Gene cluster for fostriecin biosynthesis

Information

  • Patent Application
  • 20050148045
  • Publication Number
    20050148045
  • Date Filed
    August 18, 2004
    20 years ago
  • Date Published
    July 07, 2005
    19 years ago
Abstract
Domains of fostriecin polyketide synthase and modification enzymes and polynucleotides encoding them are provided. Methods to prepare fostriecin in pharmaceutically useful quantities are described, as are methods to prepare fostriecin analogs and other polyketides using the polynucleotides encoding fostriecin polyketide synthase domains or modifying enzymes.
Description
FIELD OF THE INVENTION

The invention relates to materials and methods for biosynthesis of fostriecin, fostriecin derivatives and analogs, and other useful polyketides. The invention finds application in the fields of molecular biology, chemistry, recombinant DNA technology, human and veterinary medicine, and agriculture.


BACKGROUND OF THE INVENTION

Polyketides are complex natural products that are produced by microorganisms such as fungi and mycelial bacteria. There are about 10,000 known polyketides, from which numerous pharmaceutical products in many therapeutic areas have been derived, including: adriamycin, epothilone, erythromycin, mevacor, rapamycin, tacrolimus, tetracycline, rapamycin, and many others. However, polyketides are made in very small amounts in microorganisms and are difficult to make or modify chemically. For this and other reasons, biosynthetic methods are preferred for production of therapeutically active polyketides. See PCT publication Nos. WO 93/13663; WO 95/08548; WO 96/40968; WO 97/02358; and WO 98/27203; U.S. Pat. Nos. 4,874,748; 5,063,155; 5,098,837; 5,149,639; 5,672,491; 5,712,146 and 6,410,301; Fu et al., 1994, Biochemistry 33: 9321-26; McDaniel et al., 1993, Science 262: 1546-1550; Kao et al., 1994, Science, 265: 509-12, and Rohr, 1995, Angew. Chem. Int. Ed. Engl. 34: 881-88, each of which is incorporated herein by reference.


Biosynthesis of polyketides may be accomplished by heterologous expression of Type I or modular polyketide synthase enzymes (PKSs). Type I PKSs are large multifunctional protein complexes, the protein components of which are encoded by multiple open reading frames (ORF) of PKS gene clusters. Each ORF of a Type I PKS gene cluster can encode one, two, or more modules of ketosynthase activity. Each module activates and incorporates a two-carbon (ketide) unit into the polyketide backbone. Each module also contains multiple ketide-modifying enzymatic activities, or domains. The number and order of modules, and the types of ketide-modifying domains within each module, determine the structure of the resulting product. Polyketide synthesis may also involve the activity of nonribosomal peptide synthetases (NRPSs) to catalyze incorporation of an amino acid-derived building block into the polyketide, as well as post-synthesis modification, or tailoring enzymes. The modification enzymes modify the polyketide by oxidation or reduction, addition of carbohydrate groups or methyl groups, or other modifications.


In PKS polypeptides, the regions that encode enzymatic activities (domains) are separated by linker regions. These regions collectively can be considered to define boundries of the various domains. Generally, this organization permits PKS domains of different or identical substrate specificities to be substituted (usually at the level of encoding DNA) from other PKSs by various available methodologies. Using this method, new polyketide synthases (which produce novel polyketides) can be produced.


It will be recognized from the foregoing that genetic manipulation of PKS genes and heterologous expression of PKSs can be used for the efficient production of known polyketides, and for production of novel polyketides structurally related to, but distinct from, known polyketides (see references above, and Hutchinson, 1998, Curr. Opin. Microbiol. 1: 319-29; Carreras and Santi, 1998, Curr. Opin. Biotech. 9: 403-11; and U.S. Pat. Nos. 5,712,146 and 5,672,491, each of which is incorporated herein by reference).


One valuable class of polyketides includes fosteriecin and its analogs. Fostriecin (CI-920) is a structurally novel phosphate ester produced by Streptomyces pulveraceus having potent antitumor activity. Fostriecin's antitumor activity is believed to result from selective inhibition of protein phosphatase 2A (PP2A) and protein phosphatase 4 (PP4). Both synthetic and naturally produced analogs of fostriecin with similar activities have been described. See, e.g., Lewy et al., 2002, “Fostriecin: Chemistry and Biology” Current Medicinal Chemistry 9: 2005-2032, and references cited therein, for additional information regarding fostriecin and its analogs.


The chemical structure of fostriecin and congeners PD 113,270 and PD 113, 271, as reported by Lewy et al., 2002, is shown below:
embedded image

  • 1. Fostriecin
  • 2. PD 113, 270
  • 3. PD 113, 271


Phase I clinical trials of fostriecin were halted due to the unpredictable chemical purity and storage instability of the compound. Accordingly, there is a need for methods for producing fostriecin and both known and novel analogs with sufficient purity and, preferably, with superior storage stability. Fostriecin is synthesized by a modular PKS and modification enzymes.


There is a need for recombinant nucleic acids, host cells, and methods of using those host cells to produce polyketides including but not limited to fostriecin and fostriecin analogs.


These and other needs are met by the materials and methods provided by the present invention.


SUMMARY OF THE INVENTION

The present invention provides recombinant nucleic acids encoding polyketide synthases and polyketide modification enzymes. The recombinant nucleic acids of the invention are useful in the production of polyketides, including but not limited to fostriecin and fostriecin analogs and derivatives, in recombinant host cells.


In nature, the biosynthesis of fostriecin is performed by a modular PKS, the fostriecin polyketide synthase, and polyketide modification enzymes. Nucleic acids encoding the PKS, modification enzymes, and other polypeptides, have been cloned and characterized. The present invention provides polypeptide, modules, and domains of the fostriecin polyketide synthase, and corresponding nucleic acid sequences encoding them and/or parts thereof. Such compounds are useful, for example, in the production of hybrid PKS enzymes and the recombinant genes that encode them. The present invention also provides post-synthesis modification enzymes, and other proteins involved in fostriecin biosynthesis, and corresponding nucleic acid sequences encoding them and/or parts thereof.


The present invention provides these nucleic acid sequences in isolated, synthetic or recombinant form, including but not limited to isolated form sequences incorporated into a vector of the chromosomal DNA of a host cell.


The present invention also provides recombinant host cells that contain the nucleic acids of the invention. In one embodiment, the host cell provided by the invention is a Streptomyces host cell that produces a fostriecin modification enzyme and/or a domain, module, or protein of the fostriecin PKS. Methods for the genetic manipulation of Streptomyces are described in Kieser et al, “Practical Streptomyces Genetics,” The John Innes Foundation, Norwich (2000), which is incorporated herein by reference in its entirety.


Accordingly, there is provided a recombinant PKS wherein at least 10, 15, 20, or more consecutive amino acids in one or more domains of one or more modules thereof are derived from one or more domains of one or more modules of fostriecin polyketide synthase. In an embodiment at least an entire domain of a module of fostriecin polyketide synthase is included. Representative fostriecin PKS domains useful in this aspect of the invention include, for example, KR, DH, ER, AT, ACP and KS domains. In one embodiment of the invention, the PKS assembled from polypeptides encoded by DNA molecules that comprise coding sequences for PKS domains, wherein at least one encoded domain corresponds to a domain of fostriecin PKS. In such DNA molecules, the coding sequences are operably linked to control sequences so that expression therefrom in host cells is effective. In this manner, fostriecin PKS coding sequences or modules and/or domains can be made to encode PKS to biosynthesize compounds having antibiotic or other useful bioactivity other than fostriecin.


In one aspect, the invention provides a recombinant DNA molecule comprising a sequence encoding at least one domain, and optionally one or more modules, of fostriecin polyketide synthase polypeptide. In an embodiment, the recombinant DNA molecule includes a sequence encoding an open reading frame encoding a polypeptide encoded by fosA, fosB, fosC, fosD, fosE or fosf or encoding a conservative variant of such a polypeptide. In an embodiment, the recombinant DNA molecule encodes a modified fostriecin polyketide synthase polypeptide in which at least one fostriecin PKS domain is inactivated.


In one aspect, the invention provides a recombinant DNA molecule that encodes a chimeric polyketide synthase (PKS) module composed of at least a portion of fostriecin PKS and at least a portion of a second PKS for a polyketide other than fostriecin.


DNA molecules of the invention may be integrated into a host cell chromosome, or into a recombinant vector such as an expression vector in which the DNA molecule is operably linked to a promoter.


In one aspect, the invention provides a host cell comprising a recombinant DNA molecule as described above.


In one aspect, the invention provides a recombinant Streptomyces pulveraceus cell in which at least one domain-encoding region of an endogenous fostriecin polyketide synthase gene is deleted or otherwise inactivated. In an embodiment, the domain has been replaced by a different PKS domain. Also provided is a recombinant Streptomyces pulveraceus cell in which at least polypeptide-encoding ORF of the fostriecin polyketide synthase gene cluster is deleted or otherwise inactivated.


In one aspect, the invention provides an isolated, synthetic or recombinant DNA molecule having a sequence encoded by the insert of pKOS279-117.1F70; pKOS279-117.3F45; pKOS279-117.2F15; or pKos279-117.5F58. The DNA molecule may contain sequence encoding a complete fostriecin PKS module or domain.


The invention provides a method of producing a polyketide by culturing a cell under conditions under which the cell produces the polyketide, where the cell contains a recombinant polynucleotide synthase that contains at least one domain from the Streptomyces pulveraceus fostriecin polyketide synthase, and where the cell does not make the polyketide in the absence of the recombinant polynucleotide. In one embodiment, the domain is encoded by a subsequence of SEQ ID NO:1 or a sequence that hybridizes under stringent conditions to a subsequence of SEQ ID NO:1. In one embodiment the cell is not Streptomyces pulveraceus. In an embodiment, the polyketide is fostriecin, PD 113,270 or PD 113, 271.


The invention provides a method of producing a polyketide by recombinantly modifying a gene in the fostriecin PKS gene cluster of a cell comprising the gene cluster to produce a recombinant cell, or obtaining a progeny of the recombinant cell and growing the cell, or progeny, under conditions whereby a polyketide other than fostriecin is synthesized by the cell. Non-limiting examples of such modifications include (a)substitution of a fostriecin AT domain with an AT domain having a different specificity; (b) inactivation of a domain of a fostriecin polyketide synthase module, where the domain is selected from the group consisting of a KS domain, an AT domain, an ACP domain, a KR domain, a DH domain, and an ER domain; or, (c) substitution of KS domain, an ACP domain, a KR domain, a DH domain, or an ER domain with a domain having a different specificity.


The aforementioned methods can also include the step of recovering the synthesized polyketide. The recovered polyketide may be chemically modified and/or formulated for administration to a mammal.


These and other aspects of the present invention are described in more detail in the Detailed Description of the Invention, below.




BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A, 1B and 1C show the organization of the fostriecin PKS biosynthetic gene cluster.



FIG. 2 shows hypothetical roles for the nine modules of the fostriecin polyketide synthase complex (modules 0-8)) by showing hypothetical PKS-bound intermediates, the product released from the PKS (in brackets) and the result of post-PKS modification enzymes (symbolized by three arrows).



FIG. 3 shows the approximate relationship of cosmids from “overlap family 1,” encoding the fostriecin PKS gene cluster as estimated during cloning.




DETAILED DESCRIPTION OF THE INVENTION

The present invention provides recombinant materials for the production of polyketides including, but not limited to, fostriecin and its derivatives and analogs. In an aspect, the invention provides recombinant nucleic acids encoding at least one domain of a fostriecin polyketide synthase. In another aspect, the present invention provides recombinant nucleic acids encoding an enzyme involved in fostriecin biosynthesis or post synthesis modification. Methods and host cells for using these nucleic acid sequences to produce or modify a polyketide in recombinant host cells are also provided. Given the valuable properties of fostriecin and its derivatives and analogs, means to produce useful quantities of these molecules in a highly pure form is of great value. The nucleotide sequences of the fostriecin biosynthetic gene cluster encoding domains, modules and polypeptides of fostriecin polyketide synthase, and modifying enzymes, and other polypeptides can be used, for example, to make both known and novel polyketides. Further, the fostriecin modifying enzymes can be used to modify other polyketides and produce derivatives with enhanced solubility and/or bioactivity. The compounds produced using methods of the invention may be used, without limitation, as antitumor agents or for other therapeutic or research uses, as intermediates for further enzymatic or chemical modification, as agents for in vitro inhibition of protein phosphatase and/or for other therapeutic, industrial and agricultural purposes.


The polynucleotides encoding fostriecin PKS domains, modules and polypeptides, and encoding fostriecin modifying proteins of the present invention were isolated from Streptomyces pulveraceus as described in Example 1. Tables 1-4, and FIG. 1 describe the genes or open reading frames of the fostriecin polyketide synthase gene cluster and the encoded polypeptides, modules and domains. These tables and figure also describe the characteristics of non-coding sequences and sequences encoding other genes of the fostriecin gene cluster, including genes encoding regulatory proteins, transport proteins, and others.


It will be understood that each reference herein to a nucleic acid sequence is also intended to refer to and include the complementary sequence, unless otherwise stated or apparent from context. Provided with the nucleic acid sequences disclosed herein, it will be trivial for the reader to immediately determine the sequence of a complementary stand based on base-pairing rules (e.g., A:T, A:U, C:G). Similarly, provided with the nucleic acid sequences disclosed herein one of skill can easily, by reference to the genetic code, identify open reading frames and the amino acid sequences of encoded polypeptides.


Table 1, below, describes the positions of fostriecin polyketide synthase polypeptides, modules and domains with reference to the DNA sequence set forth in Table 3 (SEQ ID NO:1). “Complement” indicates that the polypeptide sequence is encoded by the complement of SEQ ID NO: 1. Abbreviations used in the table, and elsewhere in the specification, include: ketosynthase (“KS”) domain or activity; acyltransferase (“AT”) domain or activity; acyl carrier protein (“ACP”) domain or activity; ketoreductase (“KR”) domain or activity, a dehydratase (“DH”) domain or activity; enoylreductase (“ER”) domain or activity; thioesterase (“TE”).

TABLE 1Fostriecin polyketide synthase ORFs, Modules and DomainsPosition in SEQ ID NO: 1ORF# aacoding strand (nucleotide pair)fosC3542Modules 3-4complement(56750 . . . 67378)KS3complement(65783 . . . 67063)AT3complement(64382 . . . 65431)DH3complement(63770 . . . 64357)KR3complement(62039 . . . 62839)ACP3complement(61757 . . . 62014)KS4complement(60401 . . . 61678)AT4complement(59054 . . . 60067)KR4complement(57368 . . . 58105)ACP4complement(57014 . . . 57271)fosD1738Module 5complement(51497 . . . 56713)KS5complement(55328 . . . 56605)AT5complement(53942 . . . 54994)KR5complement(52241 . . . 52918)ACP5complement(51809 . . . 52066)fosE3537Modules 6-7;complement(40820 . . . 51433)KS6complement(50024 . . . 51334)AT6complement(48608 . . . 49648)DH6complement(47993 . . . 48574)KR6complement(46151 . . . 47017)ACP6complement(45854 . . . 46114)KS7complement(44474 . . . 45754)AT7complement(43058 . . . 44098)KR7complement(41429 . . . 42229)ACP7complement(41093 . . . 41350)fosF1932Module 8 and TE;complement(34979 . . . 40774)KS8complement(39428 . . . 40672)AT8complement(38003 . . . 39079)KR8complement(36212 . . . 37009)ACP8complement(35912 . . . 36169)TEcomplement(34979 . . . 35911)fosA3414Modules 0-1complement(17358 . . . 27602)KS0qcomplement(26019 . . . 27278)AT0complement(24722 . . . 25640)ACP0acomplement(24414 . . . 24671)ACP0bcomplement(24039 . . . 24296)KS1complement(22701 . . . 23990)AT1complement(21336 . . . 22394)DH1complement(20715 . . . 21302)ER1complement(18813 . . . 19685)KR1complement(17952 . . . 18797)ACP1complement(17631 . . . 17891)fosB1880Module 2complement(11623 . . . 17265)KS2complement(15883 . . . 17163)AT2complement(14455 . . . 15576)DH2complement(13855 . . . 14424)KR2complement(12247 . . . 13026)ACP2complement(11920 . . . 12177)


In one aspect of the invention, purified and isolated DNA molecules are provided that comprise coding sequences for one or more domains or modules of a Streptomyces pulveraceus fostriecin polyketide synthase. Examples of such encoded domains include fostriecin polyketide synthase KR, DH, ER, AT, ACP, and KS domains. In one aspect, the invention provides DNA molecules which sequences encoding one or more polypeptides of fostriecin polyketide synthase are operably linked to expression control sequences that are effective in suitable host cells to produce fostriecin, its analogs or derivatives, or novel polyketides. In one aspect, the complete set of synthase-encoding genes is provided.


In one aspect, the invention provides an isolated or recombinant DNA molecule comprising a nucleotide sequence that encodes at least one domain, alternatively at least one module, alternatively at least one polypeptide, involved in the biosynthesis of a fostriecin.


In one aspect, the invention provides an isolated or recombinant DNA molecule encoding a polypeptide or portion thereof, including a PKS module or domain, encoded in the Streptomyces pulveraceus fostriecin polyketide synthase gene cluster sequence.


In one aspect, the invention provides an isolated or recombinant DNA molecule encoding a complete polypeptide, module or domain comprising an amino acid sequence encoded in SEQ ID NOS: 1, 23, 27 or 33, or a conservatively modified variant thereof. In one aspect, the invention provides an isolated or recombinant DNA molecule encoding a subsequence from a polypeptide, module or domain comprising an amino acid sequence encoded in SEQ ID NOS: 1, 23, 27 or 33, or a conservatively modified variant thereof. The subsequence may comprise a sequence encoding a catalytically active fragment (having an activity characteristic of the domain, e.g., AT, KR, KS, DH, ER, ACP, TE activity) of a PKS module or domain. The DNA molecule may comprise a sequence encoding a polypeptide involved in post-synthesis modification of the fostriecin precursor or encoding another polypeptide of the fostriecin gene cluster.


In one aspect, the invention provides the present invention provides an isolated or recombinant DNA molecule comprising a nucleotide sequence that encodes an open reading frame, module or domain having an amino acid sequence identical or substantially similar to an ORF, module or domain encoded by an ORF of the fostriecin polyketide synthase cluster sequence. A polypeptide, module or domain having a sequence substantially similar to a reference sequence may have substantially the same activity as the reference protein, module or domain (e.g., when integrated into an appropriate PKS framework using methods known in the art).


In an embodiment, the invention provides a nucleotide sequence that encodes a polypeptide, such as a conservatively modified variant of a polypeptide, module or domain involved in the biosynthesis of a fostriecin, and comprises at least 10, 20, 25, 30, 35, 40, 45, or 50 contiguous base pairs identical to a sequence of SEQ ID NOS: 1, 23, 27 or 33. In one aspect, the invention provides an isolated or recombinant DNA molecule comprising a nucleotide sequence that encodes at least one polypeptide, module or domain that comprises at least 10, 15, 20, 30, or 40 contiguous residues of a corresponding polypeptide, module or domain comprising a sequence of SEQ ID NOS: 1, 23, 27 or 33.


It will be understood that, due to the degeneracy of the genetic code, a large number of DNA sequences encode the amino acid sequences of the domains, modules, and proteins of the fostriecin PKS, the enzymes involved in fostriecin modification and other polypeptides encoded by the genes of the fostriecin biosynthetic gene cluster. The present invention contemplates all such DNAs. For example, it may be advantageous to optimize sequence to account for the codon preference of a host organism. The invention also contemplates naturally occurring genes encoding the fostriecin PKS and modifying (or “tailoring”) enzymes that are polymorphic or other variants.


As used herein, a conservatively modified variant of a protein or fragment (e.g., domain) has substantial sequence identity to a reference amino acid sequence or is encoded by a DNA substantial sequence identity to a reference nucleic acid sequence.


The terms “substantial identity,” “substantial sequence identity,” or “substantial similarity” in the context of nucleic acids, refers to a measure of sequence similarity between two polynucleotides. Substantial sequence identity can be determined by hybridization under stringent conditions, by direct comparison, or other means. For example, two polynucleotides can be identified as having substantial sequence identity if they are capable of specifically hybridizing to each other under stringent hybridization conditions. Other degrees of sequence identity (e.g., less than “substantial”) can be characterized by hybridization under different conditions of stringency. “Stringent hybridization conditions” refers to conditions in a range from about 5° C. to about 20° C. or 25° C. below the melting temperature (Tm) of the target sequence and a probe with exact or nearly exact complementarity to the target. As used herein, the melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half-dissociated into single strands. Methods for calculating the Tm of nucleic acids are well known in the art (see, e.g., Berger and Kimmel, 1987, Methods In Enzymology, Vol. 152: Guide To Molecular Cloning Techniques, San Diego: Academic Press, Inc. and Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd Ed., Vols. 1-3, Cold Spring Harbor Laboratory). Typically, stringent hybridization conditions for probes greater than 50 nucleotides are salt concentrations less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion at pH 7.0 to 8.3, and temperatures at least about 50° C., preferably at least about 60° C. As noted, stringent conditions may also be achieved with the addition of destabilizing agents such as formamide, in which case lower temperatures may be employed. Exemplary conditions include hybridization at 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO4 pH 7.0, 1 mM EDTA at 50° C.; wash with 2×SSC, 1% SDS, at 50° C.


Alternatively, substantial sequence identity can be described as a percentage identity between two nucleotide or amino acid-sequences. Two nucleic acid sequences are considered substantially identical when they are at least about 70% identical, or at least about 80% identical, or at least about 90% identical, or at least about 95% or 98% identical. Two amino acid sequences are considered substantially identical when they are at least about 60%, sequence identical, more often at least about 70%, at least about 80%, or have at least about 90% sequence identity. Percentage sequence (nucleotide or amino acid) identity is typically calculated using art known means to determine the optimal alignment between two sequences and comparing the two sequences. Optimal alignment of sequences may be conducted using the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2: 482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48: 443, by the search for similarity method of Pearson and Lipman (1988) Proc. Nail. Acad. Sci. U.S.A. 85: 2444, by the BLAST algorithm of Altschul (1990) J. Mol. Biol. 215: 403-410; and Shpaer (1996) Genomics 38: 179-191, or by the Needleham et al. (1970) J. Mol. Biol. 48: 443-453; and Sankoff et al., 1983, Time Warps, String Edits, and Macromolecules, The Theory and Practice of Sequence Comparison, Chapter One, Addison-Wesley, Reading, Mass.; generally by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.; BLAST from the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). In each case default parameters are used (for example the BLAST program uses as defaults a wordlength (W) of 11, the BLOSUM62 scoring matrix (see Henikoff(1992) Proc. Natl. Acad.


Sci. USA 89: 10915-10919) alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands).


As discussed in Example 1, the gene cluster sequences disclosed herein were determined from the inserts of cosmids pKOS279-117.1 F70, pKOS279-117.3F45, pKOS279-117.2F15, and pKos279-117.5F58. Accordingly, the invention provides an isolated or recombinant DNA molecule comprising a sequence from the insert of one or more of these cosmids. In an embodiment, the isolated or recombinant DNA molecule encodes a polypeptide or portion thereof, such as a module or domain. In an embodiment, the isolated or recombinant DNA molecule comprises at least 10, 20, 30, 40, 50 or 100 basepairs having a sequence of the cosmid insert.


The invention methods may be directed to the preparation of an individual polyketide. The polyketide may or may not be novel, but the method of preparation permits a more convenient or alternative method of preparing it. The resulting polyketides may be further modified to convert them to other useful compounds. Examples of chemical structures of that can be made using the materials and methods of the present invention include PD 113,270 and PD 113, 271, other known analogs, such as those described in Lewy et al., 2002, “Fostriecin: Chemistry and Biology” Current Medicinal Chemistry 9: 2005-2032 and the references cited therein, and novel molecules produced by modified or chimeric PKSs comprising a portion of the fosteriecin PKS sequence, molecules produced by the action of polyketide modifying enzymes from the fosteriecin PKS cluster on products of other PKSs, molecules produced by the action on products of the fosteriecin PKS of polyketide modifying enzymes from other PKSs, and the like.


As noted, in one aspect the invention provides recombinant PKS wherein at least 10, 15, 20, 30, or more consecutive amino acids in one or more domains of one or more modules thereof are derived from one or more domains of one or more modules of fostriecin polyketide synthase.


In one aspect, the invention provides a recombinant polyketide synthase derived from a naturally occurring PKS. A PKS “derived from” a naturally occurring PKS contains the scaffolding encoded by all the portion employed of the naturally occurring synthase gene, contains at least two modules that are functional, and contains mutations, deletions, or replacements of one or more of the activities of these functional modules so that the nature of the resulting polyketide is altered. This definition applies both at the protein and genetic levels.


Particular embodiments include those wherein a KS, AT, KR, DH, or ER has been inactivated (e.g., by deletion or other mutation), mutated to change its activity, and/or replaced by a version of the activity from a different PKS or from another location within the same PKS. Embodiments include derivatives where at least one noncondensation cycle enzymatic activity (KR, DH, or ER) has been inactivated (e.g., by deletion or other mutation) wherein any of these activities has been added or mutated so as to change the ultimate polyketide synthesized. There are at least five degrees of freedom for constructing a polyketide synthase in terms of the polyketide that will be produced. See, U.S. Pat. No. 6,509,455 for a discussion.


As can be appreciated by those skilled in the art, polyketide biosynthesis can be manipulated to make a product other than the product of a naturally occurring PKS biosynthetic cluster. For example, AT domains can be altered or replaced to change specificity. The variable domains within a module can be deleted and or inactivated or replaced with other variable domains found in other modules of the same PKS or from another PKS. See e.g., Katz & McDaniel, Med Res Rev 19: 543-558 (1999) and WO 98/49315. Similarly, entire modules can be deleted and/or replaced with other modules from the same PKS or another PKS. See e.g., Gokhale et al., Science 284: 482 (1999) and WO 00/47724 each of which are incorporated herein by reference. Protein subunits of different PKSs also can be mixed and matched to make compounds having the desired backbone and modifications. For example, subunits of 1 and 2 (encoding modules 1-4) of the pikromycin PKS were combined with the DEBS3 subunit to make a hybrid PKS product (see Tang et al., Science, 287: 640 (2001), WO 00/26349 and WO 99/6159).


It will be appreciated that an amino acid sequence of a protein or domain can be changed without eliminating or substantially changing the function or activity of the wild-type protein or domain, for example, by making conservative substitutions of amino acids. The present invention encompasses polypeptides that are conservatively modified variants of a polypeptide encoded in SEQ ID NO:1 and retain the activity of the wild-type polypeptide. Such polypeptides can be identified by routine screening methods. For example, a polypeptide having a substitution or combination of substitutions relative to wild-type can be prepared by mutation of DNA encoding the fostriecin cluster polypeptide or domain, and the effect (if any) of the sequence modification can be assessed by expressing the protein in a suitable host cell under conditions in which fostriecin is produced in the cell when the unmodified protein is expressed.


This assay can be carried out in Streptomyces pulveraceus by modification of endogenous genes or, alternatively, polynucleotides modified in vitro can be expressed in heterologous hosts as described elsewhere herein. Production of fostriecin at a level not less that 60% of the level produced by the wild-type sequence, preferably at least 80%, and most preferably not less than 95% of the level produced by the wild-type sequence is indicative that the modified polypeptide or domain has the same activity as the unmodified-parent. The invention includes such modified polypeptides and the nucleic acid sequences encoding them.


In other embodiments, a domain or other region of a fostriecin polyketide synthase polypeptide can be removed or otherwise inactivated or replaced with a different PKS domain.


Mutations can be introduced into PKS genes such that polypeptides with altered activity are encoded. Polypeptides with “altered activity” include those in which one or more domains are inactivated or deleted, or in which a mutation changes the substrate specificity of a domain, as well as other alterations in activity. Mutations can be made to the native sequences using conventional techniques. The substrates for mutation can be an entire cluster of genes or only one or two of them; the substrate for mutation may also be portions of one or more of these genes. Techniques for mutation include preparing synthetic oligonucleotides including the mutations and inserting the mutated sequence into the gene encoding a PKS subunit using restriction endonuclease digestion. (See, e.g., Kunkel, T. A. Proc Natl Acad Sci USA (1985) 82: 448; Geisselsoder et al. BioTechniques (1987) 5: 786.) Alternatively, the mutations can be effected using a mismatched primer (generally 10-20 nucleotides in length) that hybridizes to the native nucleotide sequence (generally cDNA corresponding to the RNA sequence), at a temperature below the melting temperature of the mismatched duplex. The primer can be made specific by keeping primer length and base composition within relatively narrow limits and by keeping the mutant base centrally located. (See Zoller and Smith, Methods in Enzymology (1983) 100: 468). Primer extension is effected using DNA polymerase. The product of the extension reaction is cloned, and those clones containing the mutated DNA are selected. Selection can be accomplished using the mutant primer as a hybridization probe. The technique is also applicable for generating multiple point mutations. (See, e.g., Dalbie-McFarland et al. Proc Natl Acad Sci USA (1982) 79: 6409). PCR mutagenesis can also be used for effecting the desired mutations.


Random mutagenesis of selected portions of the nucleotide sequences encoding enzymatic activities can be accomplished by several different techniques known in the art, e.g., by inserting an oligonucleotide linker randomly into a plasmid,


In addition to providing mutated forms of regions encoding enzymatic activity, regions encoding corresponding activities from different PKS synthases or from different locations in the same PKS synthase can be recovered, for example, using PCR techniques with appropriate primers. By “corresponding” activity encoding regions is meant those regions encoding the same general type of activity—e.g., a ketoreductase activity in one location of a gene cluster would “correspond” to a ketoreductase-encoding activity in another location in the gene cluster or in a different gene cluster; similarly, a complete reductase cycle could be considered corresponding—e.g., KR/DH/ER could correspond to KR alone.


If replacement of a particular target region in a host polyketide synthase is to be made, this replacement can be conducted in vitro using suitable restriction enzymes or can be effected in vivo using recombinant techniques involving homologous sequences framing the replacement gene. One such system involving plasmids of differing temperature sensitivities is described in PCT application WO 96/40968. Another useful method for modifying a PKS gene (e.g., making domain substitutions or “swaps”) is a RED/ET cloning procedure developed for constructing domain swaps or modifications in an expression plasmid without first introducing restriction sites. The method is related to ET cloning methods (see, Datansko & Wanner, 2000, Proc. Natl. Acad. Sci. U.S.A. 97, 6640-45; Muyrers et al, 2000, Genetic Engineering 22: 77-98). The RED/ET cloning procedure is used to introduce a unique restriction site in the recipient plasmid at the location of the targeted domain. This restriction site is used to subsequently linearize the recipient plasmid in a subsequent ET cloning step to introduce the modification. This linearization step is necessary in the absence of a selectable marker, which cannot be used for domain substitutions. An advantage of using this method for PKS engineering is that restriction sites do not have to be introduced in the recipient plasmid in order to construct the swap, which makes it faster and more powerful because boundary junctions can be altered more easily.


In a further aspect, the invention provides methods for expressing chimeric or hybrid PKSs and products of such PKSs. For example, the invention provides (1) encoding DNA for a chimeric PKS that is substantially patterned on a non-fostriecin producing enzyme, but which includes one or more functional domains, modules or polypeptides of fostriecin PKS; and (2) encoding DNA for a chimeric PKS that is substantially patterned on the fostriecin PKS, but which includes one or more functional domains, modules, or polypeptides of another PKS or NRPS.


With respect to item (1) above, in one embodiment, the invention provides chimeric PKS enzymes in which the genes for a non-fostriecin PKS function as accepting genes, and one or more of the above-identified coding sequences for fostriecin domains or modules are inserted as replacements for one or more domains or modules of comparable function. Construction of chimeric molecules is most effectively achieved by construction of appropriate encoding polynucleotides. In making a chimeric molecule, it is not necessary to replace an entire domain or module accepting of the PKS with an entire domain or module of fostriecin PKS: subsequences of a PKS domain or module that correspond to a peptide subsequence in an accepting domain or module, or which otherwise provide useful function, may be used as replacements. Accordingly, appropriate encoding DNAs for construction of such chimeric PKS include those that encode at least 10, 15, 20, 40 or more amino acids of a selected fostriecin domain or module.


Recombinant methods for manipulating modular PKS genes to make chimeric PKS enzymes are described in U.S. Pat. Nos. 5,672,491; 5,843,718; 5,830,750; and 5,712,146; and in PCT publication Nos. 98/49315 and 97/02358. A number of genetic engineering strategies have been used with DEBS to demonstrate that the structures of polyketides can be manipulated to produce novel natural products, primarily analogs of the erythromycins (see the patent publications referenced supra and Hutchinson, 1998, Curr Opin Microbiol. 1: 319-329, and Baltz, 1998, Trends Microbiol. 6: 76-83). In one embodiment, the components of the chimeric PKS are arranged onto polypeptides having interpolypeptide linkers that direct the assembly of the polypeptides into the functional PKS protein, such that it is not required that the PKS have the same arrangement of modules in the polypeptides as observed in natural PKSs. Suitable interpolypeptide linkers to join polypeptides and intrapolypeptide linkers to join modules within a polypeptide are described in PCT publication WO 00/47724.


A partial list of sources of PKS sequences for use in making chimeric molecules, for illustration and not limitation, includes Avermectin (U.S. Pat. No. 5,252,474; MacNeil et al., 1993, Industrial Microorganisms: Basic and Applied Molecular Genetics, Baltz, Hegeman, & Skatrud, eds. (ASM), pp. 245-256; MacNeil et al., 1992, Gene 115: 119-25); Candicidin (FRO008) (Hu et al., 1994, Mol. Microbiol. 14: 163-72); Epothilone (U.S. Pat. No. 6,303,342); Erythromycin (WO 93/13663; U.S. Pat. No. 5,824,513; Donadio et al., 1991, Science 252: 675-79; Cortes et al., 1990, Nature 348: 176-8); FK-506 (Motamedi et al., 1998, Eur. J. Biochem. 256: 528-34; Motamedi et al., 1997, Eur. J. Biochem. 244: 74-80); FK-520 (U.S. Pat. No. 6,503,737; see also Nielsen et al., 1991, Biochem. 30: 5789-96); Lovastatin (U.S. Pat. No. 5,744,350); Nemadectin (MacNeil et al., 1993, supra); Niddamycin (Kakavas et al., 1997, J. Bacteriol. 179: 7515-22); Oleandomycin (Swan et al., 1994, Mol. Gen. Genet. 242: 358-62; U.S. Pat. No. 6,388,099; Olano et al., 1998, Mol. Gen. Genet. 259: 299-308); Platenolide (EP Pat. App. 791,656); Rapamycin (Schwecke et al., 1995, Proc. Natl. Acad. Sci. USA 92: 7839-43); Aparicio et al., 1996, Gene 169: 9-16); Rifamycin (August et al., 1998, Chemistry & Biology, 5: 69-79); Soraphen (U.S. Pat. No. 5,716,849; Schupp et al., 1995, J. Bacteriology 177: 3673-79); Spiramycin (U.S. Pat. No. 5,098,837); Tylosin (EP 0 791,655; Kuhstoss et al., 1996, Gene 183: 231-36; U.S. Pat. No. 5,876,991). Additional suitable PKS coding sequences remain to be discovered and characterized, but will be available to those of skill (e.g., by reference to GenBank).


The fostriecin PKS-encoding polynucleotides of the invention may also be used in the production of libraries of PKSs (i.e., modified and chimeric PKSs comprising at least a portion of the fostriecin PKS sequence. The invention provides libraries of polyketides by generating modifications in, or using a portion of, the fostriecin PKS so that the protein complexes produced by the cluster have altered activities in one or more respects, and thus produce polyketides other than the natural fostriecin product of the PKS. Novel polyketides may thus be prepared, or polyketides in general prepared more readily, using this method. By providing a large number of different genes or gene clusters derived from a naturally occurring PKS gene cluster, each of which has been modified in a different way from the native PKS cluster, an effectively combinatorial library of polyketides can be produced as a result of the multiple variations in these activities. Expression vectors containing nucleotide sequences encoding a variety of PKS systems for the production of different polyketides can be transformed into the appropriate host cells to construct a polyketide library. In one approach, a mixture of such vectors is transformed into the selected host cells and the resulting cells plated into individual colonies and selected for successful transformants. Each individual colony has the ability to produce a particular PKS synthase and ultimately a particular polyketide. A variety of strategies can be devised to obtain a multiplicity of colonies each containing a PKS gene cluster derived from the naturally occurring host gene cluster so that each colony in the library produces a different PKS and ultimately a different polyketide. The number of different polyketides that are produced by the library is typically at least four, more typically at least ten, and preferably at least 20, more preferably at least 50, reflecting similar numbers of different altered PKS gene clusters and PKS gene products. The number of members in the library is arbitrarily chosen; however, the degrees of freedom outlined above with respect to the variation of starter, extender units, stereochemistry, oxidation state, and chain length is quite large. The polyketide producing colonies can be identified and isolated using known techniques and the produced polyketides further characterized. The polyketides produced by these colonies can be used collectively in a panel to represent a library or may be assessed individually for activity. See, for example,


Colonies in the library are induced to produce the relevant synthases and thus to produce the relevant polyketides to obtain a library of candidate polyketides. The polyketides secreted into the media can be screened for binding to desired targets, such as receptors, signaling proteins, and the like. The supernatants per se can be used for screening, or partial or complete purification of the polyketides can first be effected. Typically, such screening methods involve detecting the binding of each member of the library to receptor or other target ligand. Binding can be detected either directly or through a competition assay. Means to screen such libraries for binding are well known in the art. Alternatively, individual polyketide members of the library can be tested against a desired target. In this event, screens wherein the biological response of the target is measured can be included.


As noted above, the DNA compounds of the invention can be expressed in host cells for production of proteins and of known and novel compounds. Preferred hosts include fungal systems such as yeast and prokaryotic hosts, but single cell cultures of, for example, mammalian cells could also be used. A variety of methods for heterologous expression of PKS genes and host cells suitable for expression of these genes and production of polyketides are described, for example, in U.S. Pat. Nos. 5,843,718 and 5,830,750; WO 01/31035, WO 01/27306, and WO 02/068613; and U.S. patent application Ser. Nos. 10/087,451 (published as U.S. 2002000087451); 60/355,211; and 60/396,513 (corresponding to published application 20020045220).


Appropriate host cells for the expression of the hybrid PKS genes include those organisms capable of producing the needed precursors, such as malonyl-CoA, methylmalonyl-CoA, ethylmalonyl-CoA, and methoxymalonyl-ACP, and having phosphopantotheinylation systems capable of activating the ACP domains of modular PKSs. See, for example, U.S. Pat. No. 6,579,695. However, as disclosed in U.S. Pat. No. 6,033,883, a wide variety of hosts can be used, even though some hosts natively do not contain the appropriate post-translational mechanisms to activate the acyl carrier proteins of the synthases. Also see WO 97/13845 and WO 98/27203. The host cell may natively produce none, some, or all of the required polyketide precursors, and may be genetically engineered so as to produce the required polyketide precursors. Such hosts can be modified with the appropriate recombinant enzymes to effect these modifications. In one embodiment the host cell is a bacterium. In another embodiment the host cell is a fungus, such as a yeast cell. Suitable host cells include Streptomyces, E. coli, yeast, and other prokaryotic hosts which use control sequences compatible with Streptomyces spp. Examples of suitable hosts that either natively produce modular polyketides or have been engineered so as to produce modular polyketides include but are not limited to actinomyctes such as Streptomyces coelicolor, Streptomyces venezuelae, Streptomyces fradiae, Streptomyces ambofaciens, and Saccharopolyspora erythraea, eubacteria such as Escherichia coli, myxobacteria such as Myxococcus xanthus, and yeasts such as Saccharomyces cerevisiae.


In sone embodiments, any native modular PKS genes in the host cell have been deleted to produce a “clean host,” as described in U.S. Pat. No. 5,672,491.


Host cells can be selected, or engineered, for expression of a glycosylatation apparatus (discussed below), amide synthases, (see, for example, U.S. patent publication 20020045220 “Biosynthesis of Polyketide Synthase Substrates”). For example and not limitation, the host cell can contain the desosamine, megosamine, and/or mycarose biosynthetic genes, corresponding glycosyl transferase genes, and hydroxylase genes (e.g., picK, megK, eryK, megF, and/or eryF). Methods for glycosylating polyketides are generally known in the art and can be applied in accordance with the methods of the present invention; the glycosylation may be effected intracellularly by providing the appropriate glycosylation enzymes or may be effected in vitro using chemical synthetic means as described herein and in WO 98/493-15, incorporated herein by reference. Glycosylation with desosamine, mycarose, and/or megosamine is effected in accordance with the methods of the invention in recombinant host cells provided by the invention. Alternatively and as noted, glycosylation may be effected intracellularly using endogenous or recombinantly produced intracellular glycosylases. In addition, synthetic chemical methods may be employed.


Alternatively, the aglycone compounds can be produced in the recombinant host cell, and the desired modification (e.g., glycosylation and hydroxylation) steps carried out in vitro (e.g., using purified enzymes, isolated from native sources or recombinantly produced) or in vivo in a converting cell different from the host cell (e.g., by supplying the converting cell with the aglycone).


Modification or tailoring enzymes for modification of a product of the fostriecin PKS, a non-fostriecin PKS, or a chimeric PKS, can be those normally associated with fostriecin biosynthesis or “heterologous” tailoring enzymes. Tailoring enzymes can be expressed in the organism in which they are naturally produced, or as recombinant proteins in heterologous hosts. In some cases, the structure produced by the heterologous or hybrid PKS may be modified with different efficiencies by post-PKS tailoring enzymes from different sources. In such cases, post-PKS tailoring enzymes can be recruited from other pathways to obtain the desired compound.


In some embodiments, the host cell expresses, or is engineered to express, a polyketide “tailoring” or “modifying” enzyme. Once a PKS product is released, it is subject to post-PKS tailoring reactions. These reactions are important for biological activity and for the diversity seen among polyketides. Tailoring enzymes normally associated with polyketide biosynthesis include oxygenases, glycosyl- and methyltransferases, acyltransferases, halogenases, cyclases, aminotransferases, and hydroxylases.


In the case of fostriecin biosynthesis, tailoring enzymes include P450 hydroxylases for addition of hydroxyl groups. The PKS is expected to initially produce hydroxyls at C3, C5, C9 and C11, with the C9 hydroxyl further modified by phosphorylation, the C5 hydroxyl further reacting to help create the 6-membered lactone ring, and the C3 hydroxyl being removed by dehydration in the creation of a double bond between C2 and C3. In addition hydroxyls at C8 and C18 (and C4 in PD 113, 271) are expected to be introduced by post-PKS-acting accessory proteins. The fostriecin gene cluster encodes three cytochrome-P450-hydroxylase homologs (FosG, FosJ and FosK). Based on apparent homology between FosJ and the PlmT4 P450 hydrolase encoded in the Streptomyces phoslactomycin synthase gene cluster, apparent homology between FosK and the PlmS2 P450 hydrolase encoded in the Streptomyces phoslactomycin synthase gene cluster, evidence that PlmS2 is responsible for cyclohexyl modification at C18 but not C8 of the polyketide phoslactomycin, and the presence of hydroxyls at the tertiary C8 of fostriecin and the tertiary C8 of phoslactomycin, FosJ may produce the C8 hydroxyl of fostriecin. FosG and/or FosK are expected to modify the C4 and C8 positions, with perhaps a specific P450 for each site. The phosphorylation of the hydroxyl group at C9 is predicted to be accomplished by FosH, a distant homolog of homoserine kinases. ORF7 encodes a type II thioesterase.


The P450 hydroxylases and kinase of the fostriecin PKS gene cluster can be expressed heterologously to modify polyketides produced by non-fostriecin polyketide synthases or can be inactivated in the Fostriecin producer.


In addition to biosynthetic accessory activities, secondary metabolite clusters often code for activities such as transport and regulation. FosI appears to be a permease having a transport function. ORF1 and ORF3 are putative transcriptional regulators. ORF1 is a homolog of MarR-family transcriptional regulators, including SC07709, SC07639 and SC00447 from Streptomyces coelicolor. ORF3 is a homolog of LuxR family transcriptional regulators.


ORF2 is a homolog of a conserved family, including SC7708, SC6340 and SC5938 from Streptomyces coelicolor, and SAV1967 and SAV0886 from S. avermitilis. ORF4 is a homolog of a conserved family, including PlmT2 from the phoslactomycin biosynthetic cluster, SAV4898 from Streptomyces avermitilis and SC04633 from S. coelicolor. ORF5 is a homolog of BorL from the borrelidin biosynthetic cluster. ORF6 encodes a homolog of the product of plu4507 from Photorhabdus luminescens subsp. laumondii TTO1, and has some similarity to 3-hydroxy-3-methylglutaryl coenzyme A reductases. ORF8 encodes a homolog of chaperone protein HtpG (heat shock protein HtpG) from Streptomyces coelicolor.


Tables 2 and 4 describe the characteristics of open reading frames of the fostriecin polyketide synthase gene cluster. Table 2 shows the position of each ORF relative to SEQ ID NO: 1, as well as identifying certain homologous proteins.

TABLE 2ORFs Encoding Additional Polypeptides Encoded in the Fostriecin polyketide synthase ClusteraminoPosition in SEQ ID NO: 1ORFacidsputative functioncoding strand(nucleotide pair)homology% identityorf1165MarR-familySEQ ID NO 1(72775 . . . 73272)SC07709 (142 aa; 43%43%/137aatranscriptionalidentity/137 aa),regulatorSC07639 and SC00447from Streptomycescoelicolororf2213complement(72055 . . . 72696)SC7708 (216 aa; 48%48%/216aaidentity/192 aa),SC6340 and SC5938 fromStreptomyces coelicolororf3967LuxR-familycomplement(68498 . . . 71401)PikD (Streptomyces29%/977aatranscriptionalvenezuelae)regulatororf4295unknowncomplement(67600 . . . 68487)PlmT2 from the41%/212aaphoslactomycinbiosynthetic clusterfosG409P450; possible C8 orcomplement(33643 . . . 34872)ORF4 from the mitomycin48%/395aaC4-hydroxylaseC biosynthetic clusterin StreptomyceslavendulaefosH316polyketide kinasecomplement(32552 . . . 33502)PlmT5 from the43%/259aaphoslactomycinbiosynthetic clusterfosI444polyketide exportcomplement(31111 . . . 32445)PlmS4 from the50%/431aaphoslactomycinbiosynthetic cluster[COG0477: Permeases ofthe major facilitatorsuperfamily]fosJ420P450; possible C4- orcomplement(29742 . . . 31004)PlmT4 from the54%/397aaC8-hydroxylasephoslactomycinbiosynthetic clusterfosK398P450; possible C18-SEQ ID NO 1(28443 . . . 29639)PlmS2 from the57%/404aahydroxylasephoslactomycinbiosynthetic clusterorf5538complement(7892 . . . 9508)BorL from the30%/536aaborrelidin biosyntheticclusterorf6781homology to 3-hydroxy-complement(5550 . . . 7895)plu4507 from39%/774aa3-methylglutarylPhotorhabduscoenzyme A reductasesluminescens subsp.laumondii TTO1orf7258thioesterase (TEIIcomplement(3840 . . . 4616)AveG (Streptomyces52%/238aafamily)avermitilis)orf8633chaperone protein htpGcomplement(1424 . . . 3325)HtpG (Streptomyces79%/638aa(heat shock proteincoelicolor)htpG)
*fosG, H, I, J and K were previously called ORFs 1, 2, 3, 4 and 5


It will be apparent to the reader that a variety of recombinant vectors can be utilized in the practice of aspects of the invention. As used herein, “vector” refers to polynucleotide elements that are used to introduce recombinant nucleic acid into cells for either expression or replication. Selection and use of such vehicles is routine in the art. An “expression vector” includes vectors capable of expressing DNAs that are operatively linked with regulatory sequences, such as promoter regions. Thus, an expression vector refers to a recombinant DNA or RNA construct, such as a plasmid, a phage, recombinant virus or other vector that, upon introduction into an appropriate host cell, results in expression of the cloned DNA. Appropriate expression vectors are well known to those of skill in the art and include those that are replicable in eukaryotic cells and/or prokaryotic cells and those that remain episomal or those which integrate into the host cell genome.


The vectors used to perform the various operations to replace the enzymatic activity in the host PKS genes or to support mutations in these regions of the host PKS genes may be chosen to contain control sequences operably linked to the resulting coding sequences in a manner that expression of the coding sequences may be effected in an appropriate host. Suitable control sequences include those which function in eukaryotic and prokaryotic host cells. If the cloning vectors employed to obtain PKS genes encoding derived PKS lack control sequences for expression operably linked to the encoding nucleotide sequences, the nucleotide sequences are inserted into appropriate expression vectors. This can be done individually, or using a pool of isolated encoding nucleotide sequences, which can be inserted into host vectors, the resulting vectors transformed or transfected into host cells, and the resulting cells plated out into individual colonies.


Suitable control sequences for single cell cultures of various types of organisms are well known in the art. Control systems for expression in yeast are widely available and are routinely used. Control elements include promoters, optionally containing operator sequences, and other elements depending on the nature of the host, such as ribosome binding sites.


Particularly useful promoters for prokaryotic hosts include those from PKS gene clusters which result in the production of polyketides as secondary metabolites, including those from Type I or aromatic (Type II) PKS gene clusters. Examples are act promoters, tcm promoters, spiramycin promoters, and the like. However, other bacterial promoters, such as those derived from sugar metabolizing enzymes, such as galactose, lactose (lac) and maltose, are also useful. Additional examples include promoters derived from biosynthetic enzymes such as for tryptophan (trp), the β-lactamase (bla), bacteriophage lambda PL, and T5. In addition, synthetic promoters, such as the tac promoter (U.S. Pat. No. 4,551,433), can be used.


As noted, particularly useful control sequences are those which themselves, or with suitable regulatory systems, activate expression during transition from growth to stationary phase in the vegetative mycelium. The system contained in the plasmid identified as pCK7, i.e., the actI/actIII promoter pair and the actII-ORF4 (an activator gene), is particularly preferred. Particularly preferred hosts are those which lack their own means for producing polyketides so that a cleaner result is obtained. Illustrative control sequences, vectors, and host cells of these types include the modified S. coelicolor CH999 and vectors described in PCT publication WO 96/40968 and similar strains of S. lividans. See U.S. Pat. Nos. 5,672,491; 5,830,750, 5,843,718; and 6,177,262, each of which is incorporated herein by reference.


Other regulatory sequences may also be desirable which allow for regulation of expression of the PKS sequences relative to the growth of the host cell. Regulatory sequences are known to those of skill in the art, and examples include those which cause the expression of a gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Other types of regulatory elements may also be present in the vector, for example, enhancer sequences.


Selectable markers can also be included in the recombinant expression vectors. A variety of markers are known which are useful in selecting for transformed cell lines and generally comprise a gene whose expression confers a selectable phenotype on transformed cells when the cells are grown in an appropriate selective medium. Such markers include, for example, genes which confer antibiotic resistance or sensitivity to the plasmid. Alternatively, several polyketides are naturally colored, and this characteristic provides a built-in marker for screening cells successfully transformed by the present constructs.


The various PKS nucleotide sequences, or a mixture of such sequences, can be cloned into one or more recombinant vectors as individual cassettes, with separate control elements or under the control of a single promoter. The PKS subunits or components can include flanking restriction sites to allow for the easy deletion and insertion of other PKS subunits so that hybrid or chimeric PKSs can be generated. The design of such restriction sites is known to those of skill in the art and can be accomplished using the techniques described above, such as site-directed mutagenesis and PCR. Methods for introducing the recombinant vectors of the present invention into suitable hosts are known to those of skill in the art and typically include the use of CaCl2 other agents, such as divalent cations, lipofection, DMSO, protoplast transformation, conjugation, and electroporation.


Thus, the present invention provides recombinant DNA molecules and vectors comprising those recombinant DNA molecules that encode all or a portion of the fostriecin PKS and/or fostriecin modification enzymes and that, when transformed into a host cell and the host cell is cultured under conditions that lead to the expression of said fostriecin PKS and/or modification enzymes, results in the production of polyketides including but not limited to fostriecin and/or analogs or derivatives thereof in useful quantities. The present invention also provides recombinant host cells comprising those recombinant vectors.


Suitable culture conditions for production of polyketides using the cells of the invention will vary according to the host cell and the nature of the polyketide being produced, but will be know to those of skill in the art. See, for example, the examples below and WO 98/27203 “Production of Polyketides in Bacteria and Yeast” and WO 01/83803 “Overproduction Hosts for Biosynthesis of Polyketides.”


The polyketide product produced by host cells of the invention can be recovered (i.e., separated from the producing cells and at least partially purified) using routine techniques (e.g., extraction from broth followed by chromatography).


The compositions, cells and methods of the invention may be directed to the preparation of an individual polyketide or a number of polyketides. The polyketide may or may not be novel, but the method of preparation permits a more convenient or alternative method of preparing it. It will be understood that the resulting polyketides may be further modified to convert them to other useful compounds. For example, an ester linkage may be added to produce a “pharmaceutically acceptable ester” (i.e., an ester that hydrolyzes under physiologically relevant conditions to produce a compound or a salt thereof). Illustrative examples of suitable ester groups include but are not limited to formates, acetates, propionates, butyrates, succinates, and ethylsuccinates.


The polyketide product can be modified by addition of a protecting group, for example to produce prodrug forms. A variety of protecting groups are disclosed, for example, in T. H. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, Third Edition, John Wiley & Sons, New York (1999). Prodrugs are in general functional derivatives of the compounds that are readily convertible in vivo into the required compound. Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in “Design of Prodrugs,” H. Bundgaard ed., Elsevier, 1985.


Similarly, improvements in water solubility of a polyketide compound can be achieved by addition of groups containing solubilizing functionalities to the compound or by removal of hydrophobic groups from the compound, so as to decrease the lipophilicity of the compound. Typical groups containing solubilizing functionalities include, but are not limited to: 2-(dimethylaminoethyl)amino, piperidinyl, N-alkylpiperidinyl, hexahydropyranyl, furfuryl, tetrahydrofurfuryl, pyrrolidinyl, N-alkylpyrrolidinyl, piperazinylamino, N-alkylpiperazinyl, morpholinyl, N-alkylaziridinylmethyl, (1-azabicyclo[1.3.0]hex-1-yl)ethyl, 2-(N-methylpyrrolidin-2-yl)ethyl, 2-(4-imidazolyl)ethyl, 2-(1-methyl-4-imidazolyl)ethyl, 2-(1-methyl-5-imidazolyl)ethyl, 2-(4-pyridyl)ethyl, and 3-(4-morpholino)-1-propyl. Solubilizing groups can be added by reaction with amines. Typical amines containing solubilizing functionalities include 2-(dimethylamino)-ethylamine, 4-aminopiperidine, 4-amino-1-methylpiperidine, 4-aminohexahydropyran, furfurylamine, tetrahydrofurfurylamine, 3-(aminomethyl)-tetrahydrofuran, 2-(amino-methyl)pyrrolidine, 2-(aminomethyl)-1-methylpyrrolidine, 1-methylpiperazine, morpholine, 1-methyl-2(aminomethyl)aziridine, 1-(2-aminoethyl)-1-azabicyclo-[1.3.0]hexane, 1-(2-aminoethyl)piperazine, 4-(2-aminoethyl)morpholine, 1-(2-amino-ethyl)pyrrolidine, 2-(2-aminoethyl)pyridine, 2-fluoroethylamine, 2,2-difluoroethylamine, and the like.


In addition to post synthesis chemical or biosynthetic modifications, various polyketide forms or compositions can be produced, including but not limited to mixtures of polyketides, enantiomers, diastereomers, geometrical isomers, polymorphic crystalline forms and solvates, and combinations and mixtures thereof can be produced.


Many other modifications of polyketides produced according to the invention will be apparent to those of skill, and can be accomplished using techniques of pharmaceutical chemistry.


Prior to use the PKS product (whether modified or not) can be formulated for storage, stability or administration. For example, the polyketide products can be formulated as a “pharmaceutically acceptable salt.” Suitable pharmaceutically acceptable salts of compounds include acid addition salts which may, for example, be formed by mixing a solution of the compound with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, hydrobromic acid, sulfuric acid, fumaric acid, maleic acid, succinic acid, benzoic acid, acetic acid, citric acid, tartaric acid, phosphoric acid, carbonic acid, or the like. Where the compounds carry one or more acidic moieties, pharmaceutically acceptable salts may be formed by treatment of a solution of the compound with a solution of a pharmaceutically acceptable base, such as lithium hydroxide, sodium hydroxide, potassium hydroxide, tetraalkylammonium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, ammonia, alkylamines, or the like.


Prior to administration to a mammal the PKS product will be formulated as a pharmaceutical composition according to methods well known in the art, e.g., combination with a pharmaceutically acceptable carrier. The term “pharmaceutically acceptable carrier” refers to a medium that is used to prepare a desired dosage form of a compound. A pharmaceutically acceptable carrier can include one or more solvents, diluents, or other liquid vehicles; dispersion or suspension aids; surface active agents; isotonic agents; thickening or emulsifying agents; preservatives; solid binders; lubricants; and the like. Remington's Pharmaceutical Sciences, Fifteenth Edition, E. W. Martin (Mack Publishing Co., Easton, Pa., 1975) and Handbook of Pharmaceutical Excipients, Third Edition, A. H. Kibbe ed. (American Pharmaceutical Assoc. 2000), disclose various carriers used in formulating pharmaceutical compositions and known techniques for the preparation thereof.


The composition may be administered in any suitable form such as solid, semisolid, or liquid form. See Pharmaceutical Dosage Forms and Drug Delivery Systems, 5th edition, Lippicott Williams & Wilkins (1991). In an embodiment, for illustration and not limitation, the polyketide is combined in admixture with an organic or inorganic carrier or excipient suitable for external, enteral, or parenteral application. The active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, pessaries, solutions, emulsions, suspensions, and any other form suitable for use. The carriers that can be used include water, glucose, lactose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea, and other carriers suitable for use in manufacturing preparations, in solid, semi-solid, or liquified form. In addition, auxiliary stabilizing, thickening, and coloring agents and perfumes may be used.


It will be appreciated by those of skill that recombinant polynucleotides and polypeptides of the invention have a variety of uses, including, but not limited to, those described above and including use as probes and primers (e.g., for gene amplification or targeting) or as enzymes, or components of enzymes, useful for the synthesis or modification of polyketides. Recombinant polypeptides encoded by the fostriecin PKS gene cluster are also useful as antigens for production of antibodies. Such antibodies find use for purification of bacterial (e.g., Streptomyces pulveraceus) proteins, detection and typing of bacteria, and particularly, as tools for strain improvement (e.g., to assay PKS protein levels to identify “up-regulated” strains in which levels of polyketide producing or modifying proteins are elevated) or assessment of efficiency of expression of recombinant proteins. Polyclonal and monoclonal antibodies can be made by well known and routine methods (see, e.g., Harlow and Lane, 1988, ANTIBODIES: A LABORATORY MANUAL, COLD SPRING HARBOR LABORATORY, New York; Koehler and Milstein 1075, Nature 256: 495). In selecting-polypeptide sequences for antibody induction, it is not to retain biological activity; however, the protein fragment must be immunogenic, and preferably antigenic (as can be determined by routine methods). Generally the protein fragment is produced by recombinant expression of a DNA comprising at least about 60, more often at least about 200, or even at least about 500 or more base pairs of protein coding sequence, such as a polypeptide, module or domain derived from a fostriecin polyketide synthase (PKS) gene cluster. Methods for expression of recombinant proteins are well known. (See, e.g., Ausubel et al., 2002, Current Protocols In Molecular Biology, Greene Publishing and Wiley-Interscience, New York.)


EXAMPLES

The following examples are provided to illustrate, but are not intended to limit, the present invention.


Example 1
Cloning and Sequencing of Gene Cluster for Fostriecin Biosynthesis

Growth of Organism and Extraction of Genomic DNA.


For genomic DNA extraction, a spore stock of Streptomyces pulveraceus subsp. fostreus ATCCC 31906 was used to inoculate 35 ml of Tryptitone Soy Broth (TSB) liquid media. After two days growth in 30° C., a 10 ml portion of the cell suspension was centrifuged (10,000×g). The pellet was suspended into 3.5 ml of buffer 1(Tris, 50 mM, pH7.5; 20 mM EDTA, 150 μg/ml RNase (Sigma-Aldrich) and 1 mg/ml of lysozyme (Sigma)). After incubation of the mixture at 37° C. for 30 min, the salt concentration was adjusted by adding 850 μl 5 M NaCl solution, then the mixture was extracted two times with phenol:chloroform:isoamylaclohol (25: 24: 1, vol/vol) with gentle agitation followed by centrifugation for 10 min at 3500×g. After precipitation with 1 vol of isopropanol, the genomic DNA knot was spooled on a glass rod and redissolved in 500 μl of water.


Genomic Library Preparation


Approximately 10 μg of genomic DNA was partially digested with Sau3A1 (1 hr incubation using dilutions of the enzyme) and the digested DNA was run on an agarose gel with DNA standards. One of the conditions used was found to have generated fragments of size 30-45 kb. The DNA from this digestion was ligated with pSuperCos-1 (Stratagene), pre-linearized with BamHI and XbaI and the ligation mixture was packaged using a Gigapack XIII (Stragene) in vitro packaging Kit and the mixture was subsequently used for infection of Escherichia coli DH5α employing protocols supplied by the manufacturer.


Identification of Fostriecin Biosynthetic Gene Cluster


To find the gene cluster for fostriecin biosynthesis, cosmids from 1 IX 95 E. coli transductants resulted from the above ligation mixture were sequenced with using convergent primersT7cos (5′-CATAATACGACTCACTATAGGG) [SEQ ID NO: 21] and T3cos-1 (5′-TTCCCCGAAAAGTGCCAC) [SEQ ID NO: 22]. After BLAST analysis, the sequences revealed 28 cosmids carrying DNA fragment encoded type I or type II PKS (polyketide synthase) genes at either of ends or both ends. Based on sequence and restriction enzyme maps of the 21 cosmids most likely related to modular PKS, most could be assigned to two major groups (“overlap family 1” and “overlap family 3”). Since overlap family 3 carries genes (homologous to gdmI and K) for methoxymalonyl-ACP, which is not needed for the biosynthesis of fostriecin, we focused on overlap family 1 (See FIG. 2). Based on the relation of among these cosmids, we chose to sequence pKOS279-117.3F70, pKOS279-117.3F45, pKOS279-117.2F15, and pKos279-117.5F58 from the overlap family 1. Other cosmids in this family were pKOS279-127.11 F54; pKOS279-127.10F6; pKOS279-127.10F75; pKOS279-127.3F46; pKOS279-127.5F58.


DNA Sequencing


In initial sequencing efforts the sequence of inserts of three cosmids (pKOS279-117.1F70, pKOS279-117.3F45 and pKOS279-117.2F15) was determined. The results of this sequencing effort are provided in the appended sequence listings (which are part of and incorporated into this specification) as SEQ ID NOs: 23, 27 and 33. Small gaps in the sequence indicated as “x” or “n.” Complete or partial open reading frames (ORFs) encoded by these sequences can be determined by reference to the genetic code and are also provided in SEQ ID NOs: 24-26,28-32 and 34-36. Complete sequencing was carried out using (pKOS279-117.1F70, pKOS279-117.3F45, pKOS279-117.2F15, and pKos279-117.5F58).

TABLE 3FOSTRIECIN SYNTHASE GENE CLUSTERfrom Streptomyces pulveraceus subsp. fostreus ATCC31906source 1 . . . 18774 from pKos279-117.1F70source 18651 . . . 29679 from pKos279-117.3F45source 28694 . . . 29679 from pKos279-117.2F15source 29683 . . . 53913 from pKos279-117.3F45source 29683 . . . 66484 from pKos279-117.2F15source 58636 . . . >73984 from pKos279-117.5F5829680 . . . 29682 is an unsequencedfragment of putative hairpin terminator″    1AGGCCGACGG GCAGTGCCCG CGGCGTATCG GTGGCCGCCC ACGCGCGGGC GGGGAACGCA   61CGGACGGCCC CCGCGGCGAG CGCGGCCACG GGCAGCGCCG ATCCTGCGCC GAGGAAGCCG  121GGCCGGCTGA AGGCGGGATG GGGGCGGGGG GTGGGCGAGT CGGGGCCGTG AGGGGTGGGC  181GAGTCGGGGC CGTGGGGGGT GGTCTGACTG GCCAACGGAG TACTCCTTCA CACACGTCGG  241GCGAAGCAGG ACGGCTCAGC TGTACGGCGG ACAGGGACGG GAGCGACCGG TCCCGAAGCG  301GGATTGAAAC GTTTCAATAA GGTGGTGCGG TCGTACGGTA CGAGAGTGAC CAAGGGGGGT  361CAAGGGGTTC GGCACACCGT TTGGGACGGC CCCACGCCCG CCTCGCGCGC ACCTCGGCGC  421ACTCGCCACG CACACTCGGC CTCGAACACC CGGCGAGGAA GCCCGTGGGA TCGGCAGGAT  481CCGGCGACAG CGGCTGCGGA GCGCGGTGAC GCACACTGGG AAAGGCACCC CATCGAGGTG  541CTCCGAGATC GTCGAGGGAA CCGTAGGCGG CCGGGATCCT GCGGCACGGA CCGGGAGGGC  601CATGACACCA GGTACGACAC CAGGTATACC CGGACGACGG TCGGGCGCAC TGCGTCGGCA  661TGCCGTGCGC CTCCTGGCGA AGCCGAGAGG CCGCCCCGCA CCGGCCCCTC CCCCGCGCTC  721CGCCCAGCTG CGGGCGCTCA CCGCCCTGCT GGACGAGGCG GTGGCGGCGC AGGCACCGGC  781GGACCGGAGG GTGGCGGCCT GCGGCGAACC GGGCCCCCTC GCCGGGCAGA CCGCCCGGGA  841AGCCGGACGG CAGTACAGGG TCCTGCACGG GCTGCACGCG CGCGTGCGCG ATCTGCCGCT  901GACGGAGGCC GATCTCGTCC GGGCCCAGGA GTACGCGGGA CGCCTGCTCT CCTACGGCCA  961GTGGATGATG CGCGAGGCCA TGGACCTCGC CTTCCCCTCG AACCCGCGTC CGAGCGTCGA 1021GGCGGCCGGG CTCCACCTCA ACGGCCTGGG AAGGCCCGCC GACGACCTGC GCAGGCTCCG 1081CGACGCCCTC CGCTCCGAGT GCGGCGGCGG ACGGGCGGGT CGAGGGCACT GAGCCGGAGG 1141GCCGTCGCGG ACGGTGGTCC GCGTCGTACG GGAGCGGGCC GCACCGGTCA AGGGCAGGAC 1201GCCGCAGAGC TCTGCGATCC GGCCGTCGCG GGCGGTGCGG TGCGGTTCGG CGCGGTCGCA 1261CGCGTTCGGT GCGGTTCGGT GCCGTGACGC GGTCGGCCGA CCGTCATGGG CGGCGGCGCC 1321GACGCGTACC CGGGCCCCTT CCGGCCGAGA GCCGGATACG CGTCGAGGCC GCCGGTCCGG 1381TGGACGCCGC CGTCCGGCTC GGCGGCCGGC GGCGCTGTCC GGCTCAGCGA AGCGTGCGCT 1441CCAGTCGCTC CGCCACCAGC TTCACGAAAC GCCCCGGGTG CGTCGGCCGC CCGCGCTCCG 1501CGAGCACCGC GAGTCCGTAC AGCAGGTCGG CGGTCTCGGC GAGCCCGGAG CGGTCCTCAC 1561CCTCCTGGTA GGCCTGGTTC AGGCCCTGGA CCAGGGGGTG GGCGGGGTTG AGTTCGAGGA 1621TCCGCCGGGC GGACGGAATC TCCTGGCCCA TGGCCCGGTA CATGCTCTCC AGCGCCGGGG 1681TGAGGTCATG GGCGTCGGAG ACGACACAGG CCGGGGAGAC GGTCAGCCGG GTCGACAGGC 1741GGACGTCCTT CATCTCCTCC CCGAGGTGTT CCTTCATCCA GCCCAGCAGA GCGGCGTACG 1801TCTCGGCCTG CTTCTCCCGC CCGCCGTCGG CCTGTTCGCC GCCCTGGACG TCGAGATCGA 1861TCTCGGCCTT GGCGACGGAC CTCAGCCGCT TGCCCTCGAA CTCGGCCACG ACGTCGACCC 1921ACACCTCGTC GACGGGGTCG GTGAGCAGGA GGACCTCAAG ACCCCGGTCC CGGAACGCCT 1981CCATGTGCGG GGAGTTCTCG ATGGTCTGCC GGGACGCGCC GGTCATGTAG TAGATGTCGT 2041CGTGGGCTTC CTTCATCCGC TCCAGGTACT GCTGGAGCGT GGTCGGCGTC TCCTCGGCGT 2101GGGTGCTGGC GAAGGACGGC ACGGCCAGCA GGGCGTCGCG GTCGTCGGTG TCGCCGAGGA 2161AGCCCTCCTT CAGTACGGCG CCGAACTCCC GCCAGAACGC GGCGTACTTG TCGGCGTCGT 2221TCGCCTTCAT CTCCTTGACC GAGGACAGGA CCTTCTTGGT CAGCCGGCGC TGGATCATCC 2281GGATGTGCCG GTCCTGCTGG AGGATGTCCC GGGAGACGTT GAGCGAGAGG TCCTGCGCGT 2341CGACGACACC CTTGACGAAG CGGAGGTGGG GCGGCAGCAG CGCCTCGCAG TCGTCCATGA 2401TCAGTACGCG CTTGACGTAC AGCTGCAGAC CGCGGCGGAA GTCCCGGGTG AACAGGTCGT 2461GGGGCGCGTG AGCGGGAAGG AACAGCAGCG CCTGGTACTC GAAGGTGCCC TCGGCCTGGA 2521GGCGGATCGT CTCGAGGGGG TGGGGCCAGT CGTGGCTGAC GTGCTTGTAC AGCTCGTGGT 2581ACTCGTCGTC GGAGACCTCG TCGGGCGAGC GTGCCCACAG CGCGTTCATC GAGTTCAGCG 2641TCTCGGGTTC GGGCGTTTCC TCGCCGTCGG TCGCCTGCGG GAGGAGCCGG ACCGGCCAGG 2701TGATGAAGTC GGAGTACCGC TTGACGATCT CCTTGATGTT CCAGGCGGAG GTGTAGTGGT 2761GCAGTTGGTC GTCGGGGTCG GCCGGCTTGA GGTGGAGCGT GACGGCACTG CCCTGCGGCA 2821GGTCGTCGAC CGTCTCCAGG GTGTAGGTGG CGTCACCGCG CGACGACCAC CGCGTGCCGC 2881TGCGCTCCCC GGCACGCCGG GTCACCAGGG TCATCTCGTC GGCCACCATG AAGCCGGAGT 2941AGAAAGCGAC GGCGAACTGT CCGATGAGGC CGTCGGCCCC GGCCGCGTCC TGCGCCTCCT 3001TCAGCTCCTG GAGGAAGGCG GCCGTGCCCG AATTGGCGAT GGTGGCGATG AGCTTGGCGA 3061CCTCGTCGTA CGACATCCCG ATGCCGTTGT CCCGCACGGT GAGCGTACGG GCCTTCTGGT 3121GGAGCTCGAT CTCGATGTGC GGGTCGGACG TGTCGGCGTC GAGCCCGTCG TCCCGCAACG 3181CGGCGAGACG CAGCTTGTCG AGCGCGTCGG AGGCGTTGGA GACGAGCTCG CGCAGGAAGA 3241CGTCCTTGTT CGAGTAGACC GAGTGGATCA TCAGCTGGAG CAGCTGGCGT GGTTCTACCT 3301GGAACTCGAA CGTTTCGGTC GCCATGCTTC GTATTCCTCA CAGGTTCCTG GGTGGCCGAA 3361TCGGGCGAGA GCCACTGTAA GACACCAAGT CGGCGCATTG TCACCGCCGT TCGCCGCGCG 3421GCGTCCGCAT CTGCGTCTGC GTCTGCGTCA GACCTCGCCG TGGGCGCGCC TGCCCCGGCC 3481GTCCCGCCAG GACGTGGGGC AGGTGCCCCG CGCGGTCGCG GCCCCGGCGT CGGCGAACAC 3541GGGCGCTCCA GCCGCCTTCG GAAGGCATCC CGGATGCGGA GCGGAGACCT TCGAACACGC 3601CGGTCCTGAC CCGGTCGCAC GCCCCTGCTC CGGCTCGCTC CCGGGGATCC GGCACAATCG 3661GACCGCGGAC CGACGGCCGC ATGCGCCTTC CTGGTGTGGT GCCGGACGGA GCCGTGGGAT 3721CTGCGCTCCT ACGGCCACGT CGTCAAGCTG GAGCAGGAAC GTCTCGCCTA CCGGGCCCGC 3781CGCACTCCCG CTTCGGCCGC TCCTGTCGCC GCAAGGCCCC GGCGACGCCC ACCGCCCCAT 3841CACACGTACG GAGGGGCGAC CAGCAAGGTG TTGCGGATCG CCTCGACGAT CTCAGGCTGG 3901TGCTGCACCA GGTAGAAGTG GCCGCCCGGC AGCAGTGTCA GGTCGAACGA ACCGGCGGTG 3961TGGTCGGCCC ACAGGTTCAT CTGGCCCTCG TCGACCTTCG GGTCCTGCGC GCCGAGGAAG 4021CCGCGGATGG GACAGGCCAC AGGCGGGCCG GGCACGTAGC GGTAGGTCTC GATGAGGGGG 4081TACTCGTTGC GCAGCGGGGG CATGATCATC TCGATGATCT CGGGATCGTC GAACATCCGG 4141GTGTCCGTGC CCTCCAGGCC GCGCAGTTCG GCCAGCACGT CTTCCTGCGA CATGGCGTGC 4201ACCCGCTCGG CGCGGTTGAC CGACGGGGCG CCGCGGCCAG ACGCGAAGAG CGCCGTCACC 4261GGCGTCGTGG AGTCCTCGAG GAGGCGGATG ACCTCGAAGG CCACCGCCGC CCGCATGCTG 4321TGCCCGAAGA ACGCCGTCGG TACGGGCGGT TCTCCGCACA GCGCCTCGGC GACGTGGGCG 4381GGGAGGTCTT GCAGCGTGGC GGGGAACGGG TCGGCCCTGC GGTCCTGCGG CCCCGGGTAC 4441TGGACGGCGA CGATGTCGAT CTCCGGGGCC AGGGCACGCG CGAGCGGCAT GTAGAAGCTG 4501GCGGAACCGC CCGCGTGCGG CAGGCAGACG AGCCGGTGGC GGGCGTCCGG GGCGTTCGTG 4561TAACGGCGCA GCCACGCCTG CCGGTCCGTG GACGGTTTCG GGGTCGGGGC GTACATCAAG 4621GTTTCTCCAG AGTGCGGAAG GCGAAGCGCC GAGGCGGAGG TCGCCCGCGG CGGTGGGTGC 4681GTCAGTGGGC GACCGCGGCC CCCGGTTCGG TGACCGCGGT GTGCTGCTCC ATGACCCGGC 4741TCGGACGCGC CGGCCCTGTC ACCGGCGCCC GAGCCTGTGT GTCCAGTCCC AGCAGGCCGG 4801CCACCTCGTC GGCGACGGAC GTCGCGTCGC GGCCGACGCA GTCGACCCGG TGCACGGTGA 4861CGCGGCCGGA GAGCGCGTCG AGCACGTCGT CGTAGGCGTG GGCGAGCCCG GTGAGCAGCC 4921GGGCGTCCTC GTGCAGTTCG GTGCCGTTCC GGCGGCTGCG GGTGCGCCGC AGTGCCTCGT 4981CGACCGGCAG TCGGAGCCGT ACCACGGCGT CCGGCGGGGC GGTCGAGAAC ATGTCGGCCA 5041GGCGCTGCGC CAGTTCCTCG CGGGGCGCGG CGGCGAGCCG CAGCAGGTCC AGGCCGAGCG 5101CCCACGGATC CGTACCGCCC GAGCAGGCCT CCAGCCAATC CCGCACCTCG CGCGCGGTCT 5161CCGGACCCTG CTCCGCCCAC CAGCGCCGGA CGGCGTCGCC GGGATCGGGA TCGCCCGCGA 5221TCCGCGCGAA CATCGGCAGA TAGACGAGGG GGTCGACCAG CGGGTGCCTG TCCGCCAGGA 5281CGATCGCGCC ACGCTGCGTG GCGCGGCGCT CGGCCGGGGC GTACTGGGAC AGTTGCAGAT 5341AGAGCACCGC GACCTTCAGC GGCGAACTGC CGATCAGGTC CGCGGCGGCG GACGCCCGCG 5401CCAGGTGCAG GGAGCGCGTC GCCTCGGGGC TGTCCGGGTC CTCGTGCGCG CGGATCGCGT 5461GGACGACGGA AACGCCGGGC ACGGTGCTCA GCAGCCGCGC CACCGTCGTC TTGCCGGTGG 5521CGTCGATGCC CACCAGGGCG GCCCGCATCT CACTCACCGT CCCGGGCGGC TTCCAGGTTC 5581CACAGGTGGA ACGTGGTGTC CAGCACGGCC GGGAGGAACG GCAGTTCCCG GTGGCTGTGC 5641GCGGCGGTGT ACAGCTGGAG GCGGCTCAGG AGCATCTCAC GCAGCGCGAG CCCGTAGCGG 5701CGCCGCCACT GTTCCGGCTG CGGCACGGTC GCGTCCGGTC CGGCCGCGGC GGCGACCGCG 5761GCGCGGTGCA CCTCCAGATG GTGGTCGACC TCGTCGGTGG TGCTGTGCGG GGTGAGGGTG 5821AAGGCCAGCA GTTCGGCCAG GTCGCGCTGG GGCACTGCGA CGGTGGCCAG CTCCCAGTCG 5881TAGGCGGTGA CGCGTTCGCT CTGTCGGCTG ATGTTGCGGG GGTTGAAGTC GTTGTGGACG 5941AGTGTGCGGG GCATCGCGTC CATCTCCTGC ACCCAGAACT GCGCCTCGGC CGCCGCCGCG 6001AGCGCCGTCC TGGTGCGCTG CGGCGTCATC AGTTCGGGCA GTTCCGCGGC GTTGTGGCGG 6061ACCAGCGCGT CCCACAGTTC GCGTGCGTTG ACGAGGTGGG CGGTCGTGCC GTCGCGGTAG 6121AGCCAGCGCT CGGCCAGGAT GTGCTGGTCG CGTCCGAGCC AGTGCCCGTG CACGGGGGCG 6181ATGGCGCGCA GCGCGCGGTC CAGGTCGGTG CGGCTCCACG GCCCGGTCGT GATGTCGAGG 6241CGTTCCATGA GGATCACGTA CGCTTGGCGC GCCTCGTCCT GGATGATGCC GTAGCAGACC 6301GGGAGCAGGC TGGTCAGTAC GCCTTCGGGC CGCCGGAAGA CGGCCAGTTC GCGCCGGTGG 6361GCGGCAGGGA AGTGGCTGCC GCCGCCCCAG GTCTCGCAGG CCGAGGACAC CTCGGGGCCG 6421CACAGCGAGG CGATCCGGCC GATGCCGGCG GCGATGTCCT CGCCCCGCGG TTTGGCCTTC 6481GCCACCAGTT CGGCGGTGGT CTGCGGGCGG TCGTCCTCGG TCCAGCTCAC GGTGATGGGG 6541ATGACGCCGG TCAGCTTGCG CCGTTCGCCG AGGGCGCGGA GTTCGGTGGA GATGCCGTCG 6601CCGACCATCG CCGGCGGCCG TACGACGTCG GTGACGCGCA GCCGGGGGCT GTGGAGCCGC 6661TCGGCCATGG CCGGCTGGAG GAGGCCGGGG CGGAGGTCGT CGGCGCGCAG CCAGTCCACC 6721CGCCGGGCCC GGCCCAGCCG CCGGTGCGCA TCGGCGAACT GGCCGCTGAC CAGGGCCGAC 6781GCGGTCGACA CGTCGAGCGC CAGGGCGAAG CCGGCGATGA TCTCGGCCAG CGGGGCCGTG 6841CCGCCTTCGC CGCGGCATCC GAGGACACCG AGCCAGTCGC GCTGGTCGGG CAGGCCGGTG 6901CCGCCGCCGA CGGTGCCGAT CACGAGGTTC GGCAGCAGGA GCGTCGCGAT CAGGTCGTCG 6961CCGTCGGAGT CGAAGGAGAG CACGGACACA GCGGACTCGT GCACGCAGGC GATGTCGTGT 7021CCGGTGGCCA CGAACAGCGC GGGGATCACG TTGGCGGCGT TGATGCCGTA CCCGGTGATG 7081CCGGCCTGCT GGGCTCCGAT GACGGGGACC CGGTGTCCGC GGGCGATCGC CGCCGGGGTG 7141GTCTTCAGGA CCGAGGCGAC CACGTCGCCG GGGATGACGC ACTCGGCGGT GACCCGGGTG 7201CCGCGGCGGG CGAGCAGCGA GACCGAGCTG ACCTTCTTGT CACTGCTCAG GTTGCCTTCG 7261AGCAGCGTGT TCCGCGGTCG CAGCCCGGGC TCGTCGGCGA GCACCTGGTT CAGCCAGGTG 7321CAGATCTGCC AGGTGGCCGC GGTGGTCATG TTCTGTCCGG GCGCGTCCGC GGTCTCGAAG 7381ACGAACGGCA CGTGCAGGTA GCGGCCGATC TGGTACGGGT CGACCGCGAC GAGCCGGGCG 7441TGCTGCGAGA CCAGCCGGAC CTGGTCCTCC AGCTGCGGGC GGCGGGTGCC GAGCCACCGG 7501CTGAAGCGGG CGGCGCCGGC CAGGTCGTCG AACTCGAAGG CGGGCGCGCG GCTCATCCGC 7561TGGGAGAGCA CCCGGGTGGA CACTCCGCCG GCCAGGCTCA GGGCGCGTGC GCCGCGGGAG 7621GCGGAGGCTA CGAGCGCGCC CTCGGTGGTG GCCATCGGGG CGACGACGGC TTCCCGGACG 7681CCCTGGCCGC GGAACTGCAG CGGTCCGGCG AGCCCCACCG GGACCTCGAC CGATCCGGCG 7741AAGTTCTCCA GGTTCCCGGT CAGCGACGCG GCCTCGATCG CCGTGTGTGC GGCGGAATCG 7801AGGGTCGCGC CGGTCCGGGC GAGCAGCCAT GCCAGCCGCG CTGCGCGGGC CTGTTCGGTG 7861TACCGGCCAC GGCCCGGTAT CGCGTCGTCG GTCACGCGTG TGCCCTTTCG TCGGCGGTGA 7921TCCGCGCCCA GCTGTCGGGC GCGGGCTGGA AGATCCTGTC CTTGACGCGG GTGCGGCGCT 7981GGCCGGAGCG GATCGCGTGC TCCCACTCGC GCTGGAAGGC GTCCTGGTGC ACCTGGAGCA 8041CCTCGACGGG GGCCAGGGCT CCGGCGTCGC GCGCCGCGCG GTATCCGTCG GCGGTCTCGC 8101CCAGGTGCTT GTCCAGCAGC GTCGCGAAAC CGGCGGGCAG CGGTCCCGGC AGTGCGGAGG 8161CGATCGCCGC GCGGAACCGG TCCGTTCCGG TCTCGACCGT CGCGTTGCGC AGCTCCGCCG 8221CGGTGTCGGC CAGGGTGCCG GCCAGGGCGC GGACCACCGC GCGTTCCGTC AGGTCCACGC 8281CGGCGGCCGT GCGCAGCACG TCACGTCCGG TGTAGGCGAT GCGCGGCGTA CGCCCGACGT 8341GGTCGACGAC GTGCACGACG TCGTTGACGG GGCACCGGTA CAGACCGCCG ATGTGGCTGA 8401GTACGAGGTG GTAGTCGCGG CCGGGTTCGA GTTCGGCGGC GGTCACGGTC GGGCTGTCCT 8461CGCGGATCGG GTCGGCGGCG TCGGCGAACT CGAAGTAGCA GCCGGGCAGA TAGAGCGGGG 8521CGGGGTTGGG ATGGTCGTCG ACGGGGACGG CGACCGGGCC CTCCGAGGAT CCGATCGGCG 8581CGGCGAACAG GCGTACGCCG GGACCGTAGC GTTCGCGCAC GCGTGGCAGG TAGAGCGAGG 8641CGAGGGCGCT GTTCCACGCG ACGGCGGCCC GGAGGTTGGG GCACAGGTGG TACGGATCCA 8701GGACGCCGTA CTCGTCGGCG CGGCGCGCGA TCTGCTCGGC GCGCCGCGGA TCGGGCGTGG 8761TGTGCGGCAC TCCGCCGACC GTGCCGCGGG CGATCTCCTC GACGATCCGG GGCCACTGGG 8821CGGCCAGTTG GTGGGGCAGC CGGGCGATCA GGGCCGGGTT GACGCCGATC AGGACCTTGA 8881TGTGGCGTTC GGCGGCGAGC CGCAGTTGAA GGTATGCCCG CTCCCACGGG TCGGCGTCGG 8941AGAGCTGCTC GGGGATCGTG GCCCAGGCGG CGCCGTCCTC CGGCCGGGCG CCCTCGCCGA 9001AGAGGCGGTG GTCGATCTGG CTGGGGCCCA GATGCGGCCG GCCGTCGGCG GTGCGCGCGT 9061GCGGCGAGGT CGGATCGCGC CACAGGTTCA GCACGCCGCC GGGGTCCGCG GCGAGGTCGG 9121GGAACGCGCC GAGCAGGACG GCGAAACTGG CGTGGTAGAA GGGCAGGAAG CAGCGTTTCA 9181TGTAGGTGGG CGTGACCGGG ATGCGCTTCT CCTGGCGGGT GCTGGCGCTG GAGGAGAAAA 9241ACGCGACCGG CCGCTCGGCG GTCAGGACCC CGTCCTCGCC GGCAATCGCC CGCTCGATCC 9301AGGGACCGAA CGCGTTCTGC GTGCGGATCG GCAGGGCCTT GCGGAACTCC TCGGCGCCGC 9361TTCGCTCGTT CAGGCCGTGC TCGCGCAGGT AGCTCGTCGC ACCGTTCGCC GCGAGGAGTT 9421CCGCGAGGAC CGTCTGCTGG GTCTGGTCGG GGTGGTCGAG CGTGGCGAGG AACCTGTGGT 9481GTTCGGTCAG AATGGGTTCG GTGTGCAAGC TTTCCCTCCA GCGCGGTCGG AGAAGAGGGC 9541TCCGTACAGG CGGAGCCGCT CGGGGTCGGC GGTGTCGTGC GTGATCCGGC TGTCGACGGG 9601GTGGGGACGG GCCGGGTCGA GCGCGGCGCG CAGCCGCGGT GGGTCGAGCG CCGGGCGGTG 9661CGTCACGTGC ACGGTGTCGC CGGGACGGAC CAGACCGCGC AGGGCGGCCT CGGGGAAGAG 9721GTGATGGGTG TGGACGAGGT AGTCCAGGAC GGTGACGTCC GCGGTCGCCA TCACGGCCTC 9781GGCCCGGAAT CCGGTGTCGG GGCCGGGCAG CCGCACGGTG AAGGGCTCCG GCGCGGGGGC 9841CGGTGCCGGA GCCGTGAAGG CGCGGAACAG CCGTGCCAGG TTCTTCAGTT GCGGCGTCGG 9901CACCGGGCCG TACCAGCTCA GCGCGTTGTC GGGGGTCGCG TACCCGTCCG GGAACCGGGC 9961CGCCACCGTG GCGGGCCGGC CCGCCAGGAA GATGGTGCGG GTGAACGTCC GCAGGCATGC10021GTCGGCCGGC TGCTCGGGGA GCGAGAGCGC GAAGTCGAGG AGGCCGCGGA CGAAGGACTG10081GGGGGTGAGG GrGTCCACCA GGACCGCCAC GGTGTGGAAG TGGTGTCCCG GTTGGTCGTC10141GAGGGGGGCC AGGCGGGCCG CCGCGGAGGC TTGCAGCAAC GTGTGGAGCG AACCATGCGG10201GTCTTCGACG TCCGGGAGGT CGATGTCCGG GAGCGCGGGG TCGCTCACGC GGGGTGGGGT10261CTGTCCGGTC ATACGAGCAC CTCGCGCAAC AGGGCGGGCA GCGGCGCCGG GCGCGGTCCG10321AGCAGCGAGC AGGCCAGGCG GTGCGGGTCG ACATAGCCGT GCGGGCTGAG CGGCAGTACC10381GGGTCCTCCC GTTCGTCCGA CGGCCCCAGG GCCAGGATCC GGGCCGCGCG CCCGACGCAG10441CGGCGCAGCA GGTCGATCCG GAAGGACTGG CTGCACTGCC GGTCGAGCAG ACCGACGAAG10501TAGAGGCGCA TGCCGAGCCG GTAGGCGTCG GCGTCCGCGG AGGCGGAGAT GGCCGACAGG10561TCCGAGAGCG TCGAGCCGGT CCACCCGCCG TACTTGCTGG AGACGACCTT GCCGCCGATC10621GGCACCCGGG TGAGCGGGAG CCGGGTGGTG TGGGCGCCGA ACTCGGCCAG GATCCGGTCA10681AGGAGCAGGT AGTCGACGCC GAGCCCTTCG TCGAAGAGCA GGAGGAAGAG CCTGCCGGGC10741GCGACGGCGG GCAGCAGCGA GCGCAGGATC GGGAGCAGGT AGTTCGCGTG GCCGTCCGTC10801GAGACGATCT GCCGGATCGG CACGCCCCAG CGGGCGCCGT CCAGGTAGAC GGGCCCGCCG10861TGCGGCCTGT GGTCGATGAG CAGCCCGCGG TCCGCGAGGG CCGCCAGGGC GCGCTGCTCC10921GAGCAGGTCA GCGGGCGGGT GTCGGTCAGG CCGGGGTCGC GCACGTGCAG CAGGTCGAGT10981TCGGTGCGCC ACAGCTCCAG CAGGCGGTGG GAGGCCGGAT GGATCCAGCC GTCCCGGTGG11041ATCCGGGCGA AGTAGGGGTC GAGTGCGCGG GGGTGGGTCG TCGGACGGCC GCGGTGGAAC11101TGGAGGTAGC GCCGGCCGAT CGCGGTCTCG TCCTCGCCGG AGCAGTCCGT GTCCGGTTCC11161GTGGGGTCCA GGTGGTTCCA GAACGCCGTG GTCTGGGTCG TGAGCGTGGA CATCCGGGGA11221TTCCAGACCA GGGTGGTGGG GCCGAGGGTG GCCGTCGCCT TGAACAGGGC GTCGGCCCAC11281AGCAGGCCTT TGACATGGGT GGGGGTCAGC GGGTTGGTGG GGGTGATCGT CACCGGGGCG11341ATCACGAACT CCCTCGCGGC GCGGCGGGCG CCGGGATGCG CGCGGTGTGC GCGGCTCGCG11401GGTGTGGGCG GGCCGGTCGT CGCGGTTCGT ACGGTGCTCG GGGTGCGCAC GGTGCTCGAG11461GTGCGCAGGG TGGTGCTCAT GGATGGCTCC TGTCGATGTC TGCCGCGACC GGGCGGACGA11521GGTCGTGCGC GGCGCGCGAC ATGCCGGTCG CGGCGCAGGA CGTGCCGGTT GCGGCGCGCG11581CCGCGTGGGC CGTGACGCGC GCCGCGTTCG AATCGACAGC GGTCACGACG TGGTCGGCCG11641GGACGGGTCG GACGCCGTCC CGTCGGAGGC CCCGTATTCG GCGTGGAGGA ACTGCATGAG11701GTCGGTCGCG CTCGCCGTCT CCAGGTCATC GGTGCCGGAG TTCCTGCCGG CTCCCCCGGC11761TCCGGTGGCC GTGCCGGAGA GCCGGTCCAG GAGCGCGGAG AGACGGGTGG CGAGCGCGGC11821CCGGGTGTCT GCCGGTGTGA ACGGCGAGAG CACCTTGGCG TCAAGGCGGT CGAAATCCTC11881GAGGACCGGA CCGTCGTCGG CGGGGGCTTC CTCGAGGTGC AGTTCCGTGA GCAGCCGCTC11941GGCGAGCGAC TCGGGCGTGG GGTGGTCGAA CGCCAGCGTG GCCGGCAGCC GGGCGCCGAC12001GAGTTCGCCG AGCCTGTTCC GCAGCTCCAC GGACATCATC GAGTCGAAGC CGAGTTCCCG12061CAGCGCCCGG TCCGCCTGCA CCTGTTGCGG GTCGCCCCGC CCGATGAGCT GCGCCACGTG12121GGTGCGCACG ACGTGGAGCA GTACGGGCAG CCGCTCGTCG TCGGGCAGCG CGCCCACCCG12181GTCCTTCAGC GCGCCCGCGG TGGTGCCCGC GCCGGGGAGG GCGGGGGACG CTGCGTCCCG12241GCCGCCGCCC GCCGTGTCCG CGGGCGCGAA TCCGCTGAGC AGCGGGCTGG GGCGAAGGAC12301GGTGAACGCG GGGAGGAAGC GCGACCAGGC CACGTCCACC ACGACCGGGT CGGTGTCGCC12361CGGCACGGCG CGCTCGAGCG CTTCGACGGG GCTGGGCACG GCGAGCGGGA GCAGCCCGGG12421CTTGCGCAGT TCCCGGTCCT CGTACTCGGT GACCATGCCG CCGCCCGACC AGGGCCCCCA12481GGCGATGGAG ACGGCGGACG CGCCCCGCTC GCGGCGTCGG CGGGCGAGCG CGTCGAGGCA12541GGCGTTGCCC GCGGCGTAGG CGGCCTGGTC CGCGGCGCCC CAGATCCCGG CGATGGAGGA12601GAACATGACG AACTCGTCGG CGTCGGGCAG CAGTTCGTCG AGCAACAGCG CGCCGTTCAC12661CTTCGCCGCC ATGTCGGTCT CGAAAGCCTC GGGGTCGACG TCCGCGATGC GCGCGTACCG12721GATCACGCCG GCGGCGTGGA CGAGGGTACG CACCGGGTCG TCCTCGGCAT CAAGACGGGA12781GAGCAGTTGC GTGACGGCGG TGCGGTCGGT GATGTCGATC GCCGCGGCTT CGGCCCGGAC12841GCCCGATTCG CCGAGTTCTG CCAGGAGTTC GGCGGCACGG GGTGACTCGG CGCCGCGGCG12901GGAGAGCAGG ACCAGGCGGT CGGCCGTGCC GAGAGCGGCG AGGGGGCGGG GGACGTGCGC12961GCCCAGGCCG CCGGTTCCGC CGGTGATCAG GACGGTGCGC TTGGGCTGCC AGGTTCCCGC13021GTCGGCCGCG GGTGCGGTGC CGAGCCGGCG GGCCCACAGG CGCCCGTGGC GCACCGGGAG13081CTGGTCCTCG GGGCCATGGC CGGTGAGCAC GCCGGCGAGC AGACGTGCGG TGGTCCGCCC13141GGCGTTGTCG TCAGCCGTCC CGAGGTCGGC CGTCTCCGGA ACGTCGACGA GTCCGGCCCA13201GCGCGAAGGG AGTTCGAGGG CGGCGACCCG GCCGAGCCCC CAGGCGCCCG CCGCGGCCAC13261GTGCGTCGCG GGGTCGTGGA CACCGACGCC GACCGCGCCG CTGGTCACGC ACCAGACCGG13321CGCGTCGAGC CGCTCGGTCT CCCGCAGCGC GGGGAGCAGT TCGGAGGCGT CGGCGGGGCA13381GACGAGCACG CCTTCGAGCG GTGTCGAGGC CGATGCATCC CATTCGGTGG ACGTGAGGAC13441GTGCTCGAAC AGCTCGGCGA GTCCGGGGCG TGCGGTGCCG AAGAGCAGCC AGGTGCCGGG13501CACGCGCTCG GCGATCCGCG CGTGGCTCAG CGGCTCCCAC CGCACGGCGA AGGTCGCGGC13561CTGTCCGACG GCCCCTTCGG CCGCCTGGAG CTGTGTGCGC TCCACGGCGC GCAGGATCAG13621CGATTGCATG GCGAGGACCG GGGTTCCGGC GGCGTCCGTG ATCCACACCG AGGTCGCGTC13681CGGCCGCGGG CGCAGCCGTA GGCGGACGCG CCGCACGTCC GTGGCGAAGA GGGTGACGCC13741GCCGAAGGAG AAGGGCAGGC GCACCTCGTC GTCGGTCTCG TAGAAGCTGC GGGTGATGGG13801CAGGGCGTGC AACGAGGCGT CCAGCAGAGC GGGGTGGGCG CCGAAGCCGT AGGGCTGGTC13861GTGGGGCAGG ACGACCTGCG CGAAGAGATC GTCGCCGCGC CGCCACAGCG CCTTGAGCGA13921CCGGAAGGCG GGGCCGTACT CGTAGCCGCG CTCGGCGAGG TCCGGGTAGA ACGTGTCACC13981GGGGATCTGT TCCGCGCCCG CGGGCGGCCA CACCGCGCCG GTCCAGTCGG GCGTGAAGCC14041GTCGGTGTCC ACGCGGGAGG CGGTCACGAC GCCGGTGGCG TGCAGCGTCC AGTCCTCGCC14101CGGCGTACGC GTGCGGATCA GCAGTTCGCG CTCGCGGCCC TGGTCGGGTG CGACCCAGAC14161CTGGAGGTCG CGGGCCCGGC CGCCCGGGAA CACCATCGGG GCGCGCAGGA CGAGTTCTTC14221GACGCGGCCC GCGCCGACCG CGCGCGCGGC CTCCAGCGCG AGTTCCACGA ATCCGGTGCC14281GGGCAGCAGC AGGGTGCCCA TGACGGCGTG GTGGGGCAGC CACGGGTCCG TGCCGGGCGC14341GAGGCGGCCG GAGAACAGGA CGCCGCCCCC GCCGGGGAGG TGCGTGCGCT GGGACAGCAT14401CGGGTGCGGC AGCGCGTCGG CCCCGGCGCC GGGGCCGGTA CCCGAGGACG GGGCCGTCAG14461CCAGTAGTTC TCGTGCTGGA AGGGGTAGGT GGGCAGGTCG AGGTCCGGGA CCGTGGCGCT14521GCCGCGCTCG TGTCCGCGGC CGTCGGCGGT ATCGGCGTTG TCGGCGTCCG CCTCGGCATG14581GTCGGCGAAC CAGGTGACCG GCGTCCCGGT CACGTGCAGG GTCGCAAGGG CCCTGAGGAA14641CGTGTCGGGC TCGGGCTGCC CGGCACGCAG CGTCGGCACG AGCGCCGCGG GAGCGGCGGA14701CGCGTCCTCG AGTGTCTCGG CGGCGAGCGG CGGGAGTGTG GGGTGCGCGG TGAGTTCGAG14761GTAGCGGGTG GTGCCGAGTC CGTGCAGGGT GGTGACGGCG TCGGGGTGGC GGACGGTGTG14821GCGCAGCTGT TCGGTCCAGT GGTCGGCGGT CGTGATCCGG TCCTGCTCGG CGAGCAGTCC14881GGTGAGCGTC GAGACGATGG GAATGCGCGG CGCGCGGTAC GTGAGCCCCG CCGCGATGCG14941GCGGAACTCG TCCAGGATCT GGTCCTGGTG CGGACTGTGG AAGGCGTGGC TGACGGTCAG15001CCGCCTGCTC CTGATCCCCC GCTCCGCCAG CTGTGCGGCG ATGTCCGCGA GGACCTCGGG15061ATCACCGGAC AGGACGGTCG ACTCCGGCGC GTTGACCGCC GCGAGCGAGA CGACGTCCTC15121ACGCCCCGCC ACGAGACCCC GCGCGGTGGC CTCGCCGGCC TGGAGGGCGA GGATGGTGCC15181GGGGGTGGTG ATCTGCTGCA TCAGACGGGC CCGGTGGAAG ACCAGGGTGG CCGCATCAGC15241CAAAGAGAGC ATCCCGGCGG CATGCGCCGC GGACAGCTCA CCGATCGAAT GCCCCACCAG15301ATGGTCCGGC CGCACACCGA ACGACTCCAG CAGCCGGAAC AACGCGGTGT GCAGAACGAA15361CAACGCCGGC TGCGTGAACG CGGTCCGGTT CAGCAGTTCC GCCCCCTCCG ACCCCGGCCC15421CGCGAACATG ACCTCACGCA GGGAGCGGCC CAGCAGGGGA TCGAAGACCG CACAGGCCTC15481ATCGACGGCA GCGGCGAACA CGGGATACGA CGCATACAAC TCCCGCCCCG CACCCGGGCG15541TTGACTGCCC TGACCGGAGA ACAGGAACGC AGTCCTGCCC GTGGTGACCT GCCCGCGGAC15601GAGGCTCGGG TGCCCGGAGC CCGACGCGAG CGCCGACAAC GCCTCGGTCA GTCCGGCACG15661GTCGGCGCCG ATGAGGGCGG CGCGCTGCTG GAACTGCGAC CGGGTCGTCG CGAGCGCGCG15721GGCGAGGTGA CCGGTGCCGG TCTGCGGGCG GGCGGCGAGG AACTCCGTCA GGCGGTCGGC15781CTGCGCGCGC AGCGGGTCGG GGCTTTTCGC GGAGACCAGC CATACGGCGG GGTCTGCGGA15841GTCGGCTTCG GCCTCGTACG CGGTCCGCTC CTTGAGCGGA GGCTCTTCGA GGATCAGGTG15901CGCGTTGGTA CCACTGATCC CGAACGACGA CACGGCGGCA CGACGCGGCC GCTCCCCCGC15961CTCCCAGACG ACCGGCCCGG TCAACAACCT GACCTCACCC GCCTCGGAGT CCACATGGGG16021CGAAGGCTCG TCGACATGCA AGGTCCTGGG AAGCACCCCG CCCCGCATCG CCATGACCAT16081CTTGATCACA CCACCCACAC CCGGCGCGGC CTGCGTGTGC CCGATGTTCG ACTTCAGCGA16141ACCGAGCCAC AACGGACGAC CCTCGAACCG GCCCTGTCCA TAGGTGGCCA GCAACGCCTG16201CGGGTCGATC GGGTCACCGA GCGTGGTGCC GGTGCCGTGC GCCTCGACGG GGTCGATGTC16261GGCGGCCTCG AGCCCGGCGT CGGCCAGGGC CTGACGGATC ACCCGCTGCT GCGAGGGGCC16321GTTCGGCGGG GTCAGACCAT TGCTCGCACC GTCCTGATTG ACCGCCGAGC CGCGAATGAC16381CGCGAGCACA CGGTGCCCGT TGGGCCGCGC GTCACCGAGA CGTTCGAGCA CCAGCATGCC16441CACACGCTCG CCCCACGGCG TACCGTCCGC CGGCGCCGCG AACGACTTGC ACCGTCGGTC16501CGGCGCCAGG CCCCGCTGCC GGCTGAACTC CACGAAGGTG CCGGGGTTCG CCATCACCGT16561CACGCGGCCG GCCAGCGCCA CGTCGCACTC GCCCGAGCGC AGCGCCTGCG TCGCCAGATG16621GATGGCGACC AGCGAGGAGG AGCACGCGGT GTCGAGCGTG ACCGCCGGGC CCTCCAGGCC16681CAGCGTGTAG GCGATCCGGC CGGACAGGAC GCTGGTCGTG GTGCCGGTCA GCAGGTGACC16741GCTGACTCCC TGCCCCGTCG CCTCGTACAG GCGCGGCGCG TACTCCTGCG GCATCACGCC16801GACGAACACG CCGGCCCGGC TCCCGGCGAG GCTCAGCGGA TCGATGCCGG CCCGCTGCAC16861CGCCTCCCAC GAGGTCTCCA GCACAAGGCG CTGCTGGGGG TCGATGGGCA AGGCCTCACG16921GCGGCTGATG CCGAAGAACG GCGCGTCGAA CTGTCCGGCG TCGTGCAGGA AGCGTCCCTC16981CCGGACGTAC ACCTTGCCCT CGGCGTGCGG GTCGGGGTCG TAGAGCCGCT CCAGGTCCCA17041GCCACGTCGC GAGGGGAATC CGCTCACCGC GTCGATTCCC CCGGCGGCCA GCTCCCACAA17101CTGCTCCGGG TCCGTCACGC CGCCCGGATA ACGGCATGCC ATGCCGAGGA TCGCGATCGG17161TTCCCGCTTG CGTGCCTCGA TGTCCCTGAT GCGCAGGCGC GTCTGGTGCA GGTCGGCGGT17221GACCCGCTTG AGGTAGTCGC GGAGCTTGTC GTCGTTCGCT GGCATGGAGG AACCTGCGCC17281TTGTGCGTGT TCTGCATCGC GCGGCCGGTC CGGTGGGACC GACCGCGCGG CGTGGCGGAG17341TCGGACTGGG GGGACCGTCA GGTCAGTCCG AGTTCGTTGT CGATGAAGTC GAAGATCTCG17401TCGTCGCTGG CCGACTCGAA TCGGTCGGTG GCCCCGGCGG CGTCCTCGGC GTCCGGCCGG17461CCCGCTTCCT GCCGGCCGTG CAGCCACACG AGCAGGTCCT CGAGGCGGGC GGTGAACGGG17521GTGAGTGTCG CCTCGTCCGC GTCGGTGGCG ATCGCCGTGT CCACCAGCCG GTCCAGTTCG17581GCGAGGACCG CCAGGCTGTC GGACGTGGCA GTCCGCGGGG TCTGCGAGGC CAGTCGCGTG17641TAGAGGAAGT CGGCCACGGC CAAGGGCGTC GGGTGGTCGA AGATCAGTGT GCCGGGGAGC17701CGCAGACCGC TGACGGCACC GAGCCGGTTG CGCAGCTCCA ACGCGGTGAG CGAGTCGAAG17761CTCAGCTCCT TGAATCTCCG CTCCGGGTCC ACCGTCGCCG CGGTCGCGTG TCCCAGGACC17821GCCGCGGCGC TGTCCTGAAG CAGCTCCAGC AGCATCCGTC GTCGCGCGGC CTCGGTCGGC17881AGTTCGGCCA CGCGCCGGGC CAGGTCCGGT CCCGCGTCCA CCGCGGTCTG GCGCGGTGCG17941GGGAGGCGGG CGCCGTCGGC TGTTGCGGCG GCCTGTGGCA GACGCCGTAC GGGCCGGGCC18001GGTGCGACGT GCCGGAACAG CAGCGGCACC TCGGCGACGT CCCCCGCTCT CCCGGCACCA18061CGGGCGCTTT CGGCCAGGGC CGCGAGGTCG AGCCGTACCG GCACCAGGGC CGGTACCGCC18121GCGTCGCGCG TGGCGTCGAA GAGGGCGAGG CCCTCGTCGG TGGACAGGGG CAGTACGCCG18181GTGCGTGCCA TCCGGTTCAG ATCGGTCGCG CTCAACGCCT GCGTCATACC GCCGGCGGCG18241TGCTCCCAGG GGCCCCACGC CGCGGCGACC GCGGGCAGCC CGCACCGGTG TCGGGGGTAT18301GCGGCCAGAC CGTCCAGGAA GGCGTTCGCG GCGGCGTAGT TGCCCTGTCC GGCGTGGCCG18361ATCACTCCGG CGACGGACGA GAACAGTACG AAAGCCGACA GGTCGGCGTG GGCGGTGAGT18421TCGTGCAGAT TCCACGCCGC GTCCGCCTTG GGCCGCAGCA CGGTGTCGAG CGGCTCGGGC18481GTCAGTGCTT CGACCGGGGC GTCGTCGAGC ACGCCCGCGG CGTGCACCAG GGCGGTCAGT18541GGATGCGCCT CCGGGACCGC AGCGACGACC CGCGCCAGCG CCGTGCGGTC CGGCGCGTCG18601CAGGCCTCGA CGGTCACCTC GACGGCGCCC GCCGCGCGCA GTTCCGCGAC GATCTCGGTC18661ACGCCCTCGG CGGCCGGGCC GCGCCGCCCG GTGAGCAGCA GTCGCCTGAC GCCGTGCCGG18721GTGACGAGGT GGCGGGCCAC GTTGCCGCCC AGCGCGCCCG TGCCGCCGGT GATCAGGACG18781GTCCCCTCCG GGTCCAGCGG CGCCGGGACG GTGAGGACGA CCTTGCCGAC GTGGCGGGGC18841CGGCTCAGGT GCCGGAACGC GTCCTGCGCG CGCCGCACGT CCCACGCGGC GACCGGGAGC18901GGACGCAGCG CGCCGCGCTC GAACAGCTCC GTCAGCTCGC CCAGCATGGC GCCGACGTGC18961GGGGGTTCCA GCTTCGTCAG ATCGAACGAG CGGTGGTCGA CGCCCGGGTG CCGGGCGGCG19021ACCGCCTCGG AGTCGGGGGT GTCGGTGCTG CCCGTGTCGA CGAACCGGCC GCCGGACGAC19081AGCAGCCGCA GCGAGGCGTC CACGGCGTCT CCGGCCGGGC AGTCGAGTAC CACGTCCACG19141GCGGCGCCGC CGGTCGCGGC CCGGAACCGG GCCGCGAACT CCTGGGTGTG CGACGGCGCG19201AGGTGCGTGT CGTCGAGCCC ATGTGCACCC AGGTCCGCCC ATTCGCCGGG GCCCGCTGTG19261CCGAACACGT CGGCGCCCCG GTGCCGGGCG AGCTGCGCCG CCGCCAGGCC GAGGCCGTCG19321GCCACCGAGT GGATCAGCAG CCGCTCGCCC GGTACGACGG CGGCCAGTTC GACGAGTGCG19381TGATAGGCCG TCAGGAACGC GACGGGCACC GACGCGGCCT GCGTGAACGT CCAGCCCGCC19441GGGATACGAG CGAGGGTGTG CGGCTCCGCC ACGGCCTGGG GGCGGAAGTT GCCGGTGAGC19501AGGCCGAACA CCCGGTCGCC GACGGCGAGA TCGGACACGC CGGGGGCGGT CTCGGTGACC19561ACACCCGCGC CTTCGAGCCC GAGGATGTCG TGGTCCGGCG GTGTGTGGCG GGCGAGGACC19621GGGGCGCGGA GATCGAGTCC GGCGGCGCGC ACCGCGATCC TCACCTGCCC GGTGGCGAGC19681GGGGCGCGCT GGGGCGCCCG GACCTGCTCG GCGACGTCGG GCGGTGCGGG CGACGGGACG19741TCGGCGTCCT GCGCGGCGCG AGGGAGTCGC GGTACGAGCA CCTCGCCGTC GCGCACCGCG19801AGTTGCGGTT CGCCGGTGCG CAGGGCGGCG GGCAGGGCGG CGTATCCGTC GGACGGGTCG19861CCGTCGATGT CGACGAGGGT GAAGCAGCCC GGGTTCTCGG TCTGGGCGGT GCGCACCAGG19921CCCCAGGCGG TGGCCTGCGG CAGGCCGAGT GCGTCCGGCG CCGTCGCCGG GGCCGTCGCA19981TCGTGCGTGA CGAGGAGCAG GCGGCCGACC GTGAGGGCGG GCGGGTCGAG CCAGGACGTG20041AGGAGGGCGA GCGTGCGGCG GGCGACGGCG TGCGCGCCGG CCGCACCTCC TTCGTGCTCT20101CGCGTCCGCT CTCCTTCGTG GGGCGGAAGT TCGGCTCCGT GCGCAGCGAG ATCGGCGAGC20161ACGACGGACG GGTGCGGGTC ACCGTTCTCG ATGCCGTGGA CCAGGGCGTC GAGGTTCGGG20221TACGTGCGGA TGTCGACCGC GTCGGCCGCC AGCGTGGAGA GCGGATCGGG CACGGGGCTC20281CGACCGATGA GCGCCGACTG CTCCGGCGCG TCCGGAGCCG CGGCGCCGAC CGGTGCCGCT20341GCCGGTGTGG CGGACGAGTC GACGTGGTAG AGCGACCGGG GTCCGGCCGG TTGCGTGCCG20401GAGCCGTCGC TCAACCGGTC CAACACCACG GGACGCAGGG ACAGTTCCCC TGCGGTCAGT20461ATGAGGGGGC CGGACGGATC GCTCGCGACG ACGCGGACGG TGGTCGGCCC GGTCCGGGTG20521AACCGGACCC GCAGCGCGGT GGCGCCCAGC GCGTGCAGGG CGACATCGCC CCAGGAGAAG20581GGCAGCAGCG TGCCCGAGGC ATCGGTTCCG GACACCCCGT CCGCGAGCAG TCCGCTGCGC20641AGCAGGGCGT GCAGCGAGGC GTCGAGCAGC GCCGGGTGCA CCGAGAACCG GTCCACGTCG20701TCCGAGGCGG CGGCATCGTC ACCCAGCTCG ACCTGTGCGA ACACGTCATC GTCCGTGCGC20761CACGCGGCGG TCAGCAACCG GAAGTCGGGG CCGTACTCGT AGCCGGTCAG GGCCAGAGCG20821GGGTAGAGGT CCGTCAGGTC GACCGGCGCC GCGTCGGCGG GCGGCCACTG CGGTGCACGG20881TCCGCGGCGT CGGGCGCCTC GGTGGGCCCC AGGGCTCCGC TCGCGTGCCG GGTGCAGGAG20941GACGAGCCGG AGGCGTCGTC GCCGGCGGGC GCCGGGCGCG AATGGACGGC GAAGGCGCGC21001AGGCCGGACT CGTCCGCCTC CTGGACGGTC ACCGGGATGT CGACGCCGCG CTCGCGGGGC21061AGCACGAGCG GTGCCTGAAG CGCGAGTTGC GCGACAGCCG GGTGCTCCCC CGCGCCGTCC21121GACGCGGCAT GCAGCACCAG ATCGAGCAGG GCGGTGCCGG GCAGCAGCGT CGTGCCGTGG21181ATCGCATGAT CGGCGAGCCA GGGGTGCGTG AGCGTGCCGA TACGCCCGGT GTGGACGAAG21241CCGCCGCCCT CGGGCAGTTC GACGGCCGCC GCGAGCAGCG GATGCGGCGT GCGCGTCAGC21301CCGGCCTGCG TGACATCGGC GCGCGGCGCG GGCGGCGTGA GCCAGTAACG CTCGCGCTGG21361AAGGCGTACG TGGGCAGTTC GGGCAGAGCA GCGGAGCGAG GGCCGGGGAG TGCCGGCCAG21421GGGACGTCGG CACCGCTCGT GTGCAGGGTC GCGAGGGCGC GCAGCAGGGC GTCGTGCTCC21481GGCCGTCCGT GGCGCAGCAC CGGGACCAGA GCCGCGGGGC TCTCCTCCAG GGTCTCGGCG21541ACCAGCGTGG CCAGCGTCGG AGTGGGAGTG AGTTCGAGGT AGCGGGTGGT GCCGAGCCCG21601TGCAGGGTGG TGACGGCATC GGCGTGGCGG ACGGTGCGGC GCAGCTGTTC GGTCCAGTAG21661TCGGCGGTCG TGATCCGGTC CTGCTCGGCG AGCAGTCGGG TGAGCGTCGA GACGATGGGA21721ATGCGCGGGG CCCGGTACGT GAGCCGCGCC GCGATCCGGC GGAACTCGTC CAGGATCTGG21781TCCTGGTGCG GACTGTGGAA GGCGTGACTG ACGGTCAGCC GCCTGGTCCT GATCCCCCGC21841TCCGCCAGCT GTGCGGCGAT GTCCGCGAGG ACCTCGGGAT CACCGGACAG GACGGTCGAC21901TCCGGCGCGT TGACCGCCGC GAGCGAGACC ACGTCCTCAC GCCCCGCCAC GAGACCCCGC21961GCGGTGGCCT CGCCGGCCTG GAGGGCGAGC ATGGTGCCGG GCGTGGTGAT CTGCTGCATC22021AGACGGGCCC GGTGGAAGAC CAGCGTGGCC GCATCCGCCA AAGAGAGCAT CCCGGCGGCA22081TGCGCCGCGG ACAGCTCACG GATCGAATGC CCCACCAGAT GGTCCGGCCG CACACCGAAC22141GACTCCAGGA GCCGGAACAA CGCGGTGTGC AGAACGAACA ACACCGGCTG CGTGAACGCG22201GTCCGGTTCA GCAGTTCCGC CCCCTCCGAC CCCGGCCCCG CGAACATGAC CTCACGCAGC22261GAGCGGCCCA GCAGCGGATC GAAGAGCGCA CACGCCTCAT CGACGGCAGC GGCGAACACG22321GGATACGACG CATACAACTC CCGCCCCGCA CCCGGGCGCT GACTGCCCTG ACCGGAGAAC22381AGGAACGCAG TCCTGCCCAC CGTGGCCCGA CCACGTACCA CCATGGGATG CCCGGCACCC22441GAGGCAAGCG CGGACAGCGC CTCGGCGAGT GCGTCCCGGT CCTGGGCGAC GACCGCCGCC22501CGGTGGTCGA AGTGCGTACG GCCGGTGGCC AGGGCCCGAG CGGCCCGGCG GATGCCGACC22561TCCGTCCGGG TCCTGGCGAA CTCGGCCAGC CGGCCGGCCT GTTCCCCGAG CGCGTCGGCT22621TTCTTCGCGG AGACCAGCCA TACGGCGGGG TCTGCGGAGT CGGCTTCGGC CTCGTACGCG22681GTCCGCTCCT TGACCGGAGG CTCTTCGAGG ATCAGGTGCG CGTTGGTACC ACTGATCCCG22741AACGACGACA CGGCGGCACG ACGCGGCCGC TCCCCCGCCT CCCAGACGAC CGGCCCGGTC22801AACAGCCTGA CCTCACCCGC CTCCCAGTCC ACATGCGGCG AAGGCTCGTC CACATGCAAG22861GTCCTGGGAA GCAGCCCGCC CCGCATCGCC ATGACCATCT TGATCACACC ACCCACACCC22921GCCGGGGCCT GCGTGTGCCC GATGTTGGAC TTCAGCGAAC CGAGCCACAA CGGACGACCC22981TCCGACCGAC CGTGTCCATA GGTGGCCAGC AACGCCCGTG CCTCGATCGG GTCAGCGAGC23041GCCGTTCCCG TCGCATGAGC CTGGACGGCG TGGACATCGG GGGCCTCCAG CCCCGCGTCG23101GCCAGGGCCT GAGGGATCAC CCGCTGCTGG GACGGGCCGT TCGGCGCGGT CAGACCATTG23161CTCGCACCGT CCTGATTGAC CGCCGAGCCG CGAATGACCG CGAGGACACG GTGCCCGTTG23221CGCCGCGCGT CACCGAGACG TTCGAGCACC AGCATGGCCA CACGCTCGGC CCATGAGGTG23281CCGTGGGCGG CGGCGGAGAA CGACTTGCAC CGTCCGTCGC CCGCGAGGCG GCGCTGCCTC23341GCGAATTCGA GGAACATGCC GGGGCTCGCC ATGACGGCGG CGCCGCCTGC GAGCGCCAGT23401TCGCATTCGC CGTTACGCAG CGACGGGGGG GCGAGGTGCG CGGCGACGAG CGACGACGAG23461CAGGGGGTGT CCACCGTCAT CGCGGGGCCG TCGAACCCGA AGGTGTAGGC GATGCGTCCG23521GAGGCCACGG TGACGGTGCT GCCGGTCAGC AGATAGCCGC CGACGCTTCC CGCCGTCTCG23581GGGAGCGTCT CGTGCAGCCG GGGGCCGTAT TCCATGGCCG TCGGGCCGAC GAACACGCCG23641GTGCGGCTTC CGGCCAGGCC GGTCGGGTCG ATGCCGGCCC GCTCCACGGC CTCCCAGGAG23701GTCTCCAGCA GGAGACGCTG CTGCGGGTCG ACGGCCAGGG GCTCGCGGGG CGAGATGCCG23761AAGAACTGCG CGTCGAACCG GTCGGCGTCG TAGAGGAAAC CGCCCTCGCG CGCGTAGGTC23821CGGCCCGGTG CGTCGGGGTC CGGGTCGTAG AGGCCCTCCA GGTCCCAGCC ACGGTTCTCG23881GGGAACACGT GGATCGCGTC GGCGGCCTCG GCGACAAGCT GCCACAGGGC TTCGGGGGAA23941TCGGCGGCGC CGGGGTAACG GCAGGCCATG CCGACGATCG CGATCGGCTC GTCGGAGACC24001GAGGGCGGCG ACGTGGCGTC GCTCTGCGTG GTACGGGCCA GCTCCGCTCC CAGCACTCGT24061GCCAGGGCTC GTGGCGTCGG AGTGTCGTAC AACAGGGTTG CCGGCAGGCT CAGTTGGAGC24121ACAGCGGCCA GCCGGTCGCA CAGGTCCTCC GCGGACTGCG ACTCCAGGCC GAGATCGTTG24181AAGGAGCGGG CCAGGTCCAC TTCGCGCGGA TCGGAGTGAC CGAGCAGCGC CGCCGCCTCG24241TCACGGATGA GGTCCAGCAA CTGCTCGTCA CGCCCGGCAG GAGCGGCCTC GACCAGCCCT24301CGCAGCCAGT CGGAGTCCCG CACGGACGCG GGTGCGGAGA CAGCGGACGT CTTCTCCGGG24361CGGGCCGTGA CGGCCGATGC GGCCGACGCG GTGGCACGCC GCGCGGCACC CTTCAACTCC24421AGACCCAACA CCTGCGCGAG GACCTTCGGC GTCGGGCTCT CGTACAACAG CGTTGCGGGC24481AGACGCAGTT GCAGCACGGA ACCCAACCGC TCGACCAACT CCACACCCGA CGCCGACTCC24541AGGCCGAGGT CCTTGAACGA GCGGGCGAGA TGCACTTCGC GCGGATCGGA GTGACCGAGC24601ACCGCCGCCG CCTCGTCACG GATGAGGTCC AGCAACTGCT CGTCACGCCC GGCAGGAGCG24661GGCTCGACCA GCCCTCGCAG CCAGTCGGAG TCCCGCACGG ACGCAGACGC GGACACAGGG24721GGCCCGGAGG CGGGCACAGC GGCGCCAGCG GGAGCAGCAG GGTTCGGCGT CGGAACGGCG24781GCAGCGCCCT GGCGTGCCAC GGGCGCGGAC GTCGGCGTGG GCTCGGGCCA ATACCGGCGC24841CGGTCGAAGG CGTAGCCGGG CAGTTCGACG CGGCGCGCCG CCGGAAGGCC GTAGAGCGCC24901GGCCAGTCGA CGGCAGCGCC CCGCACGTGC GCGGCGGCGA GCGAGGACAG CAGCCGCGGC24961CGGCCGCCGT CGCCGCGGCC CAGGGCGGGA ATGCCGACCG CGCCCGCGGC GTCGAGGAGT25021TCCAGGATCT CGGGCGGCAG CACGGCGTGC GGGCCGACCT CGATGAAGAC GGTGTGCCCG25081TCGTCCATCA GTTCCTCGAC GGGCGGATGG AAGGGCGCCG GCTGCCGGAA GTTGCGGTAG25141CAGTGGTCCG CGTCCAGGGC GGGGGTGTCC ACCGGACCGC CGAGGGTCGT CGACTGGAAG25201CGCGTCCGGC TCGGCGTGGG CTCGATGCCG CTCAGCTCGT CGAGGAGCGC GTCGCGCACC25261GCCTCGGCCT GCTCGCCGTG CGCACGGCCG CGTGCGACGA CGAGAGCCGC GGCGTCCTGG25321AGGGTGAGCG CGCCGATGCT GTACGCGGCG GCGATTTCGC CCGCGGCGTG GCCGAGCACG25381GCATGGGGCT GGACGCCGAG CGTGCGCCAG GTGTGCGCGA GGGCGGTCGT GACGGCGAAC25441AGCACGGGCT GGACGTGGTC GGGGGTGTCC GGCAGGGTCT CCGGACCGGT GAGGTGGTCG25501AGGAGGGACC AGCCGGTGAG CGGGTCGAGG GCGGCGGCGG CGGCCTCCAC GTGCTCGCGG25561AAGACGGGCA GGGTCGCCAT CAGGTCGCGG ACCGTGCCGG CCCACTGCAC GCCCTGGCCG25621GGAAACACGA ACACGGTCTT GGGCCCGGTG CCGGGCGTGG TGCCGGTCCC GGGGTCGGGC25681GGGGTGCCGC GCAGCAGGCC GTCCGAGGGG CGGCCCTGCG CGAGGGTGCG CAGCTGGGAG25741AGCAGGGCGG ACCGGTCGCC GCCGAACGCG GCGGCGGGGT GCTCGTGATG CGTGCGAATG25801GTGGCCAGGC CGCGCGCCAC GGTGGCGGCG TCCAGCTCGG GGTGCTGCTC CAGGTGCGCG25861GCGAGGGCCG CGGGCTGACC GCGCAGCGCC GCCTCGCTGC GCGCGGAGAT CAGCCACGGC25921GACGCGACGT GCTGCGGGAC GGCAACGGGA ACAGGAAGGG TCGCGGGCGG GGCCGCCGAT25981GACGTCGCGG GTGACGGCGC CGACGACTCG GCCGGGGCGT CGCAGAGCAC GACGTGGCAG26041TTGGTGCCGC CCATGCCGAA CGAGCTGACG CGTGCGACGA TCCGACCGTC CGGGCGCGGC26101CACGGTGTCA GCCCGACCTG GACGCGCAGG CTGAGCTCGT CGAAGGCGAT CTTCGGGTTC26161GGCGTGACGA AGTTCAGGCT CGGCGGCAGC TTCCGGTGCC GGATGGCCAG AGCCGTCTTG26221ACCAGGCCCA CCACGCCCGA AGCACCCTCG AGATGCCCGA TGTTGGTGTT CGCGGAGCCC26281ACCAGCAGCG CGTTGTCGGC CACCCGGCCC ACGCGCGCGC CGAAGGCGGT GCCGAGCGCC26341GCCGCCTCTA TCGGGTCGCC CACGGCGGTG CCCGTGCCGT GCAGTTCCAC GTACTGCACG26401TCGCGGGGGG CCACGTCCGC CTGCCGGCAG GCGGCGCGCA GCAGCTCCGT CTGCGCGGGC26461GCGCTGGGCA CCGTCAGTCC GTCGGTGGCG CGGTCGTTGT TGACGGCGCT GCCCCGGATG26521ACGCAGTACA CGAAGTCGCC GTCGGCACGG GCCTGTTCCA GCGGCTTGAG TACGACCAGT26581GCGCGGCCCT CGCCGCGAAC GTACCCGTTG GCCCGCGCGT CGAAGGTGTG GCAGCGGGCG26641TCGGGCGAGA GGGCGCCGAA GCTCATCGAC GCGGCCATGC CGTCCGGCGC GGCGATCAGG26701TTCACGCCGC CCGCCAGCGC CACCCGCGAG TCGCCGCGGC GCAGGCTCTC GCAGGCGAGG26761TGCACGGCGA CCAGCGACGA GGCCTGCGCG GCGTCCAGGG TCATGCTGGG GCCGCGCAGG26821CCCAGCGTGT ACGACACACG GTTCGGGATG AGCCCACGGC CCATGCCGGT CATCGTGTGC26881TGGTTGAAGG AGGCGGTTCC GGCCCGGGCG ACGACGCTGC GGTAGTCGTC CCAGATCGCT26941CCGACGAACA CTCCGGTGCC GCTGCCGCCG AGCGAGGCGG GGACGATCGC GGCGTCCTCC27001AGCGGCTGCC AGCTCAGTTC CAGCATCAGC CGCTGCTGGG GGTCCATCGC CCGTGCCTCG27061TGCGGCGAGA TACCGAAGAA CCCGGGGTCG AAGGTGTCGA TCCGGTCCAG GTAGGCGCGG27121TACCGGGCCG CACCGGTGGG CGTGGCGGCC GGGTCGGGCC AGCGGTCGGC GGGCGTCTCG27181CCCACCGCGT CCACGCCCTC GCTCAGCAGC CGCCAGAAAG TCGCAGGGTC CGGAGCCGGC27241GGCAGCCGAC AGGCCATACC GACGACGGCG ATGGGCATGA ACCCTTCAGA GATGAAGCGC27301ACCCTCGACG GATATGGAGG AGTCGCCGCG GTGGGCGGCG GGCCGGCCGA GCGTCTCCAA27361CGACGGAAGG AAGTCGAGCT CTTCCAGCGG ACGATCGGTG AAGAAGCGCG CGATCGTCTC27421GGCCCAGTCG GCGGCAGGCG CGAGGAACAC GAGATGGTCG GCCTCCGGGA TGACGGCGAA27481CAGCGCACCC TCGATCTCGG CGGGCAGGGC GCGCGCGCCC TCCATGGTGG CGAAGGTGTC27541GTGCTCCCCG ACCAGGCACA GGCTGGGTAC GCCGCTGATG CCGCCGGGCA GGACGGCATC27601ATCCTGGAGG AGGAGGTCCG AGACGTTGAG GTAGCCGGGA AGATCGGGCT CCTCGATCGT27661GCTGAAGCGA CCGTTGAGGG CCGTGCGGAC GATTTCACGG TTGCGCACCG TGACCGCGGG27721GTGCAGGCAC ATGAGCAGGT CCAGCAGACC TTCGGCGAAC TCGGCGAAGC GGCCCGCCGT27781GAGGATCGGA TACATCTGCG TCATCCGCTC CCGGTTGCGC GGCGGGCAGT CGGCGGCGCC27841GGCCAGGACG AGACGGGAGA CCCGCGACGG GCTCTGCTGG GCGTAGCGGT AGGCCGGCGG27901GAATCCGTTG CTGATCCCCA GCAGGTTCAC ACGCGGCAGC CCCAGCTCGT CGATGAGGTG27961GGCGAGGGCT TCGGTCTGGA CGTCATAGCG GCCTTCGGCG GGCACGGGGT CCGCCGTGCG28021CGAGCCCGGC AGATCCACAC AGACGATGGT GGCCGTGTCC TGCCAGTACT TGTCGAACCG28081CCGGTAGCTG AACTTGTCCT GGTACGCACC GGACAGCACA ACAAAAGGCT CGGTGACCGG28141TGCTTCGCAT TCGACCATCC GGTAGCTGAA CGCAAGACCT TTGTAATGAA GCTCTTCGAG28201CTGCTCGCGC GGATTTCCGG CGCCCACGGA TCAGCTCCTC GAATTTCGGG CGGATGTGCA28261CGGACGGACA ACGGATACAC GTCGGTGCAT GAGCCCGATC TTTGTCGCCG GCCAGGGCAC28321CGACAACCCC TATTTCCCCC CTTAGCCGAA CCGGCTTGCC GGATCGGAGG TGGTCGGAGC28381TGCGAGATGA GTCCCGATAC GAATCCTCTC CAGATTCACC CCCTGGCACA CGACCCATCG28441ACATGTATTC TCGGCGTATG CCCATCATCG AACTTGGCGA ATACGGGCCA GACTTTCTCG28501CAGATCGTTA CCCGTATTAC GCGAAACTCC GCGAGGAGGG ACGCGTGCAC GAGGTACGGG28561CCCCGGACGG CTATCGATTC TGGCTGATCG TCGGATATGC CGAGGGGCGC GCCGCCCTGA28621CCGATTCGCG GCTGGTCAAG GCACGCGACA CGATGGCGAC GTCCGAGGCG TCGCCACTGG28681GCAAGCATGT GCTGATCGCC GACCCGCCGG ACCACACCCG GCTGCGCAAG CTGATCTCCC28741GGGAGTTCAC CGTGCGGCGG GTGGACAACC TGCGCCCGCG CATCCAGGAA CTCACCGACG28801ACTTGGTGGA CGTCATGCTG CCGGCGGGGC GGGCCGACCT GGTGGAGGCG CTGGCCCGGC28861CGCTGCCGAT GGCCGTGCTG TGCGAACTGC TCGGAGTGCC GAACGCCGAC CGGGACGAGT28921TCCACTCCTG GGCCAAGGGC ATCCTCGCGC CGCAGAACGG GAGCGAGACG CACACGGCCG28981TCAAGGCCTT GATGAGTTAT CTCGACGACC TGATCGAGGA CAAGCGGCAC GGAGAGCCCA29041CCGGTGACCT GCTGTCGGGT GTCATACGCA CCACCATGGA GAAGGGCGAC CGCCTCTCCT29101CGGAGGAAGT GCGCTCCACG GCCTTCGTCC TGATGATCGC CGGACACGAG ACGACGGCGA29161ACGTCATCTC CAACGGAACG CGGGCGCTGC TCACGCACCG GGACCAACTG GACCTGCTGC29221GCTCCGACAT GGACCTCCTC GACGGCGCCG TCGAGGAGAT GCTCCGCTAC GACGGCTCGC29281TGGAGAGCAC GACCAAGCGG TTCACCGGTG TGCCGGTCCA GATCGGCGAC ACGGTCATCC29341CGCCGGGCGA GACGGTGCTG GTCAGCCTCG CGTCGGCGGA CCGCGACCCG GCGAACTTCG29401ACGACCCCGA CCGCTTCGAC ATCCGTCGCG GCACCCCGGC CGGCGTCGGC CACCTCGCGT29461TCGGGCACGG GATCCACTAC TGCCTGGGAG CCTCACTCGC CCGCGCAGAG GGCCGGATCG29521CGTTCCGCGC GCTGCTGGAG CGCTGCCCCG ACCTCGAACT CGACCCCGAG GCACCGCCGT29581TCGAGTGGAT GCCGGGGGTT CTGGTCCGGG GCGTGCAGCG GTTGTCGCTG CGCTGGTAGG29641CCGAAGAGAG GCACGTATAC GGATGCAACG GCGAAGCGGN NNCCGCTTCG CGATGAGGGT29701GTGACCGCCG ACGGTGTGGC TGTCGGCGGC ATGACCACTC GTCACCAGGT GACGGGCAGG29761CTCTTCGCTC CCTGGACGTC AAGTCCCGTG GAGAACGGGA TCTCGTTCGG CGCGACGGCC29821AGGCGCAGCT GCGGGATGCG GCTGAACAGC CGTCCGTAGA CCACCTCCAG CTCCATGCGT29881GCCACGCTGT GCGCGACGGA CAGGTGGATG GCGGAGGCGA AGGCGAGGTG GTCGGGGGCC29941GACCGCTGGA TGTCCAGGTC GTCGGGGCGC TCGTACACCG ATTCGTCCCG GTCGGCTGAG30001CTGATCAGGC AGATGATTCC GTCGCCGGGC CGGATGGTCT GCCCGCCGAT CTCGATCTCC30061TCCACCGCCA CGCGCTTGGG CGCGAACTCG GCGACGGTGA GGTAGCGCAG CAGTTCCTCG30121GTGGCCGCCG CGGCCCGTTC GGGCTCCTTG GGCAGCAGGG CGGCCTGCTC GGGGTGGCCG30181AGCAGCGCCA GCACAGCGGT GGTGATGATC TTGACGGTGG TGTCGTATCC GGCGCCGAGC30241AGCAGCCCGA TCTGCATGAG CAGGTTCGTC TCCGTGAGCC TGCCTTCGTC GGCGAAGCCG30301ACCAGGCGGC TGACGATGTT GCGGTCCGGT TCCGCACGGC GCAGTTCGAC CAGTTCCTTG30361AGCTGCTCGA ACAGTTCACG GCGGGCGGCG ACGGCGGTTT CGGCGGAGCC GTCCTCGTCG30421AACAGCCGGG CGGTGGTCTC GCCGAACCGG GCCATCGCCT CGGCAGGCAC CGCGAGCAGC30481CAGCCGACGA CCGTCGACGG GACAGGAGGG GCCAGCGCCG GCACGAGGTC GGCGGGGGTC30541GGGCCCTCCA GCATCCGGTC GATGAGCCCG TCGACGAGCT GCTCGGTCGC CGGACGCAGC30601GCCGGCACCC GCTTGATCAG GAAGTGCGGC GCGAGCATCC GCCGGAGTTC GGTGTGGTCG30661GGCGGGTCCA TCCGGCCCAG CGGCCGTACG CCGCCCTCCG CGGTGTTCAT GGCCTTCGCG30721ACCTCACTCA GCCATGGGAA ACGGGGGTTG AGCGCGTCCA CGCTGGCCCG GGAGTCGGAG30781AGGATCTTGC GCACGTCCTC GTGCCGGCTG ATCAGCCAGG CCTCCCGCCC GTTGTAGAGC30841CGCGCCTTGG ACACCGGCTG CTCGGCGCGC AACGTGCGGT AGACGGGCGG GGGATCCATC30901GGGCAGCCGG GCGCCTTCGG CATCGGATAT GCCGGCGGCG TCTCGGAGGA GCTGTCCGTC30961GTCAGGGGCG GTGTACCGGT GGGCACGGCG TCGGTCGAGG TCATCGTGGC GACCCTCCTG31021GGAAGACTTC TGGTGGGGTG GTTCTGTCGC GGCGGGCGCG TGTCACGTTT CGACAGGCCT31081GGGCGCGCGT CACATCTCGG TGGGTGGGTG TCATGCCCTG GCCGACACAA GCCCGTGGTT31141CCGTTCGGCC CGCTTCGAGC CGATGTACGA GAGGACCGTC GCGCACAGCG CGAGGGCGGC31201GCCGACCGCG ACCGACGTGG CAGGACCCGA GGCCTCCAGC AGCACGCCGG TCACCGGCAT31261GCTGAGCGCG GGGCCGCCGG TGCCGGCGGT GGCCAGCCAG CCGAAGGCTT CCGCCCGGCG31321CTGCTGCGGC ACCGCTCCGG ACACCTGCGG GAAGTTGCCG GCCATGCTCG GGGCGATGGC31381GGTGCCACCG AGGAAGAGCA CGACCAGCAC GAGCCAGACC GGAGCGGTTT CGGTGACCGG31441CGGCAGCAGC AGCGCGAGCA GCGCCATGCC GACTGCCATC GCCGCGAACC GGGCGCTGTG31501CGGCACGTCC TTGCGCAGGG CGCCCATGCC GAAGCCGCCG ACCACGGATC CGATCGTCCA31561GCATGCGATG AGCACGCCGG ACAGTCCGGA CTCGTGGCTG TCGCGGGCCC AGGCGACCAG31621GGAGAGGTTC ACCGAGAAGA GGGCGGCCAT CATCACCAGG GTCACGACGA TGGCGAGGGT31681GAACTTCGGC AGGGGGAAGA GGGTACGTCG CTCCTCGGGC TCCGGTGCGG ATGCTCTCGT31741GACCGCGGAC GCCGACGTGG CCGTGTCTCC TTCCGTGCCG GCGTGCGCTC CCGTTTCCGC31801TGCTGTCCGC GTCTCTGGTT GTGGTTTCGC GGCGGTCCGC TCCGCCCCGC CGCGGATCCC31861GGCGCTGCCC AGCGCGGCGG CGAAGGCGAG CGCGCCGAGG AACGCCACGA CGCCGCACGC31921GATGACGGCG TATCCGGGGT CGAGGGCGGT CACGAGCAGT GAGGTGAGCA GCGGCCCGGT31981GGTCTGCACC ACCTCCGAGC CGGTGGCCTC CAGTGTGAAC AGCGTGCGGG CGAGTTCGCC32041GGGCACGATC TTGGGCCACA CCGGGCGGCT GACCTGCGAG ATGGGCACGG TGCTCATTCC32101GGTGAGCAGG GCGACCAGCA CCGCGATCGG CCAGCCGCCG CCCGGCACGG TGCGGGTCAT32161CGTCACCAGT GCACCGAGGC CGACGAGGTA GCCGATGCCG GTCAGGACCA GCAGCTTGCG32221GACCGCGCCC CGGTCCGCGG CGCGGCCCCG GGCGGGTCCG ACGAGCGCCT GCCCCGCGGT32281GAGCGCCCCG CCGAGCACGC CGGCGGCGAC GTAGGAATCG CTCGAGCCGA CCAGCACCAG32341CGTGAGGCCG ATCGGCAGCA TGGAGACGTT GAGGCGGGGC AGCATGGACC AGAGGAACAG32401GCGCGGCAGG TGCGGAATGC CTGCCAATGC CTTGTAGGAC TTCACGGTTC ACACCCTGTT32461TCGCAAGTCA TGACGCATAC GCGCCCGCCG TGCGGTTCGG CGCCGGCGGA CGCTGCGTCT32521TGATCAGGTC TCTTCGGACG TTCGGGGCCG CTCAGAAAAC CTGGAAACGG GCGGCGATGC32581GGTCGGCGTT GTCGGGGTTC TGCCGGGCCC GCTCGATCAG CTTCTCGTTG CTCCAGGTGC32641TGGCGGTGGT GGCTGTCTCG TCGCCCGCGT TCTGGCGTGC GGGGTAGATC CAGCCCTCGG32701CGGCGCAGCG GAACCGGAGG ATGTCGGCGA GGAAACGGAG TTCGGCCCGG TCGGCGGGCG32761CCTCCTCGAA GTAGCCGCGC ACGAGCGGCT CGCCGTCCGT GTCGTCCTCC AAGTAGCTGA32821GTGTGGTGGC CAGTTCCAGC ATGCAGGGTG CGTACATGGC CTCCGACCAG TCGAGCAGAG32881CCGCGGTGTC GCCGAGGACC CGGAACTCCT TGGCCGCGGC GTCGGAGTTG ATCAGGCCGA32941TGGTCAGGTC GTCGGGCGAC AGCGCGCCGC CCGCCTGCTG CAGCGTGCGC CGGATCCAGT33001GGTGTGGCTT GAGGAAGTCC TGTTCGAGCA GGAAGAGTTC GAGCACCTCG TTCCAGCGCG33061GCACGCCCTC GGGGACGGGG GCGTGCAGCA GGACGGAGTC GATCCGTCCG AGGGTCCGGC33121CGACGGCGCG CAGGTGGGCC GGGTGGGTCT CGTCGACACG CTCACCGTCG AGGTAGGTCA33181GCAGGCTGTA GCAGAAGTCG CCCTGATAGG CGGTGACTTC TCCGCCGGTG GTCGGCAGCG33241GGCCGCCGGC GGCGATGCCG TGCCGCTCCA CCTCCTGGGC CAGCAGGAGT CGTGCGGTGA33301GCTTCGGCCC CATGTCCTTG CGGAGGGCCT TGACGACGTG GCGTACGCCG TGGTGCCGGA33361GGAGGTAGGT GTGGGAGCTG TACCCCTCGT CTCCGGGCAG CCGCTCCCAC GGCTCGACGG33421TCCAGTCCTG CCAGCCCCAG AGGGTCAGCG GCAGGTCGTG CGCTTCGGGT ACCGCGGCTG33481CGGCGTCGGT CGATTCCGGC ATTGAAGGGG TTTTCGTTGT CTGGTCGTGA TGTTCCGAGT33541TCCATGTCCG ACGGCCGCGC GGTCGCGGGG TCGCGCGGTC GCGCGGTCGC GCGGTCGCGC33601GGTGGCGCGG TCGCGGCATC ATGTGGTCAT GTGGTCATGC GGTCACGGGG CAGGGTCATG33661GTCCGCGGGC GCGTCCCAGG CGACGGGGAG CGAATTGACG CCGTACACCA CGGAGTTCGC33721GCGGAACTCG ATGTCCTCGA AGGGCACGGC GAGGCGGAGC GTGGGGAAGC GGTCGAACAG33781GCGCAGGTAG GTCACCTTCA TCTCGACGCT GGCGAGGTGG TGGCCGATGC ACAGGTGGAT33841GCGGTGGCCG AACGCCAGGT TGCGCTCCTC CGCCCGGTCG AGGCGCAGCC GGTGCGGGTC33901GGTGTAGAGC TCCGGGTCGT GGTTGGCCGC GGCCATCGAA CCGACCACGG TCTCGCGCGC33961CTTGATGAGG TGCGCGCCGA TCTCCACGTC CTCGGTCGCC AGGCGGGCGA AGTTGAACTG34021CACGATGGAC AGGTAGCGCA GCAGTTCCTC GACGGCGGTG TCGATGAGCG ACGGATCGGA34081GGGCAGGAGG GCGAGCTGGT GCGGGTTGCG CAGCGGGGCC AGGGTGGCGA GGCTGAGGAT34141GTTCGAGGTC GACTCGTGCC CGGCCATCAG CATCAGGGCG CACATTCGGG CGATCTCGAA34201CTCGGATATC CGGTCCTTCT CCTCCGCTGG ATCGAGCAGA TCGCTGATCA GGTCGTCCGA34261CGGGTTCTTC TTCTTGTCCT CGATCAGGTC CAGCATGAAC TTGGTGCCTT CGAGGACGGT34321GCGCTGCTGC TCCTCGTCGG ACAGTTGGGT GTCGAGGATG CTCAGGGACC AGCGCTGGAA34381GTCGTCGCGC GCGTCGTAGG GCACGCCGAG CAGGTCGCAG ATGATGAGCG ACGGGATGGG34441CAGGGCGTAG GCGGTGACGA GGTCGACCGG GCCGCCCGCC GTCTCCTCCA TCCGGTCCAG34501GTGCTCACGG GTGTACTGCT CGATCTTCGG CTCAAGAGCC TTGATCTTCC GGACCGCGAA34561ACGGCTCGCG GCCAGTCGCC GGTAACGGGT GTGGTCCGGC GGGTCCATGG TGAAGAAGGC34621GCCGGGCAGC GGCGTGGGGC GGCCCTCGGT ACGACGAGTG CGGGCGGCCT TCTCCCGGAC34681CGAGCTGAAG GACGGGTTCG CCAGCATCGC CTTGACGTCC GCATGGCGGG TGAGCAGCCA34741GCCCTGGTTG CCGTCCGGGA AGGCGATGGG ACTCACGGGC GCCTCGGCGC GCACGTTCGC34801GTAGCCGTCC GGGGGGCTGA AGGGGTCGCT GCGGTGCAGG GGCAGGCCCT GCAGGAGAGA34861AAGAGTGTTC ATGGTCGTCC TTCCTCAGAG GGCGTCGGTG TTTCGAGTCG GTGCGTACTG34921AGGGGTGCGG AGTGGTACGG GGCGGGCGCG GACGCGCGGC GGCCCCGTAC CTGCTCGATC34981AGGGCCGGGT GAGGCCCGGC GTACGGCTCA GCCACTCGTC CACCGCCGCG GCCGTGGTCT35041CGGAGAATTC GCCGATCATG GTGCAGTGGT CGCCCGGCAC CTGCGTCTCC TCGTGGTCGA35101GGGGCCACGC CGCCTGCGAG TCGGGGCCGG CCATGGGTTC CTCGGGGGAA CCCGGGATGC35161AGCTGTCCGG GCGGACGAAG AGAGTCGGCA CGGCGAGTTG CCGGGGCTGC CAGCCGCGGA35221ACATACCGCG GTACGTACCG AGGGCGGTGA GGCCGTCGTA GTGCATCGAC GTGAACCGCA35281TCCGGCGCTC GACGACCTCG TAGGTCATGG CCTTGCGCAT CTCCAGCGTC ATGCTGTCGG35341GCGGGTAGGT GTCCAGCAGG ACGACGCCGA CCGGGCCTGT TCCGCGCTCC TCCAGCCAAG35401TGGCGGCGGC CTGGGCGAGC CAGCCGCTGG ACGAGTAGCC GAGCAGCGCG TACGGCCGGC35461CGTCCGCCGC ACGCAGCACC GCCTCCGCCA GTGTCTCGAT CAGCAGCTCC AGGGAAGCGG35521CGAGAGGCTC GCCGGCCATG AAGCCCGGGA CGGTGACCAC GGAGACCCGG CGGCGGCCAC35581GGAAGTGGTT GGCGAGGCGG GCGAACTGGA GCGAGCCGTC CAGGGGCGCG AACGGCGGGA35641AGGAGAGGAG CTGCGGCTCC GCCTCGCCGT GGCCGAGGGT GGTGACGTGC GCGCCGCGGC35701CCAGGTCCTC GGCGCCGTGG AATCTGGTGC GCAGGGCGGA GGCGCTGCTG AGGAAGGCCT35761CGACCTCCTG CATCCGGGCT TGCAACGAGA GCTTGCGGTA GATGCCGACG ACGGAGTCGT35821TGGAGTCCTG CGGCGGCGCG GCGGCCAGGG AGGCGGACGG CGCCGCGGAC ACGCCGGGCG35881CCGGTGACGC GCCGGCGTGG CCGCCCGGCG CGGCATTGTC CAGCAGATGG GTCACCAGGG35941CGCCGAGCGT CGGATGGTCG AACACCAGGG AGCTGGGCAG CGCCAGGCCG GTCAACACGG36001TCAGCCGGCC GCGCAGTTCG ACCGCGGCCA GGGAGTCGAA GCCGAGCGCC AGGAACTCCT36061GGTCCTCGGT GATCGTGCCG GCGTCCGCGT GCCCGAGGAC GCGCGCGGCG TGGCGACGGA36121CGATATCGAG GACGTAAGGG CGCTGATCGG CGAGCGGAAG GTCCGGCAGG CGCTGCCATT36181CGCCGGGCTG CGCGGCACCG GTGGGTCCGG CATCGGGGTG TCCGGCACCG GACTCCGTAT36241CGTCGAAGTC GGCGAACAGG TGGTTCGGCC GGCCCGCGGT GAAGACGCCG ATGAACCGTG36301GCCAGTCCAG GTCCGCGACG ACGATGGCGG TGTCCTCCTG CCTGACCGCC CGGTCGAGGG36361CGGTGGTGGC CAAGCGCGGG GTGAGCGGCC GAAGGCCCCG GCGCTGCATC TCCTGCGGGA36421ACTGTTCTCC GGCCATGCCG CCGCCGCTCC AGGGCCCCCA GGCCAGCGTG GTGGCGGCGG36481CGCGGCGGGG GCGGCGGCGC TCGACCAGCG CGTCCAGGAA GGCGTTCCCG GCCGCGTACG36541CACCGCCGCG GGTGGTGGCC GAGGTCCCCG CGATGGACGA GTAGACGACG AACGCGGCGA36601GTCGGTCGCC CAGCACCTCG TCCAGGATGA GGGCACCGGT GACCTTCGCG TCGACGACGG36661CGGCGAATTC GGTCGCGTCG AGATCAGCCA GCGGATGTTC GGCCGCCACG CCCGCCGTGT36721GCACGACCGC ACCGACGGGG GCACCGCGGC CGGCCAGGTC GGGGGCGAGC GCCGGGAGCT36781CGTCGCGGCT GGTCACGTCG GAGGACACCA GGTCCACCGT GGCACCGTGG GCGGCCAGTT36841CGGCCCGCAG GTCCGCGGCG CCGGGGGCGT CGGGCCCCTG GCGGCTGGCG AGGACGAGGT36901GCGGGGCACC CTGCTCGGCG AGCCGACGCG CCGTGTGCGC GCCGAGGGCG CCGGTGCCTC36961CCGTGATGAG GACCGAGCCG TGCGACCACC AGGGTTCGCG CGCGGCGGGC GGCTGCGGAT37021CACCGGTCCG CCCGGTGGCG TCGGCCCCCT CCGGGGCGAC GAGGGATTCC GGGGCGACGG37081GGCGTACGGG CTCGGGTGCG CCGTCCGGGC CTGGGGGCCG CAGGCGGCGC ACCCGTGCTC37141CGTCGGCACG CAGCGCGACC TGGTCCTCAC CACTGGATCC GGCCAGCAGC GCCGCCAGGC37201CGAAGGAGGC CTCGGCCGTC GCGGCGAGGG CGTGCCCGTC TGCCGCGGAC AGGTCGGGCG37261CGGGCAGGTC GACCAGGCCG CCCCACAGGG TGGGGTGTTC GAGGGCCGCG ACCCGTCCGA37321GGCCCCAGAC CTGGGCCTGC CACGGGTCGG GAGCGTCGTC GGACGCCGTC GCGCGGACCG37381CTCCGCGGGT GAGCGTCCAC AACCGGGTCG CGCTCCAGCC CGTGTCGAGC AGCGCTTGGA37441GAAGGCACAC GGAGGCCCAG GCGCCGGAGC CGACGCCGCG CGGCCCGGTG TGCTCGCGGC37501CGGACAGGGC GAGCAGCGAG ACCACTCCGG CGGGAGTGTC GTCGAGCCCG TTCAGCAGCT37561TGGCGATGGT CTGGCGGTCG ATGTCCTCGG GCGCGAGGGA CAGCGACTTC ACCTCGGCGC37621CGGCATCGGT CAGCACCCGA CGCACCTCGC CGTGCAGCCC GTCGTGCAGC CCGTCGTTGT37681CGAGCAGGTG GCCCGCGCGC AGGTCGCCTT CGGGTACGAC GATCAGCGAG GTGCCGTGCA37741GGGTGGCGGG CCCCTCGGGG GCGTGCTGCG CGGTCGGCCG CTCCCAGGCG ACGCGATAGC37801GCCATCCGTC CGTCTCGGAG GCCTCGATGT GCGTCTGGTG CCAGTCGCCG AGCGCGGGCA37861GGACGGTGTG CAGCGGAGCG TCGGGGTCCA CGCCGAGGTC GCTCGCCAGC CGCTGGAGGT37921CCTGTTCCTG GACGACCTTC CAGAACGCGC CGTCGCTCCC GGCCGTCCGG GATGCCGCCG37981ATCCGGGCCG GACGGAGGCG CCCTTGAGCC AGTGGTGTTC GTGCTGGAAG GCGTAGGTGG38041GGAGTTCACG GGCGAGGTCG TCGGCCCGGC CGAGAGCGGT CCAATCGACC TGGTGACCAC38101GCGCGTGCAC CCGGGCCAGC ATGCCGAGGA ACGCCCGGGT GTCCGTGGAA CGCCGGCTCA38161GCGTGGGCAC GAACGCCACG TCCCGCGCCG CCGAGTCCCG CTCGGCGGAC GCGGCGCGCA38221CGCGCTCGCC CAGCGCCGTC AGGACGGGGT CGGGCCCGAG TTCGACGACG GTCGCGACGC38281CCTGGGCCAG GACCGCGCCG ACTCCGTCCC CGAACCGCAC CGCTTCGCGC ACGTGCCGCA38341CCCAGTACTC CGGCGAGCAC AGCTCCTCGG CGTCCGCGAT CGTGCCGGTC ACGTTGGACA38401CGACCGGAAT CGACGGGGCA CGGAACTCCA CCTGCGCCAG CACGTCCGCG AACTCGGCGA38461GCATCGGCTC CATCAACGGC GAATGGAACG CGTGGCTGAC CGCCAACGCC CGTGTGCGCC38521GCCCCCGTCC GGCAAAGATG TCCGCGATCT GGTCCACCGC GGCGTCCTGA CCGGACACGA38581CCACAGCCCC TGGAGCGTTC ACGGCTGCCA GCGACACCAT GCCCCCGGCA GCCGCCACAT38641CCGCGACGAG CGGCGCGACC TCCTCCTCGG TGGCCTCCAC CGCCACCATC CGCCCACCCG38701ACGGCAACGA ACCCATCAAC CGGGCCCGGG CCACCACCAC CCGCACCGCA TCCGCCAACG38761ACCACACACC CGCCACATAC GCGGCGGACA ACTCCCCCAG CGAATGCCCG ATCAACACAT38821CCGCACGCAC ACCGAAAGAC TCCGCCAGCC GATACAACGC CACCTCGACC GCGAACAACG38881CAGGCTGAGC AACCCCCGTA TCCTCCAAAA CCCCCGCATC ATCACCGAAG ACCACCCCAA38941GCAGCTCTGC TCCCGTCTGC GCCTCGACCT CCGCACACAC CTCGTCCAAC GCAGCCGCGA39001AGACCGGGAA CCGCCCATAC AACTCACGCC CCATCCCCGG ACGCTGCGAG CCCTGACCCG39061AGAACGCCAC ACCCACACCA CCAGCGACAC GACGCTCAAA CACCACACCA CCGGCAGCGG39121AACCGTCACC CCGCGCAACC CCACCCACAC CGGCCAACAA CTCGTCCAAC GACCCACCAC39181TGACCACAGC ACTGTGATCG AACACCGAAC GCGACGACAC CAACGCCAGA CCCACACCCC39241CCACATCCAG CGCACCACCC CCGCGTCCCG CCACGAACGC CGCAAGCCGC GCCGCCTGAG39301CCCGCACCGC ACCCTCAGTA CGACCCGACA CAACCCACGG CAACTCCCCA GCAACCACCA39361GCGCTTGAGT GGACTCCACC GGAACCTGAG CGGACCCCAC CGGAGCTTCA GTGGATTCCA39421CGGGCTCGTG CTCCAGGATC ACGTGCGCGT TCGTCCCGCT GATACCGAAC GACGACACAC39481CCGCCCGCCG CGCACGACCC GTCTGCGGCC ACTGCCGAGC CCGCGTCAAC AACTCCACCG39541CACCCGCAGA CCAATCCACA TGCGGCGACG GCTGCGACAC ATGCAACGTC CGCGGCAACA39601CCCCGTGCCG CATCGCCATC ACCATCTTGA TCACGCCACC GACACCGGCA GCCGCCTGCG39661TATGACCGAT GTTCGACTTC AACGACCCCA GCCACAACGG ACGGCCCTCC GCCCGGCCCT39721GCCCGTACGT CGCGATCAAC GCCTGCGCCT CGATCGGATC ACCCAGCCTC GTCCCCGTCC39781CGTGCGCCTC CATCACATCC ACGTCCGACG TCGACAACCC CGCACCCGCC AACGCCCGCA39841CGATCACCCG CTGCTGCGAG GGACCGTTCG GCGCCGTCAA CCCGTTCGAC GCACCGTCCT39901GGTTCACCGC ACTGCCCCGC ACCACCGCCA ACACCTCGTG CCCGTTGCGC CGCGCGTCCG39961ACAAACGCTC CAGCACCACC ACACGCACAG CCTCGGACCA GCCCGTCCCC TCCGCATCCG40021CGGAAAAAGA ACGACACCGG CCGTCCGCCG ACAGAGGACC CTGACGACCG AACTCCACGA40081AGGCGTACGG CGTCGCCATC ACCGTCACAC CACCCGCGAG CGCCAACGAA CACTCCCCCG40141CACGCAACGA CTGCACCGCC AGATGCAACG CCACGAACGA CGACGAACAC GCCGTGTCCA40201CCGTCACCGC AGGAGCCTCG AACCCGAACG AATACGAGAC CCGGCCCGAG ATGACGGAGC40261TGGCCGATCG CGTTCCGCCG AGGCCTTCGG GCGCGTCGAC GATCTCCGTG CCGACCAGGC40321CGTAGCCCTG GACGGCGCCG CGCATGAAGA CGCCAACCGG CTTGCCGCGC AACGAGTCGG40381CGCTGATGCC GGACCGCTCC ACCGCCTCCG AGCAGGTGTC CAGGGCGATG CGCTGCTGGG40441GGTCCATGGC GGCGGCATCG CGCGGCGAGA TGCCGAAGAA GCCCGCGTCG AACTGCGCGG40501CGTCGTGCAG GAACCGGCCG CCCGCGGCAG GCAGTCGTCC GAGGTCCGAG CCGCGGTGGG40561CCGGGAACGG CGAGATCGCG TCCCGCCCCT CGGCGACCAG TCGCCACAGG TCCTCGGGCG40621AGGCAACCCG GCCCGGATAC TTGCAGGCCA TGCCGACGAG CGCGATCGGC TCGTTCCCGG40681CTGCCTCGAG TTCGCGCAGC CGGCCGCGGG TAGGCAGCAG ATCGCCGGTC AGTTCCTTGA40741CGTAGTGGGG AAGCTTGTCT TCGTTGGTGG ACACGGTGCG CCAGCTCCTT GTTGGTGCTG40801AGGTTTGCGA ACGCCGGCGT CAGGAGATGC GGAATTCCTT CTCGATCAGA TCGAAGAGCT40861GATCGTCGGT TGCCGAGTCG AGTTGCTGGG GAGCTGTTTC CGCCGCGCCG GAGGCGGCGG40921TGGGCTCGTC GTCGGCGTTC TGGAACCTGG TCAACAGGTT GGAAAGCCGC AGGGTGATAC40981GGCCGCGGGC GGCCGGGTCG GACCCGGCGT CGAGCGCGGC GAGGGCCGCT TCGAGCCGGT41041CCAGCTCACC GAGGACCGCC GACGCGCCCG ACGCGGCGCC GAGCCGCTCC GCGAGGGCGG41101TCGCGACGAC CTGTGCCAGG GCCGCGGGCG TGGGGTGGTC GAAGACGAGC GTGGCGGGCA41161GCTTGAGGCC GGTGAGCTTT TCGAGCCGCT GCCGCAGACG GACTGCAGCC AGCGAGTCGA41221ACCCGAGTTC CTGGAAAGGG CGTTCCGGCT CGATCGTGCC GCCCGAGGCG TGCCCGAGTT41281CCGCGGCGGC CTGCGTGCAG ACGGTCTCCA GCAGCACGCG TCGGGGTTCC CCGCCGGACA41341GCGCGGTCCA GCGGGCGAGG AAGGGGGTGG CCCCTGCGGT ACCGGCGTCG CTGTCGCCCG41401GGCCGGAGAC GTCGTCCGCA CCGGCCGTGC CGGCCGCCGT CCCGTCCGCG CCGACGCCGC41461CGCGTTCCGT TTGCACGGTG CGGAGCGGGT CGAACAGGGG GCTCGGACGG TTGACGGTGA41521AGATGTCGGC CAGGCGTGAC CAGTCGATGT CGGCGAGGAC GACGGTGCCG TAGTCCGCCC41581TCACGACGCG GCCGAACGCG GCGACGGCCT CCTCCGGGTC GAGCGCGCTG ACGCCGCGGG41641CCTGCATCTC CCGTGTGAGG CGTTCGTCGG CCATGCCGCC CCCGCCCCAG GGGCCCCAGG41701CGAGGGCGGT GCCGGGACGT CCCTGGGCGC GCGGCGGCTC GATCAGCGCG TCGAGATGCG41761CGTTTCCTGC GGCGTAGGCA CCGGCACGAG CGCTGCCCCA GACCCCGGCG ATGGAGGAGT41821AGACGACGAA CGCGGCGAGT CCGTCGCCCA AGACCTCATC GAGGACCTGC GCGCCGACGA41881CCTTCGCGCG TACGACGGCG GCGTAGCCGT CCTCGTCGAG CTCCGCGAGC GGCAGTTCCG41941AGGCGACGCC CGCGGTGTGG ACCACGGTGC TGAGCGGCGT TCCCGCGTCG GCAAGCCTGT42001CCCGGAGGGC GGCGAGGGCC ACGGCGTCGG TGACGTCGCA GGACTCGACG ACGACGTCGG42061CACCCCGCTC CTCGAGTTCC GTGCGCAGCG CGGCCACCGC GGGTGCGGCA GGGCCCTGAC42121GGCTGGTGAG GACGAGGGTC CGCGCGCCGT TCCGGGCGAG CCAGCGCGCC GTCTGCGCGC42181CGAGGGCGCC GGTGCCGCCG GTGATCAGGA CGGAGCCGTC GGTCGAGGGC GCCGTGGAGC42241CGGTCTCCGG CTCCGGCACG CTCGTGGGTA CCGTGCCGCG GATCAGCCGA CGACCGAGCA42301ACAGCTGGCC TCGCAGGGCG ATTTGGTCGT CACCGGTGGT GTTGGCAAGG GCAGCGGCAA42361GGCCGGTGAG GTGCGCTGCG GGACTCGTAC CGGAGACGTC GATCAGACCG CCCCAGAGGG42421TGGGGTGTTC GAGGGCCGCG ACCCGTCCGA GGCCGCAGAC CTGGGCCTGC CACGGGTCCG42481GCGCCGCGTC GTCGGCCTGC GCACACACCG CGTCGCACGT GAGGGCCCAT ACGCGGGTGT42541CGACTCCCGC GTCCTGCACG GTGTGCAGGA GATCGAGCAC GGCCAGGGCG CCGGTCGCGA42601TGCGGCGCTC CCGGTCGCCG TCGCGCTGGG CGCCGACCGC GGGCAGGCAG AGCACGCCGC42661GGGGCGGCAC TGCGGCCAGC CGTGCGCGCA GCTCGGCCGT CTGGCACCGC TCCACGCGCG42721CCCCCGGGTC GACGAGCGCG TTTTCGACCG CAATTACGAG GTCCGGTTGG ACGGGCTCGC42781CGGGCACCGC GACCAGCCAC GTGCCGTCGA GCGGCACCGC GTCCGTCGGC GACGGAAGCT42841CCGTCCAGGA GACGCGGTAG CGCAGGGCGT CGGCCGCTGG GAGCCGGGCC TGTTCCCTGG42901ACCAGGTCTG GAGCGCGGGC AGCACCGCGG TGAGCGGCGC GTCCGGCGCG AGGCCGAGGG42961TATGGGCGAG GCGGTCGACG TCCTGCTGCG CGACCGCGTT CAGGAGTACG GCCTGCTCCG43021GGACGTGCTC GACGACGCCG GGCTCGGGCG CGGGGGCGTC GAGCCAGTAA CGCTGATGCT43081GGAAGGGGTA GGTGGGGAGT TCACGGGCGA GGTCGTTCGG CCGGCCGAGA GCGGTCCAGT43141CGAGCTGGTG ACGACGCGCG TGCACCCGGG CCAGAGCCGT CAGGAAACCG TTCACATCAC43201CCGTCCGCCG CCCCAGGGTG GGCAGGAACA CGGCACCGTT GTCGACGACT CCCGGATGCG43261AGGGACCCAT CGCCGTCAAC ACCGGCTCGG GCCCCAGCTC GACAACGGTC GCGACGCCCT43321GCGCCAGGAC CGCACGGACC CCGTCCCCGA ACCGCACCGC TTCCCGCACG TGCCGCACCC43381AGTACTCCGG CGAGCACAAC TCCGCAGCGG ATGCGACCTC ACCCGTCACG TTCGACACGA43441CCGGAATCGA CGGGGCACGG AACTCCACGC GCGCCAGCAC GTGCGGGAAC CCGGGGAGCA43501TCGGCTCCAT CAACGGCGAA TGGAACGCGT GCGAGACACG AAGACGAGTC GCACGACGCC43561CTCCGCCGCG CGCCCGGTCC ACCACCGCCT GAACGGCACC CTCCAGACCC GAAACAACCA43621CCGCCGCCGG CCCGTTGACA GCAGCGATCA GCGCACCGTC CACCAGCCAG CGGGACACCT43681CCTCCTCGGT GGCCTCCACC GCCACCATCC GGCCACCCGA CGGCAACGAA CGCATCAACC43741GGCCCCGGGC CACCACCACC CGCACCGCAT CCGCCAACGA CCACACAGCC GCCACATACG43801CGGCGGACAA CTCCCCCAGC GAATGCCCGA TCAACACATC CGCACGCACA CCGAAAGACT43861CCGCCAGCCG ATACAACGCC ACCTCGACCG GGAACAACGC AGGCTGAGCA AGCCCCGTAT43921CGTCCAAAAC CCGCGCATCA TCACCGAAGA CCACCGAAAG CAGCTCTGCT CCCGTCTGCG43981CCTCGACCTC CGCACAGACC TCGTCCAACG CAGCCGCGAA GACCGGGAAC CGCCCATACA44041ACTCACGCCC CATCCGCGGA CGCTGCGAGC CCTGACCCGA GAACGCCACA CCCACACCAC44101CCGCGACACG ACGCTCAAGC ACCACACCAC CGGCAGCGGA ACCGTCACCC CGCGCAACCC44161CACCCACACC GGCCAACAAC TCGTCCAACG ACCCACCACT GACCACAGCA CTGTGATCGA44221ACACCGACCG CGACGACACC AGCGCCAGAC CCACACCCCC CACATCCAGC GCCCCCGCAC44281CGCCCCCGCG TCCCGCCACG AACGCCGCAA GCCGCGCCGC CTGAGCCCGC ACCGCACCCT44341CAGTACGACC CGACACAACC CACGGCAACT CCCCAGCAAC CAACGGAGCT TCAGTGGACT44401CCACCCGAGC CTGCACAGAC CCCACCGGAA CCTGAGCGGA CCCCACCGGA GCTTCAGTGG44461ATTCCACGGG CTCGTGCTCC AGGATCACGT GCGCGTTCGT CCCGCTGATA CCGAACGACG44521ACACCCCCGC CCGCCGCGCA CGACCCGTCT CCGGCCACTG CCGAGCCCGC GTCAACAACT44581CCACCGCACC CGCAGACCAA TCCACATGCG GCGACGGCTG CGACACATGC AACGTCCGCG44641GCAACACCCC GTGCCGCATC GCCATCACCA TCTTGATCAC ACCACCCACA CCGGCAGCCG44701CCTGCGTATG ACCGATGTTC GACTTCAACG ATCCCAGCCA CAACGGACGG CCCTCCGCCC44761GGCCCTGCCC GTACGTCGCG ATCAACGCCT GCGCCTCGAT CGGATCACCC AGCCTCGTCC44821CCGTCCCGTG CGCCTCGACC GCGTCCACAT CCGCCACGGA AAGTCCCGCG CCCGCCAGTG44881CCTGGCGAAT CACGCGCTGC TGGGACGGGC CGTTCGGCGC CGTGAGCCCG TTCGACGCAC44941CGTCCTGGTT CACCGCACTA CCCCGCACCA CCGCCAACAC CTCGTGCCCG TTGCGCCGCG45001CGTCCGACAA ACGCTCCAGC ACCACCACAC CCACACCCTC GGACCAACCG GTGCCCGATG45061CGTCGGCGGA GAACGAACGG CACCGGCCGT CGACGGCCAG TCCGCCGTGG CGTCCGAACT45121CCACGAACGC GTACGGCGTC GCCATCACCG TCACGCCACC GGCGAGCGCC ATCGAGCACT45181CCCCCGCACG CAACGACTGT GCCGCCAGAT GCATCGCGAC CAGCGACGAC GAACACGCCG45241TGTCCACCGT CACCGCAGGA CCCTCGAACC CGAACGAGTA CGAGACCCGT CCCGACGCGA45301TGCTGCCGGA GCTTCCGTTG CTGATGTAGC CCTCGTACCC CTGCGGCGAG CGGTTCAGGT45361GGCGGGCGCC GTAGTCGTTG TACATGACGC CCATGAACAC GCCGGTGCGG CTGCCGGTGA45421GCGTCTCCGG CCGGGTGCCG GCCGACTCCA GGGCCTCCCA GGAGGTCTCC AGGAGCAGTC45481GCTGCTGCGG GTCGGTCGCG GTCGCCTCGC GTGGCGAGAT GCCGAAGAAC TCCGCGTCGA45541ACTGGGCCGC GTCGTGCAGG AACCCGCCCT CACGGGTGTA CGTCTTGCCG GGCTGCTGCG45601GGTCCGGGTC GTAGATGCCG TCGAGGTCCC AGCCGCGGTC GGCCGGGAAC GGCGAGATGG45661CGTCCCGCCC CTCGGCCACC AGCCGCCACA GGTCCTCGGG CGAGGCAACC CCGCCCGGAT45721ACTTGCAGGC CATGCCGACG ATGACGATCG GGTCGTCGCC CGCATCCTGC GGATGGCTCG45781CCGACGCCCG CGCCGCGGGC TCGGCGACCG CGAGCGCGGT GGACCCGGCC GGCTCCCCGA45841CGACTCCGCG AGCGAGTTCG TCGTACAGGA ATTCCGCGAC CGCGAGCGGA GTCGGGTGGT45901CGAAGACCAG CGTCGCCGGA AGGCGCACGC CGGTGGCGGC GCCGAGCTGG TTGCGCAGTT45961CGACGGCGGT GAGGGAGTCG AGGCCGAGCC GGTTGAACGG CTGGGCGCGG TCGACGGCCT46021CGCGGTCGGC GTGTCCGAGC ACGTACGCGA CCTTCTCCGC GACGAGGCCG CCGAGGATCT46081GAAGGCGCTC CTCGCGGTCG GCCACGCGAA GCTCGGCGAG CAGCGGCGCG CTCGCGCTGC46141CGGCGGTCGC CGCGGTGCCG CCGGCCACAC GGGAAGAGGG TCGGGGCCTG GTGCTGACGA46201CCGCTTGGAA GACGGCGGGC AGCGATCCGG CCGCGGCCTG CTCGTCGAGG ACGGGGGCGT46261TCAGCCGGGC GGGCACGAGC AGGCCGTCGG CGTGCGTTCC GACGGTCTCC GGGCCGGCCT46321CCGAAGCGCC GAAGGCTGCG CCGGCTGCTG CGAGAGCGGC GTCGAACAGC GTGACGCCCT46381GTTCGCGGCT GATCTCCAGG AGGCCGGTGC GCTTCAGCCG GGCCACGTTG GCCCGGTCGA46441GCTCCGCGGT CATCCCGCCC TCGGTGCTCC ACAGGCCCCA CGCGAGCGAG ACGCCCGGCA46501GCCCGAGCGC CCGGCGCCGA CGCGCCAGTG CGTCGAGGAA GGCGTTGGCT GCGGCGTAGT46561TGGCCTGTCC GGCCCCGCCG AAGACACCGG CGACCGAGGA GAACAGGACG AACGCGGAGA46621GGGGGGCCGG CGACGTCAGG TCGTGGAGGT GCAGCGCGGC GTCGGCCTTC GCGCGCAGCA46681GCTTCGTCAG CTGCGCGGGA GTGAGGGATT CGAGGAGCCC GTCGTCGAGT ACGCCCGCGG46741TGTGGACCAC GCCGGTGAGC GGATGGTCGC CCGGTACGCC GGCGAGCAGT TCGGCGACGG46801CGGAGCGGTC GGACATGTCG CAGGCGGCGA GCGTCACGTC GGGCCCGAGT GGTTCCAGTT46861CCGCGATGAG CTCGGCGGCG CCCGGGGCGT CCGGACCACG GGGGCTGGTC AGCAGCAGGT46921GCCGCACTCC GTGGACGGTG ACGAGGTGGC GGGCGAAGAG CGAGCCGAGG TCGCCGGTGC46981CACCGGTGAT CAGGACCGTT CCCTCGCCGG AGAAGGCGGG GGCGTGGGCG GAGCCATCGG47041CGTCGGTCGT CTCGGGGGCC GCGATCGGGC GGAGTCGCGG GACGGAGGGG ACCCCGGCAC47101GGAGCGCGAT CTGCGGGTGC GCGACGACGC CGGTGCCCGT GCCGATGTCT GTGCCGTTGC47161CGGTGCCGAG CAGCGTCGGC AGGGCGCGCA GCGAGGCCTC CTCCCCGTCG GTGTCGATCA47221GGCGGAACCG GCCCGGGTGC TCAAGCTGGG CGGTGCGTAT CAGGCCGCCC ACGGCGGGGG47281ACGCCAGGTC GACGGCTGCG GCCTCGGCCG CGTCGACCGC GAGCGCACCG CGGGTGAGCA47341GGGTCGCGGT GACGGATGCG AAGCGCGGCT GCTTCAGCCA GTCCTGGAGG AGATGGAGGA47401GCGTCTGCGT CCGCTGATGG GTGGCCGCGG CGATGTCGCC GTCCAGTCCG CCCAGGGCGG47461GCAGCGCTAT CAGGACGTCA GGAGGCGCCT CGGCCGGATC GGGGTCGATG GCGGCGGCGA47521GGGCTGGGAG GTCGGCGTGG CGGCGCGCCG GAACGGATTC GACGGACCAG TCGGCGCCGA47581GGTCGAGGAG CGCCAATCCG GTCCCGGAGG CGGACACGGC CGCAGACACA GCGGAACCGG47641CGCTTTGCAG CGGCGACGAC GCGATGCCGT ACAGCGATTC GACGGTCGAC ACGCGGGCCG47701AGCGAAGCTG CTCCAGCGTC ACGGGACGGA GCGCCAGCGA CCGCACGGTG GCGAGTGCCG47761CCCCCGCCTC GTCCAGCAGC TCCACGGAGG TCGCGCCCTC ACCGAGGCGG CGTATGCGGA47821CCGGGGCCGA ACTCACGGCG GTGGCGTGCA GGGTGACGCC GCTCCAGGAG AACGGCAGAT47881GGCACTCGTC CTGCCCGGAC AGCAGGTGGG GCAGCGCGAG CGAGTGCAGG GCGGTGTGCA47941GGAGCGCCGG ATGGATGCTG AAACGCCCGG CGTCGTCCGT CTGCCGGGTG GGCAGACGGA48001CTTCGGCGTA GACGGTGTCG CCGTGCCGCC ACGCCGTGTG CAGCCCGCGG AACGCGGGAG48061CGTAGTCGAA TCGGAGGCCG ATCAACCGCT CGTAGACGGC ATCGAGGTCG ACCGGTGTGG48121CCCCGCGCGG AGGCCATGCC TGCACCTGCG ACGGCTCCGG GGCGAGCACC GGGGCCGGCT48181CCGCCGCGTC GGAACGGAGG GTGCCGGTGG CGTGCCGGGT CCAGGGGGCG TCCTCGGCGG48241CGTGGACAGG GCGGGAGTGC ACGGTGATCG CACGGCCGCC GCCGGCCGCC TCGGCCTCGC48301CGACCAGGAC CTGCACGACG TGGGCCGACC GGCCGTCGAG GATGAGCGGC GCCTCCAGCG48361TGAGTTCCTC GACGGCCGCG CAGCCCACGC GGGCCGCGGC GGTGAAGGCG AGTTCGAGGA48421ACGCGGTCCC GGGCAGCAGC GTCGAGCCGA GCACGACGTG GTCGCCGAGC CACGGGTGGG48481TTCCCGGGGA GATCGTGCCG GTCAGCACTG TGCCACCGGT GCCGGGCAAG GTGACCGCGG48541CGCCGAGGAA CGGGTGGTCG ACGGCGCGCA TACCGAGGTG CGCGGCGTCG ACGGAGGCGG48601CATTGCCGGC AAGCCAGTGG TGTTCGTGCT GGAAGGCGTA GGTGGGGAGT TCACGGGCGA48661GGTCGTTCGC CCGGCCGAGC GCGGTCCAGT CGACCTGGTG ACCACGCGCG TGCACCCGGG48721CCAGAGCCGT CAGGAAACCG TTCACATCAC CCGTCCGCGG CCCCAGGGTG GGGAGGAACA48781CGGCACCGTT CTGGACGACT CCCGGATGCG AGGCACCCAT CGCCGTCAAC ACCGCCTCGG48841GCCCCAGCTC GACAACGGTC GCGACGCCCT GCGCCAGGAC CGCACCGACC CCGTCCCCGA48901ACCGCACCGC TTCCCGCACG TGCCGCACCC AGTACTCCGG CGAGCACAAC TCCGCAGCGG48961ATGGGACCTC ACCCGTCACG TTCGACACGA CCGGAATCGA CGGGGCACGG AACTCCACCC49021GCGCGAGCAC CTGCGCGAAC CCGGGGAGCA TCGGCTCCAT CAACGGCGAA TGGAACGCGT49081GGGAGACACG AAGACGAGTC GCACGACGCC GTCCCCCGCG CGCCCGCTCC ACCACCGCCT49141CAACGGCACC CTCCACACCC GAAACAACCA CCGCCGCCGG CCCGTTGACA GCAGCGATCA49201CCGCACCGTC CAGCAGCCAG CCCGACACCT CCTCCTCGGT GGCCTCCACC GCCACCATGC49261GCCCACCGGA CGGCAACGAA CCCATCAACC GGCCCCGGGC CACCACCACC CGCAGCGCAT49321CCGCCAACGA CCACACACCC GCCACATACG CGGCGGACAA CTCCCCCAGC GAATGCCCGA49381TCAACACATC CGCACGCACA CCGAAAGACT CCGCCAGCCG ATACAACGCC ACCTCGACCG49441CGAACAACGC AGGGTGAGCA ACCCCCGTAT CCTCCAAAAC CCCCGCATCA TCACCGAAGA49501CCACCGAAAG CAGCTGTGCT CCCGTCTGCG CCTCGACCTC CGCACACACC TCGTCCAACG49561CAGCCGCGAA GAGGGGGAAC CGCCCATACA ACTGACGCCC CATGCCCGGA CGCTGCGAGC49621CCTGACCCGA GAACGCCACA CCGACACCAC CCGCGACACG AGGCTCAAGC ACCACACCAC49681CGGCAGCGGA ACCGTCACCC CGCGCAACCC CACCCACACC GGCCAACAAC TCGTCCAACG49741ACCCACCACT GACCACAGGA CTGTGATCGA ACACCGACCG CGACGACACC AGCGCCAGAC49801CCACACCCCC CACATCCAGC GCCCCCGCAC CGCCCCCGCG TCCCGCCACG AACGCCGCAA49861GCCGCGCCGC CTGAGCCCGC ACCGCACCCT CAGTACGACC CGACACAACC CACGGCAACT49921CCCCAGCAAC CAACGGAGCT TCAGTGGACT CCACCCGAGC CTGCACAGAC CCCACCGGAA49981CCTGAGCGGA CCCGACCGGA GCTTCAGTGG ATTCCACGGG GTCGTGGTCC AGGATCACGT50041GCGCGTTCGT CCCGCTGATA CCGAACGACG ACACACCCGC CCGCCGCGCA CGACCCGTGT50101CCGGCCACTG CCGAGCCCGC GTCAACAACT CCACCGCACG CGCAGAGCAA TCCACATGCG50161GCGACGGCTG CGACACATGC AACGTCCGCG GGAAGACCCC GTGCCGCATC GCCATCACCA50221TCTTGATCAC ACCACCCACA CGGGCAGCCG CCTGCGTATG ACCGATGTTC GACTTCAACG50281ACCCCAGCCA CAAGGGAGGG CGCTCCGCCC GGCCCTGGCC ATACGTCGCG ATCAACGCCT50341GCGCCTCGAT CGGATCACCC AGCCTCGTCC CCGTCGCGTG CGCCTGCATC ACATCGACGT50401CGGACGTCGA CAACGCCGCA CCCGCCAACG CCCGCAGGAT CACGGGCTGC TGCGACGGAC50461CGTTCGGCGC CGTCAACCCG TTCGACGCAC CGTCCTGGTT CACCGCACTG CCCCGCACCA50521CCGCCAACAC GTCGTGCCCG TTGCGCCGCG CGTCCGAGAA ACGCTCCAGC ACCACCACAC50581CCACACCCTC CGACCAGCCC GTCCCCTCCG CATCCGCGGA AAAAGAACGA CACCGGCCGT50641CCGCCGACAG ACCACCCTGA CGACCGAACT CCACGAACGC GTACGGCGTC GCCATCACCG50701TCACACCACC CGCGAGCGCC AACGAACACT CCCCCGCACG CAACGACTGC ACCGCCAGAT50761GCAACGCCAC CAACGACGAC GAACACGCCG TGTCCACCGT CACCGCAGGA CCCTCGAACC50821CGAACGAATA CGAAAGGCGT CCGGAGAGCA CGGAGCTGGC GTTGCCGGTG ATGAGGAATC50881CGGAGGCCTC GGTCGCACGG GACTCGCGCA GGTGTCCGAG GTAGTCCTGC ATGCCGGCGC50941CGATGAACAC GCCGGTGTCG CCGCCGCGCA GCGACTCGGG GACGATGCCG GTGCGCTCGA51001TCGCCTCCCA CGAGGTCTCC AGCAGCAGCC GCTGCTGGGG GTCCATGGCG GCGGCCTCGC51061GCGGCGAGAT GCCGAAGAAG CCCGCGTCGA ACTCCGCGGC GTCGTGCAGG AACCCACCGC51121CCGCGGTGAG CAGCCCGTCG GGAGCGGACG TCGAGCCGTC ACCGGCCACC CCGCCACTGG51181CCGGCCCGGC GCCGACGCCG TCGAGGTCCC AGCCGCGGTC GGCCGGGAAC GGCGAGATCG51241CGTCCCGCCC CTCGGCCACC AACTCCCACA GGTCCTCGGG CGAGGCCACC CCGCCCCGAT51301ACTTGCAGGC CATGCCGACG ACGGCGATGG GTTCCCGGGC CGCGTCTTCG ACGTCCTGGA51361GCCCACCACC CGTCTCGTGC AGCTCGGCGC TGACGCGCTT CAGGTAATCC AACAGCTGGT51421TCTCGGATGC CATTTCCCGC TCTCCCCATC AATTCCCGGA GGGTTCTCCA CTTGCCGCCG51481ACGACTCAGG ACTCGTCTAT CCCGGGCCCT CCAGCGGGGA GATGCCGAGC TGCCGGGTGA51541CGAAGTCGAG GACTTCGTCC TCGGTGGCCG ACTCCAGCAG CGCCCCCGTG TCCGGTGTGC51601CCCTCTCGGA CGAGGACCCG GAGGGCGAGG AGAACATCAC CGTCTCGGAA GCGGACCGTT51661TGCCTTCCCA GCCGTCCGCG AGCGCCCTGA GCCGGGACGC CGCGGCCTTC CGCAGGGCGG51721CGTCCAGCCG GAGTTCCTCG AGGCTCTGCG CCACTCGGTA CAGCTCGGCG AGGGCGGATT51781CCGCGGTGAC GGCCCGCTCC TCCGGCTGGA TCAGGCCGTG CAGTTGCGCG GCGAGTGCCT51841TGGGCGTCGG GTGGTCGAAG ACCATCGTGG CGGCCAGGTC CACGCCCGCG GCCCGCTGCA51901GTCTGTTCCG CAGCGCCATC GCGGTCATCG AGTCGATCCC CAGCTCCTTG AAGGGCTGGT51961CGACGGCGAG GGCGGCGGGC TCGGCGTAGC CGAGCACCGC CGCCGCGTGA TCACGGACGG52021TGTCCAGGAG CAGGCGGTCC GCGTCGGTCC GCGCCATGCC GGGCAGTCGC CGGGCGAGCG52081TGGGACCACC CGCGCCGCCC GCGCCGTCGG AACGCCCGGC GTCGGAGCCG TCGTCCGCGG52141CTTCCCCGGA TCGTGCGAAT GCGGCGAGCA GCGGGCTGGG CCGGGCCGCG GTGAAGCCGT52201CGGCGAACAG CGGCCATTCG ATCTCGGCCA GCACCTGGCT CGCGGGGCCG TCCTGGGCCA52261GCGCGAGGTC GAGGGCCCGC ACCCCGAGTT CGGGCTCGAT CGGCGGCAGT CCGTTGCGCC52321GCATCCGCTG TTCCGTGGCC GCGTCGACCA GACCGCCGCC GCCCCAGGGC CCCCAGGCGA52381TCGAGAGGGC CGGGAGGCCC GCGGCGCGGC GGTGCTCGGC GACGGCGTCG AGCACCGCGT52441TGGCCGCGGC GTAGTTGCCC TGGCCGATGC CGCCGACGGT ACCGACGAAG CCGGAGTAGA52501GCACGAACGA CGACAGGTTC AGGCCGGCGG TCAGTTCGTG CAGGTGCCAG GCGCCGAGCG52561CCTTGGGGCC GAGAACCGCG TCGAGCCGGT CGGCGTCCAG GTTCTCCAGT GCGGCGTCGT52621CGAGGACCGC CGCCGCGTGC ACCACGGAGA CGAGCGGCCC GTCGGCCGGT ACCCACTCCA52681GCAGGGCGCG TACGGCCTCG CCGTCGGCGA GATCGCAGGC GGCGATCGTC ACGCGCGCGC52741CCATGCTCTC GAGGTCGGCG CCAAGTCCGT CCGCGTCCAG CGCCTCAGGA CCGCGGCGGC52801TGGTGAGCAG CAGATGTTGC CCGCCCTGCG CCGCCAGCCG GCGGGCCAGG CGGCTGCCGA52861GGGCGCCGGT GCCGCCGGTG ATCAGGACCG TGCCCTCGCG CGGCCACACC GCATCCGCGC52921CCACGTTCCC GTCCGTGTCC GTGTCCGTGT CCGTGTCCGA CAGGGAAACC TGACCGCCGT52981CGCGTCCGCC GGTCGTGGGG TCCGGCAGCC GGAACGGGGT GCGGACGAGG CGTCGGGCGA53041GCACGCCCGT CGGGCGCAGC GCGAGTTGGT CCTCGTCGCC CGGGTCGGCC AGCACCGCGC53101AGAGCTGAGC GGCGGTGGCG GCGTCCGGCG CGGTCCGTCC GTCCTGCCCG TCGGCCTCAC53161GGGGCGCACG GGGCAGGTCG ATCAGACCGC CCCACAGCGT GGGGTGTTCG AGGGCGGCGA53221CGCGGCCGAG GCCCCAGACC GCGGCGGCGT GCGGTGCCGC CGGAGGGTCG GTCGGGTCCG53281TTCCCACGGC GCCGTGCGTG AGGCACCACA GCCGGCCCGG CAGGTTTGTC TGCGCGAGCG53341CCCGCACCAG GAGCGTCCTC CCGGCCAGGC CGCGCCCGAC CGCGGGGCGT CCAGGTAGCG53401GGCGGTGGTC GAGCGCGAGC AGGGAGAGGA TCCCGGGCGG CCGGGCATCG GCCGCCGCGG53461CGTGCAGCGA CGGGGCCCAT GCGGCCGGGT CGGTGTCCTC GCGCGGGTCG AGTTCCACGA53521GCAGCGCCCG GCCGCCCGCG GCCTCGACGG CGTCGAGCAC CGACGCGACG AGCCGGTGGT53581CGGGGGCGAA TCGGTGCTCG GCGCCGGGTA TGGCGAGCAG CCAGGTGCCG GCGAGGGGGG53641GGACGGCGCC CGGGGCGTGC AGGACCGGCT CCCAGCGGAC GCCGTAGCGC CAACTGCCCA53701GCCGTGCGTG CTCCAGGTGG TCGCGCCGCC ATGCCGCGAG GGCGGGCAGC AGGGCGTCCG53761CCGACTCGCC GTCCTTCAGC CCGAG6GCGT CCAGGAGCGC GGCGGGGTCG GCCTCCAGCG53821CCTCCCACAG ACCCGAGTCG GCCGCCTGCG CGGCATGCGG CGCGGACGCT CCGGCCAGGG53881CCGAGGGGCG CCCGCCCCGG CCGGCCTCGG ATCCGGCCCC GGAGCCATTC GTGGTGCGCG53941GCGTCGGCGA GAAGCGGCTG CGCTGGAAGG GATAGGTGGG CAGGTGGGTC ACCCGGCCGT54001CGCTGTCGCG CAGCAGGGCG GCCCAGTCCA CGTCGAGACC GTGCACCCAG CCCTCGGGAG54061CCGAGGTGAG GAAGCGGTCG GCTCCGCCCG GGTCGCGGGG CAGCGTCGGC ACGGTCGCCG54121GTCGGACGCC CGCCTCCTCC GCGGTGCGTT CCATCGCCGC GGTGAGCAGC GGGTGCGGGC54181TGATTTCGAC GAATACGGCG TCCCCGGACT CGGCGAGGCG GCGGACCGCG GCCTCGAACT54241CCACCGGGGC CCGGAGGTTG CGCACCCAGT ACTCCGCGGT CAGTTCGCCG TCGCGGACCG54301GCTCGCGGGT GAGGGTGGAC AGCATCTCGA CCTCGGGGCG GCCCGGTGCG ACGTCCGCGA54361GCTCCGTCAG GATCCGCGGG CCGATCCGGT GGACGTGCGG CGAGTGCGAC GCGTAGTCGA54421CCGCGATCCG CCGGAGGCGC ACGTTGTCGG CCTCGCAGAC GGTGAAGAAC TCGTCCAGCG54481CGTCGGCGTC GCGGGACACC ACGGTGGCCT CGGGGCCGTT GGCGGCGGCG AGGAAGACGC54541GGCCTTGGAA GGGCGCGAGG CGGGGGGCGG TCTCGGCTCG GCCGAGCGCG ACGGACAGCA54601TGCCGCCGGC GCCCGCGATC CCGGTCAGCG TGGGGCTGCG CAAGGCCAGG ATCTTCGCGG54661CGTGTTCGAG GCTGAGGGCG CCCGCGACGC AGGCCGCCGC GACCTCGCCC TGGGAGTGGC54721CGACCACCGT GTGGGGGCGG ACGCCGACGG AGCGGCACAG CTCGGCCAGG GACACCATCA54781TCGCGAACAG CACGGGCTGG AGGAGGTCGA CCCGGTCCAG GGACGGTTCG GCGGGGTCGC54841CGTTCAGCAC GTCGAGGAGC GACCAGTCGA CGTGCGGGGC GAGCGCGTCG GCGCAGTCGC54901GCACCCGCGC GGCGAACACC GGCGAGCTGT GCAGCAGTTC GCGAGCCATG GCGGCCCACT54961GCGCGCCCTG TCCGGGGAAG ACGAACACCA CCCGGCGGCG AGGGGCTGCG GCGCCGTCAC55021CGTCCACCCG GTTCGCGCTC GGCACGCCCG GGGCCAGCGA CTCGAGTTCG GCGACGACCG55081TCGGACGGTC GCCGCCGAGC ACGACGGCCC GCTGCTCGAA GGCCGTCCTG GTCGTCGCGA55141GCGACAGCGC CACATCGGCC AGGGGCGACT CGTCGGCGGT CAGGCGCCTG GCGATCAGCG55201GGGCCTGGGC CGACAGGGCG TCGGGGGTGC GTGCGGAGAC CAGGAAGGGC AGAACTCCCG55261ATCCCTGAGC CGGAGTTCCG GTGCCCTTGG CCGTCGGCGC GGGTACGTCC GGTTCCGGGT55321CGGGGGCCTG TTCGAGGATC ACGTGTGCGT TGGTGGCGCT GATGCCGAAG GACGAGATGC55381CGGCGCGGCG GGGCCGGTCG GTCCGCGGCC ACGGCTGTGC CTCGGTGAGC AGGCGGACGG55441CGCCCGCCGA CCAGTCGACG TGCGTGGCCG GCCGGTCGAC GTGCAGCGTG CGCGGCAGCA55501CGCCGTCGCG CATGGCCATC ACCATCTTGA TGATGCCGCC GACCCCGGCC GCGCCCTGCG55561TGTGACCCAG GTTCGACTTC AACGAACCAA GCCAGAGCGG GCGTTCGGCC GGGTGCTCGC55621GCCCGTAGGT GGCGAGCAGC GCCCGTGCCT CGATCGGGTC GCCGAGCGTC GTGCCGGTGC55681CGTGCGCCTC CACGACGTCG ACGTCTGCGG CCTGGACCTG CGCGTCCTGG AGGGCGCGCC55741AGATCACGCG CTCCTGCGCG GGGGCGCTCG GCGCGGCCAG ACCGTTGGAC GCGCCGTCCT55801GGTTGACCGC CGAACCGCGC ACGACGGCCA GCACGCGGTG CCCGTTGCGC TGCGCGTCCG55861AGAGGCGTTC GAGGACAAGC ATGCCGGCGC CCTCACCCCA GGAGGTGCCG TCGGCGGCGT55921CCGCGAAGGA CTTGCTGCGG CCGTCCGCGG CGAGGGCACG CTGCCGGGAG AACTCGGTGA55981AGGTGATGGG CGTCGGCATG ACTGTGACGC CGCCTGCGAG CGCCAGCGAG CATTCGCGGC56041GGCGCAGCGA CTGGGCGGCC AGATGCAGCG CCACCAGCGA CGACGAGCAG GCGGTGTCGA56101TCGTGACCGG GGGCCCGGAC AGCCCGAGGG CGTAGGAGAC ACGGCCCGAG ACGACGGGGC56161TGTTGTTGCC CCTCACGAGG TAGGCCTCGT ACTCCTCGGA CGAGGCCTGC AAGGGCACGT56221CGTAGAACGA GTAGTAGGCG CCGGTGAACA CGCCGGTCTC GCTCTCGGGC AGCGTGTCCG56281GGGCGATGCC GGCGCGCTCC AGGGACTCCC AGGCCACTTC GAGCATGAGG CGCTGCTGCG56341GGTCCATGGC GACGGCCTCG CGGGGCGAGA GGGCGAAGAA ACGTGCGTCG AACCAGGCGG56401CGCCGTGCAG GAACCCGCCC TCGCGGACGT ACGAGGTGCC CTCGTCGGTG CCGTCGCCGG56461CGAAGAGCGC GTGGAGGTCC CAGTCCCGGT CCTTGGGGAA GGCGCCGATC GCGTCGCGGC56521CCGTGCGCAC CAGGTCCCAC AGCGCCTCGG GGGAGTCGGA GCCGCCGGGG AAGCGGCAGC56581CCATGCCCAC GATCGGGATG GGCTCGGTGG CGCGGCGCTC GGTGTCCTTC AGGCGCCGGC56641GGGAGTCCTG GAGGTCGCCG GTGACCTTCC CCAGCGCCTG AAGAAGCTGT TCCTGGCTTA56701CGTCGTCAGA CATCCACGCG AGCGTTTTCC ACTGTCGGGC AAAGCACTGT CACTCGAAGC56761CCTTCTCGAT CAGCGCCAGC AGGTCGGAGG CGCTGGGGGT CGCGATGGCC GCGCCGCCGT56821CCGTGTCGTC GTCCGCGGCT TGTGCGGCCG GTTCGGTGTC GCGGGGTGTC TCGCGCAGCC56881GGGCGGCCAG CGCGCCGAGC CGGGTGGCGA GCCGGTCCCG GTCGGCGGCG GAGCCTTCGA56941GGTCCGCGAG CGACCGCTCC AGCGAGGCGA GGTCGGCCAG GGCGCGGGCG GCCTGTCCGC57001CGCCGTCCGG GACGGCTTGG CGGCAGAGGA ACGCGGCGAC GTCGGTCGGC GTCGGATGCT57061CGTAGACGAG CGTGGCGGGC AGGTCGAGAC CGGTGGACTC GCGCAGCCGG GTGCGGAGTT57121CGACGGCCAT GAGGGAGTCG AAGCCGAGGT CCTTGAAGGC GTGGTGCGGC GCGACGTCCC57181GGGCCGCGGC GTGACCGAGC ACGGCGGCGA TCTGGGCGCG CACTAGGTCG AGCGCGACGC57241GCTGCTGTTC GTCGGGACTG TGGCCGGCCA GCACTTTGGC GAAGTCCGGC GTGGTGCCGC57301GGGTCTCGTC GGTGCCCGGA CCCGCGCCGG TGAGGCCGGC GAGGTCGGAG GCGGCACCGG57361GCACCGGAAC GAGTCGGGCG AGCAGCGGGC TGGGGCGGGC GGCGGTGAAG ACGGCGGTGA57421AGCGTCCCCA GTCGACGTCC GCGACGGTGA CCGTGGTGTC GCCGTGCCGC AGCGCCCGGT57481CCAGGGCGGT GACGGCGAGT TCCGGCGCCA TCGGGGCGAT GCCGAGTCGG CGCAGGTCGT57541CACCGAAGCT CCCGGCAGGC ATGCCGCCGC CGTCCCAGGG GCCCCAGGCG ATGGCCTTGC57601CTGCGGCGCC CCGGGCGCGG CGCCGCTCCA TCAGCGCGTC GACATGCGCG TTCGAGGGGG57661CGTAGGCGCC GCGGGACGCG TTGCCCCAGA CGGCTGCGAC GGAGGTGAAG GCGACGAACG57721CCGACAGGCC GTCGCCGAAG AGCTCGTCGA GGTTGCGGGC GCCGGTCACC TTCGGCGCCA57781TGACGGTCGG GAAGGTGTCG GCGTCGAGCG CGGCGACGGG GTTCTGGTCC CCGGTGCCCG57841CGGCGTGCAC CACCGCGGCG AGGGGCGTGT CCGCGGCGGC GAACCGGGCG GCCAGTTCCT57901CGACGTCGGC CCGGCGGGAG ACGTCGCAGT CCGCGAGGAC GAGTTCGGTG CCGTGCCGCG57961CCAGTTCGGC GCGGAGCCGG TGCGCGTCGG CGAAGCCACT GGCGCGGGGG CTGGCGAGCA58021CGACGATGGG CGCGCCGGAC TCGGCGAGCC GGCGGGCGGT GTGGACGGCG AGGGCGCCGG58081TGCCGGTGAT CAGCACCGGT CCCGAGGACC ACAGGTCCGC GTCCTCGGTG TCCTCGGCGG58141GCCGTTCGTG GGGGCTCACG GTCGGCTCGG CGCGGGTCAG GCGCGGGGCG TGGACGCTGT58201CGTCCCGCAG CGCGAGCTGG TCGTCGCCGC CGGATCGCCC GGCGAGGACG GCGGCCAGCC58261GGGCGAGCCC GCCGCAGCCG AGGGGATCGT CGTCCGTGCT CGCCGCGAGG TCGATCAACG58321CGCCCCAGAG TCCCGGGTGT TCGAGTCCGA CGACCCGGCC GAGGCCCCAG ACCTGGGCCT58381GCCACGGGTC CGGCGCCGCG TCACTCTCCA GCGCCCGCAC CGGGCCACGG GTCAGGGTCC58441ACAGCGGCGG GTCCGTGCGG CCCGTGTCGA GCAGAGCCTG TACGAGCAGC AGGGTGGCGT58501CCGCGGCGGC CGACACGCCG TCGCGGCGCG CGGTCTCACC GCTCGGCCAG GGCAGGGCGA58561GCACGCCCGC GAACCGCTCG TCCGACGCCG GGGTCCGGTC CAGTTGCCGG GCGAGTTCCT58621TCGCCAGGGT CGCGCGATCG GCGGTCGCCA CGTCGACCGT CAGGAGGCGG GTCGTCGCGC58681CCGCGTGGGC.CAGTGCGGCC GTGACGGCGT CGGCGAGCGC GGCCGACGCG CGGTCTTCGG58741CGGTGTCGGC GTCGGATTCG GGGGCGACGA TGAGCCAGGT GCCGTCAAGT GCCGCCGCCG58801GGGGCGCGGC GTCCGGAAGA CGTTCCCAGG TGACGTCGTA GCGCCACCTG TCGGTTCTGG58861CGATCATGTC CTGTCCGCGC CGCCAGTTGC CGAGCGCGGG GAGCACGGCG CTCACCGGCG58921CGTCGGCGCC GAGGCCGAGC GTGGGGGCCA GGCGGTCGAG GTTCTGCTCC TCGACGACCT58981GCCAGAACGC CGTGTCCTCC GCGCTGTGCG TGCCGTCCGG CGCGGCCGGA ACGTCCGCCG59041TGTCCGGTGC GGCGTCCAGC CAGTAGCGCC GGTGCCGGAA GGCGTACGTC GGCAGTGCGA59101CACGCCGGGC GCGGGGCGTG AGCGCGGTCC AGTCGACCGG CACGCCGTTG ACGTAGGTCC59161GGCTCAGCGC GGTCAGCACG GTCGCCGCCT CCGGCCGGCC GCGCCGGGAG GAGGCCGCGA59221CGGGCCGAGT CCCCTCGAAC AGCGGCGTCA GGGCGGCGTC CGGGCCGATC TCGATCAGCA59281CGTCCGCGTC CGGCAGGCCG CGCACCGCGT CGGCGAAGCG CACCGCGCGC CGCGCGTGCT59341CGATCCAGTA CTCGGGGGTG TCGAAGGCGT GCGTGGTGTC CGCGGCCGGG CTGACCTGGA59401TCTCGGCCGG GTGGAAGGTG AGGCCGTCGA CCACGGCGGC GAACTGCGCA AGCATCGGTT59461CCATCAGCGG GGAGTGGAAC GCATGGCTCA CCGGCAGCCG GGTCGTCCTG CGGCCCTCGC59521CGCGCCAGTG CTGCGCGATG CGCGTGACCG CGTCCTCGGC TCCCGAGACG ACGACCGCGG59581AAGGCCCGTT CACCGCCGCG ATCTCGGCTT CGGAAGTGTC CAGGAGGTAG GCGAGGCTCG59641CGGCGACCTC GTCGTCGGTC GCGTGGATCG CGACCATCGC GCCGCCCTCG GGCAGCGCCT59701GCATCAGGCG TCCGCGGGCG ACCACGAGCC GGGCGGCGTC CTCGACGGAC AGCACGCCGG59761CGACCACGGC CGCCGCGATC TCCCCGACGG AGTGCCCGGC GAGGGCCGAG AACTCGACGC59821CCCACGACAT CCACAGTCGC GCCATGGCGA GTTCGAAGGC GAACAGGGCG GGCTGCGCGA59881ACTCGGTTCG CTCCAGCACC TCCGCGGGCT CCTGCCACAG TACGTCGCGC AGCGGACGTC59941CGAGCAGGGG GTGGATCACG TCGCAGATGT CGTCCAGGGC GGCGGCGAAC ACCGGGAAGT60001GCTCGGCGAG TTGACGCCCC ATCGCGGGCC GCTGTGCTCC CTGGCCGGAA AACAGCGCCG60061CGGCCCGTGT GCCGCCCGTG GTGCCGGCCT CGGGACCGGT GACCGCCTCG GCCGGGTGCA60121CCGCGTCCGG GGTACCGAGG GCCGCGAGCG CACCGAGCAG GCCGTCGCGG TCCTCCGCGA60181CGACCACCGC GCGGTGGTGG AAGTCGCTGG GCGTGGCGGC CAGCGAATAC GCCACGTCCC60241GGAGACCGAG TCCGGGGTTG GCGAGCAGGT GGCCGTGCAG GGCTCGGGCC TGTGCGTGCA60301GACCGTCCCG CGTACGGGCG TTGACGGGGA TCGCGACGGC GACGGGGGCG TCGTCGTCCG60361TAGCGGCCTC GGGGCTCTGC GGCACGTGCC GCGCGTCGCC CTCTTCCAGG ACCACGTGCG60421CGTTCGTGCG GCTGATGCCG AACGACGACA CCGCCGCCAG CCGGGGACGC TCCGTGCGCG60481GCCAGGGCCG TTCCTCCGTC AGCAGCTCCA GCGCGCCCGC CGACCAGTCC ACGTCGCTGG60541AGGGCTTCTC GGCGTGCAGG GTCCTGGGCA GCAGTTCGTG GCGCAGCGCC TGCACCATCT60601TGATCACGCC GCCGACACGC GCCGCCGCCT GGGCATGGCC GATGTTCGAC TTGAGGGAGC60661CGAGGTACAC CGGGCGGCCT GCCGGAGGCC GCGCGCCGTA CTCGGCGAGC ACGGCCTGCG60721CCTCGATCGG GTCGCCGAGC CGGGTGGCGG TGCCGTGCGC CTCGACCGCA TCGACGTCGG60781CGGCGGGGAC GCGCGCCTGC TCCAGCGCGG CCTGGATGAC GCGGTGCTGG GCCGGCCGGT60841TCGGGGCGGT CAGACCGTTG GACGGGCCGT CCTGGTTCAC CGCGGAGCCG CGCACCACGG60901CCAGGACGTC GTGCCCGAGG CGCGGCGCGT GGGAGAGCCG TTCCACCGCG AGCACGCGCA60961CGCCCTCGGC CCAGCCGGTG CCGTGCGCGT CGTCGGAGAA CGACTTGCAG CGGCCGTCCG61021CGGCCAGGCC GCCCTGGCGG GCGAACTCGA CGAAGAGGTG CGGCGAGGCC ATGACGGTCG61081CCCCGCCCGC GAGGGGGAGA TCGCATTCGC CCGCGCGCAG TGCCTGGCAG GCCAGGTGCA61141GGGCGACGAG GGAGGACGAG CAGGCGGTGT CCAGGGTGAC CGCGGGGCCT TCGAGACCGA61201GCAGATAGGA GACCCGGCCG GAGATCACGC TGTTGCTGTT GGCGATCCGG ATGATGCCTT61261CGAGGGTCTC CGGGGTGCCG TTCAGCCTGC TGAAGTAGTC GTTGTACATG ACGCCCGCGA61321ACACAGCGGT GCGGCTGCCG CGCAGCGTCT TGGGGTCGAT CCCGGCGTGC TCGACGCTCT61381CCCAGGGTGC CTCCAGCAGG AGCCGCTGCT GCGGGTCCAT CGGCAGCGCC TCGCGGGGAG61441GGATGCCGAA GAAGGCGGCG TCGAACCCGG CGGGGTCGTC GAGGAATCCG CCGCCACGGG61501CGTACGTGGT GCCGGTCGCG GCGGGGTCGG GGCTGTAGAT GGGCGTCAGG TCCCAGCCGC61561GGTCGGCGGG GAAGGGCGCG ATGGCGTCAC GGCCCTCGGC CAGCAGCCGC CAGAGGTCGT61621CGGGCGGGCT GACGCCGCCG GGGTAGCGGC AGGCCATGGC GACGATCGCG ATGGGCTCGT61681CCCGCTCCGT CCTGCCGGTG GTGAAGTCGG GCTTCCTGTC GGGCATTACG GTGTCGCCGG61741TCCCCGTGGG CGGTGCGAGC CGTATTTCCA GGTGGCGGGC GAGCGCGGCC GACGTCGGGT61801GGTCGAAGAC GAGCGTCGCG GGGAGGTGGA CACCGGTCTC GGCGGAGAGC CGGTTGCGCA61861GTTGCACCGA CATGAGCGAG TCGAAGCCCA GCTCGCCGAG CGGGCGATCG GCGTCGATCC61921GGCCCGCGTC GGCGTGGCCG ACCGCCGCGG CGATCTCGGC GCGCACAAGG TCGAGGAGAT61981CCGTGCCCCG GTAGGCGGAC CGCGCGGGGC GCGCCCCTGC GGCGGCGCGG GGCGCGGCGC62041CGGACGATGC CGCGCCGCGC GCCCGTACGA GGTCGGTGAA CAGCGGGGCC GGGCGGACGG62101CGGTGAACAG CGGCAGGAAC CGCGACCAGG CGACGTCCGC GAGGAGGCAG TCGGTGCCGA62161GCGCGAGCGA GCGGGCCAGC GCGGTCACGG CGTCGGCCGC GGGCAGCGGG ATCAGGCCGC62221TGCGACGGAA CCGCTGTTCC CGGGTCGCGT CCAGCATGCC GCCGCCCGCC CACGGTCCGA62281AGGCGAGGGA CGTCGCGGCG CGGCCCTGGG CACGGCGGCG CGCGGCGAGC GCGTCCAGTG62341CGGCGTTGCC GGCGCCGTAC CGGGCCTGCC CGGGGGCGCC CCAGATTCCG GATACGGAGG62401AGAAGAGGAG GAAGGCATCG AGGCCGGCGT CGGCGAGCAC GTCGTCGAGG ACGAGGGCGC62461CGCGCGTCTT CGCGTCGAGC ACGGCGCGGA AGTCGTCCGC ATCCGTCTCC AGCAGCGGGG62521CCTCGTGCGC GATGCCGGCG GCGTGGAAGA CGGCGCGGAT CGGCGCGCCC GACGCCGCGG62581CCTCCTGGAC GACAGCGGCC ATCGCGGCGC GGTCGGCGGT GTCGGCGGCG ACGACGCGCA62641CCGGGACGCC GGTGGGGGAC AGCTCCTCCA GCAGCTCCGC GGCGCCGGGC GGTTCGGGGC62701CGCGGCGGGA GACCAGCAGC AACGAGCATC CGTCCGCGAC CTGTTGCGTT GCGGACCCGG62761CCGCCAGTCC CGCGACCCAG CGGGCGACGT GCCCGCCGAG CGCCCCCGTG CCGCCGGTGA62821TCAGCACCGT GCCGGAGGGC TGCCAGTGCG TGAGGTCCTG GTTCGGCGCC GGGTCGTTGT62881CCGGTGCGGA CCTGACGACG GGTGGTACCT CGAGCCCGTC GCCCGCCACG CGTACCTGGT62941CCTCCCGGGT GTCCCCGGCG AGGAGGGCGG CCAACTGTCC GAGGGGCGGT TCGGCGCCGT63001CGGCAGGCAG GTCGATCAAG CCGCCCCAGG TATCGGGCAG TTCGAGGGCG GCGGCGCGGC63061CGGCTCCCCA GACCGCCGCG GCGTCCGGGT CGGTGCCGCT GTCCCGGGTC AGGCACCACA63121CCTTGGCGGT CACGCGGGCG TCGGTGAGCG CCTGGAGCGC GGTCAGCAGG GTCTCGGGGC63181GGTCCGCGAA GCACAGTAGG CCCGCGAAGC CGTCGGCGAT CGCGTCGGCC GGCTGAGCGG63241AGAGGGGGCA GAGGGCGGAC GCGAGCGTGG CGCGGTCCGC GGCCTCGTGC GGCGGGACGG63301TCACGGTGTG CTCGACGAGT TCGCCCACCC ACGCGGGGAT GTCCGACGCG CCGTCCGCCG63361CCGCGGGCGG GACGACCAGC CAGGTGCCCG GCACGGGGAC GGTACGCGGC GCGAGGTCGG63421CGGGCTGCCA TGTCAGCTCG TACCGCAGCC GGTCGAGGGC GGCGTCGGCC TGCGCCGACA63481ACCGGGCCGG GTCCGCCTCG CGGAGCACCA GCTCGCGGAC GGTGACGACC GGCTCTCCGT63541CGCTCGTCAG CGCGTCCAGC CGCGCGCTGT GCCCCGCAGT GCGCAGCCGG AGCCGTATCG63601GGGCGCCGTC CGCGGTGGCC GAGCCCCGCG ACGGGCACAG GGTGGCACCG TTGAAGGCGA63661ACGGCAGCCG GATCCGCCGG CTCTCGTCCC CGGTCAGGGC GAGCGGGTGC AGCGCGGCGT63721CGAGCAGCGC CGGGTGGATG CCGAAGCGCC CGTCGTACCG GCCGTCGGGC AGCGCGACCT63781CGGAGAACAG GTCGTCGCCC GCCCGCCATA CGGCACGCAG GCCGCGGAAG GCGGGTGCGT63841AGCCGTAGCC GCGGTCGGCC AGATCCGCGT ACAGGTGGTG GACCGGTACG GGTTGCGCCC63901CGGCGGGCGG CCACGCGCGC ACGGCCCAGT CGACGTCGCT GTGTTCGGGC TCGTGAGGTT63961CATGTCGTTC CGGCAGGGGC TCCGTGAGTG TCCCGGTGAC GTGCACCGTC CACTGGCCTG64021GCACGTGGCC CGTCGCCTGC CGCGCGCGAA TCGTCAGGTC AGGAGCGGCC GTCCCTTCCG64081ACGGGCCGAC GCAGACCTGA ACGTCCGGGC CGCCGTCGCC CGGCACCAGC GGGGCCTGGA64141TGACGAGTTC GGAGATCTCA CGGCAGCCCG CCTGCCGGGG GGGCTGTGCG GCCAGTTCGA64201CGAAGCGCGC GCCGGGGAAC AGGACGCTGC CGGGTATCGG GTGGTCCGCG AGCCACGGGT64261CGGCGGACGG GGAGATGTGG CCGGTGAGCA CGAGGCCGCC GGGGCCGGGC AGTTCCACCG64321CGCCGGACAG CAGCGGGTGC GCGAGCGGGT CGGTCCCGGC ACCGGCGGTC GCCCGGGGCG64381GCGCGAGCCA GTAGGTGTGG CGTTGGAACG CGTACGGAGG CAGGTCGACG AGGGGCGCGG64441CGGGCAGCAG CGGCGCCCAG TCGACGCGCA GGCCGTGTGC GTAGGCCTGG GCGAGGGTGG64501TGAGGACGGT GTGCGTCTCG GACCGGTCGC GCCGGGTGCT GGCGAGGACG GTACGCCCGT64561CGTCCCCATG GGCCTGCGCA GCACCCACCA TCGGTGCGAG GAGGGCGTCC GGGCCGATCT64621CCACGAGGAC GTCGGCGGCG GCGAGGCCGC GGACCGCGTC GTGGAAACGG ACCGCGTTGC64681GGGCGTGGTC GATCCAGTAG TCCGCGCTGT GGAAGGGGTG GTGGCTCGCC GCCGAGGCCG64741CGATAGGAGT CTTCGGAATG CTGAAGGTCA GGCCCCTGAC GACCTCGGCG AAGTCGTCGA64801GCATGGGCTC CATCAGAGCG GAGTGGAAGG CGTGGCTGAC ACGCAGGCGC GTCGTACGGC64861GTGCGGGACC GCGCCAGATC TCGCCCACGC GCTCCACGGC GTCGAGCGCA CCCGAGACGA64921GGACGGCATC GGGCCCGTTG ACGGCGGCGA TGTCCACGGC GCGGTCGGCC GCGTGCGGAC64981CGTCCGTGAC CGTGGCCAGC GTTTCGGCCG CCTCCGTCTC GCTCGCCGCG ATCGCGAGCA65041TCGCCCCGCC CTGGGGCAGC GCCTGCATCA ACCGGCCTCG GGCCACGACG AGTCGGGCGG65101CGTCCTGAAG GGTGAGCACC TCGGCGACGA CCGCGGCGGC GATCTCCCCG ACGGAGTGGC65161CGGCGAGGGC GGTGAAGGTC ACGCCCCAGG ACTGCCACAG GCGTGCCAGA GCGAATTCGA65221AGGCGAACAG GGCGGGTTGC GCGAACTCGG TGCGGGCGAC GGTCTGTGCG TCGGACTCCC65281ACATCACCTC TCGCAGGGGG CGCCCGAGGA GCGGGTCGAC GCAGGCGCAC ACCTGGTCGA65341GCGGGGCGGC GAAGGCCGGG AAGTGCGCGT CGAGTTCGCG GCCCATGCCG GGCCGCTGCG65401CACCCTGGCC GGTGAACAGC GCGGCGACCC GTCCGGCGCC CGCCTCGACC GGGGCGGTGT65461CGGCGAGCCC GGCGAGCAGG CCCGCGCGGT CCCCGGCGAG CGCGACGCGG TGGGCGAACA65521GCGACCTGTG GTCCACGAGG TTGCGGGCGG CGTCCACGAT CGGCAGCCCG GGGTGGAGCG65581CCAAGTGGTC AGGCAGCGCG GTCGCCTGGG CCCGGGCCGC TTCGGGCGTC TTGCCGGAGA65641CGACCACCGG GACGGCGACG CGCGGGCAGT CCTGGCCGTT CGCGGCGGAG TCCTGATCCA65701CGGACCGCCG GGTGTTCGCG GCGGAACCCT GGCCCGCGAG CCGCTGCGCG TCCGCGGTCG65761CACCCGCGTC CTCGGACACG AACTCCTCGA GGATGACGTG CGCGTTGGTG CCGCTCATGC65821GGAACGACGA GATGCCCGCC CGGCGCGGGC CGGCCGGGGC GTCCCATTCC CGGGCCTGCG65881CGAGCAGCCG CACCGTTGGG GCCGACCAGT CCACCTCGGT CGTGGGGTTC TCCGCGTACA65941GGCTGGTGGG CATGACGCCG TGGCGCATCG CCTGCACCAT CTTGATGACG CCCGCGACAC66001CGGCCGCCGC CTGTGTGTGC GCGAGGTTCG ACTTGAGCGA GCCGAGGTAG AGCGGGCGGC66061CGGCCCGGCG GCTGCGCCCG TAGGTGGCCA TCAGCGCCTG TGCGTCGATG GGGTCGCCGA66121GCCGGGTGCC GGTGCCGTGC GCCTCGACGA CGTCGACCTC GTCGGCCGAG AGCCCTGCGC66181TGCTCAGGGC CGTCTCGATG AGGCGCTGCT GAGCCGGGCC GCTCGGTGCG GTCAGGCCGT66241TGGACGCGCC GTCCTGGTTC ACCGCGGACC CACGCACCAC GGCCAGCACA CGGTGGCCCA66301GCCGCCGGGC GTCCGACAGC CGCTCCAGAG CCAGGACGCC CACGCCCTCC GACCATCCGG66361TGCGGTCGCC GTCGTCGGCG AAGGAGCGGC AGCGCCCGTC GGTGGAGACG ACCCGCTGGC66421GGCTGTACTC GATGAAGAAC AGGGGGCTGG ACATCACCGC GACGCCGCCG GCCAGCGCGA66481GATCGCACTC GCCGCTGCGC AGCGCCTGCG CGGCCAGGTG CAGCGAGACC AGCGAGGAGG66541AGCAGGCGGT GTCGACCGTG ACCGCGGGGC CTTCGAACCC GTACAGGTAC GAGACCCGGC66601CGACTGCCAT GCTGCCCGCG CTGCCCGAGT GGATATAGCC GTCGTATCCG TCGGGCGCGG66661CCGTGGCGAA CCGGCCGCCG TAGTCGTGGT GCATGACGCC GGTGAACACG CCCGTCCGGC66721TGCCGCGCAG GGTCGCCGGG GGAATGCCCG CGTCCTCCAA GGCCCGCCAG GTCGTCTCCA66781GCAGCAGCCG CTGTTGGGGG TCCATGGAGA AGGCCTCGCG GGGGCTGAGC CCGAAGAAGT66841CGGCGTCGAA CAGGTCGATG TCGCGGAGGA ATCCGCGCTC GCGCGTATAC GAACGGGCGG66901TCGCGTCGGG GTCGGGGTCG TAGAGGGCTG CGACGTCGCA GCCCCGGTCC GTCGGGAAGC66961CGGTGATCGC GTCGCGTCCC TCGGCCACCA GGTCCCACAG CTCCTCGGGC GAGGTCACCC67021CGCCCGGGTA GCGGCAGCTC ATGCCGACGA TCGCGATCGG CTCGCGGGCC GGGGCCTCCG67081CATCGCGCAG CCGGGATCGC GTACGTTGCA GGTCGGGGGT CACCTTCCGC AGGTAGTCGA67141CGAGCTGCTG TTGGTCAGTC ATGTTCCTCG CCCATCGGCG TACGGCGGGT TCGCTGGCTT67201CGCGAACCCG GCATCGAATG AACTGCACGA GCCCGCCGAC CGGATCGAAT CCGGCGGTCT67261TCGTCTCGGC TCTCAATGCG GGGCGGACTG CGGCGGCCGT GCCGAATCGG ATTTCTTCGA67321TCCAAGCACG GAAACAGCGG CGCCCCCTAC TCAGGCACCC CCCTAAAACA CCCGGCATGG67381GCTTCGGTTG GGGTTGGACC AGGGGTGATG CGGCAGCGCC GGATGGGCGG GCACGGCATG67441CAAGAGGCGG GCGGGGGCAG CGGGGATCGC GGCCGGCGCC CGGCGCGGTT CAGTCGTCCC67501CAGGGAACCG TGGATCAATG GCTCCACGAA CCACGGATCT ACGGATCTGG AGGGAACTGG67561AGGGGATACG GATCCGGAGG GGACACCAGA ATTCAGGATT CAGGAAGCCG GTGAGTCGGC67621ACGGTTCTCG GCGGCTCCCT CGGCACGCTC TTCGGCACAC CACCATGGCG GCTGTACGGT67681GGGCTGGGGG ACCGAGCCGA GAGCGGCCCG GATGGGCTGG GCGCCCGCCG AGACGGGCAG67741CACGCCGCGC ACCGGCTCCG GCGCGAACAG CGCCTCGCAG ATCGTGTCGG CGAGATCCGT67801CCTGGAGACC GTGCCCTCGG GCTGCGGGTC GGCGCGGCCG CGTACCGTGA CCAGGCCGGT67861GGCCGGGGAG TTGTCGAGCA TCCCGGGACG CAGCACGCAC CAGTCCAGGT CGTGTCCGGC67921GAGCTTCCGC TCCACGTCCC GGTTCTCCGC GAGGTACGAC TCCAGCTCGT CACCGAGCCT67981GGTGTGCAGC TCGTCGTCGG GCAGATATGC GCTGACCAGG ACGAAGCGCC GGATGCCGAC68041CAACTGCGCG ACCCCCATCA ACTCCCCTAC GAGCGAGGTG GACGAGGTGT CCGTGGCGTC68101CGGGCCCCAG GCGGTCCCGG TGGCCACGGC GATCCCGCCG CAGTCGCCCA TCGCCCGTAG68161CGCCGCGGGG CTGGTCCTGT GCGCCTCGGA CGCGATCACC AGCGGGTCTG TCCCTGCGGC68221CCGCAACGAC TCGCTGTGCC CGGCCTCCCC GATGAGCCCC ACCGGGGTCA GGCCGCGGGC68281GAGGATCGAC TCGGCGAGCC GCCGGCCCAG GGCGCTCGTG ACGGCGAGGA CGACGACGTT68341GTTCTTCCCC GCCATCGGCC CCGCCTGCGC CGTCCGTGCG GCTTCCGCCC TCAGCGCGGC68401ATCGGCTGTC CGCGGGGCGT CCGCCGTCTC ATCGGCTTTC GATATCGGGA TGTTCGAGAT68461GTCTTCTTTC ATCGGCTCGG TCGCCATATC AGTCCGCTCA CGCCACGTCC TGGATTTCCG68521CGGGCGTGTG GTCCGGAGCA CCGCGCGATT CGACGATGGC GCCGATCTCG GCGCGGCGGG68581TGATATCAAA TTTTCGGTAA ATACGGGTCA AGTGCTGTTC AATGGTGCTC GCGGTGACGT68641AGAGCGACTC CGCGATTTCG CGGTTCGTGT ATCCCTGAGC CGCCATTCTG GCGACATTCC68701ACTCGGCGGG GGTGAGGCTG CGCCCGTCGC GTCGTGCCGG GGGCGGCGGG ACCTTGCGCC68761TCGCCTGCGA TCCGCCGGAC ATCTCCGCAA GCGCCCACTG CGCCCCGCAG CCGCGCGCCG68821TCTTCTCGGC GAGCCGCATC GTCTTACGAC CGCCGGCCAG GTCTCCGGTG TGCTTGTAGA68881TCTGCGCGAG CTGGCCGAGC GCGCGGGCGT ATTCGAGTTC GTCGCCGCAG GACTGGAGAA68941CGGCGATGGA TTTCCGGCAC GCCAGCGCCC GTTCCCCCGG CGGGACCGTC GCCACCCGCA69001GGCGCAGCCC GATGCCGCGC GCCCGGGTGT TCGAGTCCGG CGAGAACGCC AGCTGCTCGT69061CGATGAGCTC CGCCGCCTCG GCGTACTCGT CCAGCTTCAG CAGCGCCTCC GCGAGGTCCA69121GGCGCCACGG CACCAGGCCC GGCATCTCCA TGCCCCAGGC CGTGAGGATG GCGCCGCAGC69181TGCGGAAATC CGCGACGGCG GCGCGCAGGG CGCCGGTCGC CAGCCGGAAA GGCCCGCGGG69241CGCGCAGGTA CACCAGGCGG TACGGGCTGG CCAGGTCCGC CTCGGTCATC GGGCGGGCGA69301GTTGCGCGGC TGCCTCCTCG AAGCGTCCTT GCTCGGTCAG CATCAGCGGG GACAGGCCGC69361GCGGCAGACC GGCGAGCACG CCCCACCGGT CCGCGTCCCA GCGCTCGAAG CCGCGGCGCA69421CGGCCGTCTG GGCCGCGACG AGGTCACCCT TCCAGCAGGC AGCGACCGCC TCGGCCACGC69481TGAGCATGGA GGCCAGCGGC AGCGGCATAC GTTCGTTGTC GGCGAGGGCG GCGTTGTGGG69541CGAGGGCGGC GTACCAGGGG GCGCGCGGGT CGAGTCGTCC CGTCGCCATC AGGCAGAACA69601GCGCCACGAG CATCGGCTCC AGGCTCGAAT AGTCGAAGTT GGCGGACTGG AGGATCTCCT69661CCGCGCAGGT CACCGCGGCT TCCGCGTCTT TCACGGCCTT CGCGGAACCT GCGGAATCCG69721CGGAACCCGT GGGCCGTGGA CCGGAGTTCG GCGCATCGGA GCACTGGACG CCCGGGGCGA69781GCAGCCACGA GAGCCGTTGC GCGCTGGACA GCCACGAGAA TCCCTCGGCG ATCAGCTGGG69841GGTGCGGCTG GTGGTCGGGC GCGGGCGCGT CCGGGCAGGC GTCGGGGAAC AGATGACGCA69901ACCACAGCCC GCTGAGCGTT CTCTGGACCT CGGCACGGAC ATCCGCGGCG CCGAGGGCGT69961CGCCGGGACT GACAGGACCG ACAGCGTTGC CGCGTCCAGG CGCGGGTTCG GCCAGGCGCA70021GCATGTCGGA CGCCTGGGCC ATCTCGCCGT GTCTGGCCAG ATGCCGGGAG AGACGGGCTA70081ACGAACCCGG CTTGAAAGTG CCGTCGGACG CGGCAGCCGC CAGGCGCCGC AGCCGCGGTG70141CGGTGAGCGC CGGGTCCATC CACCACACCA TGTCGGTGAT CCGGACGCCG GCCTCCTCCC70201GCAGGTCGGG CCCGGAGCCC CAGAACGAGG CGGACTCCAG GAGTTGGACA GCCAGCCGGT70261GCCGGCCGAG ACGCGAGGCG TGCTCGGCGG CCTCATAGAG GACCCCACCC GCCCAGGGCT70321GCGGCGCGAT CCCGGCCTCG TGCAGATACG GAGCGATCTC CCAGGCGGGC ACGCCCTGTT70381CGTGCAGGAC CTGGGCGGCA CGCAGCCGTA AGGACCGCAG TGGCGCGGGG TGCGTGGACC70441AGAGGACGGC GTCGCGCAGA TACGGATGGA GGGTCATGTC GGGGCGCACG ATCCCGCTCG70501CGATGGCCTG GCCCGCCACG TGGGAGACGT ACTCGGCATC CTTCTCCAGC ACGTTGCACA70561GCCGCTGGGG TGTGCACTGC GCGTCGAGGA CCGCGACGGC CTCCACCAGG TTCATCACCT70621CACGGGAGGT GTGCTCGCGG AGCCGCCGGG CCAGGCCGGC CGACGGAGGT CCGTCCGGCG70681CGTCCGGATC CCGGGCGATC GCGGCCGCGG CCTCGTGCAG CATCGCGAGG GTCAGGGCCG70741GGTTGCGGCC GGTGATCGGA TGGATCGCCT CTGCCAGAGG GTCGGCGCGG GGGGCGGGGA70801CGCGGGCGCG CGCCAGTTCA GCGACCGCGG CCCGGCCCAG CGGCCGTACG CGAACGCGCT70861CCGCCCAACC CGCGGCGAGC TCACGCAGTT CATCGACGAT CGAGGGCACC GTAGCGGCGC70921TGACGCCGGT CAGCAGGACC CTGATCCTTC CGGTGTGCGT GAGGCGGACC ACCTCGCGGA70981CGAACACCTG GGATTCGGGG GCCAGCAGGT CCGTCTCGTC CACCGCCAGC AGCAGCGAGC71041GGGTGGCGGC GGCCACGAGG CGCCGCGCGT GGTCGCCGGG CTCTCGCGCG CCGAACTCGC71101CCAGTTCCTC GGCGTATCCG ACGCCGCACA GACTGCCGCG CACGGTCAGG ACGCCGATCC71161CCATCCGTCG CGCTTCGGCG CACGCCGCTT CCAGCAAGGC CGTCTTGCCG CACAGGGCAG71221GGGCCTCGAT CACGCAGAGC CCGGCGCTGT CGGCCGGACG GCGTCGCAGC CATCGTCCTA71281GTTCGGCGAG CTCTCCATCG CGGTCGACGA GAGACACCGC ACAATTCGAC TCGGACCCGG71341AACTCGGCTT GGGCCGGCAA CTCGACCTGA ACACCGGGTT ACCACCGCCG GGTCGAGTCA71401TGGTTCACAC ATCGACGTCC CCGCGCGGCC GCCGCATATA ACACGCGGTG GACGTCTCGC71461GGGCCCTGAC AACGCGACAG GTGGTCAGCC CGCCCGTTCA GGGTGTAAGC GACAGCTTTC71521ATGGCTTCGT CTTTCGAAAG AGTGGATCGG CGGGCACGAA GGTGACCGCT GCTTTTGCCG71581TGGGCGACAG AGCGAGTGCA CAGCAAAGCG GTCCCCCAGT GCCTGGGCCC ATCGCCGGCG71641AATGAAAGGG TGGGCCGGCG CGATGGTCAA GTCATGCCGG CGGGGCGACA GACGGAGTGC71701GGGCCGCGCT GAGCAGGTCC GGTCCGGTCC GGTTCATCGT CCCCGTGACG CGACGACGCA71761GAGGCGGGCG TCCGGTGGGA CGCTTCGGAG CGAATTGCAT GATGAGACGT TCCCCCGTTG71821CGTAGTGCGG CCCACCGACC CCGGTACCGG CTGCCCTTTT CTGAATTCTT GCCCAACAGA71881CATGTGCGAT GGGGGATCAG GTTGGTCAAC AATGAGTTAA CCCTATGTGA GGTGAGGACA71941GCATGCTGCA AGGGCGTGGT CGAGTTGGCG ACATCCGGAC GCCGACCGGC CTCGGCCGCG72001GTGAACGTCA GCATCCCGCG GCCTACCGGC GCAGGGCAGC ACAGCCGACC GGGCTCACAC72061GGTGATCGCC TCCCCCTCCG GGACGATGGT CAGAGGCACC TCGGTCAGCG CCGCCGGGCT72121GAGGAACCGG GCCATCGACT CCTGACCGGT CCGGCTGAGC ATGATCTCGT GGATCTGGAC72181GAGACGGTTG GGGGGGACCT CGCGTACGTA GTCGGCCGCC CGGCCGAGCT GGGTCCACGG72241CCCGCTGGTG GGCAGCAGCA GCGTGTCGAG GGGCGCGGGC GGTACGTGGT ACGCGTCGCC72301GGGGTGGTGG ACCCGGCCGT CGACGAGGTA GCCGACGTTG GTGACGCGGG GGATGTCGCG72361GTGGATCGCG GCATGCAGGT CGCCGGACAC CGCCACGTCA AAACCGGCGA CGTCGAGGCG72421GTCGCCGTCC GCGACCGCGA CGACCTGGCC GCGCCGGGCC GCGCAGCGTC CGACCACACG72481GACCGGTCCG TAGACCCGCA GGCCGGGGCG GGCGTCCAGG GCCCGGGCGA TCAGGTCCTC72541GTCGAAGTGG TCGAAGTGGT CGTGCGTGAT CAGGAGGGCG TCGGCGGCGG CGACCACCTC72601GTTCGCGTCA GGGGTGAACG TGCCTGGGTC GATGGCGATC CGCCCACCGT CGTTGACCAG72661CGACACACAT GCGTGGGCGT GCTTGATCAG CTGCACTGCC GGCTCCTATC GGTGTGATGT72721ACAGGGTGCA CTGTAATACA GTCGCCCCTG TACTCTTTTG CTAGACTGGG GGGTGTGAAC72781GACGCGCGTT CGAACGAACC GGCCCCCCTC CCCGACGAGT TGGCGGTCCG CCTCCGGGCG72841GTTGTCGGCA CCCTGGTCCG TAGCGCCCGT ACCGTCGATC GGCTCGCATC CGTTCCGGCG72901GCGGTGCTCG GCCTCCTCGA CACGCGGGGG CCGATGACCA CGGCCGACCT GGCGGCGACC72961CGCGGAGTGC GCCACCAGAC GATGGCCGCG ACCGTCAGGG AACTGACCGA GGCCGGGTTC73021CTGGCCTCAC GCACCGATCC GGGCGATGCC CGGAGGAAGG TCCTCGCTCT GACGAAAGCG73081GGGAAGAAGG CGCTCGACAC GGACCGCCGT CAGCGCGTCG GCGTGCTTGC CGACGCGCTG73141GAGGAAACGC TGGACGATGA GGAGCGGGGC GCCTTGGCGC ACGCCCTTGA CCTCATCGAT73201CGGATCAGCG GCAGCATGCG GGGGGGCGAC TCCTTCTCCG GCGAGCGCGA GTTCAACACC73261GGAGCATGGT GACGAGGCCG GAGTAGCCTG CTCCGGCTGG TTTAGGCGCG TTTTCCACGC73321GCGCGCGAAC GCGTGGGGGT TGTCGAACAT GACGTTGTGG CCGGTGTCCG GGACGATGCG73381GAGCTTCACC CCCGCGCTCT CCGCAGCCCG TCCCTGCCGG GCAGTTCGCC GCGCGGGTCG73441CCCTGAAGGC GGATGCGTTC CATGCGTGCC CGCTCGGGCA TCACCCCCAT CGCCGGGCCG73501GTGCCGCGAT AGAGGTCAAA TGGCTGAGAA GTCCCTGGTG CGAGCGGATC CGTCGCCGCT73561ACCCGCGCGA GGGCGGCATG GACCAGCTCC ACCTCGAGCT CCCCGGACGT GCCTCCGCGC73621CGGCCAACAC CACCAAGACG ACGTCTCGTT GACCGGCTGC ACCACAAGAA AGGACATAAT73681CCCGATCTCG CTGGTTCGTC GGCGGCCCGG GGTGCCCGTT GAACGGTCGT GAACCGGGCT73741GAACGAGACG GAAACCGGGA CGGCCCGTAC GGGGCGTTGT CAGTGGCCTT ACCTCGTGCC73801GCATCAGACA GCGTTCACCC TGTAGCACCC CGGGAAAAGT CGTCGAAACA GTCTCCCTGC73861AGGAACCGAG GATGGCCCGC CTCCGGCCCT TGACGGCTGG CTGGGCGGAC GCGGACTCGG73921GGGCTAGAGT GGGTTGCTTG CCGGTGGCCT CCGGGGCTCG CAACGGCCCG TCCCAGCCGT73981CGCC









TABLE 4








FOSTRIECIN SYNTHASE GENE CLUSTER

















ORF 8




MATETFEFQVEARQLLQLMIHSVYSNKDVFLRELVS
SEQ ID NO.: 19


NASDALDKLRLAALRDDGLDADTSDPHIEIELDQKA


RTLTVRDNGIGMSYDEVGKLIGTIANSGTAAFLQEL


KEAQDAAGAEGLIGQFGVGFYSGFMVADEMTLVTRR


AGERSGTRWSSRGEGTYTLETVDDVPQGSAVTLHLK


PADADDQLHDYTSAWKIKEIVKRYSDFITWPVRLLP


QATDGEETPEPETLNSMKALWARSRDEVSDDEYHEL


YKHVSHDWRDPLETIRLQAEGTFEYQALLFLPAHAP


HDLFTRDFRRGLQLYVKRVLIMDDCEALLPPHLRFV


KGVVDAQDLSLNVSREILQQDRHIRMIQRRLTKKVL


SSVKEMKANDADKYAAFWREFGAVLKEGLLGDTDDR


DALLAVASFASTHAEETPTTLQQYVERMKEGQDDIY


YMTGASRQTIENSPHMEAFRDRGLEVLLLTDPVDEV


WVDVVGEFEGKRLRSVAKGEIDLDVQGGEQADGGRE


KQAETYAALLGWMKEHLGEEMKDVRLSTRLTVSPAC


VVSDAHDLTPALESMYRAMGQEIPSARRILELNPAH


PLVQGLNQAYQEGEDRSGLAETADLLYGLAVLAEGG


RPTHPGRFVKLVAERLERTLR*″





ORF7


MYAPTPKPSTDRQAWLRRYTNAPDARHRLVCLPHAG
SEQ ID NO.: 18


GSASFYMPLARALAPEIDIVAVQYPGRQDRRADPFP


ATLQDLAAHVAEALCGEPAVPTAFFGHSMGAAVAFE


VIRLLEDSTTPVTALFASGRGAPSVNRGERVHAMSQ


EDVLAELRGLEGTDSRMFDDPEIIEMIMPPLRNDYR


LIETYRYVPGPPVACPIRGFLGAQDPKVDEGEMKLW


ADHTAGSFDLTLLPGGHFYLVQHQPEIVEAIRNTLL


VAPPYV*″





ORF6


MTDDAIPGRGRYTEQARAARLAWLLARTGATLDSAA
SEQ ID NO.: 17


HTAIEAASLTGNLENFAGSVEVPVGLAGPLQFRGQG


VREAVVAPMATTEGALVASASRGARALSLAGGVSTR


VLSQRMSRAPAFEFDDLAGAARFSRWLGTRRPQLED


QVRLVSQHARLVAVDPYQIGRYLHVRFVFETADAAG


QNMTTAATWQICTWLNEVLADEPGLRPRNTLLEGNL


SSDKKVSSVSLLAGRGTRVTAECVIPGDVVASVLKT


TPAAIARGHRVAVIGGQQAGMTGYGINAANVIAALF


VATGQDIACVHESAVSVLSFDSDGDDLIATLLLPNL


VIGTVGGGTGLPDQRDWLGVLGCRGEGGTARLAEII


AGFALALDVSTASALVSGQFADAHRRLGRARRVDWL


RADDLGPGLLQPAMAERLDSPRLRVTDVVRAPAMVG


DGISTELGALGERRKLTGVIPMTVSWTEDDGPQTTA


ELVAKAKPRGEEIAAGIGRIASLCGPEVSSAWETWG


GGSDFPAAHRRELAVFRRPEGVLTSLLPVCYGIIED


EAREAYVILMERLDITTGPWSRTDVDRALRAIAPVH


GHWLGRDQQILAEGWLYRDGTTAHLVKARELWEALV


RHNAAELPELMTPQRTRTALAAAAEAEFWVQEMDAM


PRTLVHNDFNPRNISRQSERVTAYDWELATVAVPQR


DLAELLAFTLTPHSTTDEVDHHLEVHRAAVAAAAGP


DATVPQPEQWRRGYGLALREMLLSRLQLYTAAHSHR


ELPFLPAVLDTTFHLWNLEAARDGE*″





ORF5


MHTERILTEHHRFLATLDHPEQTQQTVLAELLAANG
SEQ ID NO.: 16


ATSYLREHGLNERSGAEEFRKALPIRTQNAFGPWIE


RAIAGEDGVLTAERPVAFFSSSGSTGQEKRIPVTPT


YMKRCFLPFYHASFAVLLGAFPDLAADPGGVLNLWR


DPTSPHARTADGRPHLGPSQIDHRLFGEGGGPEDGA


AWATIPEQLSDADPWERAYLQLRLAAERDIKVLIGV


NPALIAGLPHQLAAQWPRIVEEIARGTVGGVPHTTP


DPRRAEQIARRADEYGVLDPYHLWPNLRAAVAWNSA


LASLYLPRVRERYGPGVRLFAAPIGSSEGPVAVPVD


DHPNAAPLYLPGCYFEFADAAEPIREDSPTVTAAEL


EPGRDYHLVLSHIGGLYRCAVNDVVHVVDHVGRTPR


IAYTGRDVLRTAGGVDLTERAVVRALAGTLADTGAE


LRNATVETGTDRFRAAIASALPGPLPAGFATLLDKH


LGETADGYRAARDAGALAPVEVLQVHQDAFQREWEH


AIRSGQRRTRVKDRIFQPAPDSWARITADERAHA*″





FosB (module 2)″


MPANDDKLRDYLKRVTADLHQTRLRIRDIEARKREP
SEQ ID NO.: 7


IAIVGMACRYPGGVTDPEQLWELAAGGIDAVSGFPS


GRGWDLEGLYDPDPDAEGKVYVREGGFLHDAGQFDA


PFFGISRREALAIDPQQRLVLETSWEAVERAGIDPL


SLAGSRAGVFVGVMPQEYGPRLYEATGQGVSGHLLT


GTTTSVLSGRIAYTLGLEGPAVTLDTACSSSLVAMH


LATQALRSGECEVALAGGVTVMANPGTFVEFSRQRG


LAPDGRCKSFAAAADGTAWGEGVGMLVLERLGDARR


NGHRVLAVIRGSAVNQDGASNGLTAPNGPSQQRVIR


QALADAGLEAADIDAVEAHGTGTTLGDPIEAQALLA


TYGQGRFEGRPLWLGSLKSNIGHTQAAAGVGGVIKM


VMAMRGGVLPRTLHVDEPSPHVDWEAGEVRLLTGPV


VWEAGERPRRAAVSSFGISGTNAHLILEEPPVKERT


AYEAEADSADPAVWLVSAKSPDALRAQADRLTEFLA


ARPQTGTGHLARALATTRSQFEQRAALIGADRAGLT


EALSALASGSGHPSLVRGQVTTGRTAFLFSGQGSQR


PGAGRELYASYPVFAAAVDEACAVFDPLLGRSLREV


MFAGPGSEGAELLNRTAFTQPALFVLHTALFRLLES


FGVRPDHLVGHSIGELSAAHAAGMLSLADAATLVFH


RARLMQQITTPGTMLALQAGEATARGLVAGREDVVS


LAAVNAPESTVLSGDPEVLADIAAQLAERGIRSRRL


TVSHAFHSPHQDQILDEFRRIAAGLTYRAPRIPIVS


TLTGLLAEQDRITTADHWTEQLRHTVRHADAVTTLH


GLGTTRYLELTAHPTLAPLAAETLEDASAAPAALVP


TLRAGQPEPDTFLRALATLHVTGTPVTWFADHAEAD


ADNADTADGRGHERGRATVPHLDLPTYPFQHENYWL


TAPSSGTGPGAGADALPHPMLSQRTDLPGGGGVLFS


GRLAPGTDPWLPDHAVMGTLLLPGTGFVELALEAAR


AVGAGRVEELVLRAPMVFPGGRARDLQVWVAPDQGG


ERELLIRTRTPGEDWTLHATGVVTASRVDTDGFTPD


WTGAVWPPAGAEQIPGDTFYPDLAERGYEYGPAFRS


VKALWRRGDDLFAEVVLPEDQPYGFGAHPALLDASL


HALPITRSFYETDDEVRLPFSFGGVSLFATDVRRVR


VRLRPRPEATSVWITDAAGTPVLAMESLILRAVERT


QLQAAEGAVGQAATFAVRWEPLSEARIAERVPGTWL


LFGTARPGLAELFEHVLTSTEWDASASTPVEGVLVC


PADASELLAALRETERLDAPVWCVTSGAVGVGVDDP


ATDVAAAGAWGLGRVAALELPSRWAGLVDVPETADL


GTADDNAGRTTARLLAGVLTGDGAEDQLAVRDGRLW


ARRLGTAPAADAGTWQPKGTVLITGGTGGLGAHVAR


RLAALGTADRLVLLSRRGAESPGAAELLAELGESGV


RAEAAAIDITDRTAVTQLLSRLDAEDDPVRTVVHAA


GVIRYARIADVDPEAFETDMAAKVNGALLLDELLPD


ADEFVMFSSIAGIWGAADQAAYAAGNACLDALARRR


RERGASAVSIAWGPWSGGGMVTEYEDRELRKRGLLP


LAVPSAVEALERAVPGDTDPVVVDVAWSRFLPAFTV


LRPSPLLSGFAPADTAGGGRDAASAALPGAGTTAGA


LKDRVGALPEDERLPVLLDVVRTHVAQLIGRGDPQQ


VQADRALRELGFDSMMSVELRNRLGELVGARLPATL


AFDHPTPESLAERLLTELDLDEAPADDGPVLEDFDR


LEAKVLSPFTPADTRAALATRLSALLDRLSGTGTGA


GGAGRNSGTDDLETASASDLMQFLDAEYGASDGTAS


DPSRPTTS*″





FosA (modules 0-1)


MMPSCPAASAAYPACAWSGSTTPSPPWRARAPWPPR
SEQ ID NO.: 6


SRVRCSPSSRRPTISCSSGVPPSGPRRSRASSPIVR


WKSSTSLRRWRRSAGPPRTAATPPYPSRVRFMSEGF


MPIAVVGMACRLPAAPDPATFWRLLSEGVDAVGETP


ADRWPDAAGTPTGAARYGAYLDRIDTFDPGFFGISP


HEARAMDPQQRLMLELSWEALEDAAIVPASLGGSGT


GVFVGAIWDDYRSVVARAGTASFNQHTMTGMGRGLI


ANRVSYTLGLRGPSMTVDAAQASSLVAVHLACESLR


RGESRVALAGGVNLIAAPEGMAASMSFGALSPDGRC


HTFDARANGYVRGEGGALVVLKPLEQARADGDFVYC


VIRGSAVNNDGATDGLTVPSAPAQTELLRAACRQAD


VAPGDVQYVELHGTGTAVGDPIEAAALGTAFGAGVG


RVADNALLVGSAKTNIGHLEGASGVVGLVKTALAIR


HRKLPPSLNFVTPNPKIAFDELSLRVQVGLTPWPRP


DGPIVAGVSSFGMGGTNCHVVLCDAPAESSAPSPAT


SSAAPPATVPVPVAVPQDVASPWLISARSEAALRGQ


AAALAAHLEQHPELDAATVARGLATIRTHHEHRAAA


FGGDRSALLSELRTLAQGRPSDGLLRGTAPDPGTGT


TPGTGPKTVFVFPGQGVQWAGTVRDLMATLPVFREH


VEAAAAALDPLTGWSLVDHLTGPETLPDTPDHVQPV


LFAVTTALAHTWRTLGVQPHAVLGHAAGEIAAAYSI


GALTLQDAAALVVARGRAHGEQAEAVRDALLDELSG


IEPRPSGTRFQSTTLGGPVDTAALDADHWYRNFRQP


APFHPAVEELMDDGHTVFIEVGPHAVLPPEILELLD


AAGAVGIPALGRGDGGRPRLLSSLAAAHVRGAAVDW


PALYGLPAARRVELPGYAFDRRRYWPEPTPTSAPVA


RQGAAAVPTPNPAAPAGAAVPASGPPVSASASVRDS


DWLRGLVEAAPAGRDEQLLDLIRDEAAAVLGHSDPR


EVDLARSFKDLGLESASGVELVERLGSVLQLRLPAT


LLYESPTPKVLAQVLGLELKGAARRATASAASAVTA


RPEKTSAVSAPASVRDSDWLRGLVEAAPAGRDEQLL


DLIRDEAAAVLGHSDPREVDLARSFNDLGLESQSAE


DLCERLAAVLQLSVPATLLYDSPTPRALARVLGAEL


AGTTQSDATSAASVSDEPIAIVGMACRYPGAADSPE


ALWQLVAEGADAIDVFPENRGWDLEGLYDPDPDAPG


RTYAREGGFLYEADRFDAQFFGISPREALAVDPQQR


LLLETSWEAVERAGIDPTGLAGSRTGVFVGATAMEY


GPRLHETVPETAGSVGGYLLTGSTVSVASGRIAYTF


GFEGPAMTVDTACSSSLVAAHLAARSLRNGECELAL


AGGAAVMASPGMFVEFARQRGLAGDGRCKSFSAAAD


GTSWAEGVGMLVLERLGDARRNGHRVLAVIRGSAVN


QDGASNGLTAPNGPSQQRVIRQALADAGLEAADVDA


VEAHGTGTALGDPIEARALLATYGQGRSEGRPLWLG


SLKSNIGHTQAAAGVGGVIKMVMAMRGGVLPRTLHV


DEPSPHVDWEAGEVRLLTGPVVWEAGERPRRAAVSS


FGISGTNAHLILEEPPVKERTAYEAEADSADPAVWL


VSAKKADALGEQAGRLAEFARTRTEVGIRRAARALA


TGRTHFDHRAAVVAQDRDALAEALSALASGAGHPMV


VRGRATVGRTAFLFSGQGSQRPGAGRELYASYPVFA


AAVDEACAVFDPLLGRSLREVMFAGPGSEGAELLNR


TAFTQPVLFVLHTALFRLLESFGVRPDHLVGHSIGE


LSAAHAAGMLSLADAATLVFHRARLMQQITTPGTML


ALQAGEATARGLVAGREDVVSLAAVNAPESTVLSGD


PEVLADIAAQLAERGIRSRRLTVSHAFHSPHQDQIL


DEFRRIAAGLTYRAPRIPIVSTLTGLLAEQDRITTA


DYWTEQLRRTVRHADAVTTLHGLGTTRYLELTPTPT


LATLVAETLEESPAALVPVLRHGRPEHDALLRALAT


LHTSGADVAWPALPGPRSAALPELPTYAFQRERYWL


TPPAPRADVTQAGLTGTPHPLLAAAVELPEGGGFVH


TGRIGTLTHPWLADHAIHGTTLLPGTALLDLVLHAA


SDGAGEHPAVAELALQAPLVLPGERGVDIRVTVQEA


DESGLRAFAVHSRPAPAGDDASGSSSWTRHASGALG


PTEAPDAADRAPQWPPADAAPVDLTDLYPALALTGY


EYGPDFRLLTAAWRTDDDVFAQVELGDDAAASDDVD


RFSVHPALLDASLHALLRSGLLADGVSGTDASGTLL


PFSWGDVALHALGATALRVRFTRTGPTTVRVVASDP


SGALILTAGELSLRPVVLDRLSDGSGTEAGGPRSLY


HVEWSATPAAAPVGAAAPDAPEQWALIGRSPVPDPV


STLAAEAVDIRTYPNLDALVHGTENGDPHPSVVLAD


LAAHGAELPAHEGERTGEHEGGAAGAHAVARRTLAL


LTSWLDAPALTVGRLVLVTHDATAAATAPDALGLPQ


ATAWGLVRSAQTENPGCFTLVDIDGDPSDGYAALPA


ALRTGEPQLAVRDGEVLVPRLARAAQDADVPWPAPA


DVAEQVGAAQRAPLGTGQVRIAVRAAGVDLRAPVLA


RDTPPDHDILGLEGAGVVTETGPGVSDLAVGDRVFG


LLTGNFGPQAVAERDTLARIPAGWTFTQAASVPVAF


LTAYHALVELAAVVPGERLLIHSVADGVGLAAAQLA


RHRGAEVFGTAGPGEWADLRAHGLDDTHLAPSHTQE


FAARFRAATGGAGVDVVLDCPAGDAVDASLRLLSSG


GRFVETGRTDTPDSEAVAARHPGVDHRSFDLTKLEP


AHVGAMLGELTELFERGALRPLPVAAWDVRRAQDAF


RHLSRPRHVGKVVLTVPAPLDPEGTVLITGGTGALG


GNVARHLVTRHGVRRLVLTGRRGPAAEGVTEIVAEL


PAAGAVEVTVEACDAADRTALARVVAAVPEAHPLTA


VVHAAGVLDDAPVEALTPERLDTVLRPKADAAWNLH


ELTAHADLSAFVLFSSVAGVIGHAGQGNYAAANAFL


DGLAAYRRHRCGLPAVAAAWGPWEHAAGGMTQALSA


TDLNRMARTGVLPLSTDEGLALFDATRDAAVPAVVP


VRLDLAALAESAGGAGRAGDVAEVPLLFRHVAPARP


VRRLPQAAATADGARLPAPRQTAVDAGPDLARRVAE


LPTEAARRGMLLELVQDSAAAVLGHATAATVDPERR


FKELSFDSLTALELRNRLGAVSGLRLPGTLIFDHPT


PLAVADFLYTRLASQTPRTATSDSLAVLAELDRLVD


TAIATDADEATLTRFTARLEDLLVWLHGRQEAGRPD


AEDAAGATDRFESASDDEIFDFIDNELGLT*″





FosK


MYSRRMPIIELAEYGPDFLADPYPYYAKLREEGPVH
SEQ ID NO.: 15


EVRAPDGYRFWLIVGYAEGRAALTDSRLVKARDTMA


TSEASPLGKHVLIADPPDHTRLRKLISREFTVRRVD


NLRPRIQELTDDLLDVMLPAGRADLVEALARPLPIA


VLCELLGVPNADRDEFHSWAKGILAPQNPTETHTAV


KALMSYLDDLIEDKRHGEPTGDLLSGLIRTSIENGD


RLSSEEVRSTAFLLMIAGHETTANLISNGTRALLTH


RDQLDLLRSDMDLLDGAVEEMLRYDGSLESTTKRFT


GVPVQIGDTVIPPGETVLVSLASADRDPANFDDPDR


FDIRRGTPAGVGHLAFGHGIHYCLGASLARAEGRIA


FRALLERCPDLELDPEAPPFEWMPGVLVRGVQRLSL


RW*″





Fos J


MTSTDAVPTGTPPLTTDSSSETPPAYPMPKAPGCPM
SEQ ID NO.: 14


DPPPVYRTLRAEQPVSKARLYNGREAWLISRHEDVR


KILSDSRASVDALNPGFPWLSEVAKAMNTAEGGVRP


LGRMDPPDHTELRRMLAPHFLIKRVRALRPATEELV


DGLIDRMLEGPSPADLVPALARPVPSTVVGWLLGVP


AEAMAREGETTARLEDEDGSAETAVAARGELEEQLK


ELVELRRAEPDGNIVSRLVGFADEGRLTETNLLMQI


GLLLGAGYDTTVKMITTGVLALLGHPEQAALLAKEP


ERAAGATEELLRYLTVAEFAPKRVAVEEIEIGGQTI


RPGDGIICLISSADRDESVYERPDELDIQRSARDHL


AFGSGIHLCVGHSVARMELEVVYGRLFSRIPQLRLA


VAPNEIPFSRGLDVQGAKSLPVTW*″





FosI


MKSYKALAGIPHLPRLFLWSMLARLNVSMLPIGLTL
SEQ ID NO.: 13


VLVGWSDSYVAAGVLGGALTAGQALVGPARGRAADR


GAVRKLLVLTGIGYLVGLGALVTMTRTVPGGGWPIA


VLVALLTGMSTVPISQVSRAVWPKIVPGELGRTLFT


LEATGSEVVQTTGPLLTSLLVTALDPGYAVIACGVV


AFVGALAFAAALGSAGIRGGAERTAAKPQAETGTAA


ETGADAGTEGDTATSASAVTRASAPEPEERRTLFAL


PKFTLAIVVTLVMMAALFSVNLSLVAWARDSHESGL


SGVLIACWTIGSVVGGFGMGALRKDVPHSARFAANA


VGMALLAVLLPPVTETAPVWLVLVVLFLGGTAIAPS


MAGNFAQVSGAVPQERRAEAFGWLATAGTGGAALSM


PVTGVLLEASGPATSVAVGAALALCATVLSYIGSKR


AERNDGLVSARA*″





FosH


MPESTDAAAAVPEAHDLPLTLWGWQDWTVEPWERLP
SEQ ID NO.: 12


GDEGYSSHTYLVRHDGVRHVVKAVRKDMGPKLTAGL


LVAQEVERHGIAAGGPLPTTGGEVTAYQGDFCYSLL


TYLDGERVDETDPAHLRAVGRTLGRIDSVLLHAPVP


EGVPRWNEVLELFLLEQDFLKGHDWIRRTLEQAGGA


LSPDDLTIGLINCDAAAKEFRVLGDTAGLLDWSEAM


YAPCMLELATTLSYLEDETDGEPLVRGYFEEGPADR


AELGFLADILRFRCAAEGWIYAARQNAGDETGTTAS


TWSNEKLIERARQNAENADRIAARFQVF*″





FosG″


MNTLSLLQGLPLHRSDPFSPPDGYAKVRAEAPVSPI
SEQ ID NO.: 11


AFPDGNQGWLLTRHADVKAMLANPSFSSVREKAART


RRTEGRPTPLPGAFFTMDPPDHTRYRRLAASRFAVR


KIKALEPKIEQYTREHLDRMEETGGGPVDLVTAYAL


PIPSLIICDLLGVPYDARDDFQRWSLSILDTELSEE


EQQRTVLEGTKFMLDLIEDKKKNPSDDLISDLLDPA


EEKDRISEFEIAGMCGLMLMAGHESTSNMLSLGTLA


ALRNPDQLALLRSDPSLIDTAVEELLRYLSIVQFNF


ARLATEDVEIGGQLIKACETVVGSMAAANHDPEVYT


DPHRLRLDRAEERNLAFGHGIHLCIGHQLARVEMKV


TYLRLFERFPTLRLAVPFEDIEFRANSVVYGVNSLP


VAWDAPADHDPAP*″





FosF(module 8 and thioesterase)


MSTNEDKLRHYVKELTGDLLRTRGRLRELEAAGNEP
SEQ ID NO.: 5


IALVGMACKYPGGVASPEDLWRLVAEGRDAISPFPA


DRGWDLGRLPAAGGGFLHDAAEFDAGFFGISPRDAA


AMDPQQRIALETCWEAVERSGISADSLRGKPVGVFM


GGAVQGYGLVGTEIVDAPEGVGGTGSASSVISGRVS


YSFGFEGPAVTVDTACSSSLVALHLAVQSLRAGECS


LALAGGVTVMATPYAFVEFGRQGGLSADGRCRSFSA


DAEGTGWSEGVGVVVLERLSDARRNGHEVLAVVRGS


AVNQDGASNGLTAPNGPSQQRVIVRALAGAGLSTSD


VDVMEAHGTGTRLGDPIEAQALIATYGQGRAEGRPL


WLGSLKSNIGHTQAAAGVGGVIKMVMAMRHGVLPRT


LHVSQPSPHVDWSAGAVELLTRARQWPQTGRARRAG


VSSFGISGTNAHVILEHEPVESTEAPVGSAQVPVES


TQALVVAGELPWVVSGRTEGAVRAQAARLAAFVAGR


GGGALDVGGVGLALVSSRSVFDHSAVVSGGSLDELL


AGVGGVARGDGSAAGGVVFERRVAGGVGVAFSGQGS


QRPGMGRELYGRFPVFAAALDEVCAEVEAQTGAELL


GVVFGDDAGVLEDTGVAQPALFAVEVALYRLAESFG


VRADVLIGHSLGELSAAYVAGVWSLADAVRVVVARA


RLMGSLPSGGRMVAVEATEEEVAPLVADVAAAGGMV


SLAAVNAPGAVVVSGQDAAVDQIADIFAGRGRRTRA


LAVSHAFHSPLMEPMLAEFADVLAQVEFRAPSIPVV


SNVTGTIADAEELCSPEYWVRHVREAVRFGDGVGAV


LAQGVATVVELGPDPVLTALGERVRAASAERDSAAR


DVAFVPTLSRRSTDTRAFLGMLARVHARGHQVDWTA


LGRADDLARELPTYAFQHEHHWLKGASVRPGSAASR


TAGSDGAFWKVVQEQDLQRLASDLGVDPDAPLHTVL


PALGDWHQTHIEASETDGWRYRVAWERPTAQHAPEG


PATLHGTWLIVVPEGDLRAGHLLDNDGLHDGLHGEV


RRVLTDAGAEVKSLSLAPEDIDRQTIAKLLNGLDDT


PAGVVSLLALSGREHTGPRGVGSGAWASVCLLQALL


DTGWSATRLWTLTRGAVRATASDDAPDPWQAQVWGL


GRVAALEHPTLWGGLVDLPAPDLSAADGHALAATAE


ASFGLAALLAGSSGEDQVALRADCARVRRLRPAGPD


GAPEPVRPVAPESLVAPEGADATGRTGDPQPPAARE


PWWSHGSVLITGGTGALGAHTARRLAEQGAPHLVLA


SRQGPDAPGAADLRAELAAHGATVDLVSCDVTSRDE


VAALAADLAGRGAPVGAVVHTAGVAAEHPLADLDAT


EFAAVVDAKVTGAVILDEVLGDGLAAFVVYSSIAGT


WGSTRGGAYAAGNAFLDALVERRRARRAAATTLAWG


PWSGGGMAGEEFRQEMQRRGLRPLTPRLATTALDRA


VRQEDTAIVVADLDWPRFIGVFTAGRPNHLFADFDD


TESGAGHPDAGRTGAAQPGEWQRLPDLPLADQRPYV


LDIVRREAARVLGHADAGTITEDQEFLALGFDSLAA


VELRGRLTVLTGLALPSSLVFDHPTLGALVTHLLDN


AAPGGDAGASPAPGVSAAPSASVAAAPPQDSNDSVV


GIYRKLSLQGRMQEVEAFLSSASALRTRFHGAEDLG


RGAHVTTLGHGEAEPQLVCFPPFAPVDGSLQFARLA


NHFRGRRRVSVVTVPGFMAGEPLAASLEVLIETLAE


AVLRAADGRPYALLGYSSSGWLAQAAATWLEERGTG


PVGVVLLDTYPPDSMTLEMRKANTYEVVERRMRFTS


MHYDGLTALGTYRGMFRGWQPRQLAVPTLFVRPDSC


IPGSPEEPMAGPDWQAAWPLDHEETQVPGDHCTMIG


EFSETTAAAVDEWLSRTPGLTRP*″





EasE (modules 6-7)


MASENQLLDYLKRVSAELHETRGRLQDVEDAAREPI
SEQ ID NO.: 4


AVVGMACKYPGGVASPEDLWELVAEGRDAISPEPAD


RGWDLDGVGAGPASGGVAGDGSTSAPDGLLTAGGGF


LHDAAEFDAGFFGISPREAAAMDPQQRLLLETSWEA


IERTGIVPESLRGGDTGVFIGAGMQDYLGHLRESRA


TEASGFLITGNASSVLSGRLSYSFGFEGPAVTVDTA


CSSSLVALHLAVQSLRAGECSLALAGGVTVMATPYA


EVEFGRQGGLSADGRCRSFSADAEGTGWSEGVGVVV


LERLSDARRNGHEVLAVVRGSAVNQDGASNGLTAPN


GPSQQRVIVRALAGAGLSTSDVDVMEAHGTGTRLGD


PIEAQALIATYGQGRAEGRPLWLGSLKSNIGHTQAA


AGVGGVIKMVMAMRHGVLPRTLHVSQPSPHVDWSAG


AVELLTRARQWPETGRARRAGVSSEGISGTNAHVIL


EHEPVESTEAPVGSAQVPVGSVQARVESTEAPLVAG


ELPWVVSGRTEGAVRAQAARLAAEVAGRGGGAGALD


VGGVGLALVSSRSVFDHSAVVSGGSLDELLAGVGGV


ARGDGSAAGGVVLERRVAGGVGVAFSGQGSQRPGMG


RELYGRFPVFAAALDEVCAEVEAQTGAELLSVVFGD


DAGVLEDTGVAQPALFAVEVALYRLAESFGVRADVL


IGHSLGELSAAYVAGVWSLADAVRVVVARGRLMGSL


PSGGRMVAVEATEEEVSGWLVDGAVIAAVNGPAAVV


VSGVEGAVEAVVERARGGGRRATRLRVSHAFHSPLM


EPMLAGFAQVLARVEFRAPSIPVVSNVTGEVASAAE


LCSPEYWVRHVREAVRFGDGVGAVLAQGVATVVELG


PEAVLTAMGASHPGVVENGAVFLPTLGRRTGDVNGF


LTALARVHARGHQVDWTALGRANDLARELPTYAFQH


EHHWLAGNAASVDAAHLGMRAVDHPFLGAAVTLPGT


GGTVLTGTISPGTHPWLGDHVVLGSTLLPGTAFLEL


AFTAAARVGCAGVEELTLEAPLILDGGSAHVVQVLV


GEAEAAGGGRAITVHSRPVHAAEDAPWTRHATGTLR


SDAAEPAPVLAPEPSQVQAWPPRGATPVDLDAVYER


LIGLGFDYGPAFRGLHTAWRDGDTVYAEVRLPTRQT


DDAGRFSIHPALLDTALHSLALPDLLSGQDECHLPF


SWSGVTLHATAVSSARVRIRRLGEGATSVELLDEAG


AALATVRSLALRPVTLEQLRSARVSSVESLYGIAWS


PLESAGSAVSAAVSASGTGLALLDLGADWSVESVPA


RRHADLAALAAAIDADPAEAPRDVLIALPALGGVDG


DIAAATHQRTQTVLHLLQDWLKQPRFASVTATLLTR


GALAVDAAEAAAVDLASAAVGGLIRSAQLEHPGRFR


LIDTDGEEASLRALPTLLGTGNGTDIGTGTGVVAEP


QIALRAGVPSVPRLRAIAAPETTDADGSADAPAFSG


EGTVLITGGTGDLGSLFARHLVTVHGVRHLLLTSRR


GPDAPGAAELIAELEALGADVTLAACDMSDRSAVAE


LLAGVPGDHPLTGVVHTAGVLDDGLLESLTPAQLTK


VLRAKADAALHLHELTSRAPLSAFVLFSSVAGVFGG


AGQANYAAANAFLDALARRRRALGLPGVSLAWGLWS


TEGGMTAELDRANVARLKRTGLLEISREQGVTLFDA


ALAAAGAAFGASEAGPETVGTHADGLLVPARLNAPV


LDEQAAAGSLPAVFQAVVSTRPRPSSRVAGGTAATA


GSASAPLLAELRVADREERLQILGGLVAEKVAYVLG


HADREAVDRAQPFNRLGLDSLTAVELRNQLGAATGV


RLPATLVFDHPTPLAVAEELYDELARGVLGEPAGST


ALAVAEPAARASASHPQDAGDDPIVIVGMACKYPGG


VASPEDLWRLVAEGRDAISPEPADRGWDLDGIYDPD


PQQPGKTYTREGGFLHDAAQFDAEFFGISPREATAT


DPQQRLLLETSWEALESAGTRPETLTGSRTGVEMGV


MYNDYGARHLNRSPQGYEGYISNGSSGSIASGRVSY


SFGFEGPAVTVDTACSSSLVANHLAAQSLRAGECSM


ALAGGVTVMATPYAFVEFGRHGGLAVDGRCRSFSAD


ASGTGWSEGVGVVVLERLSDARRNGHEVLAVVRGSA


VNQDGASNGLTAPNGPSQQRVIRQALAGAGLSVADV


DAVEAHGTGTRLGDPIEAQALIATYGQGRAEGRPLW


LGSLKSNIGHTQAAAGVGGVIKMVMAMRHGVLPRTL


HVSQPSPHVDWSAGAVELLTRARQWPETGRARRAGV


SSFGISGTNAHVILEHEPVESTEAPVGSAQVPVGSV


QARVESTEAPLVAGELPWVVSGRTEGAVRAQAARLA


AFVAGRGGGAGALDVGGVGLALVSSRSVFDHSAVVS


GGSLDELLAGVGGVARGDGSAAGGVVLERRVAGGVG


VAFSGQGSQRPGMGRELYGRPPVFAAALDEVCAEVE


AQTGAELLSVVPGDDAGVLEDTGVAQPALFAVEVAL


YRLAESFGVRADVLIGHSLGELSAAYVAGVWSLADA


VRVVVARGRLMGSLPSGGRMVAVEATEEEVSGWLVD


GAVIAAVNGPAAVVVSGVEGAVEAVVERARGGGRRA


TRLRVSHAFHSPLMEPNLAGFAQVLARVEFRAPSIP


VVSNVTGEVASAAELCSPEYWVRHVREAVRFGDGVG


AVLAQGVATVVELGPEAVLTAMGASHPGVVENGAVF


LPTLGRRTGDVNGFLTALARVHARGHQVDWTALGRA


NDLARELPTYAFQHQRYWLDAPAPEPGVVEHVPEQA


VLLNAVAQQDVDGLAHTLGLAPDAPLTAVLPALQTW


SREQARLAAADALRYRVSWTELPSPTDAVPLDGTWL


VAVPGEPVEPDLVIAVEKALVDAGARVERCETAELR


ARLAAVAPRGVLCLPAVGAQRDRDRERGIATGALAV


LDLLHTVQDAGVDTRVWALTCDAVCAQADDAAPDPW


QAQVWGLGRVAALEHPTLWGGLTDVSGTSPAAQLTG


LAAALANTTGDDQIALRGELLLGRRLIRGTVPTSVP


EPETGSTAPWTDGSVLITGGTGALGAQTARWLARNG


ARTLVLTSRQGPAAPAVAALRTELEERGADVVVESC


DVTDAVALAALRDRLADAGTPVSTVVHTAGVASELP


LAELDEDGYAAVVRAKVVGAQVLDEVLGDGLAAFVV


YSSIAGVWGSARAGAYAAGNAHLDALIERRRAQGRP


GTALAWGPWGGGGMADERLTREMQARGVSALDPEEA


VAAFGRVVRADYGTVVLADTDWSRLADIFTVNRPSP


LFDPLRTVETERGGVGADGTAAGTAGADDVSGPGDS


DAGTAGATPFVARWTALSGGERRRVLVETVCTQAAA


ELGHASGGTIEPERPFQELCFDSLAAVGLRQRLEKL


TGLKLPATLVFDHPTPAALAQVVASALAERVGGASG


ASAVLGELDRLEAALAALDAGSDPAARGRITLRLSN


LLTRFQNADDEPTAASGAAETAAEQLDSATDDQLFD


LIEKEFGIS*″





FosD″ (module 5)


MSDDVSQEQLLQALRKVTGDLQDSRRRLKDTERRAT
SEQ ID NO.: 3


EPIAIVGMGCRFPGGSDSPEALWDLVRTGRDAIGAF


PKDRDWDLDALFAGDGTEEGTSYVREGGFLHGAAWF


DAGFTGVSPREAVAMDPQQRLMLEVAWESLERAGIA


PDTLRESETGVFTGAYYSFYDVPLQASSEEYEGYLV


TGNNSAVVSGRVSYALGLSGPAVTIDTACSSSLVAL


HLAAQSLRRGECSLALAGGVTVMPTPITFTEFSRQR


GLAADGRSKSFADAADGTSWGEGAGMLVLERLSDAQ


RNGHRVLAVVRGSAVNQDGASNGLAAPSGPAQERVI


WRALQDAQVQAADVDVVEAHGTGTTLGDPIEARALL


ATYGREHPAERPLWLGSLKSNLGHTQGAAGVGGIIK


MVMAMRDGVLPRTLHVDRPATHVDWSAGAVRLLTEA


QPWPRTDRPRRAGISSFGISGTNAHVILEQAPDPEP


DVPAPTAKGTGTPAQGSGVLPFLVSARTPDALSAQA


RLICRRLTADESPLADVALSLATTRTAFEQRAVVLG


GDRATVVAELESLAAGVPSANRVDGDGAAAPRRRVV


EVFPGQGAQWAGMARELLHSSPVFAARVRECADALA


PHVDWSLLDVLNGEPGEPSLDRVDVVQPVLFAMMVS


LAELWRSVGVRPHTVVGHSQGEVAAACVAGALSLED


AAKIVALRSRTLTGIAGAGGMLSVALGRAETAARLA


PFEGRVFLAAANGPEATVVSGDADALDEFFTVCEAD


NVRVRRIAVDYASHSPHVDRTGPRILTELADVAPGR


PEVEMLSTVTGEPVRDGELTAEYWVRNLRAPVEFEA


AVRRLAESGDAVFVEISPHPLLTGAMERTAEEAGVR


PATVPTLRRDAGGADRFLTSAAEGWVHGLDVDWAAL


LRDSDGRVTDLPTYPFQRSRFWPTPRTTNGSGAGSE


ACRGGRPSALAGASAPHAAQAADSGLWEALEADPAA


LLDALGLKDGESADALLPALAAWRRDHLEQARLGSW


RYGVRWEPVLHAPGAVPALAGTWLLAIPGAEHGFGP


DHRLVGWVLDAVEAAGGRALLVELDPREDTDPAAWA


ASLHAAAADARPAGILSLLALDDRPLPGRPAVGRGL


AGTTLLVRALAQTNLPGRLWCLTHGAVGTDPTDPPA


APHAAAVWGLGRVAALEHPTLWGGLIDLPRAPREAD


GQDGRTAPDAATAAQLCAVLADPGDEDQLALRPTGV


LARRLVRTPFRLPDPTTGGRDGGQVSLSDTDTDTDT


DGNVGADAVWPREGTVLITGGTGALGSRLARRLAAQ


GAQHLLLTSRRGPEALDADGLGADLESMGARVTIAA


CDLADREAVRALLESVPADAPLVSVVHAAAVLDDAA


LENLDADRLDAVLGPKALGAWHLHELTAGLNLSSFV


LYSGFVGTVGGIGQGNYAAANAVLDALAEHRRAAGL


PALSIAWGPWGGGGLVDAATEQRMRRNCLPPIEPEL


GVRALDLALAQDGPASQVLAEIEWPLFADGFTAARP


SPLLAAFARSGEAADDGSDAGRSDGAGGAGGPTLAR


RLPGMARTDADRLLLDTVRDHAAAVLCYADPAALAV


DQPFKELGIDSMTAMALRNRLQRAAGVDLPATMVFD


HPTPKALAAQLHGLIQPEERAVTAESALAELYRVAQ


SLEELRLDAALRKAAASRLRALADGWEGKRSASETV


MFSSPSGSSSERGTPDTGALLESATEDEVLDFVTRQ


LGISPLEGPG*″





FosC (modules 3-4)


MPGVLGGCLSRGRRCFRAWIEEIRFGTAAAVRAALR
SEQ ID NO.: 2


AETKTAGFDPVGGLVQFIRCRVREASEPAVRRWARN


MTDEQQLVEYLRKVTADLQRTRSRLRDAEAAAREPI


AIVGMSCRYPGGVTSPEELWELVAEGRDAITGFPTD


RGWDVAGLYDPDPDATGRSYTREGGFLGDIDLFDAD


FFGLSPREAFSMDPQQRLLLETTWRALEDAGIPPAT


LRGSRTGVFTGVMHHDYGGRFATAAPDGYEGYIHSG


SAGSMAVGRVSYLYGFEGPAVTVDTACSSSLVSLHL


AAQALRSGECDLALAGGVAVMSSPLFFIEYSRQRVV


STDGRCRSFADDGDGTGWSEGVGVLALERLSDARRL


GHRVLAVVRGSAVNQDGASNGLTAPSGPAQQRLIET


ALSSAGLSADEVDVVEAHGTGTRLGDPIEAQALMAT


YGRSRRAGRPLYLGSLKSNLGHTQAAAGVAGVIKMV


QANRHGVMPSSLYAENPTTEVDWSAGTVRLLAQARE


WDAPAGPRRAGISSFGMSGTNAHVILEEFVSEDAGA


TADAQRLAGQGSAANTRRSVDQDSAANGQDWARVAV


PVVVSGKTPEAARAQATALRDHLAVHPGLPIVDAAR


NLVDHRSLFAHRVAVAGDRAGLLAGLADTAPVEAGA


GRVAALFTGQGAQRPGMGRELDAHFPAFAAALDEVC


ACVDPLLGRGLREVMWESDAQTVARTEFAQPALFAF


EFALARLWQSWGVTFTALAGHSVGEIAAAVVAEVLT


LQDAARLVVARGRLMQALPEGGAMLAIAASETEAAE


TLATVTDGPHAADGAVDIAAVNGPDAVVVSGALDAV


ERVGEIWRGRGRRTTRLRVSHAFHSALMEPMLDDFA


EVVRGLTFSIPKTAIAASAASDHPFHSADYWIDHAR


NAVRFHDAVRGLAAADVLVEIGPDAVLAPMVGAAQA


HGDDGRTVLASTRRDRSETHTVLTTLAQAYAHGVRV


DWAALLPAAPLVDLPPYAFQRQSYWLAPPRATAGAG


TDALAHPLLSGAVELPGPGGLVLTGHISPSADPWLA


DHAIAGSVLFPGAGFVELAAQAARQAGCREISELVI


QAPLVPGDGGADVQVWVGPSEGTAGRELTIRARQAT


GQVPGQWTVHVTGTLTEPLPERHEPHEPERSDVDWA


VGAWPPAGAEPVPVQDLYADLADRGYGYGPAFRGLR


AVWRAGDDLFSEVALPDGRYDGRFGIHPALLDAALH


PLALTGDESRRIRLPFAFNGATVWPSRGSATADGAP


IRVRLRTAGDSARLDAVTSDGEPVVTVRELVLREAD


PARLSAQADAALDRLRYEVTWQPADLAPRTVPVPGT


WLVVPPAAADGASDIPAWVGELVEHTVTVPPHEAAD


RATLASALCALSAQPADAIADGFAGVLCFADRPETL


LTALQALTDARVTAKVWCLTRDSGTDPDAAAVWGAG


RAAALELPDTWGGLIDLPADGAEPPLGQLAALLAGD


TREDQVRVAGDGLEVRRVVRSAPDNDPAPNQDLTHW


QPSGTVLITGGTGALGGHVARWVAGLAAGSATQQVA


DGCSLLLVSRRGPEAPGAAELLEELSATGVPVRVVA


ADTADRAAMAAVVQEAAASGAPIRAVFHAAGIAHEA


PLLETDADDFRAVLDGKTRGALVLDDVLADAGLDAF


VLFSSVSGIWGAAGQAGYGAGNAALDALAARRRAQG


RAATSLAFGPWACGGMVDATREQRFRRSGLIPLPAA


DAVTALARSLALGTDCVLADVAWSRFLPLFTAVRPA


PLFTDLVRARGAASSGAAPRAAAGAGPARSAYRGTD


LLDLVRAEIAAAVCHADAGRIDADRPLGELGFDSLM


SVQLRNRLSAETGVQLPATLVFDHPTSAALARHLEI


RLAPPTGTGDTVMPDRKPDFTTGRTERDEPIAIVGM


ACRYPGGVSAPDDLWRLLAEGRDAIAPFPADRGWDL


TRIYSPDPAATGTTYARGGGELDDPAGFDAAFFGIP


PREALAMDPQQRLLLEAAWESVEHAGIDPKTLRGSR


TGVFAGVMYNDYFSRLNGTPESLEGITGIANSNSVM


SGRVSYLLGLEGPAVTLDTACSSSLVALHLACQALR


AGECDLALAGGATVMASPHLFVEFARQGGLAADGRC


KSFSDDADGTGWAEGVGVLAVERLSDARRLGHDVLA


VVRGSAVNQDGASNGLTAPNGPAQQRVIQAALEQAR


VAAADVDAVEAHGTGTRLGDPIEAQAVLAEYGARRP


AGRPVYLGSLKSNIGHAQAAAGVGGVIKMVQALRHE


LLPRTLHAEKPSSDVDWSAGALELLTEERPWPRTER


PRLAAVSSFGISGTNAHVVLEEGDARHVPQSPEAGT


DDDAPVAVAIPVNARTRDGLHAQARALHGHLVANPG


LGLRDVAYSLAATRSDFDHRAVVVAEDRDGLLGALA


ALGTPDAVHPAEAVTGPEAGTTGGTRAAALFSGQGA


QRPGMGRELAEHFPVFAAALDETCDVIDPLLGRPLR


DVLWQEPAEVLERTEFAQPALFAFELAMARLWMSWG


VEFSALAGHSVGEIAAAVVAGVLSVEDAARLVVARG


RLMQALPEGGAMVAIQATDDEVAASLAYLVDTSEAE


IAAVNGPSAVVVSGAEDAVTRIAEHWRGEGRRTTRL


RVSHAFHSPLMEPMLAQFAAVVDGLTFHPAEIQVSP


AADTTHAFDTPEYWTEHARRAVRFADAVRGLPDADV


LIEIGPDAALTPLFEGTRPVAASSRRGRPEAATVLT


ALSRTYVNGVPVDWTALTPGARRVALPTYAFRHRRY


WLDAAPDTADVPAAPDGTHSAEDTAFWQVVEEQNLD


GLAPTLGLGADAPLSAVLPALGNWRRGQDMTARTDR


WRYHVTWERLPDAAPPAAALDGTWLIVAPESDADTA


EDGASAALADAVTAALADAGATTRLLTVDVATADRA


TLAKELARELDRTPASDERFAGVLALPWPSGETARR


DGVSAAADATLLLVQALLDTGRTDPPLWTLTRGAVR


ALESDAAPDPWQAQVWGLGRVVGLEHPGLWGGLIDL


AASTDDDPLGCGGLARLAAVLACRSGGDDQLALRDD


SVHARRLTRAEPTVSPHERPAEDTEDADLWSSGPVL


ITGTGALAVHTARRLAESGAPIVVLASRRASGFADA


DRLRAELARHGTELVLADCDVSRRADVEELAARFAA


ADTPVGAVVHAAGTGDQNPVAALDADTFATVMAAKV


TGARNLDEVFGDGLSAFVAFTSVAGVWGNASGGAYA


ASNAHVDALMERRRARGAAGKAIAWGPWDGGGMAAG


SFGDDLRRLGIAPMAPELAVTALDRALRHGDTTVTV


ADVDWGRFTAVFTAARPSPLLAGLVPVPGAASDLAG


VTGAGPGTDETGGTTPDFAKVLAGHSPDEQQRVALD


LVRAQIAAVLGHAAARDVAPHHAFKDLGFDSLMAVE


LRTRLRESTGLDLPATLVYEHPTPTDVAAFLCRQAV


PDGGGQAARALADLASLERSLADLEGSAADRDRLAT


RLGALAARLRETPRDTEPAAQAADDDTDGGAAIATA


SASDLLALIEKGFE*″





ORF4


MATEPMKEDISNMPISKADETADAPRTADAALRAEA
SEQ ID NO.: 10


ARTAQAGPMAGKKNVVVLGVTSALGRRLAESILARG


LTPVGLIGEAGHSESLRAAGTEPLVIASEADRTSPA


ALRAMGECGGIAVATGTGWGPDATDTSSTSLVGELM


GVAQLVGIRRFVLVSAYLPDDELHTRLGDELESYLA


EKRDVERKLAGHDLDWCVVRPGMLDNSPATGLVTVR


GGADPQPEGTVSRTDLAETICEALFAPEPVRGVLAV


SAGAQPIRAALGSVPQATVQPAWWCAEERAEGAAEK


RADSPAS*″





ORF3


MTRPGGGNPVFRSSCGPKPSSGSESNCAVSLVDRDG
SEQ ID NO.: 9


ELAELGRWLRRRPADSAGLCVIEGPALCGKTALLEA


ACAEARRMGIGVLTVRGSVCGVGYAEELGEFGAREP


GEQARRLVAAATRSLLLAVDETDLLAPESQVFVREV


VRLTHTGRIRVLLTGVSAATVPSIVDELRELAAGWA


ERVRVRPLGRAAVAELARARVPGPRADALAEAIHPI


TGGNPGLTLAMLDEAAAAIGRDPDAPDGPPSAGLAR


RLREHTSREVMNLVEAVAVLDAQCTPERLWNVLEKD


AEYVSHVAGQAIASGIVRPDMTLHPYLRDAVLWSTH


PAGLRSLRLRAAQVLHEQGVPAWEIAPYLHEAGIAP


QPWAGGVLYEAAEHASRLGRHRLAVQLLESASFWGS


GPDLREEAGVRITDMVWWMDPALTAPRLRRLAAAAS


DGTFKPGSLARLSRHLARHGEMAQASDMLRLAEPAP


GRGNAVGAVSPGDALGAADVRAEVQRTLSGLWLRHL


FPDACPDAPAPDDQPHPQLIAEGFSWLSSAQRLSWL


LAPGVQCSDAPNSGPRPTGSADSAGSAKAVKDAEAA


VTCAEEILQSANFDYSSLEPMLVALFCLMATGRLDP


RAPWYAALADNAALADNERMPLPLASMLSVAEAVAA


WWKGDLVAAQTAVRRGFERWDADRWGVLAGLPRGLS


ALMLTEQGRFEEAAAQLARPMTEADLASPYGLVYLR


ARGRFRLATGALRAAVADERSCGAILTAWGMEMPGL


VPWRLDLAEALLKLEEYAEAAELIDEQLAFSPDSNT


RARGIGLRLRVATVPPGERALACRKSIAVLQSCGDE


LEYARALGQLAQIYKHTGDLAGGRKTMRLAEKTARG


CGAQWALAEMSGGSQARRKVPPPAARRDGRSLTPAE


WNVARMAAQGYTNREIAESLYVTASTIEQHLTRIYR


KFDIRRRAEIGAIVESRCAPDHTPAEIQDVA*″





ORF2


MQLIKHAHACVSLVKDGGRIAIDPGTFTPDAKEVVA
SEQ ID NO.: 8


AADAVLITHDHFDHFDEDLIARALDARPGLRVYGPV


RVVGRWAARRGQVVAVADGDRLDVAGFDVAVSGDLH


AAIHRDIPRVTNVGYLVDGRVHHPGDAYHVPPAPVD


TLLLPTSGPWTQLGRAADYVREVAPNRLVQIHEIML


SRTGQESMARFLSPAALTEVPLTIVPEGEAITV″





ORF1


MNDAPSNEPAPLPDELAVRLRAVVGTLVRSARTVDR
SEQ ID NO.: 20


LASVPAAVLGLLDTRGPMTTADLAATRGVRHQTMAA


TVRELTEAGFLASRTDPGDARRKVLALTKAGKKALD


TDRRQRVGVLADALEETLDDEDRRALAHALDLIDRI


SGSIRGGHSFSGEREFNTGAW*″









All publications and patent documents cited herein are incorporated herein by reference as if each such publication or document was specifically and individually indicated to be incorporated herein by reference.


Although the present invention has been described in detail with reference to specific embodiments, those of skill in the art will recognize that modifications and improvements are within the scope and spirit of the invention. Citation of publications and patent documents is not intended as an admission that any such document is pertinent prior art, nor does it constitute any admission as to the contents or date of the same. The invention having now been described by way of written description, those of skill in the art will recognize that the invention can be practiced in a variety of embodiments and that the foregoing description are for purposes of illustration and not limitation of the following claims.

Claims
  • 1. A method of producing a polyketide, comprising culturing a cell under conditions under which the cell produces the polyketide, wherein said cell comprises a recombinant polynucleotide synthase that comprises at least one domain from the Streptomyces pulveraceus fostriecin polyketide synthase, and wherein said cell does not make the polyketide in the absence of said recombinant polynucleotide.
  • 2. The method of claim 1 wherein the domain is encoded by a subsequence of SEQ ID NO:1 or a sequence that hybridizes under stringent conditions to a subsequence of SEQ ID NO:1.
  • 3. The method of claim 1 wherein the cell is not Streptomyces pulveraceus.
  • 4. The method of claim 3 wherein the polyketide is fostriecin, PD 113,270 or PD 113, 271.
  • 5. The method of claim 4 further comprising recovering said polyketide from the cell.
  • 6. A recombinant DNA molecule comprising a sequence encoding at least one domain of fostriecin polyketide synthase polypeptide.
  • 7. The recombinant DNA molecule of claim 6 that encodes one or more modules of fostriecin polyketide synthase.
  • 8. The recombinant DNA molecule of claim 6 that encodes a chimeric polyketide synthase (PKS) module composed of at least a portion of fostriecin PKS and at least a portion of a second PKS for a polyketide other than fostriecin.
  • 9. The recombinant DNA molecule of claim 6 comprising a sequence encoding an open reading frame encoding a polypeptide encoded by fosA, fosB, fosC, fosD, fosE or fosF or encoding a conservative variant of such a polypeptide.
  • 10. The recombinant DNA molecule of claim 6 that encodes a modified fostriecin polyketide synthase polypeptide that differs from the fostriecin polyketide synthase polypeptide encoded in SEQ ID NO:1 by inactivation of at least one fostriecin PKS domain.
  • 11. A recombinant DNA expression vector comprising the DNA molecule of claim 6 operably linked to a promoter.
  • 12. A host cell comprising the DNA molecule of claim 6.
  • 13. A recombinant Streptomyces pulveraceus cell in which at least one domain-encoding region of an endogenous fostriecin polyketide synthase gene is deleted or otherwise inactivated.
  • 14. The cell of claim 13 wherein said domain has been replaced by a different PKS domain.
  • 15. A recombinant Streptomyces pulveraceus cell in which at least polypeptide-encoding ORF of the fostriecin polyketide synthase gene cluster is deleted or otherwise inactivated.
  • 16. A method of producing a polyketide, which method comprises growing the recombinant host cell of claim 12 under conditions whereby a polyketide synthesized by a PKS comprising a protein encoded by said recombinant DNA molecule is produced in the cell and recovering the synthesized polyketide.
  • 17. The method of claim 16 further comprising chemically modifying said recovered polyketide.
  • 18. The method of claim 17 further comprising formulating said polyketide for administration to a mammal.
  • 19. A method of producing a polyketide, which method comprises growing the recombinant host cell of claim 14 under conditions whereby a polyketide is produced in the cell and recovering the synthesized polyketide.
  • 20. A method of producing a polyketide comprising (a) recombinantly modifying a gene in the fostriecin PKS gene cluster of a cell comprising said gene cluster to produce a recombinant cell, or obtaining a progeny of said recombinant cell; (b) growing said recombinant cell comprising a DNA encoding a modified or progeny under conditions whereby a polyketide other than fostriecin is synthesized by the cell and, (c) recovering the synthesized polyketide.
  • 21. The method of claim 20 wherein said modifying comprises: (a) substitution of a fostriecin AT domain with an AT domain having a different specificity; (b) inactivation of a domain of a fostriecin polyketide synthase module, wherein said domain is selected from the group consisting of a KS domain, an AT domain, an ACP domain, a KR domain, a DH domain, and an ER domain; or, (c) substitution of KS domain, an ACP domain, a KR domain, a DH domain, or an ER domain with a domain having a different specificity.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit under 35 U.S.C. 119 to U.S. provisional application No. 60/496,306 (filed Aug. 18, 2003) the entire contents of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
60496306 Aug 2003 US