADFDD
|
TESGAGHPDAGRTGAAQPGEWQRLPDLPLADQRPYV
|
LDIVRREAARVLGHADAGTITEDQEFLALGFDSLAA
|
VELRGRLTVLTGLALPSSLVFDHPTLGALVTHLLDN
|
AAPGGDAGASPAPGVSAAPSASVAAAPPQDSNDSVV
|
GIYRKLSLQGRMQEVEAFLSSASALRTRFHGAEDLG
|
RGAHVTTLGHGEAEPQLVCFPPFAPVDGSLQFARLA
|
NHFRGRRRVSVVTVPGFMAGEPLAASLEVLIETLAE
|
AVLRAADGRPYALLGYSSSGWLAQAAATWLEERGTG
|
PVGVVLLDTYPPDSMTLEMRKANTYEVVERRMRFTS
|
MHYDGLTALGTYRGMFRGWQPRQLAVPTLFVRPDSC
|
IPGSPEEPMAGPDWQAAWPLDHEETQVPGDHCTMIG
|
EFSETTAAAVDEWLSRTPGLTRP*″
|
|
EasE (modules 6-7)
|
MASENQLLDYLKRVSAELHETRGRLQDVEDAAREPI
SEQ ID NO.: 4
|
AVVGMACKYPGGVASPEDLWELVAEGRDAISPEPAD
|
RGWDLDGVGAGPASGGVAGDGSTSAPDGLLTAGGGF
|
LHDAAEFDAGFFGISPREAAAMDPQQRLLLETSWEA
|
IERTGIVPESLRGGDTGVFIGAGMQDYLGHLRESRA
|
TEASGFLITGNASSVLSGRLSYSFGFEGPAVTVDTA
|
CSSSLVALHLAVQSLRAGECSLALAGGVTVMATPYA
|
EVEFGRQGGLSADGRCRSFSADAEGTGWSEGVGVVV
|
LERLSDARRNGHEVLAVVRGSAVNQDGASNGLTAPN
|
GPSQQRVIVRALAGAGLSTSDVDVMEAHGTGTRLGD
|
PIEAQALIATYGQGRAEGRPLWLGSLKSNIGHTQAA
|
AGVGGVIKMVMAMRHGVLPRTLHVSQPSPHVDWSAG
|
AVELLTRARQWPETGRARRAGVSSEGISGTNAHVIL
|
EHEPVESTEAPVGSAQVPVGSVQARVESTEAPLVAG
|
ELPWVVSGRTEGAVRAQAARLAAEVAGRGGGAGALD
|
VGGVGLALVSSRSVFDHSAVVSGGSLDELLAGVGGV
|
ARGDGSAAGGVVLERRVAGGVGVAFSGQGSQRPGMG
|
RELYGRFPVFAAALDEVCAEVEAQTGAELLSVVFGD
|
DAGVLEDTGVAQPALFAVEVALYRLAESFGVRADVL
|
IGHSLGELSAAYVAGVWSLADAVRVVVARGRLMGSL
|
PSGGRMVAVEATEEEVSGWLVDGAVIAAVNGPAAVV
|
VSGVEGAVEAVVERARGGGRRATRLRVSHAFHSPLM
|
EPMLAGFAQVLARVEFRAPSIPVVSNVTGEVASAAE
|
LCSPEYWVRHVREAVRFGDGVGAVLAQGVATVVELG
|
PEAVLTAMGASHPGVVENGAVFLPTLGRRTGDVNGF
|
LTALARVHARGHQVDWTALGRANDLARELPTYAFQH
|
EHHWLAGNAASVDAAHLGMRAVDHPFLGAAVTLPGT
|
GGTVLTGTISPGTHPWLGDHVVLGSTLLPGTAFLEL
|
AFTAAARVGCAGVEELTLEAPLILDGGSAHVVQVLV
|
GEAEAAGGGRAITVHSRPVHAAEDAPWTRHATGTLR
|
SDAAEPAPVLAPEPSQVQAWPPRGATPVDLDAVYER
|
LIGLGFDYGPAFRGLHTAWRDGDTVYAEVRLPTRQT
|
DDAGRFSIHPALLDTALHSLALPDLLSGQDECHLPF
|
SWSGVTLHATAVSSARVRIRRLGEGATSVELLDEAG
|
AALATVRSLALRPVTLEQLRSARVSSVESLYGIAWS
|
PLESAGSAVSAAVSASGTGLALLDLGADWSVESVPA
|
RRHADLAALAAAIDADPAEAPRDVLIALPALGGVDG
|
DIAAATHQRTQTVLHLLQDWLKQPRFASVTATLLTR
|
GALAVDAAEAAAVDLASAAVGGLIRSAQLEHPGRFR
|
LIDTDGEEASLRALPTLLGTGNGTDIGTGTGVVAEP
|
QIALRAGVPSVPRLRAIAAPETTDADGSADAPAFSG
|
EGTVLITGGTGDLGSLFARHLVTVHGVRHLLLTSRR
|
GPDAPGAAELIAELEALGADVTLAACDMSDRSAVAE
|
LLAGVPGDHPLTGVVHTAGVLDDGLLESLTPAQLTK
|
VLRAKADAALHLHELTSRAPLSAFVLFSSVAGVFGG
|
AGQANYAAANAFLDALARRRRALGLPGVSLAWGLWS
|
TEGGMTAELDRANVARLKRTGLLEISREQGVTLFDA
|
ALAAAGAAFGASEAGPETVGTHADGLLVPARLNAPV
|
LDEQAAAGSLPAVFQAVVSTRPRPSSRVAGGTAATA
|
GSASAPLLAELRVADREERLQILGGLVAEKVAYVLG
|
HADREAVDRAQPFNRLGLDSLTAVELRNQLGAATGV
|
RLPATLVFDHPTPLAVAEELYDELARGVLGEPAGST
|
ALAVAEPAARASASHPQDAGDDPIVIVGMACKYPGG
|
VASPEDLWRLVAEGRDAISPEPADRGWDLDGIYDPD
|
PQQPGKTYTREGGFLHDAAQFDAEFFGISPREATAT
|
DPQQRLLLETSWEALESAGTRPETLTGSRTGVEMGV
|
MYNDYGARHLNRSPQGYEGYISNGSSGSIASGRVSY
|
SFGFEGPAVTVDTACSSSLVANHLAAQSLRAGECSM
|
ALAGGVTVMATPYAFVEFGRHGGLAVDGRCRSFSAD
|
ASGTGWSEGVGVVVLERLSDARRNGHEVLAVVRGSA
|
VNQDGASNGLTAPNGPSQQRVIRQALAGAGLSVADV
|
DAVEAHGTGTRLGDPIEAQALIATYGQGRAEGRPLW
|
LGSLKSNIGHTQAAAGVGGVIKMVMAMRHGVLPRTL
|
HVSQPSPHVDWSAGAVELLTRARQWPETGRARRAGV
|
SSFGISGTNAHVILEHEPVESTEAPVGSAQVPVGSV
|
QARVESTEAPLVAGELPWVVSGRTEGAVRAQAARLA
|
AFVAGRGGGAGALDVGGVGLALVSSRSVFDHSAVVS
|
GGSLDELLAGVGGVARGDGSAAGGVVLERRVAGGVG
|
VAFSGQGSQRPGMGRELYGRPPVFAAALDEVCAEVE
|
AQTGAELLSVVPGDDAGVLEDTGVAQPALFAVEVAL
|
YRLAESFGVRADVLIGHSLGELSAAYVAGVWSLADA
|
VRVVVARGRLMGSLPSGGRMVAVEATEEEVSGWLVD
|
GAVIAAVNGPAAVVVSGVEGAVEAVVERARGGGRRA
|
TRLRVSHAFHSPLMEPNLAGFAQVLARVEFRAPSIP
|
VVSNVTGEVASAAELCSPEYWVRHVREAVRFGDGVG
|
AVLAQGVATVVELGPEAVLTAMGASHPGVVENGAVF
|
LPTLGRRTGDVNGFLTALARVHARGHQVDWTALGRA
|
NDLARELPTYAFQHQRYWLDAPAPEPGVVEHVPEQA
|
VLLNAVAQQDVDGLAHTLGLAPDAPLTAVLPALQTW
|
SREQARLAAADALRYRVSWTELPSPTDAVPLDGTWL
|
VAVPGEPVEPDLVIAVEKALVDAGARVERCETAELR
|
ARLAAVAPRGVLCLPAVGAQRDRDRERGIATGALAV
|
LDLLHTVQDAGVDTRVWALTCDAVCAQADDAAPDPW
|
QAQVWGLGRVAALEHPTLWGGLTDVSGTSPAAQLTG
|
LAAALANTTGDDQIALRGELLLGRRLIRGTVPTSVP
|
EPETGSTAPWTDGSVLITGGTGALGAQTARWLARNG
|
ARTLVLTSRQGPAAPAVAALRTELEERGADVVVESC
|
DVTDAVALAALRDRLADAGTPVSTVVHTAGVASELP
|
LAELDEDGYAAVVRAKVVGAQVLDEVLGDGLAAFVV
|
YSSIAGVWGSARAGAYAAGNAHLDALIERRRAQGRP
|
GTALAWGPWGGGGMADERLTREMQARGVSALDPEEA
|
VAAFGRVVRADYGTVVLADTDWSRLADIFTVNRPSP
|
LFDPLRTVETERGGVGADGTAAGTAGADDVSGPGDS
|
DAGTAGATPFVARWTALSGGERRRVLVETVCTQAAA
|
ELGHASGGTIEPERPFQELCFDSLAAVGLRQRLEKL
|
TGLKLPATLVFDHPTPAALAQVVASALAERVGGASG
|
ASAVLGELDRLEAALAALDAGSDPAARGRITLRLSN
|
LLTRFQNADDEPTAASGAAETAAEQLDSATDDQLFD
|
LIEKEFGIS*″
|
|
FosD″ (module 5)
|
MSDDVSQEQLLQALRKVTGDLQDSRRRLKDTERRAT
SEQ ID NO.: 3
|
EPIAIVGMGCRFPGGSDSPEALWDLVRTGRDAIGAF
|
PKDRDWDLDALFAGDGTEEGTSYVREGGFLHGAAWF
|
DAGFTGVSPREAVAMDPQQRLMLEVAWESLERAGIA
|
PDTLRESETGVFTGAYYSFYDVPLQASSEEYEGYLV
|
TGNNSAVVSGRVSYALGLSGPAVTIDTACSSSLVAL
|
HLAAQSLRRGECSLALAGGVTVMPTPITFTEFSRQR
|
GLAADGRSKSFADAADGTSWGEGAGMLVLERLSDAQ
|
RNGHRVLAVVRGSAVNQDGASNGLAAPSGPAQERVI
|
WRALQDAQVQAADVDVVEAHGTGTTLGDPIEARALL
|
ATYGREHPAERPLWLGSLKSNLGHTQGAAGVGGIIK
|
MVMAMRDGVLPRTLHVDRPATHVDWSAGAVRLLTEA
|
QPWPRTDRPRRAGISSFGISGTNAHVILEQAPDPEP
|
DVPAPTAKGTGTPAQGSGVLPFLVSARTPDALSAQA
|
RLICRRLTADESPLADVALSLATTRTAFEQRAVVLG
|
GDRATVVAELESLAAGVPSANRVDGDGAAAPRRRVV
|
EVFPGQGAQWAGMARELLHSSPVFAARVRECADALA
|
PHVDWSLLDVLNGEPGEPSLDRVDVVQPVLFAMMVS
|
LAELWRSVGVRPHTVVGHSQGEVAAACVAGALSLED
|
AAKIVALRSRTLTGIAGAGGMLSVALGRAETAARLA
|
PFEGRVFLAAANGPEATVVSGDADALDEFFTVCEAD
|
NVRVRRIAVDYASHSPHVDRTGPRILTELADVAPGR
|
PEVEMLSTVTGEPVRDGELTAEYWVRNLRAPVEFEA
|
AVRRLAESGDAVFVEISPHPLLTGAMERTAEEAGVR
|
PATVPTLRRDAGGADRFLTSAAEGWVHGLDVDWAAL
|
LRDSDGRVTDLPTYPFQRSRFWPTPRTTNGSGAGSE
|
ACRGGRPSALAGASAPHAAQAADSGLWEALEADPAA
|
LLDALGLKDGESADALLPALAAWRRDHLEQARLGSW
|
RYGVRWEPVLHAPGAVPALAGTWLLAIPGAEHGFGP
|
DHRLVGWVLDAVEAAGGRALLVELDPREDTDPAAWA
|
ASLHAAAADARPAGILSLLALDDRPLPGRPAVGRGL
|
AGTTLLVRALAQTNLPGRLWCLTHGAVGTDPTDPPA
|
APHAAAVWGLGRVAALEHPTLWGGLIDLPRAPREAD
|
GQDGRTAPDAATAAQLCAVLADPGDEDQLALRPTGV
|
LARRLVRTPFRLPDPTTGGRDGGQVSLSDTDTDTDT
|
DGNVGADAVWPREGTVLITGGTGALGSRLARRLAAQ
|
GAQHLLLTSRRGPEALDADGLGADLESMGARVTIAA
|
CDLADREAVRALLESVPADAPLVSVVHAAAVLDDAA
|
LENLDADRLDAVLGPKALGAWHLHELTAGLNLSSFV
|
LYSGFVGTVGGIGQGNYAAANAVLDALAEHRRAAGL
|
PALSIAWGPWGGGGLVDAATEQRMRRNCLPPIEPEL
|
GVRALDLALAQDGPASQVLAEIEWPLFADGFTAARP
|
SPLLAAFARSGEAADDGSDAGRSDGAGGAGGPTLAR
|
RLPGMARTDADRLLLDTVRDHAAAVLCYADPAALAV
|
DQPFKELGIDSMTAMALRNRLQRAAGVDLPATMVFD
|
HPTPKALAAQLHGLIQPEERAVTAESALAELYRVAQ
|
SLEELRLDAALRKAAASRLRALADGWEGKRSASETV
|
MFSSPSGSSSERGTPDTGALLESATEDEVLDFVTRQ
|
LGISPLEGPG*″
|
|
FosC (modules 3-4)
|
MPGVLGGCLSRGRRCFRAWIEEIRFGTAAAVRAALR
SEQ ID NO.: 2
|
AETKTAGFDPVGGLVQFIRCRVREASEPAVRRWARN
|
MTDEQQLVEYLRKVTADLQRTRSRLRDAEAAAREPI
|
AIVGMSCRYPGGVTSPEELWELVAEGRDAITGFPTD
|
RGWDVAGLYDPDPDATGRSYTREGGFLGDIDLFDAD
|
FFGLSPREAFSMDPQQRLLLETTWRALEDAGIPPAT
|
LRGSRTGVFTGVMHHDYGGRFATAAPDGYEGYIHSG
|
SAGSMAVGRVSYLYGFEGPAVTVDTACSSSLVSLHL
|
AAQALRSGECDLALAGGVAVMSSPLFFIEYSRQRVV
|
STDGRCRSFADDGDGTGWSEGVGVLALERLSDARRL
|
GHRVLAVVRGSAVNQDGASNGLTAPSGPAQQRLIET
|
ALSSAGLSADEVDVVEAHGTGTRLGDPIEAQALMAT
|
YGRSRRAGRPLYLGSLKSNLGHTQAAAGVAGVIKMV
|
QANRHGVMPSSLYAENPTTEVDWSAGTVRLLAQARE
|
WDAPAGPRRAGISSFGMSGTNAHVILEEFVSEDAGA
|
TADAQRLAGQGSAANTRRSVDQDSAANGQDWARVAV
|
PVVVSGKTPEAARAQATALRDHLAVHPGLPIVDAAR
|
NLVDHRSLFAHRVAVAGDRAGLLAGLADTAPVEAGA
|
GRVAALFTGQGAQRPGMGRELDAHFPAFAAALDEVC
|
ACVDPLLGRGLREVMWESDAQTVARTEFAQPALFAF
|
EFALARLWQSWGVTFTALAGHSVGEIAAAVVAEVLT
|
LQDAARLVVARGRLMQALPEGGAMLAIAASETEAAE
|
TLATVTDGPHAADGAVDIAAVNGPDAVVVSGALDAV
|
ERVGEIWRGRGRRTTRLRVSHAFHSALMEPMLDDFA
|
EVVRGLTFSIPKTAIAASAASDHPFHSADYWIDHAR
|
NAVRFHDAVRGLAAADVLVEIGPDAVLAPMVGAAQA
|
HGDDGRTVLASTRRDRSETHTVLTTLAQAYAHGVRV
|
DWAALLPAAPLVDLPPYAFQRQSYWLAPPRATAGAG
|
TDALAHPLLSGAVELPGPGGLVLTGHISPSADPWLA
|
DHAIAGSVLFPGAGFVELAAQAARQAGCREISELVI
|
QAPLVPGDGGADVQVWVGPSEGTAGRELTIRARQAT
|
GQVPGQWTVHVTGTLTEPLPERHEPHEPERSDVDWA
|
VGAWPPAGAEPVPVQDLYADLADRGYGYGPAFRGLR
|
AVWRAGDDLFSEVALPDGRYDGRFGIHPALLDAALH
|
PLALTGDESRRIRLPFAFNGATVWPSRGSATADGAP
|
IRVRLRTAGDSARLDAVTSDGEPVVTVRELVLREAD
|
PARLSAQADAALDRLRYEVTWQPADLAPRTVPVPGT
|
WLVVPPAAADGASDIPAWVGELVEHTVTVPPHEAAD
|
RATLASALCALSAQPADAIADGFAGVLCFADRPETL
|
LTALQALTDARVTAKVWCLTRDSGTDPDAAAVWGAG
|
RAAALELPDTWGGLIDLPADGAEPPLGQLAALLAGD
|
TREDQVRVAGDGLEVRRVVRSAPDNDPAPNQDLTHW
|
QPSGTVLITGGTGALGGHVARWVAGLAAGSATQQVA
|
DGCSLLLVSRRGPEAPGAAELLEELSATGVPVRVVA
|
ADTADRAAMAAVVQEAAASGAPIRAVFHAAGIAHEA
|
PLLETDADDFRAVLDGKTRGALVLDDVLADAGLDAF
|
VLFSSVSGIWGAAGQAGYGAGNAALDALAARRRAQG
|
RAATSLAFGPWACGGMVDATREQRFRRSGLIPLPAA
|
DAVTALARSLALGTDCVLADVAWSRFLPLFTAVRPA
|
PLFTDLVRARGAASSGAAPRAAAGAGPARSAYRGTD
|
LLDLVRAEIAAAVCHADAGRIDADRPLGELGFDSLM
|
SVQLRNRLSAETGVQLPATLVFDHPTSAALARHLEI
|
RLAPPTGTGDTVMPDRKPDFTTGRTERDEPIAIVGM
|
ACRYPGGVSAPDDLWRLLAEGRDAIAPFPADRGWDL
|
TRIYSPDPAATGTTYARGGGELDDPAGFDAAFFGIP
|
PREALAMDPQQRLLLEAAWESVEHAGIDPKTLRGSR
|
TGVFAGVMYNDYFSRLNGTPESLEGITGIANSNSVM
|
SGRVSYLLGLEGPAVTLDTACSSSLVALHLACQALR
|
AGECDLALAGGATVMASPHLFVEFARQGGLAADGRC
|
KSFSDDADGTGWAEGVGVLAVERLSDARRLGHDVLA
|
VVRGSAVNQDGASNGLTAPNGPAQQRVIQAALEQAR
|
VAAADVDAVEAHGTGTRLGDPIEAQAVLAEYGARRP
|
AGRPVYLGSLKSNIGHAQAAAGVGGVIKMVQALRHE
|
LLPRTLHAEKPSSDVDWSAGALELLTEERPWPRTER
|
PRLAAVSSFGISGTNAHVVLEEGDARHVPQSPEAGT
|
DDDAPVAVAIPVNARTRDGLHAQARALHGHLVANPG
|
LGLRDVAYSLAATRSDFDHRAVVVAEDRDGLLGALA
|
ALGTPDAVHPAEAVTGPEAGTTGGTRAAALFSGQGA
|
QRPGMGRELAEHFPVFAAALDETCDVIDPLLGRPLR
|
DVLWQEPAEVLERTEFAQPALFAFELAMARLWMSWG
|
VEFSALAGHSVGEIAAAVVAGVLSVEDAARLVVARG
|
RLMQALPEGGAMVAIQATDDEVAASLAYLVDTSEAE
|
IAAVNGPSAVVVSGAEDAVTRIAEHWRGEGRRTTRL
|
RVSHAFHSPLMEPMLAQFAAVVDGLTFHPAEIQVSP
|
AADTTHAFDTPEYWTEHARRAVRFADAVRGLPDADV
|
LIEIGPDAALTPLFEGTRPVAASSRRGRPEAATVLT
|
ALSRTYVNGVPVDWTALTPGARRVALPTYAFRHRRY
|
WLDAAPDTADVPAAPDGTHSAEDTAFWQVVEEQNLD
|
GLAPTLGLGADAPLSAVLPALGNWRRGQDMTARTDR
|
WRYHVTWERLPDAAPPAAALDGTWLIVAPESDADTA
|
EDGASAALADAVTAALADAGATTRLLTVDVATADRA
|
TLAKELARELDRTPASDERFAGVLALPWPSGETARR
|
DGVSAAADATLLLVQALLDTGRTDPPLWTLTRGAVR
|
ALESDAAPDPWQAQVWGLGRVVGLEHPGLWGGLIDL
|
AASTDDDPLGCGGLARLAAVLACRSGGDDQLALRDD
|
SVHARRLTRAEPTVSPHERPAEDTEDADLWSSGPVL
|
ITGTGALAVHTARRLAESGAPIVVLASRRASGFADA
|
DRLRAELARHGTELVLADCDVSRRADVEELAARFAA
|
ADTPVGAVVHAAGTGDQNPVAALDADTFATVMAAKV
|
TGARNLDEVFGDGLSAFVAFTSVAGVWGNASGGAYA
|
ASNAHVDALMERRRARGAAGKAIAWGPWDGGGMAAG
|
SFGDDLRRLGIAPMAPELAVTALDRALRHGDTTVTV
|
ADVDWGRFTAVFTAARPSPLLAGLVPVPGAASDLAG
|
VTGAGPGTDETGGTTPDFAKVLAGHSPDEQQRVALD
|
LVRAQIAAVLGHAAARDVAPHHAFKDLGFDSLMAVE
|
LRTRLRESTGLDLPATLVYEHPTPTDVAAFLCRQAV
|
PDGGGQAARALADLASLERSLADLEGSAADRDRLAT
|
RLGALAARLRETPRDTEPAAQAADDDTDGGAAIATA
|
SASDLLALIEKGFE*″
|
|
ORF4
|
MATEPMKEDISNMPISKADETADAPRTADAALRAEA
SEQ ID NO.: 10
|
ARTAQAGPMAGKKNVVVLGVTSALGRRLAESILARG
|
LTPVGLIGEAGHSESLRAAGTEPLVIASEADRTSPA
|
ALRAMGECGGIAVATGTGWGPDATDTSSTSLVGELM
|
GVAQLVGIRRFVLVSAYLPDDELHTRLGDELESYLA
|
EKRDVERKLAGHDLDWCVVRPGMLDNSPATGLVTVR
|
GGADPQPEGTVSRTDLAETICEALFAPEPVRGVLAV
|
SAGAQPIRAALGSVPQATVQPAWWCAEERAEGAAEK
|
RADSPAS*″
|
|
ORF3
|
MTRPGGGNPVFRSSCGPKPSSGSESNCAVSLVDRDG
SEQ ID NO.: 9
|
ELAELGRWLRRRPADSAGLCVIEGPALCGKTALLEA
|
ACAEARRMGIGVLTVRGSVCGVGYAEELGEFGAREP
|
GEQARRLVAAATRSLLLAVDETDLLAPESQVFVREV
|
VRLTHTGRIRVLLTGVSAATVPSIVDELRELAAGWA
|
ERVRVRPLGRAAVAELARARVPGPRADALAEAIHPI
|
TGGNPGLTLAMLDEAAAAIGRDPDAPDGPPSAGLAR
|
RLREHTSREVMNLVEAVAVLDAQCTPERLWNVLEKD
|
AEYVSHVAGQAIASGIVRPDMTLHPYLRDAVLWSTH
|
PAGLRSLRLRAAQVLHEQGVPAWEIAPYLHEAGIAP
|
QPWAGGVLYEAAEHASRLGRHRLAVQLLESASFWGS
|
GPDLREEAGVRITDMVWWMDPALTAPRLRRLAAAAS
|
DGTFKPGSLARLSRHLARHGEMAQASDMLRLAEPAP
|
GRGNAVGAVSPGDALGAADVRAEVQRTLSGLWLRHL
|
FPDACPDAPAPDDQPHPQLIAEGFSWLSSAQRLSWL
|
LAPGVQCSDAPNSGPRPTGSADSAGSAKAVKDAEAA
|
VTCAEEILQSANFDYSSLEPMLVALFCLMATGRLDP
|
RAPWYAALADNAALADNERMPLPLASMLSVAEAVAA
|
WWKGDLVAAQTAVRRGFERWDADRWGVLAGLPRGLS
|
ALMLTEQGRFEEAAAQLARPMTEADLASPYGLVYLR
|
ARGRFRLATGALRAAVADERSCGAILTAWGMEMPGL
|
VPWRLDLAEALLKLEEYAEAAELIDEQLAFSPDSNT
|
RARGIGLRLRVATVPPGERALACRKSIAVLQSCGDE
|
LEYARALGQLAQIYKHTGDLAGGRKTMRLAEKTARG
|
CGAQWALAEMSGGSQARRKVPPPAARRDGRSLTPAE
|
WNVARMAAQGYTNREIAESLYVTASTIEQHLTRIYR
|
KFDIRRRAEIGAIVESRCAPDHTPAEIQDVA*″
|
|
ORF2
|
MQLIKHAHACVSLVKDGGRIAIDPGTFTPDAKEVVA
SEQ ID NO.: 8
|
AADAVLITHDHFDHFDEDLIARALDARPGLRVYGPV
|
RVVGRWAARRGQVVAVADGDRLDVAGFDVAVSGDLH
|
AAIHRDIPRVTNVGYLVDGRVHHPGDAYHVPPAPVD
|
TLLLPTSGPWTQLGRAADYVREVAPNRLVQIHEIML
|
SRTGQESMARFLSPAALTEVPLTIVPEGEAITV″
|
|
ORF1
|
MNDAPSNEPAPLPDELAVRLRAVVGTLVRSARTVDR
SEQ ID NO.: 20
|
LASVPAAVLGLLDTRGPMTTADLAATRGVRHQTMAA
|
TVRELTEAGFLASRTDPGDARRKVLALTKAGKKALD
|
TDRRQRVGVLADALEETLDDEDRRALAHALDLIDRI
|
SGSIRGGHSFSGEREFNTGAW*″
|
|
All publications and patent documents cited herein are incorporated herein by reference as if each such publication or document was specifically and individually indicated to be incorporated herein by reference.
Although the present invention has been described in detail with reference to specific embodiments, those of skill in the art will recognize that modifications and improvements are within the scope and spirit of the invention. Citation of publications and patent documents is not intended as an admission that any such document is pertinent prior art, nor does it constitute any admission as to the contents or date of the same. The invention having now been described by way of written description, those of skill in the art will recognize that the invention can be practiced in a variety of embodiments and that the foregoing description are for purposes of illustration and not limitation of the following claims.