Gene Expression Profiling for Identification, Monitoring and Treatment of Cervical Cancer

Information

  • Patent Application
  • 20100330558
  • Publication Number
    20100330558
  • Date Filed
    November 06, 2007
    17 years ago
  • Date Published
    December 30, 2010
    13 years ago
Abstract
A method is provided in various embodiments for determining a profile data set for a subject with cervical cancer or conditions related to cervical cancer based on a sample from the subject, wherein the sample provides a source of RNAs. The method includes using amplification for measuring the amount of RNA corresponding to at least 1 constituent from Tables 1-5. The profile data set comprises the measure of each constituent, and amplification is performed under measurement conditions that are substantially repeatable.
Description
FIELD OF THE INVENTION

The present invention relates generally to the identification of biological markers associated with the identification of cervical cancer. More specifically, the present invention relates to the use of gene expression data in the identification, monitoring and treatment of cervical cancer and in the characterization and evaluation of conditions induced by or related to cervical cancer.


BACKGROUND OF THE INVENTION

Cervical cancer is a malignancy of the cervix. Most scientific studies have found that human papillomavirus (HPV) infection is responsible for virtually all cases of cervical cancer. Worldwide, cervical cancer is the third most common type of cancer in women. However, it is much less common in the United States because of routine use of Pap smears. There are two main types of cervical cancer: squamous cell cancer and adenocarcinoma, named after the type of cell that becomes cancerous. Squamous cells are the flat skin-like cells that cover the outer surface of the cervix (the ectocervix). Squamous cell cancer is the most common type of cervical cancer. Adenomatous cells are gland cells that produce mucus. The cervix has these gland cells scattered along the inside of the passageway that runs from the cervix to the womb. Adenocarinoma is a cancer of these gland cells.


Cervical cancer may present with abnormal vaginal bleeding or discharge. Other symptoms include weight loss, fatigue, pelvic pain, back pain, leg pain, single swollen leg, and bone fractures. However, symptoms may be absent until the cancer is in its advanced stages. Undetected, pre-cancerous changes can develop into cervical cancer and spread to the bladder, intestines, lungs, and liver. The development of cervical cancer is very slow. It starts as a pre-cancerous condition called dysplasia. This pre-cancerous condition can be detected by a Pap smear and is 100% treatable. While an effective screening tool, the Pap smear is an invasive procedure, and is incapable of offering a final diagnosis. Diagnosis of cervical cancer must be confirmed by surgically removing tissue from the cervix (colposcopy, or cone biopsy), which may also be a painful procedure, and one which causes the patient great discomfort. Thus, there is a need for non-invasive, pain-free tests which can aid in the diagnosis of cervical cancer.


Furthermore, there is currently no test capable of reliably identifying patients who are likely to respond to specific therapies, especially for advanced stage cervical cancer, or cancer that has spread beyond the cervical tissue. Information on any condition of a particular patient and a patient's response to types and dosages of therapeutic or nutritional agents has become an important issue in clinical medicine today not only from the aspect of efficiency of medical practice for the health care industry but for improved outcomes and benefits for the patients. Thus, there is also the need for tests which can aid in monitoring the progression and treatment of cervical cancer.


SUMMARY OF THE INVENTION

The invention is in based in part upon the identification of gene expression profiles (Precision Profiles™) associated with cervical cancer. These genes are referred to herein as cervical cancer associated genes or cervical cancer associated constituents. More specifically, the invention is based upon the surprising discovery that detection of as few as one cervical cancer associated gene in a subject derived sample is capable of identifying individuals with or without cervical cancer with at least 75% accuracy. More particularly, the invention is based upon the surprising discovery that the methods provided by the invention are capable of detecting cervical cancer by assaying blood samples.


In various aspects the invention provides methods of evaluating the presence or absence (e.g., diagnosing or prognosing) of cervical cancer, based on a sample from the subject, the sample providing a source of RNAs, and determining a quantitative measure of the amount of at least one constituent of any constituent (e.g., cervical cancer associated gene) of any of Tables 1, 2, 3, 4, and 5 and arriving at a measure of each constituent.


Also provided are methods of assessing or monitoring the response to therapy in a subject having cervical cancer, based on a sample from the subject, the sample providing a source of RNAs, determining a quantitative measure of the amount of at least one constituent of any constituent of Tables 1, 2, 3, 4, 5 or 6 and arriving at a measure of each constituent. The therapy, for example, is immunotherapy. Preferably, one or more of the constituents listed in Table 6 is measured. For example, the response of a subject to immunotherapy is monitored by measuring the expression of TNFRSF10A, TMPRSS2, SPARC, ALOX5, PTPRC, PDGFA, PDGFB, BCL2, BAD, BAK1, BAG2, KIT, MUC1, ADAM17, CD19, CD4, CD40LG, CD86, CCR5, CTLA4, HSPA1A, IFNG, IL23A, PTGS2, TLR2, TGFB1, TNF, TNFRSF13B, TNFRSF10B, VEGF, MYC, AURKA, BAX, CDH1, CASP2, CD22, IGF1R, ITGA5, ITGAV, ITGB1, ITGB3, IL6R, JAK1, JAK2, JAK3, MAP3K1, PDGFRA, COX2, PSCA, THBS1, THBS2, TYMS, TLR1, TLR3, TLR6, TLR7, TLR9, TNFSFIO, TNFSF13B, TNFRSF17, TP53, ABL1, ABL2, AKT1, KRAS, BRAF, RAF1, ERBB4, ERBB2, ERBB3, AKT2, EGFR, IL12 or IL15. The subject has received an immunotherapeutic drug such as anti CD19 Mab, rituximab, epratuzumab, lumiliximab, visilizumab (Nuvion), HuMax-CD38, zanolimumab, anti CD40 Mab, anti-CD40L, Mab, galiximab anti-CTLA-4 MAb, ipilimumab, ticilimumab, anti-SDF-1 MAb, panitumumab, nimotuzumab, pertuzumab, trastuzumab, catumaxomab, ertumaxomab, MDX-070, anti ICOS, anti IFNAR, AMG-479, anti-IGF-1R Ab, R1507, IMC-A12, antiangiogenesis MAb, CNTO-95, natalizumab (Tysabri), SM3, IPB-01, hPAM-4, PAM4, Imuteran, huBrE-3 tiuxetan, BrevaRex MAb, PDGFR MAb, IMC-3G3, GC-1008, CNTO-148 (Golimumab), CS-1008, belimumab, anti-BAFF MAb, or bevacizumab. Alternatively, the subject has received a placebo.


In a further aspect the invention provides methods of monitoring the progression of cervical cancer in a subject, based on a sample from the subject, the sample providing a source of RNAs, by determining a quantitative measure of the amount of at least one constituent of any constituent of Tables 1, 2, 3, 4, and 5 as a distinct RNA constituent in a sample obtained at a first period of time to produce a first subject data set and determining a quantitative measure of the amount of at least one constituent of any constituent of Tables 1, 2, 3, 4, and 5 as a distinct RNA constituent in a sample obtained at a second period of time to produce a second subject data set. Optionally, the constituents measured in the first sample are the same constituents measured in the second sample. The first subject data set and the second subject data set are compared allowing the progression of cervical cancer in a subject to be determined. The second subject is taken e.g., one day, one week, one month, two months, three months, 1 year, 2 years, or more after the first subject sample. Optionally the first subject sample is taken prior to the subject receiving treatment, e.g. chemotherapy, radiation therapy, or surgery and the second subject sample is taken after treatment.


In various aspects the invention provides a method for determining a profile data set, i.e., a cervical cancer profile, for characterizing a subject with cervical cancer or conditions related to cervical cancer based on a sample from the subject, the sample providing a source of RNAs, by using amplification for measuring the amount of RNA in a panel of constituents including at least 1 constituent from any of Tables 1-5, and arriving at a measure of each constituent. The profile data set contains the measure of each constituent of the panel.


The methods of the invention further include comparing the quantitative measure of the constituent in the subject derived sample to a reference value or a baseline value, e.g. baseline data set. The reference value is for example an index value. Comparison of the subject measurements to a reference value allows for the present or absence of cervical cancer to be determined, response to therapy to be monitored or the progression of cervical cancer to be determined. For example, a similarity in the subject data set compares to a baseline data set derived form a subject having cervical cancer indicates that presence of cervical cancer or response to therapy that is not efficacious. Whereas a similarity in the subject data set compares to a baseline data set derived from a subject not having cervical cancer indicates the absence of cervical cancer or response to therapy that is efficacious. In various embodiments, the baseline data set is derived from one or more other samples from the same subject, taken when the subject is in a biological condition different from that in which the subject was at the time the first sample was taken, with respect to at least one of age, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure, and the baseline profile data set may be derived from one or more other samples from one or more different subjects.


The baseline data set or reference values may be derived from one or more other samples from the same subject taken under circumstances different from those of the first sample, and the circumstances may be selected from the group consisting of (i) the time at which the first sample is taken (e.g., before, after, or during treatment cancer treatment), (ii) the site from which the first sample is taken, (iii) the biological condition of the subject when the first sample is taken.


The measure of the constituent is increased or decreased in the subject compared to the expression of the constituent in the reference, e.g., normal reference sample or baseline value. The measure is increased or decreased 10%, 25%, 50% compared to the reference level. Alternately, the measure is increased or decreased 1, 2, 5 or more fold compared to the reference level.


In various aspects of the invention the methods are carried out wherein the measurement conditions are substantially repeatable, particularly within a degree of repeatability of better than ten percent, five percent or more particularly within a degree of repeatability of better than three percent, and/or wherein efficiencies of amplification for all constituents are substantially similar, more particularly wherein the efficiency of amplification is within ten percent, more particularly wherein the efficiency of amplification for all constituents is within five percent, and still more particularly wherein the efficiency of amplification for all constituents is within three percent or less.


In addition, the one or more different subjects may have in common with the subject at least one of age group, gender, ethnicity, geographic location, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure. A clinical indicator may be used to assess cervical cancer or a condition related to cervical cancer of the one or more different subjects, and may also include interpreting the calibrated profile data set in the context of at least one other clinical indicator, wherein the at least one other clinical indicator includes blood chemistry, X-ray or other radiological or metabolic imaging technique, molecular markers in the blood, other chemical assays, and physical findings.


At least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30 40, 50 or more constituents are measured. Preferably, at least one constituent is measured. For example, the constituent is selected from Table 1 and is GNB1, MTF1, TIMP1, MYC, TNF, NRAS, MYD88, UBE2C, PTGS2, ITGAL, TEGT, SPACRC, ICAM3, SOCS3, FOXM1, BRAF, VEGF, CASP9, VIM, MCM4, or TP53; Table 2 and is EGR1, TNF, IF116, TGFB1, ICAM1, SERPINA1, TIMP1, IRF1, CCL5, TNFRSF1A, PLAUR, HSPA1A, MMP9, PTGS2, PTPRC, IL1RN, MYC, HMOX1, VEGF, ALOX5, TLR2, SS13, CXCL1, CCL3, or IL18BP; Table 3 and is EGR1, SOCS1, FOS, TGFB1, TNF, TIMP1, IFITM1, NME4, TNFRSFIA, ICAM1, RHOA, ABL2, MMP9, SERPINE1, PLAU, BRAF, SEMA4D, MYC, PLAUR, RHOC, NRAS, CDKN1A, CDK2, NOTCH2, IL1B, TP53, AKT1, TNFRSF10B, ABL1, BCL2, or CDC25A; Table 4 and is EGR1, FOS, TGFB1, EGR2, EP300, ALOX5, ICAM1, CREBBP, MAPK1, SERPINE1, PLAU, CEBPB, EGR3, SMAD3, TP53, or MAP2K1; or Table 5 and is EGR1, FOS, TGFB1, PLXDC2, TNF, G6PD, TIMP1, RP51077B9.4, CTSD, CCL5, IFI16, GNB1, S100A11, TNFRSF1A, MEIS1, MTF1, XRCC1, ETS2, SP1, CD59, UBE2C, TEGT, NCOA1, SERPINA1, DAD1, CEACAM1, SRF, MMP9, HSPAIA, ITGAL, USP7, CTNNA1, PLAU, ACPP, IRF1, SPARC, MYC, PTPRC, ZNF185, MYD88, TLR2, CAV1, NRAS, HMGA1, HMOX1, RBM5, ST14, MTA1, POV1, CASP9, DLC1, SERPINE1, DIABLO, C1QA, CA4, CCL3, ELA2, VIM, LTA, HOXA10, MAPK14, or CXCL1.


In one aspect, two constituents from Table 1 are measured. The first constituent is ALOX12, APAF1, BIK, BRAF, BRCA1, BRCA2, BRCA2, CASP9, CAV1, CCNB1, CD97, CDH1, CDKN1A, CTGF, CTNNB1, CTSB, E2F1, ERBB2, ESR1, FHIT, FOXM1, FRAP1, GADD45A, GNB1, HIF1A, HRAS, ICAM3, IGF2, IGFBP3, IGSF4, IL10, IL8, ILF2, ITGA6, ITGAL, KIT, MCM2, MCM4, MEST, MTF1, MYBL2, MYC, MYD88, NME1, NRAS, PRDM2, PTGES, PTGS2, SART1, SERPING1, SOCS3, SPARC, TEGT, TIMP1, TNF, or TOP2A and the second constituent is any other constituent from Table 1.


In another aspect two constituents from Table 2 are measured. The first constituent is ADAM17, ALOX5, APAF1, C1QA, CASP1, CASP3, CCL3, CCL5, CCR3, CCR5, CD19, CD4, CD86, CD8A, CTLA4, CXCL1, CXCR3, DPP4, EGR1, ELA2, GZMB, HLADRA, HMGB1, HMOX1, HSPA1A, ICAM1, IFI16, IFNG, IL10, IL15, IL18, IL18BP, ILIB, IL1R1, IL1RN, IL32, IL5, IL8, IRF1, MAPK14, MHC2TA, MIF, MMP12, MMP9, MNDA, MYC, NFKB1, PLA2G7, PLAUR, PTGS2, PTPRC, SERPINA1, SERPINE1, SSI3, TGFB1, TIMP1, TLR4, TNF, TNFRSF13B, or TNFRSFIA and the second constituent is any other constituent from Table 2.


In a further aspect two constituents from Table 3 are measured. The first constituent is ABL1, ABL2, AKT1, ANGPT1, APAF1, ATM, BAD, BAX, BCL2, BRAF, BRCA1, CASP8, CCNE1, CDC25A, CDK2, CDK4, CDK5, CDKN1A, CDKN2A, CFLAR, E2F1, ERBB2, FGFR2, FOS, GZMA, HRAS, ICAM1, IFITM1, IFNG, IGFBP3, IL18, IL8, ITGA1, ITGA3, ITGAE, ITGB1, JUN, MMP9, MSH2, MYC, MYCL1, NFKB1, NME1, NME4, NOTCH2, NOTCH4, NRAS, PCNA, PLAU, PLAUR, PTCH1, PTEN, RAF1, RB1, RHOA, RHOC, S100A4, SEMA4D, SERPINE1, SKI, SKIL, SMAD4, SOCS1, SRC, TGFB1, THBS1, TIMP1, TNF, TNFRSFIOA, TNFRSF1A, or TP53 and the second constituent is any other constituent from Table 3.


In yet another aspect two constituents from Table 4 are measured. The first constituent is, ALOX5, CCND2, CDKN2D, CEBPB, CREBBP, EGR1, EGR2, EGR3, EP300, FGF2, FOS, ICAM1, JUN, MAP2K1, MAPK1, NAB1, NAB2, NFATC2, NFKB1, NR4A2, PDGFA, PLAU, RAF1, S100A6, SERPINE1, SMAD3, TGFB1, or TOPBP1 and the second constituent is any other constituent from Table 4.


In a further aspect two constituents from Table 5 are measured. The first constituent is ADAM17, ANLN, APC, AXIN2, BAX, BCAM, C1QA, C1QB, CA4, CASP3, CASP9, CAV1, CCL3, CCL5, CCR7, CD59, CD97, CDH1, CEACAM1, CNKSR2, CTNNA1, CTSD, CXCL1, DAD1, DIABLO, DLC1, E2F1, ELA2, ESR1, ESR2, FOS, G6PD, GADD45A, GNB1, GSK3B, HMGA1, HMOX1, HOXA10, HSPA1A, IFI16, IGF2BP2, IGFBP3, IKBKE, IL8, ING2, IQGAP1, IRF1, ITGAL, LARGE, LGALS8, LTA, MAPK14, MEIS1, MLH1, MME, MMP9, MNDA, MSH2, MSH6, MTA1, MTF1, MYC, MYD88, NBEA, NCOA1, NEDD4L, NRAS, NUDT4, PLAU, PLEK2, PLXDC2, POV1, PTEN, PTGS2, PTPRC, PTPRK, RBM5, RP51077B9.4, S100A11, S100A4, SERPINA1, SERPINE1, SIAH2, SP1, SPARC, SRF, ST14, TEGT, TGFB1, TIMP1, TLR2, TNF, TNFRSF1A, TNFSF5, TXNRD1, UBE2C, USP7, VEGF, VIM, XK, or XRCC1 and the second constituent is any other constituent from Table 5.


The constituents are selected so as to distinguish from a normal reference subject and a cervical cancer-diagnosed subject. The cervical cancer-diagnosed subject is diagnosed with different stages of cancer. Alternatively, the panel of constituents is selected as to permit characterizing the severity of cervical cancer in relation to a normal subject over time so as to track movement toward normal as a result of successful therapy and away from normal in response to cancer recurrence. Thus in some embodiments, the methods of the invention are used to determine efficacy of treatment of a particular subject.


Preferably, the constituents are selected so as to distinguish, e.g., classify between a normal and a cervical cancer-diagnosed subject with at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or greater accuracy. By “accuracy” is meant that the method has the ability to distinguish, e.g., classify, between subjects having cervical cancer or conditions associated with cervical cancer, and those that do not. Accuracy is determined for example by comparing the results of the Gene Precision Profiling™ to standard accepted clinical methods of diagnosing cervical cancer, e.g., the Pap smear test in conjunction with a biopsy procedure (colposcopy, loop electrical excision procedure, and or conisation).


For example the combination of constituents are selected according to any of the models enumerated in Tables 1A, 2A, 3A, 4A, or 5A.


In some embodiments, the methods of the present invention are used in conjunction with standard accepted clinical methods to diagnose cervical cancer, e.g. the Pap smear test in conjunction with a biopsy procedure (colposcopy, loop electrical excision procedure, and or conisation).


By cervical cancer or conditions related to cervical cancer is meant a malignancy of the cervix.


The sample is any sample derived from a subject which contains RNA. For example, the sample is blood, a blood fraction, body fluid, a population of cells or tissue from the subject, a cervical cell, or a rare circulating tumor cell or circulating endothelial cell found in the blood.


Optionally one or more other samples can be taken over an interval of time that is at least one month between the first sample and the one or more other samples, or taken over an interval of time that is at least twelve months between the first sample and the one or more samples, or they may be taken pre-therapy intervention or post-therapy intervention. In such embodiments, the first sample may be derived from blood and the baseline profile data set may be derived from tissue or body fluid of the subject other than blood. Alternatively, the first sample is derived from tissue or bodily fluid of the subject and the baseline profile data set is derived from blood.


Also included in the invention are kits for the detection of cervical cancer in a subject, containing at least one reagent for the detection or quantification of any constituent measured according to the methods of the invention and instructions for using the kit.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


Other features and advantages of the invention will be apparent from the following detailed description and claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graphical representation of a 2-gene model for cancer based on disease-specific genes, capable of distinguishing between subjects afflicted with cancer and normal subjects with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values above and to the left of the line represent subjects predicted to be in the normal population. Values below and to the right of the line represent subjects predicted to be in the cancer population. ALOX5 values are plotted along the Y-axis, S100A6 values are plotted along the X-axis.



FIG. 2 is a graphical representation of a 2-gene model, MTF1 and PTGES, based on The Precision Profile™ for Cervical Cancer (Table 1), capable of distinguishing between subjects afflicted with cervical cancer and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values above the line represent subjects predicted to be in the normal population. Values below the line represent subjects predicted to be in the cervical cancer population. MTF1 values are plotted along the Y-axis. PTGES values are plotted along the X-axis.



FIG. 3 is a graphical representation of the Z-statistic values for each gene shown in Table 1B A negative Z statistic means up-regulation of gene expression in cervical cancer vs. normal patients; a positive Z statistic means down-regulation of gene expression in cervical cancer vs. normal patients.



FIG. 4 is a graphical representation of a cervical cancer index based on the 2-gene logistic regression model, MTF1 and PTGES, capable of distinguishing between normal, healthy subjects and subjects suffering from cervical cancer.



FIG. 5 is a graphical representation of a 2-gene model, EGR1 and IRF1, based on the Precision Profile™ for Inflammatory Response (Table 2), capable of distinguishing between subjects afflicted with cervical cancer and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values above and to the right of the line represent subjects predicted to be in the normal population. Values below and to the left of the line represent subjects predicted to be in the cervical cancer population. EGR1 values are plotted along the Y-axis, IRF1 values are plotted along the X-axis.



FIG. 6 is a graphical representation of a 2-gene model, EGR1 and SOCS1, based on the Human Cancer General Precision Profile™ (Table 3), capable of distinguishing between subjects to afflicted with cervical cancer and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values above the line represent subjects predicted to be in the normal population. Values below the line represent subjects predicted to be in the cervical cancer population. EGR1 values are plotted along the Y-axis, SOCS1 values are plotted along the X-axis.



FIG. 7 is a graphical representation of a 2-gene model, EGR1 and FOS, based on the Precision Profile™ for EGR1 (Table 4), capable of distinguishing between subjects afflicted with cervical cancer and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values above and to the right the line represent subjects predicted to be in the normal population. Values below and to the left of the line represent subjects predicted to be in the cervical cancer population. EGR1 values are plotted along the Y-axis, FOS values are plotted along the X-axis.



FIG. 8 is a graphical representation of a 2-gene model, EGR1 and FOS, based on the Cross-Cancer Precision Profile™ (Table 5), capable of distinguishing between subjects afflicted with cervical cancer and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values above the line represent subjects predicted to be in the normal population. Values below the line represent subjects predicted to be in the cervical cancer population. EGR1 values are plotted along the Y-axis, FOS values are plotted along the X-axis.





DETAILED DESCRIPTION
Definitions

The following terms shall have the meanings indicated unless the context otherwise requires:


“Accuracy” refers to the degree of conformity of a measured or calculated quantity (a test reported value) to its actual (or true) value. Clinical accuracy relates to the proportion of true outcomes (true positives (TP) or true negatives (TN)) versus misclassified outcomes (false positives (FP) or false negatives (FN)), and may be stated as a sensitivity, specificity, positive predictive values (PPV) or negative predictive values (NPV), or as a likelihood, odds ratio, among other measures.


“Algorithm” is a set of rules for describing a biological condition. The rule set may be defined exclusively algebraically but may also include alternative or multiple decision points requiring domain-specific knowledge, expert interpretation or other clinical indicators.


An “agent” is a “composition” or a “stimulus”, as those terms are defined herein, or a combination of a composition and a stimulus.


“Amplification” in the context of a quantitative RT-PCR assay is a function of the number of DNA replications that are required to provide a quantitative determination of its concentration. “Amplification” here refers to a degree of sensitivity and specificity of a quantitative assay technique. Accordingly, amplification provides a measurement of concentrations of constituents that is evaluated under conditions wherein the efficiency of amplification and therefore the degree of sensitivity and reproducibility for measuring all constituents is substantially similar.


A “baseline profile data set” is a set of values associated with constituents of a Gene Expression Panel (Precision Profile™) resulting from evaluation of a biological sample (or population or set of samples) under a desired biological condition that is used for mathematically normative purposes. The desired biological condition may be, for example, the condition of a subject (or population or set of subjects) before exposure to an agent or in the presence of an untreated disease or in the absence of a disease. Alternatively, or in addition, the desired biological condition may be health of a subject or a population or set of subjects. Alternatively, or in addition, the desired biological condition may be that associated with a population or set of subjects selected on the basis of at least one of age group, gender, ethnicity, geographic location, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure.


A “biological condition” of a subject is the condition of the subject in a pertinent realm that is under observation, and such realm may include any aspect of the subject capable of being monitored for change in condition, such as health; disease including cancer; trauma; aging; infection; tissue degeneration; developmental steps; physical fitness; obesity, and mood. As can be seen, a condition in this context may be chronic or acute or simply transient. Moreover, a targeted biological condition may be manifest throughout the organism or population of cells or may be restricted to a specific organ (such as skin, heart, eye or blood), but in either case, the condition may be monitored directly by a sample of the affected population of cells or indirectly by a sample derived elsewhere from the subject. The term “biological condition” includes a “physiological condition”.


“Body fluid” of a subject includes blood, urine, spinal fluid, lymph, mucosal secretions, prostatic fluid, semen, haemolymph or any other body fluid known in the art for a subject.


“Calibrated profile data set” is a function of a member of a first profile data set and a corresponding member of a baseline profile data set for a given constituent in a panel.


“Cervical Cancer” is a malignancy of the cervix. Types of malignant cervical tumors include squamous cell carcinoma, adenocarcinoma, adenosquamous carcinoma, small cell carcinoma, neuroendocrine carcinoma, melanoma, and lymphoma. As defined herein, the term “cervical cancer” includes Stage I, Stage II, Stage III and Stage IV cervical cancer, as defined by the TNM staging system.


A “circulating endothelial cell” (“CEC”) is an endothelial cell from the inner wall of blood vessels which sheds into the bloodstream under certain circumstances, including inflammation, and contributes to the formation of new vasculature associated with cancer pathogenesis. CECs may be useful as a marker of tumor progression and/or response to antiangiogenic therapy.


A “circulating tumor cell” (“CTC”) is a tumor cell of epithelial origin which is shed from the primary tumor upon metastasis, and enters the circulation. The number of circulating tumor cells in peripheral blood is associated with prognosis in patients with metastatic cancer. These cells can be separated and quantified using immunologic methods that detect epithelial cells.


A “clinical indicator” is any physiological datum used alone or in conjunction with other data in evaluating the physiological condition of a collection of cells or of an organism. This term includes pre-clinical indicators.


“Clinical parameters” encompasses all non-sample or non-Precision Profiles™ of a subject's health status or other characteristics, such as, without limitation, age (AGE), ethnicity (RACE), gender (SEX), and family history of cancer.


A “composition” includes a chemical compound, a nutraceutical, a pharmaceutical, a homeopathic formulation, an allopathic formulation, a naturopathic formulation, a combination of compounds, a toxin, a food, a food supplement, a mineral, and a complex mixture of substances, in any physical state or in a combination of physical states.


To “derive” a profile data set from a sample includes determining a set of values associated with constituents of a Gene Expression Panel (Precision Profile™) either (i) by direct measurement of such constituents in a biological sample.


“Distinct RNA or protein constituent” in a panel of constituents is a distinct expressed product of a gene, whether RNA or protein. An “expression” product of a gene includes the gene product whether RNA or protein resulting from translation of the messenger RNA.


“FN” is false negative, which for a disease state test means classifying a disease subject incorrectly as non-disease or normal.


“FP” is false positive, which for a disease state test means classifying a normal subject incorrectly as having disease.


A “formula,” “algorithm,” or “model” is any mathematical equation, algorithmic, analytical or programmed process, statistical technique, or comparison, that takes one or more continuous or categorical inputs (herein called “parameters”) and calculates an output value, sometimes referred to as an “index” or “index value.” Non-limiting examples of “formulas” include comparisons to reference values or profiles, sums, ratios, and regression operators, such as coefficients or exponents, value transformations and normalizations (including, without limitation, those normalization schemes based on clinical parameters, such as gender, age, or ethnicity), rules and guidelines, statistical classification models, and neural networks trained on historical populations. Of particular use in combining constituents of a Gene Expression Panel (Precision Profile™) are linear and non-linear equations and statistical significance and classification analyses to determine the relationship between levels of constituents of a Gene Expression Panel (Precision Profile™) detected in a subject sample and the subject's risk of cervical cancer. In panel and combination construction, of particular interest are structural and synactic statistical classification algorithms, and methods of risk index construction, utilizing pattern recognition features, including, without limitation, such established techniques such as cross-correlation, Principal Components Analysis (PCA), factor rotation, Logistic Regression Analysis (LogReg), Kolmogorov Smirnoff tests (KS), Linear Discriminant Analysis (LDA), Eigengene Linear Discriminant Analysis (ELDA), Support Vector Machines (SVM), Random Forest (RF), Recursive Partitioning Tree (RPART), as well as other related decision tree classification techniques (CART, LART, LARTree, FlexTree, amongst others), Shrunken Centroids (SC), StepAIC, K-means, Kth-Nearest Neighbor, Boosting, Decision Trees, Neural Networks, Bayesian Networks, Support Vector Machines, and Hidden Markov Models, among others. Other techniques may be used in survival and time to event hazard analysis, including Cox, Weibull, Kaplan-Meier and Greenwood models well known to those of skill in the art. Many of these techniques are useful either combined with a consituentes of a Gene Expression Panel (Precision Profile™) selection technique, such as forward selection, backwards selection, or stepwise selection, complete enumeration of all potential panels of a given size, genetic algorithms, voting and committee methods, or they may themselves include biomarker selection methodologies in their own technique. These may be coupled with information criteria, such as Akaike's Information Criterion (AIC) or Bayes Information Criterion (BIC), in order to quantify the tradeoff between additional biomarkers and model improvement, and to aid in minimizing overfit. The resulting predictive models may be validated in other clinical studies, or cross-validated within the study they were originally trained in, using such techniques as Bootstrap, Leave-One-Out (LOO) and 10-Fold cross-validation (10-Fold CV). At various steps, false discovery rates (FDR) may be estimated by value permutation according to techniques known in the art.


A “Gene Expression Panel” (Precision Profile™) is an experimentally verified set of constituents, each constituent being a distinct expressed product of a gene, whether RNA or protein, wherein constituents of the set are selected so that their measurement provides a measurement of a targeted biological condition.


A “Gene Expression Profile” is a set of values associated with constituents of a Gene Expression Panel (Precision Profile™) resulting from evaluation of a biological sample (or population or set of samples).


A “Gene Expression Profile Inflammation Index” is the value of an index function that provides a mapping from an instance of a Gene Expression Profile into a single-valued measure of inflammatory condition.


A Gene Expression Profile Cancer Index” is the value of an index function that provides a mapping from an instance of a Gene Expression Profile into a single-valued measure of a cancerous condition.


The “health” of a subject includes mental, emotional, physical, spiritual, allopathic, naturopathic and homeopathic condition of the subject.


“Index” is an arithmetically or mathematically derived numerical characteristic developed for aid in simplifying or disclosing or informing the analysis of more complex quantitative information. A disease or population index may be determined by the application of a specific algorithm to a plurality of subjects or samples with a common biological condition.


“Inflammation” is used herein in the general medical sense of the word and may be an acute or chronic; simple or suppurative; localized or disseminated; cellular and tissue response initiated or sustained by any number of chemical, physical or biological agents or combination of agents.


“Inflammatory state” is used to indicate the relative biological condition of a subject resulting from inflammation, or characterizing the degree of inflammation.


A “large number” of data sets based on a common panel of genes is a number of data sets sufficiently large to permit a statistically significant conclusion to be drawn with respect to an instance of a data set based on the same panel.


“Negative predictive value” or “NPV” is calculated by TN/(TN+FN) or the true negative fraction of all negative test results. It also is inherently impacted by the prevalence of the disease and pre-test probability of the population intended to be tested.


See, e.g., O'Marcaigh A S, Jacobson R M, “Estimating the Predictive Value of a Diagnostic Test, How to Prevent Misleading or Confusing Results,” Clin. Ped. 1993, 32(8): 485-491, which discusses specificity, sensitivity, and positive and negative predictive values of a test, e.g., a clinical diagnostic test. Often, for binary disease state classification approaches using a continuous diagnostic test measurement, the sensitivity and specificity is summarized by Receiver Operating Characteristics (ROC) curves according to Pepe et al., “Limitations of the Odds Ratio in Gauging the Performance of a Diagnostic, Prognostic, or Screening Marker,” Am. J. Epidemiol 2004, 159 (9): 882-890, and summarized by the Area Under the Curve (AUC) or c-statistic, an indicator that allows representation of the sensitivity and specificity of a test, assay, or method over the entire range of test (or assay) cut points with just a single value. See also, e.g., Shultz, “Clinical Interpretation of Laboratory Procedures,” chapter 14 in Teitz, Fundamentals of Clinical Chemistry, Burtis and Ashwood (eds.), 4th edition 1996, W.B. Saunders Company, pages 192-199; and Zweig et al., “ROC Curve Analysis: An Example Showing the Relationships Among Serum Lipid and Apolipoprotein Concentrations in Identifying Subjects with Coronory Artery Disease,” Clin. Chem., 1992, 38(8): 1425-1428. An alternative approach using likelihood functions, BIC, odds ratios, information theory, predictive values, calibration (including goodness-of-fit), and reclassification measurements is summarized according to Cook, “Use and Misuse of the Receiver Operating Characteristic Curve in Risk Prediction,” Circulation 2007, 115: 928-935.


A “normal” subject is a subject who is generally in good health, has not been diagnosed with cervical cancer, is asymptomatic for cervical cancer, and lacks the traditional laboratory risk factors for cervical cancer.


A “normative” condition of a subject to whom a composition is to be administered means the condition of a subject before administration, even if the subject happens to be suffering from a disease.


A “panel” of genes is a set of genes including at least two constituents.


A “population of cells” refers to any group of cells wherein there is an underlying commonality or relationship between the members in the population of cells, including a group of cells taken from an organism or from a culture of cells or from a biopsy, for example.


“Positive predictive value” or “PPV” is calculated by TP/(TP+FP) or the true positive fraction of all positive test results. It is inherently impacted by the prevalence of the disease and pre-test probability of the population intended to be tested.


“Risk” in the context of the present invention, relates to the probability that an event will occur over a specific time period, and can mean a subject's “absolute” risk or “relative” risk. Absolute risk can be measured with reference to either actual observation post-measurement for the relevant time cohort, or with reference to index values developed from statistically valid historical cohorts that have been followed for the relevant time period. Relative risk refers to the ratio of absolute risks of a subject compared either to the absolute risks of lower risk cohorts, across population divisions (such as tertiles, quartiles, quintiles, or deciles, etc.) or an average population risk, which can vary by how clinical risk factors are assessed. Odds ratios, the proportion of positive events to negative events for a given test result, are also commonly used (odds are according to the formula p/(1−p) where p is the probability of event and (1−p) is the probability of no event) to no-conversion.


“Risk evaluation,” or “evaluation of risk” in the context of the present invention encompasses making a prediction of the probability, odds, or likelihood that an event or disease state may occur, and/or the rate of occurrence of the event or conversion from one disease state to another, i.e., from a normal condition to cancer or from cancer remission to cancer, or from primary cancer occurrence to occurrence of a cancer metastasis. Risk evaluation can also comprise prediction of future clinical parameters, traditional laboratory risk factor values, or other indices of cancer results, either in absolute or relative terms in reference to a previously measured population. Such differing use may require different constituents of a Gene Expression Panel (Precision Profile™) combinations and individualized panels, mathematical algorithms, and/or cut-off points, but be subject to the same aforementioned measurements of accuracy and performance for the respective intended use.


A “sample” from a subject may include a single cell or multiple cells or fragments of cells or an aliquot of body fluid, taken from the subject, by means including venipuncture, excretion, ejaculation, massage, biopsy, needle aspirate, lavage sample, scraping, surgical incision or intervention or other means known in the art. The sample is blood, urine, spinal fluid, lymph, mucosal secretions, prostatic fluid, semen, haemolymph or any other body fluid known in the art for a subject. The sample is also a tissue sample. The sample is or contains a circulating endothelial cell or a circulating tumor cell.


“Sensitivity” is calculated by TP/(TP+FN) or the true positive fraction of disease subjects.


“Specificity” is calculated by TN/(TN+FP) or the true negative fraction of non-disease or normal subjects.


By “statistically significant”, it is meant that the alteration is greater than what might be expected to happen by chance alone (which could be a “false positive”). Statistical significance can be determined by any method known in the art. Commonly used measures of significance include the p-value, which presents the probability of obtaining a result at least as extreme as a given data point, assuming the data point was the result of chance alone. A result is often considered highly significant at a p-value of 0.05 or less and statistically significant at a p-value of 0.10 or less. Such p-values depend significantly on the power of the study performed.


A “set” or “population” of samples or subjects refers to a defined or selected group of samples or subjects wherein there is an underlying commonality or relationship between the members included in the set or population of samples or subjects.


A “Signature Profile” is an experimentally verified subset of a Gene Expression Profile selected to discriminate a biological condition, agent or physiological mechanism of action.


A “Signature Panel” is a subset of a Gene Expression Panel (Precision Profile™), the constituents of which are selected to permit discrimination of a biological condition, agent or physiological mechanism of action.


A “subject” is a cell, tissue, or organism, human or non-human, whether in vivo, ex vivo or in vitro, under observation. As used herein, reference to evaluating the biological condition of a subject based on a sample from the subject, includes using blood or other tissue sample from a human subject to evaluate the human subject's condition; it also includes, for example, using a blood sample itself as the subject to evaluate, for example, the effect of therapy or an agent upon the sample.


A “stimulus” includes (i) a monitored physical interaction with a subject, for example ultraviolet A or B, or light therapy for seasonal affective disorder, or treatment of psoriasis with psoralen or treatment of cancer with embedded radioactive seeds, other radiation exposure, and (ii) any monitored physical, mental, emotional, or spiritual activity or inactivity of a subject.


“Therapy” includes all interventions whether biological, chemical, physical, metaphysical, or combination of the foregoing, intended to sustain or alter the monitored biological condition of a subject.


“TN” is true negative, which for a disease state test means classifying a non-disease or normal subject correctly.


“TP” is true positive, which for a disease state test means correctly classifying a disease subject.


The PCT patent application publication number WO 01/25473, published Apr. 12, 2001, entitled “Systems and Methods for Characterizing a Biological Condition or Agent Using Calibrated Gene Expression Profiles,” filed for an invention by inventors herein, and which is herein incorporated by reference, discloses the use of Gene Expression Panels (Precision Profiles™) for the evaluation of (i) biological condition (including with respect to health and disease) and (ii) the effect of one or more agents on biological condition (including with respect to health, toxicity, therapeutic treatment and drug interaction).


In particular, the Gene Expression Panels (Precision Profiles™) described herein may be used, without limitation, for measurement of the following: therapeutic efficacy of natural or synthetic compositions or stimuli that may be formulated individually or in combinations or mixtures for a range of targeted biological conditions; prediction of toxicological effects and dose effectiveness of a composition or mixture of compositions for an individual or for a population or set of individuals or for a population of cells; determination of how two or more different agents administered in a single treatment might interact so as to detect any of synergistic, additive, negative, neutral or toxic activity; performing pre-clinical and clinical trials by providing new criteria for pre-selecting subjects according to informative profile data sets for revealing disease status; and conducting preliminary dosage studies for these patients prior to conducting phase 1 or 2 trials. These Gene Expression Panels (Precision Profiles™) may be employed with respect to samples derived from subjects in order to evaluate their biological condition.


The present invention provides Gene Expression Panels (Precision Profiles™) for the evaluation or characterization of cervical cancer and conditions related to cervical cancer in a subject. In addition, the Gene Expression Panels described herein also provide for the evaluation of the effect of one or more agents for the treatment of cervical cancer and conditions related to cervical cancer.


The Gene Expression Panels (Precision Profiles™) are referred to herein as The Precision Profile™ for Cervical Cancer, the Precision Profile™ for Inflammatory Response, the Human Cancer General Precision Profile™, the Precision Profile™ for EGR1, and the Cross-Cancer Precision Profile™. The Precision Profile™ for Cervical Cancer includes one or more genes, e.g., constituents, listed in Table 1, whose expression is associated with cervical cancer or conditions related to cervical cancer. The Precision Profile™ for Inflammatory Response includes one or more genes, e.g., constituents, listed in Table 2, whose expression is associated with inflammatory response and cancer. The Human Cancer General Precision Profile™ includes one or more genes, e.g., constituents, listed in Table 3, whose expression is associated generally with human cancer (including without limitation prostate, breast, ovarian, cervical, lung, colon, and skin cancer).


The Precision Profile™ for EGR1 includes one or more genes, e.g., constituents listed in Table 4, whose expression is associated with the role early growth response (EGR) gene family plays in human cancer. The Precision Profile™ for EGR1 is composed of members of the early growth response (EGR) family of zinc finger transcriptional regulators; EGR1, 2, 3 & 4 and their binding proteins; NAB1 & NAB2 which function to repress transcription induced by some members of the EGR family of transactivators. In addition to the early growth response genes, The Precision Profile™ for EGR1 includes genes involved in the regulation of immediate early gene expression, genes that are themselves regulated by members of the immediate early gene family (and EGR1 in particular) and genes whose products interact with EGR1, serving as co-activators of transcriptional regulation.


The Cross-Cancer Precision Profile™ includes one or more genes, e.g., constituents listed in Table 5, whose expression has been shown, by latent class modeling, to play a significant role across various types of cancer, including without limitation, prostate, breast, ovarian, cervical, lung, colon, and skin cancer. Each gene of The Precision Profile™ for Cervical Cancer, the Precision Profile™ for Inflammatory Response, the Human Cancer General Precision Profile™, the Precision Profile™ for EGR1, and the Cross-Cancer Precision Profile™ is referred to herein as a cervical cancer associated gene or a cervical cancer associated constituent. In addition to the genes listed in the Precision Profiles™ herein, cervical cancer associated genes or cervical cancer associated constituents include oncogenes, tumor suppression genes, tumor progression genes, angiogenesis genes, and lymphogenesis genes.


The present invention also provides a method for monitoring and determining the efficacy of immunotherapy, using the Gene Expression Panels (Precision Profiles™) described herein. Immunotherapy target genes include, without limitation, TNFRSF10A, TMPRSS2, SPARC, ALOX5, PTPRC, PDGFA, PDGFB, BCL2, BAD, BAK1, BAG2, KIT, MUC1, ADAM17, CD19, CD4, CD40LG, CD86, CCR5, CTLA4, HSPAIA, IFNG, IL23A, PTGS2, TLR2, TGFB1, TNF, TNFRSF13B, TNFRSFIOB, VEGF, MYC, AURKA, BAX, CDH1, CASP2, CD22, IGF1R, ITGA5, ITGAV, ITGB1, ITGB3, IL6R, JAK1, JAK2, JAK3, MAP3K1, PDGFRA, COX2, PSCA, THBS1, THBS2, TYMS, TLR1, TLR3, TLR6, TLR7, TLR9, TNFSFIO, TNFSF13B, TNFRSF17, TP53, ABL1, ABL2, AKT1, KRAS, BRAF, RAF1, ERBB4, ERBB2, ERBB3, AKT2, EGFR, IL12 and IL15. For example, the present invention provides a method for monitoring and determining the efficacy of immunotherapy by monitoring the immunotherapy associated genes, i.e., constituents, listed in Table 6.


It has been discovered that valuable and unexpected results may be achieved when the quantitative measurement of constituents is performed under repeatable conditions (within a degree of repeatability of measurement of better than twenty percent, preferably ten percent or better, more preferably five percent or better, and more preferably three percent or better). For the purposes of this description and the following claims, a degree of repeatability of measurement of better than twenty percent may be used as providing measurement conditions that are “substantially repeatable”. In particular, it is desirable that each time a measurement is obtained corresponding to the level of expression of a constituent in a particular sample, substantially the same measurement should result for substantially the same level of expression. In this manner, expression levels for a constituent in a Gene Expression Panel (Precision Profile™) may be meaningfully compared from sample to sample. Even if the expression level measurements for a particular constituent are inaccurate (for example, say, 30% too low), the criterion of repeatability means that all measurements for this constituent, if skewed, will nevertheless be skewed systematically, and therefore measurements of expression level of the constituent may be compared meaningfully. In this fashion valuable information may be obtained and compared concerning expression of the constituent under varied circumstances.


In addition to the criterion of repeatability, it is desirable that a second criterion also be satisfied, namely that quantitative measurement of constituents is performed under conditions wherein efficiencies of amplification for all constituents are substantially similar as defined herein. When both of these criteria are satisfied, then measurement of the expression level of one constituent may be meaningfully compared with measurement of the expression level of another constituent in a given sample and from sample to sample.


The evaluation or characterization of cervical cancer is defined to be diagnosing cervical cancer, assessing the presence or absence of cervical cancer, assessing the risk of developing cervical cancer or assessing the prognosis of a subject with cervical cancer, assessing the recurrence of cervical cancer or assessing the presence or absence of a metastasis. Similarly, the evaluation or characterization of an agent for treatment of cervical cancer includes identifying agents suitable for the treatment of cervical cancer. The agents can be compounds known to treat cervical cancer or compounds that have not been shown to treat cervical cancer.


The agent to be evaluated or characterized for the treatment of cervical cancer may be an alkylating agent (e.g., Cisplatin, Carboplatin, Oxaliplatin, BBR3464, Chlorambucil, Chlormethine, Cyclophosphamides, Ifosmade, Melphalan, Carmustine, Fotemustine, Lomustine, Streptozocin, Busulfan, Dacarbazine, Mechlorethamine, Procarbazine, Temozolomide, ThioTPA, and Uramustine); an anti-metabolite (e.g., purine (azathioprine, mercaptopurine), pyrimidine (Capecitabine, Cytarabine, Fluorouracil, Gemcitabine), and folic acid (Methotrexate, Pemetrexed, Raltitrexed)); a vinca alkaloid (e.g., Vincristine, Vinblastine, Vinorelbine, Vindesine); a taxane (e.g., paclitaxel, docetaxel, BMS-247550); an anthracycline (e.g., Daunorubicin, Doxorubicin, Epirubicin, Idarubicin, Mitoxantrone, Valrubicin, Bleomycin, Hydroxyurea, and Mitomycin); a topoisomerase inhibitor (e.g., Topotecan, Irinotecan Etoposide, and Teniposide); a monoclonal antibody (e.g., Alemtuzumab, Bevacizumab, Cetuximab, Gemtuzumab, Panitumumab, Rituximab, and Trastuzumab); a photosensitizer (e.g., Aminolevulinic acid, Methyl aminolevulinate, Porfimer sodium, and Verteporfin); a tyrosine kinase inhibitor (e.g., Gleevec™); an epidermal growth factor receptor inhibitor (e.g., Iressa™, erlotinib (Tarceva™), gefitinib); an FPTase inhibitor (e.g., FTIs (R115777, SCH66336, L-778,123)); a KDR inhibitor (e.g., SU6668, PTK787); a proteosome inhibitor (e.g., PS341); a TS/DNA synthesis inhibitor (e.g., ZD9331, Raltirexed (ZD1694, Tomudex), ZD9331, 5-FU)); an S-adenosyl-methionine decarboxylase inhibitor (e.g., SAM468A); a DNA methylating agent (e.g., TMZ); a DNA binding agent (e.g., PZA); an agent which binds and inactivates O6-alkylguanine AGT (e.g., BG); a c-raf-1 antisense oligo-deoxynucleotide (e.g., ISIS-5132 (CGP-69846A)); tumor immunotherapy (see Table 6); a steroidal and/or non-steroidal anti-inflammatory agent (e.g., corticosteroids, COX-2 inhibitors); or other agents such as Alitretinoin, Altretamine, Amsacrine, Anagrelide, Arsenic trioxide, Asparaginase, Bexarotene, Bortezomib, Celecoxib, Dasatinib, Denileukin Diftitox, Estramustine, Hydroxycarbamide, Imatinib, Pentostatin, Masoprocol, Mitotane, Pegaspargase, and Tretinoin.


Cervical cancer and conditions related to cervical cancer is evaluated by determining the level of expression (e.g., a quantitative measure) of an effective number (e.g., one or more) of constituents of a Gene Expression Panel (Precision Profile™) disclosed herein (i.e., Tables 1-5). By an effective number is meant the number of constituents that need to be measured in order to discriminate between a normal subject and a subject having cervical cancer. Preferably the constituents are selected as to discriminate between a normal subject and a subject having 95%, 97%, 98%, 99% or greater accuracy.


The level of expression is determined by any means known in the art, such as for example quantitative PCR. The measurement is obtained under conditions that are substantially repeatable. Optionally, the qualitative measure of the constituent is compared to a reference or baseline level or value (e.g. a baseline profile set). In one embodiment, the reference or baseline level is a level of expression of one or more constituents in one or more subjects known not to be suffering from cervical cancer (e.g., normal, healthy individual(s)). Alternatively, the reference or baseline level is derived from the level of expression of one or more constituents in one or more subjects known to be suffering from cervical cancer. Optionally, the baseline level is derived from the same subject from which the first measure is derived. For example, the baseline is taken from a subject prior to receiving treatment or surgery for cervical cancer, or at different time periods during a course of treatment. Such methods allow for the evaluation of a particular treatment for a selected individual. Comparison can be performed on test (e.g., patient) and reference samples (e.g., baseline) measured concurrently or at temporally distinct times. An example of the latter is the use of compiled expression information, e.g., a gene expression database, which assembles information about expression levels of cancer associated genes.


A reference or baseline level or value as used herein can be used interchangeably and is meant to be relative to a number or value derived from population studies, including without limitation, such subjects having similar age range, subjects in the same or similar ethnic group, sex, or, in female subjects, pre-menopausal or post-menopausal subjects, or relative to the starting sample of a subject undergoing treatment for cervical cancer. Such reference values can be derived from statistical analyses and/or risk prediction data of populations obtained from mathematical algorithms and computed indices of cervical cancer. Reference indices can also be constructed and used using algorithms and other methods of statistical and structural classification.


In one embodiment of the present invention, the reference or baseline value is the amount of expression of a cancer associated gene in a control sample derived from one or more subjects who are both asymptomatic and lack traditional laboratory risk factors for cervical cancer.


In another embodiment of the present invention, the reference or baseline value is the level of cancer associated genes in a control sample derived from one or more subjects who are not at risk or at low risk for developing cervical cancer.


In a further embodiment, such subjects are monitored and/or periodically retested for a diagnostically relevant period of time (“longitudinal studies”) following such test to verify continued absence from cervical cancer (disease or event free survival). Such period of time may be one year, two years, two to five years, five years, five to ten years, ten years, or ten or more years from the initial testing date for determination of the reference or baseline value. Furthermore, retrospective measurement of cancer associated genes in properly banked historical subject samples may be used in establishing these reference or baseline values, thus shortening the study time required, presuming the subjects have been appropriately followed during the intervening period through the intended horizon of the product claim.


A reference or baseline value can also comprise the amounts of cancer associated genes derived from subjects who show an improvement in cancer status as a result of treatments and/or therapies for the cancer being treated and/or evaluated.


In another embodiment, the reference or baseline value is an index value or a baseline value. An index value or baseline value is a composite sample of an effective amount of cancer associated genes from one or more subjects who do not have cancer.


For example, where the reference or baseline level is comprised of the amounts of cancer associated genes derived from one or more subjects who have not been diagnosed with cervical cancer, or are not known to be suffereing from cervical cancer, a change (e.g., increase or decrease) in the expression level of a cancer associated gene in the patient-derived sample as compared to the expression level of such gene in the reference or baseline level indicates that the subject is suffering from or is at risk of developing cervical cancer. In contrast, when the methods are applied prophylacticly, a similar level of expression in the patient-derived sample of a cervical cancer associated gene compared to such gene in the baseline level indicates that the subject is not suffering from or is at risk of developing cervical cancer.


Where the reference or baseline level is comprised of the amounts of cancer associated genes derived from one or more subjects who have been diagnosed with cervical cancer, or are known to be suffereing from cervical cancer, a similarity in the expression pattern in the patient-derived sample of a cervical cancer gene compared to the cervical cancer baseline level indicates that the subject is suffering from or is at risk of developing cervical cancer.


Expression of a cervical cancer gene also allows for the course of treatment of cervical cancer to be monitored. In this method, a biological sample is provided from a subject undergoing treatment, e.g., if desired, biological samples are obtained from the subject at various time points before, during, or after treatment. Expression of a cervical cancer gene is then determined and compared to a reference or baseline profile. The baseline profile may be taken or derived from one or more individuals who have been exposed to the treatment. Alternatively, the baseline level may be taken or derived from one or more individuals who have not been exposed to the treatment. For example, samples may be collected from subjects who have received initial treatment for cervical cancer and subsequent treatment for cervical cancer to monitor the progress of the treatment.


Differences in the genetic makeup of individuals can result in differences in their relative abilities to metabolize various drugs. Accordingly, The Precision Profile™ for Cervical Cancer (Table 1), the Precision Profile™ for Inflammatory Response (Table 2), the Human Cancer General Precision Profile™ (Table 3), the Precision Profile™ for EGR1 (Table 4), and the Cross-Cancer Precision Profile™ (Table 5), disclosed herein, allow for a putative therapeutic or prophylactic to be tested from a selected subject in order to determine if the agent is suitable for treating or preventing cervical cancer in the subject. Additionally, other genes known to be associated with toxicity may be used. By suitable for treatment is meant determining whether the agent will be efficacious, not efficacious, or toxic for a particular individual. By toxic it is meant that the manifestations of one or more adverse effects of a drug when administered therapeutically. For example, a drug is toxic when it disrupts one or more normal physiological pathways.


To identify a therapeutic that is appropriate for a specific subject, a test sample from the subject is exposed to a candidate therapeutic agent, and the expression of one or more of cervical cancer genes is determined. A subject sample is incubated in the presence of a candidate agent and the pattern of cervical cancer gene expression in the test sample is measured and compared to a baseline profile, e.g., a cervical cancer baseline profile or a non-cervical cancer baseline profile or an index value. The test agent can be any compound or composition. For example, the test agent is a compound known to be useful in the treatment of cervical cancer. Alternatively, the test agent is a compound that has not previously been used to treat cervical cancer.


If the reference sample, e.g., baseline is from a subject that does not have cervical cancer a similarity in the pattern of expression of cervical cancer genes in the test sample compared to the reference sample indicates that the treatment is efficacious. Whereas a change in the pattern of expression of cervical cancer genes in the test sample compared to the reference sample indicates a less favorable clinical outcome or prognosis. By “efficacious” is meant that the treatment leads to a decrease of a sign or symptom of cervical cancer in the subject or a change in the pattern of expression of a cervical cancer gene such that the gene expression pattern has an increase in similarity to that of a reference or baseline pattern. Assessment of cervical cancer is made using standard clinical protocols. Efficacy is determined in association with any known method for diagnosing or treating cervical cancer.


A Gene Expression Panel (Precision Profile™) is selected in a manner so that quantitative measurement of RNA or protein constituents in the Panel constitutes a measurement of a biological condition of a subject. In one kind of arrangement, a calibrated profile data set is employed. Each member of the calibrated profile data set is a function of (i) a measure of a distinct constituent of a Gene Expression Panel (Precision Profile™) and (ii) a baseline quantity.


Additional embodiments relate to the use of an index or algorithm resulting from quantitative measurement of constituents, and optionally in addition, derived from either expert analysis or computational biology (a) in the analysis of complex data sets; (b) to control or normalize the influence of uninformative or otherwise minor variances in gene expression values between samples or subjects; (c) to simplify the characterization of a complex data set for comparison to other complex data sets, databases or indices or algorithms derived from complex data sets; (d) to monitor a biological condition of a subject; (e) for measurement of therapeutic efficacy of natural or synthetic compositions or stimuli that may be formulated individually or in combinations or mixtures for a range of targeted biological conditions; (f) for predictions of toxicological effects and dose effectiveness of a composition or mixture of compositions for an individual or for a population or set of individuals or for a population of cells; (g) for determination of how two or more different agents administered in a single treatment might interact so as to detect any of synergistic, additive, negative, neutral of toxic activity (h) for performing pre-clinical and clinical trials by providing new criteria for pre-selecting subjects according to informative profile data sets for revealing disease status and conducting preliminary dosage studies for these patients prior to conducting Phase 1 or 2 trials.


Gene expression profiling and the use of index characterization for a particular condition or agent or both may be used to reduce the cost of Phase 3 clinical trials and may be used beyond Phase 3 trials; labeling for approved drugs; selection of suitable medication in a class of medications for a particular patient that is directed to their unique physiology; diagnosing or determining a prognosis of a medical condition or an infection which may precede onset of to symptoms or alternatively diagnosing adverse side effects associated with administration of a therapeutic agent; managing the health care of a patient; and quality control for different batches of an agent or a mixture of agents.


The Subject

The methods disclosed herein may be applied to cells of humans, mammals or other organisms without the need for undue experimentation by one of ordinary skill in the art because all cells transcribe RNA and it is known in the art how to extract RNA from all types of cells.


A subject can include those who have not been previously diagnosed as having cervical cancer or a condition related to cervical cancer. Alternatively, a subject can also include those who have already been diagnosed as having cervical cancer or a condition related to cervical cancer. Diagnosis of cervical cancer is made, for example, from any one or combination of the following procedures: a medical history, a Pap smear, and biopsy procedures (including cone biopsy and colposcopy).


Optionally, the subject has been previously treated with a surgical procedure for removing cervical cancer or a condition related to cervical cancer, including but not limited to any one or combination of the following treatments: LEEP (Loop Electrosurgical Excision Procedure), cryotherapy—freezes abnormal cells, and laser therapy.


Optionally, the subject has previously been treated with chemotherapy (including but not limited to 5-FU, Cisplatin, Carboplatin, Ifosfamide, Paclitaxel, and Cyclophosphamide) and/or radiation therapy (internal and/or external), alone, in combination with, or in succession to a surgical procedure, as previously described. Optionally, the subject may be treated with any of the agents previously described; alone, or in combination with a surgical procedure for removing cervical cancer, as previously described.


A subject can also include those who are suffering from, or at risk of developing cervical cancer or a condition related to cervical cancer, such as those who exhibit known risk factors for cervical cancer or conditions related to cervical cancer. Known risk factors for cervical cancer include but are not limited to: human papillomavirus infection, smoking, HIV infection, chlamydia infection, dietary factors, oral contraceptives, multiple pregnancies, use of the hormonal drug diethylstilbestrol (DES) and a family history of cervical cancer.


Selecting Constituents of a Gene Expression Panel (Precision Profile™)

The general approach to selecting constituents of a Gene Expression Panel (Precision Profile™) has been described in PCT application publication number WO 01/25473, incorporated herein in its entirety. A wide range of Gene Expression Panels (Precision Profiles™) have been designed and experimentally validated, each panel providing a quantitative measure of biological condition that is derived from a sample of blood or other tissue. For each panel, experiments have verified that a Gene Expression Profile using the panel's constituents is informative of a biological condition. (It has also been demonstrated that in being informative of biological condition, the Gene Expression Profile is used, among other things, to measure the effectiveness of therapy, as well as to provide a target for therapeutic intervention).


In addition to the The Precision Profile™ for Cervical Cancer (Table 1), the Precision Profile™ for Inflammatory Response (Table 2), the Human Cancer General Precision Profile™ (Table 3), the Precision Profile™ for EGR1 (Table 4), and the Cross-Cancer Precision Profile™ (Table 5), include relevant genes which may be selected for a given Precision Profiles™, such as the Precision Profiles™ demonstrated herein to be useful in the evaluation of cervical cancer and conditions related to cervical cancer.


Inflammation and Cancer

Evidence has shown that cancer in adults arises frequently in the setting of chronic inflammation. Epidemiological and experimental studies provide strong support for the concept that inflammation facilitates malignant growth. Inflammatory components have been shown to 1) induce DNA damage, which contributes to genetic instability (e.g., cell mutation) and transformed cell proliferation (Balkwill and Mantovani, Lancet 357:539-545 (2001)); 2) promote angiogenesis, thereby enhancing tumor growth and invasiveness (Coussens L. M. and Z. Werb, Nature 429:860-867 (2002)); and 3) impair myelopoiesis and hemopoiesis, which cause immune dysfunction and inhibit immune surveillance (Kusmartsev and Gabrilovic, Cancer Immunol. Immunother. 51:293-298 (2002); Serafini et al., Cancer Immunol. Immunther. 53:64-72 (2004)).


Studies suggest that inflammation promotes malignancy via proinflammatory cytokines, including but not limited to IL-1β, which enhance immune suppression through the induction of myeloid suppressor cells, and that these cells down regulate immune surveillance and allow the outgrowth and proliferation of malignant cells by inhibiting the activation and/or function of tumor-specific lymphocytes. (Bunt et al., J. Immunol. 176: 284-290 (2006). Such studies are consistent with findings that myeloid suppressor cells are found in many cancer patients, including lung and breast cancer, and that chronic inflammation in some of these malignancies may enhance malignant growth (Coussens L. M. and Z. Werb, 2002).


Additionally, many cancers express an extensive repertoire of chemokines and chemokine receptors, and may be characterized by dis-regulated production of chemokines and abnormal chemokine receptor signaling and expression. Tumor-associated chemokines are thought to play several roles in the biology of primary and metastatic cancer such as: control of leukocyte infiltration into the tumor, manipulation of the tumor immune response, regulation of angiogenesis, autocrine or paracrine growth and survival factors, and control of the movement of the cancer cells. Thus, these activities likely contribute to growth within/outside the tumor microenvironment and to stimulate anti-tumor host responses.


As tumors progress, it is common to observe immune deficits not only within cells in the tumor microenvironment but also frequently in the systemic circulation. Whole blood contains representative populations of all the mature cells of the immune system as well as secretory proteins associated with cellular communications. The earliest observable changes of cellular immune activity are altered levels of gene expression within the various immune cell types. Immune responses are now understood to be a rich, highly complex tapestry of cell-cell signaling events driven by associated pathways and cascades—all involving modified activities of gene transcription. This highly interrelated system of cell response is immediately activated upon any immune challenge, including the events surrounding host response to cervical cancer and treatment. Modified gene expression precedes the release of cytokines and other immunologically important signaling elements.


As such, inflammation genes, such as the genes listed in the Precision Profile™ for Inflammatory Response (Table 2) are useful for distinguishing between subjects suffering from cervical cancer and normal subjects, in addition to the other gene panels, i.e., Precision Profiles™, described herein.


Early Growth Response Gene Family and Cancer

The early growth response (EGR) genes are rapidly induced following mitogenic stimulation in diverse cell types, including fibroblasts, epithelial cells and B lymphocytes. The EGR genes are members of the broader “Immediate Early Gene” (IEG) family, whose genes are activated in the first round of response to extracellular signals such as growth factors and neurotransmitters, prior to new protein synthesis. The IEG's are well known as early regulators of cell growth and differentiation signals, in addition to playing a role in other cellular processes. Some other well characterized members of the IEG family include the c-myc, c-fos and c-jun oncogenes. Many of the immediate early gene products function as transcription factors and DNA-binding proteins, though other IEG's also include secreted proteins, cytoskeletal proteins and receptor subunits. EGR1 expression is induced by a wide variety of stimuli. It is rapidly induced by mitogens such as platelet derived growth factor (PDGF), fibroblast growth factor (FGF), and epidermal growth factor (EGF), as well as by modified lipoproteins, shear/mechanical stresses, and free radicals. Interestingly, expression of the EGR1 gene is also regulated by the oncogenes v-raf, v-fps and v-src as demonstrated in transfection analysis of cells using promoter-reporter constructs. This regulation is mediated by the serum response elements (SREs) present within the EGR1 promoter region. It has also been demonstrated that hypoxia, which occurs during development of cancers, induces EGR1 expression. EGR1 subsequently enhances the expression of endogenous EGFR, which plays an important role in cell growth (over-expression of EGFR can lead to transformation). Finally, EGR1 has also been shown to be induced by Smad3, a signaling component of the TGFB pathway.


In its role as a transcriptional regulator, the EGR1 protein binds specifically to the G+C rich EGR consensus sequence present within the promoter region of genes activated by EGR1. EGR1 also interacts with additional proteins (CREBBP/EP300) which co-regulate transcription of EGR1 activated genes. Many of the genes activated by EGR1 also stimulate the expression of EGR1, creating a positive feedback loop. Genes regulated by EGR1 include the mitogens: platelet derived growth factor (PDGFA), fibroblast growth factor (FGF), and epidermal growth factor (EGF) in addition to TNF, IL2, PLAU, ICAM1, TP53, ALOX5, PTEN, FN1 and TGFB1.


As such, early growth response genes, or genes associated therewith, such as the genes listed in the Precision Profile™ for EGR1 (Table 4) are useful for distinguishing between subjects suffering from cervical cancer and normal subjects, in addition to the other gene panels, i.e., Precision Profiles™, described herein.


In general, panels may be constructed and experimentally validated by one of ordinary skill in the art in accordance with the principles articulated in the present application.


Gene Expression Profiles Based on Gene Expression Panels of the Present Invention


Tables 1A-1C were derived from a study of the gene expression patterns described in Example 3 below. Table 1A describes all 1 and 2-gene logistic regression models based on genes from the Precision Profile™ for Cervical Cancer (Table 1) which are capable of distinguishing between subjects suffering from cervical cancer and normal subjects with at least 75% accuracy. For example, the first row of Table 1A, describes a 2-gene model, MTF1 and PTGES, capable of correctly classifying cervical cancer-afflicted subjects with 95.7% accuracy, and normal subjects with 95.5% accuracy.


Tables 2A-2C were derived from a study of the gene expression patterns described in Example 4 below. Table 2A describes all 1 and 2-gene logistic regression models based on genes from the Precision Profile™ for Inflammatory Response (Table 2), which are capable of distinguishing between subjects suffering from cervical cancer and normal subjects with at least 75% accuracy. For example, the first row of Table 2A, describes a 2-gene model, EGR1 and IRF1, capable of correctly classifying cervical cancer-afflicted subjects with 95.8% accuracy, and normal subjects with 96.2% accuracy.


Tables 3A-3C were derived from a study of the gene expression patterns described in Example 5 below. Table 3A describes all 1 and 2-gene logistic regression models based on genes from the Human Cancer General Precision Profile™ (Table 3), which are capable of distinguishing between subjects suffering from cervical cancer and normal subjects with at least 75% accuracy. For example, the first row of Table 3A, describes a 1-gene model, EGR1, capable of correctly classifying cervical cancer-afflicted subjects with 100% accuracy, and normal subjects with 100% accuracy.


Tables 4A-4C were derived from a study of the gene expression patterns described in Example 6 below. Table 4A describes all 1 and 2-gene logistic regression models based on genes from the Precision Profile™ for EGR1 (Table 4), which are capable of distinguishing between subjects suffering from cervical cancer and normal subjects with at least 75% accuracy. For example, the first row of Table 4A, describes a 2-gene model, EGR1 and FOS, capable of correctly classifying cervical cancer-afflicted subjects with 95.8% accuracy, and normal subjects with 95.2% accuracy.


Tables 5A-5C were derived from a study of the gene expression patterns described in Example 7 below. Table 5A describes all 1 and 2-gene logistic regression models based on genes from the Cross-Cancer Precision Profile™ (Table 5), which are capable of distinguishing between subjects suffering from cervical cancer and normal subjects with at least 75% accuracy. For example, the first row of Table 5A, describes a 1-gene model, EGR1, capable of correctly classifying cervical cancer-afflicted subjects with 100% accuracy, and normal subjects with 100% accuracy.


Design of Assays

Typically, a sample is run through a panel in replicates of three for each target gene (assay); that is, a sample is divided into aliquots and for each aliquot the concentrations of each constituent in a Gene Expression Panel (Precision Profile™) is measured. From over thousands of constituent assays, with each assay conducted in triplicate, an average coefficient of variation was found (standard deviation/average)*100, of less than 2 percent among the normalized ΔCt measurements for each assay (where normalized quantitation of the target mRNA is determined by the difference in threshold cycles between the internal control (e.g., an endogenous marker such as 18S rRNA, or an exogenous marker) and the gene of interest. This is a measure called “intra-assay variability”. Assays have also been conducted on different occasions using the same sample material. This is a measure of “inter-assay variability”. Preferably, the average coefficient of variation of intra-assay variability or inter-assay variability is less than 20%, more preferably less than 10%, more preferably less than 5%, more preferably less than 4%, more preferably less than 3%, more preferably less than 2%, and even more preferably less than 1%.


It has been determined that it is valuable to use the quadruplicate or triplicate test results to identify and eliminate data points that are statistical “outliers”; such data points are those that differ by a percentage greater, for example, than 3% of the average of all three or four values. Moreover, if more than one data point in a set of three or four is excluded by this procedure, then all data for the relevant constituent is discarded.


Measurement of Gene Expression for a Constituent in the Panel

For measuring the amount of a particular RNA in a sample, methods known to one of ordinary skill in the art were used to extract and quantify transcribed RNA from a sample with respect to a constituent of a Gene Expression Panel (Precision Profile™). (See detailed protocols below. Also see PCT application publication number WO 98/24935 herein incorporated by reference for RNA analysis protocols). Briefly, RNA is extracted from a sample such as any tissue, body fluid, cell (e.g., circulating tumor cell) or culture medium in which a population of cells of a subject might be growing. For example, cells may be lysed and RNA eluted in a suitable solution in which to conduct a DNAse reaction. Subsequent to RNA extraction, first strand synthesis may be performed using a reverse transcriptase. Gene amplification, more specifically quantitative PCR assays, can then be conducted and the gene of interest calibrated against an internal marker such as 18S rRNA (Hirayama et al., Blood 92, 1998: 46-52). Any other endogenous marker can be used, such as 28S-25S rRNA and 5S rRNA. Samples are measured in multiple replicates, for example, 3 replicates. In an embodiment of the invention, quantitative PCR is performed using amplification, reporting agents and instruments such as those supplied commercially by Applied Biosystems (Foster City, Calif.). Given a defined efficiency of amplification of target transcripts, the point (e.g., cycle number) that signal from amplified target template is detectable may be directly related to the amount of specific message transcript in the measured sample. Similarly, other quantifiable signals such as fluorescence, enzyme activity, disintegrations per minute, absorbance, etc., when correlated to a known concentration of target templates (e.g., a reference standard curve) or normalized to a standard with limited variability can be used to quantify the number of target templates in an unknown sample.


Although not limited to amplification methods, quantitative gene expression techniques may utilize amplification of the target transcript. Alternatively or in combination with amplification of the target transcript, quantitation of the reporter signal for an internal marker generated by the exponential increase of amplified product may also be used. Amplification of the target template may be accomplished by isothermic gene amplification strategies or by gene amplification by thermal cycling such as PCR.


It is desirable to obtain a definable and reproducible correlation between the amplified target or reporter signal, i.e., internal marker, and the concentration of starting templates. It has been discovered that this objective can be achieved by careful attention to, for example, consistent primer-template ratios and a strict adherence to a narrow permissible level of experimental amplification efficiencies (for example 80.0 to 100%+/−5% relative efficiency, typically 90.0 to 100%+/−5% relative efficiency, more typically 95.0 to 100%+/−2%, and most typically 98 to 100%+/−1% relative efficiency). In determining gene expression levels with regard to a single Gene Expression Profile, it is necessary that all constituents of the panels, including endogenous controls, maintain similar amplification efficiencies, as defined herein, to permit accurate and precise relative measurements for each constituent. Amplification efficiencies are regarded as being “substantially similar”, for the purposes of this description and the following claims, if they differ by no more than approximately 10%, preferably by less than approximately 5%, more preferably by less than approximately 3%, and more preferably by less than approximately 1%. Measurement conditions are regarded as being “substantially repeatable, for the purposes of this description and the following claims, if they differ by no more than approximately +/−10% coefficient of variation (CV), preferably by less than approximately +/−5% CV, more preferably +/−2% CV. These constraints should be observed over the entire range of concentration levels to be measured associated with the relevant biological condition. While it is thus necessary for various embodiments herein to satisfy criteria that measurements are achieved under measurement conditions that are substantially repeatable and wherein specificity and efficiencies of amplification for all constituents are substantially similar, nevertheless, it is within the scope of the present invention as claimed herein to achieve such measurement conditions by adjusting assay results that do not satisfy these criteria directly, in such a manner as to compensate for errors, so that the criteria are satisfied after suitable adjustment of assay results.


In practice, tests are run to assure that these conditions are satisfied. For example, the design of all primer-probe sets are done in house, experimentation is performed to determine which set gives the best performance. Even though primer-probe design can be enhanced using computer techniques known in the art, and notwithstanding common practice, it has been found that experimental validation is still useful. Moreover, in the course of experimental validation, the selected primer-probe combination is associated with a set of features:


The reverse primer should be complementary to the coding DNA strand. In one embodiment, the primer should be located across an intron-exon junction, with not more than four bases of the three-prime end of the reverse primer complementary to the proximal exon. (If more than four bases are complementary, then it would tend to competitively amplify genomic DNA.)


In an embodiment of the invention, the primer probe set should amplify cDNA of less than 110 bases in length and should not amplify, or generate fluorescent signal from, genomic DNA or transcripts or cDNA from related but biologically irrelevant loci.


A suitable target of the selected primer probe is first strand cDNA, which in one embodiment may be prepared from whole blood as follows:


(a) Use of Whole Blood for Ex Vivo Assessment of a Biological Condition


Human blood is obtained by venipuncture and prepared for assay. The aliquots of heparinized, whole blood are mixed with additional test therapeutic compounds and held at 37° C. in an atmosphere of 5% CO2 for 30 minutes. Cells are lysed and nucleic acids, e.g., RNA, are extracted by various standard means.


Nucleic acids, RNA and or DNA, are purified from cells, tissues or fluids of the test population of cells. RNA is preferentially obtained from the nucleic acid mix using a variety of standard procedures (or RNA Isolation Strategies, pp. 55-104, in RNA Methodologies, A laboratory guide for isolation and characterization, 2nd edition, 1998, Robert E. Farrell, Jr., Ed., Academic Press), in the present using a filter-based RNA isolation system from Ambion (RNAqueous™, Phenol-free Total RNA Isolation Kit, Catalog #1912, version 9908; Austin, Tex.).


(b) Amplification Strategies.


Specific RNAs are amplified using message specific primers or random primers. The specific primers are synthesized from data obtained from public databases (e.g., Unigene, National Center for Biotechnology Information, National Library of Medicine, Bethesda, Md.), including information from genomic and cDNA libraries obtained from humans and other animals. Primers are chosen to preferentially amplify from specific RNAs obtained from the test or indicator samples (see, for example, RT PCR, Chapter 15 in RNA Methodologies, A laboratory guide for isolation and characterization, 2nd edition, 1998, Robert E. Farrell, Jr., Ed., Academic Press; or Chapter 22 pp. 143-151, RNA isolation and characterization protocols, Methods in molecular biology, Volume 86, 1998, R. Rapley and D. L. Manning Eds., Human Press, or Chapter 14 in Statistical refinement of primer design parameters; or Chapter 5, pp. 55-72, PCR applications: protocols for functional genomics, M. A. Innis, D. H. Gelfand and J. J. Sninsky, Eds., 1999, Academic Press). Amplifications are carried out in either isothermic conditions or using a thermal cycler (for example, a ABI 9600 or 9700 or 7900 obtained from Applied Biosystems, Foster City, Calif.; see Nucleic acid detection methods, pp. 1-24, in Molecular Methods for Virus Detection, D. L. Wiedbrauk and D. H., Farkas, Eds., 1995, Academic Press). Amplified nucleic acids are detected using fluorescent-tagged detection oligonucleotide probes (see, for example, Taqman™ PCR Reagent Kit, Protocol, part number 402823, Revision A, 1996, Applied Biosystems, Foster City Calif.) that are identified and synthesized from publicly known databases as described for the amplification primers.


For example, without limitation, amplified cDNA is detected and quantified using detection systems such as the ABI Prism® 7900 Sequence Detection System (Applied Biosystems (Foster City, Calif.)), the Cepheid SmartCycler® and Cepheid GeneXpert® Systems, the Fluidigm BioMark™ System, and the Roche LightCycler® 480 Real-Time PCR System. Amounts of specific RNAs contained in the test sample can be related to the relative quantity of fluorescence observed (see for example, Advances in Quantitative PCR Technology: 5′ Nuclease Assays, Y. S. Lie and C. J. Petropolus, Current Opinion in Biotechnology, 1998, 9:43-48, or Rapid Thermal Cycling and PCR Kinetics, pp. 211-229, chapter 14 in PCR applications: protocols for functional genomics, M. A. Innis, D. H. Gelfand and J. J. Sninsky, Eds., 1999, Academic Press). Examples of the procedure used with several of the above-mentioned detection systems are described below. In some embodiments, these procedures can be used for both whole blood RNA and RNA extracted from cultured cells (e.g., without limitation, CTCs, and CECs). In some embodiments, any tissue, body fluid, or cell(s) (e.g., circulating tumor cells (CTCs) or circulating endothelial cells (CECs)) may be used for ex vivo assessment of a biological condition affected by an agent. Methods herein may also be applied using proteins where sensitive quantitative techniques, such as an Enzyme Linked ImmunoSorbent Assay (ELISA) or mass spectroscopy, are available and well-known in the art for measuring the amount of a protein constituent (see WO 98/24935 herein incorporated by reference).


An example of a procedure for the synthesis of first strand cDNA for use in PCR amplification is as follows:


Materials


1. Applied Biosystems TAQMAN Reverse Transcription Reagents Kit (P/N 808-0234). Kit Components: 10× TaqMan RT Buffer, 25 mM Magnesium chloride, deoxyNTPs mixture, Random Hexamers, RNase Inhibitor, MultiScribe Reverse Transcriptase (50 U/mL) (2) RNase/DNase free water (DEPC Treated Water from Ambion (P/N 9915G), or equivalent).


Methods


1. Place RNase Inhibitor and MultiScribe Reverse Transcriptase on ice immediately. All other reagents can be thawed at room temperature and then placed on ice.


2. Remove RNA samples from −80° C. freezer and thaw at room temperature and then place immediately on ice.


3. Prepare the following cocktail of Reverse Transcriptase Reagents for each 100 mL RT reaction (for multiple samples, prepare extra cocktail to allow for pipetting error):
















1 reaction (mL)
11X, e.g. 10 samples (μL)





















10X RT Buffer
10.0
110.0




25 mM MgCl2
22.0
242.0




dNTPs
20.0
220.0




Random Hexamers
5.0
55.0




RNAse Inhibitor
2.0
22.0




Reverse Transcriptase
2.5
27.5




Water
18.5
203.5




Total:
80.0
880.0
(80 μL per sample)









4. Bring each RNA sample to a total volume of 204 in a 1.5 mL microcentrifuge tube (for example, remove 10 μL RNA and dilute to 20 μL with RNase/DNase free water, for whole blood RNA use 20 μL total RNA) and add 80 μL RT reaction mix from step 5,2,3. Mix by pipetting up and down.


5. Incubate sample at room temperature for 10 minutes.


6. Incubate sample at 37° C. for 1 hour.


7. Incubate sample at 90° C. for 10 minutes.


8. Quick spin samples in microcentrifuge.


9. Place sample on ice if doing PCR immediately, otherwise store sample at −20° C. for future use.


10. PCR QC should be run on all RT samples using 18S and β-actin.


Following the synthesis of first strand cDNA, one particular embodiment of the approach for amplification of first strand cDNA by PCR, followed by detection and quantification of constituents of a Gene Expression Panel (Precision Profile™) is performed using the ABI Prism® 7900 Sequence Detection System as follows:


Materials


1. 20X Primer/Probe Mix for each gene of interest.


2. 20X Primer/Probe Mix for 18S endogenous control.


3. 2X Taqman Universal PCR Master Mix.


4. cDNA transcribed from RNA extracted from cells.


5. Applied Biosystems 96-Well Optical Reaction Plates.


6. Applied Biosystems Optical Caps, or optical-clear film.


7. Applied Biosystem Prism® 7700 or 7900 Sequence Detector.


Methods


1. Make stocks of each Primer/Probe mix containing the Primer/Probe for the gene of interest, Primer/Probe for 18S endogenous control, and 2×PCR Master Mix as follows. Make sufficient excess to allow for pipetting error e.g., approximately 10% excess. The following example illustrates a typical set up for one gene with quadruplicate samples testing two conditions (2 plates).














1X (1 well) (μL)


















 2X Master Mix
7.5



20X 18S Primer/Probe Mix
0.75



20X Gene of interest Primer/Probe Mix
0.75



Total
9.0









2. Make stocks of cDNA targets by diluting 95 μL of cDNA into 2000 μL of water. The amount of cDNA is adjusted to give Ct values between 10 and 18, typically between 12 and 16.


3. Pipette 9 μL of Primer/Probe mix into the appropriate wells of an Applied Biosystems 384-Well Optical Reaction Plate.


4. Pipette 10 μL of cDNA stock solution into each well of the Applied Biosystems 384-Well Optical Reaction Plate.


5. Seal the plate with Applied Biosystems Optical Caps, or optical-clear film.


6. Analyze the plate on the ABI Prism® 7900 Sequence Detector.


In another embodiment of the invention, the use of the primer probe with the first strand cDNA as described above to permit measurement of constituents of a Gene Expression Panel (Precision Profile) is performed using a QPCR assay on Cepheid SmartCycler® and GeneXpert® Instruments as follows:

  • I. To run a QPCR assay in duplicate on the Cepheid SmartCycler® instrument containing three target genes and one reference gene, the following procedure should be followed.


A. With 20× Primer/Probe Stocks.


Materials

    • 1. SmartMix™-HM lyophilized Master Mix.
    • 2. Molecular grade water.
    • 3. 20X Primer/Probe Mix for the 18S endogenous control gene. The endogenous control gene will be dual labeled with VIC-MGB or equivalent.
    • 4. 20X Primer/Probe Mix for each for target gene one, dual labeled with FAM-BHQ1 or equivalent.
    • 5. 20X Primer/Probe Mix for each for target gene two, dual labeled with Texas Red-BHQ2 or equivalent.
    • 6. 20X Primer/Probe Mix for each for target gene three, dual labeled with Alexa 647-BHQ3 or equivalent.
    • 7. Tris buffer, pH 9.0
    • 8. cDNA transcribed from RNA extracted from sample.
    • 9. SmartCycler® 25 μL tube.
    • 10. Cepheid SmartCycler® instrument.


Methods

    • 1. For each cDNA sample to be investigated, add the following to a sterile 650 μL tube.


















SmartMix ™-HM lyophilized Master Mix
1
bead



20X 18S Primer/Probe Mix
2.5
μL



20X Target Gene 1 Primer/Probe Mix
2.5
μL



20X Target Gene 2 Primer/Probe Mix
2.5
μL



20X Target Gene 3 Primer/Probe Mix
2.5
μL



Tris Buffer, pH 9.0
2.5
μL



Sterile Water
34.5
μL



Total
47
μL











    •  Vortex the mixture for 1 second three times to completely mix the reagents. Briefly centrifuge the tube after vortexing.

    • 2. Dilute the cDNA sample so that a 3 μL addition to the reagent mixture above will give an 18S reference gene CT value between 12 and 16.

    • 3. Add 3 μL of the prepared cDNA sample to the reagent mixture bringing the total volume to 50 Vortex the mixture for 1 second three times to completely mix the reagents. Briefly centrifuge the tube after vortexing.

    • 4. Add 25 μL of the mixture to each of two SmartCycler® tubes, cap the tube and spin for 5 seconds in a microcentrifuge having an adapter for SmartCycler® tubes.

    • 5. Remove the two SmartCycler® tubes from the microcentrifuge and inspect for air bubbles. If bubbles are present, re-spin, otherwise, load the tubes into the SmartCycler® instrument.

    • 6. Run the appropriate QPCR protocol on the SmartCycler®, export the data and analyze the results.





B. With Lyophilized SmartBeads™.


Materials

    • 1. SmartMix™-HM lyophilized Master Mix.
    • 2. Molecular grade water.
    • 3. SmartBeads™ containing the 18S endogenous control gene dual labeled with VIC-MGB or equivalent, and the three target genes, one dual labeled with FAM-BHQ1 or equivalent, one dual labeled with Texas Red-BHQ2 or equivalent and one dual labeled with Alexa 647-BHQ3 or equivalent.
    • 4. Tris buffer, pH 9.0
    • 5. cDNA transcribed from RNA extracted from sample.
    • 6. SmartCycler® 25 μL tube.
    • 7. Cepheid SmartCycler® instrument.


Methods

    • 1. For each cDNA sample to be investigated, add the following to a sterile 650 μL tube.


















SmartMix ™-HM lyophilized Master Mix
1
bead



SmartBead ™ containing four primer/probe sets
1
bead



Tris Buffer, pH 9.0
2.5
μL



Sterile Water
44.5
μL



Total
47
μL











    •  Vortex the mixture for 1 second three times to completely mix the reagents. Briefly centrifuge the tube after vortexing.

    • 2. Dilute the cDNA sample so that a 3 μL addition to the reagent mixture above will give an 18S reference gene CT value between 12 and 16.

    • 3. Add 3 μL of the prepared cDNA sample to the reagent mixture bringing the total volume to 50 Vortex the mixture for 1 second three times to completely mix the reagents. Briefly centrifuge the tube after vortexing.

    • 4. Add 25 μL of the mixture to each of two SmartCycler® tubes, cap the tube and spin for 5 seconds in a microcentrifuge having an adapter for SmartCycler® tubes.

    • 5. Remove the two SmartCycler®tubes from the microcentrifuge and inspect for air bubbles. If bubbles are present, re-spin, otherwise, load the tubes into the SmartCycler® instrument.

    • 6. Run the appropriate QPCR protocol on the SmartCycler®, export the data and analyze the results.



  • II. To run a QPCR assay on the Cepheid GeneXpert® instrument containing three target genes and one reference gene, the following procedure should be followed. Note that to do duplicates, two self contained cartridges need to be loaded and run on the GeneXpert® instrument.



Materials

    • 1. Cepheid GeneXpert® self contained cartridge preloaded with a lyophilized SmartMix™-HM master mix bead and a lyophilized SmartBead™ containing four primer/probe sets.
    • 2. Molecular grade water, containing Tris buffer, pH 9.0.
    • 3. Extraction and purification reagents.
    • 4. Clinical sample (whole blood, RNA, etc.)
    • 5. Cepheid GeneXpert® instrument.


Methods

    • 1. Remove appropriate GeneXpert® self contained cartridge from packaging.
    • 2. Fill appropriate chamber of self contained cartridge with molecular grade water with Tris buffer, pH 9.0.
    • 3. Fill appropriate chambers of self contained cartridge with extraction and purification reagents.
    • 4. Load aliquot of clinical sample into appropriate chamber of self contained cartridge.
    • 5. Seal cartridge and load into GeneXpert® instrument.
    • 6. Run the appropriate extraction and amplification protocol on the GeneXpert® and analyze the resultant data.


In yet another embodiment of the invention, the use of the primer probe with the first strand cDNA as described above to permit measurement of constituents of a Gene Expression Panel (Precision Profile™) is performed using a QPCR assay on the Roche LightCycler® 480 Real-Time PCR System as follows:


Materials

    • 1. 20X Primer/Probe stock for the 18S endogenous control gene. The endogenous control gene may be dual labeled with either VIC-MGB or VIC-TAMRA.
    • 2. 20X Primer/Probe stock for each target gene, dual labeled with either FAM-TAMRA or FAM-BHQ1.
    • 3. 2X LightCycler® 490 Probes Master (master mix).
    • 4. 1X cDNA sample stocks transcribed from RNA extracted from samples.
    • 5. 1X TE buffer, pH 8.0.
    • 6. LightCycler® 480 384-well plates.
    • 7. Source MDx 24 gene Precision Profile™ 96-well intermediate plates.
    • 8. RNase/DNase free 96-well plate.
    • 9. 1.5 mL microcentrifuge tubes.
    • 10. Beckman/Coulter Biomek® 3000 Laboratory Automation Workstation.
    • 11. Velocity11 Bravo™ Liquid Handling Platform.
    • 12. LightCycler® 480 Real-Time PCR System.


Methods

    • 1. Remove a Source MDx 24 gene Precision Profile™ 96-well intermediate plate from the freezer, thaw and spin in a plate centrifuge.
    • 2. Dilute four (4) 1× cDNA sample stocks in separate 1.5 mL microcentrifuge tubes with the total final volume for each of 540 μL.
    • 3. Transfer the 4 diluted cDNA samples to an empty RNase/DNase free 96-well plate using the Biomek® 3000 Laboratory Automation Workstation.
    • 4. Transfer the cDNA samples from the cDNA plate created in step 3 to the thawed and centrifuged Source MDx 24 gene Precision Profile™ 96-well intermediate plate using Biomek® 3000 Laboratory Automation Workstation: Seal the plate with a foil seal and spin in a plate centrifuge.
    • 5. Transfer the contents of the cDNA-loaded Source MDx 24 gene Precision Profile™ 96-well intermediate plate to a new LightCycler® 480 384-well plate using the Bravo™ Liquid Handling Platform. Seal the 384-well plate with a LightCycler® 480 optical sealing foil and spin in a plate centrifuge for 1 minute at 2000 rpm.
    • 6. Place the sealed in a dark 4° C. refrigerator for a minimum of 4 minutes.
    • 7. Load the plate into the LightCycler® 480 Real-Time PCR System and start the LightCycler® 480 software. Chose the appropriate run parameters and start the run.
    • 8. At the conclusion of the run, analyze the data and export the resulting CP values to the database.


In some instances, target gene FAM measurements may be beyond the detection limit of the particular platform instrument used to detect and quantify constituents of a Gene Expression Panel (Precision Profile™). To address the issue of “undetermined” gene expression measures as lack of expression for a particular gene, the detection limit may be reset and the “undetermined” constituents may be “flagged”. For example without limitation, the ABI Prism® 7900HT Sequence Detection System reports target gene FAM measurements that are beyond the detection limit of the instrument (>40 cycles) as “undetermined”. Detection Limit Reset is performed when at least 1 of 3 target gene FAM CT replicates are not detected after 40 cycles and are designated as “undetermined”. “Undetermined” target gene FAM CT replicates are re-set to 40 and flagged. CT normalization (ΔCT) and relative expression calculations that have used re-set FAM CT values are also flagged.


Baseline Profile Data Sets

The analyses of samples from single individuals and from large groups of individuals provide a library of profile data sets relating to a particular panel or series of panels. These profile data sets may be stored as records in a library for use as baseline profile data sets. As the term “baseline” suggests, the stored baseline profile data sets serve as comparators for providing a calibrated profile data set that is informative about a biological condition or agent. Baseline profile data sets may be stored in libraries and classified in a number of cross-referential ways. One form of classification may rely on the characteristics of the panels from which the data sets are derived. Another form of classification may be by particular biological condition, e.g., cervical cancer. The concept of a biological condition encompasses any state in which a cell or population of cells may be found at any one time. This state may reflect geography of samples, sex of subjects or any other discriminator. Some of the discriminators may overlap. The libraries may also be accessed for records associated with a single subject or particular clinical trial. The classification of baseline profile data sets may further be annotated with medical information about a particular subject, a medical condition, and/or a particular agent.


The choice of a baseline profile data set for creating a calibrated profile data set is related to the biological condition to be evaluated, monitored, or predicted, as well as, the intended use of the calibrated panel, e.g., as to monitor drug development, quality control or other uses. It may be desirable to access baseline profile data sets from the same subject for whom a first profile data set is obtained or from different subject at varying times, exposures to stimuli, drugs or complex compounds; or may be derived from like or dissimilar populations or sets of subjects. The baseline profile data set may be normal, healthy baseline.


The profile data set may arise from the same subject for which the first data set is obtained, where the sample is taken at a separate or similar time, a different or similar site or in a different or similar biological condition. For example, a sample may be taken before stimulation or after stimulation with an exogenous compound or substance, such as before or after therapeutic treatment. Alternatively the sample is taken before or include before or after a surgical procedure for cervical cancer. The profile data set obtained from the unstimulated sample may serve as a baseline profile data set for the sample taken after stimulation. The baseline data set may also be derived from a library containing profile data sets of a population or set of subjects having some defining characteristic or biological condition. The baseline profile data set may also correspond to some ex vivo or in vitro properties associated with an in vitro cell culture. The resultant calibrated profile data sets may then be stored as a record in a database or library along with or separate from the baseline profile data base and optionally the first profile data s et al. though the first profile data set would normally become incorporated into a baseline profile data set under suitable classification criteria. The remarkable consistency of Gene Expression Profiles associated with a given biological condition makes it valuable to store profile data, which can be used, among other things for normative reference purposes. The normative reference can serve to indicate the degree to which a subject conforms to a given biological condition (healthy or diseased) and, alternatively or in addition, to provide a target for to clinical intervention.


Calibrated Data

Given the repeatability achieved in measurement of gene expression, described above in connection with “Gene Expression Panels” (Precision Profiles™) and “gene amplification”, it was concluded that where differences occur in measurement under such conditions, the differences are attributable to differences in biological condition. Thus, it has been found that calibrated profile data sets are highly reproducible in samples taken from the same individual under the same conditions. Similarly, it has been found that calibrated profile data sets are reproducible in samples that are repeatedly tested. Also found have been repeated instances wherein calibrated profile data sets obtained when samples from a subject are exposed ex vivo to a compound are comparable to calibrated profile data from a sample that has been exposed to a sample in vivo.


Calculation of Calibrated Profile Data Sets and Computational Aids

The calibrated profile data set may be expressed in a spreadsheet or represented graphically for example, in a bar chart or tabular form but may also be expressed in a three dimensional representation. The function relating the baseline and profile data may be a ratio expressed as a logarithm. The constituent may be itemized on the x-axis and the logarithmic scale may be on the y-axis. Members of a calibrated data set may be expressed as a positive value representing a relative enhancement of gene expression or as a negative value representing a relative reduction in gene expression with respect to the baseline.


Each member of the calibrated profile data set should be reproducible within a range with respect to similar samples taken from the subject under similar conditions. For example, the calibrated profile data sets may be reproducible within 20%, and typically within 10%. In accordance with embodiments of the invention, a pattern of increasing, decreasing and no change in relative gene expression from each of a plurality of gene loci examined in the Gene Expression Panel (Precision Profile™) may be used to prepare a calibrated profile set that is informative with regards to a biological condition, biological efficacy of an agent treatment conditions or for comparison to populations or sets of subjects or samples, or for comparison to populations of cells. Patterns of this nature may be used to identify likely candidates for a drug trial, used alone or in combination with other clinical indicators to be diagnostic or prognostic with respect to a biological condition or may be used to guide the development of a pharmaceutical or nutraceutical through manufacture, testing and marketing.


The numerical data obtained from quantitative gene expression and numerical data from calibrated gene expression relative to a baseline profile data set may be stored in databases or digital storage mediums and may be retrieved for purposes including managing patient health care or for conducting clinical trials or for characterizing a drug. The data may be transferred in physical or wireless networks via the World Wide Web, email, or internet access site for example or by hard copy so as to be collected and pooled from distant geographic sites.


The method also includes producing a calibrated profile data set for the panel, wherein each member of the calibrated profile data set is a function of a corresponding member of the first profile data set and a corresponding member of a baseline profile data set for the panel, and wherein the baseline profile data set is related to the cervical cancer or conditions related to cervical cancer to be evaluated, with the calibrated profile data set being a comparison between the first profile data set and the baseline profile data set, thereby providing evaluation of cervical cancer or conditions related to cervical cancer of the subject.


In yet other embodiments, the function is a mathematical function and is other than a simple difference, including a second function of the ratio of the corresponding member of first profile data set to the corresponding member of the baseline profile data set, or a logarithmic function. In such embodiments, the first sample is obtained and the first profile data set quantified at a first location, and the calibrated profile data set is produced using a network to access a database stored on a digital storage medium in a second location, wherein the database may be updated to reflect the first profile data set quantified from the sample. Additionally, using a network may include accessing a global computer network.


In an embodiment of the present invention, a descriptive record is stored in a single database or multiple databases where the stored data includes the raw gene expression data (first profile data set) prior to transformation by use of a baseline profile data set, as well as a record of the baseline profile data set used to generate the calibrated profile data set including for example, annotations regarding whether the baseline profile data set is derived from a particular Signature Panel and any other annotation that facilitates interpretation and use of the data.


Because the data is in a universal format, data handling may readily be done with a computer. The data is organized so as to provide an output optionally corresponding to a graphical representation of a calibrated data set.


The above described data storage on a computer may provide the information in a form that can be accessed by a user. Accordingly, the user may load the information onto a second access site including downloading the information. However, access may be restricted to users having a password or other security device so as to protect the medical records contained within. A feature of this embodiment of the invention is the ability of a user to add new or annotated records to the data set so the records become part of the biological information.


The graphical representation of calibrated profile data sets pertaining to a product such as a drug provides an opportunity for standardizing a product by means of the calibrated profile, more particularly a signature profile. The profile may be used as a feature with which to demonstrate relative efficacy, differences in mechanisms of actions, etc. compared to other drugs approved for similar or different uses.


The various embodiments of the invention may be also implemented as a computer program product for use with a computer system. The product may include program code for deriving a first profile data set and for producing calibrated profiles. Such implementation may include a series of computer instructions fixed either on a tangible medium, such as a computer readable medium (for example, a diskette, CD-ROM, ROM, or fixed disk), or transmittable to a computer system via a modem or other interface device, such as a communications adapter coupled to a network. The network coupling may be for example, over optical or wired communications lines or via wireless techniques (for example, microwave, infrared or other transmission techniques) or some combination of these. The series of computer instructions preferably embodies all or part of the functionality previously described herein with respect to the system. Those skilled in the art should appreciate that such computer instructions can be written in a number of programming languages for use with many computer architectures or operating systems. Furthermore, such instructions may be stored in any memory device, such as semiconductor, magnetic, optical or other memory devices, and may be transmitted using any communications technology, such as optical, infrared, microwave, or other transmission technologies. It is expected that such a computer program product may be distributed as a removable medium with accompanying printed or electronic documentation (for example, shrink wrapped software), preloaded with a computer system (for example, on system ROM or fixed disk), or distributed from a server or electronic bulletin board over a network (for example, the Internet or World Wide Web). In addition, a computer system is further provided including derivative modules for deriving a first data set and a calibration profile data set.


The calibration profile data sets in graphical or tabular form, the associated databases, and the calculated index or derived algorithm, together with information extracted from the panels, the databases, the data sets or the indices or algorithms are commodities that can be sold together or separately for a variety of purposes as described in WO 01/25473.


In other embodiments, a clinical indicator may be used to assess the cervical cancer or conditions related to cervical cancer of the relevant set of subjects by interpreting the calibrated profile data set in the context of at least one other clinical indicator, wherein the at least one other clinical indicator is selected from the group consisting of blood chemistry, X-ray or other radiological or metabolic imaging technique, molecular markers in the blood, other chemical assays, and physical findings.


Index Construction

In combination, (i) the remarkable consistency of Gene Expression Profiles with respect to a biological condition across a population or set of subject or samples, or across a population of cells and (ii) the use of procedures that provide substantially reproducible measurement of constituents in a Gene Expression Panel (Precision Profile™) giving rise to a Gene Expression Profile, under measurement conditions wherein specificity and efficiencies of amplification for all constituents of the panel are substantially similar, make possible the use of an index that characterizes a Gene Expression Profile, and which therefore provides a measurement of a biological condition.


An index may be constructed using an index function that maps values in a Gene Expression Profile into a single value that is pertinent to the biological condition at hand. The values in a Gene Expression Profile are the amounts of each constituent of the Gene Expression Panel (Precision Profile™). These constituent amounts form a profile data set, and the index function generates a single value—the index—from the members of the profile data set.


The index function may conveniently be constructed as a linear sum of terms, each term being what is referred to herein as a “contribution function” of a member of the profile data set. For example, the contribution function may be a constant times a power of a member of the profile data set. So the index function would have the form





I=ΣCiMiP(i),


where I is the index, Mi is the value of the member i of the profile data set, Ci is a constant, and P(i) is a power to which Mi is raised, the sum being formed for all integral values of i up to the number of members in the data set. We thus have a linear polynomial expression. The role of the coefficient Ci for a particular gene expression specifies whether a higher ΔCt value for this gene either increases (a positive Ci) or decreases (a lower value) the likelihood of cervical cancer, the ΔCt values of all other genes in the expression being held constant.


The values Ci and P(i) may be determined in a number of ways, so that the index/is informative of the pertinent biological condition. One way is to apply statistical techniques, such as latent class modeling, to the profile data sets to correlate clinical data or experimentally derived data, or other data pertinent to the biological condition. In this connection, for example, may be employed the software from Statistical Innovations, Belmont, Mass., called Latent Gold®. Alternatively, other simpler modeling techniques may be employed in a manner known in the art. The index function for cervical cancer may be constructed, for example, in a manner that a greater degree of cervical cancer (as determined by the profile data set for the any of the Precision Profiles™ (listed in Tables 1-5) described herein) correlates with a large value of the index function.


Just as a baseline profile data set, discussed above, can be used to provide an appropriate normative reference, and can even be used to create a Calibrated profile data set, as discussed above, based on the normative reference, an index that characterizes a Gene Expression Profile can also be provided with a normative value of the index function used to create the index. This normative value can be determined with respect to a relevant population or set of subjects or samples or to a relevant population of cells, so that the index may be interpreted in relation to the normative value. The relevant population or set of subjects or samples, or relevant population of cells may have in common a property that is at least one of age range, gender, ethnicity, geographic location, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure.


As an example, the index can be constructed, in relation to a normative Gene Expression Profile for a population or set of healthy subjects, in such a way that a reading of approximately 1 characterizes normative Gene Expression Profiles of healthy subjects. Let us further assume that the biological condition that is the subject of the index is cervical cancer; a reading of 1 in this example thus corresponds to a Gene Expression Profile that matches the norm for healthy subjects. A substantially higher reading then may identify a subject experiencing cervical cancer, or a condition related to cervical cancer. The use of 1 as identifying a normative value, however, is only one possible choice; another logical choice is to use 0 as identifying the normative value. With this choice, deviations in the index from zero can be indicated in standard deviation units (so that values lying between −1 and +1 encompass 90% of a normally distributed reference population or set of subjects. Since it was determined that Gene Expression Profile values (and accordingly constructed indices based on them) tend to be normally distributed, the O-centered index constructed in this manner is highly informative. It therefore facilitates use of the index in diagnosis of disease and setting objectives for treatment.


Still another embodiment is a method of providing an index pertinent to cervical cancer or conditions related to cervical cancer of a subject based on a first sample from the subject, the first sample providing a source of RNAs, the method comprising deriving from the first sample a profile data set, the profile data set including a plurality of members, each member being a quantitative measure of the amount of a distinct RNA constituent in a panel of constituents selected so that measurement of the constituents is indicative of the presumptive signs of cervical cancer, the panel including at least one of the constituents of any of the genes listed in the Precision Profiles™ (listed in Tables 1-5). In deriving the profile data set, such measure for each constituent is achieved under measurement conditions that are substantially repeatable, at least one measure from the profile data set is applied to an index function that provides a mapping from at least one measure of the profile data set into one measure of the presumptive signs of cervical cancer, so as to produce an index pertinent to the cervical cancer or conditions related to cervical cancer of the subject.


As another embodiment of the invention, an index function I of the form






I=C
0
+ΣC
i
M
1i
P1(i)
M
2i
P2(i),


can be employed, where M1 and M2 are values of the member i of the profile data set, Ci is a constant determined without reference to the profile data set, and P1 and P2 are powers to which M1 and M2 are raised. The role of P1(i) and P2(i) is to specify the specific functional form of the quadratic expression, whether in fact the equation is linear, quadratic, contains cross-product terms, or is constant. For example, when P1=P2=0, the index function is simply the sum of constants; when P1=1 and P2=0, the index function is a linear expression; when P1=P2=1, the index function is a quadratic expression.


The constant C0 serves to calibrate this expression to the biological population of interest that is characterized by having cervical cancer. In this embodiment, when the index value equals 0, the odds are 50:50 of the subject having cervical cancer vs a normal subject. More generally, the predicted odds of the subject having cervical cancer is [exp(Ii)], and therefore the predicted probability of having cervical cancer is [exp(Ii)]/[1+exp((Ii)]. Thus, when the index exceeds 0, the predicted probability that a subject has cervical cancer is higher than 0.5, and when it falls below 0, the predicted probability is less than 0.5.


The value of C0 may be adjusted to reflect the prior probability of being in this population based on known exogenous risk factors for the subject. In an embodiment where C0 is adjusted as a function of the subject's risk factors, where the subject has prior probability pi of having cervical cancer based on such risk factors, the adjustment is made by increasing (decreasing) the unadjusted C0 value by adding to C0 the natural logarithm of the following ratio: the prior odds of having cervical cancer taking into account the risk factors/the overall prior odds of having cervical cancer without taking into account the risk factors.


Performance and Accuracy Measures of the Invention

The performance and thus absolute and relative clinical usefulness of the invention may be assessed in multiple ways as noted above. Amongst the various assessments of performance, the invention is intended to provide accuracy in clinical diagnosis and prognosis. The accuracy of a diagnostic or prognostic test, assay, or method concerns the ability of the test, assay, or method to distinguish between subjects having cervical cancer is based on whether the subjects have an “effective amount” or a “significant alteration” in the levels of a cancer associated gene. By “effective amount” or “significant alteration”, it is meant that the measurement of an appropriate number of cancer associated gene (which may be one or more) is different than the predetermined cut-off point (or threshold value) for that cancer associated gene and therefore indicates that the subject has cervical cancer for which the cancer associated gene(s) is a determinant.


The difference in the level of cancer associated gene(s) between normal and abnormal is preferably statistically significant. As noted below, and without any limitation of the invention, achieving statistical significance, and thus the preferred analytical and clinical accuracy, generally but not always requires that combinations of several cancer associated gene(s) be used together in panels and combined with mathematical algorithms in order to achieve a statistically significant cancer associated gene index.


In the categorical diagnosis of a disease state, changing the cut point or threshold value of a test (or assay) usually changes the sensitivity and specificity, but in a qualitatively inverse relationship. Therefore, in assessing the accuracy and usefulness of a proposed medical test, assay, or method for assessing a subject's condition, one should always take both sensitivity and specificity into account and be mindful of what the cut point is at which the sensitivity and specificity are being reported because sensitivity and specificity may vary significantly over the range of cut points. Use of statistics such as AUC, encompassing all potential cut point values, is preferred for most categorical risk measures using the invention, while for continuous risk measures, statistics of goodness-of-fit and calibration to observed results or other gold standards, are preferred.


Using such statistics, an “acceptable degree of diagnostic accuracy”, is herein defined as a test or assay (such as the test of the invention for determining an effective amount or a significant alteration of cancer associated gene(s), which thereby indicates the presence of a cervical cancer in which the AUC (area under the ROC curve for the test or assay) is at least 0.60, desirably at least 0.65, more desirably at least 0.70, preferably at least 0.75, more preferably at least 0.80, and most preferably at least 0.85.


By a “very high degree of diagnostic accuracy”, it is meant a test or assay in which the AUC (area under the ROC curve for the test or assay) is at least 0.75, desirably at least 0.775, more desirably at least 0.800, preferably at least 0.825, more preferably at least 0.850, and most preferably at least 0.875.


The predictive value of any test depends on the sensitivity and specificity of the test, and on the prevalence of the condition in the population being tested. This notion, based on Bayes'theorem, provides that the greater the likelihood that the condition being screened for is present in an individual or in the population (pre-test probability), the greater the validity of a positive test and the greater the likelihood that the result is a true positive. Thus, the problem with using a test in any population where there is a low likelihood of the condition being present is that a positive result has limited value (i.e., more likely to be a false positive). Similarly, in populations at very high risk, a negative test result is more likely to be a false negative.


As a result, ROC and AUC can be misleading as to the clinical utility of a test in low disease prevalence tested populations (defined as those with less than 1% rate of occurrences (incidence) per annum, or less than 10% cumulative prevalence over a specified time horizon). Alternatively, absolute risk and relative risk ratios as defined elsewhere in this disclosure can be employed to determine the degree of clinical utility. Populations of subjects to be tested can also be categorized into quartiles by the test's measurement values, where the top quartile (25% of the population) comprises the group of subjects with the highest relative risk for developing cervical cancer, and the bottom quartile comprising the group of subjects having the lowest relative risk for developing cervical cancer. Generally, values derived from tests or assays having over 2.5 times the relative risk from top to bottom quartile in a low prevalence population are considered to have a “high degree of diagnostic accuracy,” and those with five to seven times the relative risk for each quartile are considered to have a “very high degree of diagnostic accuracy.” Nonetheless, values derived from tests or assays having only 1.2 to 2.5 times the relative risk for each quartile remain clinically useful are widely used as risk factors for a disease. Often such lower diagnostic accuracy tests must be combined with additional parameters in order to derive meaningful clinical thresholds for therapeutic intervention, as is done with the aforementioned global risk assessment indices.


A health economic utility function is yet another means of measuring the performance and clinical value of a given test, consisting of weighting the potential categorical test outcomes based on actual measures of clinical and economic value for each. Health economic performance is closely related to accuracy, as a health economic utility function specifically assigns an economic value for the benefits of correct classification and the costs of misclassification of tested subjects. As a performance measure, it is not unusual to require a test to achieve a level of performance which results in an increase in health economic value per test (prior to testing costs) in excess of the target price of the test.


In general, alternative methods of determining diagnostic accuracy are commonly used for continuous measures, when a disease category or risk category (such as those at risk for having a bone fracture) has not yet been clearly defined by the relevant medical societies and practice of medicine, where thresholds for therapeutic use are not yet established, or where there is no existing gold standard for diagnosis of the pre-disease. For continuous measures of risk, measures of diagnostic accuracy for a calculated index are typically based on curve fit and calibration between the predicted continuous value and the actual observed values (or a historical index calculated value) and utilize measures such as R squared, Hosmer-Lemeshow P-value statistics and confidence intervals. It is not unusual for predicted values using such algorithms to be reported including a confidence interval (usually 90% or 95% CI) based on a historical observed cohort's predictions, as in the test for risk of future breast cancer recurrence commercialized by Genomic Health, Inc. (Redwood City, Calif.).


In general, by defining the degree of diagnostic accuracy, i.e., cut points on a ROC curve, defining an acceptable AUC value, and determining the acceptable ranges in relative concentration of what constitutes an effective amount of the cancer associated gene(s) of the invention allows for one of skill in the art to use the cancer associated gene(s) to identify, diagnose, or prognose subjects with a pre-determined level of predictability and performance.


Results from the cancer associated gene(s) indices thus derived can then be validated through their calibration with actual results, that is, by comparing the predicted versus observed rate of disease in a given population, and the best predictive cancer associated gene(s) selected for and optimized through mathematical models of increased complexity. Many such formula may be used; beyond the simple non-linear transformations, such as logistic regression, of particular interest in this use of the present invention are structural and synactic classification algorithms, and methods of risk index construction, utilizing pattern recognition features, including established techniques such as the Kth-Nearest Neighbor, Boosting, Decision Trees, Neural Networks, Bayesian Networks, Support Vector Machines, and Hidden Markov Models, as well as other formula described herein.


Furthermore, the application of such techniques to panels of multiple cancer associated gene(s) is provided, as is the use of such combination to create single numerical “risk indices” or “risk scores” encompassing information from multiple cancer associated gene(s) inputs. Individual B cancer associated gene(s) may also be included or excluded in the panel of cancer associated gene(s) used in the calculation of the cancer associated gene(s) indices so derived above, based on various measures of relative performance and calibration in validation, and employing through repetitive training methods such as forward, reverse, and stepwise selection, as well as with genetic algorithm approaches, with or without the use of constraints on the complexity of the resulting cancer associated gene(s) indices.


The above measurements of diagnostic accuracy for cancer associated gene(s) are only a few of the possible measurements of the clinical performance of the invention. It should be noted that the appropriateness of one measurement of clinical accuracy or another will vary based upon the clinical application, the population tested, and the clinical consequences of any potential misclassification of subjects. Other important aspects of the clinical and overall performance of the invention include the selection of cancer associated gene(s) so as to reduce overall cancer associated gene(s) variability (whether due to method (analytical) or biological (pre-analytical variability, for example, as in diurnal variation), or to the integration and analysis of results (post-analytical variability) into indices and cut-off ranges), to assess analyte stability or sample integrity, or to allow the use of differing sample matrices amongst blood, cells, serum, plasma, urine, etc.


Kits

The invention also includes a cervical cancer detection reagent, i.e., nucleic acids that specifically identify one or more cervical cancer or condition related to cervical cancer nucleic acids (e.g., any gene listed in Tables 1-5, oncogenes, tumor suppression genes, tumor progression genes, angiogenesis genes and lymphogenesis genes; sometimes referred to herein as cervical cancer associated genes or cervical cancer associated constituents) by having homologous nucleic acid sequences, such as oligonucleotide sequences, complementary to a portion of the cervical cancer genes nucleic acids or antibodies to proteins encoded by the cervical cancer gene nucleic acids packaged together in the form of a kit. The oligonucleotides can be fragments of the cervical cancer genes. For example the oligonucleotides can be 200, 150, 100, 50, 25, 10 or less nucleotides in length. The kit may contain in separate containers a nucleic acid or antibody (either already bound to a solid matrix or packaged separately with reagents for binding them to the matrix), control formulations (positive and/or negative), and/or a detectable label. Instructions (i.e., written, tape, VCR, CD-ROM, etc.) for carrying out the assay may be included in the kit. The assay may for example be in the form of PCR, a Northern hybridization or a sandwich ELISA, as known in the art.


For example, cervical cancer gene detection reagents can be immobilized on a solid matrix such as a porous strip to form at least one cervical cancer gene detection site. The measurement or detection region of the porous strip may include a plurality of sites containing a nucleic acid. A test strip may also contain sites for negative and/or positive controls. Alternatively, control sites can be located on a separate strip from the test strip. Optionally, the different detection sites may contain different amounts of immobilized nucleic acids, i.e., a higher amount in the first detection site and lesser amounts in subsequent sites. Upon the addition of test sample, the number of sites displaying a detectable signal provides a quantitative indication of the amount of cervical cancer genes present in the sample. The detection sites may be configured in any suitably detectable shape and are typically in the shape of a bar or dot spanning the width of a test strip.


Alternatively, cervical cancer detection genes can be labeled (e.g., with one or more fluorescent dyes) and immobilized on lyophilized beads to form at least one cervical cancer gene detection site. The beads may also contain sites for negative and/or positive controls. Upon addition of the test sample, the number of sites displaying a detectable signal provides a quantitative indication of the amount of cervical cancer genes present in the sample.


Alternatively, the kit contains a nucleic acid substrate array comprising one or more nucleic acid sequences. The nucleic acids on the array specifically identify one or more nucleic acid sequences represented by cervical cancer genes (see Tables 1-5). In various embodiments, the expression of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 40 or 50 or more of the sequences represented by cervical cancer genes (see Tables 1-5) can be identified by virtue of binding to the array. The substrate array can be on, i.e., a solid substrate, i.e., a “chip” as described in U.S. Pat. No. 5,744,305. Alternatively, the substrate array can be a solution array, i.e., Luminex, Cyvera, Vitra and Quantum Dots' Mosaic.


The skilled artisan can routinely make antibodies, nucleic acid probes, i.e., oligonucleotides, aptamers, siRNAs, antisense oligonucleotides, against any of the cervical cancer genes listed in Tables 1-5.


Other Embodiments

While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.


EXAMPLES
Example 1
Patient Population

RNA was isolated using the PAXgene System from blood samples obtained from a total of 24 female subjects suffering from cervical cancer and 26 healthy, normal (i.e., not suffering from or diagnosed with cervical cancer) female subjects. These RNA samples were used for the gene expression analysis studies described in Examples 3-7 below.


Each of the normal female subjects in the studies were non-smokers. The inclusion criteria for the cervical cancer subjects that participated in the study were as follows: each of the subjects had defined, newly diagnosed disease, the blood samples were obtained prior to initiation of any treatment for cervical cancer, and each subject in the study was 18 years or older, and able to provide consent.


The following criteria were used to exclude subjects from the study: any treatment with immunosuppressive drugs, corticosteroids or investigational drugs; diagnosis of acute and chronic infectious diseases (renal or chest infections, previous TB, HIV infection or AIDS, or active cytomegalovirus); symptoms of severe progression or uncontrolled renal, hepatic, hematological, gastrointestinal, endocrine, pulmonary, neurological, or cerebral disease; and pregnancy.


Of the 24 newly diagnosed cervical cancer subjects from which blood samples were obtained, 8 subjects were diagnosed with Stage 0 (in situ) cervical cancer, 13 subjects were diagnosed with Stage 1 cervical cancer, 1 subject was diagnosed with Stage 2 cervical cancer, and 2 subjects were diagnosed with Stage 3 cervical cancer.


Example 2
Enumeration and Classification Methodology Based on Logistic Regression Models Introduction

The following methods were used to generate 1, 2, and 3-gene models capable of distinguishing between subjects diagnosed with cervical cancer and normal subjects, with at least 75% classification accurary, as described in Examples 3-7 below.


Given measurements on G genes from samples of N1 subjects belonging to group 1 and N2 members of group 2, the purpose was to identify models containing g<G genes which discriminate between the 2 groups. The groups might be such that one consists of reference subjects (e.g., healthy, normal subjects) while the other group might have a specific disease, or to subjects in group 1 may have disease A while those in group 2 may have disease B.


Specifically, parameters from a linear logistic regression model were estimated to predict a subject's probability of belonging to group 1 given his (her) measurements on the g genes in the model. After all the models were estimated (all G1-gene models were estimated, as well as all








(



G




2



)

=

G
*


(

G
-
1

)

/
2






2


-


gene





models


,




and all (G 3)=G*(G−1)*(G−2)/6 3-gene models based on G genes (number of combinations taken 3 at a time from G)), they were evaluated using a 2-dimensional screening process. The first dimension employed a statistical screen (significance of incremental p-values) that eliminated models that were likely to overfit the data and thus may not validate when applied to new subjects. The second dimension employed a clinical screen to eliminate models for which the expected misclassification rate was higher than an acceptable level. As a threshold analysis, the gene models showing less than 75% discrimination between N1 subjects belonging to group 1 and N2 members of group 2 (i.e., misclassification of 25% or more of subjects in either of the 2 sample groups), and genes with incremental p-values that were not statistically significant, were eliminated.


Methodological, Statistical and Computing Tools Used

The Latent GOLD program (Vermunt and Magidson, 2005) was used to estimate the logistic regression models. For efficiency in processing the models, the LG-Syntax™ Module available with version 4.5 of the program (Vermunt and Magidson, 2007) was used in batch mode, and all g-gene models associated with a particular dataset were submitted in a single run to be estimated. That is, all 1-gene models were submitted in a single run, all 2-gene models were submitted in a second run, etc.


The Data

The data consists of ΔCT values for each sample subject in each of the 2 groups (e.g., cancer subject vs. reference (e.g., healthy, normal subjects) on each of G(k) genes obtained from a particular class k of genes. For a given disease, separate analyses were performed based on disease specific genes, including without limitation genes specific for prostate, breast, ovarian, cervical, lung, colon, and skin cancer, (k=1), inflammatory genes (k=2), human cancer general genes (k=3), genes from a cross cancer gene panel (k=4), and genes in the EGR family (k=5).


Analysis Steps

The steps in a given analysis of the G(k) genes measured on N1 subjects in group 1 and N2 subjects in group 2 are as follows:

  • 1) Eliminate low expressing genes: In some instances, target gene FAM measurements were beyond the detection limit (i.e., very high ΔCT values which indicate low expression) of the particular platform instrument used to detect and quantify constituents of a Gene Expression Panel (Precision Profile™). To address the issue of “undetermined” gene expression measures as lack of expression for a particular gene, the detection limit was reset and the “undetermined” constituents were “flagged”, as previously described. CT normalization (ΔCT) and relative expression calculations that have used re-set FAM CT values were also flagged. In some instances, these low expressing genes (i.e., re-set FAM CT values) were eliminated from the analysis in step 1 if 50% or more ΔCT values from either of the 2 groups were flagged. Although such genes were eliminated from the statistical analyses described herein, one skilled in the art would recognize that such genes may be relevant in a disease state.
  • 2) Estimate logistic regression (logit) models predicting P(i)=the probability of being in group 1 for each subject i=1, 2, . . . , N1+N2. Since there are only 2 groups, the probability of being in group 2 equals 1−P(i). The maximum likelihood (ML) algorithm implemented in Latent GOLD 4.0 (Vermunt and Magidson, 2005) was used to estimate the model parameters. All 1-gene models were estimated first, followed by all 2-gene models and in cases where the sample sizes N1 and N2 were sufficiently large, all 3-gene models were estimated.
  • 3) Screen out models that fail to meet the statistical or clinical criteria: Regarding the statistical criteria, models were retained if the incremental p-values for the parameter estimates for each gene (i.e., for each predictor in the model) fell below the cutoff point alpha=0.05. Regarding the clinical criteria, models were retained if the percentage of cases within each group (e.g., disease group, and reference group (e.g., healthy, normal subjects) that was correctly predicted to be in that group was at least 75%. For technical details, see the section “Application of the Statistical and Clinical Criteria to Screen Models”.
  • 4) Each model yielded an index that could be used to rank the sample subjects. Such an index value could also be computed for new cases not included in the sample. See the section “Computing Model-based Indices for each Subject” for details on how this index was calculated.
  • 5) A cutoff value somewhere between the lowest and highest index value was selected and based on this cutoff, subjects with indices above the cutoff were classified (predicted to be) in the disease group, those below the cutoff were classified into the reference group (i.e., normal, healthy subjects). Based on such classifications, the percent of each group that is correctly classified was determined. See the section labeled “Classifying Subjects into Groups” for details on how the cutoff was chosen.
  • 6) Among all models that survived the screening criteria (Step 3), an entropy-based R2 statistic was used to rank the models from high to low, i.e., the models with the highest percent classification rate to the lowest percent classification rate. The top 5 such models are then evaluated with respect to the percent correctly classified and the one having the highest percentages was selected as the single “best” model. A discrimination plot was provided for the best model having an 85% or greater percent classification rate. For details on how this plot was developed, see the section “Discrimination Plots” below.


While there are several possible R2 statistics that might be used for this purpose, it was determined that the one based on entropy was most sensitive to the extent to which a model yields clear separation between the 2 groups. Such sensitivity provides a model which can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) to ascertain the necessity of future screening or treatment options. For more detail on this issue, see the section labeled “Using R2 Statistics to Rank Models” below.


Computing Model-Based Indices for Each Subject

The model parameter estimates were used to compute a numeric value (logit, odds or probability) for each diseased and reference subject (e.g., healthy, normal subject) in the sample. For illustrative purposes only, in an example of a 2-gene logit model for cancer containing the genes ALOX5 and S100A6, the following parameter estimates listed in Table A were obtained:













TABLE A









Cancer
alpha(1)
18.37



Normals
alpha(2)
−18.37



Predictors



ALOX5
beta(1)
−4.81



S100A6
beta(2)
2.79











For a given subject with particular ΔCT values observed for these genes, the predicted logit associated with cancer vs. reference (i.e., normals) was computed as:






LOGIT(ALOX5,S100A6)=[alpha(1)−alpha(2)]+beta(1)*ALOX5+beta(2)*S100A6.


The predicted odds of having cancer would be:





ODDS(ALOX5,S100A6)=exp[LOGIT(ALOX5,S100A6)]


and the predicted probability of belonging to the cancer group is:






P(ALOX5,S100A6)=ODDS(ALOX5,S100A6)/[1+ODDS(ALOX5,S100A6)]


Note that the ML estimates for the alpha parameters were based on the relative proportion of the group sample sizes. Prior to computing the predicted probabilities, the alpha estimates may be adjusted to take into account the relative proportion in the population to which the model will be applied (for example, without limitation, the incidence of prostate cancer in the population of adult men in the U.S., the incidence of breast cancer in the population of adult women in the U.S., etc.)


Classifying Subjects into Groups


The “modal classification rule” was used to predict into which group a given case belongs. This rule classifies a case into the group for which the model yields the highest predicted probability. Using the same cancer example previously described (for illustrative purposes only), use of the modal classification rule would classify any subject having P>0.5 into the cancer group, the others into the reference group (e.g., healthy, normal subjects). The percentage of all N1 cancer subjects that were correctly classified were computed as the number of such subjects having P>0.5 divided by N1. Similarly, the percentage of all N2 reference (e.g., normal healthy) subjects that were correctly classified were computed as the number of such subjects having P 0.5 divided by N2. Alternatively, a cutoff point P0 could be used instead of the modal classification rule so that any subject i having P(i)>P0 is assigned to the cancer group, and otherwise to the Reference group (e.g., normal, healthy group).


Application of the Statistical and Clinical Criteria to Screen Models
Clinical Screening Criteria

In order to determine whether a model met the clinical 75% correct classification criteria, the following approach was used:

    • A. All sample subjects were ranked from high to low by their predicted probability P (e.g., see Table B).
    • B. Taking P0(i)=P(i) for each subject, one at a time, the percentage of group 1 and group 2 that would be correctly classified, P1(i) and P2(i) was computed.
    • C. The information in the resulting table was scanned and any models for which none of the potential cutoff probabilities met the clinical criteria (i.e., no cutoffs P0(i) exist such that both P1(i)>0.75 and P2(i)>0.75) were eliminated. Hence, models that did not meet the clinical criteria were eliminated.


The example shown in Table B has many cut-offs that meet this criteria. For example, the cutoff P0=0.4 yields correct classification rates of 92% for the reference group (i.e., normal, healthy subjects), and 93% for Cancer subjects. A plot based on this cutoff is shown in FIG. 1 and described in the section “Discrimination Plots”.


Statistical Screening Criteria

In order to determine whether a model met the statistical criteria, the following approach was used to compute the incremental p-value for each gene g=1, 2, . . . , G as follows:

    • i. Let LSQ(0) denote the overall model L-squared output by Latent GOLD for an unrestricted model.
    • ii. Let LSQ(g) denote the overall model L-squared output by Latent GOLD for the restricted version of the model where the effect of gene g is restricted to 0.
    • iii. With 1 degree of freedom, use a ‘components of chi-square’ table to determine the p-value associated with the LR difference statistic LSQ(g)−LSQ(0).


      Note that this approach required estimating g restricted models as well as 1 unrestricted model.


Discrimination Plots

For a 2-gene model, a discrimination plot consisted of plotting the ΔCT values for each subject in a scatterplot where the values associated with one of the genes served as the vertical axis, the other serving as the horizontal axis. Two different symbols were used for the points to denote whether the subject belongs to group 1 or 2.


A line was appended to a discrimination graph to illustrate how well the 2-gene model discriminated between the 2 groups. The slope of the line was determined by computing the ratio of the ML parameter estimate associated with the gene plotted along the horizontal axis divided by the corresponding estimate associated with the gene plotted along the vertical axis. The intercept of the line was determined as a function of the cutoff point. For the cancer example model based on the 2 genes ALOX5 and S100A6 shown in FIG. 1, the equation for the line associated with the cutoff of 0.4 is ALOX5=7.7+0.58*S100A6. This line provides correct classification rates of 93% and 92% (4 of 57 cancer subjects misclassified and only 4 of 50 reference (i.e., normal) subjects misclassified).


For a 3-gene model, a 2-dimensional slice defined as a linear combination of 2 of the genes was plotted along one of the axes, the remaining gene being plotted along the other axis. The particular linear combination was determined based on the parameter estimates. For example, if a 3rd gene were added to the 2-gene model consisting of ALOX5 and S100A6 and the parameter estimates for ALOX5 and S100A6 were beta(1) and beta(2) respectively, the linear combination beta(1)*ALOX5+beta(2)*S100A6 could be used. This approach can be readily extended to the situation with 4 or more genes in the model by taking additional linear combinations. For example, with 4 genes one might use beta(1)*ALOX5+beta(2)*S100A6 along one axis and beta(3)*gene3+beta(4)*gene4 along the other, or beta(1)*ALOX5+beta(2)*S100A6+beta(3)*gene3 along one axis and gene4 along the other axis. When producing such plots with 3 or more genes, genes with parameter estimates having the same sign were chosen for combination.


Using R2 Statistics to Rank Models

The R2 in traditional OLS (ordinary least squares) linear regression of a continuous dependent variable can be interpreted in several different ways, such as 1) proportion of variance accounted for, 2) the squared correlation between the observed and predicted values, and 3) a transformation of the F-statistic. When the dependent variable is not continuous but categorical (in our models the dependent variable is dichotomous—membership in the diseased group or reference group), this standard R2 defined in terms of variance (see definition 1 above) is only one of several possible measures. The term ‘pseudo R2’ has been coined for the generalization of the standard variance-based R2 for use with categorical dependent variables, as well as other settings where the usual assumptions that justify OLS do not apply.


The general definition of the (pseudo) R2 for an estimated model is the reduction of errors compared to the errors of a baseline model. For the purpose of the present invention, the estimated model is a logistic regression model for predicting group membership based on 1 or more continuous predictors (ΔCT measurements of different genes). The baseline model is the regression model that contains no predictors; that is, a model where the regression coefficients are restricted to 0. More precisely, the pseudo R2 is defined as:






R
2=[Error(baseline)−Error(model)]/Error(baseline)


Regardless how error is defined, if prediction is perfect, Error(model)=0 which yields R2=1. Similarly, if all of the regression coefficients do in fact turn out to equal 0, the model is equivalent to the baseline, and thus R2=0. In general, this pseudo R2 falls somewhere between 0 and 1.


When Error is defined in terms of variance, the pseudo R2 becomes the standard R2. When the dependent variable is dichotomous group membership, scores of 1 and 0, −1 and +1, or any other 2 numbers for the 2 categories yields the same value for R2. For example, if the dichotomous dependent variable takes on the scores of 1 and 0, the variance is defined as P*(1−P) where P is the probability of being in 1 group and 1−P the probability of being in the other.


A common alternative in the case of a dichotomous dependent variable, is to define error in terms of entropy. In this situation, entropy can be defined as P*ln(P)*(1−P)*ln(1−P) (for further discussion of the variance and the entropy based R2, see Magidson, Jay, “Qualitative Variance, Entropy and Correlation Ratios for Nominal Dependent Variables,” Social Science Research 10 (June), pp. 177-194).


The R2 statistic was used in the enumeration methods described herein to identify the “best” gene-model. R2 can be calculated in different ways depending upon how the error variation and total observed variation are defined. For example, four different R2 measures output by Latent GOLD are based on:


a) Standard variance and mean squared error (MSE)


b) Entropy and minus mean log-likelihood (−MLL)


c) Absolute variation and mean absolute error (MAE)


d) Prediction errors and the proportion of errors under modal assignment (PPE)


Each of these 4 measures equal 0 when the predictors provide zero discrimination between the groups, and equal 1 if the model is able to classify each subject into their actual group with 0 error. For each measure, Latent GOLD defines the total variation as the error of the baseline (intercept-only) model which restricts the effects of all predictors to 0. Then for each, R2 is defined as the proportional reduction of errors in the estimated model compared to the baseline model. For the 2-gene cancer example used to illustrate the enumeration methodology described herein, the baseline model classifies all cases as being in the diseased group since this group has a larger sample size, resulting in 50 misclassifications (all 50 normal subjects are misclassified) for a prediction error of 50/107=0.467. In contrast, there are only 10 prediction errors (=10/107=0.093) based on the 2-gene model using the modal assignment rule, thus yielding a prediction error R2 of 1−0.093/0.467=0.8. As shown in Exhibit 1, 4 normal and 6 cancer subjects would be misclassified using the modal assignment rule. Note that the modal rule utilizes P0=0.5 as the cutoff. If P0=0.4 were used instead, there would be only 8 misclassified subjects.


The sample discrimination plot shown in FIG. 1 is for a 2-gene model for cancer based on disease-specific genes. The 2 genes in the model are ALOX5 and S100A6 and only 8 subjects are misclassified (4 blue circles corresponding to normal subjects fall to the right and below the line, while 4 red Xs corresponding to misclassified cancer subjects lie above the line).


To reduce the likelihood of obtaining models that capitalize on chance variations in the observed samples the models may be limited to contain only M genes as predictors in the model. (Although a model may meet the significance criteria, it may overfit data and thus would not be expected to validate when applied to a new sample of subjects.) For example, for M=2, all models would be estimated which contain:














1


-


gene











G





such





models




A











2


-


gene





models












(



G




2



)


=

G
*


(

G
-
1

)

/
2






such





models





B






3


-


gene





models












(



G


3



)


=

G
*

(

G
-
1

)

*


(

G
-
2

)

/
6






such





models




C






Computation of the Z-Statistic

The Z-Statistic associated with the test of significance between the mean ΔCT values for the cancer and normal groups for any gene g was calculated as follows:


i. Let LL[g] denote the log of the likelihood function that is maximized under the logistic regression model that predicts group membership (Cancer vs. Normal) as a function of the ΔCT value associated with gene g. There are 2 parameters in this model−an intercept and a slope.


ii. Let LL(0) denote the overall model L-squared output by Latent GOLD for the restricted version of the model where the slope parameter reflecting the effect of gene g is restricted to 0. This model has only 1 unrestricted parameter—the intercept.


iii. With 2−1=1 degree of freedom (the difference in the number of unrestricted parameters in the models), one can use a ‘components of chi-square’ table to determine the p-value associated with the Log Likelihood difference statistic LLDiff=−2*(LL[0]−LL[g])=2*(LL[g]−LL[0]).


iv. Since the chi-squared statistic with 1 df is the square of a Z-statistic, the magnitude of the Z-statistic can be computed as the square root of the LLDiff. The sign of Z is negative if the mean ΔCT value for the cancer group on gene g is less than the corresponding mean for the normal group, and positive if it is greater.


v. These Z-statistics can be plotted as a bar graph. The length of the bar has a monotonic relationship with the p-value.









TABLE B







ΔCT Values and Model Predicted Probability of Cancer for


Each Subject










ALOX5
S100A6
P
Group













13.92
16.13
1.0000
Cancer


13.90
15.77
1.0000
Cancer


13.75
15.17
1.0000
Cancer


13.62
14.51
1.0000
Cancer


15.33
17.16
1.0000
Cancer


13.86
14.61
1.0000
Cancer


14.14
15.09
1.0000
Cancer


13.49
13.60
0.9999
Cancer


15.24
16.61
0.9999
Cancer


14.03
14.45
0.9999
Cancer


14.98
16.05
0.9999
Cancer


13.95
14.25
0.9999
Cancer


14.09
14.13
0.9998
Cancer


15.01
15.69
0.9997
Cancer


14.13
14.15
0.9997
Cancer


14.37
14.43
0.9996
Cancer


14.14
13.88
0.9994
Cancer


14.33
14.17
0.9993
Cancer


14.97
15.06
0.9988
Cancer


14.59
14.30
0.9984
Cancer


14.45
13.93
0.9978
Cancer


14.40
13.77
0.9972
Cancer


14.72
14.31
0.9971
Cancer


14.81
14.38
0.9963
Cancer


14.54
13.91
0.9963
Cancer


14.88
14.48
0.9962
Cancer


14.85
14.42
0.9959
Cancer


15.40
15.30
0.9951
Cancer


15.58
15.60
0.9951
Cancer


14.82
14.28
0.9950
Cancer


14.78
14.06
0.9924
Cancer


14.68
13.88
0.9922
Cancer


14.54
13.64
0.9922
Cancer


15.86
15.91
0.9920
Cancer


15.71
15.60
0.9908
Cancer


16.24
16.36
0.9858
Cancer


16.09
15.94
0.9774
Cancer


15.26
14.41
0.9705
Cancer


14.93
13.81
0.9693
Cancer


15.44
14.67
0.9670
Cancer


15.69
15.08
0.9663
Cancer


15.40
14.54
0.9615
Cancer


15.80
15.21
0.9586
Cancer


15.98
15.43
0.9485
Cancer


15.20
14.08
0.9461
Normal


15.03
13.62
0.9196
Cancer


15.20
13.91
0.9184
Cancer


15.04
13.54
0.8972
Cancer


15.30
13.92
0.8774
Cancer


15.80
14.68
0.8404
Cancer


15.61
14.23
0.7939
Normal


15.89
14.64
0.7577
Normal


15.44
13.66
0.6445
Cancer


16.52
15.38
0.5343
Cancer


15.54
13.67
0.5255
Normal


15.28
13.11
0.4537
Cancer


15.96
14.23
0.4207
Cancer


15.96
14.20
0.3928
Normal


16.25
14.69
0.3887
Cancer


16.04
14.32
0.3874
Cancer


16.26
14.71
0.3863
Normal


15.97
14.18
0.3710
Cancer


15.93
14.06
0.3407
Normal


16.23
14.41
0.2378
Cancer


16.02
13.91
0.1743
Normal


15.99
13.78
0.1501
Normal


16.74
15.05
0.1389
Normal


16.66
14.90
0.1349
Normal


16.91
15.20
0.0994
Normal


16.47
14.31
0.0721
Normal


16.63
14.57
0.0672
Normal


16.25
13.90
0.0663
Normal


16.82
14.84
0.0596
Normal


16.75
14.73
0.0587
Normal


16.69
14.54
0.0474
Normal


17.13
15.25
0.0416
Normal


16.87
14.72
0.0329
Normal


16.35
13.76
0.0285
Normal


16.41
13.83
0.0255
Normal


16.68
14.20
0.0205
Normal


16.58
13.97
0.0169
Normal


16.66
14.09
0.0167
Normal


16.92
14.49
0.0140
Normal


16.93
14.51
0.0139
Normal


17.27
15.04
0.0123
Normal


16.45
13.60
0.0116
Normal


17.52
15.44
0.0110
Normal


17.12
14.46
0.0051
Normal


17.13
14.46
0.0048
Normal


16.78
13.86
0.0047
Normal


17.10
14.36
0.0041
Normal


16.75
13.69
0.0034
Normal


17.27
14.49
0.0027
Normal


17.07
14.08
0.0022
Normal


17.16
14.08
0.0014
Normal


17.50
14.41
0.0007
Normal


17.50
14.18
0.0004
Normal


17.45
14.02
0.0003
Normal


17.53
13.90
0.0001
Normal


18.21
15.06
0.0001
Normal


17.99
14.63
0.0001
Normal


17.73
14.05
0.0001
Normal


17.97
14.40
0.0001
Normal


17.98
14.35
0.0001
Normal









Example 3
Precision Profile™ for Cervical Cancer

Custom primers and probes were prepared for the targeted 78 genes shown in The Precision Profile™ for Cervical Cancer (shown in Table 1), selected to be informative relative to biological state of cervical cancer patients. Gene expression profiles for the 78 cervical cancer specific genes were analyzed using the 24 RNA samples obtained from cervical cancer subjects, and the 26 RNA samples obtained from normal female subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with cervical cancer and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with cervical cancer and normal subjects with at least 75% accuracy is shown in Table 1A, (read from left to right).


As shown in Table 1A, the 1 and 2-gene models are identified in the first two columns on the left side of Table 1A, ranked by their entropy R2 value (shown in column 3, ranked from high to low). The number of subjects correctly classified or misclassified by each 1 or 2-gene model for each patient group (i.e., normal vs. cervical cancer) is shown in columns 4-7. The percent normal subjects and percent cervical cancer subjects correctly classified by the corresponding gene model is shown in columns 8 and 9. The incremental p-value for each first and second gene in the 1 or 2-gene model is shown in columns 10-11 (note p-values smaller than 1×10−17 are reported as ‘0’). The total number of RNA samples analyzed in each patient group (i.e., normals vs. cervical cancer), after exclusion of missing values, is shown in columns 12 and 13. The values missing from the total sample number for normal and/or cervical cancer subjects shown in columns 12 and 13 correspond to instances in which values were excluded from the logistic regression analysis due to reagent limitations and/or instances where replicates did not meet quality metrics.


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 78 genes included in The Precision Profile™ for Cervical Cancer is shown in the first row of Table 1A, read left to right. The first row of Table 1A lists a 2-gene model, MTF1 and PTGES, capable of classifying normal subjects with 95.5% accuracy, and cervical cancer subjects with 95.7% accuracy. A total number of 22 normal and 23 cervical cancer RNA samples were analyzed for this 2-gene model, after exclusion of missing values. As shown in Table 1A, this 2-gene model correctly classifies 21 of the normal subjects as being in the normal patient population, and misclassifies 1 of the normal subjects as being in the cervical cancer patient population. This 2-gene model correctly classifies 22 of the cervical cancer subjects as being in the cervical cancer patient population, and misclassifies 1 of the cervical cancer subjects as being in the normal patient population. The p-value for the 1st gene, MTF1, is 7.6E-11, the incremental p-value for the second gene, PTGES is 0.0182.


A discrimination plot of the 2-gene model, MTF1 and PTGES, is shown in FIG. 2. As shown in FIG. 2, the normal subjects are represented by circles, whereas the cervical cancer subjects are represented by X's. The line appended to the discrimination graph in FIG. 2 illustrates how well the 2-gene model discriminates between the 2 groups. Values above the line represent subjects predicted by the 2-gene model to be in the normal population. Values below the line represent subjects predicted to be in the cervical cancer population. As shown in FIG. 2, only 1 normal subject (circles) and 1 cervical cancer subject (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 2:






MTF1=20.59261−0.19308*PTGES


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.59165 was used to compute alpha (equals 0.370791 in logit units).


Subjects below this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.59165.


The intercept C0=20.59261 was computed by taking the difference between the intercepts for the 2 groups [91.6001-(−91.6001)=183.2002] and subtracting the log-odds of the cutoff probability (0.370791). This quantity was then multiplied by −1/X where X is the coefficient for MTF1 (−8.8784).


A ranking of the top 65 cervical cancer specific genes for which gene expression profiles were obtained, from most to least significant, is shown in Table 1B. Table 1B summarizes the results of significance tests (Z-statistic and p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from cervical cancer. A negative Z-statistic means that the ΔCT for the cervical cancer subjects is less than that of the normals, i.e., genes having a negative Z-statistic are up-regulated in cervical cancer subjects as compared to normal subjects. A positive Z-statistic means that the ΔCT for the cervical cancer subjects is higher than that of the normals, i.e., genes with a positive Z-statistic are down-regulated in cervical cancer subjects as compared to normal subjects. FIG. 3 shows a graphical representation of the Z-statistic for each of the 65 genes shown in Table 1B, indicating which genes are up-regulated and down-regulated in cervical cancer subjects as compared to normal subjects.


The expression values (ΔCT) for the 2-gene model, MTF1 and PTGES, for each of the 23 cervical cancer samples and 22 normal subject samples used in the analysis, and their predicted probability of having cervical cancer, is shown in Table 1C. As shown in Table 1C, the predicted probability of a subject having cervical cancer, based on the 2-gene model MTF1 and PTGES, is based on a scale of 0 to 1, “0” indicating no cervical cancer (i.e., normal healthy subject), “1” indicating the subject has cervical cancer. A graphical representation of the predicted probabilities of a subject having cervical cancer (i.e., a cervical cancer index), based on this 2-gene model, is shown in FIG. 4. Such an index can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of cervical cancer and to ascertain the necessity of future screening or treatment options.


Example 4
Precision Profile™ for Inflammatory Response

Custom primers and probes were prepared for the targeted 72 genes shown in the Precision Profile™ for Inflammatory Response (shown in Table 2), selected to be informative relative to biological state of inflammation and cancer. Gene expression profiles for the 72 inflammatory response genes were analyzed using the 24 RNA samples obtained from cervical cancer subjects, and the 26 RNA samples obtained from normal female subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with cervical cancer and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with cervical cancer and normal subjects with at least 75% accuracy is shown in Table 2A, (read from left to right).


As shown in Table 2A, the 1 and 2-gene models are identified in the first two columns on the left side of Table 2A, ranked by their entropy R2 value (shown in column 3, ranked from high to low). The number of subjects correctly classified or misclassified by each 1 or 2-gene model for each patient group (i.e., normal vs. cervical cancer) is shown in columns 4-7. The percent normal subjects and percent cervical cancer subjects correctly classified by the corresponding gene model is shown in columns 8 and 9. The incremental p-value for each first and second gene in the 1 or 2-gene model is shown in columns 10-11 (note p-values smaller than 1×10−17 are reported as ‘0’). The total number of RNA samples analyzed in each patient group (i.e., normals vs. cervical cancer) after exclusion of missing values, is shown in columns 12-13. The values missing from the total sample number for normal and/or cervical cancer subjects shown in columns 12-13 correspond to instances in which values were excluded from the logistic regression analysis due to reagent limitations and/or instances where replicates did not meet quality metrics.


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 72 genes included in the Precision Profile™ for Inflammatory Response is shown in the first row of Table 2A, read left to right. The first row of Table 2A lists a 2-gene model, EGR1 and IRF1, capable of classifying normal subjects with 96.2% accuracy, and cervical cancer subjects with 95.8% accuracy. All 26 normal and 24 cervical cancer RNA samples were analyzed for this 2-gene model, no values were excluded. As shown in Table 2A, this 2-gene model correctly classifies 25 of the normal subjects as being in the normal patient population, and misclassifies only 1 of the normal subjects as being in the cervical cancer patient population. This 2-gene model correctly classifies 23 of the cervical cancer subjects as being in the cervical cancer patient population, and misclassifies only 1 of the cervical cancer subjects as being in the normal patient population. The p-value for the 1st gene, EGR1, is 7.4E-07, the incremental p-value for the second gene, IRF1 is 0.0004.


A discrimination plot of the 2-gene model, EGR1 and IRF1, is shown in FIG. 5. As shown in FIG. 5, the normal subjects are represented by circles, whereas the cervical cancer subjects are represented by X's. The line appended to the discrimination graph in FIG. 5 illustrates how well the 2-gene model discriminates between the 2 groups. Values above and to the right of the line represent subjects predicted by the 2-gene model to be in the normal population. Values below and to the left of the line represent subjects predicted to be in the cervical cancer population. As shown in FIG. 5, only 1 normal subject (circles) and 1 cervical cancer subject (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 5:






EGR1=33.6816−1.2287*IRF1


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.5004 was used to compute alpha (equals 0.0016 in logit units).


Subjects below and to the left of this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.5004.


The intercept C0=33.6816 was computed by taking the difference between the intercepts for the 2 groups [100.4746−(−100.4746)=200.9492] and subtracting the log-odds of the cutoff probability (0.0016). This quantity was then multiplied by −1/X where X is the coefficient for EGR1 (−5.9661).


A ranking of the top 68 inflammatory response genes for which gene expression profiles were obtained, from most to least significant, is shown in Table 2B. Table 2B summarizes the results of significance tests (p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from cervical cancer.


The expression values (ΔCT) for the 2-gene model, EGR1 and IRF1, for each of the 24 cervical cancer subjects and 26 normal subject samples used in the analysis, and their predicted probability of having cervical cancer is shown in Table 2C. In Table 2C, the predicted probability of a subject having cervical cancer, based on the 2-gene model EGR1 and IRF1, is based on a scale of 0 to 1, “0” indicating no cervical cancer (i.e., normal healthy subject), “1” indicating the subject has cervical cancer. This predicted probability can be used to create a cervical cancer index based on the 2-gene model EGR1 and IRF1, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of cervical cancer and to ascertain the necessity of future screening or treatment options.


Example 5
Human Cancer General Precision Profile™

Custom primers and probes were prepared for the targeted 91 genes shown in the Human Cancer Precision Profile™ (shown in Table 3), selected to be informative relative to the biological condition of human cancer, including but not limited to ovarian, breast, cervical, prostate, lung, colon, and skin cancer. Gene expression profiles for these 91 genes were analyzed using the 24 RNA samples obtained from cervical cancer subjects, and 22 of the RNA samples obtained from the normal female subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with cervical cancer and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with cervical cancer and normal subjects with at least 75% accuracy is shown in Table 3A, (read from left to right).


As shown in Table 3A, the 1 and 2-gene models are identified in the first two columns on the left side of Table 3A, ranked by their entropy R2 value (shown in column 3, ranked from high to low). The number of subjects correctly classified or misclassified by each 1 or 2-gene model for each patient group (i.e., normal vs. cervical cancer) is shown in columns 4-7. The percent normal subjects and percent cervical cancer subjects correctly classified by the corresponding gene model is shown in columns 8 and 9. The incremental p-value for each first and second gene in the 1 or 2-gene model is shown in columns 10-11 (note p-values smaller than 1×10−17 are reported as ‘0’). The total number of RNA samples analyzed in each patient group (i.e., normals vs. cervical cancer) after exclusion of missing values, is shown in columns 12 and 13. The values missing from the total sample number for normal and/or cervical cancer subjects shown in columns 12-13 correspond to instances in which values were excluded from the logistic regression analysis due to reagent limitations and/or instances where replicates did not meet quality metrics.


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 91 genes included in the Human Cancer General Precision Profile™ is shown in the first row of Table 3A, read left to right. The first row of Table 3A lists a 1-gene model, EGR1, capable of classifying normal subjects with 100% accuracy, and cervical cancer subjects with 100% accuracy. All 22 normal and 24 cervical cancer RNA samples were analyzed for this 2-gene model, no values were excluded. As shown in Table 3A, this 2-gene model correctly classifies all 22 of the normal subjects as being in the normal patient population, and doesn't misclassify any of the normal subjects as being in the cervical cancer patient population. This 2-gene model correctly classifies all 24 of the cervical cancer subjects as being in the cervical cancer patient population, and doesn't misclassify any of the cervical cancer subjects as being in the normal patient population. The p-value for the 1-gene, EGR1, is 1.4E-15.


Because this single gene model, EGR1, provides 100% correct classification of both normal and cervical cancer subjects, the next statistically significant gene, SOCS1, was used as a comparison in order to improve readability of the graph. As shown in FIG. 6, the normal subjects are represented by circles, whereas the cervical cancer subjects are represented by X's. The line appended to the discrimination graph in FIG. 6 illustrates how well the 1-gene model, EGR1, when graphed with SOCS1, discriminates between the 2 groups. Values above the line represent subjects predicted by the 2-gene model to be in the normal population. Values below the line represent subjects predicted to be in the cervical cancer population. As shown in FIG. 6, zero normal subjects (circles) and zero cervical cancer subjects (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 6:






EGR1=19.25+0*SOCS1


Because EGR1 provides 100% correct classification rates, the slope of the line is 0, thus the equation of the line is the Y-intercept.


A ranking of the top 80 genes for which gene expression profiles were obtained, from most to least significant is shown in Table 3B. Table 3B summarizes the results of significance tests (p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from cervical cancer.


The expression values (ΔCT) for the 1-gene model, EGR1, were used with the values for SOC1, for illustrating the calculation of the predicted probability of being classified in the normal patient population or cervical cancer patient population. Each of the 24 cervical cancer subjects and 22 normal subject samples used in the analysis, and their predicted probability of having cervical cancer is shown in Table 3C. In Table 3C, the predicted probability of a subject having cervical cancer, based on the 2-gene model EGR1 and SOCS1 is based on a scale of 0 to 1, “0” indicating no cervical cancer (i.e., normal healthy subject), “1” indicating the subject has cervical cancer (note that because the 1-gene model, EGR1, provides perfect classification, all of the predicted probabilities are exactly 1 or 0—thus, the lodit and odds columns indicated in Table 3C are blank). This predicted probability can be used to create a cervical cancer index based on the 2-gene model EGR1 and SOCS1, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of cervical cancer and to ascertain the necessity of future screening or treatment options.


Example 6
EGR1Precision Profile™

Custom primers and probes were prepared for the targeted 39 genes shown in the Precision Profile™ for EGR1 (shown in Table 4), selected to be informative of the biological role early growth response genes play in human cancer (including but not limited to ovarian, breast, cervical, prostate, lung, colon, and skin cancer). Gene expression profiles for these 39 genes were analyzed using the 24 RNA samples obtained from cervical cancer subjects, and 22 of the RNA samples obtained from normal female subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with cervical cancer and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with cervical cancer and normal subjects with at least 75% accuracy is shown in Table 4A, (read from left to right).


As shown in Table 4A, the 1 and 2-gene models are identified in the first two columns on the left side of Table 4A, ranked by their entropy R2 value (shown in column 3, ranked from high to low). The number of subjects correctly classified or misclassified by each 1 or 2-gene model for each patient group (i.e., normal vs. cervical cancer) is shown in columns 4-7. The percent normal subjects and percent cervical cancer subjects correctly classified by the corresponding gene model is shown in columns 8 and 9. The incremental p-value for each first and second gene in the 1 or 2-gene model is shown in columns 10-11 (note p-values smaller than 1×10−17 are reported as ‘0’). The total number of RNA samples analyzed in each patient group (i.e., normals vs. cervical cancer) after exclusion of missing values, is shown in columns 12 and 13. The values missing from the total sample number for normal and/or cervical cancer subjects shown in columns 12-13 correspond to instances in which values were excluded from the logistic regression analysis due to reagent limitations and/or instances where replicates did not meet quality metrics.


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 39 genes included in the Precision Profile™ for EGR1 is shown in the first row of Table 4A, read left to right. The first row of Table 4A lists a 2-gene model, EGR1 and FOS, capable of classifying normal subjects with 95.2% accuracy, and cervical cancer subjects with 95.8% accuracy. Twenty-one of the normal


RNA samples and all 24 cervical cancer RNA samples were analyzed for this 2-gene model, after exclusion of missing values. As shown in Table 4A, this 2-gene model correctly classifies 20 of the normal subjects as being in the normal patient population, and misclassifies 1 of the normal subjects as being in the cervical cancer patient population. This 2-gene model correctly classifies 23 of the cervical cancer subjects as being in the cervical cancer patient population, and misclassifies 1 of the cervical cancer subjects as being in the normal patient population. The p-value for the 1st gene, EGR1, is 0.0002, the incremental p-value for the second gene, FOS is 0.0475.


A discrimination plot of the 2-gene model, EGR1 and FOS, is shown in FIG. 7. As shown in FIG. 7, the normal subjects are represented by circles, whereas the cervical cancer subjects are represented by X's. The line appended to the discrimination graph in FIG. 7 illustrates how well the 2-gene model discriminates between the 2 groups. Values above and to the right of the line represent subjects predicted by the 2-gene model to be in the normal population. Values below and to the left of the line represent subjects predicted to be in the cervical cancer population. As shown in FIG. 7, only 1 normal subject (circles) and no cervical cancer subjects (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 7:






EGR1=27.22047−0.49849*FOS


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.22945 was used to compute alpha (equals −1.21142 in logit units).


Subjects below and to the left of this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.22945.


The intercept C0=27.22047 was computed by taking the difference between the intercepts for the 2 groups [103.3287−(−103.3287)=206.6574] and subtracting the log-odds of the cutoff probability (−1.21142). This quantity was then multiplied by −1/X where X is the coefficient for EGR1 (−7.6365).


A ranking of the top 33 genes for which gene expression profiles were obtained, from most to least significant is shown in Table 4B. Table 4B summarizes the results of significance tests (p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from cervical cancer.


The expression values (ΔCT) for the 2-gene model, EGR1 and FOS, for each of the 24 cervical cancer subjects and 21 normal subject samples used in the analysis, and their predicted probability of having cervical cancer is shown in Table 4C. In Table 4C, the predicted probability of a subject having cervical cancer, based on the 2-gene model EGR1 and FOS is based on a scale of 0 to 1, “0” indicating no cervical cancer (i.e., normal healthy subject), “1” indicating the subject has cervical cancer. This predicted probability can be used to create a cervical cancer index based on the 2-gene model EGR1 and FOS, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of cervical cancer and to ascertain the necessity of future screening or treatment options.


Example 7
Cross-Cancer Precision Profile™

Custom primers and probes were prepared for the targeted 110 genes shown in the Cross Cancer Precision Profile™ (shown in Table 5), selected to be informative relative to the biological condition of human cancer, including but not limited to ovarian, breast, cervical, prostate, lung, colon, and skin cancer. Gene expression profiles for these 110 genes were analyzed using the 24 RNA samples obtained from cervical cancer subjects, and 22 of the RNA samples obtained from normal female subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with cervical cancer and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with cervical cancer and normal subjects with at least 75% accuracy is shown in Table 5A, (read from left to right).


As shown in Table 5A, the 1 and 2-gene models are identified in the first two columns on the left side of Table 5A, ranked by their entropy R2 value (shown in column 3, ranked from high to low). The number of subjects correctly classified or misclassified by each 1 or 2-gene model for each patient group (i.e., normal vs. cervical cancer) is shown in columns 4-7. The percent normal subjects and percent cervical cancer subjects correctly classified by the corresponding gene model is shown in columns 8 and 9. The incremental p-value for each first and second gene in the 1 or 2-gene model is shown in columns 10-11 (note p-values smaller than 1×10−17 are reported as ‘0’). The total number of RNA samples analyzed in each patient group (i.e., normals vs. cervical cancer) after exclusion of missing values, is shown in columns 12 and 13. The values missing from the total sample number for normal and/or cervical cancer subjects shown in columns 12-13 correspond to instances in which values were excluded from the logistic regression analysis due to reagent limitations and/or instances where replicates did not meet quality metrics.


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 110 genes in the Human Cancer General Precision Profile™ is shown in the first row of Table 5A, read left to right. The first row of Table 5A lists a 1-gene model, EGR1, capable of classifying normal subjects with 100% accuracy, and cervical cancer subjects with 100% accuracy. All 22 normal RNA samples and all 24 cervical cancer RNA samples were used to analyze this 2-gene model, no values were excluded. As shown in Table 5A, this 1-gene model correctly classifies all 22 of the normal subjects as being in the normal patient population and all 24 of the cervical cancer subjects as being in the cervical cancer patient population. The p-value for the 1 gene, EGR1, is 1.4E-15.


Because this single gene model, EGR1, provides 100% correct classification of both normal and cervical cancer subjects, the next statistically significant gene, FOS, was used as a comparison in order to improve readability of the graph. As shown in FIG. 8, the normal subjects are represented by circles, whereas the cervical cancer subjects are represented by X's. The line appended to the discrimination graph in FIG. 8 illustrates how well the 1-gene model, EGR1, when graphed with FOS, discriminates between the 2 groups. Values above the line represent subjects predicted by the 2-gene model to be in the normal population. Values below the line represent subjects predicted to be in the cervical cancer population. As shown in FIG. 8, zero normal subjects (circles) and zero cervical cancer subjects (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 7:






EGR1=19.17581+0.00412*FOS


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.5 was used to compute alpha (equals 0 in logit units).


Subjects below this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.5.


The intercept C0=19.17581 was computed by taking the difference between the intercepts for the 2 groups [6366.169-(−6366.169)=12732.338] and subtracting the log-odds of the cutoff probability (0). This quantity was then multiplied by −1/X where X is the coefficient for EGR1 (−663.979).


A ranking of the top 107 genes for which gene expression profiles were obtained, from most to least significant is shown in Table 5B. Table 5B summarizes the results of significance tests (p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from cervical cancer.


The expression values (ΔCT) for the 1-gene model, EGR1, were used with the values for FOS, for illustrating the calculation of the predicted probability of being classified in the normal patient population or cervical cancer patient population. Each of the 48 cervical cancer subjects and 20 normal subject samples used in the analysis, and their predicted probability of having cervical cancer is shown in Table 5C. In Table 5C, the predicted probability of a subject having cervical cancer, based on the 2-gene model EGR1 and FOS is based on a scale of 0 to 1, “0” indicating no cervical cancer (i.e., normal healthy subject), “1” indicating the subject has cervical cancer (note that because the 1-gene model, EGR1, provides perfect classification, all of the predicted probabilities are exactly 1 or 0—thus, the lodit and odds columns indicated in Table 3C are blank). This predicted probability can be used to create a cervical cancer index based on the 2-gene model EGR1 and FOS, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of cervical cancer and to ascertain the necessity of future screening or treatment options.


These data support that Gene Expression Profiles with sufficient precision and calibration as described herein (1) can determine subsets of individuals with a known biological condition, particularly individuals with cervical cancer or individuals with conditions related to cervical cancer; (2) may be used to monitor the response of patients to therapy; (3) may be used to assess the efficacy and safety of therapy; and (4) may be used to guide the medical management of a patient by adjusting therapy to bring one or more relevant Gene Expression Profiles closer to a target set of values, which may be normative values or other desired or achievable values.


Gene Expression Profiles are used for characterization and monitoring of treatment efficacy of individuals with cervical cancer, or individuals with conditions related to cervical cancer. Use of the algorithmic and statistical approaches discussed above to achieve such identification and to discriminate in such fashion is within the scope of various embodiments herein.


The references listed below are hereby incorporated herein by reference.


REFERENCES



  • Magidson, J. GOLDMineR User's Guide (1998). Belmont, Mass.: Statistical Innovations Inc.

  • Vermunt and Magidson (2005). Latent GOLD 4.0 Technical Guide, Belmont Mass.: Statistical Innovations.

  • Vermunt and Magidson (2007). LG-Syntax™ User's Guide: Manual for Latent GOLD® 4.5 Syntax Module, Belmont Mass.: Statistical Innovations.

  • Vermunt J. K. and J. Magidson. Latent Class Cluster Analysis in (2002) J. A. Hagenaars and A. L. McCutcheon (eds.), Applied Latent Class Analysis, 89-106. Cambridge: Cambridge University Press.

  • Magidson, J. “Maximum Likelihood Assessment of Clinical Trials Based on an Ordered Categorical Response.” (1996) Drug Information Journal, Maple Glen, Pa.: Drug Information Association, Vol. 30, No. 1, pp 143-170.










TABLE 1







Precision Profile ™ for Cervical Cancer









Gene

Gene Accession


Symbol
Gene Name
Number





ALOX12
arachidonate 12-lipoxygenase
NM_000697


ANGPT1
angiopoietin 1
NM_001146


APAF1
Apoptotic Protease Activating Factor 1
NM_013229


BIK
BCL2-interacting killer (apoptosis-inducing)
NM_001197


BRAF
v-raf murine sarcoma viral oncogene homolog B1
NM_004333


BRCA1
breast cancer 1, early onset
NM_007294


BRCA2
breast cancer 2, early onset
NM_000059


CALCA
calcitonin/calcitonin-related polypeptide, alpha
NM_001741


CASP9
caspase 9, apoptosis-related cysteine peptidase
NM_001229


CAV1
caveolin 1, caveolae protein, 22 kDa
NM_001753


CCNB1
Cyclin B1
NM_031966


CD97
CD97 molecule
NM_078481


CDH1
cadherin 1, type 1, E-cadherin (epithelial)
NM_004360


CDKN1A
cyclin-dependent kinase inhibitor 1A (p21, Cip1)
NM_000389


CEACAM5
carcinoembryonic antigen-related cell adhesion molecule 5
NM_004363


CTGF
connective tissue growth factor
NM_001901


CTNNB1
catenin (cadherin-associated protein), beta 1, 88 kDa
NM_001904


CTSB
cathepsin B
NM_001908


E2F1
E2F transcription factor 1
NM_005225


EGFR
epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b)
NM_005228



oncogene homolog, avian)


ERBB2
V-erb-b2 erythroblastic leukemia viral oncogene homolog 2,
NM_004448



neuro/glioblastoma derived oncogene homolog (avian)


ERBB3
V-erb-b2 Erythroblastic Leukemia Viral Oncogene Homolog 3
NM_001982


ESR1
estrogen receptor 1
NM_000125


FHIT
fragile histidine triad gene
NM_002012


FOXM1
forkhead box M1
NM_202002


FRAP1
FK506 binding protein 12-rapamycin associated protein 1
NM_004958


GADD45A
growth arrest and DNA-damage-inducible, alpha
NM_001924


GNB1
guanine nucleotide binding protein (G protein), beta polypeptide 1
NM_002074


HIF1A
hypoxia-inducible factor 1, alpha subunit (basic helix-loop-helix
NM_001530



transcription factor)


HRAS
v-Ha-ras Harvey rat sarcoma viral oncogene homolog
NM_005343


ICAM3
intercellular adhesion molecule 3
NM_002162


IGF2
Putative insulin-like growth factor II associated protein
NM_000612


IGFBP3
insulin-like growth factor binding protein 3
NM_001013398


IGSF4
immunoglobulin superfamily, member 4
NM_014333


IL10
interleukin 10
NM_000572


IL6
interleukin 6 (interferon, beta 2)
NM_000600


IL8
interleukin 8
NM_000584


ILF2
interleukin enhancer binding factor 2, 45 kDa
NM_004515


ITGA6
integrin, alpha 6
NM_000210


ITGAL
integrin, alpha L (antigen CD11A (p180), lymphocyte function-associated
NM_002209



antigen 1; alpha polypeptide)


KIT
v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
NM_000222


KRT19
keratin 19
NM_002276


LAMC2
laminin, gamma 2
NM_005562


MAGEA1
melanoma antigen family A, 1 (directs expression of antigen MZ2-E)
NM_004988


MCM2
MCM2 minichromosome maintenance deficient 2, mitotin (S. cerevisiae)
NM_004526


MCM4
MCM4 minichromosome maintenance deficient 4 (S. cerevisiae)
NM_005914


MEST
mesoderm specific transcript homolog (mouse)
NM_002402


MSLN
mesothelin
NM_005823


MTF1
metal-regulatory transcription factor 1
NM_005955


MYBL2
v-myb myeloblastosis viral oncogene homolog (avian)-like 2
NM_002466


MYC
v-myc myelocytomatosis viral oncogene homolog (avian)
NM_002467


MYD88
myeloid differentiation primary response gene (88)
NM_002468


NME1
non-metastatic cells 1, protein (NM23A) expressed in
NM_198175


NRAS
neuroblastoma RAS viral (v-ras) oncogene homolog
NM_002524


PPARG
peroxisome proliferative activated receptor, gamma
NM_138712


PRDM2
PR domain containing 2, with ZNF domain
NM_012231


PTGES
prostaglandin E synthase
NM_004878


PTGS2
prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and
NM_000963



cyclooxygenase)


RARB
retinoic acid receptor, beta
NM_000965


RB1
retinoblastoma 1 (including osteosarcoma)
NM_000321


RGS1
regulator of G-protein signalling 1
NM_002922


RPL39L
ribosomal protein L39-like
NM_052969


SART1
squamous cell carcinoma antigen recognized by T cells
NM_005146


SERPING1
serpin peptidase inhibitor, clade G (C1 inhibitor), member 1, (angioedema,
NM_000062



hereditary)


SOCS3
suppressor of cytokine signaling 3
NM_003955


SPARC
secreted protein, acidic, cysteine-rich (osteonectin)
NM_004598


SPP1
secreted phosphoprotein 1 (osteopontin, bone sialoprotein I, early T-
NM_001040058



lymphocyte activation 1)


TEGT
testis enhanced gene transcript (BAX inhibitor 1)
NM_003217


TERT
telomerase-reverse transcriptase
NM_003219


TFPI2
tissue factor pathway inhibitor 2
NM_006528


TIMP1
tissue inhibitor of metalloproteinase 1
NM_003254


TNF
tumor necrosis factor (TNF superfamily, member 2)
NM_000594


TOP2A
topoisomerase (DNA) II alpha 170 kDa
NM_001067


TP53
tumor protein p53 (Li-Fraumeni syndrome)
NM_000546


UBE2C
ubiquitin-conjugating enzyme E2C
NM_007019


VEGF
vascular endothelial growth factor
NM_003376


VIM
vimentin
NM_003380


WNT1
wingless-type MMTV integration site family, member 1
NM_005430
















TABLE 2







Precision Profile ™ for Inflammatory Response









Gene

Gene Accession


Symbol
Gene Name
Number





ADAM17
a disintegrin and metalloproteinase domain 17 (tumor necrosis factor,
NM_003183



alpha, converting enzyme)


ALOX5
arachidonate 5-lipoxygenase
NM_000698


APAF1
apoptotic Protease Activating Factor 1
NM_013229


C1QA
complement component 1, q subcomponent, alpha polypeptide
NM_015991


CASP1
caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta,
NM_033292



convertase)


CASP3
caspase 3, apoptosis-related cysteine peptidase
NM_004346


CCL3
chemokine (C-C motif) ligand 3
NM_002983


CCL5
chemokine (C-C motif) ligand 5
NM_002985


CCR3
chemokine (C-C motif) receptor 3
NM_001837


CCR5
chemokine (C-C motif) receptor 5
NM_000579


CD19
CD19 Antigen
NM_001770


CD4
CD4 antigen (p55)
NM_000616


CD86
CD86 antigen (CD28 antigen ligand 2, B7-2 antigen)
NM_006889


CD8A
CD8 antigen, alpha polypeptide
NM_001768


CSF2
colony stimulating factor 2 (granulocyte-macrophage)
NM_000758


CTLA4
cytotoxic T-lymphocyte-associated protein 4
NM_005214


CXCL1
chemokine (C—X—C motif) ligand 1 (melanoma growth stimulating
NM_001511



activity, alpha)


CXCL10
chemokine (C—X—C moif) ligand 10
NM_001565


CXCR3
chemokine (C—X—C motif) receptor 3
NM_001504


DPP4
Dipeptidylpeptidase 4
NM_001935


EGR1
early growth response-1
NM_001964


ELA2
elastase 2, neutrophil
NM_001972


GZMB
granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine
NM_004131



esterase 1)


HLA-DRA
major histocompatibility complex, class II, DR alpha
NM_019111


HMGB1
high-mobility group box 1
NM_002128


HMOX1
heme oxygenase (decycling) 1
NM_002133


HSPA1A
heat shock protein 70
NM_005345


ICAM1
Intercellular adhesion molecule 1
NM_000201


IFI16
interferon inducible protein 16, gamma
NM_005531


IFNG
interferon gamma
NM_000619


IL10
interleukin 10
NM_000572


IL12B
interleukin 12 p40
NM_002187


IL15
Interleukin 15
NM_000585


IL18
interleukin 18
NM_001562


IL18BP
IL-18 Binding Protein
NM_005699


IL1B
interleukin 1, beta
NM_000576


IL1R1
interleukin 1 receptor, type I
NM_000877


IL1RN
interleukin 1 receptor antagonist
NM_173843


IL23A
interleukin 23, alpha subunit p19
NM_016584


IL32
interleukin 32
NM_001012631


IL5
interleukin 5 (colony-stimulating factor, eosinophil)
NM_000879


IL6
interleukin 6 (interferon, beta 2)
NM_000600


IL8
interleukin 8
NM_000584


IRF1
interferon regulatory factor 1
NM_002198


LTA
lymphotoxin alpha (TNF superfamily, member 1)
NM_000595


MAPK14
mitogen-activated protein kinase 14
NM_001315


MHC2TA
class II, major histocompatibility complex, transactivator
NM_000246


MIF
macrophage migration inhibitory factor (glycosylation-inhibiting factor)
NM_002415


MMP12
matrix metallopeptidase 12 (macrophage elastase)
NM_002426


MMP9
matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type
NM_004994



IV collagenase)


MNDA
myeloid cell nuclear differentiation antigen
NM_002432


MYC
v-myc myelocytomatosis viral oncogene homolog (avian)
NM_002467


NFKB1
nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
NM_003998



(p105)


PLA2G7
phospholipase A2, group VII (platelet-activating factor acetylhydrolase,
NM_005084



plasma)


PLAUR
plasminogen activator, urokinase receptor
NM_002659


PTGS2
prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and
NM_000963



cyclooxygenase)


PTPRC
protein tyrosine phosphatase, receptor type, C
NM_002838


SERPINA1
serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase,
NM_000295



antitrypsin), member 1


SERPINE1
serpin peptidase inhibitor, clade E (nexin, plasminogen activator
NM_000602



inhibitor type 1), member 1


SSI-3
suppressor of cytokine signaling 3
NM_003955


TGFB1
transforming growth factor, beta 1 (Camurati-Engelmann disease)
NM_000660


TIMP1
tissue inhibitor of metalloproteinase 1
NM_003254


TLR2
toll-like receptor 2
NM_003264


TLR4
toll-like receptor 4
NM_003266


TNF
tumor necrosis factor (TNF superfamily, member 2)
NM_000594


TNFRSF13B
tumor necrosis factor receptor superfamily, member 13B
NM_012452


TNFRSF1A
tumor necrosis factor receptor superfamily, member 1A
NM_001065


TNFSF5
CD40 ligand (TNF superfamily, member 5, hyper-IgM syndrome)
NM_000074


TNFSF6
Fas ligand (TNF superfamily, member 6)
NM_000639


TOSO
Fas apoptotic inhibitory molecule 3
NM_005449


TXNRD1
thioredoxin reductase
NM_003330


VEGF
vascular endothelial growth factor
NM_003376
















TABLE 3







Human Cancer General Precision Profile ™









Gene

Gene Accession


Symbol
Gene Name
Number





ABL1
v-abl Abelson murine leukemia viral oncogene homolog 1
NM_007313


ABL2
v-abl Abelson murine leukemia viral oncogene homolog 2 (arg, Abelson-
NM_007314



related gene)


AKT1
v-akt murine thymoma viral oncogene homolog 1
NM_005163


ANGPT1
angiopoietin 1
NM_001146


ANGPT2
angiopoietin 2
NM_001147


APAF1
Apoptotic Protease Activating Factor 1
NM_013229


ATM
ataxia telangiectasia mutated (includes complementation groups A, C and
NM_138293



D)


BAD
BCL2-antagonist of cell death
NM_004322


BAX
BCL2-associated X protein
NM_138761


BCL2
BCL2-antagonist of cell death
NM_004322


BRAF
v-raf murine sarcoma viral oncogene homolog B1
NM_004333


BRCA1
breast cancer 1, early onset
NM_007294


CASP8
caspase 8, apoptosis-related cysteine peptidase
NM_001228


CCNE1
Cyclin E1
NM_001238


CDC25A
cell division cycle 25A
NM_001789


CDK2
cyclin-dependent kinase 2
NM_001798


CDK4
cyclin-dependent kinase 4
NM_000075


CDK5
Cyclin-dependent kinase 5
NM_004935


CDKN1A
cyclin-dependent kinase inhibitor 1A (p21, Cip1)
NM_000389


CDKN2A
cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)
NM_000077


CFLAR
CASP8 and FADD-like apoptosis regulator
NM_003879


COL18A1
collagen, type XVIII, alpha 1
NM_030582


E2F1
E2F transcription factor 1
NM_005225


EGFR
epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b)
NM_005228



oncogene homolog, avian)


EGR1
Early growth response-1
NM_001964


ERBB2
V-erb-b2 erythroblastic leukemia viral oncogene homolog 2,
NM_004448



neuro/glioblastoma derived oncogene homolog (avian)


FAS
Fas (TNF receptor superfamily, member 6)
NM_000043


FGFR2
fibroblast growth factor receptor 2 (bacteria-expressed kinase,
NM_000141



keratinocyte growth factor receptor, craniofacial dysostosis 1)


FOS
v-fos FBJ murine osteosarcoma viral oncogene homolog
NM_005252


GZMA
Granzyme A (granzyme 1, cytotoxic T-lymphocyte-associated serine
NM_006144



esterase 3)


HRAS
v-Ha-ras Harvey rat sarcoma viral oncogene homolog
NM_005343


ICAM1
Intercellular adhesion molecule 1
NM_000201


IFI6
interferon, alpha-inducible protein 6
NM_002038


IFITM1
interferon induced transmembrane protein 1 (9-27)
NM_003641


IFNG
interferon gamma
NM_000619


IGF1
insulin-like growth factor 1 (somatomedin C)
NM_000618


IGFBP3
insulin-like growth factor binding protein 3
NM_001013398


IL18
Interleukin 18
NM_001562


IL1B
Interleukin 1, beta
NM_000576


IL8
interleukin 8
NM_000584


ITGA1
integrin, alpha 1
NM_181501


ITGA3
integrin, alpha 3 (antigen CD49C, alpha 3 subunit of VLA-3 receptor)
NM_005501


ITGAE
integrin, alpha E (antigen CD103, human mucosal lymphocyte antigen 1;
NM_002208



alpha polypeptide)


ITGB1
integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29
NM_002211



includes MDF2, MSK12)


JUN
v-jun sarcoma virus 17 oncogene homolog (avian)
NM_002228


KDR
kinase insert domain receptor (a type III receptor tyrosine kinase)
NM_002253


MCAM
melanoma cell adhesion molecule
NM_006500


MMP2
matrix metallopeptidase 2 (gelatinase A, 72 kDa gelatinase, 72 kDa type IV
NM_004530



collagenase)


MMP9
matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV
NM_004994



collagenase)


MSH2
mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)
NM_000251


MYC
v-myc myelocytomatosis viral oncogene homolog (avian)
NM_002467


MYCL1
v-myc myelocytomatosis viral oncogene homolog 1, lung carcinoma
NM_001033081



derived (avian)


NFKB1
nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
NM_003998



(p105)


NME1
non-metastatic cells 1, protein (NM23A) expressed in
NM_198175


NME4
non-metastatic cells 4, protein expressed in
NM_005009


NOTCH2
Notch homolog 2
NM_024408


NOTCH4
Notch homolog 4 (Drosophila)
NM_004557


NRAS
neuroblastoma RAS viral (v-ras) oncogene homolog
NM_002524


PCNA
proliferating cell nuclear antigen
NM_002592


PDGFRA
platelet-derived growth factor receptor, alpha polypeptide
NM_006206


PLAU
plasminogen activator, urokinase
NM_002658


PLAUR
plasminogen activator, urokinase receptor
NM_002659


PTCH1
patched homolog 1 (Drosophila)
NM_000264


PTEN
phosphatase and tensin homolog (mutated in multiple advanced cancers 1)
NM_000314


RAF1
v-raf-1 murine leukemia viral oncogene homolog 1
NM_002880


RB1
retinoblastoma 1 (including osteosarcoma)
NM_000321


RHOA
ras homolog gene family, member A
NM_001664


RHOC
ras homolog gene family, member C
NM_175744


S100A4
S100 calcium binding protein A4
NM_002961


SEMA4D
sema domain, immunoglobulin domain (Ig), transmembrane domain (TM)
NM_006378



and short cytoplasmic domain, (semaphorin) 4D


SERPINB5
serpin peptidase inhibitor, clade B (ovalbumin), member 5
NM_002639


SERPINE1
serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor
NM_000602



type 1), member 1


SKI
v-ski sarcoma viral oncogene homolog (avian)
NM_003036


SKIL
SKI-like oncogene
NM_005414


SMAD4
SMAD family member 4
NM_005359


SOCS1
suppressor of cytokine signaling 1
NM_003745


SRC
v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian)
NM_198291


TERT
telomerase-reverse transcriptase
NM_003219


TGFB1
transforming growth factor, beta 1 (Camurati-Engelmann disease)
NM_000660


THBS1
thrombospondin 1
NM_003246


TIMP1
tissue inhibitor of metalloproteinase 1
NM_003254


TIMP3
Tissue inhibitor of metalloproteinase 3 (Sorsby fundus dystrophy,
NM_000362



pseudoinflammatory)


TNF
tumor necrosis factor (TNF superfamily, member 2)
NM_000594


TNFRSF10A
tumor necrosis factor receptor superfamily, member 10a
NM_003844


TNFRSF10B
tumor necrosis factor receptor superfamily, member 10b
NM_003842


TNFRSF1A
tumor necrosis factor receptor superfamily, member 1A
NM_001065


TP53
tumor protein p53 (Li-Fraumeni syndrome)
NM_000546


VEGF
vascular endothelial growth factor
NM_003376


VHL
von Hippel-Lindau tumor suppressor
NM_000551


WNT1
wingless-type MMTV integration site family, member 1
NM_005430


WT1
Wilms tumor 1
NM_000378
















TABLE 4







Precision Profile ™ for EGR1









Gene

Gene Accession


Symbol
Gene Name
Number





ALOX5
arachidonate 5-lipoxygenase
NM_000698


APOA1
apolipoprotein A-I
NM_000039


CCND2
cyclin D2
NM_001759


CDKN2D
cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4)
NM_001800


CEBPB
CCAAT/enhancer binding protein (C/EBP), beta
NM_005194


CREBBP
CREB binding protein (Rubinstein-Taybi syndrome)
NM_004380


EGFR
epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b)
NM_005228



oncogene homolog, avian)


EGR1
early growth response 1
NM_001964


EGR2
early growth response 2 (Krox-20 homolog, Drosophila)
NM_000399


EGR3
early growth response 3
NM_004430


EGR4
early growth response 4
NM_001965


EP300
E1A binding protein p300
NM_001429


F3
coagulation factor III (thromboplastin, tissue factor)
NM_001993


FGF2
fibroblast growth factor 2 (basic)
NM_002006


FN1
fibronectin 1
NM_00212482


FOS
v-fos FBJ murine osteosarcoma viral oncogene homolog
NM_005252


ICAM1
Intercellular adhesion molecule 1
NM_000201


JUN
jun oncogene
NM_002228


MAP2K1
mitogen-activated protein kinase kinase 1
NM_002755


MAPK1
mitogen-activated protein kinase 1
NM_002745


NAB1
NGFI-A binding protein 1 (EGR1 binding protein 1)
NM_005966


NAB2
NGFI-A binding protein 2 (EGR1 binding protein 2)
NM_005967


NFATC2
nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2
NM_173091


NFκB1
nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
NM_003998



(p105)


NR4A2
nuclear receptor subfamily 4, group A, member 2
NM_006186


PDGFA
platelet-derived growth factor alpha polypeptide
NM_002607


PLAU
plasminogen activator, urokinase
NM_002658


PTEN
phosphatase and tensin homolog (mutated in multiple advanced cancers
NM_000314



1)


RAF1
v-raf-1 murine leukemia viral oncogene homolog 1
NM_002880


S100A6
S100 calcium binding protein A6
NM_014624


SERPINE1
serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor
NM_000302



type 1), member 1


SMAD3
SMAD, mothers against DPP homolog 3 (Drosophila)
NM_005902


SRC
v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian)
NM_198291


TGFB1
transforming growth factor, beta 1
NM_000660


THBS1
thrombospondin 1
NM_003246


TOPBP1
topoisomerase (DNA) II binding protein 1
NM_007027


TNFRSF6
Fas (TNF receptor superfamily, member 6)
NM_000043


TP53
tumor protein p53 (Li-Fraumeni syndrome)
NM_000546


WT1
Wilms tumor 1
NM_000378
















TABLE 5







Cross-Cancer Precision Profile ™











Gene Accession


Gene Symbol
Gene Name
Number





ACPP
acid phosphatase, prostate
NM_001099


ADAM17
a disintegrin and metalloproteinase domain 17 (tumor necrosis factor,
NM_003183



alpha, converting enzyme)


ANLN
anillin, actin binding protein (scraps homolog, Drosophila)
NM_018685


APC
adenomatosis polyposis coli
NM_000038


AXIN2
axin 2 (conductin, axil)
NM_004655


BAX
BCL2-associated X protein
NM_138761


BCAM
basal cell adhesion molecule (Lutheran blood group)
NM_005581


C1QA
complement component 1, q subcomponent, alpha polypeptide
NM_015991


C1QB
complement component 1, q subcomponent, B chain
NM_000491


CA4
carbonic anhydrase IV
NM_000717


CASP3
caspase 3, apoptosis-related cysteine peptidase
NM_004346


CASP9
caspase 9, apoptosis-related cysteine peptidase
NM_001229


CAV1
caveolin 1, caveolae protein, 22 kDa
NM_001753


CCL3
chemokine (C-C motif) ligand 3
NM_002983


CCL5
chemokine (C-C motif) ligand 5
NM_002985


CCR7
chemokine (C-C motif) receptor 7
NM_001838


CD40LG
CD40 ligand (TNF superfamily, member 5, hyper-IgM syndrome)
NM_000074


CD59
CD59 antigen p18-20
NM_000611


CD97
CD97 molecule
NM_078481


CDH1
cadherin 1, type 1, E-cadherin (epithelial)
NM_004360


CEACAM1
carcinoembryonic antigen-related cell adhesion molecule 1 (biliary
NM_001712



glycoprotein)


CNKSR2
connector enhancer of kinase suppressor of Ras 2
NM_014927


CTNNA1
catenin (cadherin-associated protein), alpha 1, 102 kDa
NM_001903


CTSD
cathepsin D (lysosomal aspartyl peptidase)
NM_001909


CXCL1
chemokine (C—X—C motif) ligand 1 (melanoma growth stimulating
NM_001511



activity, alpha)


DAD1
defender against cell death 1
NM_001344


DIABLO
diablo homolog (Drosophila)
NM_019887


DLC1
deleted in liver cancer 1
NM_182643


E2F1
E2F transcription factor 1
NM_005225


EGR1
early growth response-1
NM_001964


ELA2
elastase 2, neutrophil
NM_001972


ESR1
estrogen receptor 1
NM_000125


ESR2
estrogen receptor 2 (ER beta)
NM_001437


ETS2
v-ets erythroblastosis virus E26 oncogene homolog 2 (avian)
NM_005239


FOS
v-fos FBJ murine osteosarcoma viral oncogene homolog
NM_005252


G6PD
glucose-6-phosphate dehydrogenase
NM_000402


GADD45A
growth arrest and DNA-damage-inducible, alpha
NM_001924


GNB1
guanine nucleotide binding protein (G protein), beta polypeptide 1
NM_002074


GSK3B
glycogen synthase kinase 3 beta
NM_002093


HMGA1
high mobility group AT-hook 1
NM_145899


HMOX1
heme oxygenase (decycling) 1
NM_002133


HOXA10
homeobox A10
NM_018951


HSPA1A
heat shock protein 70
NM_005345


IFI16
interferon inducible protein 16, gamma
NM_005531


IGF2BP2
insulin-like growth factor 2 mRNA binding protein 2
NM_006548


IGFBP3
insulin-like growth factor binding protein 3
NM_001013398


IKBKE
inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase
NM_014002



epsilon


IL8
interleukin 8
NM_000584


ING2
inhibitor of growth family, member 2
NM_001564


IQGAP1
IQ motif containing GTPase activating protein 1
NM_003870


IRF1
interferon regulatory factor 1
NM_002198


ITGAL
integrin, alpha L (antigen CD11A (p180), lymphocyte function-
NM_002209



associated antigen 1; alpha polypeptide)


LARGE
like-glycosyltransferase
NM_004737


LGALS8
lectin, galactoside-binding, soluble, 8 (galectin 8)
NM_006499


LTA
lymphotoxin alpha (TNF superfamily, member 1)
NM_000595


MAPK14
mitogen-activated protein kinase 14
NM_001315


MCAM
melanoma cell adhesion molecule
NM_006500


MEIS1
Meis1, myeloid ecotropic viral integration site 1 homolog (mouse)
NM_002398


MLH1
mutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli)
NM_000249


MME
membrane metallo-endopeptidase (neutral endopeptidase, enkephalinase,
NM_000902



CALLA, CD10)


MMP9
matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type
NM_004994



IV collagenase)


MNDA
myeloid cell nuclear differentiation antigen
NM_002432


MSH2
mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)
NM_000251


MSH6
mutS homolog 6 (E. coli)
NM_000179


MTA1
metastasis associated 1
NM_004689


MTF1
metal-regulatory transcription factor 1
NM_005955


MYC
v-myc myelocytomatosis viral oncogene homolog (avian)
NM_002467


MYD88
myeloid differentiation primary response gene (88)
NM_002468


NBEA
neurobeachin
NM_015678


NCOA1
nuclear receptor coactivator 1
NM_003743


NEDD4L
neural precursor cell expressed, developmentally down-regulated 4-like
NM_015277


NRAS
neuroblastoma RAS viral (v-ras) oncogene homolog
NM_002524


NUDT4
nudix (nucleoside diphosphate linked moiety X)-type motif 4
NM_019094


PLAU
plasminogen activator, urokinase
NM_002658


PLEK2
pleckstrin 2
NM_016445


PLXDC2
plexin domain containing 2
NM_032812


PPARG
peroxisome proliferative activated receptor, gamma
NM_138712


PTEN
phosphatase and tensin homolog (mutated in multiple advanced cancers
NM_000314



1)


PTGS2
prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and
NM_000963



cyclooxygenase)


PTPRC
protein tyrosine phosphatase, receptor type, C
NM_002838


PTPRK
protein tyrosine phosphatase, receptor type, K
NM_002844


RBM5
RNA binding motif protein 5
NM_005778


RP5-
invasion inhibitory protein 45
NM_001025374


1077B9.4


S100A11
S100 calcium binding protein A11
NM_005620


S100A4
S100 calcium binding protein A4
NM_002961


SCGB2A1
secretoglobin, family 2A, member 1
NM_002407


SERPINA1
serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase,
NM_000295



antitrypsin), member 1


SERPINE1
serpin peptidase inhibitor, clade E (nexin, plasminogen activator
NM_000602



inhibitor type 1), member 1


SERPING1
serpin peptidase inhibitor, clade G (C1 inhibitor), member 1,
NM_000062



(angioedema, hereditary)


SIAH2
seven in absentia homolog 2 (Drosophila)
NM_005067


SLC43A1
solute carrier family 43, member
NM_003627


SP1
Sp1 transcription factor
NM_138473


SPARC
secreted protein, acidic, cysteine-rich (osteonectin)
NM_003118


SRF
serum response factor (c-fos serum response element-binding
NM_003131



transcription factor)


ST14
suppression of tumorigenicity 14 (colon carcinoma)
NM_021978


TEGT
testis enhanced gene transcript (BAX inhibitor 1)
NM_003217


TGFB1
transforming growth factor, beta 1 (Camurati-Engelmann disease)
NM_000660


TIMP1
tissue inhibitor of metalloproteinase 1
NM_003254


TLR2
toll-like receptor 2
NM_003264


TNF
tumor necrosis factor (TNF superfamily, member 2)
NM_000594


TNFRSF1A
tumor necrosis factor receptor superfamily, member 1A
NM_001065


TXNRD1
thioredoxin reductase
NM_003330


UBE2C
ubiquitin-conjugating enzyme E2C
NM_007019


USP7
ubiquitin specific peptidase 7 (herpes virus-associated)
NM_003470


VEGFA
vascular endothelial growth factor
NM_003376


VIM
vimentin
NM_003380


XK
X-linked Kx blood group (McLeod syndrome)
NM_021083


XRCC1
X-ray repair complementing defective repair in Chinese hamster cells 1
NM_006297


ZNF185
zinc finger protein 185 (LIM domain)
NM_007150


ZNF350
zinc finger protein 350
NM_021632
















TABLE 6





Precision Profile ™ for Immunotherapy


Gene Symbol

















ABL1



ABL2



ADAM17



ALOX5



CD19



CD4



CD40LG



CD86



CCR5



CTLA4



EGFR



ERBB2



HSPA1A



IFNG



IL12



IL15



IL23A



KIT



MUC1



MYC



PDGFRA



PTGS2



PTPRC



RAF1



TGFB1



TLR2



TNF



TNFRSF10B



TNFRSF13B



VEGF























TABLE 1A













total used







(excludes




Normal
Cervical

missing)























N =
26
24


#
#


2-gene models and
Entropy
#normal
#normal
#Cvc
#Cvc
Correct
Correct


nor-
dis-


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
mals
ease






















MTF1
PTGES
0.78
21
1
22
1
95.5%
95.7%
7.6E−11
0.0182
22
23


FHIT
GNB1
0.75
23
1
23
1
95.8%
95.8%
0.0017
1.6E−12
24
24


MYC
NME1
0.75
23
2
22
2
92.0%
91.7%
1.7E−12
3.7E−05
25
24


APAF1
MTF1
0.74
22
2
22
2
91.7%
91.7%
0.0017
2.5E−12
24
24


CDH1
MYC
0.72
23
2
22
2
92.0%
91.7%
9.1E−05
1.4E−09
25
24


FOXM1
GNB1
0.72
22
2
22
2
91.7%
91.7%
0.0051
1.9E−07
24
24


PTGS2
TIMP1
0.71
21
2
21
3
91.3%
87.5%
0.0298
4.3E−06
23
24


GNB1
TIMP1
0.70
21
3
21
3
87.5%
87.5%
0.0005
0.0129
24
24


CDH1
GNB1
0.69
22
2
22
2
91.7%
91.7%
0.0150
4.0E−09
24
24


MTF1
MYC
0.69
22
2
21
3
91.7%
87.5%
0.0003
0.0108
24
24


HIF1A
MTF1
0.69
21
3
21
3
87.5%
87.5%
0.0122
5.4E−10
24
24


CTSB
GNB1
0.69
23
1
22
2
95.8%
91.7%
0.0175
7.9E−09
24
24


ALOX12
GNB1
0.69
22
2
22
2
91.7%
91.7%
0.0186
2.4E−07
24
24


CTSB
MYC
0.69
20
4
22
2
83.3%
91.7%
0.0003
8.5E−09
24
24


GNB1
SART1
0.68
21
3
21
3
87.5%
87.5%
4.2E−10
0.0215
24
24


GNB1
SPARC
0.68
22
2
22
2
91.7%
91.7%
1.4E−06
0.0215
24
24


FOXM1
PTGS2
0.68
20
3
21
3
87.0%
87.5%
1.3E−05
6.7E−06
23
24


CASP9
CDH1
0.68
22
2
21
3
91.7%
87.5%
5.9E−09
1.2E−07
24
24


FOXM1
MYC
0.68
23
1
22
2
95.8%
91.7%
0.0004
8.6E−07
24
24


GNB1
HRAS
0.68
22
2
22
2
91.7%
91.7%
2.4E−11
0.0268
24
24


FRAP1
GNB1
0.67
22
2
22
2
91.7%
91.7%
0.0320
5.3E−10
24
24


ESR1
GNB1
0.67
22
2
22
2
91.7%
91.7%
0.0345
4.8E−11
24
24


MEST
MTF1
0.67
22
2
21
3
91.7%
87.5%
0.0261
3.1E−08
24
24


GNB1
NME1
0.67
21
3
22
2
87.5%
91.7%
4.4E−11
0.0389
24
24


GNB1
IGSF4
0.66
19
2
18
2
90.5%
90.0%
1.5E−09
0.0246
21
20


BRCA2
MTF1
0.66
22
2
21
3
91.7%
87.5%
0.0310
2.4E−10
24
24


CAV1
GNB1
0.66
20
4
22
2
83.3%
91.7%
0.0446
4.4E−06
24
24


IGF2
MYC
0.66
23
2
22
2
92.0%
91.7%
0.0009
7.9E−10
25
24


GNB1
WNT1
0.66
22
2
22
2
91.7%
91.7%
1.2E−09
0.0459
24
24


GADD45A
PTGS2
0.66
19
4
22
2
82.6%
91.7%
2.6E−05
2.6E−06
23
24


ALOX12
MYC
0.66
21
3
21
3
87.5%
87.5%
0.0008
5.8E−07
24
24


CDH1
MTF1
0.66
21
3
21
3
87.5%
87.5%
0.0397
1.3E−08
24
24


FHIT
MYC
0.65
22
2
22
2
91.7%
91.7%
0.0011
4.5E−11
24
24


SPARC
TNF
0.65
22
2
21
3
91.7%
87.5%
0.0007
4.1E−06
24
24


ITGA6
MYC
0.64
22
2
22
2
91.7%
91.7%
0.0017
1.7E−10
24
24


MYC
SPARC
0.64
22
3
21
3
88.0%
87.5%
9.4E−06
0.0024
25
24


CDH1
TIMP1
0.63
23
1
22
2
95.8%
91.7%
0.0043
2.8E−08
24
24


CTNNB1
TNF
0.63
21
3
21
3
87.5%
87.5%
0.0016
4.7E−10
24
24


MCM2
MYC
0.63
21
3
20
3
87.5%
87.0%
0.0094
2.3E−10
24
23


MYC
TIMP1
0.63
21
3
21
3
87.5%
87.5%
0.0055
0.0026
24
24


TNF
UBE2C
0.63
21
3
21
3
87.5%
87.5%
3.7E−05
0.0017
24
24


MYC
UBE2C
0.63
22
3
22
2
88.0%
91.7%
3.5E−05
0.0032
25
24


MEST
TIMP1
0.63
22
2
21
3
91.7%
87.5%
0.0058
1.3E−07
24
24


HRAS
MYC
0.62
22
2
21
3
91.7%
87.5%
0.0031
1.5E−10
24
24


CDH1
PTGS2
0.62
22
2
21
3
91.7%
87.5%
3.9E−05
5.6E−08
24
24


CDH1
ICAM3
0.62
22
2
22
2
91.7%
91.7%
1.6E−05
4.4E−08
24
24


CDH1
TNF
0.62
21
3
21
3
87.5%
87.5%
0.0024
5.0E−08
24
24


CAV1
TNF
0.62
21
3
20
4
87.5%
83.3%
0.0025
2.2E−05
24
24


IGF2
PTGS2
0.61
22
2
21
3
91.7%
87.5%
6.7E−05
2.4E−08
24
24


GADD45A
MYC
0.61
18
6
20
4
75.0%
83.3%
0.0058
3.5E−07
24
24


ALOX12
TNF
0.61
21
3
20
4
87.5%
83.3%
0.0037
3.8E−06
24
24


MYC
PRDM2
0.60
21
3
21
3
87.5%
87.5%
8.0E−10
0.0061
24
24


FOXM1
TIMP1
0.60
23
1
23
1
95.8%
95.8%
0.0132
1.1E−05
24
24


GNB1

0.60
21
3
21
3
87.5%
87.5%
2.4E−10

24
24


FOXM1
TOP2A
0.60
21
3
21
3
87.5%
87.5%
3.6E−10
1.2E−05
24
24


CD97
CDH1
0.60
22
2
22
2
91.7%
91.7%
9.8E−08
1.1E−05
24
24


ALOX12
TIMP1
0.60
22
2
21
3
91.7%
87.5%
0.0167
4.9E−06
24
24


MTF1

0.59
20
4
20
4
83.3%
83.3%
3.3E−10

24
24


E2F1
MYC
0.59
21
3
21
3
87.5%
87.5%
0.0094
7.7E−07
24
24


CAV1
TIMP1
0.59
23
1
22
2
95.8%
91.7%
0.0210
5.3E−05
24
24


CTSB
PTGS2
0.59
21
2
21
3
91.3%
87.5%
0.0003
5.4E−07
23
24


ESR1
TNF
0.59
21
3
21
3
87.5%
87.5%
0.0061
6.8E−10
24
24


TIMP1
TOP2A
0.59
22
2
22
2
91.7%
91.7%
4.9E−10
0.0212
24
24


MYC
TNF
0.59
23
1
20
4
95.8%
83.3%
0.0062
0.0099
24
24


ITGA6
TNF
0.59
20
4
20
4
83.3%
83.3%
0.0063
9.1E−10
24
24


FOXM1
TNF
0.59
21
3
21
3
87.5%
87.5%
0.0064
1.8E−05
24
24


E2F1
PTGS2
0.59
20
3
21
3
87.0%
87.5%
0.0003
1.1E−06
23
24


CTNNB1
TIMP1
0.59
23
1
22
2
95.8%
91.7%
0.0252
2.0E−09
24
24


CAV1
PTGS2
0.59
22
2
20
4
91.7%
83.3%
0.0001
0.0003
24
24


BRCA2
NRAS
0.58
23
1
21
3
95.8%
87.5%
0.0003
3.7E−09
24
24


ALOX12
PTGS2
0.58
18
5
20
4
78.3%
83.3%
0.0004
1.3E−05
23
24


MYC
SERPING1
0.58
21
3
21
3
87.5%
87.5%
2.5E−07
0.0154
24
24


SERPING1
TIMP1
0.58
22
2
22
2
91.7%
91.7%
0.0345
2.5E−07
24
24


APAF1
TIMP1
0.58
22
2
21
3
91.7%
87.5%
0.0375
6.6E−10
24
24


BRCA2
MYC
0.58
22
3
21
3
88.0%
87.5%
0.0224
4.4E−09
25
24


TIMP1
TNF
0.58
20
4
21
3
83.3%
87.5%
0.0111
0.0394
24
24


SPARC
TIMP1
0.57
22
2
22
2
91.7%
91.7%
0.0431
6.3E−05
24
24


SOCS3
TNF
0.57
22
2
20
4
91.7%
83.3%
0.0126
3.8E−05
24
24


PTGS2
TNF
0.57
21
2
20
4
91.3%
83.3%
0.0174
0.0006
23
24


ITGAL
SPARC
0.57
20
4
19
5
83.3%
79.2%
7.4E−05
0.0002
24
24


MYC
MYD88
0.57
20
4
20
4
83.3%
83.3%
0.0005
0.0242
24
24


MYC
TP53
0.57
19
4
20
4
82.6%
83.3%
3.7E−07
0.0205
23
24


ESR1
MYC
0.56
21
3
20
4
87.5%
83.3%
0.0277
1.7E−09
24
24


PTGS2
SPARC
0.56
19
5
20
4
79.2%
83.3%
0.0002
0.0003
24
24


E2F1
TNF
0.56
20
4
19
5
83.3%
79.2%
0.0188
2.2E−06
24
24


BRCA2
TNF
0.56
22
2
20
4
91.7%
83.3%
0.0194
7.7E−09
24
24


NRAS
TOP2A
0.56
22
2
21
3
91.7%
87.5%
1.4E−09
0.0008
24
24


BRAF
MYC
0.56
20
4
20
3
83.3%
87.0%
0.0397
4.3E−05
24
23


CDH1
NRAS
0.56
21
3
21
3
87.5%
87.5%
0.0008
3.8E−07
24
24


MYC
SOCS3
0.56
20
4
21
3
83.3%
87.5%
6.6E−05
0.0364
24
24


NRAS
SPARC
0.56
21
3
21
3
87.5%
87.5%
0.0001
0.0009
24
24


HRAS
TNF
0.56
21
3
20
4
87.5%
83.3%
0.0232
1.4E−09
24
24


MYC
VEGF
0.56
21
3
21
3
87.5%
87.5%
2.1E−05
0.0389
24
24


SERPING1
TNF
0.56
21
3
21
3
87.5%
87.5%
0.0243
5.8E−07
24
24


NRAS
PTGS2
0.55
19
4
20
4
82.6%
83.3%
0.0010
0.0032
23
24


FRAP1
TNF
0.55
21
3
21
3
87.5%
87.5%
0.0269
3.1E−08
24
24


CDH1
TEGT
0.55
21
3
20
4
87.5%
83.3%
0.0003
5.2E−07
24
24


PTGS2
UBE2C
0.55
21
3
20
4
87.5%
83.3%
0.0046
0.0005
24
24


NME1
TP53
0.54
22
1
20
4
95.7%
83.3%
8.2E−07
4.7E−09
23
24


MYD88
PTGS2
0.54
19
4
20
4
82.6%
83.3%
0.0016
0.0074
23
24


APAF1
NRAS
0.54
21
3
20
4
87.5%
83.3%
0.0015
2.2E−09
24
24


IGF2
TNF
0.54
20
4
19
5
83.3%
79.2%
0.0413
5.2E−08
24
24


MYD88
TNF
0.54
20
4
20
4
83.3%
83.3%
0.0495
0.0016
24
24


CDH1
MYD88
0.54
20
4
20
4
83.3%
83.3%
0.0017
8.4E−07
24
24


CASP9
SPARC
0.54
22
2
21
3
91.7%
87.5%
0.0002
1.8E−05
24
24


ICAM3
SPARC
0.53
19
5
19
5
79.2%
79.2%
0.0003
0.0004
24
24


CAV1
CTSB
0.53
21
3
21
3
87.5%
87.5%
1.7E−06
0.0004
24
24


CDH1
ITGAL
0.53
20
4
20
4
83.3%
83.3%
0.0007
1.0E−06
24
24


BRCA2
FOXM1
0.53
18
6
19
5
75.0%
79.2%
0.0002
2.3E−08
24
24


APAF1
ICAM3
0.53
21
3
21
3
87.5%
87.5%
0.0005
3.6E−09
24
24


ALOX12
NRAS
0.53
19
5
19
5
79.2%
79.2%
0.0026
5.9E−05
24
24


CAV1
SPARC
0.53
21
4
21
3
84.0%
87.5%
0.0005
0.0008
25
24


PTGS2
VEGF
0.52
19
4
20
4
82.6%
83.3%
7.0E−05
0.0030
23
24


CDH1
VIM
0.52
20
3
20
4
87.0%
83.3%
1.8E−05
1.7E−06
23
24


MYD88
SPARC
0.52
21
3
21
3
87.5%
87.5%
0.0004
0.0029
24
24


NME1
NRAS
0.52
21
3
20
4
87.5%
83.3%
0.0034
6.6E−09
24
24


MCM2
NRAS
0.52
21
3
20
3
87.5%
87.0%
0.0068
9.1E−09
24
23


BRAF
PTGS2
0.52
21
2
20
3
91.3%
87.0%
0.0028
0.0012
23
23


CDH1
SOCS3
0.52
22
2
21
3
91.7%
87.5%
0.0003
1.6E−06
24
24


MYD88
PTGES
0.52
19
3
19
4
86.4%
82.6%
3.7E−07
0.0240
22
23


CDH1
TP53
0.52
19
4
20
4
82.6%
83.3%
2.0E−06
3.7E−06
23
24


CAV1
TEGT
0.52
20
4
20
4
83.3%
83.3%
0.0009
0.0008
24
24


FOXM1
SOCS3
0.51
22
2
21
3
91.7%
87.5%
0.0003
0.0003
24
24


ITGAL
MCM2
0.51
19
5
20
3
79.2%
87.0%
1.1E−08
0.0037
24
23


TIMP1

0.51
21
3
20
4
87.5%
83.3%
5.3E−09

24
24


PTGES
SOCS3
0.51
19
3
20
3
86.4%
87.0%
0.0020
5.0E−07
22
23


CAV1
ITGAL
0.50
21
3
20
4
87.5%
83.3%
0.0016
0.0012
24
24


ALOX12
ITGAL
0.50
20
4
20
4
83.3%
83.3%
0.0017
0.0001
24
24


PTGS2
SOCS3
0.50
20
3
19
5
87.0%
79.2%
0.0022
0.0064
23
24


MEST
UBE2C
0.50
21
3
21
3
87.5%
87.5%
0.0031
9.3E−06
24
24


CAV1
NRAS
0.50
21
3
21
3
87.5%
87.5%
0.0066
0.0013
24
24


CDH1
SART1
0.50
20
4
21
3
83.3%
87.5%
2.1E−07
2.8E−06
24
24


ERBB2
SPARC
0.50
20
4
19
5
83.3%
79.2%
0.0023
9.9E−07
24
24


ALOX12
CAV1
0.50
20
4
20
4
83.3%
83.3%
0.0014
0.0002
24
24


MYC

0.50
21
4
20
4
84.0%
83.3%
5.8E−09

25
24


CAV1
UBE2C
0.50
21
4
21
3
84.0%
87.5%
0.0039
0.0021
25
24


BRCA2
ITGAL
0.50
21
3
20
4
87.5%
83.3%
0.0022
7.0E−08
24
24


ALOX12
ICAM3
0.50
19
5
18
6
79.2%
75.0%
0.0014
0.0002
24
24


ALOX12
MYD88
0.50
20
4
19
5
83.3%
79.2%
0.0072
0.0002
24
24


CDKN1A
PTGS2
0.50
22
2
20
4
91.7%
83.3%
0.0036
3.2E−05
24
24


CAV1
MYD88
0.50
20
4
20
4
83.3%
83.3%
0.0075
0.0017
24
24


NRAS
SERPING1
0.49
20
4
20
4
83.3%
83.3%
5.0E−06
0.0090
24
24


PTGS2
TEGT
0.49
18
5
21
3
78.3%
87.5%
0.0204
0.0094
23
24


CTSB
TP53
0.49
19
3
20
4
86.4%
83.3%
4.9E−06
1.2E−05
22
24


CD97
SPARC
0.49
19
5
20
4
79.2%
83.3%
0.0012
0.0005
24
24


NRAS
SOCS3
0.49
21
3
21
3
87.5%
87.5%
0.0007
0.0099
24
24


SPARC
TP53
0.49
18
5
19
5
78.3%
79.2%
4.9E−06
0.0046
23
24


ALOX12
ERBB2
0.49
20
3
21
3
87.0%
87.5%
2.3E−06
0.0003
23
24


MYD88
NRAS
0.49
19
5
20
4
79.2%
83.3%
0.0108
0.0097
24
24


CAV1
CDH1
0.49
21
4
20
4
84.0%
83.3%
5.5E−06
0.0030
25
24


GADD45A
TP53
0.49
17
5
20
4
77.3%
83.3%
5.9E−06
0.0011
22
24


ITGAL
UBE2C
0.49
20
4
19
5
83.3%
79.2%
0.0058
0.0032
24
24


CTSB
MYD88
0.49
20
4
19
5
83.3%
79.2%
0.0106
8.2E−06
24
24


SPARC
TEGT
0.49
20
4
20
4
83.3%
83.3%
0.0028
0.0014
24
24


CTSB
SOCS3
0.48
22
2
20
4
91.7%
83.3%
0.0009
8.5E−06
24
24


FOXM1
MYD88
0.48
20
4
20
4
83.3%
83.3%
0.0110
0.0007
24
24


CAV1
VEGF
0.48
20
4
20
4
83.3%
83.3%
0.0003
0.0025
24
24


PTGS2
SERPING1
0.48
19
4
20
4
82.6%
83.3%
1.0E−05
0.0135
23
24


MYD88
UBE2C
0.48
20
4
20
4
83.3%
83.3%
0.0067
0.0122
24
24


ALOX12
SOCS3
0.48
20
4
20
4
83.3%
83.3%
0.0010
0.0003
24
24


CDH1
ERBB2
0.48
18
6
19
5
75.0%
79.2%
2.0E−06
7.0E−06
24
24


NRAS
UBE2C
0.48
19
5
20
4
79.2%
83.3%
0.0072
0.0145
24
24


CAV1
PTGES
0.48
18
4
19
4
81.8%
82.6%
1.3E−06
0.0340
22
23


TNF

0.48
19
5
19
5
79.2%
79.2%
1.6E−08

24
24


ALOX12
CASP9
0.48
19
5
19
5
79.2%
79.2%
0.0001
0.0004
24
24


FOXM1
ICAM3
0.48
20
4
19
5
83.3%
79.2%
0.0029
0.0010
24
24


CASP9
MCM2
0.48
23
1
19
4
95.8%
82.6%
4.0E−08
0.0019
24
23


CTSB
UBE2C
0.47
21
3
20
4
87.5%
83.3%
0.0093
1.3E−05
24
24


ITGAL
SOCS3
0.47
21
3
20
4
87.5%
83.3%
0.0013
0.0051
24
24


GADD45A
MEST
0.47
18
6
19
5
75.0%
79.2%
2.7E−05
3.6E−05
24
24


CAV1
SOCS3
0.47
20
4
20
4
83.3%
83.3%
0.0014
0.0039
24
24


CCNB1
NRAS
0.47
20
4
20
4
83.3%
83.3%
0.0205
2.8E−08
24
24


SPARC
VEGF
0.47
21
3
20
4
87.5%
83.3%
0.0004
0.0025
24
24


APAF1
TEGT
0.47
21
3
20
4
87.5%
83.3%
0.0049
2.5E−08
24
24


SOCS3
SPARC
0.47
20
4
20
4
83.3%
83.3%
0.0025
0.0014
24
24


BIK
PTGS2
0.47
20
3
21
3
87.0%
87.5%
0.0218
3.9E−05
23
24


HRAS
NRAS
0.47
21
3
21
3
87.5%
87.5%
0.0219
2.8E−08
24
24


E2F1
NRAS
0.47
19
5
20
4
79.2%
83.3%
0.0221
5.6E−05
24
24


ICAM3
NME1
0.47
20
4
20
4
83.3%
83.3%
3.8E−08
0.0037
24
24


BRCA2
TEGT
0.47
20
4
19
5
83.3%
79.2%
0.0053
1.9E−07
24
24


CASP9
HRAS
0.47
21
3
21
3
87.5%
87.5%
2.9E−08
0.0002
24
24


BRAF
CAV1
0.47
20
4
20
3
83.3%
87.0%
0.0069
0.0011
24
23


FOXM1
TEGT
0.47
20
4
21
3
83.3%
87.5%
0.0055
0.0014
24
24


FOXM1
MEST
0.47
20
4
20
4
83.3%
83.3%
3.2E−05
0.0014
24
24


ALOX12
TEGT
0.47
20
4
20
4
83.3%
83.3%
0.0059
0.0005
24
24


ICAM3
MCM2
0.47
23
1
19
4
95.8%
82.6%
5.6E−08
0.0352
24
23


CD97
PTGS2
0.46
18
5
20
4
78.3%
83.3%
0.0269
0.0021
23
24


SPARC
VIM
0.46
19
4
19
5
82.6%
79.2%
0.0001
0.0032
23
24


MYD88
NME1
0.46
19
5
19
5
79.2%
79.2%
4.5E−08
0.0245
24
24


TEGT
UBE2C
0.46
20
4
20
4
83.3%
83.3%
0.0135
0.0064
24
24


CASP9
UBE2C
0.46
19
5
20
4
79.2%
83.3%
0.0138
0.0002
24
24


FOXM1
SPARC
0.46
20
4
20
4
83.3%
83.3%
0.0033
0.0016
24
24


HIF1A
TEGT
0.46
22
2
21
3
91.7%
87.5%
0.0066
1.2E−06
24
24


CTNNB1
NRAS
0.46
20
4
20
4
83.3%
83.3%
0.0288
1.4E−07
24
24


E2F1
MYD88
0.46
20
4
20
4
83.3%
83.3%
0.0260
7.2E−05
24
24


CTGF
SPARC
0.46
21
4
20
4
84.0%
83.3%
0.0053
2.3E−07
25
24


CTSB
MEST
0.46
21
3
20
4
87.5%
83.3%
4.2E−05
2.0E−05
24
24


CTSB
NRAS
0.46
21
3
20
4
87.5%
83.3%
0.0326
2.1E−05
24
24


UBE2C
VEGF
0.46
20
4
20
4
83.3%
83.3%
0.0006
0.0160
24
24


CD97
HRAS
0.46
19
5
19
5
79.2%
79.2%
4.0E−08
0.0015
24
24


CD97
NME1
0.46
21
3
21
3
87.5%
87.5%
5.4E−08
0.0015
24
24


CASP9
CAV1
0.46
21
3
20
4
87.5%
83.3%
0.0064
0.0003
24
24


CTSB
ICAM3
0.46
20
4
20
4
83.3%
83.3%
0.0057
2.2E−05
24
24


MEST
NRAS
0.46
19
5
19
5
79.2%
79.2%
0.0354
4.6E−05
24
24


PTGS2
VIM
0.46
19
3
20
4
86.4%
83.3%
0.0008
0.0463
22
24


CAV1
CD97
0.46
20
4
19
5
83.3%
79.2%
0.0016
0.0068
24
24


ALOX12
VIM
0.46
18
5
19
5
78.3%
79.2%
0.0002
0.0012
23
24


FRAP1
NRAS
0.46
19
5
20
4
79.2%
83.3%
0.0383
8.8E−07
24
24


FHIT
PTGS2
0.45
18
5
19
5
78.3%
79.2%
0.0391
5.4E−08
23
24


BRCA1
CAV1
0.45
19
6
18
6
76.0%
75.0%
0.0107
3.0E−06
25
24


ALOX12
CD97
0.45
20
4
19
5
83.3%
79.2%
0.0018
0.0008
24
24


APAF1
MYD88
0.45
19
5
19
5
79.2%
79.2%
0.0356
4.4E−08
24
24


BRCA2
MYD88
0.45
19
5
19
5
79.2%
79.2%
0.0355
3.0E−07
24
24


SPARC
WNT1
0.45
20
4
19
5
83.3%
79.2%
1.6E−06
0.0045
24
24


HRAS
ITGAL
0.45
21
3
19
5
87.5%
79.2%
0.0105
4.8E−08
24
24


CAV1
FOXM1
0.45
20
4
20
4
83.3%
83.3%
0.0023
0.0077
24
24


CTSB
ITGAL
0.45
21
3
21
3
87.5%
87.5%
0.0109
2.6E−05
24
24


MYD88
VEGF
0.45
18
6
18
6
75.0%
75.0%
0.0008
0.0380
24
24


CAV1
ICAM3
0.45
20
4
20
4
83.3%
83.3%
0.0070
0.0081
24
24


CDH1
UBE2C
0.45
21
4
21
3
84.0%
87.5%
0.0225
2.0E−05
25
24


ICAM3
PTGS2
0.45
20
3
20
4
87.0%
83.3%
0.0434
0.0170
23
24


MEST
VEGF
0.45
22
2
20
4
91.7%
83.3%
0.0008
5.5E−05
24
24


FOXM1
NRAS
0.45
20
4
20
4
83.3%
83.3%
0.0439
0.0024
24
24


ICAM3
SERPING1
0.45
19
5
19
5
79.2%
79.2%
2.2E−05
0.0073
24
24


FOXM1
ITGAL
0.45
20
4
20
4
83.3%
83.3%
0.0119
0.0026
24
24


KIT
SPARC
0.45
23
2
20
4
92.0%
83.3%
0.0079
2.9E−05
25
24


ALOX12
VEGF
0.45
20
4
19
5
83.3%
79.2%
0.0010
0.0010
24
24


IGSF4
ITGAL
0.45
17
4
16
4
81.0%
80.0%
0.0324
8.8E−07
21
20


CDH1
FOXM1
0.45
20
4
20
4
83.3%
83.3%
0.0029
1.9E−05
24
24


BRAF
SPARC
0.45
22
2
19
4
91.7%
82.6%
0.0054
0.0023
24
23


SOCS3
VEGF
0.44
18
6
19
5
75.0%
79.2%
0.0011
0.0037
24
24


CASP9
SERPING1
0.44
19
5
19
5
79.2%
79.2%
2.8E−05
0.0005
24
24


BRCA2
UBE2C
0.44
20
5
19
5
80.0%
79.2%
0.0315
4.6E−07
25
24


SOCS3
UBE2C
0.44
20
4
20
4
83.3%
83.3%
0.0289
0.0039
24
24


TOP2A
UBE2C
0.44
20
4
20
4
83.3%
83.3%
0.0297
8.1E−08
24
24


IL8
PTGS2
0.44
22
2
21
3
91.7%
87.5%
0.0262
2.1E−07
24
24


CAV1
VIM
0.44
19
4
20
4
82.6%
83.3%
0.0003
0.0076
23
24


CD97
UBE2C
0.44
20
4
19
5
83.3%
79.2%
0.0312
0.0028
24
24


ITGAL
SERPING1
0.44
20
4
19
5
83.3%
79.2%
3.0E−05
0.0167
24
24


CDH1
ILF2
0.44
20
4
20
4
83.3%
83.3%
6.8E−06
2.3E−05
24
24


ITGAL
NME1
0.44
20
4
19
5
83.3%
79.2%
9.9E−08
0.0169
24
24


ITGAL
TOP2A
0.44
21
3
20
4
87.5%
83.3%
8.6E−08
0.0169
24
24


CD97
FOXM1
0.44
19
5
19
5
79.2%
79.2%
0.0036
0.0028
24
24


ALOX12
TP53
0.44
18
4
20
4
81.8%
83.3%
2.7E−05
0.0017
22
24


BRAF
MYD88
0.44
19
5
19
4
79.2%
82.6%
0.0388
0.0028
24
23


ICAM3
UBE2C
0.44
20
4
19
5
83.3%
79.2%
0.0338
0.0112
24
24


BRAF
UBE2C
0.44
21
3
20
3
87.5%
87.0%
0.0253
0.0030
24
23


TEGT
TOP2A
0.44
19
5
20
4
79.2%
83.3%
9.4E−08
0.0162
24
24


SART1
SPARC
0.44
20
4
19
5
83.3%
79.2%
0.0081
1.8E−06
24
24


CAV1
IL10
0.44
19
5
19
5
79.2%
79.2%
5.4E−06
0.0137
24
24


CASP9
FOXM1
0.44
18
6
19
5
75.0%
79.2%
0.0040
0.0006
24
24


BRCA2
ICAM3
0.44
21
3
20
4
87.5%
83.3%
0.0120
5.4E−07
24
24


CAV1
NME1
0.44
22
3
21
3
88.0%
87.5%
8.9E−08
0.0205
25
24


FRAP1
SPARC
0.44
20
4
19
5
83.3%
79.2%
0.0084
1.6E−06
24
24


E2F1
SOCS3
0.44
20
4
20
4
83.3%
83.3%
0.0048
0.0002
24
24


CAV1
MCM2
0.44
19
5
18
5
79.2%
78.3%
1.5E−07
0.0434
24
23


CTNNB1
ITGAL
0.43
21
3
19
5
87.5%
79.2%
0.0222
3.8E−07
24
24


E2F1
ICAM3
0.43
18
6
19
5
75.0%
79.2%
0.0138
0.0002
24
24


CDH1
VEGF
0.43
20
4
21
3
83.3%
87.5%
0.0016
3.0E−05
24
24


HRAS
ICAM3
0.43
20
4
20
4
83.3%
83.3%
0.0146
1.0E−07
24
24


SOCS3
TEGT
0.43
19
5
20
4
79.2%
83.3%
0.0212
0.0060
24
24


BRAF
SOCS3
0.43
19
5
19
4
79.2%
82.6%
0.0049
0.0042
24
23


CDH1
MCM4
0.43
20
4
20
4
83.3%
83.3%
5.0E−05
3.5E−05
24
24


BRCA2
CASP9
0.43
22
2
20
4
91.7%
83.3%
0.0008
7.3E−07
24
24


APAF1
ITGAL
0.43
21
3
20
4
87.5%
83.3%
0.0281
1.1E−07
24
24


E2F1
TEGT
0.43
19
5
19
5
79.2%
79.2%
0.0244
0.0002
24
24


NME1
TEGT
0.43
20
4
20
4
83.3%
83.3%
0.0248
1.6E−07
24
24


FHIT
TEGT
0.43
21
3
20
4
87.5%
83.3%
0.0248
9.8E−08
24
24


BRCA2
CD97
0.43
19
5
20
4
79.2%
83.3%
0.0047
7.7E−07
24
24


CAV1
GADD45A
0.43
20
4
20
4
83.3%
83.3%
0.0002
0.0206
24
24


CD97
MCM2
0.43
20
4
18
5
83.3%
78.3%
2.0E−07
0.0254
24
23


MCM2
TEGT
0.43
20
4
18
5
83.3%
78.3%
0.0180
2.1E−07
24
23


IGFBP3
SPARC
0.43
19
6
20
4
76.0%
83.3%
0.0206
5.2E−07
25
24


MCM4
SPARC
0.42
20
4
19
5
83.3%
79.2%
0.0134
5.7E−05
24
24


E2F1
ITGAL
0.42
18
6
19
5
75.0%
79.2%
0.0318
0.0003
24
24


GADD45A
ITGAL
0.42
19
5
20
4
79.2%
83.3%
0.0328
0.0002
24
24


MEST
SPARC
0.42
20
4
20
4
83.3%
83.3%
0.0150
0.0002
24
24


CAV1
MEST
0.42
19
5
18
6
79.2%
75.0%
0.0002
0.0253
24
24


CD97
CTSB
0.42
20
4
20
4
83.3%
83.3%
7.8E−05
0.0057
24
24


FRAP1
ITGAL
0.42
20
4
20
4
83.3%
83.3%
0.0358
2.8E−06
24
24


CAV1
CDKN1A
0.42
21
4
20
4
84.0%
83.3%
0.0002
0.0406
25
24


CAV1
SERPING1
0.42
18
6
18
6
75.0%
75.0%
6.4E−05
0.0271
24
24


BRAF
TP53
0.42
17
5
18
5
77.3%
78.3%
0.0001
0.0338
22
23


CTSB
TEGT
0.42
22
2
21
3
91.7%
87.5%
0.0347
8.6E−05
24
24


IGF2
TP53
0.42
20
3
20
4
87.0%
83.3%
5.9E−05
2.6E−05
23
24


ITGA6
ITGAL
0.42
20
4
19
5
83.3%
79.2%
0.0424
3.6E−07
24
24


MEST
SOCS3
0.42
19
5
20
4
79.2%
83.3%
0.0101
0.0002
24
24


CD97
SERPING1
0.42
19
5
19
5
79.2%
79.2%
7.2E−05
0.0068
24
24


BIK
CDH1
0.42
19
5
20
4
79.2%
83.3%
5.4E−05
1.7E−05
24
24


E2F1
VIM
0.42
18
5
18
6
78.3%
75.0%
0.0007
0.0004
23
24


CDH1
KIT
0.42
21
4
20
4
84.0%
83.3%
1.0E−04
7.3E−05
25
24


ITGAL
VEGF
0.41
20
4
19
5
83.3%
79.2%
0.0033
0.0490
24
24


GADD45A
ICAM3
0.41
21
3
20
4
87.5%
83.3%
0.0320
0.0003
24
24


FOXM1
MCM2
0.41
18
6
18
5
75.0%
78.3%
3.4E−07
0.0076
24
23


ALOX12
FOXM1
0.41
20
4
19
5
83.3%
79.2%
0.0108
0.0037
24
24


SERPING1
TEGT
0.41
21
3
20
4
87.5%
83.3%
0.0463
8.7E−05
24
24


HRAS
TEGT
0.41
20
4
19
5
83.3%
79.2%
0.0467
2.1E−07
24
24


ALOX12
BRAF
0.41
18
6
18
5
75.0%
78.3%
0.0081
0.0031
24
23


BRCA2
VEGF
0.41
21
3
19
5
87.5%
79.2%
0.0037
1.4E−06
24
24


BRAF
BRCA2
0.41
20
4
19
4
83.3%
82.6%
1.6E−06
0.0083
24
23


BRAF
ICAM3
0.41
19
5
19
4
79.2%
82.6%
0.0236
0.0084
24
23


ALOX12
ILF2
0.41
19
5
18
6
79.2%
75.0%
2.1E−05
0.0039
24
24


ALOX12
MCM4
0.41
21
3
20
4
87.5%
83.3%
1.0E−04
0.0039
24
24


BRAF
CD97
0.41
20
4
19
4
83.3%
82.6%
0.0074
0.0086
24
23


FOXM1
VEGF
0.41
19
5
19
5
79.2%
79.2%
0.0039
0.0118
24
24


KIT
SOCS3
0.41
19
5
19
5
79.2%
79.2%
0.0142
0.0001
24
24


CTSB
FOXM1
0.41
20
4
20
4
83.3%
83.3%
0.0126
0.0001
24
24


CTNNB1
ICAM3
0.41
21
3
20
4
87.5%
83.3%
0.0388
9.8E−07
24
24


ICAM3
SART1
0.41
22
2
19
5
91.7%
79.2%
5.5E−06
0.0392
24
24


MCM2
TP53
0.41
19
3
20
3
86.4%
87.0%
0.0002
6.9E−07
22
23


ICAM3
MEST
0.40
19
5
19
5
79.2%
79.2%
0.0003
0.0424
24
24


SERPING1
SOCS3
0.40
20
4
19
5
83.3%
79.2%
0.0165
0.0001
24
24


ALOX12
KIT
0.40
19
5
19
5
79.2%
79.2%
0.0001
0.0047
24
24


SERPING1
VEGF
0.40
20
4
20
4
83.3%
83.3%
0.0048
0.0001
24
24


BRAF
MEST
0.40
20
4
19
4
83.3%
82.6%
0.0005
0.0111
24
23


ICAM3
IGF2
0.40
20
4
19
5
83.3%
79.2%
6.4E−06
0.0466
24
24


E2F1
FOXM1
0.40
20
4
20
4
83.3%
83.3%
0.0153
0.0006
24
24


HRAS
TP53
0.40
19
3
20
4
86.4%
83.3%
0.0001
6.3E−07
22
24


CD97
E2F1
0.40
18
6
19
5
75.0%
79.2%
0.0006
0.0121
24
24


GADD45A
PTGES
0.40
17
5
18
5
77.3%
78.3%
1.7E−05
0.0388
22
23


FHIT
ICAM3
0.40
19
5
19
5
79.2%
79.2%
0.0497
2.5E−07
24
24


CASP9
CTNNB1
0.40
18
6
20
4
75.0%
83.3%
1.3E−06
0.0024
24
24


CDH1
MEST
0.40
20
4
20
4
83.3%
83.3%
0.0004
0.0001
24
24


PRDM2
SPARC
0.40
20
4
19
5
83.3%
79.2%
0.0379
9.7E−07
24
24


NME1
SOCS3
0.40
18
6
20
4
75.0%
83.3%
0.0214
4.4E−07
24
24


CASP9
NME1
0.40
20
4
19
5
83.3%
79.2%
4.5E−07
0.0025
24
24


BRAF
FOXM1
0.40
19
5
18
5
79.2%
78.3%
0.0158
0.0145
24
23


APAF1
CD97
0.39
20
4
20
4
83.3%
83.3%
0.0156
3.4E−07
24
24


CTGF
FOXM1
0.39
21
3
21
3
87.5%
87.5%
0.0217
5.7E−06
24
24


BRAF
TOP2A
0.39
22
2
19
4
91.7%
82.6%
6.7E−07
0.0166
24
23


E2F1
TP53
0.39
17
5
20
4
77.3%
83.3%
0.0001
0.0015
22
24


NRAS

0.39
18
6
18
6
75.0%
75.0%
3.4E−07

24
24


ALOX12
WNT1
0.39
18
6
18
6
75.0%
75.0%
1.5E−05
0.0082
24
24


TOP2A
VEGF
0.39
20
4
19
5
83.3%
79.2%
0.0082
5.1E−07
24
24


CD97
GADD45A
0.39
19
5
19
5
79.2%
79.2%
0.0007
0.0197
24
24


MYD88

0.39
19
5
19
5
79.2%
79.2%
3.8E−07

24
24


SERPING1
VIM
0.38
18
5
18
6
78.3%
75.0%
0.0022
0.0003
23
24


MCM2
MCM4
0.38
21
3
18
5
87.5%
78.3%
0.0004
8.8E−07
24
23


ALOX12
IGFBP3
0.38
20
4
20
4
83.3%
83.3%
2.6E−06
0.0104
24
24


CD97
SART1
0.38
19
5
19
5
79.2%
79.2%
1.2E−05
0.0245
24
24


BRAF
CASP9
0.38
19
5
19
4
79.2%
82.6%
0.0032
0.0250
24
23


IGF2
MEST
0.38
19
5
19
5
79.2%
79.2%
0.0007
1.4E−05
24
24


ERBB2
SOCS3
0.38
18
5
19
5
78.3%
79.2%
0.0317
9.7E−05
23
24


CASP9
IGF2
0.38
20
4
20
4
83.3%
83.3%
1.4E−05
0.0049
24
24


FOXM1
KIT
0.38
20
4
19
5
83.3%
79.2%
0.0003
0.0373
24
24


CASP9
ITGA6
0.38
20
4
20
4
83.3%
83.3%
1.3E−06
0.0050
24
24


CASP9
SOCS3
0.38
20
4
20
4
83.3%
83.3%
0.0454
0.0051
24
24


FOXM1
GADD45A
0.38
20
4
20
4
83.3%
83.3%
0.0010
0.0396
24
24


ALOX12
FRAP1
0.38
19
5
19
5
79.2%
79.2%
1.3E−05
0.0131
24
24


BRAF
CDH1
0.38
19
5
18
5
79.2%
78.3%
0.0005
0.0288
24
23


UBE2C

0.38
21
4
20
4
84.0%
83.3%
4.4E−07

25
24


CD97
VEGF
0.38
18
6
18
6
75.0%
75.0%
0.0138
0.0333
24
24


ERBB2
GADD45A
0.37
19
4
20
4
82.6%
83.3%
0.0009
0.0001
23
24


ALOX12
CTGF
0.37
20
4
20
4
83.3%
83.3%
1.1E−05
0.0144
24
24


E2F1
VEGF
0.37
20
4
19
5
83.3%
79.2%
0.0145
0.0017
24
24


FOXM1
SERPING1
0.37
18
6
19
5
75.0%
79.2%
0.0003
0.0476
24
24


CDH1
PRDM2
0.37
19
5
18
6
79.2%
75.0%
2.4E−06
0.0003
24
24


CD97
FHIT
0.37
18
6
18
6
75.0%
75.0%
6.7E−07
0.0380
24
24


ALOX12
SART1
0.37
19
5
19
5
79.2%
79.2%
1.9E−05
0.0160
24
24


CTSB
ERBB2
0.37
19
4
20
4
82.6%
83.3%
0.0001
0.0004
23
24


BRAF
E2F1
0.37
19
5
18
5
79.2%
78.3%
0.0050
0.0354
24
23


APAF1
BRAF
0.37
19
5
18
5
79.2%
78.3%
0.0364
9.3E−07
24
23


CDH1
FRAP1
0.37
19
5
20
4
79.2%
83.3%
1.7E−05
0.0003
24
24


PTGS2

0.37
20
4
20
4
83.3%
83.3%
7.4E−07

24
24


CASP9
CTSB
0.37
20
4
20
4
83.3%
83.3%
0.0005
0.0077
24
24


BRAF
VEGF
0.37
19
5
18
5
79.2%
78.3%
0.0123
0.0427
24
23


BRAF
KIT
0.36
18
6
18
5
75.0%
78.3%
0.0004
0.0485
24
23


CTGF
CTSB
0.36
19
5
18
6
79.2%
75.0%
0.0006
1.7E−05
24
24


E2F1
ERBB2
0.36
19
4
19
5
82.6%
79.2%
0.0002
0.0022
23
24


APAF1
CASP9
0.36
21
3
20
4
87.5%
83.3%
0.0100
1.1E−06
24
24


E2F1
MEST
0.36
19
5
19
5
79.2%
79.2%
0.0015
0.0028
24
24


ERBB2
FOXM1
0.36
18
5
19
5
78.3%
79.2%
0.0490
0.0002
23
24


BRCA2
MCM4
0.36
19
5
20
4
79.2%
83.3%
0.0006
8.7E−06
24
24


ALOX12
MEST
0.36
20
4
19
5
83.3%
79.2%
0.0017
0.0288
24
24


ITGAL

0.36
19
5
19
5
79.2%
79.2%
1.2E−06

24
24


CDH1
HIF1A
0.35
18
6
19
5
75.0%
79.2%
5.6E−05
0.0005
24
24


CTSB
KIT
0.35
20
4
19
5
83.3%
79.2%
0.0008
0.0009
24
24


TEGT

0.35
20
4
19
5
83.3%
79.2%
1.3E−06

24
24


CTGF
E2F1
0.35
19
5
19
5
79.2%
79.2%
0.0038
2.5E−05
24
24


ALOX12
CTSB
0.35
18
6
18
6
75.0%
75.0%
0.0011
0.0425
24
24


CTSB
MCM4
0.35
21
3
19
5
87.5%
79.2%
0.0009
0.0011
24
24


SPARC

0.35
21
4
18
6
84.0%
75.0%
1.3E−06

25
24


ICAM3

0.34
20
4
19
5
83.3%
79.2%
1.8E−06

24
24


BRCA2
VIM
0.34
20
3
20
4
87.0%
83.3%
0.0099
1.3E−05
23
24


ERBB2
MCM2
0.34
19
4
19
4
82.6%
82.6%
4.5E−06
0.0007
23
23


CASP9
MEST
0.34
21
3
20
4
87.5%
83.3%
0.0028
0.0195
24
24


SERPING1
TP53
0.34
19
3
20
4
86.4%
83.3%
0.0008
0.0026
22
24


BRCA1
E2F1
0.34
20
4
19
5
83.3%
79.2%
0.0054
0.0002
24
24


GADD45A
KIT
0.34
18
6
18
6
75.0%
75.0%
0.0013
0.0038
24
24


BRCA1
BRCA2
0.34
20
5
20
4
80.0%
83.3%
1.8E−05
0.0002
25
24


BRCA2
ILF2
0.34
19
5
19
5
79.2%
79.2%
0.0002
1.6E−05
24
24


E2F1
ILF2
0.34
20
4
18
6
83.3%
75.0%
0.0003
0.0065
24
24


HRAS
VIM
0.33
20
3
19
5
87.0%
79.2%
0.0130
3.7E−06
23
24


ERBB2
SERPING1
0.33
19
4
19
5
82.6%
79.2%
0.0014
0.0005
23
24


NME1
VIM
0.33
20
3
18
6
87.0%
75.0%
0.0137
5.3E−06
23
24


E2F1
MCM4
0.33
18
6
18
6
75.0%
75.0%
0.0015
0.0077
24
24


GADD45A
MCM4
0.33
21
3
20
4
87.5%
83.3%
0.0016
0.0054
24
24


E2F1
KIT
0.33
18
6
18
6
75.0%
75.0%
0.0021
0.0092
24
24


ERBB2
NME1
0.33
21
3
20
4
87.5%
83.3%
5.6E−06
0.0004
24
24


MCM4
NME1
0.33
21
3
19
5
87.5%
79.2%
5.0E−06
0.0018
24
24


CASP9
GADD45A
0.33
19
5
18
6
79.2%
75.0%
0.0065
0.0347
24
24


CASP9
IL8
0.32
18
6
20
4
75.0%
83.3%
7.9E−06
0.0381
24
24


E2F1
PTGES
0.32
17
5
18
5
77.3%
78.3%
0.0002
0.0235
22
23


IL10
SERPING1
0.32
19
5
19
5
79.2%
79.2%
0.0021
0.0003
24
24


APAF1
VIM
0.32
18
5
20
4
78.3%
83.3%
0.0213
6.2E−06
23
24


CDKN1A
TP53
0.32
19
4
18
6
82.6%
75.0%
0.0018
0.0203
23
24


CDH1
CTNNB1
0.32
20
4
20
4
83.3%
83.3%
2.1E−05
0.0018
24
24


SOCS3

0.32
19
5
19
5
79.2%
79.2%
4.2E−06

24
24


CDKN1A
MEST
0.32
18
6
18
6
75.0%
75.0%
0.0071
0.0046
24
24


IGF2
VIM
0.32
19
4
18
6
82.6%
75.0%
0.0273
0.0001
23
24


FOXM1

0.31
19
5
19
5
79.2%
79.2%
4.9E−06

24
24


E2F1
WNT1
0.31
18
6
18
6
75.0%
75.0%
0.0002
0.0161
24
24


GADD45A
SERPING1
0.31
19
5
19
5
79.2%
79.2%
0.0030
0.0111
24
24


CTGF
GADD45A
0.31
19
5
18
6
79.2%
75.0%
0.0121
0.0001
24
24


ILF2
MCM2
0.31
19
5
18
5
79.2%
78.3%
1.1E−05
0.0014
24
23


BIK
CTSB
0.31
19
5
18
6
79.2%
75.0%
0.0044
0.0008
24
24


IL10
MEST
0.31
19
5
18
6
79.2%
75.0%
0.0095
0.0005
24
24


BRCA1
MEST
0.30
18
6
19
5
75.0%
79.2%
0.0112
0.0008
24
24


BRCA2
TP53
0.30
19
4
20
4
82.6%
83.3%
0.0032
8.0E−05
23
24


BRAF

0.30
19
5
18
5
79.2%
78.3%
8.8E−06

24
23


HRAS
SART1
0.30
20
4
18
6
83.3%
75.0%
0.0002
9.0E−06
24
24


CTNNB1
VIM
0.30
18
5
18
6
78.3%
75.0%
0.0478
7.0E−05
23
24


ILF2
SERPING1
0.30
19
5
18
6
79.2%
75.0%
0.0047
0.0010
24
24


BIK
E2F1
0.30
18
6
18
6
75.0%
75.0%
0.0262
0.0011
24
24


MEST
SERPING1
0.30
19
5
19
5
79.2%
79.2%
0.0049
0.0135
24
24


CTSB
SART1
0.30
18
6
18
6
75.0%
75.0%
0.0002
0.0065
24
24


GADD45A
WNT1
0.30
19
5
18
6
79.2%
75.0%
0.0004
0.0199
24
24


CDH1
CDKN1A
0.30
20
5
19
5
80.0%
79.2%
0.0158
0.0058
25
24


MCM4
SERPING1
0.30
18
6
18
6
75.0%
75.0%
0.0057
0.0060
24
24


BRCA2
KIT
0.29
20
5
19
5
80.0%
79.2%
0.0086
9.3E−05
25
24


MCM4
TOP2A
0.29
20
4
19
5
83.3%
79.2%
1.5E−05
0.0067
24
24


BIK
SERPING1
0.29
19
5
18
6
79.2%
75.0%
0.0064
0.0015
24
24


MCM2
MEST
0.29
18
6
18
5
75.0%
78.3%
0.0310
2.0E−05
24
23


CDKN1A
ERBB2
0.29
18
6
18
6
75.0%
75.0%
0.0017
0.0164
24
24


IGF2
KIT
0.29
19
6
18
6
76.0%
75.0%
0.0106
0.0004
25
24


BRCA2
GADD45A
0.29
19
5
19
5
79.2%
79.2%
0.0283
9.9E−05
24
24


BRCA1
CDKN1A
0.29
19
6
18
6
76.0%
75.0%
0.0233
0.0013
25
24


VEGF

0.28
20
4
18
6
83.3%
75.0%
1.4E−05

24
24


E2F1
PRDM2
0.28
18
6
18
6
75.0%
75.0%
5.1E−05
0.0488
24
24


CTSB
SERPING1
0.28
19
5
19
5
79.2%
79.2%
0.0086
0.0112
24
24


BRCA2
CTSB
0.28
19
5
20
4
79.2%
83.3%
0.0115
0.0001
24
24


MEST
NME1
0.28
18
6
18
6
75.0%
75.0%
2.4E−05
0.0249
24
24


CDKN1A
KIT
0.28
19
6
18
6
76.0%
75.0%
0.0139
0.0276
25
24


KIT
MCM2
0.28
19
5
18
5
79.2%
78.3%
2.9E−05
0.0327
24
23


BIK
MEST
0.28
19
5
19
5
79.2%
79.2%
0.0290
0.0023
24
24


HRAS
KIT
0.28
19
5
19
5
79.2%
79.2%
0.0124
2.0E−05
24
24


HRAS
MCM4
0.28
20
4
19
5
83.3%
79.2%
0.0112
2.1E−05
24
24


HRAS
WNT1
0.28
19
5
19
5
79.2%
79.2%
0.0008
2.1E−05
24
24


KIT
NME1
0.28
20
5
19
5
80.0%
79.2%
2.5E−05
0.0158
25
24


BRCA2
ERBB2
0.28
19
5
19
5
79.2%
79.2%
0.0026
0.0002
24
24


CDH1
IGFBP3
0.28
19
6
18
6
76.0%
75.0%
0.0001
0.0123
25
24


MEST
PTGES
0.28
17
5
18
5
77.3%
78.3%
0.0011
0.0289
22
23


IL10
TP53
0.27
17
5
19
5
77.3%
79.2%
0.0083
0.0028
22
24


KIT
MEST
0.27
20
4
19
5
83.3%
79.2%
0.0362
0.0153
24
24


CCNB1
CDH1
0.27
20
5
18
6
80.0%
75.0%
0.0146
2.1E−05
25
24


HRAS
MEST
0.27
20
4
18
6
83.3%
75.0%
0.0394
2.6E−05
24
24


SERPING1
WNT1
0.27
18
6
19
5
75.0%
79.2%
0.0010
0.0143
24
24


BRCA2
CDKN1A
0.27
19
6
18
6
76.0%
75.0%
0.0463
0.0002
25
24


CDKN1A
MCM4
0.27
18
6
18
6
75.0%
75.0%
0.0177
0.0301
24
24


MCM4
MEST
0.27
20
4
19
5
83.3%
79.2%
0.0499
0.0184
24
24


CDH1
IL10
0.26
18
6
18
6
75.0%
75.0%
0.0027
0.0138
24
24


BRCA1
CTSB
0.26
19
5
18
6
79.2%
75.0%
0.0265
0.0037
24
24


CASP9

0.26
18
6
18
6
75.0%
75.0%
3.2E−05

24
24


IL8
TP53
0.26
18
5
20
4
78.3%
83.3%
0.0156
0.0002
23
24


CDH1
MYBL2
0.26
19
5
19
5
79.2%
79.2%
0.0005
0.0160
24
24


ERBB2
IGF2
0.26
19
5
18
6
79.2%
75.0%
0.0014
0.0052
24
24


BRCA2
FRAP1
0.26
20
4
20
4
83.3%
83.3%
0.0010
0.0003
24
24


IL10
MCM4
0.25
18
6
19
5
75.0%
79.2%
0.0298
0.0038
24
24


CDH1
SERPING1
0.25
18
6
18
6
75.0%
75.0%
0.0283
0.0204
24
24


HIF1A
SERPING1
0.25
19
5
19
5
79.2%
79.2%
0.0300
0.0021
24
24


ILF2
NME1
0.25
19
5
19
5
79.2%
79.2%
7.6E−05
0.0062
24
24


CDH1
CTSB
0.25
18
6
18
6
75.0%
75.0%
0.0452
0.0246
24
24


CTGF
IGF2
0.25
19
6
18
6
76.0%
75.0%
0.0020
0.0005
25
24


BIK
KIT
0.24
21
3
19
5
87.5%
79.2%
0.0497
0.0087
24
24


FRAP1
SERPING1
0.24
18
6
18
6
75.0%
75.0%
0.0454
0.0017
24
24


VIM

0.24
18
5
19
5
78.3%
79.2%
7.6E−05

23
24


BIK
NME1
0.24
20
4
18
6
83.3%
75.0%
0.0001
0.0101
24
24


CDH1
HRAS
0.24
19
5
18
6
79.2%
75.0%
8.6E−05
0.0359
24
24


CCNB1
TP53
0.24
18
5
18
6
78.3%
75.0%
0.0393
0.0001
23
24


APAF1
CDH1
0.23
20
4
18
6
83.3%
75.0%
0.0487
0.0001
24
24


BIK
IGF2
0.22
19
5
19
5
79.2%
79.2%
0.0037
0.0188
24
24


IL8
ILF2
0.22
20
4
19
5
83.3%
79.2%
0.0203
0.0003
24
24


APAF1
BRCA1
0.22
20
4
19
5
83.3%
79.2%
0.0190
0.0002
24
24


BRCA2
SART1
0.22
18
6
18
6
75.0%
75.0%
0.0048
0.0013
24
24


ERBB2
FHIT
0.21
18
5
19
5
78.3%
79.2%
0.0002
0.0442
23
24


IL10
WNT1
0.20
19
5
18
6
79.2%
75.0%
0.0111
0.0233
24
24


ERBB2
IL8
0.20
19
5
20
4
79.2%
83.3%
0.0005
0.0407
24
24


APAF1
HIF1A
0.20
18
6
18
6
75.0%
75.0%
0.0136
0.0003
24
24


ILF2
ITGA6
0.20
19
5
19
5
79.2%
79.2%
0.0007
0.0426
24
24


BIK
BRCA2
0.20
18
6
18
6
75.0%
75.0%
0.0024
0.0473
24
24


MYBL2
PTGES
0.20
17
5
18
5
77.3%
78.3%
0.0166
0.0138
22
23


IGF2
IL10
0.19
19
5
18
6
79.2%
75.0%
0.0365
0.0112
24
24


BRCA2
RGS1
0.19
19
5
19
5
79.2%
79.2%
0.0032
0.0036
24
24


MCM4

0.18
18
6
18
6
75.0%
75.0%
0.0005

24
24


FRAP1
HRAS
0.18
18
6
18
6
75.0%
75.0%
0.0006
0.0147
24
24


HIF1A
NME1
0.18
18
6
18
6
75.0%
75.0%
0.0010
0.0331
24
24


TP53

0.17
19
4
18
6
82.6%
75.0%
0.0009

23
24


IGF2
IGFBP3
0.17
19
6
18
6
76.0%
75.0%
0.0053
0.0394
25
24


FRAP1
NME1
0.17
18
6
18
6
75.0%
75.0%
0.0014
0.0251
24
24


IGF2
MYBL2
0.16
18
6
18
6
75.0%
75.0%
0.0170
0.0377
24
24


BRCA2
ITGA6
0.16
19
5
18
6
79.2%
75.0%
0.0035
0.0115
24
24
























Cervical Cancer
Normals
Sum



Group Size
48.0%
52.0%
100%


N =
24
26
50


Gene
Mean
Mean
Z-statistic
p-val



















GNB1
11.5
12.7
−6.33
2.4E−10


MTF1
15.9
17.3
−6.28
3.3E−10


TIMP1
12.5
13.7
−5.84
5.3E−09


MYC
16.4
17.4
−5.82
5.8E−09


TNF
16.7
17.9
−5.65
1.6E−08


NRAS
15.5
16.3
−5.10
3.4E−07


MYD88
12.6
13.7
−5.08
3.8E−07


UBE2C
19.1
20.1
−5.05
4.4E−07


PTGS2
15.6
16.3
−4.95
7.4E−07


CAV1
21.0
22.5
−4.93
8.1E−07


ITGAL
13.2
14.2
−4.86
1.2E−06


SPARC
13.0
14.3
−4.85
1.3E−06


TEGT
10.8
11.6
−4.84
1.3E−06


ICAM3
11.4
12.2
−4.78
1.8E−06


SOCS3
15.5
16.8
−4.60
4.2E−06


FOXM1
22.2
23.4
−4.57
4.9E−06


CD97
11.0
11.9
−4.52
6.2E−06


BRAF
15.5
16.2
−4.44
8.8E−06


ALOX12
16.4
17.7
−4.35
1.4E−05


VEGF
21.0
22.1
−4.35
1.4E−05


CASP9
16.7
17.4
−4.16
3.2E−05


VIM
10.1
10.9
−3.96
7.6E−05


E2F1
18.8
19.6
−3.87
0.0001


GADD45A
17.7
18.5
−3.79
0.0002


CDKN1A
14.7
15.4
−3.78
0.0002


MEST
19.4
19.9
−3.72
0.0002


KIT
20.7
21.6
−3.61
0.0003


CDH1
18.7
19.6
−3.53
0.0004


CTSB
12.3
12.8
−3.53
0.0004


MCM4
18.1
18.8
−3.48
0.0005


SERPING1
16.3
17.3
−3.46
0.0005


TP53
14.8
15.4
−3.33
0.0009


ERBB2
20.7
21.4
−3.06
0.0022


BIK
19.1
19.8
−3.04
0.0023


ILF2
15.8
16.3
−3.02
0.0025


BRCA1
20.4
20.9
−3.01
0.0026


IL10
21.6
22.6
−2.91
0.0036


HIF1A
15.4
15.9
−2.69
0.0071


IGF2
19.8
20.9
−2.69
0.0072


WNT1
20.0
20.7
−2.67
0.0075


PTGES
20.3
21.2
−2.54
0.0110


SART1
15.3
15.7
−2.53
0.0115


FRAP1
16.5
16.9
−2.47
0.0134


MYBL2
19.3
19.8
−2.24
0.0253


BRCA2
22.8
22.4
2.17
0.0303


CTGF
22.2
23.2
−2.12
0.0337


RGS1
21.5
22.0
−1.94
0.0519


IGFBP3
20.9
21.5
−1.92
0.0548


CTNNB1
13.8
14.1
−1.76
0.0783


RB1
16.5
16.8
−1.59
0.1115


PRDM2
16.8
17.0
−1.57
0.1158


IL8
21.6
21.2
1.41
0.1597


ITGA6
17.9
18.2
−1.36
0.1746


RPL39L
23.3
23.6
−1.23
0.2198


ESR1
20.6
20.9
−1.15
0.2503


SPP1
20.4
20.9
−1.12
0.2629


IGSF4
20.5
20.9
−1.10
0.2711


NME1
19.0
18.8
1.05
0.2933


ANGPT1
20.3
20.6
−0.92
0.3570


MCM2
19.4
19.2
0.90
0.3691


TOP2A
21.6
21.5
0.83
0.4068


HRAS
19.6
19.4
0.62
0.5326


CCNB1
21.2
21.4
−0.61
0.5405


APAF1
15.9
16.0
−0.51
0.6104


FHIT
18.2
18.2
−0.14
0.8873































Predicted








probability


Patient ID
Group
MTF1
PTGES
logit
odds
of cervical cancer





















2
Cervical Ca
14.12
19.72
24.00
2.7E+10
1.0000


31
Cervical Ca
14.94
20.07
16.13
1.0E+07
1.0000


34
Cervical Ca
15.29
19.71
13.66
8.5E+05
1.0000


32
Cervical Ca
15.53
18.96
12.84
3.8E+05
1.0000


10
Cervical Ca
15.20
20.70
12.77
3.5E+05
1.0000


11
Cervical Ca
15.50
19.16
12.75
3.4E+05
1.0000


4
Cervical Ca
15.43
19.76
12.37
2.4E+05
1.0000


33
Cervical Ca
15.47
19.92
11.71
1.2E+05
1.0000


13
Cervical Ca
15.86
20.41
7.39
1612.82
0.9994


6
Cervical Ca
15.67
21.44
7.37
1594.68
0.9994


7
Cervical Ca
16.21
19.61
5.67
290.72
0.9966


8
Cervical Ca
16.25
19.73
5.07
158.91
0.9937


20
Cervical Ca
16.18
20.28
4.78
118.95
0.9917


12
Cervical Ca
16.18
20.44
4.50
90.36
0.9891


19
Cervical Ca
16.29
19.91
4.42
83.40
0.9882


15
Cervical Ca
16.37
19.68
4.09
59.80
0.9836


16
Cervical Ca
16.46
20.02
2.78
16.17
0.9418


17
Cervical Ca
16.20
21.74
2.07
7.90
0.8877


5
Cervical Ca
16.14
22.24
1.77
5.84
0.8539


42
Normals
16.43
20.74
1.75
5.74
0.8515


3
Cervical Ca
16.16
22.31
1.53
4.62
0.8219


18
Cervical Ca
16.51
20.82
0.92
2.52
0.7155


9
Cervical Ca
16.80
19.48
0.67
1.95
0.6614


50
Normals
16.45
21.59
0.09
1.09
0.5225


34
Normals
16.34
23.11
−1.45
0.23
0.1901


110
Normals
16.96
20.17
−1.91
0.15
0.1285


14
Cervical Ca
16.73
21.34
−1.92
0.15
0.1274


41
Normals
16.93
20.40
−2.08
0.12
0.1109


133
Normals
17.25
19.12
−2.71
0.07
0.0626


109
Normals
17.20
19.42
−2.77
0.06
0.0588


125
Normals
16.79
21.66
−2.96
0.05
0.0493


1
Normals
17.10
20.20
−3.25
0.04
0.0372


6
Normals
17.03
20.94
−3.92
0.02
0.0194


146
Normals
17.02
21.26
−4.39
0.01
0.0123


11
Normals
17.30
20.29
−5.17
0.01
0.0057


103
Normals
17.20
21.61
−6.58
0.00
0.0014


111
Normals
17.22
21.67
−6.87
0.00
0.0010


32
Normals
17.68
20.40
−8.76
0.00
0.0002


118
Normals
17.94
19.31
−9.18
0.00
0.0001


104
Normals
17.45
22.42
−10.20
0.00
0.0000


120
Normals
17.94
22.74
−15.09
0.00
0.0000


22
Normals
18.59
20.09
−16.30
0.00
0.0000


28
Normals
18.10
23.40
−17.61
0.00
0.0000


33
Normals
18.32
23.08
−18.98
0.00
0.0000


150
Normals
18.41
22.80
−19.31
0.00
0.0000























TABLE 2a














total used






Normal
Cervical

(excludes



En-

N =
26
24

missing)


















2-gene models and
tropy
#normal
#normal
#cvi
#cvi
Correct
Correct


#
#


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
normals
disease






















EGR1
IRF1
0.83
25
1
23
1
96.2%
95.8%
7.4E−07
0.0004
26
24


CASP3
TNF
0.79
24
2
22
2
92.3%
91.7%
0.0005
7.3E−12
26
24


EGR1
TNF
0.79
24
2
22
2
92.3%
91.7%
0.0006
0.0018
26
24


EGR1
IFI16
0.78
24
2
23
1
92.3%
95.8%
0.0004
0.0024
26
24


PLA2G7
TNF
0.76
25
1
23
1
96.2%
95.8%
0.0014
4.7E−13
26
24


IL15
TNF
0.76
25
1
22
2
96.2%
91.7%
0.0015
3.2E−11
26
24


CCL5
EGR1
0.76
23
3
22
2
88.5%
91.7%
0.0055
2.6E−06
26
24


C1QA
EGR1
0.75
23
3
22
2
88.5%
91.7%
0.0058
5.6E−09
26
24


TGFB1
TNFRSF13B
0.74
25
1
22
2
96.2%
91.7%
1.0E−12
5.7E−05
26
24


EGR1
ICAM1
0.73
24
2
22
2
92.3%
91.7%
6.8E−05
0.0135
26
24


EGR1
TLR2
0.73
23
3
21
3
88.5%
87.5%
3.7E−08
0.0170
26
24


EGR1
SERPINA1
0.72
24
2
23
1
92.3%
95.8%
7.9E−05
0.0190
26
24


IFI16
TLR4
0.72
25
1
22
2
96.2%
91.7%
6.5E−12
0.0037
26
24


TNF
TNFRSF13B
0.72
24
2
22
2
92.3%
91.7%
2.4E−12
0.0072
26
24


HMGB1
TGFB1
0.72
24
2
21
2
92.3%
91.3%
0.0001
1.6E−11
26
23


CTLA4
TNF
0.71
24
2
22
2
92.3%
91.7%
0.0101
2.8E−12
26
24


EGR1
IL32
0.71
23
3
21
3
88.5%
87.5%
2.1E−11
0.0335
26
24


EGR1
SERPINE1
0.71
23
3
22
2
88.5%
91.7%
2.4E−08
0.0343
26
24


CCL5
IFI16
0.71
23
3
22
2
88.5%
91.7%
0.0056
1.5E−05
26
24


ELA2
IFI16
0.71
24
2
22
2
92.3%
91.7%
0.0062
2.0E−08
26
24


EGR1
SSI3
0.71
24
2
22
2
92.3%
91.7%
5.3E−08
0.0392
26
24


CD8A
TNF
0.71
23
3
22
2
88.5%
91.7%
0.0122
4.8E−12
26
24


IFI16
IL15
0.70
23
3
21
3
88.5%
87.5%
2.5E−10
0.0071
26
24


CASP3
IFI16
0.70
22
4
21
3
84.6%
87.5%
0.0076
1.8E−10
26
24


CXCL1
EGR1
0.70
23
3
22
2
88.5%
91.7%
0.0491
1.1E−08
26
24


HMGB1
IFI16
0.70
25
1
21
2
96.2%
91.3%
0.0062
2.9E−11
26
23


C1QA
TNF
0.70
22
4
20
4
84.6%
83.3%
0.0164
4.2E−08
26
24


IFI16
PLA2G7
0.70
24
2
21
3
92.3%
87.5%
4.9E−12
0.0092
26
24


IFI16
TNF
0.70
24
2
23
1
92.3%
95.8%
0.0181
0.0093
26
24


MIF
TNF
0.69
23
3
22
2
88.5%
91.7%
0.0187
4.1E−12
26
24


EGR1
LTA
0.69
19
2
21
3
90.5%
87.5%
1.5E−09
0.0493
21
24


DPP4
TNF
0.68
23
3
22
2
88.5%
91.7%
0.0291
3.2E−11
26
24


IFNG
TNF
0.68
24
2
22
2
92.3%
91.7%
0.0295
5.9E−11
26
24


CD4
TNF
0.68
23
3
21
3
88.5%
87.5%
0.0301
1.2E−09
26
24


IFI16
TNFRSF13B
0.68
24
2
22
2
92.3%
91.7%
8.9E−12
0.0157
26
24


IFI16
IL18
0.68
24
2
22
2
92.3%
91.7%
1.1E−11
0.0158
26
24


IL18
TNF
0.68
24
2
22
2
92.3%
91.7%
0.0308
1.1E−11
26
24


HMGB1
TNF
0.68
23
3
21
2
88.5%
91.3%
0.0302
6.7E−11
26
23


ELA2
TNF
0.67
22
4
22
2
84.6%
91.7%
0.0444
6.4E−08
26
24


MMP9
TNF
0.67
25
1
22
2
96.2%
91.7%
0.0457
3.6E−06
26
24


CXCR3
TNF
0.67
23
3
21
3
88.5%
87.5%
0.0474
2.2E−10
26
24


C1QA
IFI16
0.67
23
3
22
2
88.5%
91.7%
0.0243
1.1E−07
26
24


TNF
TNFSF5
0.67
23
3
21
3
88.5%
87.5%
7.4E−11
0.0486
26
24


IL15
IRF1
0.67
23
3
22
2
88.5%
91.7%
0.0002
7.8E−10
26
24


IFI16
TXNRD1
0.67
23
3
21
3
88.5%
87.5%
3.2E−11
0.0286
26
24


PLA2G7
SERPINA1
0.66
23
3
22
2
88.5%
91.7%
0.0008
1.6E−11
26
24


IFI16
MIF
0.66
24
2
22
2
92.3%
91.7%
1.4E−11
0.0375
26
24


CASP3
SERPINA1
0.66
24
2
22
2
92.3%
91.7%
0.0009
8.2E−10
26
24


MIF
TGFB1
0.66
23
3
21
3
88.5%
87.5%
0.0013
1.5E−11
26
24


IFI16
MAPK14
0.66
20
3
21
3
87.0%
87.5%
5.8E−09
0.0425
23
24


APAF1
IFI16
0.66
24
2
22
2
92.3%
91.7%
0.0455
2.4E−11
26
24


ICAM1
IL15
0.65
23
3
21
3
88.5%
87.5%
1.8E−09
0.0016
26
24


EGR1

0.64
23
3
21
3
88.5%
87.5%
2.4E−11

26
24


IRF1
TGFB1
0.64
23
3
22
2
88.5%
91.7%
0.0023
0.0006
26
24


PTPRC
SERPINE1
0.64
22
3
22
2
88.0%
91.7%
9.2E−07
9.7E−06
25
24


CCL5
SERPINA1
0.64
22
4
20
4
84.6%
83.3%
0.0020
0.0002
26
24


SERPINA1
TLR4
0.63
25
1
21
3
96.2%
87.5%
1.4E−10
0.0024
26
24


ICAM1
PLA2G7
0.63
25
1
21
3
96.2%
87.5%
4.8E−11
0.0029
26
24


PTPRC
TGFB1
0.63
21
4
20
4
84.0%
83.3%
0.0407
1.5E−05
25
24


IL1R1
SERPINA1
0.63
21
5
21
3
80.8%
87.5%
0.0028
1.2E−10
26
24


TGFB1
TNFSF6
0.62
24
2
20
3
92.3%
87.0%
9.1E−11
0.0036
26
23


CCL5
SERPINE1
0.62
23
3
21
3
88.5%
87.5%
5.2E−07
0.0003
26
24


CTLA4
TGFB1
0.62
23
3
21
3
88.5%
87.5%
0.0061
7.4E−11
26
24


IL15
SERPINA1
0.62
24
2
22
2
92.3%
91.7%
0.0043
5.4E−09
26
24


TNF

0.61
23
3
21
3
88.5%
87.5%
6.9E−11

26
24


CCL5
TIMP1
0.61
24
2
22
2
92.3%
91.7%
0.0028
0.0005
26
24


CCL5
MMP9
0.61
23
3
21
3
88.5%
87.5%
3.4E−05
0.0005
26
24


HMGB1
MYC
0.61
22
4
20
3
84.6%
87.0%
1.5E−05
7.2E−10
26
23


HMOX1
IRF1
0.61
24
2
21
3
92.3%
87.5%
0.0024
8.5E−06
26
24


CCL5
IRF1
0.61
24
2
21
3
92.3%
87.5%
0.0024
0.0006
26
24


SERPINA1
TXNRD1
0.60
24
2
21
3
92.3%
87.5%
3.0E−10
0.0069
26
24


IL15
PTPRC
0.60
23
2
22
2
92.0%
91.7%
3.8E−05
1.0E−08
25
24


SERPINE1
TGFB1
0.60
24
2
22
2
92.3%
91.7%
0.0111
1.1E−06
26
24


SERPINA1
TGFB1
0.60
23
3
21
3
88.5%
87.5%
0.0128
0.0086
26
24


IFI16

0.60
23
3
21
3
88.5%
87.5%
1.3E−10

26
24


CCL5
TNFRSF1A
0.60
22
4
21
3
84.6%
87.5%
0.0006
0.0009
26
24


CTLA4
MYC
0.60
23
3
20
3
88.5%
87.0%
2.2E−05
2.9E−10
26
23


ELA2
TGFB1
0.59
23
3
21
3
88.5%
87.5%
0.0155
1.1E−06
26
24


IRF1
VEGF
0.59
22
4
21
3
84.6%
87.5%
1.1E−05
0.0039
26
24


ICAM1
SERPINE1
0.59
23
3
21
3
88.5%
87.5%
1.6E−06
0.0134
26
24


CCL5
ELA2
0.59
22
4
21
3
84.6%
87.5%
1.2E−06
0.0011
26
24


TLR4
TNFRSF1A
0.59
23
3
21
3
88.5%
87.5%
0.0007
6.2E−10
26
24


TGFB1
TXNRD1
0.59
23
3
21
3
88.5%
87.5%
4.8E−10
0.0174
26
24


ELA2
IRF1
0.59
23
3
22
2
88.5%
91.7%
0.0045
1.3E−06
26
24


IL18
SERPINA1
0.59
22
4
21
3
84.6%
87.5%
0.0128
3.1E−10
26
24


CASP3
ICAM1
0.59
22
4
21
3
84.6%
87.5%
0.0160
1.0E−08
26
24


CASP3
IRF1
0.59
22
4
22
2
84.6%
91.7%
0.0050
1.0E−08
26
24


CCR5
TGFB1
0.59
23
3
21
3
88.5%
87.5%
0.0208
5.7E−09
26
24


CD8A
TGFB1
0.59
23
3
21
3
88.5%
87.5%
0.0210
3.3E−10
26
24


CASP3
TGFB1
0.59
22
4
21
3
84.6%
87.5%
0.0212
1.1E−08
26
24


CCL5
SSI3
0.59
22
4
20
4
84.6%
83.3%
4.0E−06
0.0013
26
24


MAPK14
SERPINA1
0.58
19
4
21
3
82.6%
87.5%
0.0225
6.9E−08
23
24


C1QA
PTGS2
0.58
24
2
22
2
92.3%
91.7%
7.0E−05
2.6E−06
26
24


CCL5
IL1B
0.58
22
4
20
4
84.6%
83.3%
4.1E−06
0.0015
26
24


IL15
TGFB1
0.58
23
3
21
3
88.5%
87.5%
0.0247
1.8E−08
26
24


PLA2G7
TGFB1
0.58
23
3
22
2
88.5%
91.7%
0.0253
2.8E−10
26
24


CCL5
IL1RN
0.58
22
4
20
4
84.6%
83.3%
6.0E−05
0.0016
26
24


IL5
TGFB1
0.58
23
3
21
3
88.5%
87.5%
0.0260
2.4E−10
26
24


CCL5
CD8A
0.58
22
4
21
3
84.6%
87.5%
4.0E−10
0.0016
26
24


CCL5
ICAM1
0.58
22
4
20
4
84.6%
83.3%
0.0229
0.0018
26
24


CD86
IL15
0.58
23
3
21
3
88.5%
87.5%
2.1E−08
4.3E−08
26
24


ICAM1
TGFB1
0.58
23
3
21
3
88.5%
87.5%
0.0311
0.0248
26
24


CCL5
PTPRC
0.57
21
4
21
3
84.0%
87.5%
0.0001
0.0022
25
24


C1QA
SERPINA1
0.57
23
3
21
3
88.5%
87.5%
0.0220
3.5E−06
26
24


TNFRSF1A
TXNRD1
0.57
25
1
23
1
96.2%
95.8%
8.7E−10
0.0014
26
24


TIMP1
TLR4
0.57
23
3
21
3
88.5%
87.5%
1.1E−09
0.0118
26
24


MMP9
TGFB1
0.57
24
2
22
2
92.3%
91.7%
0.0353
0.0001
26
24


ELA2
TIMP1
0.57
22
4
21
3
84.6%
87.5%
0.0120
2.3E−06
26
24


CXCR3
TGFB1
0.57
23
3
21
3
88.5%
87.5%
0.0393
7.8E−09
26
24


ICAM1
IL18
0.57
22
4
21
3
84.6%
87.5%
5.9E−10
0.0318
26
24


MYC
TNFRSF13B
0.57
24
2
21
2
92.3%
91.3%
1.1E−09
5.7E−05
26
23


C1QA
TIMP1
0.57
23
3
22
2
88.5%
91.7%
0.0145
4.4E−06
26
24


ICAM1
TNFRSF13B
0.57
22
4
20
4
84.6%
83.3%
5.1E−10
0.0346
26
24


IRF1
MYC
0.57
23
3
21
2
88.5%
91.3%
6.3E−05
0.0079
26
23


SERPINA1
SERPINE1
0.57
23
3
21
3
88.5%
87.5%
4.1E−06
0.0309
26
24


ELA2
ICAM1
0.56
22
4
20
4
84.6%
83.3%
0.0403
3.2E−06
26
24


IL15
TIMP1
0.56
25
1
21
3
96.2%
87.5%
0.0171
3.5E−08
26
24


CD8A
ICAM1
0.56
22
4
20
4
84.6%
83.3%
0.0435
7.6E−10
26
24


CCL5
MNDA
0.56
21
5
20
4
80.8%
83.3%
2.4E−06
0.0034
26
24


IRF1
TIMP1
0.56
23
3
21
3
88.5%
87.5%
0.0194
0.0138
26
24


ELA2
TNFRSF1A
0.56
23
3
21
3
88.5%
87.5%
0.0023
3.7E−06
26
24


TIMP1
TXNRD1
0.56
24
2
21
3
92.3%
87.5%
1.5E−09
0.0207
26
24


ELA2
SERPINA1
0.56
23
3
21
3
88.5%
87.5%
0.0433
4.0E−06
26
24


CASP3
NFKB1
0.56
24
2
21
3
92.3%
87.5%
6.1E−05
2.9E−08
26
24


CASP3
TIMP1
0.56
23
3
21
3
88.5%
87.5%
0.0230
3.0E−08
26
24


HMGB1
ICAM1
0.56
22
4
20
3
84.6%
87.0%
0.0401
4.4E−09
26
23


IRF1
SERPINE1
0.55
23
3
21
3
88.5%
87.5%
6.4E−06
0.0179
26
24


CCL5
HMGB1
0.55
23
3
20
3
88.5%
87.0%
4.7E−09
0.0034
26
23


APAF1
TNFRSF1A
0.55
23
3
22
2
88.5%
91.7%
0.0033
1.0E−09
26
24


CCL5
VEGF
0.55
22
4
20
4
84.6%
83.3%
5.3E−05
0.0054
26
24


CASP3
TNFRSF1A
0.55
25
1
21
3
96.2%
87.5%
0.0039
4.3E−08
26
24


C1QA
IRF1
0.55
22
4
20
4
84.6%
83.3%
0.0247
9.9E−06
26
24


HMGB1
TIMP1
0.55
23
3
21
2
88.5%
91.3%
0.0254
6.1E−09
26
23


IL15
TNFRSF1A
0.55
22
4
21
3
84.6%
87.5%
0.0041
6.8E−08
26
24


IRF1
PLA2G7
0.54
22
4
20
4
84.6%
83.3%
1.1E−09
0.0276
26
24


IL1R1
TIMP1
0.54
22
4
20
4
84.6%
83.3%
0.0423
2.6E−09
26
24


HMOX1
TNFRSF13B
0.54
24
2
21
3
92.3%
87.5%
1.3E−09
9.2E−05
26
24


MYC
SERPINE1
0.54
23
3
20
3
88.5%
87.0%
1.2E−05
0.0002
26
23


IL15
VEGF
0.54
22
4
20
4
84.6%
83.3%
7.6E−05
8.4E−08
26
24


CCL5
TLR2
0.54
20
6
20
4
76.9%
83.3%
3.6E−05
0.0089
26
24


CCL5
HSPA1A
0.53
21
5
20
4
80.8%
83.3%
0.0007
0.0093
26
24


SERPINE1
TNFRSF1A
0.53
24
2
21
3
92.3%
87.5%
0.0063
1.3E−05
26
24


IRF1
TNFRSF1A
0.53
24
2
20
4
92.3%
83.3%
0.0067
0.0425
26
24


IFNG
IRF1
0.53
22
4
21
3
84.6%
87.5%
0.0454
1.3E−08
26
24


CASP3
VEGF
0.53
22
4
20
4
84.6%
83.3%
0.0001
7.8E−08
26
24


CTLA4
IRF1
0.53
23
3
21
3
88.5%
87.5%
0.0488
1.7E−09
26
24


CCL5
CXCR3
0.53
23
3
21
3
88.5%
87.5%
3.4E−08
0.0117
26
24


CCL5
CTLA4
0.53
22
4
21
3
84.6%
87.5%
1.9E−09
0.0129
26
24


CCL5
TNFRSF13B
0.53
23
3
21
3
88.5%
87.5%
2.2E−09
0.0129
26
24


PTGS2
SERPINE1
0.53
22
4
22
2
84.6%
91.7%
1.8E−05
0.0006
26
24


CCL5
PLAUR
0.53
20
6
20
4
76.9%
83.3%
0.0044
0.0135
26
24


IL1R1
TNFRSF1A
0.52
23
3
22
2
88.5%
91.7%
0.0091
4.7E−09
26
24


C1QA
CCL5
0.52
23
3
20
4
88.5%
83.3%
0.0143
2.2E−05
26
24


C1QA
MYC
0.52
24
2
21
2
92.3%
91.3%
0.0003
1.7E−05
26
23


CCL5
PTGS2
0.52
21
5
19
5
80.8%
79.2%
0.0007
0.0156
26
24


CASP1
CCL5
0.52
22
4
20
4
84.6%
83.3%
0.0163
4.9E−06
26
24


CASP1
IL15
0.52
21
5
20
4
80.8%
83.3%
1.7E−07
5.0E−06
26
24


PLA2G7
PLAUR
0.52
22
4
20
4
84.6%
83.3%
0.0056
2.5E−09
26
24


CASP3
PTPRC
0.52
22
3
21
3
88.0%
87.5%
0.0008
1.3E−07
25
24


ELA2
HSPA1A
0.52
23
3
21
3
88.5%
87.5%
0.0014
1.7E−05
26
24


IL15
PLAUR
0.51
23
3
21
3
88.5%
87.5%
0.0066
2.0E−07
26
24


C1QA
TNFRSF1A
0.51
24
2
21
3
92.3%
87.5%
0.0137
3.2E−05
26
24


CCL5
MIF
0.51
23
3
21
3
88.5%
87.5%
2.5E−09
0.0213
26
24


PTPRC
VEGF
0.51
21
4
19
5
84.0%
79.2%
0.0029
0.0010
25
24


CASP1
CASP3
0.51
23
3
21
3
88.5%
87.5%
1.4E−07
6.4E−06
26
24


CASP3
CD86
0.51
21
5
20
4
80.8%
83.3%
4.6E−07
1.5E−07
26
24


HMGB1
HMOX1
0.51
23
3
21
2
88.5%
91.3%
0.0002
2.0E−08
26
23


C1QA
PTPRC
0.51
21
4
21
3
84.0%
87.5%
0.0010
6.0E−05
25
24


IL15
MYC
0.51
25
1
19
4
96.2%
82.6%
0.0005
1.6E−06
26
23


TGFB1

0.51
22
4
21
3
84.6%
87.5%
2.9E−09

26
24


HMGB1
PLAUR
0.51
23
3
20
3
88.5%
87.0%
0.0067
2.3E−08
26
23


ELA2
SSI3
0.51
21
5
20
4
80.8%
83.3%
6.7E−05
2.4E−05
26
24


HMGB1
TNFRSF1A
0.51
23
3
21
2
88.5%
91.3%
0.0147
2.4E−08
26
23


IL15
NFKB1
0.51
23
3
20
4
88.5%
83.3%
0.0004
2.7E−07
26
24


MMP9
MYC
0.50
21
5
18
5
80.8%
78.3%
0.0006
0.0033
26
23


MIF
MYC
0.50
22
4
19
4
84.6%
82.6%
0.0006
5.4E−09
26
23


PLAUR
SERPINE1
0.50
22
4
20
4
84.6%
83.3%
4.0E−05
0.0102
26
24


ICAM1

0.50
21
5
20
4
80.8%
83.3%
3.6E−09

26
24


HMGB1
HSPA1A
0.50
24
2
20
3
92.3%
87.0%
0.0019
2.7E−08
26
23


CCL5
IL15
0.50
24
2
20
4
92.3%
83.3%
3.1E−07
0.0332
26
24


HMOX1
MMP9
0.50
23
3
21
3
88.5%
87.5%
0.0019
0.0004
26
24


CCL5
MAPK14
0.50
19
4
19
5
82.6%
79.2%
1.1E−06
0.0286
23
24


ALOX5
CCL5
0.50
20
5
19
5
80.0%
79.2%
0.0246
0.0003
25
24


IL18
TNFRSF1A
0.50
23
3
21
3
88.5%
87.5%
0.0227
6.9E−09
26
24


IL15
PTGS2
0.50
23
3
21
3
88.5%
87.5%
0.0015
3.3E−07
26
24


NFKB1
SERPINE1
0.50
22
4
20
4
84.6%
83.3%
4.4E−05
0.0005
26
24


HMOX1
SERPINE1
0.50
23
3
20
4
88.5%
83.3%
4.5E−05
0.0004
26
24


IL18BP
SERPINE1
0.50
22
4
21
3
84.6%
87.5%
4.5E−05
6.6E−06
26
24


C1QA
PLAUR
0.50
23
3
20
4
88.5%
83.3%
0.0122
5.4E−05
26
24


SERPINA1

0.50
23
3
21
3
88.5%
87.5%
4.2E−09

26
24


CCL5
IFNG
0.50
21
5
19
5
80.8%
79.2%
4.5E−08
0.0436
26
24


CCL5
IL1R1
0.50
20
6
20
4
76.9%
83.3%
1.3E−08
0.0436
26
24


ELA2
PLAUR
0.50
22
4
20
4
84.6%
83.3%
0.0138
3.7E−05
26
24


IL18
PTPRC
0.49
22
3
20
4
88.0%
83.3%
0.0019
1.1E−08
25
24


PTPRC
TXNRD1
0.49
19
6
21
3
76.0%
87.5%
3.0E−08
0.0019
25
24


PTGS2
VEGF
0.49
23
3
22
2
88.5%
91.7%
0.0004
0.0019
26
24


CCL5
NFKB1
0.49
20
6
20
4
76.9%
83.3%
0.0006
0.0471
26
24


CCL5
TNFSF6
0.49
21
5
19
4
80.8%
82.6%
8.8E−09
0.0318
26
23


PLAUR
TNFRSF13B
0.49
23
3
21
3
88.5%
87.5%
7.4E−09
0.0157
26
24


IL18BP
MMP9
0.48
22
4
20
4
84.6%
83.3%
0.0037
1.2E−05
26
24


TNFRSF1A
VEGF
0.48
23
3
21
3
88.5%
87.5%
0.0006
0.0449
26
24


PLA2G7
TNFRSF1A
0.48
21
5
20
4
80.8%
83.3%
0.0484
9.4E−09
26
24


TIMP1

0.48
21
5
21
3
80.8%
87.5%
7.7E−09

26
24


C1QA
HSPA1A
0.48
23
3
21
3
88.5%
87.5%
0.0054
0.0001
26
24


CASP3
HSPA1A
0.48
21
5
20
4
80.8%
83.3%
0.0055
4.5E−07
26
24


ELA2
MMP9
0.48
23
3
21
3
88.5%
87.5%
0.0045
6.9E−05
26
24


HLADRA
MMP9
0.48
22
4
20
4
84.6%
83.3%
0.0046
1.7E−06
26
24


MYC
TNFRSF1A
0.48
25
1
19
4
96.2%
82.6%
0.0497
0.0017
26
23


MMP9
VEGF
0.47
24
2
22
2
92.3%
91.7%
0.0008
0.0052
26
24


IRF1

0.47
22
4
19
5
84.6%
79.2%
1.1E−08

26
24


IL15
IL1RN
0.47
22
4
20
4
84.6%
83.3%
0.0033
9.2E−07
26
24


IL15
MNDA
0.47
21
5
21
3
80.8%
87.5%
6.2E−05
9.4E−07
26
24


PLAUR
VEGF
0.47
22
4
19
5
84.6%
79.2%
0.0009
0.0363
26
24


C1QA
MMP9
0.47
22
4
20
4
84.6%
83.3%
0.0060
0.0001
26
24


MIF
PLAUR
0.47
22
4
21
3
84.6%
87.5%
0.0371
1.1E−08
26
24


PLAUR
TXNRD1
0.47
22
4
20
4
84.6%
83.3%
3.4E−08
0.0374
26
24


HSPA1A
IL15
0.47
22
4
20
4
84.6%
83.3%
9.7E−07
0.0082
26
24


CASP3
PLAUR
0.47
23
3
20
4
88.5%
83.3%
0.0385
6.6E−07
26
24


CASP3
IL1RN
0.47
20
6
19
5
76.9%
79.2%
0.0037
6.7E−07
26
24


CTLA4
PLAUR
0.47
23
3
21
3
88.5%
87.5%
0.0393
1.4E−08
26
24


IL18
PLAUR
0.47
22
4
20
4
84.6%
83.3%
0.0398
2.1E−08
26
24


ELA2
HMOX1
0.47
21
5
20
4
80.8%
83.3%
0.0014
0.0001
26
24


HMGB1
NFKB1
0.47
20
6
19
4
76.9%
82.6%
0.0012
9.1E−08
26
23


HMOX1
IL15
0.47
22
4
20
4
84.6%
83.3%
1.1E−06
0.0014
26
24


MMP9
TOSO
0.47
23
3
19
4
88.5%
82.6%
2.9E−07
0.0064
26
23


CASP3
MYC
0.47
23
3
20
3
88.5%
87.0%
0.0025
2.1E−06
26
23


ELA2
NFKB1
0.46
23
3
20
4
88.5%
83.3%
0.0019
0.0001
26
24


C1QA
NFKB1
0.46
21
5
21
3
80.8%
87.5%
0.0019
0.0002
26
24


IL18BP
TNFRSF13B
0.46
22
4
20
4
84.6%
83.3%
2.1E−08
2.4E−05
26
24


CCL3
MMP9
0.46
24
2
21
3
92.3%
87.5%
0.0089
4.7E−05
26
24


CTLA4
IL18BP
0.46
22
4
20
4
84.6%
83.3%
2.7E−05
1.9E−08
26
24


ALOX5
HMGB1
0.46
22
3
20
3
88.0%
87.0%
1.4E−07
0.0013
25
23


MMP9
PTGS2
0.46
22
4
20
4
84.6%
83.3%
0.0069
0.0092
26
24


CASP3
PTGS2
0.46
24
2
20
4
92.3%
83.3%
0.0070
9.6E−07
26
24


ALOX5
PTPRC
0.46
19
5
20
4
79.2%
83.3%
0.0098
0.0096
24
24


ELA2
PTGS2
0.46
23
3
21
3
88.5%
87.5%
0.0083
0.0002
26
24


CCR3
MMP9
0.45
22
4
20
4
84.6%
83.3%
0.0127
1.1E−05
26
24


HMOX1
MIF
0.45
21
5
20
4
80.8%
83.3%
2.3E−08
0.0026
26
24


C1QA
IL1RN
0.45
23
3
20
4
88.5%
83.3%
0.0077
0.0003
26
24


IL1R1
MMP9
0.45
22
4
20
4
84.6%
83.3%
0.0142
6.9E−08
26
24


HSPA1A
VEGF
0.45
22
4
21
3
84.6%
87.5%
0.0022
0.0192
26
24


C1QA
SERPINE1
0.45
21
5
20
4
80.8%
83.3%
0.0003
0.0004
26
24


CCL3
SERPINE1
0.45
23
3
20
4
88.5%
83.3%
0.0003
7.6E−05
26
24


IFNG
VEGF
0.45
21
5
19
5
80.8%
79.2%
0.0023
2.5E−07
26
24


CCL3
PTPRC
0.45
20
5
19
5
80.0%
79.2%
0.0112
0.0004
25
24


C1QA
CXCL1
0.45
22
4
20
4
84.6%
83.3%
0.0001
0.0004
26
24


HMOX1
PTPRC
0.45
19
6
20
4
76.0%
83.3%
0.0118
0.0084
25
24


IL5
MYC
0.45
22
4
19
4
84.6%
82.6%
0.0054
4.0E−08
26
23


NFKB1
TNFRSF13B
0.44
22
4
19
5
84.6%
79.2%
4.1E−08
0.0040
26
24


IL8
PTPRC
0.44
23
2
20
4
92.0%
83.3%
0.0127
3.8E−07
25
24


MHC2TA
MMP9
0.44
21
3
20
4
87.5%
83.3%
0.0229
1.7E−07
24
24


MMP9
SERPINE1
0.44
22
4
21
3
84.6%
87.5%
0.0004
0.0173
26
24


PTGS2
SSI3
0.44
23
3
20
4
88.5%
83.3%
0.0007
0.0132
26
24


ALOX5
C1QA
0.44
21
4
20
4
84.0%
83.3%
0.0007
0.0024
25
24


CTLA4
PTPRC
0.44
21
4
20
4
84.0%
83.3%
0.0138
5.3E−08
25
24


CD4
MMP9
0.44
22
4
20
4
84.6%
83.3%
0.0190
6.5E−06
26
24


IL1RN
SERPINE1
0.44
23
3
20
4
88.5%
83.3%
0.0004
0.0113
26
24


ELA2
IL1B
0.44
22
4
20
4
84.6%
83.3%
0.0008
0.0003
26
24


IL1R1
IL1RN
0.44
20
6
19
5
76.9%
79.2%
0.0115
9.5E−08
26
24


HSPA1A
PTGS2
0.44
23
3
20
4
88.5%
83.3%
0.0152
0.0274
26
24


HSPA1A
SERPINE1
0.44
23
3
20
4
88.5%
83.3%
0.0004
0.0274
26
24


HSPA1A
TLR4
0.44
22
4
20
4
84.6%
83.3%
1.3E−07
0.0276
26
24


ALOX5
CASP3
0.44
20
5
19
5
80.0%
79.2%
1.7E−06
0.0028
25
24


ELA2
IL1RN
0.44
22
4
20
4
84.6%
83.3%
0.0118
0.0003
26
24


ELA2
PTPRC
0.44
21
4
21
3
84.0%
87.5%
0.0154
0.0003
25
24


HMOX1
IL1RN
0.44
20
6
19
5
76.9%
79.2%
0.0123
0.0042
26
24


IL18
VEGF
0.44
21
5
19
5
80.8%
79.2%
0.0033
6.4E−08
26
24


IL15
TLR2
0.44
22
4
20
4
84.6%
83.3%
0.0013
3.2E−06
26
24


SERPINE1
VEGF
0.44
22
4
20
4
84.6%
83.3%
0.0033
0.0004
26
24


HMOX1
PTGS2
0.44
21
5
19
5
80.8%
79.2%
0.0169
0.0044
26
24


CCL5

0.44
21
5
19
5
80.8%
79.2%
3.8E−08

26
24


PTGS2
TLR2
0.44
21
5
19
5
80.8%
79.2%
0.0014
0.0178
26
24


C1QA
IL1B
0.44
22
4
21
3
84.6%
87.5%
0.0009
0.0006
26
24


ELA2
MYC
0.44
24
2
20
3
92.3%
87.0%
0.0077
0.0003
26
23


MMP9
NFKB1
0.43
23
3
21
3
88.5%
87.5%
0.0059
0.0254
26
24


HMOX1
IL1B
0.43
23
3
20
4
88.5%
83.3%
0.0010
0.0052
26
24


PLA2G7
PTGS2
0.43
22
4
20
4
84.6%
83.3%
0.0212
5.8E−08
26
24


SERPINE1
TOSO
0.43
22
4
20
3
84.6%
87.0%
1.0E−06
0.0013
26
23


IL1RN
MYC
0.43
20
6
18
5
76.9%
78.3%
0.0090
0.0129
26
23


HSPA1A
MYC
0.43
20
6
18
5
76.9%
78.3%
0.0091
0.0287
26
23


ELA2
TLR2
0.43
22
4
20
4
84.6%
83.3%
0.0017
0.0004
26
24


CD19
MYC
0.43
22
4
18
5
84.6%
78.3%
0.0091
7.2E−08
26
23


APAF1
HSPA1A
0.43
21
5
20
4
80.8%
83.3%
0.0397
7.0E−08
26
24


C1QA
SSI3
0.43
21
5
19
5
80.8%
79.2%
0.0012
0.0007
26
24


IL18
MYC
0.43
23
3
18
5
88.5%
78.3%
0.0094
1.6E−07
26
23


HSPA1A
IL18
0.43
22
4
19
5
84.6%
79.2%
8.9E−08
0.0423
26
24


HMGB1
IL18BP
0.43
21
5
19
4
80.8%
82.6%
6.1E−05
3.6E−07
26
23


IL1B
MYC
0.43
21
5
18
5
80.8%
78.3%
0.0102
0.0010
26
23


CASP3
HMOX1
0.43
20
6
20
4
76.9%
83.3%
0.0063
3.0E−06
26
24


IL32
SERPINE1
0.43
21
5
19
5
80.8%
79.2%
0.0006
4.7E−07
26
24


HMOX1
TLR2
0.43
21
5
19
5
80.8%
79.2%
0.0020
0.0065
26
24


CASP3
MNDA
0.43
21
5
19
5
80.8%
79.2%
0.0003
3.2E−06
26
24


TNFRSF1A

0.43
20
6
20
4
76.9%
83.3%
5.6E−08

26
24


MYC
SSI3
0.43
20
6
18
5
76.9%
78.3%
0.0013
0.0111
26
23


PTPRC
SSI3
0.43
21
4
20
4
84.0%
83.3%
0.0082
0.0264
25
24


ALOX5
ELA2
0.43
20
5
20
4
80.0%
83.3%
0.0007
0.0048
25
24


IL15
MMP9
0.42
22
4
21
3
84.6%
87.5%
0.0381
5.2E−06
26
24


CD86
IL18
0.42
23
3
19
5
88.5%
79.2%
1.1E−07
1.1E−05
26
24


MYC
VEGF
0.42
22
4
19
4
84.6%
82.6%
0.0037
0.0119
26
23


IL1RN
PTGS2
0.42
22
4
20
4
84.6%
83.3%
0.0291
0.0221
26
24


IFNG
PTPRC
0.42
21
4
20
4
84.0%
83.3%
0.0285
6.3E−07
25
24


CASP3
MMP9
0.42
21
5
20
4
80.8%
83.3%
0.0404
3.6E−06
26
24


IL18
IL1RN
0.42
23
3
20
4
88.5%
83.3%
0.0229
1.1E−07
26
24


HMGB1
TLR2
0.42
25
1
19
4
96.2%
82.6%
0.0016
4.5E−07
26
23


IL18
NFKB1
0.42
21
5
19
5
80.8%
79.2%
0.0094
1.1E−07
26
24


CXCR3
MYC
0.42
21
5
19
4
80.8%
82.6%
0.0129
1.3E−06
26
23


APAF1
NFKB1
0.42
21
5
19
5
80.8%
79.2%
0.0101
1.0E−07
26
24


HMGB1
PTPRC
0.42
22
3
20
3
88.0%
87.0%
0.0210
6.9E−07
25
23


ADAM17
IL15
0.42
22
4
20
4
84.6%
83.3%
6.1E−06
3.8E−07
26
24


IFNG
NFKB1
0.42
23
3
20
4
88.5%
83.3%
0.0106
7.0E−07
26
24


ALOX5
PTGS2
0.42
21
4
20
4
84.0%
83.3%
0.0314
0.0060
25
24


IL1B
VEGF
0.42
22
4
20
4
84.6%
83.3%
0.0067
0.0017
26
24


HLADRA
TNFRSF13B
0.42
23
3
20
4
88.5%
83.3%
1.0E−07
1.5E−05
26
24


C1QA
HMOX1
0.42
21
5
20
4
80.8%
83.3%
0.0095
0.0011
26
24


HMOX1
SSI3
0.42
21
5
20
4
80.8%
83.3%
0.0020
0.0098
26
24


ALOX5
MYC
0.42
20
5
19
4
80.0%
82.6%
0.0128
0.0064
25
23


IL8
PTGS2
0.42
25
1
22
2
96.2%
91.7%
0.0392
5.8E−07
26
24


ELA2
SERPINE1
0.42
21
5
18
6
80.8%
75.0%
0.0010
0.0007
26
24


ALOX5
VEGF
0.42
21
4
20
4
84.0%
83.3%
0.0077
0.0068
25
24


PTGS2
TNFRSF13B
0.42
24
2
20
4
92.3%
83.3%
1.1E−07
0.0399
26
24


CTLA4
HMOX1
0.42
23
3
20
4
88.5%
83.3%
0.0104
9.9E−08
26
24


IL1RN
TXNRD1
0.41
23
3
21
3
88.5%
87.5%
2.6E−07
0.0317
26
24


IL15
IL1B
0.41
21
5
20
4
80.8%
83.3%
0.0021
7.6E−06
26
24


IL1RN
VEGF
0.41
22
4
21
3
84.6%
87.5%
0.0087
0.0344
26
24


CXCL1
SERPINE1
0.41
21
5
20
4
80.8%
83.3%
0.0012
0.0004
26
24


CCR5
SERPINE1
0.41
21
5
19
5
80.8%
79.2%
0.0012
2.9E−06
26
24


SSI3
VEGF
0.41
21
5
20
4
80.8%
83.3%
0.0090
0.0024
26
24


NFKB1
PTGS2
0.41
23
3
20
4
88.5%
83.3%
0.0476
0.0144
26
24


IL1RN
TLR4
0.41
21
5
19
5
80.8%
79.2%
3.8E−07
0.0371
26
24


C1QA
TLR2
0.41
22
4
20
4
84.6%
83.3%
0.0037
0.0014
26
24


MYC
TLR2
0.41
21
5
18
5
80.8%
78.3%
0.0025
0.0203
26
23


CCL3
IL1RN
0.41
21
5
20
4
80.8%
83.3%
0.0386
0.0003
26
24


ELA2
VEGF
0.41
21
5
19
5
80.8%
79.2%
0.0099
0.0009
26
24


CXCL1
VEGF
0.41
21
5
20
4
80.8%
83.3%
0.0100
0.0004
26
24


PLAUR

0.41
21
5
19
5
80.8%
79.2%
1.1E−07

26
24


NFKB1
VEGF
0.41
21
5
19
5
80.8%
79.2%
0.0105
0.0167
26
24


C1QA
IL15
0.41
22
4
20
4
84.6%
83.3%
9.6E−06
0.0016
26
24


HLADRA
SERPINE1
0.41
20
6
19
5
76.9%
79.2%
0.0015
2.4E−05
26
24


C1QA
ELA2
0.41
21
5
20
4
80.8%
83.3%
0.0011
0.0017
26
24


CASP3
IL1B
0.41
21
5
20
4
80.8%
83.3%
0.0028
6.9E−06
26
24


CD4
SERPINE1
0.40
20
6
19
5
76.9%
79.2%
0.0015
2.5E−05
26
24


IL18
MNDA
0.40
21
5
19
5
80.8%
79.2%
0.0008
2.2E−07
26
24


ALOX5
HMOX1
0.40
20
5
19
5
80.0%
79.2%
0.0149
0.0112
25
24


IL15
SSI3
0.40
22
4
20
4
84.6%
83.3%
0.0033
1.1E−05
26
24


CCL3
IL15
0.40
21
5
20
4
80.8%
83.3%
1.1E−05
0.0004
26
24


CASP3
TLR2
0.40
21
5
19
5
80.8%
79.2%
0.0052
7.8E−06
26
24


HMOX1
IL18
0.40
22
4
20
4
84.6%
83.3%
2.4E−07
0.0175
26
24


CTLA4
NFKB1
0.40
20
6
19
5
76.9%
79.2%
0.0215
1.6E−07
26
24


CCL3
SSI3
0.40
20
6
20
4
76.9%
83.3%
0.0036
0.0004
26
24


HMGB1
IL1RN
0.40
23
3
19
4
88.5%
82.6%
0.0440
1.0E−06
26
23


NFKB1
TXNRD1
0.40
23
3
19
5
88.5%
79.2%
4.5E−07
0.0238
26
24


IL18BP
MIF
0.40
21
5
19
5
80.8%
79.2%
1.5E−07
0.0003
26
24


CD8A
NFKB1
0.40
21
5
20
4
80.8%
83.3%
0.0252
2.7E−07
26
24


HMOX1
MMP12
0.40
20
6
19
5
76.9%
79.2%
4.9E−07
0.0214
26
24


C1QA
IFNG
0.40
22
4
20
4
84.6%
83.3%
1.6E−06
0.0025
26
24


MYC
TNFSF5
0.40
20
6
18
5
76.9%
78.3%
1.2E−06
0.0357
26
23


CASP3
CXCL1
0.40
20
6
19
5
76.9%
79.2%
0.0007
9.7E−06
26
24


CD8A
MYC
0.39
23
3
19
4
88.5%
82.6%
0.0376
3.5E−07
26
23


IL18BP
IL23A
0.39
21
5
19
4
80.8%
82.6%
2.8E−07
0.0123
26
23


ELA2
MAPK14
0.39
18
5
20
4
78.3%
83.3%
4.3E−05
0.0196
23
24


DPP4
MYC
0.39
20
6
19
4
76.9%
82.6%
0.0396
8.7E−07
26
23


CCL3
ELA2
0.39
22
4
20
4
84.6%
83.3%
0.0017
0.0006
26
24


MMP12
MYC
0.39
23
3
19
4
88.5%
82.6%
0.0407
9.5E−07
26
23


MYC
TNFSF6
0.39
21
5
18
4
80.8%
81.8%
3.9E−07
0.0251
26
22


MYC
NFKB1
0.39
23
3
19
4
88.5%
82.6%
0.0211
0.0433
26
23


HMOX1
IFNG
0.39
21
5
19
5
80.8%
79.2%
2.0E−06
0.0271
26
24


IFNG
MYC
0.39
25
1
18
5
96.2%
78.3%
0.0438
4.9E−06
26
23


HLADRA
IL15
0.39
22
4
20
4
84.6%
83.3%
1.8E−05
4.1E−05
26
24


MNDA
SERPINE1
0.39
20
6
19
5
76.9%
79.2%
0.0027
0.0013
26
24


HMOX1
VEGF
0.39
22
4
19
5
84.6%
79.2%
0.0221
0.0291
26
24


IL18BP
IL1B
0.39
21
5
19
5
80.8%
79.2%
0.0059
0.0004
26
24


CCR3
SERPINE1
0.38
21
5
20
4
80.8%
83.3%
0.0033
0.0001
26
24


CD4
CTLA4
0.38
22
4
19
5
84.6%
79.2%
2.9E−07
5.2E−05
26
24


CXCL1
ELA2
0.38
22
4
20
4
84.6%
83.3%
0.0023
0.0010
26
24


ELA2
IL18BP
0.38
22
4
20
4
84.6%
83.3%
0.0005
0.0024
26
24


C1QA
MNDA
0.38
22
4
19
5
84.6%
79.2%
0.0016
0.0040
26
24


IL18BP
SSI3
0.38
20
6
19
5
76.9%
79.2%
0.0072
0.0005
26
24


IL8
VEGF
0.38
23
3
20
4
88.5%
83.3%
0.0288
2.0E−06
26
24


CCL3
TLR2
0.38
21
5
19
5
80.8%
79.2%
0.0116
0.0009
26
24


IL1B
SERPINE1
0.38
21
5
19
5
80.8%
79.2%
0.0038
0.0072
26
24


CXCL1
IL15
0.38
21
5
19
5
80.8%
79.2%
2.7E−05
0.0013
26
24


HMGB1
VEGF
0.38
20
6
18
5
76.9%
78.3%
0.0205
2.1E−06
26
23


C1QA
VEGF
0.38
22
4
20
4
84.6%
83.3%
0.0334
0.0048
26
24


SERPINE1
TNFSF5
0.38
20
6
20
4
76.9%
83.3%
2.6E−06
0.0043
26
24


CXCL1
HMOX1
0.38
22
4
19
5
84.6%
79.2%
0.0479
0.0014
26
24


IL15
IL18BP
0.37
21
5
20
4
80.8%
83.3%
0.0007
3.3E−05
26
24


CCL3
VEGF
0.37
21
5
20
4
80.8%
83.3%
0.0413
0.0012
26
24


CCL3
TNFRSF13B
0.37
20
6
18
6
76.9%
75.0%
5.3E−07
0.0012
26
24


ALOX5
CCL3
0.37
21
4
20
4
84.0%
83.3%
0.0010
0.0358
25
24


CASP1
SERPINE1
0.37
21
5
20
4
80.8%
83.3%
0.0051
0.0011
26
24


HLADRA
HMGB1
0.37
23
3
19
4
88.5%
82.6%
2.6E−06
5.5E−05
26
23


HMOX1
TNFSF6
0.37
20
6
18
5
76.9%
78.3%
6.0E−07
0.0434
26
23


C1QA
CCL3
0.37
21
5
19
5
80.8%
79.2%
0.0013
0.0062
26
24


CASP1
IFNG
0.37
20
6
18
6
76.9%
75.0%
3.9E−06
0.0012
26
24


CD4
ELA2
0.37
25
1
21
3
96.2%
87.5%
0.0038
8.4E−05
26
24


CCL3
IL1B
0.37
24
2
20
4
92.3%
83.3%
0.0104
0.0013
26
24


CCR3
ELA2
0.37
24
2
20
4
92.3%
83.3%
0.0039
0.0002
26
24


C1QA
CCR3
0.37
22
4
20
4
84.6%
83.3%
0.0002
0.0067
26
24


HSPA1A

0.37
20
6
18
6
76.9%
75.0%
4.2E−07

26
24


IL18BP
VEGF
0.37
22
4
20
4
84.6%
83.3%
0.0479
0.0008
26
24


HLADRA
IL1B
0.37
21
5
19
5
80.8%
79.2%
0.0112
8.9E−05
26
24


SERPINE1
TNFSF6
0.37
21
5
19
4
80.8%
82.6%
6.7E−07
0.0409
26
23


CD86
SERPINE1
0.37
23
3
20
4
88.5%
83.3%
0.0062
8.4E−05
26
24


SERPINE1
SSI3
0.37
20
6
19
5
76.9%
79.2%
0.0130
0.0063
26
24


CCR3
SSI3
0.37
21
5
19
5
80.8%
79.2%
0.0137
0.0003
26
24


SERPINE1
TLR2
0.36
20
6
19
5
76.9%
79.2%
0.0226
0.0071
26
24


IL15
LTA
0.36
18
3
19
5
85.7%
79.2%
4.9E−05
0.0009
21
24


C1QA
TOSO
0.36
22
4
19
4
84.6%
82.6%
1.2E−05
0.0371
26
23


MMP9

0.36
21
5
20
4
80.8%
83.3%
5.5E−07

26
24


CD4
HMGB1
0.36
20
6
18
5
76.9%
78.3%
4.0E−06
8.4E−05
26
23


C1QA
IL18BP
0.36
23
3
21
3
88.5%
87.5%
0.0011
0.0097
26
24


ADAM17
CASP3
0.36
22
4
20
4
84.6%
83.3%
3.5E−05
3.3E−06
26
24


ELA2
MNDA
0.36
23
3
20
4
88.5%
83.3%
0.0040
0.0059
26
24


CD4
IL15
0.36
22
4
20
4
84.6%
83.3%
5.5E−05
0.0001
26
24


CCR3
IL1B
0.36
21
5
19
5
80.8%
79.2%
0.0167
0.0003
26
24


IL18
SSI3
0.36
22
4
19
5
84.6%
79.2%
0.0182
1.1E−06
26
24


IL18
IL1B
0.36
20
6
19
5
76.9%
79.2%
0.0172
1.1E−06
26
24


HLADRA
SSI3
0.36
22
4
20
4
84.6%
83.3%
0.0185
0.0001
26
24


IL18
TLR2
0.36
21
5
20
4
80.8%
83.3%
0.0290
1.1E−06
26
24


CASP1
ELA2
0.36
20
6
19
5
76.9%
79.2%
0.0065
0.0019
26
24


MMP12
TLR2
0.36
20
6
20
4
76.9%
83.3%
0.0295
2.0E−06
26
24


CASP1
IL18
0.36
20
6
18
6
76.9%
75.0%
1.2E−06
0.0020
26
24


C1QA
CD4
0.35
22
4
20
4
84.6%
83.3%
0.0002
0.0119
26
24


HMGB1
MNDA
0.35
20
6
18
5
76.9%
78.3%
0.0044
4.9E−06
26
23


PTGS2

0.35
21
5
20
4
80.8%
83.3%
7.2E−07

26
24


CASP3
LTA
0.35
17
4
19
5
81.0%
79.2%
6.7E−05
0.0053
21
24


PTPRC

0.35
20
5
19
5
80.0%
79.2%
9.8E−07

25
24


GZMB
SSI3
0.35
22
4
20
4
84.6%
83.3%
0.0233
2.5E−05
26
24


ELA2
IL15
0.35
20
6
19
5
76.9%
79.2%
7.2E−05
0.0080
26
24


C1QA
LTA
0.35
16
5
19
5
76.2%
79.2%
8.0E−05
0.0225
21
24


CD86
IFNG
0.35
21
5
19
5
80.8%
79.2%
9.0E−06
0.0002
26
24


IL1RN

0.35
20
6
18
6
76.9%
75.0%
9.2E−07

26
24


HMGB1
SSI3
0.35
20
6
18
5
76.9%
78.3%
0.0257
6.5E−06
26
23


IL8
TLR2
0.35
21
5
19
5
80.8%
79.2%
0.0456
7.1E−06
26
24


IL15
MAPK14
0.34
19
4
20
4
82.6%
83.3%
0.0002
0.0002
23
24


TNFRSF13B
TOSO
0.34
21
5
19
4
80.8%
82.6%
2.4E−05
2.5E−06
26
23


ELA2
IL32
0.34
22
4
20
4
84.6%
83.3%
1.1E−05
0.0126
26
24


C1QA
HLADRA
0.34
20
6
18
6
76.9%
75.0%
0.0003
0.0218
26
24


GZMB
SERPINE1
0.34
20
6
19
5
76.9%
79.2%
0.0195
4.1E−05
26
24


ELA2
HLADRA
0.34
22
4
20
4
84.6%
83.3%
0.0003
0.0153
26
24


CASP3
ELA2
0.33
22
4
21
3
84.6%
87.5%
0.0161
9.2E−05
26
24


CXCL1
IL18
0.33
20
6
20
4
76.9%
83.3%
2.7E−06
0.0070
26
24


CCL3
CXCL1
0.33
20
6
19
5
76.9%
79.2%
0.0070
0.0054
26
24


C1QA
CASP3
0.33
21
5
19
5
80.8%
79.2%
1.0E−04
0.0299
26
24


CD8A
SERPINE1
0.33
20
6
19
5
76.9%
79.2%
0.0262
2.9E−06
26
24


CD8A
IL18BP
0.33
22
4
20
4
84.6%
83.3%
0.0033
2.9E−06
26
24


MNDA
TXNRD1
0.33
20
6
19
5
76.9%
79.2%
5.2E−06
0.0120
26
24


MYC

0.33
23
3
18
5
88.5%
78.3%
2.2E−06

26
23


DPP4
SERPINE1
0.33
20
6
19
5
76.9%
79.2%
0.0304
1.0E−05
26
24


ELA2
TOSO
0.33
22
4
19
4
84.6%
82.6%
4.2E−05
0.0295
26
23


C1QA
CD86
0.33
21
5
18
6
80.8%
75.0%
0.0004
0.0387
26
24


CCL3
IL8
0.33
21
5
19
5
80.8%
79.2%
1.6E−05
0.0076
26
24


CASP3
CCL3
0.32
20
6
18
6
76.9%
75.0%
0.0084
0.0001
26
24


CASP3
CD4
0.32
23
3
19
5
88.5%
79.2%
0.0005
0.0001
26
24


C1QA
TNFSF5
0.32
21
5
19
5
80.8%
79.2%
1.9E−05
0.0445
26
24


HMOX1

0.32
21
5
19
5
80.8%
79.2%
2.5E−06

26
24


CCR5
ELA2
0.32
21
5
20
4
80.8%
83.3%
0.0287
8.4E−05
26
24


IL8
MNDA
0.32
20
6
18
6
76.9%
75.0%
0.0194
2.0E−05
26
24


ELA2
LTA
0.31
19
2
20
4
90.5%
83.3%
0.0002
0.0422
21
24


VEGF

0.31
21
5
19
5
80.8%
79.2%
3.2E−06

26
24


ELA2
GZMB
0.31
21
5
20
4
80.8%
83.3%
0.0001
0.0373
26
24


CASP1
IL8
0.31
21
5
18
6
80.8%
75.0%
2.5E−05
0.0109
26
24


IL18BP
IL8
0.31
22
4
20
4
84.6%
83.3%
2.8E−05
0.0076
26
24


ELA2
MMP12
0.31
21
5
19
5
80.8%
79.2%
1.1E−05
0.0439
26
24


ELA2
IL8
0.31
23
3
19
5
88.5%
79.2%
2.9E−05
0.0454
26
24


ALOX5

0.31
19
6
18
6
76.0%
75.0%
4.8E−06

25
24


MMP12
MNDA
0.31
21
5
19
5
80.8%
79.2%
0.0299
1.2E−05
26
24


CXCR3
ELA2
0.31
23
3
21
3
88.5%
87.5%
0.0470
0.0001
26
24


CCL3
HMGB1
0.31
21
5
19
4
80.8%
82.6%
2.7E−05
0.0107
26
23


CASP3
IL18BP
0.31
21
5
19
5
80.8%
79.2%
0.0089
0.0003
26
24


CD19
IL18BP
0.31
22
4
19
5
84.6%
79.2%
0.0090
4.3E−06
26
24


CASP3
HLADRA
0.30
21
5
19
5
80.8%
79.2%
0.0010
0.0003
26
24


CTLA4
HLADRA
0.30
20
6
18
6
76.9%
75.0%
0.0011
5.7E−06
26
24


CCL3
CTLA4
0.30
21
5
19
5
80.8%
79.2%
6.3E−06
0.0205
26
24


CD86
IL8
0.30
21
5
19
5
80.8%
79.2%
4.6E−05
0.0012
26
24


HMGB1
LTA
0.29
18
3
19
4
85.7%
82.6%
0.0004
0.0002
21
23


CASP1
IL18BP
0.29
20
6
18
6
76.9%
75.0%
0.0146
0.0239
26
24


IFNG
IL18BP
0.29
21
5
19
5
80.8%
79.2%
0.0148
7.0E−05
26
24


IL18BP
TNFSF6
0.29
20
6
18
5
76.9%
78.3%
1.0E−05
0.0095
26
23


CCL3
CD19
0.29
21
5
18
6
80.8%
75.0%
7.1E−06
0.0283
26
24


CXCL1
IL8
0.29
23
3
20
4
88.5%
83.3%
5.6E−05
0.0398
26
24


IL15
TOSO
0.29
20
6
18
5
76.9%
78.3%
0.0002
0.0009
26
23


TLR2

0.29
20
6
19
5
76.9%
79.2%
7.7E−06

26
24


HLADRA
IL23A
0.29
21
5
18
5
80.8%
78.3%
1.1E−05
0.0291
26
23


CCR5
IL15
0.29
20
6
18
6
76.9%
75.0%
0.0008
0.0003
26
24


HMGB1
TOSO
0.28
22
4
17
5
84.6%
77.3%
0.0001
7.1E−05
26
22


CASP1
HMGB1
0.28
21
5
18
5
80.8%
78.3%
6.5E−05
0.0225
26
23


IL15
IL32
0.28
23
3
18
6
88.5%
75.0%
9.3E−05
0.0010
26
24


SSI3

0.28
20
6
19
5
76.9%
79.2%
1.1E−05

26
24


CD4
IFNG
0.28
20
6
19
5
76.9%
79.2%
0.0001
0.0027
26
24


CASP3
MAPK14
0.28
18
5
18
6
78.3%
75.0%
0.0025
0.0008
23
24


CASP3
CCR5
0.27
21
5
20
4
80.8%
83.3%
0.0004
0.0008
26
24


HLADRA
MIF
0.27
20
6
18
6
76.9%
75.0%
1.4E−05
0.0032
26
24


APAF1
CASP3
0.27
20
6
20
4
76.9%
83.3%
0.0009
2.1E−05
26
24


CD19
HLADRA
0.27
23
3
19
5
88.5%
79.2%
0.0037
1.6E−05
26
24


IL10
IL18BP
0.27
24
2
19
5
92.3%
79.2%
0.0369
0.0003
26
24


CASP3
TNFSF5
0.27
22
4
18
6
84.6%
75.0%
0.0001
0.0011
26
24


CASP3
TXNRD1
0.26
20
6
18
6
76.9%
75.0%
6.5E−05
0.0014
26
24


CD4
IL8
0.26
21
5
20
4
80.8%
83.3%
0.0002
0.0058
26
24


HLADRA
IFNG
0.25
20
6
18
6
76.9%
75.0%
0.0003
0.0070
26
24


CASP3
IL32
0.25
21
5
18
6
80.8%
75.0%
0.0003
0.0020
26
24


CASP3
TOSO
0.25
20
6
18
5
76.9%
78.3%
0.0007
0.0026
26
23


CTLA4
CXCR3
0.25
20
6
19
5
76.9%
79.2%
0.0010
4.4E−05
26
24


CCR3
MAPK14
0.24
18
5
18
6
78.3%
75.0%
0.0082
0.0306
23
24


IL18
LTA
0.24
19
2
20
4
90.5%
83.3%
0.0029
0.0009
21
24


CASP3
TLR4
0.23
20
6
18
6
76.9%
75.0%
0.0003
0.0044
26
24


IL8
TOSO
0.23
20
6
18
5
76.9%
78.3%
0.0014
0.0008
26
23


CXCL1

0.23
20
6
19
5
76.9%
79.2%
6.9E−05

26
24


CCL3

0.22
20
6
18
6
76.9%
75.0%
8.9E−05

26
24


CCR5
IFNG
0.22
20
6
18
6
76.9%
75.0%
0.0010
0.0032
26
24


HMGB1
MAPK14
0.22
19
4
18
5
82.6%
78.3%
0.0173
0.0010
23
23


CASP3
GZMB
0.21
21
5
19
5
80.8%
79.2%
0.0047
0.0092
26
24


IL8
TNFSF5
0.21
20
6
19
5
76.9%
79.2%
0.0012
0.0011
26
24


IL18BP

0.21
21
5
19
5
80.8%
79.2%
0.0002

26
24


HLADRA
IL10
0.20
20
6
19
5
76.9%
79.2%
0.0037
0.0480
26
24


GZMB
MAPK14
0.20
18
5
19
5
78.3%
79.2%
0.0427
0.0124
23
24


IL32
IL8
0.19
21
5
19
5
80.8%
79.2%
0.0019
0.0024
26
24


IFNG
LTA
0.19
16
5
18
6
76.2%
75.0%
0.0156
0.0071
21
24


ADAM17
IFNG
0.19
21
5
19
5
80.8%
79.2%
0.0034
0.0018
26
24


CXCR3
IL8
0.19
21
5
19
5
80.8%
79.2%
0.0025
0.0089
26
24


CASP3
IL1R1
0.18
20
6
18
6
76.9%
75.0%
0.0012
0.0299
26
24


CCR5
MIF
0.18
20
6
18
6
76.9%
75.0%
0.0005
0.0191
26
24


IL10
TOSO
0.17
24
2
18
5
92.3%
78.3%
0.0136
0.0133
26
23


IL8
MHC2TA
0.16
18
6
18
6
75.0%
75.0%
0.0032
0.0098
24
24


CASP3
MHC2TA
0.16
19
5
19
5
79.2%
79.2%
0.0033
0.0461
24
24


IL10
LTA
0.16
17
4
18
6
81.0%
75.0%
0.0450
0.0161
21
24


HMGB1
MHC2TA
0.16
20
4
18
5
83.3%
78.3%
0.0033
0.0066
24
23


CXCR3
IL10
0.15
21
5
18
6
80.8%
75.0%
0.0335
0.0440
26
24


























Cervical
Normal
Sum



Group Size
48.0%
52.0%
100%



N =
24
26
50



Gene
Mean
Mean
p-val





















EGR1
18.0
19.3
2.4E−11



TNF
16.7
18.1
6.9E−11



IFI16
12.6
13.7
1.3E−10



TGFB1
11.2
12.3
2.9E−09



ICAM1
15.9
17.0
3.6E−09



SERPINA1
11.6
12.8
4.2E−09



TIMP1
12.6
13.7
7.7E−09



IRF1
12.0
12.7
1.1E−08



CCL5
10.5
11.6
3.8E−08



TNFRSF1A
13.2
14.2
5.6E−08



PLAUR
13.3
14.3
1.1E−07



HSPA1A
13.3
14.4
4.2E−07



MMP9
12.3
14.0
5.5E−07



PTGS2
15.6
16.5
7.2E−07



IL1RN
14.7
15.8
9.2E−07



PTPRC
10.4
11.1
9.8E−07



NFKB1
16.0
16.8
2.1E−06



MYC
16.7
17.5
2.2E−06



HMOX1
14.5
15.5
2.5E−06



VEGF
21.3
22.2
3.2E−06



ALOX5
15.9
16.9
4.8E−06



TLR2
14.5
15.3
7.7E−06



SSI3
15.8
17.0
1.1E−05



IL1B
14.5
15.4
1.2E−05



C1QA
19.3
20.4
1.9E−05



SERPINE1
19.3
20.6
2.2E−05



ELA2
18.9
20.7
3.1E−05



MNDA
11.6
12.2
4.6E−05



CXCL1
18.7
19.3
6.9E−05



CCL3
19.3
20.2
8.9E−05



CASP1
15.3
15.9
9.9E−05



IL18BP
16.1
16.8
0.0002



CCR3
15.5
16.4
0.0005



CD4
14.5
15.1
0.0014



HLADRA
11.0
11.6
0.0014



CD86
16.5
17.0
0.0016



MAPK14
13.2
13.9
0.0028



IL15
21.0
20.4
0.0034



CASP3
21.3
20.7
0.0051



CCR5
16.4
17.0
0.0099



GZMB
16.2
17.0
0.0101



CXCR3
16.2
16.7
0.0130



LTA
17.4
17.8
0.0134



IL10
22.0
22.8
0.0169



TOSO
15.1
15.6
0.0205



IFNG
22.9
22.2
0.0354



IL32
13.0
13.4
0.0394



TNFSF5
16.9
17.3
0.0447



IL8
21.7
21.1
0.0498



ADAM17
16.9
17.2
0.0702



DPP4
18.0
18.4
0.0718



HMGB1
17.4
17.0
0.0756



TLR4
14.0
14.3
0.1047



MHC2TA
14.9
15.3
0.1367



TXNRD1
16.2
16.4
0.1430



MMP12
23.5
23.1
0.1440



IL1R1
19.4
19.7
0.1571



IL18
21.4
21.2
0.2910



CD8A
15.2
15.4
0.3031



APAF1
17.4
17.6
0.3786



TNFRSF13B
19.4
19.1
0.4152



PLA2G7
18.6
18.8
0.5103



CTLA4
18.8
18.7
0.5605



TNFSF6
19.4
19.5
0.5927



IL23A
20.4
20.6
0.5964



IL5
21.1
21.1
0.8115



CD19
18.1
18.1
0.9192



MIF
14.8
14.8
0.9535
































Predicted








probability


Patient





of


ID
Group
EGR1
IRF1
logit
odds
Cervical Inf





















32
Cervical
17.21
11.82
11.61
109845.99
1.0000


10
Cervical
17.58
11.65
10.67
42883.66
1.0000


3
Cervical
17.72
11.58
10.35
31185.22
1.0000


34
Cervical
18.32
11.14
9.98
21691.94
1.0000


33
Cervical
17.72
11.70
9.46
12899.17
0.9999


5
Cervical
17.68
11.81
8.92
7499.54
0.9999


13
Cervical
17.30
12.24
7.98
2908.18
0.9997


31
Cervical
18.13
11.60
7.75
2332.63
0.9996


18
Cervical
17.36
12.27
7.45
1725.10
0.9994


17
Cervical
18.03
11.84
6.55
702.12
0.9986


15
Cervical
18.12
11.81
6.24
514.87
0.9981


2
Cervical
17.59
12.35
5.44
230.67
0.9957


4
Cervical
18.28
11.81
5.33
206.18
0.9952


6
Cervical
17.93
12.10
5.23
186.27
0.9947


11
Cervical
18.17
11.92
5.16
174.70
0.9943


19
Cervical
18.17
11.92
5.11
166.12
0.9940


20
Cervical
18.43
11.77
4.70
110.36
0.9910


14
Cervical
17.65
12.47
4.20
66.46
0.9852


16
Cervical
18.48
11.83
3.96
52.29
0.9812


8
Cervical
17.78
12.51
3.19
24.39
0.9606


4
Normals
18.24
12.31
1.91
6.73
0.8707


9
Cervical
18.24
12.42
1.06
2.90
0.7435


1
Cervical
18.34
12.47
0.15
1.16
0.5376


12
Cervical
18.99
11.94
0.11
1.12
0.5287


50
Normals
19.37
11.66
−0.09
0.92
0.4779


7
Cervical
18.82
12.17
−0.51
0.60
0.3741


1
Normals
18.11
12.82
−1.05
0.35
0.2596


41
Normals
18.99
12.19
−1.68
0.19
0.1568


42
Normals
19.30
12.08
−2.72
0.07
0.0616


149
Normals
18.42
12.80
−2.77
0.06
0.0591


34
Normals
19.26
12.31
−4.15
0.02
0.0155


2
Normals
18.77
12.71
−4.19
0.02
0.0149


6
Normals
19.51
12.26
−5.31
0.00
0.0049


110
Normals
19.11
12.61
−5.50
0.00
0.0041


109
Normals
19.25
12.56
−6.03
0.00
0.0024


111
Normals
19.21
12.83
−7.71
0.00
0.0004


32
Normals
19.41
12.73
−8.11
0.00
0.0003


125
Normals
19.90
12.44
−8.97
0.00
0.0001


146
Normals
19.62
12.69
−9.14
0.00
0.0001


104
Normals
18.97
13.32
−9.86
0.00
0.0001


11
Normals
19.47
12.93
−9.99
0.00
0.0000


120
Normals
19.78
12.83
−11.11
0.00
0.0000


133
Normals
19.84
12.79
−11.15
0.00
0.0000


103
Normals
19.86
12.81
−11.48
0.00
0.0000


28
Normals
19.22
13.34
−11.50
0.00
0.0000


22
Normals
19.43
13.33
−12.69
0.00
0.0000


150
Normals
19.30
13.51
−13.25
0.00
0.0000


33
Normals
19.33
13.57
−13.89
0.00
0.0000


118
Normals
19.96
13.11
−14.26
0.00
0.0000


31
Normals
20.61
12.92
−16.67
0.00
0.0000























TABLE 3A














total used






Normal
Cervical

(excludes



En-

N =
22
24

missing)


















2-gene models and
tropy
#normal
#normal
#cvc
#cvc
Correct
Correct


#
#


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
normals
disease






















EGR1

1.00
22
0
24
0
100.0%
100.0%
1.4E−15

22
24


HRAS
TGFB1
0.94
22
0
23
1
100.0%
95.8%
7.1E−06
1.7E−14
22
24


ITGB1
TNF
0.91
21
1
23
1
95.5%
95.8%
9.9E−06
4.2E−14
22
24


AKT1
TGFB1
0.89
21
1
23
1
95.5%
95.8%
4.2E−05
1.4E−10
22
24


FOS
SOCS1
0.87
20
1
23
1
95.2%
95.8%
0.0032
0.0004
21
24


CDK4
TGFB1
0.86
21
1
23
1
95.5%
95.8%
8.5E−05
4.0E−13
22
24


FOS
SERPINE1
0.86
21
0
23
1
100.0%
95.8%
6.4E−07
0.0005
21
24


CASP8
TGFB1
0.84
20
2
23
1
90.9%
95.8%
0.0002
2.5E−13
22
24


FOS
NME4
0.83
21
0
23
1
100.0%
95.8%
7.6E−05
0.0013
21
24


SKI
TGFB1
0.83
21
1
22
2
95.5%
91.7%
0.0003
8.0E−13
22
24


SKIL
TNF
0.83
21
1
22
2
95.5%
91.7%
0.0002
1.3E−11
22
24


MSH2
TGFB1
0.82
21
1
22
2
95.5%
91.7%
0.0004
1.1E−11
22
24


TGFB1
TNFRSF10A
0.82
22
0
23
1
100.0%
95.8%
6.4E−13
0.0004
22
24


ATM
TNF
0.81
21
1
22
2
95.5%
91.7%
0.0003
3.0E−12
22
24


CDC25A
FOS
0.81
20
1
22
2
95.2%
91.7%
0.0029
1.7E−10
21
24


ITGB1
SOCS1
0.79
21
1
22
2
95.5%
91.7%
0.0242
1.8E−12
22
24


TNF
TNFRSF10A
0.79
20
2
23
1
90.9%
95.8%
1.4E−12
0.0006
22
24


ITGA3
TGFB1
0.79
21
0
21
2
100.0%
91.3%
0.0010
1.2E−11
21
23


NME1
TGFB1
0.79
21
1
23
1
95.5%
95.8%
0.0011
1.3E−12
22
24


PTCH1
TGFB1
0.79
21
1
23
1
95.5%
95.8%
0.0012
3.3E−12
22
24


S100A4
TGFB1
0.79
22
0
22
2
100.0%
91.7%
0.0012
6.8E−11
22
24


FOS
IFNG
0.79
19
2
22
2
90.5%
91.7%
1.3E−10
0.0064
21
24


FOS
TNF
0.78
19
2
23
1
90.5%
95.8%
0.0012
0.0078
21
24


SKIL
SOCS1
0.78
21
1
23
1
95.5%
95.8%
0.0442
6.7E−11
22
24


ABL2
HRAS
0.78
21
1
23
1
95.5%
95.8%
3.3E−12
3.3E−06
22
24


TGFB1
VHL
0.77
22
0
23
1
100.0%
95.8%
1.4E−10
0.0022
22
24


FOS
PLAU
0.77
20
1
22
2
95.2%
91.7%
7.8E−05
0.0111
21
24


FOS
MSH2
0.77
20
1
22
2
95.2%
91.7%
1.1E−10
0.0120
21
24


IFNG
TNF
0.77
22
0
23
1
100.0%
95.8%
0.0014
1.3E−10
22
24


MSH2
TNF
0.76
21
1
22
2
95.5%
91.7%
0.0014
7.1E−11
22
24


ERBB2
TGFB1
0.76
22
0
22
2
100.0%
91.7%
0.0026
1.8E−10
22
24


FOS
SKIL
0.76
21
0
22
2
100.0%
91.7%
1.3E−10
0.0147
21
24


ITGB1
TGFB1
0.76
21
1
23
1
95.5%
95.8%
0.0031
5.8E−12
22
24


ATM
FOS
0.76
20
1
22
2
95.2%
91.7%
0.0169
2.9E−11
21
24


IFNG
TGFB1
0.76
22
0
22
2
100.0%
91.7%
0.0036
1.7E−10
22
24


FOS
THBS1
0.75
20
1
23
1
95.2%
95.8%
2.8E−07
0.0188
21
24


BAX
HRAS
0.75
20
2
22
2
90.9%
91.7%
7.0E−12
5.3E−10
22
24


SKIL
TNFRSF1A
0.75
22
0
23
1
100.0%
95.8%
0.0001
1.5E−10
22
24


CDKN1A
FOS
0.75
19
2
23
1
90.5%
95.8%
0.0195
1.5E−06
21
24


ABL2
SKI
0.75
20
2
22
2
90.9%
91.7%
1.0E−11
7.6E−06
22
24


ABL2
CASP8
0.75
20
2
22
2
90.9%
91.7%
5.0E−12
7.7E−06
22
24


E2F1
FOS
0.75
21
0
22
2
100.0%
91.7%
0.0212
4.1E−08
21
24


CASP8
FOS
0.75
19
2
22
2
90.5%
91.7%
0.0233
1.0E−11
21
24


NME4
TGFB1
0.75
21
1
22
2
95.5%
91.7%
0.0046
0.0010
22
24


IFITM1
IL1B
0.75
20
2
22
2
90.9%
91.7%
3.7E−08
0.0010
22
24


SKIL
TGFB1
0.74
20
2
23
1
90.9%
95.8%
0.0053
2.0E−10
22
24


FOS
RAF1
0.74
19
2
22
2
90.5%
91.7%
9.2E−09
0.0268
21
24


BAX
TGFB1
0.74
21
1
22
2
95.5%
91.7%
0.0053
7.3E−10
22
24


APAF1
FOS
0.74
20
1
22
2
95.2%
91.7%
0.0302
3.6E−11
21
24


TNF
VHL
0.74
20
2
21
3
90.9%
87.5%
3.7E−10
0.0035
22
24


CFLAR
FOS
0.74
21
0
22
2
100.0%
91.7%
0.0348
3.0E−10
21
24


ABL1
TGFB1
0.74
20
2
22
2
90.9%
91.7%
0.0069
4.4E−09
22
24


FOS
ITGB1
0.74
21
0
22
2
100.0%
91.7%
2.0E−11
0.0358
21
24


FOS
TGFB1
0.73
20
1
23
1
95.2%
95.8%
0.0145
0.0390
21
24


FOS
SKI
0.73
18
3
22
2
85.7%
91.7%
4.2E−11
0.0403
21
24


HRAS
TNF
0.73
20
2
22
2
90.9%
91.7%
0.0048
1.5E−11
22
24


ATM
TGFB1
0.73
20
2
23
1
90.9%
95.8%
0.0090
4.2E−11
22
24


FOS
RHOC
0.73
21
0
22
2
100.0%
91.7%
4.6E−06
0.0483
21
24


ABL2
MSH2
0.73
19
3
21
3
86.4%
87.5%
2.3E−10
1.7E−05
22
24


ITGAE
TGFB1
0.72
20
2
22
2
90.9%
91.7%
0.0107
1.3E−11
22
24


NME4
TNFRSF1A
0.72
20
2
22
2
90.9%
91.7%
0.0004
0.0024
22
24


ABL2
TNFRSF10A
0.72
21
1
23
1
95.5%
95.8%
1.5E−11
2.2E−05
22
24


PCNA
TGFB1
0.72
22
0
22
2
100.0%
91.7%
0.0128
1.6E−11
22
24


RB1
SKIL
0.72
20
2
21
3
90.9%
87.5%
4.6E−10
3.3E−10
22
24


IL18
TGFB1
0.72
20
2
22
2
90.9%
91.7%
0.0131
1.3E−11
22
24


NFKB1
TGFB1
0.72
20
2
22
2
90.9%
91.7%
0.0135
6.9E−07
22
24


PLAU
TNF
0.72
21
1
22
2
95.5%
91.7%
0.0076
1.1E−05
22
24


SOCS1

0.72
21
1
23
1
95.5%
95.8%
1.5E−11

22
24


BAD
TGFB1
0.71
22
0
22
2
100.0%
91.7%
0.0177
6.9E−09
22
24


SKIL
TIMP1
0.71
19
3
22
2
86.4%
91.7%
0.0089
6.5E−10
22
24


SMAD4
TGFB1
0.71
22
0
22
2
100.0%
91.7%
0.0210
2.8E−09
22
24


IFITM1
TNF
0.71
20
2
22
2
90.9%
91.7%
0.0112
0.0042
22
24


CDK4
TNF
0.71
21
1
22
2
95.5%
91.7%
0.0115
7.2E−11
22
24


IFITM1
PTEN
0.71
19
3
22
2
86.4%
91.7%
4.7E−11
0.0044
22
24


IFNG
TNFRSF1A
0.70
20
2
21
3
90.9%
87.5%
0.0007
9.4E−10
22
24


RAF1
TGFB1
0.70
21
1
23
1
95.5%
95.8%
0.0239
9.3E−09
22
24


IFITM1
NME4
0.70
20
2
22
2
90.9%
91.7%
0.0047
0.0048
22
24


RHOA
SKIL
0.70
21
1
22
2
95.5%
91.7%
8.7E−10
8.0E−05
22
24


IFITM1
SKIL
0.70
20
2
22
2
90.9%
91.7%
8.7E−10
0.0052
22
24


TGFB1
TNFRSF10B
0.70
21
1
23
1
95.5%
95.8%
6.4E−08
0.0273
22
24


CDK2
HRAS
0.70
20
2
22
2
90.9%
91.7%
4.5E−11
1.2E−06
22
24


JUN
TGFB1
0.70
21
1
22
2
95.5%
91.7%
0.0297
3.6E−10
22
24


CFLAR
TIMP1
0.70
21
1
22
2
95.5%
91.7%
0.0140
2.6E−10
22
24


ATM
TNFRSF1A
0.70
20
2
22
2
90.9%
91.7%
0.0009
1.2E−10
22
24


NME4
TIMP1
0.70
21
1
22
2
95.5%
91.7%
0.0144
0.0060
22
24


NME4
PLAU
0.70
20
2
22
2
90.9%
91.7%
2.2E−05
0.0060
22
24


MYCL1
TGFB1
0.69
22
0
22
2
100.0%
91.7%
0.0322
3.7E−09
22
24


PTCH1
TNF
0.69
20
2
22
2
90.9%
91.7%
0.0172
6.7E−11
22
24


SMAD4
TNF
0.69
19
3
21
3
86.4%
87.5%
0.0173
4.1E−09
22
24


ITGB1
TNFRSF1A
0.69
20
2
22
2
90.9%
91.7%
0.0010
4.9E−11
22
24


BAD
HRAS
0.69
19
3
22
2
86.4%
91.7%
5.0E−11
1.2E−08
22
24


NME4
TNF
0.69
20
2
22
2
90.9%
91.7%
0.0175
0.0064
22
24


CDK2
TGFB1
0.69
22
0
22
2
100.0%
91.7%
0.0336
1.4E−06
22
24


CASP8
TNF
0.69
20
2
22
2
90.9%
91.7%
0.0186
3.5E−11
22
24


ITGA3
TNF
0.69
18
3
20
3
85.7%
87.0%
0.0129
2.7E−10
21
23


SERPINE1
TGFB1
0.69
22
0
22
2
100.0%
91.7%
0.0380
2.7E−05
22
24


IFITM1
TGFB1
0.69
20
2
22
2
90.9%
91.7%
0.0381
0.0075
22
24


NME4
SKIL
0.69
20
2
21
3
90.9%
87.5%
1.3E−09
0.0080
22
24


ATM
MYC
0.69
20
2
21
3
90.9%
87.5%
2.4E−05
1.7E−10
22
24


GZMA
TGFB1
0.69
22
0
22
2
100.0%
91.7%
0.0429
4.1E−11
22
24


MMP9
TNF
0.68
20
2
22
2
90.9%
91.7%
0.0246
4.3E−05
22
24


ABL2
CDK4
0.68
20
2
21
3
90.9%
87.5%
1.6E−10
8.5E−05
22
24


TIMP1
TNF
0.68
21
1
22
2
95.5%
91.7%
0.0290
0.0257
22
24


PCNA
TNF
0.68
20
2
21
3
90.9%
87.5%
0.0291
5.8E−11
22
24


ABL1
HRAS
0.68
19
3
21
3
86.4%
87.5%
8.2E−11
3.0E−08
22
24


ICAM1
SKIL
0.68
20
2
21
3
90.9%
87.5%
1.8E−09
0.0006
22
24


SERPINE1
TNF
0.68
19
3
22
2
86.4%
91.7%
0.0323
4.2E−05
22
24


MSH2
MYC
0.68
20
2
21
3
90.9%
87.5%
3.4E−05
1.2E−09
22
24


IL18
TNF
0.68
21
1
22
2
95.5%
91.7%
0.0338
5.5E−11
22
24


GZMA
TNF
0.67
20
2
22
2
90.9%
91.7%
0.0351
6.0E−11
22
24


RB1
TNF
0.67
19
3
21
3
86.4%
87.5%
0.0353
1.4E−09
22
24


NME4
SERPINE1
0.67
21
1
21
3
95.5%
87.5%
4.6E−05
0.0127
22
24


NME1
TNF
0.67
20
2
22
2
90.9%
91.7%
0.0358
5.8E−11
22
24


BRAF
SKIL
0.67
19
3
22
2
86.4%
91.7%
2.1E−09
4.3E−05
22
24


AKT1
TNF
0.67
20
2
22
2
90.9%
91.7%
0.0378
1.5E−07
22
24


ITGAE
TNF
0.67
20
2
22
2
90.9%
91.7%
0.0389
7.5E−11
22
24


SKIL
SMAD4
0.67
18
4
21
3
81.8%
87.5%
9.4E−09
2.4E−09
22
24


MSH2
TNFRSF1A
0.67
19
3
21
3
86.4%
87.5%
0.0025
1.7E−09
22
24


ABL2
NME4
0.67
19
3
21
3
86.4%
87.5%
0.0167
0.0001
22
24


IFITM1
RHOC
0.67
20
2
22
2
90.9%
91.7%
1.1E−05
0.0174
22
24


TNF
TNFRSF10B
0.67
19
3
21
3
86.4%
87.5%
1.9E−07
0.0484
22
24


ITGB1
TIMP1
0.67
20
2
22
2
90.9%
91.7%
0.0433
1.2E−10
22
24


FOS

0.67
17
4
22
2
81.0%
91.7%
1.2E−10

21
24


ICAM1
NME4
0.67
21
1
22
2
95.5%
91.7%
0.0177
0.0009
22
24


NME4
SEMA4D
0.66
19
3
22
2
86.4%
91.7%
5.9E−05
0.0199
22
24


E2F1
TNFRSF1A
0.66
18
4
21
3
81.8%
87.5%
0.0033
4.7E−07
22
24


ITGB1
NRAS
0.66
22
0
23
1
100.0%
95.8%
9.2E−06
1.5E−10
22
24


CDK5
MSH2
0.66
19
3
21
3
86.4%
87.5%
2.3E−09
9.2E−06
22
24


CFLAR
IFITM1
0.66
20
2
21
3
90.9%
87.5%
0.0249
9.5E−10
22
24


NME4
THBS1
0.66
19
3
21
3
86.4%
87.5%
1.3E−06
0.0248
22
24


PLAU
SKIL
0.66
21
1
21
3
95.5%
87.5%
3.8E−09
8.6E−05
22
24


NRAS
SKIL
0.66
21
1
23
1
95.5%
95.8%
3.8E−09
1.0E−05
22
24


ABL2
NME1
0.65
20
2
21
3
90.9%
87.5%
1.1E−10
0.0002
22
24


MSH2
RHOC
0.65
19
3
21
3
86.4%
87.5%
1.8E−05
2.9E−09
22
24


RAF1
RHOA
0.65
19
3
20
4
86.4%
83.3%
0.0004
5.1E−08
22
24


BRCA1
SKIL
0.65
20
2
22
2
90.9%
91.7%
4.9E−09
2.0E−07
22
24


MYC
NME4
0.65
21
1
21
3
95.5%
87.5%
0.0344
9.0E−05
22
24


ITGB1
RHOA
0.65
20
2
22
2
90.9%
91.7%
0.0005
2.2E−10
22
24


PLAU
TNFRSF1A
0.65
20
2
22
2
90.9%
91.7%
0.0054
0.0001
22
24


SEMA4D
SKIL
0.64
20
2
22
2
90.9%
91.7%
5.4E−09
0.0001
22
24


IFITM1
TP53
0.64
20
2
22
2
90.9%
91.7%
5.4E−07
0.0413
22
24


RHOA
VHL
0.64
20
2
22
2
90.9%
91.7%
8.7E−09
0.0006
22
24


PLAU
SERPINE1
0.64
21
1
23
1
95.5%
95.8%
0.0001
0.0001
22
24


IFITM1
MYC
0.64
20
2
21
3
90.9%
87.5%
0.0001
0.0423
22
24


NME4
RHOA
0.64
19
3
22
2
86.4%
91.7%
0.0006
0.0420
22
24


ITGB1
NME4
0.64
18
4
21
3
81.8%
87.5%
0.0422
2.7E−10
22
24


ATM
NME4
0.64
20
2
21
3
90.9%
87.5%
0.0423
7.4E−10
22
24


MSH2
RHOA
0.64
19
3
21
3
86.4%
87.5%
0.0006
4.0E−09
22
24


CDK2
TNFRSF10A
0.64
20
2
21
3
90.9%
87.5%
2.0E−10
8.1E−06
22
24


APAF1
TNFRSF1A
0.64
19
3
21
3
86.4%
87.5%
0.0067
3.9E−10
22
24


ANGPT1
IFITM1
0.64
20
2
21
3
90.9%
87.5%
0.0494
4.3E−10
22
24


MMP9
NME4
0.64
19
3
22
2
86.4%
91.7%
0.0489
0.0002
22
24


ICAM1
ITGB1
0.63
19
3
20
4
86.4%
83.3%
3.4E−10
0.0025
22
24


NFKB1
SKIL
0.63
21
1
21
3
95.5%
87.5%
7.5E−09
1.1E−05
22
24


PTEN
TNFRSF1A
0.63
21
1
22
2
95.5%
91.7%
0.0083
4.9E−10
22
24


CDC25A
TNFRSF1A
0.63
19
3
21
3
86.4%
87.5%
0.0087
1.5E−08
22
24


CDK2
MSH2
0.63
20
2
22
2
90.9%
91.7%
5.5E−09
1.1E−05
22
24


ATM
RHOA
0.63
19
3
21
3
86.4%
87.5%
0.0009
1.1E−09
22
24


SERPINE1
TNFRSF1A
0.63
19
3
20
4
86.4%
83.3%
0.0099
0.0002
22
24


CDK5
IFNG
0.63
20
2
22
2
90.9%
91.7%
1.1E−08
2.5E−05
22
24


ATM
SEMA4D
0.63
20
2
21
3
90.9%
87.5%
0.0002
1.2E−09
22
24


CFLAR
TNFRSF1A
0.63
20
2
22
2
90.9%
91.7%
0.0107
2.5E−09
22
24


IFNG
RHOC
0.63
20
2
21
3
90.9%
87.5%
4.1E−05
1.2E−08
22
24


CDK2
NME1
0.62
21
1
22
2
95.5%
91.7%
3.0E−10
1.4E−05
22
24


MYC
SKIL
0.62
20
2
21
3
90.9%
87.5%
1.1E−08
0.0002
22
24


ABL2
ATM
0.62
18
4
22
2
81.8%
91.7%
1.4E−09
0.0006
22
24


TGFB1

0.62
22
0
21
3
100.0%
87.5%
3.1E−10

22
24


MSH2
TP53
0.62
20
2
21
3
90.9%
87.5%
1.1E−06
7.4E−09
22
24


ITGB1
MYC
0.62
21
1
21
3
95.5%
87.5%
0.0002
5.2E−10
22
24


CDK5
SKIL
0.62
18
4
21
3
81.8%
87.5%
1.2E−08
3.2E−05
22
24


MSH2
SEMA4D
0.62
20
2
21
3
90.9%
87.5%
0.0002
7.8E−09
22
24


MYC
SERPINE1
0.62
20
2
22
2
90.9%
91.7%
0.0003
0.0002
22
24


MSH2
NFKB1
0.62
19
3
20
4
86.4%
83.3%
1.9E−05
8.1E−09
22
24


ITGB1
SEMA4D
0.62
19
3
22
2
86.4%
91.7%
0.0003
5.7E−10
22
24


ICAM1
IFNG
0.61
19
3
21
3
86.4%
87.5%
1.8E−08
0.0052
22
24


HRAS
TNFRSF1A
0.61
19
3
21
3
86.4%
87.5%
0.0174
7.0E−10
22
24


ABL2
SKIL
0.61
20
2
21
3
90.9%
87.5%
1.5E−08
0.0008
22
24


SKI
TNFRSF1A
0.61
20
2
20
4
90.9%
83.3%
0.0184
1.0E−09
22
24


ATM
CDK5
0.61
19
3
21
3
86.4%
87.5%
4.5E−05
2.1E−09
22
24


ITGB1
SMAD4
0.61
20
2
22
2
90.9%
91.7%
6.7E−08
7.8E−10
22
24


MYC
TNFRSF10A
0.61
20
2
21
3
90.9%
87.5%
5.7E−10
0.0003
22
24


NME1
TNFRSF1A
0.61
19
3
21
3
86.4%
87.5%
0.0219
5.3E−10
22
24


ABL2
IFNG
0.61
20
2
22
2
90.9%
91.7%
2.3E−08
0.0010
22
24


CDK5
ITGB1
0.61
20
2
21
3
90.9%
87.5%
8.5E−10
5.2E−05
22
24


THBS1
TNFRSF1A
0.61
19
3
21
3
86.4%
87.5%
0.0223
6.6E−06
22
24


ICAM1
SERPINE1
0.61
20
2
22
2
90.9%
91.7%
0.0005
0.0069
22
24


TNF

0.60
19
3
21
3
86.4%
87.5%
5.4E−10

22
24


BRAF
ITGB1
0.60
20
2
21
3
90.9%
87.5%
8.9E−10
0.0004
22
24


ICAM1
MSH2
0.60
18
4
21
3
81.8%
87.5%
1.3E−08
0.0073
22
24


SERPINE1
TP53
0.60
19
3
21
3
86.4%
87.5%
2.1E−06
0.0005
22
24


RHOA
SKI
0.60
20
2
22
2
90.9%
91.7%
1.4E−09
0.0023
22
24


TIMP1

0.60
21
1
22
2
95.5%
91.7%
6.0E−10

22
24


SERPINE1
VEGF
0.60
19
3
21
3
86.4%
87.5%
6.4E−06
0.0006
22
24


IFNG
RHOA
0.60
20
2
22
2
90.9%
91.7%
0.0024
2.8E−08
22
24


TNFRSF1A
VEGF
0.60
19
3
21
3
86.4%
87.5%
6.6E−06
0.0281
22
24


ABL2
SERPINE1
0.60
20
2
22
2
90.9%
91.7%
0.0006
0.0014
22
24


CASP8
RHOA
0.60
18
4
21
3
81.8%
87.5%
0.0027
7.7E−10
22
24


IL18
TNFRSF1A
0.60
20
2
21
3
90.9%
87.5%
0.0321
7.3E−10
22
24


RHOC
SERPINE1
0.60
18
4
21
3
81.8%
87.5%
0.0007
0.0001
22
24


IFNG
MYC
0.59
20
2
22
2
90.9%
91.7%
0.0005
3.3E−08
22
24


CDK5
TNFRSF10A
0.59
21
1
21
3
95.5%
87.5%
8.9E−10
7.7E−05
22
24


RHOA
SERPINE1
0.59
20
2
22
2
90.9%
91.7%
0.0007
0.0031
22
24


IFNG
SEMA4D
0.59
19
3
21
3
86.4%
87.5%
0.0006
3.5E−08
22
24


CASP8
TNFRSF1A
0.59
18
4
21
3
81.8%
87.5%
0.0375
9.2E−10
22
24


ABL2
ITGA3
0.59
17
4
20
3
81.0%
87.0%
6.1E−09
0.0033
21
23


PLAUR
SKIL
0.59
17
4
21
3
81.0%
87.5%
3.1E−08
0.0003
21
24


HRAS
RHOA
0.59
20
2
22
2
90.9%
91.7%
0.0034
1.4E−09
22
24


ABL2
ITGB1
0.59
20
2
21
3
90.9%
87.5%
1.4E−09
0.0018
22
24


HRAS
MYC
0.59
18
4
20
4
81.8%
83.3%
0.0006
1.5E−09
22
24


ATM
ICAM1
0.59
19
3
21
3
86.4%
87.5%
0.0127
4.1E−09
22
24


MMP9
RHOC
0.59
21
1
22
2
95.5%
91.7%
0.0001
0.0011
22
24


ABL2
PCNA
0.59
22
0
21
3
100.0%
87.5%
1.2E−09
0.0020
22
24


CDK2
IFNG
0.59
19
3
21
3
86.4%
87.5%
4.3E−08
4.8E−05
22
24


HRAS
RHOC
0.59
18
4
21
3
81.8%
87.5%
0.0002
1.6E−09
22
24


ABL2
S100A4
0.59
20
2
21
3
90.9%
87.5%
4.7E−08
0.0021
22
24


SEMA4D
SERPINE1
0.59
20
2
22
2
90.9%
91.7%
0.0009
0.0008
22
24


ATM
NRAS
0.58
20
2
22
2
90.9%
91.7%
0.0001
4.7E−09
22
24


MMP9
MYC
0.58
20
2
21
3
90.9%
87.5%
0.0008
0.0013
22
24


CFLAR
RHOA
0.58
19
3
21
3
86.4%
87.5%
0.0045
1.1E−08
22
24


ITGB1
RHOC
0.58
20
2
21
3
90.9%
87.5%
0.0002
1.9E−09
22
24


ICAM1
PLAU
0.58
19
3
21
3
86.4%
87.5%
0.0011
0.0176
22
24


ABL2
VHL
0.58
21
1
21
3
95.5%
87.5%
7.1E−08
0.0027
22
24


ICAM1
IL18
0.58
19
3
21
3
86.4%
87.5%
1.3E−09
0.0183
22
24


HRAS
ICAM1
0.58
19
3
21
3
86.4%
87.5%
0.0186
2.2E−09
22
24


IFITM1

0.58
20
2
22
2
90.9%
91.7%
1.3E−09

22
24


NME4

0.58
19
3
21
3
86.4%
87.5%
1.3E−09

22
24


ICAM1
TNFRSF10A
0.58
19
3
21
3
86.4%
87.5%
1.6E−09
0.0196
22
24


CASP8
CDK2
0.58
18
4
20
4
81.8%
83.3%
6.8E−05
1.5E−09
22
24


RAF1
SKIL
0.58
20
2
21
3
90.9%
87.5%
5.1E−08
6.0E−07
22
24


MMP9
TP53
0.57
19
3
21
3
86.4%
87.5%
5.3E−06
0.0018
22
24


PLAU
RHOC
0.57
21
1
23
1
95.5%
95.8%
0.0002
0.0015
22
24


NME1
RHOA
0.57
21
1
21
3
95.5%
87.5%
0.0067
1.7E−09
22
24


CDK5
HRAS
0.57
18
4
20
4
81.8%
83.3%
2.7E−09
0.0002
22
24


ABL2
PLAU
0.57
21
1
21
3
95.5%
87.5%
0.0015
0.0036
22
24


NRAS
SERPINE1
0.57
18
4
20
4
81.8%
83.3%
0.0018
0.0002
22
24


MYC
NME1
0.57
20
2
21
3
90.9%
87.5%
1.9E−09
0.0014
22
24


BRAF
SERPINE1
0.57
20
2
21
3
90.9%
87.5%
0.0018
0.0016
22
24


CDK2
SERPINE1
0.57
19
3
21
3
86.4%
87.5%
0.0019
9.8E−05
22
24


ITGB1
NFKB1
0.57
19
3
21
3
86.4%
87.5%
0.0001
3.3E−09
22
24


RHOC
SKIL
0.56
20
2
22
2
90.9%
91.7%
7.5E−08
0.0003
22
24


RHOA
TNFRSF10A
0.56
19
3
21
3
86.4%
87.5%
2.4E−09
0.0088
22
24


IL18
RHOA
0.56
21
1
21
3
95.5%
87.5%
0.0090
2.2E−09
22
24


IFNG
NRAS
0.56
19
3
20
4
86.4%
83.3%
0.0002
9.5E−08
22
24


ATM
RHOC
0.56
19
3
21
3
86.4%
87.5%
0.0004
1.0E−08
22
24


SERPINE1
WNT1
0.56
18
4
21
3
81.8%
87.5%
3.8E−07
0.0022
22
24


CFLAR
ICAM1
0.56
18
4
20
4
81.8%
83.3%
0.0353
2.2E−08
22
24


ICAM1
NME1
0.56
17
5
19
5
77.3%
79.2%
2.4E−09
0.0363
22
24


MYC
PLAU
0.56
18
4
21
3
81.8%
87.5%
0.0022
0.0018
22
24


MYC
PCNA
0.56
20
2
21
3
90.9%
87.5%
3.1E−09
0.0019
22
24


MMP9
SERPINE1
0.56
20
2
22
2
90.9%
91.7%
0.0025
0.0032
22
24


ATM
BRAF
0.56
18
4
20
4
81.8%
83.3%
0.0022
1.2E−08
22
24


CASP8
ICAM1
0.56
19
3
20
4
86.4%
83.3%
0.0419
2.9E−09
22
24


PLAU
RHOA
0.55
19
3
21
3
86.4%
87.5%
0.0125
0.0028
22
24


HRAS
SEMA4D
0.55
19
3
20
4
86.4%
83.3%
0.0024
4.9E−09
22
24


RHOC
TNFRSF10A
0.55
19
3
21
3
86.4%
87.5%
3.6E−09
0.0005
22
24


ABL2
MMP9
0.55
20
2
21
3
90.9%
87.5%
0.0040
0.0071
22
24


RHOA
SMAD4
0.55
19
3
21
3
86.4%
87.5%
4.8E−07
0.0147
22
24


BCL2
SERPINE1
0.55
19
3
20
4
86.4%
83.3%
0.0033
2.0E−06
22
24


NOTCH2
SKIL
0.55
18
4
21
3
81.8%
87.5%
1.2E−07
0.0001
22
24


ATM
SMAD4
0.55
18
4
20
4
81.8%
83.3%
4.9E−07
1.5E−08
22
24


PLAUR
SERPINE1
0.55
18
3
21
3
85.7%
87.5%
0.0032
0.0014
21
24


CDK5
SERPINE1
0.55
19
3
21
3
86.4%
87.5%
0.0035
0.0004
22
24


SEMA4D
VHL
0.55
18
4
21
3
81.8%
87.5%
2.1E−07
0.0031
22
24


ATM
NFKB1
0.55
20
2
22
2
90.9%
91.7%
0.0002
1.7E−08
22
24


GZMA
RHOC
0.54
19
3
21
3
86.4%
87.5%
0.0006
4.1E−09
22
24


PLAU
SEMA4D
0.54
19
3
21
3
86.4%
87.5%
0.0034
0.0039
22
24


ABL2
PTCH1
0.54
19
3
20
4
86.4%
83.3%
9.0E−09
0.0093
22
24


MSH2
NRAS
0.54
21
1
21
3
95.5%
87.5%
0.0005
9.9E−08
22
24


BRAF
PTEN
0.54
20
2
21
3
90.9%
87.5%
9.4E−09
0.0037
22
24


ITGB1
PLAUR
0.54
18
3
20
4
85.7%
83.3%
0.0017
9.5E−09
21
24


SKIL
TNFRSF6
0.54
20
2
21
3
90.9%
87.5%
1.1E−07
1.5E−07
22
24


E2F1
PLAU
0.54
19
3
21
3
86.4%
87.5%
0.0044
2.5E−05
22
24


IL18
PLAU
0.54
19
3
21
3
86.4%
87.5%
0.0045
4.7E−09
22
24


PCNA
RHOA
0.54
18
4
21
3
81.8%
87.5%
0.0217
5.8E−09
22
24


ABL2
IL18
0.54
21
1
21
3
95.5%
87.5%
4.9E−09
0.0115
22
24


BCL2
MMP9
0.54
21
1
21
3
95.5%
87.5%
0.0064
2.8E−06
22
24


ATM
TP53
0.54
18
4
20
4
81.8%
83.3%
1.8E−05
2.2E−08
22
24


ABL2
ITGAE
0.54
20
2
21
3
90.9%
87.5%
6.2E−09
0.0121
22
24


IGFBP3
SERPINE1
0.54
20
2
20
4
90.9%
83.3%
0.0051
1.5E−08
22
24


SEMA4D
TNFRSF10A
0.54
18
4
20
4
81.8%
83.3%
5.9E−09
0.0044
22
24


IFNG
TP53
0.54
20
2
22
2
90.9%
91.7%
1.9E−05
2.3E−07
22
24


CASP8
MYC
0.54
18
4
20
4
81.8%
83.3%
0.0042
5.9E−09
22
24


CDK2
CDK4
0.53
20
2
21
3
90.9%
87.5%
1.9E−08
0.0003
22
24


SEMA4D
SKI
0.53
19
3
20
4
86.4%
83.3%
1.3E−08
0.0048
22
24


BRAF
IFNG
0.53
18
4
20
4
81.8%
83.3%
2.5E−07
0.0051
22
24


MSH2
S100A4
0.53
19
3
20
4
86.4%
83.3%
2.7E−07
1.4E−07
22
24


BCL2
MSH2
0.53
20
2
21
3
90.9%
87.5%
1.4E−07
3.4E−06
22
24


SERPINE1
TNFRSF10B
0.53
19
3
21
3
86.4%
87.5%
1.6E−05
0.0059
22
24


IFNG
NFKB1
0.53
19
3
21
3
86.4%
87.5%
0.0004
2.6E−07
22
24


APAF1
RHOA
0.53
19
3
20
4
86.4%
83.3%
0.0307
1.4E−08
22
24


CDK2
MMP9
0.53
21
1
22
2
95.5%
91.7%
0.0087
0.0003
22
24


CDK2
SKIL
0.53
20
2
21
3
90.9%
87.5%
2.4E−07
0.0003
22
24


ABL2
JUN
0.53
18
4
20
4
81.8%
83.3%
8.8E−08
0.0162
22
24


ABL1
SERPINE1
0.53
19
3
21
3
86.4%
87.5%
0.0069
4.2E−06
22
24


IL1B
SKIL
0.53
19
3
21
3
86.4%
87.5%
2.5E−07
5.4E−05
22
24


CDK5
PLAU
0.53
20
2
21
3
90.9%
87.5%
0.0068
0.0007
22
24


ABL2
CDKN1A
0.53
20
2
21
3
90.9%
87.5%
0.0005
0.0165
22
24


ATM
CDK2
0.53
20
2
21
3
90.9%
87.5%
0.0004
3.1E−08
22
24


ABL2
E2F1
0.53
20
2
21
3
90.9%
87.5%
3.9E−05
0.0174
22
24


CDKN1A
PLAU
0.53
19
3
21
3
86.4%
87.5%
0.0074
0.0006
22
24


ABL2
BRAF
0.53
20
2
21
3
90.9%
87.5%
0.0068
0.0182
22
24


CDK5
MMP9
0.52
20
2
22
2
90.9%
91.7%
0.0103
0.0008
22
24


CDKN2A
SERPINE1
0.52
18
4
20
4
81.8%
83.3%
0.0079
1.2E−07
22
24


TNFRSF1A

0.52
18
4
20
4
81.8%
83.3%
7.6E−09

22
24


E2F1
RHOA
0.52
20
2
20
4
90.9%
83.3%
0.0378
4.4E−05
22
24


ABL2
BAX
0.52
18
4
21
3
81.8%
87.5%
1.0E−06
0.0194
22
24


RHOA
S100A4
0.52
20
2
20
4
90.9%
83.3%
3.8E−07
0.0391
22
24


CDK4
RHOA
0.52
19
3
20
4
86.4%
83.3%
0.0405
2.9E−08
22
24


PTCH1
RHOA
0.52
19
3
21
3
86.4%
87.5%
0.0413
1.9E−08
22
24


CDK5
NME1
0.52
18
4
20
4
81.8%
83.3%
8.5E−09
0.0009
22
24


IL8
PLAU
0.52
20
2
21
3
90.9%
87.5%
0.0093
3.4E−08
22
24


MSH2
PLAU
0.52
19
3
21
3
86.4%
87.5%
0.0094
2.2E−07
22
24


CASP8
SEMA4D
0.52
19
3
21
3
86.4%
87.5%
0.0082
1.0E−08
22
24


CDK2
PCNA
0.52
19
3
21
3
86.4%
87.5%
1.2E−08
0.0005
22
24


BAX
TNFRSF10A
0.52
22
0
21
3
100.0%
87.5%
1.2E−08
1.3E−06
22
24


MYC
THBS1
0.52
18
4
19
5
81.8%
79.2%
0.0001
0.0084
22
24


PLAU
THBS1
0.52
19
3
21
3
86.4%
87.5%
0.0001
0.0108
22
24


MSH2
TNFRSF10B
0.51
20
2
20
4
90.9%
83.3%
2.8E−05
2.5E−07
22
24


AKT1
HRAS
0.51
20
2
21
3
90.9%
87.5%
1.7E−08
2.9E−05
22
24


CDKN1A
MYC
0.51
19
3
21
3
86.4%
87.5%
0.0088
0.0009
22
24


NFKB1
SERPINE1
0.51
19
3
21
3
86.4%
87.5%
0.0115
0.0007
22
24


CDK2
PLAU
0.51
19
3
21
3
86.4%
87.5%
0.0116
0.0006
22
24


ABL1
ABL2
0.51
19
3
21
3
86.4%
87.5%
0.0286
7.0E−06
22
24


MSH2
RAF1
0.51
19
3
20
4
86.4%
83.3%
4.9E−06
2.7E−07
22
24


ATM
PLAU
0.51
19
3
21
3
86.4%
87.5%
0.0121
5.2E−08
22
24


MMP9
SKIL
0.51
19
3
21
3
86.4%
87.5%
4.2E−07
0.0164
22
24


BRAF
RHOC
0.51
19
3
20
4
86.4%
83.3%
0.0020
0.0112
22
24


BRAF
RB1
0.51
19
3
21
3
86.4%
87.5%
3.1E−07
0.0114
22
24


MMP9
SEMA4D
0.51
18
4
20
4
81.8%
83.3%
0.0107
0.0168
22
24


CFLAR
SKIL
0.51
19
3
20
4
86.4%
83.3%
4.3E−07
1.1E−07
22
24


PLAU
PLAUR
0.51
19
2
22
2
90.5%
91.7%
0.0051
0.0256
21
24


MMP9
VEGF
0.51
19
3
21
3
86.4%
87.5%
0.0001
0.0182
22
24


TNFRSF10A
TP53
0.51
20
2
21
3
90.9%
87.5%
4.7E−05
1.5E−08
22
24


BRAF
PLAU
0.51
19
3
20
4
86.4%
83.3%
0.0138
0.0125
22
24


CDK2
ITGB1
0.51
18
4
21
3
81.8%
87.5%
2.2E−08
0.0007
22
24


NFKB1
TNFRSF10A
0.51
20
2
21
3
90.9%
87.5%
1.6E−08
0.0008
22
24


PLAU
VEGF
0.51
19
3
20
4
86.4%
83.3%
0.0002
0.0149
22
24


MMP9
NOTCH4
0.50
20
2
22
2
90.9%
91.7%
1.8E−07
0.0210
22
24


AKT1
MSH2
0.50
19
3
21
3
86.4%
87.5%
3.5E−07
4.1E−05
22
24


ABL2
THBS1
0.50
19
3
21
3
86.4%
87.5%
0.0002
0.0415
22
24


MMP9
WNT1
0.50
20
2
22
2
90.9%
91.7%
2.6E−06
0.0226
22
24


ABL1
TNFRSF10A
0.50
21
1
21
3
95.5%
87.5%
1.8E−08
1.0E−05
22
24


ERBB2
SERPINE1
0.50
18
4
20
4
81.8%
83.3%
0.0174
9.5E−07
22
24


PLAU
SRC
0.50
19
3
21
3
86.4%
87.5%
0.0002
0.0172
22
24


MSH2
SMAD4
0.50
18
4
20
4
81.8%
83.3%
2.3E−06
3.8E−07
22
24


BAX
MSH2
0.50
19
3
20
4
86.4%
83.3%
3.8E−07
2.1E−06
22
24


SKIL
VEGF
0.50
18
4
19
5
81.8%
79.2%
0.0002
6.2E−07
22
24


BRAF
TNFRSF6
0.50
19
3
21
3
86.4%
87.5%
4.3E−07
0.0172
22
24


E2F1
MYC
0.50
20
2
20
4
90.9%
83.3%
0.0153
0.0001
22
24


ABL1
MSH2
0.50
19
3
21
3
86.4%
87.5%
4.2E−07
1.1E−05
22
24


MYCL1
SERPINE1
0.50
18
4
20
4
81.8%
83.3%
0.0201
2.3E−06
22
24


E2F1
SEMA4D
0.50
19
3
20
4
86.4%
83.3%
0.0168
0.0001
22
24


ABL2
AKT1
0.50
19
3
20
4
86.4%
83.3%
5.0E−05
0.0493
22
24


ABL1
MMP9
0.50
20
2
21
3
90.9%
87.5%
0.0268
1.2E−05
22
24


ABL2
RAF1
0.50
17
5
21
3
77.3%
87.5%
7.8E−06
0.0499
22
24


HRAS
NFKB1
0.50
18
4
19
5
81.8%
79.2%
0.0011
3.0E−08
22
24


NRAS
PLAU
0.50
19
3
21
3
86.4%
87.5%
0.0200
0.0021
22
24


BRAF
MSH2
0.50
17
5
20
4
77.3%
83.3%
4.4E−07
0.0185
22
24


ERBB2
MMP9
0.50
20
2
21
3
90.9%
87.5%
0.0277
1.1E−06
22
24


PTCH1
SERPINE1
0.50
19
3
20
4
86.4%
83.3%
0.0218
4.3E−08
22
24


CDK4
RHOC
0.50
20
2
20
4
90.9%
83.3%
0.0034
6.8E−08
22
24


MMP9
PLAU
0.50
19
3
20
4
86.4%
83.3%
0.0221
0.0299
22
24


IL18
MYC
0.50
19
3
20
4
86.4%
83.3%
0.0176
2.0E−08
22
24


CCNE1
SERPINE1
0.49
19
3
21
3
86.4%
87.5%
0.0228
2.5E−07
22
24


ITGA3
MYC
0.49
17
4
19
4
81.0%
82.6%
0.0151
1.3E−07
21
23


BRAF
MYC
0.49
20
2
20
4
90.9%
83.3%
0.0176
0.0203
22
24


CDK2
ITGA3
0.49
18
3
20
3
85.7%
87.0%
1.4E−07
0.0010
21
23


NFKB1
PLAU
0.49
20
2
21
3
90.9%
87.5%
0.0254
0.0014
22
24


ICAM1

0.49
17
5
19
5
77.3%
79.2%
2.2E−08

22
24


NOTCH2
SERPINE1
0.49
19
3
21
3
86.4%
87.5%
0.0263
0.0008
22
24


AKT1
SERPINE1
0.49
19
3
21
3
86.4%
87.5%
0.0263
6.4E−05
22
24


MMP9
SRC
0.49
18
4
20
4
81.8%
83.3%
0.0003
0.0351
22
24


MMP9
NRAS
0.49
19
3
21
3
86.4%
87.5%
0.0028
0.0362
22
24


JUN
SERPINE1
0.49
19
3
21
3
86.4%
87.5%
0.0288
3.3E−07
22
24


AKT1
PLAU
0.49
18
4
21
3
81.8%
87.5%
0.0282
6.9E−05
22
24


CDK5
PCNA
0.49
20
2
20
4
90.9%
83.3%
3.0E−08
0.0028
22
24


BAX
SERPINE1
0.49
18
4
20
4
81.8%
83.3%
0.0295
3.4E−06
22
24


MYC
VHL
0.49
18
4
21
3
81.8%
87.5%
1.4E−06
0.0230
22
24


IFNG
PLAU
0.49
18
4
20
4
81.8%
83.3%
0.0297
1.2E−06
22
24


SEMA4D
THBS1
0.49
17
5
20
4
77.3%
83.3%
0.0004
0.0253
22
24


ATM
PLAUR
0.49
17
4
20
4
81.0%
83.3%
0.0114
1.2E−07
21
24


ITGB1
PLAU
0.49
19
3
21
3
86.4%
87.5%
0.0300
4.2E−08
22
24


PTCH1
SEMA4D
0.49
19
3
21
3
86.4%
87.5%
0.0261
6.0E−08
22
24


PCNA
RHOC
0.49
19
3
20
4
86.4%
83.3%
0.0049
3.3E−08
22
24


CDK2
PTCH1
0.49
18
4
20
4
81.8%
83.3%
6.1E−08
0.0015
22
24


SEMA4D
SMAD4
0.49
18
4
20
4
81.8%
83.3%
3.9E−06
0.0267
22
24


IFNG
PLAUR
0.49
17
4
19
5
81.0%
79.2%
0.0120
1.6E−06
21
24


E2F1
SERPINE1
0.48
18
4
20
4
81.8%
83.3%
0.0332
0.0002
22
24


MSH2
PLAUR
0.48
17
4
19
5
81.0%
79.2%
0.0125
6.2E−07
21
24


CDK5
IL18
0.48
18
4
20
4
81.8%
83.3%
2.9E−08
0.0034
22
24


BRCA1
SERPINE1
0.48
18
4
20
4
81.8%
83.3%
0.0354
4.7E−05
22
24


BRAF
MMP9
0.48
19
3
21
3
86.4%
87.5%
0.0481
0.0319
22
24


SKIL
TP53
0.48
19
3
21
3
86.4%
87.5%
0.0001
1.1E−06
22
24


ATM
RAF1
0.48
19
3
20
4
86.4%
83.3%
1.4E−05
1.4E−07
22
24


ITGA3
RHOC
0.48
17
4
19
4
81.0%
82.6%
0.0062
1.9E−07
21
23


BRAF
CDK2
0.48
20
2
20
4
90.9%
83.3%
0.0017
0.0331
22
24


NRAS
TNFRSF10A
0.48
19
3
21
3
86.4%
87.5%
3.6E−08
0.0038
22
24


BRAF
IL18
0.48
18
4
21
3
81.8%
87.5%
3.2E−08
0.0336
22
24


SERPINE1
SKIL
0.48
17
5
21
3
77.3%
87.5%
1.2E−06
0.0381
22
24


BAD
MSH2
0.48
18
4
20
4
81.8%
83.3%
7.7E−07
1.4E−05
22
24


BRCA1
ITGB1
0.48
19
3
20
4
86.4%
83.3%
5.2E−08
5.1E−05
22
24


RHOC
THBS1
0.48
20
2
22
2
90.9%
91.7%
0.0005
0.0059
22
24


GZMA
MYC
0.48
19
3
21
3
86.4%
87.5%
0.0303
3.5E−08
22
24


CDKN1A
SERPINE1
0.48
17
5
20
4
77.3%
83.3%
0.0395
0.0028
22
24


IFNG
WNT1
0.48
19
3
21
3
86.4%
87.5%
5.7E−06
1.5E−06
22
24


CDK2
SKI
0.48
19
3
21
3
86.4%
87.5%
7.5E−08
0.0018
22
24


IL18
SEMA4D
0.48
21
1
21
3
95.5%
87.5%
0.0344
3.4E−08
22
24


CDC25A
MYC
0.48
19
3
20
4
86.4%
83.3%
0.0316
2.3E−06
22
24


NOTCH4
SERPINE1
0.48
19
3
20
4
86.4%
83.3%
0.0424
4.4E−07
22
24


IFNG
TNFRSF10B
0.48
19
3
21
3
86.4%
87.5%
9.8E−05
1.6E−06
22
24


NME1
SEMA4D
0.48
18
4
20
4
81.8%
83.3%
0.0378
3.7E−08
22
24


CASP8
CDK5
0.48
18
4
20
4
81.8%
83.3%
0.0044
4.1E−08
22
24


BCL2
IFNG
0.48
20
2
22
2
90.9%
91.7%
1.7E−06
2.3E−05
22
24


MYC
PTCH1
0.47
17
5
19
5
77.3%
79.2%
8.9E−08
0.0379
22
24


PCNA
SEMA4D
0.47
19
3
21
3
86.4%
87.5%
0.0415
4.9E−08
22
24


PLAU
TP53
0.47
20
2
21
3
90.9%
87.5%
0.0002
0.0493
22
24


SEMA4D
VEGF
0.47
19
3
19
5
86.4%
79.2%
0.0005
0.0422
22
24


CDK4
SEMA4D
0.47
18
4
20
4
81.8%
83.3%
0.0428
1.4E−07
22
24


IFNG
VEGF
0.47
18
4
20
4
81.8%
83.3%
0.0005
1.9E−06
22
24


PTCH1
RHOC
0.47
18
4
20
4
81.8%
83.3%
0.0078
9.4E−08
22
24


APAF1
SEMA4D
0.47
19
3
20
4
86.4%
83.3%
0.0446
9.4E−08
22
24


IL18
PLAUR
0.47
19
2
21
3
90.5%
87.5%
0.0197
6.2E−08
21
24


CDK4
CDK5
0.47
17
5
20
4
77.3%
83.3%
0.0053
1.5E−07
22
24


MYC
SMAD4
0.47
19
3
20
4
86.4%
83.3%
6.5E−06
0.0433
22
24


MYC
VEGF
0.47
19
3
21
3
86.4%
87.5%
0.0005
0.0448
22
24


MYC
PLAUR
0.47
17
4
20
4
81.0%
83.3%
0.0212
0.0396
21
24


ITGB1
NOTCH2
0.47
19
3
19
5
86.4%
79.2%
0.0017
7.6E−08
22
24


CASP8
RHOC
0.47
19
3
20
4
86.4%
83.3%
0.0090
5.2E−08
22
24


MSH2
NOTCH2
0.47
17
5
19
5
77.3%
79.2%
0.0018
1.2E−06
22
24


HRAS
S100A4
0.47
18
4
19
5
81.8%
79.2%
2.4E−06
8.2E−08
22
24


ABL1
IFNG
0.47
19
3
21
3
86.4%
87.5%
2.2E−06
3.3E−05
22
24


IL8
MYC
0.47
18
4
20
4
81.8%
83.3%
0.0497
1.9E−07
22
24


IL18
NRAS
0.46
19
3
20
4
86.4%
83.3%
0.0071
5.7E−08
22
24


ITGB1
TP53
0.46
18
4
21
3
81.8%
87.5%
0.0002
9.2E−08
22
24


BCL2
TNFRSF10A
0.46
17
5
20
4
77.3%
83.3%
6.5E−08
3.4E−05
22
24


E2F1
RHOC
0.46
18
4
20
4
81.8%
83.3%
0.0111
0.0003
22
24


HRAS
TP53
0.46
18
4
20
4
81.8%
83.3%
0.0002
9.6E−08
22
24


NFKB1
NME1
0.46
19
3
20
4
86.4%
83.3%
5.8E−08
0.0038
22
24


CDKN1A
RHOC
0.46
18
4
20
4
81.8%
83.3%
0.0121
0.0055
22
24


APAF1
SKIL
0.46
19
3
21
3
86.4%
87.5%
2.3E−06
1.4E−07
22
24


CDK5
E2F1
0.46
18
4
20
4
81.8%
83.3%
0.0004
0.0080
22
24


IL1B
RHOC
0.46
17
5
20
4
77.3%
83.3%
0.0132
0.0006
22
24


IL8
NRAS
0.46
20
2
20
4
90.9%
83.3%
0.0087
2.6E−07
22
24


SKIL
VHL
0.46
19
3
21
3
86.4%
87.5%
3.9E−06
2.6E−06
22
24


PLAUR
TNFRSF10A
0.46
18
3
21
3
85.7%
87.5%
1.1E−07
0.0336
21
24


ATM
BRCA1
0.46
18
4
20
4
81.8%
83.3%
0.0001
3.2E−07
22
24


RHOA

0.46
17
5
20
4
77.3%
83.3%
7.1E−08

22
24


GZMA
NRAS
0.46
19
3
21
3
86.4%
87.5%
0.0093
7.7E−08
22
24


CDK5
GZMA
0.46
18
4
20
4
81.8%
83.3%
7.7E−08
0.0090
22
24


CASP8
NFKB1
0.46
18
4
19
5
81.8%
79.2%
0.0049
8.0E−08
22
24


BAD
CASP8
0.46
20
2
22
2
90.9%
91.7%
8.2E−08
3.2E−05
22
24


CDK4
MSH2
0.45
19
3
21
3
86.4%
87.5%
1.8E−06
2.6E−07
22
24


CDK5
ITGA3
0.45
16
5
19
4
76.2%
82.6%
4.5E−07
0.0121
21
23


HRAS
TNFRSF10B
0.45
18
4
20
4
81.8%
83.3%
0.0002
1.3E−07
22
24


IL18
NFKB1
0.45
18
4
19
5
81.8%
79.2%
0.0055
8.2E−08
22
24


HRAS
PLAUR
0.45
18
3
20
4
85.7%
83.3%
0.0423
1.7E−07
21
24


PLAUR
RHOC
0.45
17
4
19
5
81.0%
79.2%
0.0168
0.0424
21
24


ATM
NOTCH2
0.45
19
3
21
3
86.4%
87.5%
0.0032
4.0E−07
22
24


CDK5
CDKN1A
0.45
19
3
20
4
86.4%
83.3%
0.0082
0.0114
22
24


CFLAR
NFKB1
0.45
18
4
19
5
81.8%
79.2%
0.0062
8.6E−07
22
24


CDK2
E2F1
0.45
19
3
21
3
86.4%
87.5%
0.0005
0.0054
22
24


IFNG
SMAD4
0.45
19
3
21
3
86.4%
87.5%
1.4E−05
4.2E−06
22
24


E2F1
NFKB1
0.45
17
5
19
5
77.3%
79.2%
0.0067
0.0006
22
24


IFNG
NOTCH2
0.45
18
4
20
4
81.8%
83.3%
0.0037
4.5E−06
22
24


E2F1
PLAUR
0.45
17
4
19
5
81.0%
79.2%
0.0497
0.0004
21
24


ATM
TNFRSF10B
0.45
17
5
20
4
77.3%
83.3%
0.0003
4.6E−07
22
24


ABL1
NME1
0.45
18
4
20
4
81.8%
83.3%
1.0E−07
6.7E−05
22
24


NRAS
PCNA
0.45
19
3
21
3
86.4%
87.5%
1.2E−07
0.0136
22
24


CDK2
CDKN1A
0.45
19
3
20
4
86.4%
83.3%
0.0095
0.0062
22
24


SKIL
TNFRSF10B
0.44
20
2
20
4
90.9%
83.3%
0.0003
4.0E−06
22
24


ATM
VEGF
0.44
19
3
19
5
86.4%
79.2%
0.0013
5.0E−07
22
24


IFNG
SRC
0.44
18
4
20
4
81.8%
83.3%
0.0017
5.1E−06
22
24


NRAS
THBS1
0.44
19
3
19
5
86.4%
79.2%
0.0017
0.0152
22
24


CDK2
THBS1
0.44
19
3
20
4
86.4%
83.3%
0.0017
0.0070
22
24


MSH2
MYCL1
0.44
18
4
20
4
81.8%
83.3%
1.6E−05
2.8E−06
22
24


SKIL
SRC
0.44
18
4
20
4
81.8%
83.3%
0.0018
4.3E−06
22
24


MSH2
VHL
0.44
19
3
20
4
86.4%
83.3%
6.7E−06
2.9E−06
22
24


IFNG
MYCL1
0.44
19
3
20
4
86.4%
83.3%
1.6E−05
5.5E−06
22
24


BAX
NME1
0.44
19
3
20
4
86.4%
83.3%
1.3E−07
1.7E−05
22
24


HRAS
NOTCH2
0.44
18
4
20
4
81.8%
83.3%
0.0048
2.1E−07
22
24


CDK5
PTCH1
0.44
17
5
19
5
77.3%
79.2%
2.9E−07
0.0171
22
24


CDKN1A
VEGF
0.44
18
4
20
4
81.8%
83.3%
0.0016
0.0123
22
24


CDK5
VHL
0.44
19
3
19
5
86.4%
79.2%
7.4E−06
0.0172
22
24


ABL2

0.44
18
4
20
4
81.8%
83.3%
1.3E−07

22
24


CDKN1A
TP53
0.44
19
3
20
4
86.4%
83.3%
0.0005
0.0128
22
24


BAD
NME1
0.44
18
4
20
4
81.8%
83.3%
1.4E−07
6.0E−05
22
24


CDKN1A
NRAS
0.44
18
4
19
5
81.8%
79.2%
0.0188
0.0131
22
24


CDKN1A
NFKB1
0.44
19
3
21
3
86.4%
87.5%
0.0101
0.0136
22
24


ERBB2
MSH2
0.44
19
3
21
3
86.4%
87.5%
3.5E−06
8.9E−06
22
24


NFKB1
SKI
0.43
18
4
18
6
81.8%
75.0%
3.3E−07
0.0104
22
24


AKT1
IFNG
0.43
20
2
21
3
90.9%
87.5%
6.7E−06
0.0004
22
24


E2F1
VEGF
0.43
19
3
20
4
86.4%
83.3%
0.0018
0.0009
22
24


MSH2
WNT1
0.43
18
4
20
4
81.8%
83.3%
2.6E−05
3.7E−06
22
24


IL8
RHOC
0.43
20
2
20
4
90.9%
83.3%
0.0323
5.8E−07
22
24


ITGA1
SKIL
0.43
20
2
20
4
90.9%
83.3%
5.7E−06
0.0002
22
24


TNFRSF10A
TNFRSF10B
0.43
17
5
20
4
77.3%
83.3%
0.0005
1.7E−07
22
24


CDK2
IL18
0.43
20
2
20
4
90.9%
83.3%
1.6E−07
0.0099
22
24


ITGB1
RAF1
0.43
18
4
21
3
81.8%
87.5%
7.2E−05
2.6E−07
22
24


THBS1
VEGF
0.43
17
5
20
4
77.3%
83.3%
0.0020
0.0025
22
24


BCL2
HRAS
0.43
20
2
21
3
90.9%
87.5%
2.7E−07
0.0001
22
24


AKT1
SKIL
0.43
19
3
20
4
86.4%
83.3%
6.3E−06
0.0005
22
24


RHOC
VEGF
0.43
19
3
21
3
86.4%
87.5%
0.0021
0.0369
22
24


NME1
NRAS
0.43
19
3
20
4
86.4%
83.3%
0.0252
1.8E−07
22
24


CDK2
GZMA
0.43
18
4
20
4
81.8%
83.3%
1.9E−07
0.0112
22
24


ITGB1
VEGF
0.43
18
4
19
5
81.8%
79.2%
0.0022
3.0E−07
22
24


CDK5
IL8
0.43
19
3
21
3
86.4%
87.5%
7.0E−07
0.0251
22
24


HRAS
NRAS
0.43
19
3
20
4
86.4%
83.3%
0.0270
3.1E−07
22
24


MSH2
SRC
0.43
18
4
20
4
81.8%
83.3%
0.0030
4.7E−06
22
24


S100A4
SKIL
0.43
18
4
21
3
81.8%
87.5%
7.2E−06
9.3E−06
22
24


IL1B
VEGF
0.43
17
5
19
5
77.3%
79.2%
0.0024
0.0018
22
24


CDK5
SKI
0.42
17
5
19
5
77.3%
79.2%
4.6E−07
0.0281
22
24


CDK4
TP53
0.42
18
4
19
5
81.8%
79.2%
0.0008
7.5E−07
22
24


CDK2
VHL
0.42
19
3
20
4
86.4%
83.3%
1.2E−05
0.0138
22
24


MMP9

0.42
18
4
20
4
81.8%
83.3%
2.2E−07

22
24


CDKN1A
SKIL
0.42
18
4
20
4
81.8%
83.3%
9.0E−06
0.0242
22
24


E2F1
IL1B
0.42
17
5
20
4
77.3%
83.3%
0.0022
0.0015
22
24


NME1
TP53
0.42
19
3
20
4
86.4%
83.3%
0.0010
2.4E−07
22
24


BCL2
CDKN1A
0.42
19
3
20
4
86.4%
83.3%
0.0246
0.0002
22
24


ATM
VHL
0.42
18
4
20
4
81.8%
83.3%
1.4E−05
1.1E−06
22
24


BAD
IFNG
0.42
20
2
21
3
90.9%
87.5%
1.2E−05
0.0001
22
24


E2F1
TP53
0.42
20
2
20
4
90.9%
83.3%
0.0010
0.0016
22
24


CASP8
NOTCH2
0.42
18
4
19
5
81.8%
79.2%
0.0104
2.8E−07
22
24


NFKB1
THBS1
0.42
19
3
20
4
86.4%
83.3%
0.0042
0.0202
22
24


ABL1
CDKN1A
0.42
18
4
20
4
81.8%
83.3%
0.0281
0.0002
22
24


NOTCH2
TNFRSF10A
0.42
19
3
20
4
86.4%
83.3%
3.2E−07
0.0112
22
24


BAD
TNFRSF10A
0.41
18
4
20
4
81.8%
83.3%
3.2E−07
0.0001
22
24


BAX
IFNG
0.41
19
3
20
4
86.4%
83.3%
1.3E−05
3.9E−05
22
24


E2F1
NRAS
0.41
17
5
18
6
77.3%
75.0%
0.0423
0.0018
22
24


ITGB1
RB1
0.41
19
3
21
3
86.4%
87.5%
7.7E−06
4.7E−07
22
24


SERPINE1

0.41
18
4
20
4
81.8%
83.3%
2.9E−07

22
24


NOTCH2
VEGF
0.41
19
3
20
4
86.4%
83.3%
0.0037
0.0118
22
24


CDK2
IL8
0.41
19
3
21
3
86.4%
87.5%
1.1E−06
0.0193
22
24


ITGB1
TNFRSF10B
0.41
19
3
20
4
86.4%
83.3%
0.0009
4.8E−07
22
24


PLAU

0.41
17
5
19
5
77.3%
79.2%
2.9E−07

22
24


ATM
RB1
0.41
17
5
19
5
77.3%
79.2%
8.1E−06
1.4E−06
22
24


IFNG
RAF1
0.41
19
3
21
3
86.4%
87.5%
0.0001
1.4E−05
22
24


NFKB1
PCNA
0.41
18
4
20
4
81.8%
83.3%
3.8E−07
0.0236
22
24


AKT1
ATM
0.41
18
4
20
4
81.8%
83.3%
1.4E−06
0.0009
22
24


BAD
SKIL
0.41
19
3
21
3
86.4%
87.5%
1.2E−05
0.0001
22
24


CDKN1A
TNFRSF10B
0.41
18
4
20
4
81.8%
83.3%
0.0010
0.0331
22
24


CDK5
IL1B
0.41
17
5
19
5
77.3%
79.2%
0.0030
0.0477
22
24


BRAF

0.41
17
5
19
5
77.3%
79.2%
3.2E−07

22
24


CDKN1A
NOTCH4
0.41
18
4
20
4
81.8%
83.3%
4.4E−06
0.0359
22
24


SEMA4D

0.41
18
4
20
4
81.8%
83.3%
3.4E−07

22
24


APAF1
NFKB1
0.41
19
3
19
5
86.4%
79.2%
0.0279
7.9E−07
22
24


AKT1
TNFRSF10A
0.41
17
5
21
3
77.3%
87.5%
4.1E−07
0.0011
22
24


AKT1
CASP8
0.41
19
3
21
3
86.4%
87.5%
4.0E−07
0.0011
22
24


MYC

0.41
19
3
20
4
86.4%
83.3%
3.6E−07

22
24


CDK2
VEGF
0.41
18
4
20
4
81.8%
83.3%
0.0049
0.0258
22
24


E2F1
NOTCH2
0.40
17
5
19
5
77.3%
79.2%
0.0165
0.0025
22
24


BAD
CDKN1A
0.40
18
4
20
4
81.8%
83.3%
0.0440
0.0002
22
24


CDK2
ERBB2
0.40
17
5
19
5
77.3%
79.2%
2.6E−05
0.0280
22
24


ITGB1
SRC
0.40
17
5
19
5
77.3%
79.2%
0.0070
7.0E−07
22
24


IL8
VEGF
0.40
18
4
19
5
81.8%
79.2%
0.0055
1.7E−06
22
24


PCNA
TP53
0.40
18
4
20
4
81.8%
83.3%
0.0018
5.3E−07
22
24


IFNG
S100A4
0.40
19
3
21
3
86.4%
87.5%
2.1E−05
2.0E−05
22
24


NOTCH2
SKI
0.40
17
5
18
6
77.3%
75.0%
1.0E−06
0.0188
22
24


NME1
TNFRSF10B
0.40
19
3
20
4
86.4%
83.3%
0.0014
4.5E−07
22
24


CDK2
ITGAE
0.40
17
5
20
4
77.3%
83.3%
5.6E−07
0.0320
22
24


NFKB1
VEGF
0.40
18
4
20
4
81.8%
83.3%
0.0062
0.0385
22
24


SRC
VEGF
0.40
19
3
20
4
86.4%
83.3%
0.0063
0.0080
22
24


CDKN2A
IFNG
0.40
19
3
21
3
86.4%
87.5%
2.3E−05
8.0E−06
22
24


BAD
E2F1
0.40
19
3
19
5
86.4%
79.2%
0.0034
0.0002
22
24


IL18
NOTCH2
0.39
19
3
20
4
86.4%
83.3%
0.0233
5.4E−07
22
24


BRCA1
IFNG
0.39
17
5
19
5
77.3%
79.2%
2.6E−05
0.0010
22
24


PTCH1
TP53
0.39
19
3
20
4
86.4%
83.3%
0.0024
1.3E−06
22
24


HRAS
SRC
0.39
19
3
19
5
86.4%
79.2%
0.0101
1.0E−06
22
24


AKT1
ITGB1
0.39
19
3
20
4
86.4%
83.3%
1.0E−06
0.0019
22
24


IL1B
TP53
0.39
17
5
19
5
77.3%
79.2%
0.0027
0.0062
22
24


ERBB2
IFNG
0.39
18
4
20
4
81.8%
83.3%
3.0E−05
4.1E−05
22
24


BRCA1
MSH2
0.39
17
5
19
5
77.3%
79.2%
1.7E−05
0.0012
22
24


CDK2
MYCL1
0.39
19
3
19
5
86.4%
79.2%
9.3E−05
0.0489
22
24


E2F1
RAF1
0.39
17
5
18
6
77.3%
75.0%
0.0003
0.0047
22
24


AKT1
E2F1
0.39
19
3
21
3
86.4%
87.5%
0.0047
0.0023
22
24


BAX
E2F1
0.39
19
3
21
3
86.4%
87.5%
0.0048
0.0001
22
24


AKT1
NME1
0.38
19
3
21
3
86.4%
87.5%
7.7E−07
0.0024
22
24


PLAUR

0.38
16
5
18
6
76.2%
75.0%
1.0E−06

21
24


NME1
NOTCH2
0.38
17
5
19
5
77.3%
79.2%
0.0358
8.0E−07
22
24


BRCA1
THBS1
0.38
17
5
19
5
77.3%
79.2%
0.0144
0.0015
22
24


NOTCH2
THBS1
0.38
17
5
20
4
77.3%
83.3%
0.0145
0.0385
22
24


CFLAR
NOTCH2
0.38
17
5
20
4
77.3%
83.3%
0.0400
8.4E−06
22
24


IFNG
VHL
0.38
19
3
21
3
86.4%
87.5%
5.4E−05
4.3E−05
22
24


IFNG
PTCH1
0.38
18
4
20
4
81.8%
83.3%
2.2E−06
4.5E−05
22
24


NOTCH4
THBS1
0.38
18
4
19
5
81.8%
79.2%
0.0172
1.3E−05
22
24


ATM
BCL2
0.38
19
3
19
5
86.4%
79.2%
0.0006
4.5E−06
22
24


ITGA3
TP53
0.38
16
5
18
5
76.2%
78.3%
0.0044
5.4E−06
21
23


THBS1
WNT1
0.37
17
5
20
4
77.3%
83.3%
0.0002
0.0186
22
24


ATM
SRC
0.37
17
5
19
5
77.3%
79.2%
0.0188
4.9E−06
22
24


MYCL1
SKIL
0.37
19
3
20
4
86.4%
83.3%
4.2E−05
0.0002
22
24


AKT1
THBS1
0.37
18
4
19
5
81.8%
79.2%
0.0196
0.0036
22
24


E2F1
SRC
0.37
17
5
18
6
77.3%
75.0%
0.0200
0.0078
22
24


ABL1
THBS1
0.37
18
4
19
5
81.8%
79.2%
0.0201
0.0008
22
24


BCL2
NME1
0.37
20
2
19
5
90.9%
79.2%
1.2E−06
0.0008
22
24


IL1B
MSH2
0.37
18
4
20
4
81.8%
83.3%
2.9E−05
0.0120
22
24


ITGB1
VHL
0.37
19
3
20
4
86.4%
83.3%
7.0E−05
1.9E−06
22
24


IFNG
ITGA1
0.37
18
4
20
4
81.8%
83.3%
0.0013
5.8E−05
22
24


ABL1
E2F1
0.37
19
3
20
4
86.4%
83.3%
0.0087
0.0009
22
24


BAX
SKIL
0.37
19
3
21
3
86.4%
87.5%
4.8E−05
0.0002
22
24


BCL2
E2F1
0.37
19
3
19
5
86.4%
79.2%
0.0089
0.0008
22
24


E2F1
ITGA1
0.37
17
5
19
5
77.3%
79.2%
0.0014
0.0092
22
24


SRC
TNFRSF10A
0.37
18
4
19
5
81.8%
79.2%
1.5E−06
0.0240
22
24


ITGA1
MSH2
0.37
18
4
20
4
81.8%
83.3%
3.5E−05
0.0015
22
24


ATM
S100A4
0.37
18
4
20
4
81.8%
83.3%
7.0E−05
6.5E−06
22
24


IL1B
SRC
0.37
17
5
19
5
77.3%
79.2%
0.0258
0.0147
22
24


IL8
TP53
0.36
19
3
20
4
86.4%
83.3%
0.0065
5.7E−06
22
24


BAX
CASP8
0.36
18
4
19
5
81.8%
79.2%
1.6E−06
0.0002
22
24


IL18
VEGF
0.36
17
5
19
5
77.3%
79.2%
0.0213
1.5E−06
22
24


E2F1
THBS1
0.36
17
5
19
5
77.3%
79.2%
0.0271
0.0105
22
24


TP53
VEGF
0.36
18
4
20
4
81.8%
83.3%
0.0215
0.0067
22
24


AKT1
VEGF
0.36
18
4
19
5
81.8%
79.2%
0.0218
0.0050
22
24


AKT1
SKI
0.36
18
4
20
4
81.8%
83.3%
3.5E−06
0.0051
22
24


ITGA1
THBS1
0.36
18
4
20
4
81.8%
83.3%
0.0286
0.0017
22
24


MYCL1
TNFRSF10A
0.36
17
5
19
5
77.3%
79.2%
1.8E−06
0.0002
22
24


RHOC

0.36
19
3
20
4
86.4%
83.3%
1.6E−06

22
24


ATM
BAD
0.36
18
4
20
4
81.8%
83.3%
0.0008
7.6E−06
22
24


BAD
THBS1
0.36
18
4
19
5
81.8%
79.2%
0.0302
0.0008
22
24


CASP8
TNFRSF10B
0.36
17
5
20
4
77.3%
83.3%
0.0054
1.8E−06
22
24


NME1
SRC
0.36
18
4
19
5
81.8%
79.2%
0.0314
1.7E−06
22
24


BCL2
IL1B
0.36
17
5
19
5
77.3%
79.2%
0.0180
0.0011
22
24


CASP8
TP53
0.36
17
5
19
5
77.3%
79.2%
0.0080
2.0E−06
22
24


E2F1
MYCL1
0.36
19
3
19
5
86.4%
79.2%
0.0003
0.0130
22
24


ATM
IL1B
0.36
17
5
20
4
77.3%
83.3%
0.0197
8.5E−06
22
24


IL1B
ITGB1
0.36
19
3
20
4
86.4%
83.3%
3.2E−06
0.0207
22
24


RAF1
THBS1
0.36
18
4
20
4
81.8%
83.3%
0.0376
0.0010
22
24


BCL2
SKIL
0.35
18
4
20
4
81.8%
83.3%
7.8E−05
0.0013
22
24


CDC25A
VEGF
0.35
18
4
20
4
81.8%
83.3%
0.0304
0.0001
22
24


ATM
MYCL1
0.35
18
4
19
5
81.8%
79.2%
0.0003
9.5E−06
22
24


ABL1
CASP8
0.35
18
4
19
5
81.8%
79.2%
2.3E−06
0.0015
22
24


HRAS
WNT1
0.35
17
5
19
5
77.3%
79.2%
0.0004
3.9E−06
22
24


BAX
THBS1
0.35
17
5
19
5
77.3%
79.2%
0.0456
0.0003
22
24


NRAS

0.35
17
5
19
5
77.3%
79.2%
2.4E−06

22
24


ERBB2
THBS1
0.35
17
5
19
5
77.3%
79.2%
0.0470
0.0002
22
24


ABL1
IL1B
0.35
17
5
19
5
77.3%
79.2%
0.0277
0.0019
22
24


SKIL
THBS1
0.35
18
4
20
4
81.8%
83.3%
0.0490
9.8E−05
22
24


BAD
PCNA
0.35
20
2
19
5
90.9%
79.2%
3.1E−06
0.0012
22
24


ABL1
ATM
0.35
19
3
20
4
86.4%
83.3%
1.2E−05
0.0019
22
24


ITGA1
VEGF
0.35
18
4
19
5
81.8%
79.2%
0.0397
0.0029
22
24


ABL1
SKIL
0.35
19
3
20
4
86.4%
83.3%
0.0001
0.0019
22
24


BCL2
VEGF
0.35
18
4
20
4
81.8%
83.3%
0.0414
0.0018
22
24


ABL1
VEGF
0.34
18
4
20
4
81.8%
83.3%
0.0435
0.0021
22
24


PCNA
TNFRSF10B
0.34
20
2
19
5
90.9%
79.2%
0.0099
3.5E−06
22
24


ATM
ITGA1
0.34
19
3
19
5
86.4%
79.2%
0.0033
1.3E−05
22
24


HRAS
MYCL1
0.34
17
5
19
5
77.3%
79.2%
0.0004
5.0E−06
22
24


CCNE1
IFNG
0.34
19
3
20
4
86.4%
83.3%
0.0001
4.0E−05
22
24


ATM
BAX
0.34
18
4
20
4
81.8%
83.3%
0.0004
1.4E−05
22
24


IL1B
WNT1
0.34
17
5
19
5
77.3%
79.2%
0.0006
0.0354
22
24


IFNG
RB1
0.34
19
3
18
6
86.4%
75.0%
9.1E−05
0.0002
22
24


E2F1
WNT1
0.34
17
5
19
5
77.3%
79.2%
0.0006
0.0254
22
24


CDKN1A

0.34
17
5
19
5
77.3%
79.2%
3.3E−06

22
24


MSH2
PCNA
0.34
18
4
19
5
81.8%
79.2%
4.1E−06
8.5E−05
22
24


IL1B
PTEN
0.34
17
5
19
5
77.3%
79.2%
8.4E−06
0.0424
22
24


AKT1
IL1B
0.33
17
5
20
4
77.3%
83.3%
0.0455
0.0139
22
24


HRAS
RAF1
0.33
18
4
20
4
81.8%
83.3%
0.0021
7.0E−06
22
24


E2F1
JUN
0.33
17
5
19
5
77.3%
79.2%
6.0E−05
0.0340
22
24


MYCL1
NME1
0.33
18
4
19
5
81.8%
79.2%
4.5E−06
0.0007
22
24


BCL2
IL8
0.33
19
3
20
4
86.4%
83.3%
1.8E−05
0.0032
22
24


CCNE1
E2F1
0.33
17
5
19
5
77.3%
79.2%
0.0401
6.7E−05
22
24


CDK2

0.33
18
4
19
5
81.8%
79.2%
5.0E−06

22
24


ABL1
CDK4
0.33
18
4
20
4
81.8%
83.3%
1.9E−05
0.0040
22
24


GZMA
TP53
0.33
18
4
19
5
81.8%
79.2%
0.0269
5.8E−06
22
24


CDK4
TNFRSF10B
0.33
19
3
20
4
86.4%
83.3%
0.0197
1.9E−05
22
24


MSH2
RB1
0.32
17
5
19
5
77.3%
79.2%
0.0002
0.0001
22
24


BCL2
ITGB1
0.32
18
4
21
3
81.8%
87.5%
1.1E−05
0.0046
22
24


SMAD4
TNFRSF10A
0.32
17
5
19
5
77.3%
79.2%
7.5E−06
0.0011
22
24


HRAS
SMAD4
0.32
18
4
20
4
81.8%
83.3%
0.0011
1.1E−05
22
24


GZMA
TNFRSF10B
0.32
18
4
19
5
81.8%
79.2%
0.0260
7.5E−06
22
24


IL8
TNFRSF10B
0.32
18
4
20
4
81.8%
83.3%
0.0271
2.8E−05
22
24


ERBB2
HRAS
0.32
17
5
19
5
77.3%
79.2%
1.2E−05
0.0005
22
24


CCNE1
MSH2
0.32
17
5
20
4
77.3%
83.3%
0.0002
0.0001
22
24


ITGB1
MYCL1
0.31
20
2
20
4
90.9%
83.3%
0.0011
1.3E−05
22
24


NOTCH2

0.31
17
5
19
5
77.3%
79.2%
7.8E−06

22
24


ABL1
ITGB1
0.31
19
3
21
3
86.4%
87.5%
1.4E−05
0.0066
22
24


IL18
TNFRSF10B
0.31
17
5
20
4
77.3%
83.3%
0.0323
8.5E−06
22
24


AKT1
CDK4
0.31
19
3
20
4
86.4%
83.3%
3.1E−05
0.0334
22
24


HRAS
VHL
0.31
17
5
19
5
77.3%
79.2%
0.0005
1.5E−05
22
24


BAD
ITGB1
0.31
19
3
19
5
86.4%
79.2%
1.5E−05
0.0045
22
24


JUN
MSH2
0.31
18
4
19
5
81.8%
79.2%
0.0002
0.0001
22
24


BRCA1
IL18
0.31
17
5
19
5
77.3%
79.2%
9.4E−06
0.0195
22
24


SKIL
WNT1
0.31
17
5
19
5
77.3%
79.2%
0.0019
0.0004
22
24


BRCA1
IL8
0.31
17
5
19
5
77.3%
79.2%
3.8E−05
0.0201
22
24


ITGA3
MSH2
0.31
19
2
19
4
90.5%
82.6%
0.0002
4.8E−05
21
23


ABL1
SKI
0.31
18
4
19
5
81.8%
79.2%
2.2E−05
0.0077
22
24


AKT1
CDC25A
0.31
17
5
19
5
77.3%
79.2%
0.0008
0.0395
22
24


CDC25A
TNFRSF10B
0.31
17
5
18
6
77.3%
75.0%
0.0392
0.0008
22
24


AKT1
PCNA
0.31
19
3
20
4
86.4%
83.3%
1.3E−05
0.0418
22
24


ABL1
PCNA
0.30
18
4
20
4
81.8%
83.3%
1.3E−05
0.0087
22
24


BAD
CDC25A
0.30
17
5
19
5
77.3%
79.2%
0.0008
0.0057
22
24


ITGA1
ITGB1
0.30
18
4
19
5
81.8%
79.2%
1.9E−05
0.0138
22
24


MSH2
PTCH1
0.30
17
5
19
5
77.3%
79.2%
2.8E−05
0.0003
22
24


CASP8
RAF1
0.30
17
5
19
5
77.3%
79.2%
0.0066
1.4E−05
22
24


IL18
RAF1
0.30
19
3
20
4
86.4%
83.3%
0.0069
1.3E−05
22
24


BRCA1
CDC25A
0.30
18
4
18
6
81.8%
75.0%
0.0010
0.0286
22
24


S100A4
TNFRSF10A
0.30
17
5
19
5
77.3%
79.2%
1.5E−05
0.0007
22
24


ABL1
ITGA3
0.30
17
4
18
5
81.0%
78.3%
7.0E−05
0.0141
21
23


ATM
WNT1
0.30
17
5
19
5
77.3%
79.2%
0.0029
6.7E−05
22
24


ATM
TNFRSF6
0.29
18
4
20
4
81.8%
83.3%
0.0004
7.0E−05
22
24


IFNG
ITGA3
0.29
17
4
19
4
81.0%
82.6%
7.7E−05
0.0011
21
23


CDK4
IFNG
0.29
17
5
19
5
77.3%
79.2%
0.0008
6.0E−05
22
24


ERBB2
SKIL
0.29
18
4
19
5
81.8%
79.2%
0.0007
0.0011
22
24


RAF1
TNFRSF10A
0.29
19
3
19
5
86.4%
79.2%
1.9E−05
0.0091
22
24


CASP8
S100A4
0.29
17
5
19
5
77.3%
79.2%
0.0009
1.9E−05
22
24


IFNG
JUN
0.29
18
4
20
4
81.8%
83.3%
0.0003
0.0009
22
24


CDC25A
ITGA1
0.29
17
5
19
5
77.3%
79.2%
0.0239
0.0014
22
24


ABL1
BRCA1
0.29
19
3
19
5
86.4%
79.2%
0.0424
0.0158
22
24


IFNG
TNFRSF6
0.29
17
5
18
6
77.3%
75.0%
0.0005
0.0010
22
24


BCL2
ITGA1
0.29
17
5
19
5
77.3%
79.2%
0.0260
0.0154
22
24


IFNG
IGFBP3
0.28
17
5
18
6
77.3%
75.0%
6.5E−05
0.0011
22
24


BCL2
CASP8
0.28
17
5
19
5
77.3%
79.2%
2.4E−05
0.0168
22
24


BAX
PCNA
0.28
18
4
19
5
81.8%
79.2%
2.8E−05
0.0036
22
24


BAX
ITGB1
0.28
19
3
20
4
86.4%
83.3%
3.9E−05
0.0037
22
24


ITGA1
TNFRSF10A
0.28
19
3
18
6
86.4%
75.0%
2.8E−05
0.0319
22
24


BCL2
ITGA3
0.28
16
5
18
5
76.2%
78.3%
0.0001
0.0297
21
23


BCL2
PCNA
0.28
19
3
20
4
86.4%
83.3%
3.4E−05
0.0216
22
24


CFLAR
MSH2
0.28
17
5
19
5
77.3%
79.2%
0.0007
0.0003
22
24


TNFRSF10A
WNT1
0.28
17
5
18
6
77.3%
75.0%
0.0058
3.2E−05
22
24


MSH2
TNFRSF6
0.27
17
5
18
6
77.3%
75.0%
0.0008
0.0008
22
24


ABL1
CDC25A
0.27
18
4
19
5
81.8%
79.2%
0.0023
0.0260
22
24


ERBB2
NME1
0.27
19
3
18
6
86.4%
75.0%
3.1E−05
0.0021
22
24


IL8
MYCL1
0.27
19
3
20
4
86.4%
83.3%
0.0049
0.0001
22
24


PCNA
SMAD4
0.27
17
5
19
5
77.3%
79.2%
0.0055
3.9E−05
22
24


IL1B

0.27
17
5
19
5
77.3%
79.2%
3.1E−05

22
24


ABL1
ITGA1
0.27
17
5
18
6
77.3%
75.0%
0.0434
0.0279
22
24


BCL2
CDC25A
0.27
17
5
19
5
77.3%
79.2%
0.0025
0.0258
22
24


ABL1
IL8
0.27
18
4
20
4
81.8%
83.3%
0.0001
0.0284
22
24


CDC25A
RAF1
0.27
17
5
18
6
77.3%
75.0%
0.0193
0.0026
22
24


PCNA
SKIL
0.27
18
4
20
4
81.8%
83.3%
0.0014
4.2E−05
22
24


ERBB2
TNFRSF10A
0.27
17
5
20
4
77.3%
83.3%
4.0E−05
0.0025
22
24


MSH2
SKI
0.27
17
5
19
5
77.3%
79.2%
9.3E−05
0.0011
22
24


IL18
SMAD4
0.26
17
5
18
6
77.3%
75.0%
0.0072
4.1E−05
22
24


IL8
RAF1
0.26
18
4
20
4
81.8%
83.3%
0.0240
0.0002
22
24


ERBB2
IL8
0.26
18
4
20
4
81.8%
83.3%
0.0002
0.0031
22
24


CCNE1
SKIL
0.26
17
5
19
5
77.3%
79.2%
0.0022
0.0007
22
24


BAX
SKI
0.26
17
5
19
5
77.3%
79.2%
0.0001
0.0090
22
24


IL8
SMAD4
0.25
19
3
20
4
86.4%
83.3%
0.0102
0.0002
22
24


FGFR2
MSH2
0.25
17
5
19
5
77.3%
79.2%
0.0016
0.0002
22
24


BAD
IL8
0.25
17
5
19
5
77.3%
79.2%
0.0002
0.0371
22
24


APAF1
RAF1
0.25
17
5
18
6
77.3%
75.0%
0.0387
0.0001
22
24


CDC25A
IFNG
0.25
17
5
19
5
77.3%
79.2%
0.0035
0.0055
22
24


CDC25A
MYCL1
0.25
18
4
19
5
81.8%
79.2%
0.0112
0.0055
22
24


TP53

0.25
19
3
19
5
86.4%
79.2%
7.0E−05

22
24


CASP8
SMAD4
0.24
17
5
18
6
77.3%
75.0%
0.0146
8.8E−05
22
24


CFLAR
IFNG
0.24
17
5
19
5
77.3%
79.2%
0.0047
0.0009
22
24


AKT1

0.24
21
1
19
5
95.5%
79.2%
9.3E−05

22
24


TNFRSF10B

0.24
18
4
20
4
81.8%
83.3%
9.3E−05

22
24


CDC25A
S100A4
0.24
18
4
18
6
81.8%
75.0%
0.0053
0.0077
22
24


APAF1
MSH2
0.24
17
5
19
5
77.3%
79.2%
0.0026
0.0002
22
24


CDKN2A
SKIL
0.24
17
5
19
5
77.3%
79.2%
0.0044
0.0018
22
24


CDK4
SKIL
0.24
18
4
20
4
81.8%
83.3%
0.0045
0.0004
22
24


BAX
IL8
0.24
19
3
20
4
86.4%
83.3%
0.0004
0.0184
22
24


MSH2
NOTCH4
0.23
17
5
18
6
77.3%
75.0%
0.0016
0.0032
22
24


CDC25A
SKIL
0.23
18
4
19
5
81.8%
79.2%
0.0053
0.0102
22
24


IL8
WNT1
0.23
17
5
18
6
77.3%
75.0%
0.0298
0.0005
22
24


BAX
IL18
0.23
19
3
19
5
86.4%
79.2%
0.0001
0.0240
22
24


IL18
MYCL1
0.23
17
5
18
6
77.3%
75.0%
0.0237
0.0001
22
24


CDC25A
SMAD4
0.22
17
5
19
5
77.3%
79.2%
0.0310
0.0134
22
24


CFLAR
ITGB1
0.22
17
5
18
6
77.3%
75.0%
0.0003
0.0017
22
24


IFNG
SKI
0.22
17
5
18
6
77.3%
75.0%
0.0004
0.0097
22
24


APAF1
IFNG
0.22
17
5
19
5
77.3%
79.2%
0.0098
0.0004
22
24


JUN
SKIL
0.22
17
5
19
5
77.3%
79.2%
0.0090
0.0031
22
24


PTCH1
SKIL
0.21
17
5
18
6
77.3%
75.0%
0.0102
0.0005
22
24


CDK4
TNFRSF10A
0.21
17
5
18
6
77.3%
75.0%
0.0003
0.0009
22
24


SKI
SKIL
0.21
18
4
20
4
81.8%
83.3%
0.0110
0.0006
22
24


CDK4
HRAS
0.21
17
5
19
5
77.3%
79.2%
0.0005
0.0010
22
24


MSH2
NME1
0.20
17
5
18
6
77.3%
75.0%
0.0003
0.0087
22
24


IL8
S100A4
0.20
18
4
20
4
81.8%
83.3%
0.0187
0.0013
22
24


CDC25A
VHL
0.20
17
5
19
5
77.3%
79.2%
0.0230
0.0284
22
24


IL8
VHL
0.20
17
5
19
5
77.3%
79.2%
0.0253
0.0014
22
24


CDC25A
ERBB2
0.20
17
5
18
6
77.3%
75.0%
0.0291
0.0325
22
24


ATM
ITGA3
0.20
16
5
18
5
76.2%
78.3%
0.0016
0.0020
21
23


ABL1

0.20
17
5
18
6
77.3%
75.0%
0.0004

22
24


BCL2

0.19
17
5
19
5
77.3%
79.2%
0.0004

22
24


FGFR2
SKIL
0.19
18
4
20
4
81.8%
83.3%
0.0233
0.0019
22
24


CASP8
SKIL
0.18
17
5
18
6
77.3%
75.0%
0.0327
0.0008
22
24


JUN
NME1
0.18
17
5
18
6
77.3%
75.0%
0.0008
0.0122
22
24


CDKN2A
ITGB1
0.18
17
5
18
6
77.3%
75.0%
0.0014
0.0158
22
24


NOTCH4
SKIL
0.17
18
4
19
5
81.8%
79.2%
0.0440
0.0136
22
24


JUN
TNFRSF10A
0.17
17
5
18
6
77.3%
75.0%
0.0013
0.0179
22
24


CDK4
IL8
0.15
18
4
18
6
81.8%
75.0%
0.0076
0.0069
22
24


CDK4
ITGB1
0.13
18
4
18
6
81.8%
75.0%
0.0059
0.0136
22
24


ITGB1
PTCH1
0.13
17
5
19
5
77.3%
79.2%
0.0090
0.0063
22
24


CDC25A

0.13
17
5
18
6
77.3%
75.0%
0.0043

22
24





















TABLE 3B








Cervical
Normals
Sum



Group Size
52.2%
47.8%
100%



N =
24
22
46



Gene
Mean
Mean
p-val





















EGR1
18.5
20.1
1.4E−15



SOCS1
15.8
17.1
1.5E−11



FOS
14.5
15.9
1.2E−10



TGFB1
11.9
12.9
3.1E−10



TNF
17.4
18.8
5.4E−10



TIMP1
13.5
14.7
6.0E−10



IFITM1
7.6
9.0
1.3E−09



NME4
16.5
17.4
1.3E−09



TNFRSF1A
14.4
15.5
7.6E−09



ICAM1
16.0
17.2
2.2E−08



RHOA
11.0
11.9
7.1E−08



ABL2
19.3
20.4
1.3E−07



MMP9
13.0
15.0
2.2E−07



SERPINE1
20.0
21.4
2.9E−07



PLAU
22.8
24.4
2.9E−07



BRAF
16.1
16.9
3.2E−07



SEMA4D
13.7
14.5
3.4E−07



MYC
17.2
18.3
3.6E−07



PLAUR
14.1
15.0
1.0E−06



RHOC
15.6
16.5
1.6E−06



NRAS
16.4
17.1
2.4E−06



CDK5
17.9
18.8
2.4E−06



CDKN1A
15.6
16.4
3.3E−06



NFKB1
15.9
16.8
4.4E−06



CDK2
18.6
19.4
5.0E−06



NOTCH2
15.2
16.1
7.8E−06



SRC
17.9
18.6
1.9E−05



THBS1
16.8
18.1
1.9E−05



VEGF
21.9
23.0
2.4E−05



IL1B
15.0
15.9
3.1E−05



E2F1
19.3
20.3
4.5E−05



TP53
15.7
16.4
7.0E−05



AKT1
14.6
15.3
9.3E−05



TNFRSF10B
16.7
17.4
9.3E−05



BRCA1
20.9
21.5
0.0002



ITGA1
20.5
21.4
0.0003



ABL1
17.7
18.4
0.0004



BCL2
16.5
17.2
0.0004



RAF1
14.0
14.6
0.0006



BAD
18.0
18.4
0.0006



WNT1
20.9
21.8
0.0016



SMAD4
16.7
17.1
0.0019



BAX
15.3
15.8
0.0021



MYCL1
18.1
18.7
0.0021



CDC25A
22.4
23.1
0.0043



ERBB2
21.8
22.7
0.0047



VHL
17.0
17.4
0.0052



S100A4
12.9
13.4
0.0063



IFNG
23.8
22.9
0.0066



SKIL
18.6
18.0
0.0082



RB1
17.2
17.6
0.0117



TNFRSF6
16.1
16.5
0.0123



MSH2
18.5
17.9
0.0129



CDKN2A
20.3
20.9
0.0209



JUN
20.6
21.1
0.0248



NOTCH4
24.0
24.9
0.0261



CCNE1
22.4
23.0
0.0262



CFLAR
14.4
14.7
0.0365



ATM
16.9
16.5
0.0861



IL8
22.1
21.6
0.1054



FGFR2
22.2
22.9
0.1120



CDK4
17.4
17.7
0.1174



ITGA3
21.6
21.9
0.1378



IGFBP3
21.6
22.1
0.1429



G1P3
15.1
15.5
0.1867



ANGPT1
20.9
21.2
0.1965



SKI
17.2
17.5
0.2035



PTEN
13.8
14.0
0.2043



PTCH1
19.7
20.0
0.2066



APAF1
17.1
17.3
0.2117



HRAS
20.4
20.2
0.3183



ITGB1
14.7
14.5
0.3255



PCNA
18.1
18.2
0.5247



ITGAE
23.4
23.5
0.5291



TNFRSF10A
20.9
20.8
0.5987



CASP8
15.1
15.2
0.6464



GZMA
17.6
17.7
0.7011



NME1
19.5
19.5
0.8473



IL18
22.0
22.0
0.8585



COL18A1
23.7
23.7
0.9578























TABLE 3C











Predicted probability


Patient ID
Group
EGR1
SOCS1
logit
odds
of Cervical Inf







CVC-001
Cervical Cancer
18.89
16.87


1


CVC-002
Cervical Cancer
18.30
16.28


1


CVC-003
Cervical Cancer
18.24
16.40


1


CVC-004
Cervical Cancer
18.73
15.83


1


CVC-005
Cervical Cancer
18.21
16.15


1


CVC-006
Cervical Cancer
18.36
15.45


1


CVC-007
Cervical Cancer
18.73
15.88


1


CVC-008
Cervical Cancer
18.37
15.64


1


CVC-009
Cervical Cancer
18.98
16.24


1


CVC-010
Cervical Cancer
18.33
14.66


1


CVC-011
Cervical Cancer
18.43
15.68


1


CVC-012
Cervical Cancer
19.10
16.39


1


CVC-013
Cervical Cancer
18.59
15.98


1


CVC-014
Cervical Cancer
18.72
16.49


1


CVC-015
Cervical Cancer
18.57
15.26


1


CVC-016
Cervical Cancer
19.20
15.65


1


CVC-017
Cervical Cancer
18.56
15.48


1


CVC-018
Cervical Cancer
18.22
15.69


1


CVC-019
Cervical Cancer
18.22
15.60


1


CVC-020
Cervical Cancer
18.65
16.24


1


CVC-031
Cervical Cancer
18.58
16.00


1


CVC-032
Cervical Cancer
17.79
15.57


1


CVC-033
Cervical Cancer
17.84
15.09


1


CVC-034
Cervical Cancer
18.56
15.18


1


HN-001-HCG
Normal
19.31
16.71


0


HN-050-HCG
Normal
19.41
16.02


0


HN-004-HCG
Normal
19.39
16.61


0


HN-041-HCG
Normal
19.60
16.82


0


HN-002-HCG
Normal
19.68
17.44


0


HN-150-HCG
Normal
19.74
17.21


0


HN-042-HCG
Normal
19.82
17.01


0


HN-111-HCG
Normal
19.95
17.14


0


HN-146-HCG
Normal
20.02
16.69


0


HN-022-HCG
Normal
20.04
18.38


0


HN-034-HCG
Normal
20.10
16.98


0


HN-110-HCG
Normal
20.16
17.09


0


HN-125-HCG
Normal
20.17
16.93


0


HN-104-HCG
Normal
20.17
17.37


0


HN-120-HCG
Normal
20.27
17.36


0


HN-109-HCG
Normal
20.33
17.32


0


HN-133-HCG
Normal
20.36
17.35


0


HN-103-HCG
Normal
20.53
16.93


0


HN-033-HCG
Normal
20.53
17.43


0


HN-032-HCG
Normal
20.60
17.05


0


HN-028-HCG
Normal
20.61
17.45


0


HN-118-HCG
Normal
20.65
17.27


0

























TABLE 4a
















total used











(excludes








Normal
Cervical

missing)


















2-gene models
En-
#
#

N =
22
24


#



and 1-gene
tropy
normal
normal
# Cvc
# Cvc
Correct
Correct


nor-
# dis-


models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
mals
ease






















EGR1
FOS
0.89
20
1
23
1
95.2%
95.8%
0.0002
0.0475
21
24


NR4A2
TGFB1
0.86
21
1
22
2
95.5%
91.7%
9.3E−05
1.4E−12
22
24


FOS
SERPINE1
0.86
21
0
23
1
100.0%
95.8%
6.4E−07
0.0005
21
24


MAP2K1
TGFB1
0.86
21
1
23
1
95.5%
95.8%
0.0001
3.3E−11
22
24


CCND2
EGR1
0.84
20
2
23
1
90.9%
95.8%
0.0255
2.4E−13
22
24


NFATC2
TGFB1
0.81
21
1
22
2
95.5%
91.7%
0.0005
7.7E−11
22
24


S100A6
TGFB1
0.81
21
1
22
2
95.5%
91.7%
0.0005
6.7E−13
22
24


NAB2
TGFB1
0.81
21
1
22
2
95.5%
91.7%
0.0006
1.2E−12
22
24


FOS
PDGFA
0.78
21
0
23
1
100.0%
95.8%
5.8E−06
0.0071
21
24


EGR2
FOS
0.77
20
1
23
1
95.2%
95.8%
0.0106
0.0061
21
24


FOS
PLAU
0.77
20
1
22
2
95.2%
91.7%
7.8E−05
0.0111
21
24


EGR1

0.76
20
2
22
2
90.9%
91.7%
3.0E−12

22
24


ALOX5
PTEN
0.76
21
1
22
2
95.5%
91.7%
7.6E−12
0.0004
22
24


FOS
S100A6
0.75
19
2
22
2
90.5%
91.7%
7.4E−12
0.0187
21
24


FOS
THBS1
0.75
20
1
23
1
95.2%
95.8%
2.8E−07
0.0188
21
24


EGR2
SERPINE1
0.75
21
1
23
1
95.5%
95.8%
3.9E−06
0.0026
22
24


FOS
RAF1
0.74
19
2
22
2
90.5%
91.7%
9.2E−09
0.0268
21
24


FOS
TOPBP1
0.74
20
1
22
2
95.2%
91.7%
2.4E−11
0.0312
21
24


FOS
TGFB1
0.73
20
1
23
1
95.2%
95.8%
0.0145
0.0390
21
24


EP300
NAB1
0.73
21
1
23
1
95.5%
95.8%
5.9E−11
0.0024
22
24


TGFB1
TOPBP1
0.73
22
0
22
2
100.0%
91.7%
1.5E−11
0.0087
22
24


ALOX5
EGR3
0.73
20
2
23
1
90.9%
95.8%
7.9E−07
0.0012
22
24


EP300
TOPBP1
0.72
21
1
21
3
95.5%
87.5%
1.9E−11
0.0029
22
24


NAB1
TGFB1
0.72
20
2
22
2
90.9%
91.7%
0.0115
7.8E−11
22
24


NFKB1
TGFB1
0.72
20
2
22
2
90.9%
91.7%
0.0135
6.9E−07
22
24


CCND2
TGFB1
0.71
21
1
23
1
95.5%
95.8%
0.0169
1.7E−11
22
24


RAF1
TGFB1
0.70
21
1
23
1
95.5%
95.8%
0.0239
9.3E−09
22
24


JUN
TGFB1
0.70
21
1
22
2
95.5%
91.7%
0.0297
3.6E−10
22
24


EGR2
TGFB1
0.70
19
3
21
3
86.4%
87.5%
0.0301
0.0165
22
24


EGR2
PDGFA
0.69
19
3
21
3
86.4%
87.5%
5.6E−05
0.0191
22
24


FGF2
TGFB1
0.69
21
1
23
1
95.5%
95.8%
0.0365
3.3E−10
22
24


SERPINE1
TGFB1
0.69
22
0
22
2
100.0%
91.7%
0.0380
2.7E−05
22
24


EP300
NR4A2
0.69
18
4
22
2
81.8%
91.7%
4.5E−10
0.0117
22
24


ALOX5
EGR2
0.68
20
2
22
2
90.9%
91.7%
0.0266
0.0054
22
24


EGR2
TOPBP1
0.68
19
3
21
3
86.4%
87.5%
8.8E−11
0.0336
22
24


EGR2
FGF2
0.68
20
2
22
2
90.9%
91.7%
5.3E−10
0.0343
22
24


EGR3
EP300
0.67
21
1
22
2
95.5%
91.7%
0.0175
4.4E−06
22
24


CDKN2D
EP300
0.67
21
1
23
1
95.5%
95.8%
0.0200
2.8E−09
22
24


ALOX5
TOPBP1
0.67
20
2
21
3
90.9%
87.5%
1.2E−10
0.0094
22
24


EGR2
EP300
0.67
20
2
22
2
90.9%
91.7%
0.0230
0.0487
22
24


EGR2
PLAU
0.67
20
2
22
2
90.9%
91.7%
5.9E−05
0.0496
22
24


FOS

0.67
17
4
22
2
81.0%
91.7%
1.2E−10

21
24


EP300
S100A6
0.66
20
2
22
2
90.9%
91.7%
8.1E−11
0.0263
22
24


ALOX5
TNFRSF6
0.66
20
2
22
2
90.9%
91.7%
2.2E−09
0.0117
22
24


EP300
PTEN
0.66
21
1
21
3
95.5%
87.5%
2.1E−10
0.0309
22
24


EP300
SERPINE1
0.66
21
1
22
2
95.5%
91.7%
8.0E−05
0.0319
22
24


EP300
RAF1
0.66
19
3
21
3
86.4%
87.5%
4.3E−08
0.0348
22
24


ALOX5
NAB1
0.65
21
1
22
2
95.5%
91.7%
7.8E−10
0.0164
22
24


EGR3
MAPK1
0.65
20
2
22
2
90.9%
91.7%
0.0004
9.8E−06
22
24


PDGFA
PLAU
0.65
20
2
22
2
90.9%
91.7%
0.0001
0.0002
22
24


PLAU
SERPINE1
0.64
21
1
23
1
95.5%
95.8%
0.0001
0.0001
22
24


ALOX5
CDKN2D
0.64
20
2
21
3
90.9%
87.5%
8.1E−09
0.0275
22
24


ICAM1
S100A6
0.63
20
2
21
3
90.9%
87.5%
2.4E−10
0.0029
22
24


EGR3
PDGFA
0.63
20
2
21
3
90.9%
87.5%
0.0005
2.0E−05
22
24


EGR3
SERPINE1
0.63
20
2
22
2
90.9%
91.7%
0.0002
2.2E−05
22
24


ALOX5
PDGFA
0.62
19
3
22
2
86.4%
91.7%
0.0006
0.0487
22
24


TGFB1

0.62
22
0
21
3
100.0%
87.5%
3.1E−10

22
24


ALOX5
SERPINE1
0.62
20
2
22
2
90.9%
91.7%
0.0003
0.0491
22
24


SERPINE1
SMAD3
0.61
20
2
21
3
90.9%
87.5%
2.6E−05
0.0003
22
24


ICAM1
SERPINE1
0.61
20
2
22
2
90.9%
91.7%
0.0005
0.0069
22
24


EGR2

0.61
19
3
21
3
86.4%
87.5%
5.3E−10

22
24


ICAM1
PDGFA
0.60
19
3
21
3
86.4%
87.5%
0.0012
0.0076
22
24


SERPINE1
TP53
0.60
19
3
21
3
86.4%
87.5%
2.1E−06
0.0005
22
24


PDGFA
TP53
0.60
20
2
22
2
90.9%
91.7%
2.1E−06
0.0012
22
24


ICAM1
NAB1
0.60
21
1
21
3
95.5%
87.5%
4.0E−09
0.0080
22
24


CREBBP
TOPBP1
0.59
21
1
21
3
95.5%
87.5%
1.3E−09
0.0036
22
24


CREBBP
NR4A2
0.59
19
3
20
4
86.4%
83.3%
9.2E−09
0.0038
22
24


EGR3
ICAM1
0.59
19
3
21
3
86.4%
87.5%
0.0112
6.9E−05
22
24


CREBBP
SERPINE1
0.59
21
1
22
2
95.5%
91.7%
0.0008
0.0041
22
24


CREBBP
PDGFA
0.59
21
1
21
3
95.5%
87.5%
0.0020
0.0048
22
24


EP300

0.59
19
3
21
3
86.4%
87.5%
1.0E−09

22
24


CEBPB
EGR3
0.58
21
1
22
2
95.5%
91.7%
9.3E−05
0.0003
22
24


MAPK1
PTEN
0.58
19
3
21
3
86.4%
87.5%
2.8E−09
0.0045
22
24


ICAM1
PLAU
0.58
19
3
21
3
86.4%
87.5%
0.0011
0.0176
22
24


EGR3
PLAU
0.58
20
2
21
3
90.9%
87.5%
0.0012
0.0001
22
24


CREBBP
S100A6
0.58
21
1
20
4
95.5%
83.3%
1.4E−09
0.0071
22
24


PDGFA
SMAD3
0.57
19
3
21
3
86.4%
87.5%
0.0001
0.0033
22
24


ICAM1
TOPBP1
0.57
20
2
21
3
90.9%
87.5%
2.8E−09
0.0242
22
24


MAPK1
PDGFA
0.57
19
3
20
4
86.4%
83.3%
0.0037
0.0065
22
24


MAPK1
SERPINE1
0.56
19
3
21
3
86.4%
87.5%
0.0021
0.0088
22
24


ALOX5

0.56
20
2
21
3
90.9%
87.5%
2.2E−09

22
24


CREBBP
EGR3
0.56
20
2
21
3
90.9%
87.5%
0.0002
0.0143
22
24


CREBBP
RAF1
0.56
19
3
20
4
86.4%
83.3%
1.2E−06
0.0143
22
24


MAPK1
PLAU
0.55
20
2
21
3
90.9%
87.5%
0.0028
0.0118
22
24


CREBBP
NAB1
0.55
20
2
21
3
90.9%
87.5%
2.2E−08
0.0175
22
24


NFKB1
PDGFA
0.55
19
3
21
3
86.4%
87.5%
0.0081
0.0002
22
24


CREBBP
PLAU
0.55
19
3
21
3
86.4%
87.5%
0.0036
0.0201
22
24


CEBPB
PDGFA
0.55
20
2
21
3
90.9%
87.5%
0.0086
0.0009
22
24


CREBBP
MAP2K1
0.53
19
3
20
4
86.4%
83.3%
1.3E−06
0.0313
22
24


MAPK1
TOPBP1
0.53
19
3
21
3
86.4%
87.5%
1.1E−08
0.0295
22
24


EGR3
FGF2
0.53
18
4
20
4
81.8%
83.3%
6.9E−08
0.0006
22
24


CREBBP
FGF2
0.53
19
3
21
3
86.4%
87.5%
6.9E−08
0.0405
22
24


CREBBP
NAB2
0.53
19
3
20
4
86.4%
83.3%
1.1E−08
0.0435
22
24


EGR3
THBS1
0.52
18
4
19
5
81.8%
79.2%
0.0001
0.0007
22
24


PLAU
SMAD3
0.52
19
3
21
3
86.4%
87.5%
0.0006
0.0091
22
24


MAPK1
TP53
0.52
18
4
21
3
81.8%
87.5%
3.2E−05
0.0410
22
24


PLAU
THBS1
0.52
19
3
21
3
86.4%
87.5%
0.0001
0.0108
22
24


NFKB1
SERPINE1
0.51
19
3
21
3
86.4%
87.5%
0.0115
0.0007
22
24


NFATC2
SERPINE1
0.51
20
2
21
3
90.9%
87.5%
0.0115
1.3E−06
22
24


NFATC2
PDGFA
0.51
20
2
21
3
90.9%
87.5%
0.0281
1.4E−06
22
24


PDGFA
RAF1
0.51
19
3
21
3
86.4%
87.5%
5.3E−06
0.0315
22
24


CEBPB
SERPINE1
0.51
20
2
22
2
90.9%
91.7%
0.0136
0.0033
22
24


PDGFA
SERPINE1
0.51
19
3
19
5
86.4%
79.2%
0.0139
0.0333
22
24


CEBPB
S100A6
0.51
19
3
21
3
86.4%
87.5%
1.3E−08
0.0033
22
24


JUN
PDGFA
0.51
19
3
21
3
86.4%
87.5%
0.0350
1.8E−07
22
24


PLAU
SRC
0.50
19
3
21
3
86.4%
87.5%
0.0002
0.0172
22
24


MAP2K1
PDGFA
0.50
19
3
21
3
86.4%
87.5%
0.0426
3.8E−06
22
24


NFKB1
TOPBP1
0.50
20
2
21
3
90.9%
87.5%
3.3E−08
0.0012
22
24


EGR3
NFKB1
0.49
18
4
20
4
81.8%
83.3%
0.0013
0.0020
22
24


CEBPB
PLAU
0.49
19
3
21
3
86.4%
87.5%
0.0232
0.0055
22
24


NFKB1
PLAU
0.49
20
2
21
3
90.9%
87.5%
0.0254
0.0014
22
24


ICAM1

0.49
17
5
19
5
77.3%
79.2%
2.2E−08

22
24


NAB2
SMAD3
0.49
18
4
20
4
81.8%
83.3%
0.0017
3.4E−08
22
24


JUN
SERPINE1
0.49
19
3
21
3
86.4%
87.5%
0.0288
3.3E−07
22
24


PLAU
TOPBP1
0.48
19
3
21
3
86.4%
87.5%
5.1E−08
0.0355
22
24


MAP2K1
SERPINE1
0.48
19
3
20
4
86.4%
83.3%
0.0426
8.4E−06
22
24


PLAU
TP53
0.47
20
2
21
3
90.9%
87.5%
0.0002
0.0493
22
24


SMAD3
THBS1
0.47
17
5
20
4
77.3%
83.3%
0.0007
0.0036
22
24


NFKB1
S100A6
0.47
18
4
20
4
81.8%
83.3%
4.8E−08
0.0032
22
24


FGF2
SMAD3
0.46
18
4
20
4
81.8%
83.3%
0.0045
5.6E−07
22
24


CDKN2D
EGR3
0.46
19
3
21
3
86.4%
87.5%
0.0058
2.6E−06
22
24


CREBBP

0.46
19
3
21
3
86.4%
87.5%
5.9E−08

22
24


NAB1
NFKB1
0.46
19
3
20
4
86.4%
83.3%
0.0049
4.9E−07
22
24


MAPK1

0.45
19
3
21
3
86.4%
87.5%
7.6E−08

22
24


CEBPB
SMAD3
0.45
20
2
20
4
90.9%
83.3%
0.0075
0.0278
22
24


NFATC2
SMAD3
0.45
19
3
20
4
86.4%
83.3%
0.0079
1.2E−05
22
24


CEBPB
THBS1
0.44
18
4
21
3
81.8%
87.5%
0.0020
0.0430
22
24


NFKB1
THBS1
0.42
19
3
20
4
86.4%
83.3%
0.0042
0.0202
22
24


EGR3
SRC
0.42
18
4
20
4
81.8%
83.3%
0.0042
0.0320
22
24


SERPINE1

0.41
18
4
20
4
81.8%
83.3%
2.9E−07

22
24


CCND2
SMAD3
0.41
19
3
21
3
86.4%
87.5%
0.0273
2.9E−07
22
24


PLAU

0.41
17
5
19
5
77.3%
79.2%
2.9E−07

22
24


NAB2
TP53
0.41
17
5
19
5
77.3%
79.2%
0.0013
4.7E−07
22
24


SMAD3
TOPBP1
0.41
17
5
19
5
77.3%
79.2%
5.5E−07
0.0310
22
24


FGF2
TP53
0.40
19
3
20
4
86.4%
83.3%
0.0016
4.1E−06
22
24


NAB2
NFKB1
0.40
17
5
19
5
77.3%
79.2%
0.0406
7.4E−07
22
24


CEBPB

0.37
18
4
20
4
81.8%
83.3%
1.1E−06

22
24


NFATC2
THBS1
0.37
18
4
19
5
81.8%
79.2%
0.0207
0.0002
22
24


RAF1
THBS1
0.36
18
4
20
4
81.8%
83.3%
0.0376
0.0010
22
24


EGR3

0.34
18
4
20
4
81.8%
83.3%
2.9E−06

22
24


SMAD3

0.34
19
3
19
5
86.4%
79.2%
3.6E−06

22
24


TOPBP1
TP53
0.32
20
2
19
5
90.9%
79.2%
0.0370
1.2E−05
22
24


RAF1
S100A6
0.31
18
4
20
4
81.8%
83.3%
8.8E−06
0.0046
22
24


MAP2K1
NAB2
0.30
17
5
18
6
77.3%
75.0%
2.1E−05
0.0040
22
24


MAP2K1
S100A6
0.29
18
4
18
6
81.8%
75.0%
1.6E−05
0.0046
22
24


MAP2K1
TOPBP1
0.27
19
3
19
5
86.4%
79.2%
6.8E−05
0.0121
22
24


TP53

0.25
19
3
19
5
86.4%
79.2%
7.0E−05

22
24


CDKN2D
NFATC2
0.25
18
4
19
5
81.8%
79.2%
0.0121
0.0040
22
24


MAP2K1

0.17
17
5
18
6
77.3%
75.0%
0.0011

22
24





















TABLE 4b








Cervical
Normals
Sum



Group Size
52.2%
47.8%
100%



N =
24
22
46



Gene
Mean
Mean
p-val





















EGR1
18.67
20.07
3.0E−12



FOS
14.49
15.86
1.2E−10



TGFB1
11.86
12.95
3.1E−10



EGR2
22.98
24.29
5.3E−10



EP300
15.32
16.60
1.0E−09



ALOX5
14.14
15.93
2.2E−09



ICAM1
16.03
17.18
2.2E−08



CREBBP
14.23
15.23
5.9E−08



MAPK1
13.99
14.86
7.6E−08



PDGFA
18.67
19.80
1.3E−07



SERPINE1
19.97
21.42
2.9E−07



PLAU
22.79
24.44
2.9E−07



CEBPB
13.87
14.86
1.1E−06



EGR3
22.11
23.34
2.9E−06



SMAD3
17.05
18.12
3.6E−06



NFKB1
15.93
16.84
4.4E−06



SRC
17.87
18.58
1.9E−05



THBS1
16.83
18.11
1.9E−05



TP53
15.74
16.44
7.0E−05



RAF1
14.04
14.57
0.0006



MAP2K1
15.51
16.01
0.0011



NFATC2
15.48
16.17
0.0023



CDKN2D
14.68
14.96
0.0066



TNFRSF6
16.08
16.51
0.0123



JUN
20.64
21.10
0.0248



NR4A2
20.63
21.12
0.0289



FGF2
24.27
24.86
0.0339



NAB1
16.88
17.12
0.0546



PTEN
13.78
14.00
0.2043



TOPBP1
17.95
18.11
0.3110



NAB2
19.98
20.15
0.3733



CCND2
16.91
16.87
0.9357



S100A6
14.27
14.27
0.9805























TABLE 4c











Predicted








probability


Patient ID
Group
EGR1
FOS
logit
odds
of cervical cancer





















CVC-032-EGR:200072288
Cervical Cancer
18.05
13.96
15.64
6189515.25
1.0000


CVC-033-EGR:200072289
Cervical Cancer
18.05
14.44
13.85
1036432.43
1.0000


CVC-011-EGR:200072745
Cervical Cancer
18.46
13.88
12.87
386836.93
1.0000


CVC-013-EGR:200072747
Cervical Cancer
18.48
13.98
12.28
214302.08
1.0000


CVC-010-EGR:200072744
Cervical Cancer
18.43
14.18
11.95
154166.33
1.0000


CVC-003-EGR:200072737
Cervical Cancer
18.26
14.54
11.82
135707.39
1.0000


CVC-008-EGR:200072742
Cervical Cancer
18.09
14.89
11.82
135509.91
1.0000


CVC-019-EGR:200072285
Cervical Cancer
18.30
14.50
11.69
119524.18
1.0000


CVC-002-EGR:200072736
Cervical Cancer
18.50
14.31
10.94
56271.39
1.0000


CVC-034-EGR:200072290
Cervical Cancer
18.59
14.14
10.87
52326.28
1.0000


CVC-006-EGR:200072740
Cervical Cancer
18.60
14.23
10.49
35876.89
1.0000


CVC-005-EGR:200072739
Cervical Cancer
18.42
14.63
10.32
30197.26
1.0000


CVC-020-EGR:200072286
Cervical Cancer
18.86
13.93
9.62
15036.72
0.9999


CVC-017-EGR:200072283
Cervical Cancer
18.77
14.16
9.47
13012.72
0.9999


CVC-031-EGR:200072287
Cervical Cancer
19.05
13.72
8.97
7897.51
0.9999


CVC-004-EGR:200072738
Cervical Cancer
19.04
14.02
7.87
2626.22
0.9996


CVC-015-EGR:200072749
Cervical Cancer
18.83
14.56
7.47
1762.17
0.9994


CVC-018-EGR:200072284
Cervical Cancer
18.65
14.95
7.28
1447.89
0.9993


CVC-007-EGR:200072741
Cervical Cancer
18.92
14.49
7.01
1109.20
0.9991


CVC-014-EGR:200072748
Cervical Cancer
18.65
15.36
5.80
328.89
0.9970


CVC-016-EGR:200072282
Cervical Cancer
18.81
15.57
3.79
44.11
0.9778


CVC-012-EGR:200072746
Cervical Cancer
19.51
14.61
2.03
7.64
0.8843


HN-001-EGR:200071931
Normal
19.22
15.42
1.18
3.26
0.7655


CVC-001-EGR:200072735
Cervical Cancer
19.47
14.96
1.07
2.92
0.7446


CVC-009-EGR:200072743
Cervical Cancer
19.32
15.73
−0.78
0.46
0.3154


HN-042-EGR:200071967
Normal
19.67
15.29
−1.79
0.17
0.1437


HN-034-EGR:200071959
Normal
19.86
15.08
−2.43
0.09
0.0812


HN-050-EGR:200071973
Normal
19.69
15.68
−3.39
0.03
0.0325


HN-111-EGR:200071984
Normal
19.56
15.95
−3.46
0.03
0.0305


HN-002-EGR:200071932
Normal
19.51
16.10
−3.66
0.03
0.0250


HN-146-EGR:200071998
Normal
20.04
15.78
−6.42
0.00
0.0016


HN-110-EGR:200071983
Normal
20.13
15.62
−6.50
0.00
0.0015


HN-150-EGR:200071999
Normal
19.82
16.28
−6.65
0.00
0.0013


HN-125-EGR:200071996
Normal
20.21
15.70
−7.47
0.00
0.0006


HN-041-EGR:200071966
Normal
19.99
16.34
−8.16
0.00
0.0003


HN-109-EGR:200071982
Normal
20.26
15.87
−8.48
0.00
0.0002


HN-133-EGR:200071997
Normal
20.52
15.36
−8.54
0.00
0.0002


HN-033-EGR:200071958
Normal
20.10
16.24
−8.68
0.00
0.0002


HN-032-EGR:200071957
Normal
20.64
15.25
−9.00
0.00
0.0001


HN-103-EGR:200071976
Normal
20.67
15.37
−9.70
0.00
0.0001


HN-022-EGR:200071949
Normal
20.32
16.23
−10.33
0.00
0.0000


HN-028-EGR:200071954
Normal
20.39
16.23
−10.79
0.00
0.0000


HN-120-EGR:200071993
Normal
20.52
16.33
−12.22
0.00
0.0000


HN-104-EGR:200071977
Normal
20.18
17.16
−12.81
0.00
0.0000


HN-118-EGR:200071991
Normal
21.20
15.85
−15.59
0.00
0.0000


























TABLE 5a

















total used












(excludes








Normal
Cervical


missing)



















En-
#
#

N =
22
24


#



2-gene models and
tropy
normal
normal
# cvc
# cvc
Correct
Correct


nor-
# dis-


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
mals
ease






















EGR1

1.00
22
0
24
0
100.0%
100.0%
1.4E−15

22
24


CAV1
FOS
1.00
20
0
24
0
100.0%
100.0%
5.5E−06
8.8E−10
20
24


FOS
SPARC
1.00
20
0
24
0
100.0%
100.0%
2.9E−09
5.5E−06
20
24


CTSD
MSH6
0.92
19
1
23
1
95.0%
95.8%
1.7E−13
2.5E−06
20
24


PLXDC2
PTEN
0.91
21
0
23
1
100.0%
95.8%
1.4E−13
2.6E−05
21
24


DAD1
MSH6
0.90
19
1
23
1
95.0%
95.8%
2.6E−13
7.1E−08
20
24


MSH6
TGFB1
0.87
19
1
23
1
95.0%
95.8%
6.3E−05
6.3E−13
20
24


GNB1
MSH6
0.86
19
1
23
1
95.0%
95.8%
1.1E−12
9.6E−06
20
24


MSH6
SRF
0.84
18
2
23
1
90.0%
95.8%
5.9E−07
2.0E−12
20
24


GNB1
TXNRD1
0.84
20
1
23
1
95.2%
95.8%
1.2E−12
2.0E−05
21
24


CASP3
PLXDC2
0.83
19
1
22
2
95.0%
91.7%
0.0002
6.9E−12
20
24


DIABLO
MSH6
0.83
19
1
23
1
95.0%
95.8%
2.2E−12
7.1E−09
20
24


MSH6
RBM5
0.83
19
1
23
1
95.0%
95.8%
3.6E−08
2.2E−12
20
24


FOS
MSH6
0.83
17
2
23
1
89.5%
95.8%
4.0E−12
0.0022
19
24


CTSD
ING2
0.83
20
1
23
1
95.2%
95.8%
1.2E−12
4.9E−05
21
24


MSH2
TGFB1
0.82
21
1
22
2
95.5%
91.7%
0.0004
1.1E−11
22
24


FOS
SERPINE1
0.82
21
0
23
1
100.0%
95.8%
3.0E−08
0.0020
21
24


PLXDC2
TXNRD1
0.82
19
2
23
1
90.5%
95.8%
2.1E−12
0.0005
21
24


MME
TNFRSF1A
0.82
19
2
23
1
90.5%
95.8%
5.2E−05
1.1E−12
21
24


DAD1
ING2
0.81
19
2
22
2
90.5%
91.7%
1.9E−12
1.3E−06
21
24


CDH1
TGFB1
0.81
20
2
23
1
90.9%
95.8%
0.0005
3.8E−10
22
24


FOS
MEIS1
0.81
21
0
23
1
100.0%
95.8%
1.6E−05
0.0027
21
24


SPARC
TNFRSF1A
0.81
19
2
22
2
90.5%
91.7%
6.6E−05
6.2E−07
21
24


MLH1
TNF
0.81
20
0
22
2
100.0%
91.7%
0.0015
2.7E−12
20
24


MSH6
TNF
0.81
18
2
23
1
90.0%
95.8%
0.0015
5.1E−12
20
24


FOS
TIMP1
0.81
21
0
23
1
100.0%
95.8%
0.0198
0.0031
21
24


FOS
RP51077B9.4
0.81
19
0
23
1
100.0%
95.8%
0.0040
0.0055
19
24


NUDT4
TGFB1
0.80
20
1
23
1
95.2%
95.8%
0.0007
2.8E−11
21
24


FOS
NUDT4
0.80
20
0
23
1
100.0%
95.8%
5.1E−11
0.0034
20
24


MSH6
TEGT
0.80
19
1
23
1
95.0%
95.8%
5.5E−06
6.2E−12
20
24


FOS
MME
0.80
19
1
23
1
95.0%
95.8%
4.4E−12
0.0037
20
24


DIABLO
MSH2
0.80
20
1
23
1
95.2%
95.8%
2.6E−11
1.8E−08
21
24


CASP3
CTSD
0.80
19
1
23
1
95.0%
95.8%
0.0001
2.1E−11
20
24


IKBKE
TGFB1
0.80
20
1
23
1
95.2%
95.8%
0.0009
3.5E−12
21
24


CEACAM1
FOS
0.80
19
1
23
1
95.0%
95.8%
0.0040
0.0003
20
24


PLXDC2
ZNF350
0.80
19
2
22
2
90.5%
91.7%
3.8E−12
0.0010
21
24


MME
PLXDC2
0.80
19
2
22
2
90.5%
91.7%
0.0010
2.2E−12
21
24


MTF1
TXNRD1
0.79
19
1
23
1
95.0%
95.8%
9.4E−12
3.1E−05
20
24


MLH1
PLXDC2
0.79
19
1
23
1
95.0%
95.8%
0.0010
4.6E−12
20
24


TNF
TNFSF5
0.79
18
3
22
2
85.7%
91.7%
9.4E−12
0.0033
21
24


CDH1
FOS
0.79
19
2
22
2
90.5%
91.7%
0.0056
1.2E−09
21
24


S100A4
TGFB1
0.79
22
0
22
2
100.0%
91.7%
0.0012
6.8E−11
22
24


ITGAL
MSH6
0.78
19
1
23
1
95.0%
95.8%
1.1E−11
2.4E−06
20
24


C1QB
FOS
0.78
20
0
22
2
100.0%
91.7%
0.0064
8.1E−07
20
24


CCL5
RP51077B9.4
0.78
18
2
22
2
90.0%
91.7%
0.0003
0.0002
20
24


APC
GNB1
0.78
20
1
22
2
95.2%
91.7%
0.0001
3.8E−12
21
24


FOS
SIAH2
0.78
17
2
23
1
89.5%
95.8%
2.1E−10
0.0125
19
24


FOS
TNF
0.78
19
2
23
1
90.5%
95.8%
0.0012
0.0078
21
24


DAD1
SPARC
0.78
20
1
23
1
95.2%
95.8%
1.7E−06
4.2E−06
21
24


G6PD
TXNRD1
0.78
20
1
23
1
95.2%
95.8%
7.9E−12
0.0006
21
24


G6PD
MSH6
0.77
19
1
22
2
95.0%
91.7%
1.4E−11
0.0008
20
24


TGFB1
TXNRD1
0.77
20
1
23
1
95.2%
95.8%
8.6E−12
0.0019
21
24


IKBKE
TNF
0.77
20
1
23
1
95.2%
95.8%
0.0060
7.7E−12
21
24


CDH1
ITGAL
0.77
19
1
23
1
95.0%
95.8%
3.5E−06
2.4E−09
20
24


MSH6
XRCC1
0.77
19
1
22
2
95.0%
91.7%
1.9E−05
1.6E−11
20
24


CXCL1
FOS
0.77
20
0
22
2
100.0%
91.7%
0.0098
5.8E−09
20
24


FOS
PLAU
0.77
20
1
22
2
95.2%
91.7%
7.8E−05
0.0111
21
24


ELA2
TNFRSF1A
0.77
19
2
22
2
90.5%
91.7%
0.0003
1.4E−08
21
24


CCL5
CD59
0.77
19
1
23
1
95.0%
95.8%
3.0E−05
0.0002
20
24


FOS
MSH2
0.77
20
1
22
2
95.2%
91.7%
1.1E−10
0.0120
21
24


ESR2
FOS
0.77
18
2
22
2
90.0%
91.7%
0.0108
1.4E−11
20
24


CTSD
SPARC
0.77
19
2
22
2
90.5%
91.7%
2.6E−06
0.0004
21
24


MME
S100A11
0.76
19
1
22
2
95.0%
91.7%
0.0002
1.1E−11
20
24


MSH2
TNF
0.76
21
1
22
2
95.5%
91.7%
0.0014
7.1E−11
22
24


GNB1
MLH1
0.76
19
1
23
1
95.0%
95.8%
1.0E−11
0.0002
20
24


CASP3
RBM5
0.76
20
0
22
2
100.0%
91.7%
3.7E−07
7.0E−11
20
24


TNF
ZNF350
0.76
19
2
22
2
90.5%
91.7%
1.2E−11
0.0091
21
24


TGFB1
VIM
0.76
19
2
22
2
90.5%
91.7%
1.3E−08
0.0032
21
24


MSH6
PLXDC2
0.76
19
1
23
1
95.0%
95.8%
0.0030
2.4E−11
20
24


APC
PLXDC2
0.76
19
2
22
2
90.5%
91.7%
0.0037
8.4E−12
21
24


FOS
TXNRD1
0.76
20
0
22
2
100.0%
91.7%
4.6E−11
0.0154
20
24


CTSD
ZNF350
0.75
20
1
22
2
95.2%
91.7%
1.4E−11
0.0005
21
24


SPARC
TNF
0.75
19
2
22
2
90.5%
91.7%
0.0113
3.8E−06
21
24


E2F1
FOS
0.75
19
1
22
2
95.0%
91.7%
0.0171
1.0E−07
20
24


CCL5
FOS
0.75
19
0
22
2
100.0%
91.7%
0.0325
0.0004
19
24


FOS
NEDD4L
0.75
17
2
22
2
89.5%
91.7%
2.9E−09
0.0324
19
24


C1QA
FOS
0.75
20
0
23
1
100.0%
95.8%
0.0180
2.9E−07
20
24


FOS
UBE2C
0.75
19
1
22
2
95.0%
91.7%
0.0004
0.0182
20
24


TNF
TXNRD1
0.75
19
2
22
2
90.5%
91.7%
1.8E−11
0.0127
21
24


CDH1
CTSD
0.75
18
3
22
2
85.7%
91.7%
0.0006
4.0E−09
21
24


C1QB
TNF
0.75
19
2
22
2
90.5%
91.7%
0.0132
2.1E−07
21
24


FOS
XK
0.75
19
1
22
2
95.0%
91.7%
7.3E−10
0.0200
20
24


APC
FOS
0.75
20
0
22
2
100.0%
91.7%
0.0203
2.2E−11
20
24


BCAM
TGFB1
0.75
19
2
22
2
90.5%
91.7%
0.0046
3.4E−11
21
24


FOS
POV1
0.75
19
2
22
2
90.5%
91.7%
2.6E−07
0.0236
21
24


FOS
SERPING1
0.75
21
0
22
2
100.0%
91.7%
6.7E−09
0.0236
21
24


NBEA
TNF
0.75
20
1
23
1
95.2%
95.8%
0.0139
4.3E−11
21
24


ANLN
FOS
0.75
21
0
22
2
100.0%
91.7%
0.0239
1.2E−09
21
24


CASP3
FOS
0.75
19
0
22
2
100.0%
91.7%
0.0389
1.4E−10
19
24


APC
CTSD
0.75
20
1
22
2
95.2%
91.7%
0.0007
1.2E−11
21
24


SPARC
TGFB1
0.75
19
2
22
2
90.5%
91.7%
0.0050
4.9E−06
21
24


DLC1
FOS
0.75
18
2
22
2
90.0%
91.7%
0.0222
4.3E−07
20
24


APC
TNF
0.75
19
2
22
2
90.5%
91.7%
0.0153
1.2E−11
21
24


BAX
TGFB1
0.74
21
1
22
2
95.5%
91.7%
0.0053
7.3E−10
22
24


CTSD
MSH2
0.74
20
1
22
2
95.2%
91.7%
1.5E−10
0.0008
21
24


CD59
FOS
0.74
20
1
22
2
95.2%
91.7%
0.0291
0.0002
21
24


C1QB
CCL5
0.74
19
1
23
1
95.0%
95.8%
0.0006
2.7E−07
20
24


TEGT
TXNRD1
0.74
20
1
22
2
95.2%
91.7%
2.4E−11
2.8E−05
21
24


CCL5
MMP9
0.74
19
1
22
2
95.0%
91.7%
1.2E−05
0.0006
20
24


MLH1
TGFB1
0.74
19
1
23
1
95.0%
95.8%
0.0049
2.1E−11
20
24


FOS
IGF2BP2
0.74
18
2
22
2
90.0%
91.7%
2.1E−10
0.0273
20
24


CTSD
MLH1
0.74
19
1
23
1
95.0%
95.8%
2.2E−11
0.0008
20
24


FOS
IQGAP1
0.74
18
3
22
2
85.7%
91.7%
3.0E−07
0.0321
21
24


CCL5
PLAU
0.74
19
1
23
1
95.0%
95.8%
1.9E−05
0.0006
20
24


CCL3
FOS
0.74
20
0
23
1
100.0%
95.8%
0.0279
3.8E−07
20
24


CDH1
SRF
0.74
20
1
22
2
95.2%
91.7%
1.3E−05
5.7E−09
21
24


CTSD
TXNRD1
0.74
20
1
22
2
95.2%
91.7%
2.6E−11
0.0009
21
24


ELA2
FOS
0.74
18
2
22
2
90.0%
91.7%
0.0283
5.7E−08
20
24


CASP3
TNF
0.74
18
2
22
2
90.0%
91.7%
0.0162
1.4E−10
20
24


CCL5
UBE2C
0.74
19
1
22
2
95.0%
91.7%
2.8E−05
0.0007
20
24


RP51077B9.4
TNF
0.74
18
2
22
2
90.0%
91.7%
0.0169
0.0012
20
24


S100A11
TXNRD1
0.74
20
0
22
2
100.0%
91.7%
5.5E−11
0.0005
20
24


GSK3B
PLXDC2
0.74
20
1
23
1
95.2%
95.8%
0.0078
2.5E−09
21
24


GNB1
MME
0.74
20
1
22
2
95.2%
91.7%
1.5E−11
0.0006
21
24


FOS
TGFB1
0.73
20
1
23
1
95.2%
95.8%
0.0145
0.0390
21
24


MSH6
MYC
0.73
18
2
22
2
90.0%
91.7%
9.9E−06
5.2E−11
20
24


SPARC
SRF
0.73
19
2
21
3
90.5%
87.5%
1.7E−05
8.2E−06
21
24


NUDT4
TNF
0.73
20
1
22
2
95.2%
91.7%
0.0264
2.9E−10
21
24


APC
TGFB1
0.73
20
1
22
2
95.2%
91.7%
0.0089
2.0E−11
21
24


RP51077B9.4
TGFB1
0.73
17
3
22
2
85.0%
91.7%
0.0074
0.0015
20
24


FOS
ZNF350
0.73
19
1
22
2
95.0%
91.7%
4.8E−11
0.0403
20
24


CDH1
TNF
0.73
21
1
22
2
95.5%
91.7%
0.0050
6.0E−09
22
24


GNB1
ZNF350
0.73
21
0
22
2
100.0%
91.7%
3.3E−11
0.0007
21
24


TGFB1
XK
0.73
18
3
22
2
85.7%
91.7%
6.5E−10
0.0093
21
24


CCL5
SERPINE1
0.73
18
2
22
2
90.0%
91.7%
4.0E−07
0.0009
20
24


PLXDC2
SPARC
0.73
19
2
22
2
90.5%
91.7%
8.8E−06
0.0100
21
24


CASP3
GNB1
0.73
19
1
22
2
95.0%
91.7%
0.0006
1.9E−10
20
24


MSH2
XRCC1
0.73
20
1
22
2
95.2%
91.7%
8.2E−05
2.5E−10
21
24


ITGAL
SPARC
0.73
18
2
22
2
90.0%
91.7%
8.3E−06
1.5E−05
20
24


SPARC
XRCC1
0.73
19
2
22
2
90.5%
91.7%
8.5E−05
9.4E−06
21
24


ESR1
TGFB1
0.72
21
0
22
2
100.0%
91.7%
0.0104
2.6E−11
21
24


SERPINA1
TXNRD1
0.72
18
2
22
2
90.0%
91.7%
7.6E−11
4.4E−05
20
24


DLC1
TGFB1
0.72
19
2
22
2
90.5%
91.7%
0.0106
3.0E−07
21
24


G6PD
VIM
0.72
19
2
22
2
90.5%
91.7%
4.2E−08
0.0035
21
24


CTSD
MME
0.72
18
3
22
2
85.7%
91.7%
2.2E−11
0.0016
21
24


XRCC1
ZNF350
0.72
20
1
22
2
95.2%
91.7%
4.0E−11
9.7E−05
21
24


MSH6
TNFRSF1A
0.72
18
2
22
2
90.0%
91.7%
0.0011
7.3E−11
20
24


CASP9
TGFB1
0.72
19
1
22
2
95.0%
91.7%
0.0098
5.3E−07
20
24


HMGA1
RP51077B9.4
0.72
17
3
21
2
85.0%
91.3%
0.0029
2.5E−06
20
23


GNB1
LGALS8
0.72
18
2
22
2
90.0%
91.7%
3.8E−08
0.0008
20
24


CCR7
TGFB1
0.72
21
1
23
1
95.5%
95.8%
0.0128
1.5E−11
22
24


MSH2
SRF
0.72
20
1
22
2
95.2%
91.7%
2.4E−05
3.2E−10
21
24


G6PD
MSH2
0.72
19
3
22
2
86.4%
91.7%
3.1E−10
0.0036
22
24


CASP3
TEGT
0.72
18
2
23
1
90.0%
95.8%
7.5E−05
2.5E−10
20
24


CAV1
PLXDC2
0.72
20
1
23
1
95.2%
95.8%
0.0138
2.3E−06
21
24


DIABLO
RP5107789.4
0.72
19
1
22
2
95.0%
91.7%
0.0021
2.7E−07
20
24


CDH1
G6PD
0.72
20
2
22
2
90.9%
91.7%
0.0038
8.5E−09
22
24


GSK3B
TNF
0.72
19
2
22
2
90.5%
91.7%
0.0413
4.4E−09
21
24


PLAU
TNF
0.72
21
1
22
2
95.5%
91.7%
0.0076
1.1E−05
22
24


ADAM17
PLXDC2
0.72
18
2
22
2
90.0%
91.7%
0.0117
1.8E−10
20
24


CNKSR2
TNF
0.72
19
2
21
3
90.5%
87.5%
0.0436
2.7E−11
21
24


MAPK14
S100A11
0.71
20
0
22
2
100.0%
91.7%
0.0010
1.4E−08
20
24


TNF
UBE2C
0.71
18
3
22
2
85.7%
91.7%
7.0E−05
0.0469
21
24


GNB1
MSH2
0.71
20
1
22
2
95.2%
91.7%
3.9E−10
0.0011
21
24


APC
TEGT
0.71
20
1
22
2
95.2%
91.7%
7.2E−05
3.3E−11
21
24


MYC
SPARC
0.71
19
2
22
2
90.5%
91.7%
1.5E−05
1.3E−05
21
24


LTA
TNF
0.71
18
2
22
2
90.0%
91.7%
0.0391
5.5E−08
20
24


LGALS8
PLXDC2
0.71
18
2
22
2
90.0%
91.7%
0.0139
4.9E−08
20
24


CASP3
DAD1
0.71
18
2
22
2
90.0%
91.7%
3.1E−05
3.2E−10
20
24


GNB1
VIM
0.71
19
2
22
2
90.5%
91.7%
6.1E−08
0.0012
21
24


CAV1
TNFRSF1A
0.71
20
1
23
1
95.2%
95.8%
0.0018
2.9E−06
21
24


CDH1
TNFRSF1A
0.71
20
2
22
2
90.9%
91.7%
0.0006
1.1E−08
22
24


PTEN
S100A11
0.71
18
2
22
2
90.0%
91.7%
0.0013
1.4E−10
20
24


CASP3
S100A11
0.71
18
2
22
2
90.0%
91.7%
0.0013
3.6E−10
20
24


GNB1
SPARC
0.71
18
3
21
3
85.7%
87.5%
1.8E−05
0.0014
21
24


ADAM17
TNF
0.71
18
2
21
3
90.0%
87.5%
0.0484
2.5E−10
20
24


POV1
TGFB1
0.71
21
1
22
2
95.5%
91.7%
0.0209
9.3E−07
22
24


G6PD
SPARC
0.71
19
2
21
3
90.5%
87.5%
1.8E−05
0.0064
21
24


MEIS1
RP51077B9.4
0.71
17
3
21
3
85.0%
87.5%
0.0032
0.0004
20
24


G6PD
MLH1
0.71
20
0
22
2
100.0%
91.7%
6.4E−11
0.0077
20
24


CAV1
IFI16
0.71
19
1
23
1
95.0%
95.8%
0.0019
3.2E−06
20
24


IQGAP1
PLXDC2
0.70
19
2
22
2
90.5%
91.7%
0.0225
1.9E−07
21
24


ING2
TGFB1
0.70
19
2
22
2
90.5%
91.7%
0.0211
5.9E−11
21
24


ING2
PLXDC2
0.70
19
2
22
2
90.5%
91.7%
0.0230
6.0E−11
21
24


CTSD
VIM
0.70
19
2
22
2
90.5%
91.7%
7.7E−08
0.0029
21
24


MAPK14
MTF1
0.70
17
3
20
4
85.0%
83.3%
0.0005
2.0E−08
20
24


CTSD
NUDT4
0.70
20
1
22
2
95.2%
91.7%
6.5E−10
0.0030
21
24


MSH6
SP1
0.70
18
2
22
2
90.0%
91.7%
0.0001
1.3E−10
20
24


MLH1
XRCC1
0.70
18
2
22
2
90.0%
91.7%
0.0002
6.9E−11
20
24


TGFB1
TNFSF5
0.70
20
1
23
1
95.2%
95.8%
1.5E−10
0.0226
21
24


CASP3
TGFB1
0.70
19
1
22
2
95.0%
91.7%
0.0183
4.2E−10
20
24


RP51077B9.4
XRCC1
0.70
18
2
22
2
90.0%
91.7%
0.0002
0.0037
20
24


TNFRSF1A
TXNRD1
0.70
20
1
22
2
95.2%
91.7%
8.4E−11
0.0024
21
24


CD59
TGFB1
0.70
21
1
22
2
95.5%
91.7%
0.0251
0.0001
22
24


MAPK14
PLXDC2
0.70
17
3
21
3
85.0%
87.5%
0.0201
2.2E−08
20
24


DIABLO
SPARC
0.70
20
1
22
2
95.2%
91.7%
2.1E−05
4.3E−07
21
24


CCL5
PLXDC2
0.70
18
2
22
2
90.0%
91.7%
0.0211
0.0024
20
24


SP1
TXNRD1
0.70
21
0
22
2
100.0%
91.7%
9.2E−11
0.0002
21
24


TGFB1
ZNF350
0.70
21
0
22
2
100.0%
91.7%
8.4E−11
0.0262
21
24


CASP3
TNFRSF1A
0.70
17
3
22
2
85.0%
91.7%
0.0024
4.7E−10
20
24


RBM5
SPARC
0.70
18
2
20
4
90.0%
83.3%
2.1E−05
2.6E−06
20
24


MSH2
TEGT
0.70
20
2
22
2
90.9%
91.7%
0.0001
6.4E−10
22
24


CCL5
CEACAM1
0.70
19
1
22
2
95.0%
91.7%
5.2E−05
0.0026
20
24


CDH1
GNB1
0.70
18
3
21
3
85.7%
87.5%
0.0020
2.2E−08
21
24


CCL5
TIMP1
0.70
18
2
22
2
90.0%
91.7%
0.0081
0.0027
20
24


NUDT4
SRF
0.70
19
2
22
2
90.5%
91.7%
5.3E−05
8.6E−10
21
24


MME
TEGT
0.69
20
1
22
2
95.2%
91.7%
0.0001
5.5E−11
21
24


CTSD
POV1
0.69
21
0
22
2
100.0%
91.7%
1.2E−05
0.0041
21
24


G6PD
S100A4
0.69
20
2
22
2
90.9%
91.7%
1.4E−09
0.0089
22
24


RBM5
ZNF350
0.69
19
1
22
2
95.0%
91.7%
1.6E−10
3.0E−06
20
24


ANLN
TGFB1
0.69
20
2
22
2
90.9%
91.7%
0.0336
2.6E−09
22
24


CCL5
SPARC
0.69
18
2
22
2
90.0%
91.7%
2.4E−05
0.0030
20
24


MME
TGFB1
0.69
20
1
22
2
95.2%
91.7%
0.0337
6.0E−11
21
24


MEIS1
TNFRSF1A
0.69
20
2
22
2
90.9%
91.7%
0.0011
0.0008
22
24


MEIS1
PLAU
0.69
19
3
21
3
86.4%
87.5%
2.6E−05
0.0008
22
24


LGALS8
TGFB1
0.69
19
1
22
2
95.0%
91.7%
0.0277
9.4E−08
20
24


SPARC
TEGT
0.69
19
2
22
2
90.5%
91.7%
0.0002
3.0E−05
21
24


MEIS1
PLXDC2
0.69
19
2
21
3
90.5%
87.5%
0.0383
0.0008
21
24


APC
TNFRSF1A
0.69
19
2
22
2
90.5%
91.7%
0.0037
7.1E−11
21
24


CD59
TNF
0.69
20
2
22
2
90.9%
91.7%
0.0205
0.0002
22
24


G6PD
IQGAP1
0.69
21
1
23
1
95.5%
95.8%
2.2E−07
0.0106
22
24


G6PD
MME
0.69
18
3
22
2
85.7%
91.7%
6.6E−11
0.0116
21
24


CDH1
DAD1
0.69
18
3
21
3
85.7%
87.5%
7.8E−05
2.9E−08
21
24


TEGT
ZNF350
0.69
19
2
22
2
90.5%
91.7%
1.2E−10
0.0002
21
24


IGF2BP2
TGFB1
0.69
18
3
22
2
85.7%
91.7%
0.0387
6.4E−10
21
24


NEDD4L
TGFB1
0.69
18
2
22
2
90.0%
91.7%
0.0305
9.6E−09
20
24


NEDD4L
TNFRSF1A
0.69
18
2
22
2
90.0%
91.7%
0.0036
9.9E−09
20
24


IFI16
MEIS1
0.69
17
3
21
3
85.0%
87.5%
0.0007
0.0036
20
24


TIMP1
TXNRD1
0.69
18
3
21
3
85.7%
87.5%
1.4E−10
0.0133
21
24


CA4
CCL5
0.69
17
3
21
3
85.0%
87.5%
0.0037
8.5E−07
20
24


SIAH2
TGFB1
0.69
17
3
22
2
85.0%
91.7%
0.0321
1.6E−09
20
24


MME
MTF1
0.69
19
1
23
1
95.0%
95.8%
0.0010
1.3E−10
20
24


AXIN2
TGFB1
0.69
19
2
22
2
90.5%
91.7%
0.0423
7.4E−11
21
24


CAV1
G6PD
0.69
19
2
22
2
90.5%
91.7%
0.0131
6.7E−06
21
24


PLEK2
TGFB1
0.68
18
2
21
3
90.0%
87.5%
0.0341
4.5E−10
20
24


MYC
RP51077B9.4
0.68
18
2
22
2
90.0%
91.7%
0.0066
4.6E−05
20
24


MMP9
TNF
0.68
20
2
22
2
90.9%
91.7%
0.0246
4.3E−05
22
24


APC
G6PD
0.68
20
1
21
3
95.2%
87.5%
0.0140
8.6E−11
21
24


GNB1
GSK3B
0.68
20
1
22
2
95.2%
91.7%
1.3E−08
0.0032
21
24


CASP3
G6PD
0.68
20
0
22
2
100.0%
91.7%
0.0167
7.7E−10
20
24


ESR2
TGFB1
0.68
18
3
22
2
85.7%
91.7%
0.0471
1.3E−10
21
24


C1QB
TGFB1
0.68
20
1
22
2
95.2%
91.7%
0.0470
1.8E−06
21
24


HMOX1
RP51077B9.4
0.68
18
2
22
2
90.0%
91.7%
0.0072
3.6E−06
20
24


RP51077B9.4
TNFRSF1A
0.68
19
1
22
2
95.0%
91.7%
0.0044
0.0075
20
24


CASP3
XRCC1
0.68
19
1
22
2
95.0%
91.7%
0.0004
8.5E−10
20
24


CASP3
SERPINA1
0.68
18
2
22
2
90.0%
91.7%
0.0002
8.8E−10
20
24


DAD1
ZNF350
0.68
19
2
22
2
90.5%
91.7%
1.6E−10
0.0001
21
24


CD97
TGFB1
0.68
19
1
22
2
95.0%
91.7%
0.0435
1.8E−06
20
24


MEIS1
TIMP1
0.68
20
2
22
2
90.9%
91.7%
0.0126
0.0013
22
24


G6PD
NUDT4
0.68
19
2
21
3
90.5%
87.5%
1.5E−09
0.0170
21
24


CCL5
S100A11
0.68
16
4
21
3
80.0%
87.5%
0.0036
0.0051
20
24


CASP3
MTF1
0.68
19
1
22
2
95.0%
91.7%
0.0013
9.3E−10
20
24


MSH2
MYC
0.68
20
2
21
3
90.9%
87.5%
3.4E−05
1.2E−09
22
24


DAD1
MSH2
0.68
18
3
21
3
85.7%
87.5%
1.3E−09
0.0001
21
24


MEIS1
TNF
0.68
20
2
21
3
90.9%
87.5%
0.0334
0.0014
22
24


CCL5
IFI16
0.68
18
2
21
3
90.0%
87.5%
0.0052
0.0053
20
24


TNFRSF1A
ZNF350
0.67
19
2
22
2
90.5%
91.7%
1.8E−10
0.0061
21
24


CAV1
CD59
0.67
19
2
22
2
90.5%
91.7%
0.0004
9.6E−06
21
24


IFI16
SPARC
0.67
16
4
22
2
80.0%
91.7%
4.4E−05
0.0055
20
24


CCL5
TLR2
0.67
17
3
21
3
85.0%
87.5%
1.4E−05
0.0056
20
24


CTSD
IKBKE
0.67
20
1
23
1
95.2%
95.8%
1.7E−10
0.0084
21
24


CCR7
TNF
0.67
20
2
22
2
90.9%
91.7%
0.0369
6.6E−11
22
24


ITGAL
MSH2
0.67
17
3
21
3
85.0%
87.5%
1.8E−09
8.0E−05
20
24


LGALS8
MTF1
0.67
18
2
22
2
90.0%
91.7%
0.0015
1.7E−07
20
24


MME
SP1
0.67
20
1
21
3
95.2%
87.5%
0.0005
1.1E−10
21
24


MEIS1
S100A11
0.67
19
1
21
3
95.0%
87.5%
0.0042
0.0012
20
24


G6PD
RP51077B9.4
0.67
18
2
22
2
90.0%
91.7%
0.0107
0.0258
20
24


MSH6
MTF1
0.67
18
2
22
2
90.0%
91.7%
0.0017
3.6E−10
20
24


CCR7
MYC
0.67
20
2
22
2
90.9%
91.7%
4.2E−05
7.4E−11
22
24


BAX
RP51077B9.4
0.67
18
2
22
2
90.0%
91.7%
0.0110
1.6E−08
20
24


CAV1
S100A11
0.67
19
1
23
1
95.0%
95.8%
0.0047
9.9E−06
20
24


E2F1
TNFRSF1A
0.67
19
2
21
3
90.5%
87.5%
0.0075
6.9E−07
21
24


GNB1
NUDT4
0.67
19
2
22
2
90.5%
91.7%
2.0E−09
0.0052
21
24


CD59
MEIS1
0.67
20
2
22
2
90.9%
91.7%
0.0018
0.0003
22
24


CTSD
RP51077B9.4
0.67
19
1
22
2
95.0%
91.7%
0.0115
0.0081
20
24


MSH2
TNFRSF1A
0.67
19
3
21
3
86.4%
87.5%
0.0025
1.7E−09
22
24


TIMP1
TNF
0.67
19
3
21
3
86.4%
87.5%
0.0460
0.0183
22
24


CCR7
CTSD
0.67
18
3
21
3
85.7%
87.5%
0.0106
1.4E−10
21
24


PTPRC
TXNRD1
0.67
18
2
22
2
90.0%
91.7%
4.7E−10
4.9E−05
20
24


DAD1
MEIS1
0.67
19
2
22
2
90.5%
91.7%
0.0018
0.0002
21
24


GNB1
ING2
0.67
19
2
21
3
90.5%
87.5%
2.0E−10
0.0058
21
24


CCL5
TNFRSF1A
0.67
17
3
21
3
85.0%
87.5%
0.0073
0.0074
20
24


FOS

0.67
17
4
22
2
81.0%
91.7%
1.2E−10

21
24


G6PD
LGALS8
0.67
19
1
22
2
95.0%
91.7%
2.1E−07
0.0310
20
24


CASP9
MSH6
0.66
17
3
21
3
85.0%
87.5%
4.3E−10
3.1E−06
20
24


ADAM17
G6PD
0.66
18
2
22
2
90.0%
91.7%
0.0328
9.5E−10
20
24


GNB1
IQGAP1
0.66
20
1
21
3
95.2%
87.5%
7.1E−07
0.0063
21
24


NUDT4
XRCC1
0.66
17
4
21
3
81.0%
87.5%
0.0007
2.4E−09
21
24


POV1
SRF
0.66
19
2
22
2
90.5%
91.7%
0.0002
3.4E−05
21
24


CAV1
RP51077B9.4
0.66
19
1
22
2
95.0%
91.7%
0.0138
1.2E−05
20
24


CTSD
MEIS1
0.66
19
2
21
3
90.5%
87.5%
0.0020
0.0121
21
24


G6PD
MAPK14
0.66
18
2
22
2
90.0%
91.7%
7.2E−08
0.0335
20
24


G6PD
POV1
0.66
22
0
21
3
100.0%
87.5%
3.9E−06
0.0276
22
24


APC
RBM5
0.66
19
1
22
2
95.0%
91.7%
8.0E−06
2.8E−10
20
24


AXIN2
RP51077B9.4
0.66
19
1
22
2
95.0%
91.7%
0.0144
2.7E−10
20
24


G6PD
ING2
0.66
20
1
22
2
95.2%
91.7%
2.4E−10
0.0311
21
24


CTSD
ESR1
0.66
19
2
21
3
90.5%
87.5%
2.1E−10
0.0134
21
24


MLH1
TEGT
0.66
17
3
21
3
85.0%
87.5%
0.0005
2.6E−10
20
24


NUDT4
TNFRSF1A
0.66
19
2
21
3
90.5%
87.5%
0.0104
2.7E−09
21
24


MSH6
MTA1
0.66
18
2
21
3
90.0%
87.5%
7.8E−06
5.0E−10
20
24


MEIS1
MMP9
0.66
19
3
20
4
86.4%
83.3%
9.9E−05
0.0025
22
24


ADAM17
GNB1
0.66
18
2
21
3
90.0%
87.5%
0.0060
1.1E−09
20
24


ING2
TIMP1
0.66
19
2
22
2
90.5%
91.7%
0.0372
2.6E−10
21
24


ITGAL
RP51077B9.4
0.66
19
1
22
2
95.0%
91.7%
0.0164
0.0001
20
24


TNFRSF1A
UBE2C
0.66
19
2
21
3
90.5%
87.5%
0.0004
0.0110
21
24


MTA1
SPARC
0.66
18
2
22
2
90.0%
91.7%
7.6E−05
8.4E−06
20
24


DAD1
MLH1
0.66
19
1
22
2
95.0%
91.7%
2.9E−10
0.0002
20
24


RP51077B9.4
TIMP1
0.66
19
1
23
1
95.0%
95.8%
0.0320
0.0175
20
24


CCL5
G6PD
0.66
17
3
21
3
85.0%
87.5%
0.0435
0.0105
20
24


SPARC
TIMP1
0.66
19
2
22
2
90.5%
91.7%
0.0410
9.5E−05
21
24


CTSD
S100A4
0.66
19
2
21
3
90.5%
87.5%
7.7E−09
0.0158
21
24


RP51077B9.4
SRF
0.66
19
1
22
2
95.0%
91.7%
0.0002
0.0181
20
24


S100A11
SPARC
0.65
18
2
22
2
90.0%
91.7%
8.1E−05
0.0075
20
24


HMGA1
SPARC
0.65
19
2
21
2
90.5%
91.3%
7.9E−05
1.9E−05
21
23


MLH1
TNFRSF1A
0.65
18
2
22
2
90.0%
91.7%
0.0106
3.1E−10
20
24


MLH1
RBM5
0.65
18
2
22
2
90.0%
91.7%
1.0E−05
3.1E−10
20
24


CCL5
MEIS1
0.65
17
3
21
3
85.0%
87.5%
0.0021
0.0109
20
24


G6PD
ZNF350
0.65
19
2
22
2
90.5%
91.7%
3.5E−10
0.0407
21
24


MEIS1
UBE2C
0.65
18
3
21
3
85.7%
87.5%
0.0005
0.0028
21
24


C1QA
CCL5
0.65
19
1
22
2
95.0%
91.7%
0.0116
1.4E−06
20
24


DLC1
G6PD
0.65
19
2
21
3
90.5%
87.5%
0.0430
3.1E−06
21
24


DAD1
RP51077B9.4
0.65
19
1
22
2
95.0%
91.7%
0.0200
0.0002
20
24


MSH2
RBM5
0.65
18
2
22
2
90.0%
91.7%
1.1E−05
3.5E−09
20
24


SP1
SPARC
0.65
18
3
21
3
85.7%
87.5%
0.0001
0.0009
21
24


SIAH2
TNFRSF1A
0.65
17
3
21
3
85.0%
87.5%
0.0122
5.0E−09
20
24


CDH1
TEGT
0.65
19
3
21
3
86.4%
87.5%
0.0005
7.9E−08
22
24


ITGAL
NUDT4
0.65
19
1
21
3
95.0%
87.5%
4.8E−09
0.0002
20
24


CASP9
CDH1
0.65
18
2
22
2
90.0%
91.7%
1.1E−07
5.0E−06
20
24


CCL5
ELA2
0.65
18
2
21
3
90.0%
87.5%
4.2E−06
0.0130
20
24


MSH6
TIMP1
0.65
19
1
22
2
95.0%
91.7%
0.0414
7.0E−10
20
24


APC
SP1
0.65
19
2
22
2
90.5%
91.7%
0.0010
2.6E−10
21
24


HOXA10
RP51077B9.4
0.65
19
1
22
2
95.0%
91.7%
0.0228
2.3E−07
20
24


ELA2
IFI16
0.65
17
3
22
2
85.0%
91.7%
0.0131
4.3E−06
20
24


HSPA1A
ING2
0.65
19
2
22
2
90.5%
91.7%
3.6E−10
0.0003
21
24


CCL5
CTSD
0.65
18
2
21
3
90.0%
87.5%
0.0160
0.0134
20
24


CASP3
NRAS
0.65
19
1
23
1
95.0%
95.8%
3.7E−05
2.3E−09
20
24


C1QB
MYC
0.65
18
3
22
2
85.7%
91.7%
0.0001
5.6E−06
21
24


CASP3
PTPRC
0.65
17
3
20
4
85.0%
83.3%
8.9E−05
2.3E−09
20
24


CAV1
IRF1
0.65
17
4
21
3
81.0%
87.5%
0.0001
2.3E−05
21
24


S100A11
ZNF350
0.65
18
2
21
3
90.0%
87.5%
6.9E−10
0.0098
20
24


CCL5
MTF1
0.65
16
4
21
3
80.0%
87.5%
0.0035
0.0138
20
24


CDH1
HMOX1
0.65
19
2
22
2
90.5%
91.7%
1.2E−05
1.1E−07
21
24


CTSD
IFI16
0.65
18
2
22
2
90.0%
91.7%
0.0140
0.0170
20
24


GNB1
POV1
0.65
21
0
21
3
100.0%
87.5%
5.8E−05
0.0114
21
24


IKBKE
XRCC1
0.65
18
3
21
3
85.7%
87.5%
0.0012
4.2E−10
21
24


PLAU
TNFRSF1A
0.65
20
2
22
2
90.9%
91.7%
0.0054
0.0001
22
24


CAV1
MEIS1
0.65
19
2
22
2
90.5%
91.7%
0.0037
2.5E−05
21
24


CASP3
SP1
0.65
16
4
21
3
80.0%
87.5%
0.0009
2.5E−09
20
24


IFI16
MAPK14
0.65
17
3
21
3
85.0%
87.5%
1.3E−07
0.0147
20
24


APC
XRCC1
0.64
20
1
21
3
95.2%
87.5%
0.0013
2.9E−10
21
24


ING2
S100A11
0.64
17
3
21
3
85.0%
87.5%
0.0106
5.9E−10
20
24


ING2
MTF1
0.64
17
3
20
4
85.0%
83.3%
0.0038
6.0E−10
20
24


CCL5
IKBKE
0.64
17
3
21
3
85.0%
87.5%
6.1E−10
0.0152
20
24


BCAM
CTSD
0.64
20
1
21
3
95.2%
87.5%
0.0232
9.4E−10
21
24


CDH1
TIMP1
0.64
21
1
22
2
95.5%
91.7%
0.0432
9.6E−08
22
24


PLAU
SPARC
0.64
19
2
22
2
90.5%
91.7%
0.0001
0.0001
21
24


HMOX1
POV1
0.64
18
3
22
2
85.7%
91.7%
6.4E−05
1.4E−05
21
24


GNB1
RP51077B9.4
0.64
18
2
22
2
90.0%
91.7%
0.0271
0.0099
20
24


CTSD
XK
0.64
19
2
21
3
90.5%
87.5%
9.7E−09
0.0243
21
24


ANLN
CCL5
0.64
18
2
22
2
90.0%
91.7%
0.0165
9.9E−08
20
24


CD59
HMOX1
0.64
17
4
21
3
81.0%
87.5%
1.5E−05
0.0013
21
24


CTSD
TNFRSF1A
0.64
19
2
22
2
90.5%
91.7%
0.0196
0.0260
21
24


MSH6
S100A11
0.64
18
2
22
2
90.0%
91.7%
0.0120
8.8E−10
20
24


GADD45A
RP51077B9.4
0.64
18
2
22
2
90.0%
91.7%
0.0293
1.1E−07
20
24


ING2
TEGT
0.64
20
1
22
2
95.2%
91.7%
0.0008
4.5E−10
21
24


CTSD
DLC1
0.64
18
3
21
3
85.7%
87.5%
4.5E−06
0.0266
21
24


IFI16
POV1
0.64
19
1
22
2
95.0%
91.7%
6.5E−05
0.0171
20
24


POV1
TNFRSF1A
0.64
20
2
21
3
90.9%
87.5%
0.0065
8.2E−06
22
24


C1QB
TNFRSF1A
0.64
20
1
21
3
95.2%
87.5%
0.0205
7.1E−06
21
24


CTSD
SERPING1
0.64
17
4
21
3
81.0%
87.5%
9.4E−08
0.0276
21
24


MTA1
RP51077B9.4
0.64
19
1
22
2
95.0%
91.7%
0.0313
1.5E−05
20
24


CD59
CTSD
0.64
18
3
21
3
85.7%
87.5%
0.0289
0.0014
21
24


CCL5
ETS2
0.64
15
5
21
3
75.0%
87.5%
0.0014
0.0189
20
24


ADAM17
CTSD
0.64
19
1
23
1
95.0%
95.8%
0.0236
2.1E−09
20
24


SP1
ZNF350
0.64
19
2
22
2
90.5%
91.7%
6.0E−10
0.0015
21
24


POV1
XRCC1
0.64
19
2
21
3
90.5%
87.5%
0.0017
7.9E−05
21
24


CAV1
GNB1
0.64
19
2
21
3
90.5%
87.5%
0.0162
3.3E−05
21
24


CD59
XRCC1
0.64
19
2
22
2
90.5%
91.7%
0.0017
0.0015
21
24


APC
SRF
0.63
19
2
22
2
90.5%
91.7%
0.0004
4.0E−10
21
24


HSPA1A
SPARC
0.63
20
1
21
3
95.2%
87.5%
0.0002
0.0005
21
24


RP51077B9.4
TEGT
0.63
19
1
22
2
95.0%
91.7%
0.0011
0.0369
20
24


CTSD
SERPINE1
0.63
19
2
22
2
90.5%
91.7%
7.2E−06
0.0335
21
24


CEACAM1
HOXA10
0.63
19
2
21
3
90.5%
87.5%
2.7E−07
0.0004
21
24


MTF1
PTEN
0.63
18
2
22
2
90.0%
91.7%
1.5E−09
0.0056
20
24


PTEN
TNFRSF1A
0.63
21
1
22
2
95.5%
91.7%
0.0083
4.9E−10
22
24


IGF2BP2
TNFRSF1A
0.63
18
3
21
3
85.7%
87.5%
0.0262
3.7E−09
21
24


ETS2
MEIS1
0.63
18
3
20
4
85.7%
83.3%
0.0056
0.0018
21
24


IFI16
RP51077B9.4
0.63
18
2
22
2
90.0%
91.7%
0.0389
0.0221
20
24


CTSD
GSK3B
0.63
20
1
22
2
95.2%
91.7%
6.6E−08
0.0360
21
24


TNFRSF1A
XK
0.63
18
3
21
3
85.7%
87.5%
1.4E−08
0.0273
21
24


CCL5
POV1
0.63
18
2
20
4
90.0%
83.3%
8.6E−05
0.0235
20
24


CCL5
SERPINA1
0.63
15
5
21
3
75.0%
87.5%
0.0009
0.0237
20
24


CCL3
RP51077B9.4
0.63
18
2
22
2
90.0%
91.7%
0.0410
1.1E−06
20
24


C1QB
CTSD
0.63
20
1
21
3
95.2%
87.5%
0.0370
9.4E−06
21
24


IFI16
SERPINE1
0.63
18
2
21
3
90.0%
87.5%
8.3E−06
0.0234
20
24


MYC
TNFSF5
0.63
18
3
21
3
85.7%
87.5%
1.5E−09
0.0002
21
24


MTF1
SPARC
0.63
18
2
21
3
90.0%
87.5%
0.0002
0.0062
20
24


IFI16
TXNRD1
0.63
19
1
22
2
95.0%
91.7%
1.4E−09
0.0244
20
24


NUDT4
TEGT
0.63
19
2
21
3
90.5%
87.5%
0.0011
6.8E−09
21
24


PTPRK
RP51077B9.4
0.63
17
3
22
2
85.0%
91.7%
0.0435
3.5E−09
20
24


C1QA
POV1
0.63
17
4
21
3
81.0%
87.5%
1.0E−04
3.3E−06
21
24


CTSD
TNFSF5
0.63
19
2
22
2
90.5%
91.7%
1.5E−09
0.0404
21
24


APC
MTF1
0.63
19
1
21
3
95.0%
87.5%
0.0065
8.0E−10
20
24


HSPA1A
MEIS1
0.63
19
3
20
4
86.4%
83.3%
0.0074
0.0002
22
24


ETS2
TXNRD1
0.63
18
3
21
3
85.7%
87.5%
8.8E−10
0.0021
21
24


CAV1
MTF1
0.63
18
2
22
2
90.0%
91.7%
0.0066
3.6E−05
20
24


CTSD
LGALS8
0.63
18
2
22
2
90.0%
91.7%
6.7E−07
0.0321
20
24


NCOA1
SPARC
0.63
18
3
21
3
85.7%
87.5%
0.0002
0.0010
21
24


CTSD
SIAH2
0.63
18
2
21
3
90.0%
87.5%
1.0E−08
0.0327
20
24


CASP3
SRF
0.63
18
2
22
2
90.0%
91.7%
0.0005
4.3E−09
20
24


CCL5
IGFBP3
0.63
18
2
21
3
90.0%
87.5%
3.1E−09
0.0277
20
24


DAD1
POV1
0.63
18
3
22
2
85.7%
91.7%
0.0001
0.0006
21
24


MEIS1
MYC
0.63
19
3
21
3
86.4%
87.5%
0.0002
0.0078
22
24


GNB1
PTEN
0.63
19
2
21
3
90.5%
87.5%
9.7E−10
0.0226
21
24


MSH6
NCOA1
0.63
17
3
20
4
85.0%
83.3%
0.0009
1.4E−09
20
24


IFI16
MME
0.63
17
3
21
3
85.0%
87.5%
8.2E−10
0.0277
20
24


ACPP
CAV1
0.63
19
2
22
2
90.5%
91.7%
4.6E−05
0.0003
21
24


DIABLO
IKBKE
0.63
18
3
21
3
85.7%
87.5%
8.0E−10
4.8E−06
21
24


ACPP
MSH6
0.63
18
2
22
2
90.0%
91.7%
1.4E−09
0.0004
20
24


SERPING1
TNFRSF1A
0.63
19
3
21
3
86.4%
87.5%
0.0111
1.6E−07
22
24


SPARC
TLR2
0.63
20
1
21
3
95.2%
87.5%
5.3E−05
0.0003
21
24


CCL5
CDH1
0.63
18
2
20
4
90.0%
83.3%
2.3E−07
0.0297
20
24


GNB1
IKBKE
0.62
19
2
22
2
90.5%
91.7%
8.2E−10
0.0245
21
24


MLH1
SP1
0.62
17
3
20
4
85.0%
83.3%
0.0018
7.9E−10
20
24


ETS2
SPARC
0.62
17
4
21
3
81.0%
87.5%
0.0003
0.0024
21
24


APC
S100A11
0.62
18
2
22
2
90.0%
91.7%
0.0216
9.2E−10
20
24


CDH1
XRCC1
0.62
19
2
21
3
90.5%
87.5%
0.0025
2.3E−07
21
24


CCL5
HSPA1A
0.62
19
1
20
4
95.0%
83.3%
0.0007
0.0310
20
24


C1QA
TNFRSF1A
0.62
18
3
21
3
85.7%
87.5%
0.0366
4.0E−06
21
24


MLH1
MYC
0.62
18
2
21
3
90.0%
87.5%
0.0003
8.1E−10
20
24


AXIN2
CTSD
0.62
19
2
21
3
90.5%
87.5%
0.0493
5.3E−10
21
24


HSPA1A
MSH6
0.62
18
2
22
2
90.0%
91.7%
1.5E−09
0.0007
20
24


CTSD
IGF2BP2
0.62
19
2
21
3
90.5%
87.5%
5.0E−09
0.0497
21
24


APC
DAD1
0.62
19
2
21
3
90.5%
87.5%
0.0007
5.8E−10
21
24


CAV1
CTSD
0.62
19
2
21
3
90.5%
87.5%
0.0499
5.0E−05
21
24


MEIS1
XRCC1
0.62
17
4
21
3
81.0%
87.5%
0.0026
0.0078
21
24


SERPINE1
XRCC1
0.62
19
2
21
3
90.5%
87.5%
0.0026
1.0E−05
21
24


CAV1
SERPINA1
0.62
19
1
22
2
95.0%
91.7%
0.0012
4.3E−05
20
24


IFI16
PLAU
0.62
18
2
22
2
90.0%
91.7%
0.0008
0.0315
20
24


CD59
HOXA10
0.62
18
3
21
3
85.7%
87.5%
4.0E−07
0.0024
21
24


TGFB1

0.62
22
0
21
3
100.0%
87.5%
3.1E−10

22
24


ING2
TNFRSF1A
0.62
19
2
22
2
90.5%
91.7%
0.0394
8.2E−10
21
24


BAX
SPARC
0.62
19
2
21
3
90.5%
87.5%
0.0003
6.7E−08
21
24


CASP3
PLAU
0.62
18
2
22
2
90.0%
91.7%
0.0008
5.1E−09
20
24


CCL5
DAD1
0.62
20
0
21
3
100.0%
87.5%
0.0005
0.0336
20
24


CDH1
DIABLO
0.62
19
2
22
2
90.5%
91.7%
5.5E−06
2.5E−07
21
24


DLC1
GNB1
0.62
19
2
21
3
90.5%
87.5%
0.0276
8.3E−06
21
24


CCL5
DLC1
0.62
18
2
21
3
90.0%
87.5%
8.7E−06
0.0344
20
24


PLXDC2

0.62
19
2
21
3
90.5%
87.5%
5.1E−10

21
24


ITGAL
POV1
0.62
18
2
22
2
90.0%
91.7%
0.0001
0.0004
20
24


CA4
MEIS1
0.62
19
2
21
3
90.5%
87.5%
0.0086
3.6E−06
21
24


IFI16
ING2
0.62
18
2
21
3
90.0%
87.5%
1.3E−09
0.0343
20
24


HMOX1
MSH6
0.62
19
1
21
3
95.0%
87.5%
1.7E−09
2.6E−05
20
24


GNB1
MEIS1
0.62
18
3
21
3
85.7%
87.5%
0.0087
0.0287
21
24


POV1
S100A11
0.62
18
2
21
3
90.0%
87.5%
0.0251
0.0001
20
24


CTSD
NEDD4L
0.62
18
2
21
3
90.0%
87.5%
8.5E−08
0.0461
20
24


C1QA
IFI16
0.62
18
2
21
3
90.0%
87.5%
0.0377
4.2E−06
20
24


S100A4
SPARC
0.62
20
1
21
3
95.2%
87.5%
0.0003
2.5E−08
21
24


BAX
CDH1
0.62
21
1
22
2
95.5%
91.7%
2.3E−07
4.6E−08
22
24


SRF
XK
0.62
17
4
20
4
81.0%
83.3%
2.2E−08
0.0007
21
24


DLC1
IFI16
0.62
17
3
21
3
85.0%
87.5%
0.0385
9.8E−06
20
24


ANLN
TNFRSF1A
0.62
19
3
21
3
86.4%
87.5%
0.0150
3.1E−08
22
24


CXCL1
TNFRSF1A
0.62
19
2
21
3
90.5%
87.5%
0.0482
1.8E−07
21
24


CCL5
GADD45A
0.62
19
1
21
3
95.0%
87.5%
2.3E−07
0.0406
20
24


CCL3
TNFRSF1A
0.62
19
2
22
2
90.5%
91.7%
0.0486
1.9E−06
21
24


DLC1
MEIS1
0.62
19
2
22
2
90.5%
91.7%
0.0101
9.9E−06
21
24


SRF
TXNRD1
0.62
20
1
22
2
95.2%
91.7%
1.3E−09
0.0007
21
24


NBEA
TNFRSF1A
0.62
18
3
21
3
85.7%
87.5%
0.0495
2.9E−09
21
24


GNB1
SERPINE1
0.62
20
1
22
2
95.2%
91.7%
1.3E−05
0.0339
21
24


ACPP
CASP3
0.62
18
2
21
3
90.0%
87.5%
6.2E−09
0.0006
20
24


IFI16
UBE2C
0.62
18
2
22
2
90.0%
91.7%
0.0014
0.0410
20
24


IRF1
SPARC
0.62
18
3
21
3
85.7%
87.5%
0.0004
0.0004
21
24


MTF1
ZNF350
0.62
19
1
22
2
95.0%
91.7%
1.9E−09
0.0103
20
24


CCL5
MSH6
0.61
17
3
20
4
85.0%
83.3%
2.0E−09
0.0430
20
24


GNB1
NBEA
0.61
18
3
21
3
85.7%
87.5%
3.0E−09
0.0352
21
24


MME
MYD88
0.61
20
1
22
2
95.2%
91.7%
0.0001
7.0E−10
21
24


CASP3
IFI16
0.61
17
3
21
3
85.0%
87.5%
0.0427
6.4E−09
20
24


CAV1
ETS2
0.61
19
2
22
2
90.5%
91.7%
0.0034
6.9E−05
21
24


IFI16
XRCC1
0.61
17
3
21
3
85.0%
87.5%
0.0031
0.0438
20
24


ADAM17
TNFRSF1A
0.61
18
2
22
2
90.0%
91.7%
0.0451
4.5E−09
20
24


MTF1
POV1
0.61
18
2
21
3
90.0%
87.5%
0.0002
0.0112
20
24


GNB1
5100A4
0.61
18
3
21
3
85.7%
87.5%
3.0E−08
0.0378
21
24


CCL5
IRF1
0.61
17
3
20
4
85.0%
83.3%
0.0004
0.0465
20
24


GNB1
XK
0.61
18
3
21
3
85.7%
87.5%
2.6E−08
0.0386
21
24


CXCL1
S100A11
0.61
18
2
21
3
90.0%
87.5%
0.0332
2.7E−07
20
24


CDH1
IFI16
0.61
17
3
22
2
85.0%
91.7%
0.0473
3.5E−07
20
24


CDH1
RBM5
0.61
18
2
20
4
90.0%
83.3%
4.1E−05
3.5E−07
20
24


CCL3
IFI16
0.61
16
4
21
3
80.0%
87.5%
0.0483
2.0E−06
20
24


CD59
MYC
0.61
20
2
21
3
90.9%
87.5%
0.0003
0.0023
22
24


CCL5
GNB1
0.61
19
1
20
4
95.0%
83.3%
0.0306
0.0496
20
24


AXIN2
XRCC1
0.61
18
3
21
3
85.7%
87.5%
0.0040
8.0E−10
21
24


SPARC
USP7
0.61
17
4
21
3
81.0%
87.5%
0.0005
0.0004
21
24


CD59
TNFRSF1A
0.61
19
3
21
3
86.4%
87.5%
0.0190
0.0024
22
24


MEIS1
SP1
0.61
18
3
21
3
85.7%
87.5%
0.0037
0.0123
21
24


CEACAM1
XRCC1
0.61
20
1
22
2
95.2%
91.7%
0.0041
0.0010
21
24


IKBKE
ITGAL
0.61
18
2
22
2
90.0%
91.7%
0.0006
1.8E−09
20
24


MEIS1
TEGT
0.61
19
3
21
3
86.4%
87.5%
0.0020
0.0147
22
24


HMOX1
SPARC
0.61
18
3
22
2
85.7%
91.7%
0.0004
4.3E−05
21
24


NCOA1
TXNRD1
0.61
21
0
22
2
100.0%
91.7%
1.7E−09
0.0019
21
24


ESR2
GNB1
0.61
19
2
22
2
90.5%
91.7%
0.0445
1.4E−09
21
24


ADAM17
MTF1
0.61
18
2
21
3
90.0%
87.5%
0.0131
5.2E−09
20
24


CD59
GNB1
0.61
19
2
21
3
90.5%
87.5%
0.0447
0.0040
21
24


C1QA
CD59
0.61
18
3
21
3
85.7%
87.5%
0.0040
6.7E−06
21
24


CASP9
POV1
0.61
17
3
21
3
85.0%
87.5%
0.0002
1.9E−05
20
24


CAV1
NCOA1
0.61
19
2
22
2
90.5%
91.7%
0.0020
8.6E−05
21
24


MLH1
MTF1
0.61
17
3
21
3
85.0%
87.5%
0.0138
1.4E−09
20
24


CCR7
GNB1
0.61
18
3
21
3
85.7%
87.5%
0.0473
9.2E−10
21
24


ESR1
GNB1
0.61
18
3
21
3
85.7%
87.5%
0.0475
1.1E−09
21
24


GNB1
TNFSF5
0.61
19
2
22
2
90.5%
91.7%
3.2E−09
0.0474
21
24


MME
SERPINA1
0.61
17
3
22
2
85.0%
91.7%
0.0021
1.5E−09
20
24


MYD88
SPARC
0.61
18
3
20
4
85.7%
83.3%
0.0005
0.0002
21
24


MSH6
SERPINA1
0.61
18
2
21
3
90.0%
87.5%
0.0021
2.6E−09
20
24


SPARC
ST14
0.61
19
2
22
2
90.5%
91.7%
2.8E−05
0.0005
21
24


ITGAL
MLH1
0.61
18
2
22
2
90.0%
91.7%
1.4E−09
0.0007
20
24


MEIS1
MTF1
0.61
17
3
19
5
85.0%
79.2%
0.0144
0.0109
20
24


NBEA
XRCC1
0.61
17
4
21
3
81.0%
87.5%
0.0049
4.1E−09
21
24


HMGA1
MSH6
0.61
16
4
20
3
80.0%
87.0%
3.7E−09
9.2E−05
20
23


ELA2
S100A11
0.60
18
2
21
3
90.0%
87.5%
0.0427
1.7E−05
20
24


TNF

0.60
19
3
21
3
86.4%
87.5%
5.4E−10

22
24


PTEN
SERPINA1
0.60
17
3
20
4
85.0%
83.3%
0.0022
3.6E−09
20
24


MSH6
MYD88
0.60
18
2
22
2
90.0%
91.7%
0.0003
2.7E−09
20
24


HMGA1
IKBKE
0.60
20
1
20
3
95.2%
87.0%
2.2E−09
9.7E−05
21
23


CEACAM1
MEIS1
0.60
19
2
20
4
90.5%
83.3%
0.0151
0.0012
21
24


ITGAL
XK
0.60
17
3
21
3
85.0%
87.5%
3.8E−08
0.0007
20
24


IQGAP1
SP1
0.60
19
2
22
2
90.5%
91.7%
0.0045
4.8E−06
21
24


CEACAM1
MYC
0.60
19
2
22
2
90.5%
91.7%
0.0005
0.0012
21
24


MLH1
SRF
0.60
18
2
21
3
90.0%
87.5%
0.0010
1.5E−09
20
24


CTNNA1
ZNF350
0.60
19
2
22
2
90.5%
91.7%
1.7E−09
0.0009
21
24


MEIS1
POV1
0.60
18
4
20
4
81.8%
83.3%
2.8E−05
0.0179
22
24


CASP3
CTNNA1
0.60
18
2
20
4
90.0%
83.3%
0.0007
9.0E−09
20
24


SERPINA1
ZNF350
0.60
17
3
21
3
85.0%
87.5%
2.7E−09
0.0023
20
24


CASP3
MYC
0.60
17
3
20
4
85.0%
83.3%
0.0006
9.2E−09
20
24


MEIS1
SRF
0.60
19
2
21
3
90.5%
87.5%
0.0012
0.0166
21
24


UBE2C
XRCC1
0.60
19
2
21
3
90.5%
87.5%
0.0056
0.0030
21
24


DIABLO
NUDT4
0.60
19
2
20
4
90.5%
83.3%
1.7E−08
1.1E−05
21
24


TNFSF5
XRCC1
0.60
18
3
21
3
85.7%
87.5%
0.0056
3.8E−09
21
24


ETS2
MAPK14
0.60
18
2
22
2
90.0%
91.7%
5.0E−07
0.0049
20
24


CD59
SPARC
0.60
18
3
21
3
85.7%
87.5%
0.0006
0.0050
21
24


CD97
CDH1
0.60
18
2
21
3
90.0%
87.5%
4.8E−07
2.0E−05
20
24


POV1
SP1
0.60
18
3
21
3
85.7%
87.5%
0.0051
0.0003
21
24


CDH1
SP1
0.60
18
3
21
3
85.7%
87.5%
0.0051
4.8E−07
21
24


MLH1
S100A11
0.60
18
2
22
2
90.0%
91.7%
0.0496
1.7E−09
20
24


HMOX1
NUDT4
0.60
19
2
22
2
90.5%
91.7%
1.8E−08
5.7E−05
21
24


XK
XRCC1
0.60
17
4
20
4
81.0%
83.3%
0.0058
3.9E−08
21
24


ETS2
MSH6
0.60
17
3
21
3
85.0%
87.5%
3.2E−09
0.0051
20
24


TNFRSF1A
VEGF
0.60
19
3
21
3
86.4%
87.5%
6.6E−06
0.0281
22
24


IRF1
MSH6
0.60
18
2
22
2
90.0%
91.7%
3.2E−09
0.0005
20
24


CD59
ITGAL
0.60
18
2
21
3
90.0%
87.5%
0.0009
0.0077
20
24


CD59
HMGA1
0.60
18
4
20
3
81.8%
87.0%
7.7E−05
0.0104
22
23


CASP9
SPARC
0.60
18
2
22
2
90.0%
91.7%
0.0005
2.6E−05
20
24


CDH1
HMGA1
0.60
20
2
20
3
90.9%
87.0%
7.8E−05
7.1E−07
22
23


ETS2
MME
0.60
19
2
22
2
90.5%
91.7%
1.2E−09
0.0060
21
24


MEIS1
SERPINA1
0.60
16
4
19
5
80.0%
79.2%
0.0028
0.0145
20
24


CAV1
TEGT
0.60
19
2
22
2
90.5%
91.7%
0.0035
0.0001
21
24


C1QB
XRCC1
0.60
19
2
22
2
90.5%
91.7%
0.0065
2.9E−05
21
24


HMGA1
MSH2
0.60
19
3
19
4
86.4%
82.6%
2.0E−08
8.2E−05
22
23


CAV1
SP1
0.60
19
2
22
2
90.5%
91.7%
0.0060
0.0001
21
24


SERPINA1
SPARC
0.60
18
2
20
4
90.0%
83.3%
0.0005
0.0029
20
24


CDH1
MYC
0.60
19
3
21
3
86.4%
87.5%
0.0005
4.7E−07
22
24


CNKSR2
MYC
0.60
17
4
21
3
81.0%
87.5%
0.0006
1.2E−09
21
24


MME
XRCC1
0.60
19
2
22
2
90.5%
91.7%
0.0068
1.3E−09
21
24


CAV1
XRCC1
0.60
19
2
22
2
90.5%
91.7%
0.0068
0.0001
21
24


MEIS1
MYD88
0.60
18
4
20
4
81.8%
83.3%
0.0002
0.0242
22
24


MYC
UBE2C
0.60
18
3
21
3
85.7%
87.5%
0.0036
0.0006
21
24


GSK3B
ZNF350
0.60
17
4
20
4
81.0%
83.3%
2.3E−09
2.2E−07
21
24


C1QA
MYC
0.59
20
1
22
2
95.2%
91.7%
0.0006
1.0E−05
21
24


CCR7
XRCC1
0.59
19
2
22
2
90.5%
91.7%
0.0071
1.4E−09
21
24


TEGT
VIM
0.59
18
3
20
4
85.7%
83.3%
2.7E−06
0.0039
21
24


HOXA10
SPARC
0.59
18
3
21
3
85.7%
87.5%
0.0008
1.0E−06
21
24


SRF
ZNF350
0.59
20
1
22
2
95.2%
91.7%
2.5E−09
0.0016
21
24


PTPRC
ZNF350
0.59
17
3
20
4
85.0%
83.3%
3.8E−09
0.0005
20
24


CDH1
MTF1
0.59
17
3
20
4
85.0%
83.3%
0.0226
6.3E−07
20
24


DLC1
MYC
0.59
17
4
21
3
81.0%
87.5%
0.0007
2.2E−05
21
24


CD97
POV1
0.59
20
0
21
3
100.0%
87.5%
0.0003
2.7E−05
20
24


HMGA1
NUDT4
0.59
19
2
21
2
90.5%
91.3%
3.3E−08
0.0001
21
23


SPARC
VEGF
0.59
20
1
21
3
95.2%
87.5%
5.4E−05
0.0008
21
24


CD59
SRF
0.59
19
2
21
3
90.5%
87.5%
0.0016
0.0070
21
24


CAV1
SPARC
0.59
18
3
21
3
85.7%
87.5%
0.0008
0.0001
21
24


CASP3
ETS2
0.59
18
2
21
3
90.0%
87.5%
0.0068
1.3E−08
20
24


CEACAM1
HMGA1
0.59
18
3
20
3
85.7%
87.0%
0.0001
0.0017
21
23


MEIS1
PTGS2
0.59
20
2
20
4
90.9%
83.3%
0.0002
0.0285
22
24


ING2
SERPINA1
0.59
18
2
21
3
90.0%
87.5%
0.0035
3.2E−09
20
24


MSH6
S100A4
0.59
17
3
21
3
85.0%
87.5%
9.9E−08
4.2E−09
20
24


CDH1
NCOA1
0.59
18
4
21
3
81.8%
87.5%
0.0036
5.6E−07
22
24


CAV1
MMP9
0.59
19
2
22
2
90.5%
91.7%
0.0012
0.0002
21
24


PLAU
POV1
0.59
19
3
21
3
86.4%
87.5%
4.5E−05
0.0008
22
24


ITGAL
SERPINE1
0.59
18
2
22
2
90.0%
91.7%
3.1E−05
0.0012
20
24


S100A4
TEGT
0.59
19
3
21
3
86.4%
87.5%
0.0040
4.2E−08
22
24


IQGAP1
MTF1
0.59
18
2
22
2
90.0%
91.7%
0.0251
1.2E−05
20
24


IKBKE
SRF
0.59
20
1
21
3
95.2%
87.5%
0.0018
2.6E−09
21
24


HMOX1
MSH2
0.59
18
3
21
3
85.7%
87.5%
2.1E−08
8.3E−05
21
24


ETS2
PTEN
0.59
19
2
22
2
90.5%
91.7%
3.3E−09
0.0084
21
24


NRAS
SPARC
0.59
19
2
21
3
90.5%
87.5%
0.0009
0.0003
21
24


POV1
UBE2C
0.59
19
2
22
2
90.5%
91.7%
0.0047
0.0004
21
24


MMP9
XRCC1
0.59
18
3
21
3
85.7%
87.5%
0.0089
0.0012
21
24


MEIS1
PTPRC
0.59
16
4
20
4
80.0%
83.3%
0.0006
0.0202
20
24


CAV1
UBE2C
0.59
18
3
21
3
85.7%
87.5%
0.0048
0.0002
21
24


DAD1
DLC1
0.59
19
2
21
3
90.5%
87.5%
2.5E−05
0.0023
21
24


LTA
SPARC
0.59
17
3
21
3
85.0%
87.5%
0.0007
2.8E−06
20
24


MSH2
SP1
0.59
19
2
21
3
90.5%
87.5%
0.0082
2.2E−08
21
24


MEIS1
SERPINE1
0.59
19
3
21
3
86.4%
87.5%
1.9E−05
0.0333
22
24


MSH6
USP7
0.59
19
1
22
2
95.0%
91.7%
0.0009
4.8E−09
20
24


CTNNA1
MEIS1
0.59
18
4
20
4
81.8%
83.3%
0.0339
0.0009
22
24


G6PD

0.59
19
3
22
2
86.4%
91.7%
9.9E−10

22
24


CAV1
PTPRC
0.59
19
1
22
2
95.0%
91.7%
0.0006
0.0001
20
24


ING2
SP1
0.59
19
2
21
3
90.5%
87.5%
0.0085
2.6E−09
21
24


SERPINE1
TNFRSF1A
0.59
19
3
20
4
86.4%
83.3%
0.0467
2.0E−05
22
24


DAD1
NUDT4
0.59
18
3
21
3
85.7%
87.5%
2.8E−08
0.0024
21
24


CASP3
HSPA1A
0.59
17
3
20
4
85.0%
83.3%
0.0023
1.6E−08
20
24


BCAM
SRF
0.59
19
2
21
3
90.5%
87.5%
0.0020
6.1E−09
21
24


ING2
SRF
0.59
19
2
22
2
90.5%
91.7%
0.0020
2.6E−09
21
24


ACPP
SPARC
0.59
18
3
21
3
85.7%
87.5%
0.0010
0.0011
21
24


SIAH2
SRF
0.58
17
3
21
3
85.0%
87.5%
0.0019
3.9E−08
20
24


IKBKE
MYC
0.58
17
4
21
3
81.0%
87.5%
0.0009
3.0E−09
21
24


CD59
DIABLO
0.58
17
4
21
3
81.0%
87.5%
1.9E−05
0.0091
21
24


LGALS8
TEGT
0.58
16
4
22
2
80.0%
91.7%
0.0062
2.7E−06
20
24


ETS2
POV1
0.58
18
3
21
3
85.7%
87.5%
0.0005
0.0097
21
24


DLC1
TEGT
0.58
16
5
21
3
76.2%
87.5%
0.0055
2.9E−05
21
24


MMP9
MYC
0.58
20
2
21
3
90.9%
87.5%
0.0008
0.0013
22
24


CDH1
HSPA1A
0.58
20
2
21
3
90.9%
87.5%
0.0011
7.1E−07
22
24


MYC
NBEA
0.58
18
3
19
5
85.7%
79.2%
8.1E−09
0.0009
21
24


PTPRC
SPARC
0.58
17
3
20
4
85.0%
83.3%
0.0008
0.0007
20
24


CASP3
MEIS1
0.58
17
3
20
4
85.0%
83.3%
0.0243
1.7E−08
20
24


CEACAM1
DIABLO
0.58
18
3
22
2
85.7%
91.7%
2.0E−05
0.0026
21
24


NEDD4L
SRF
0.58
18
2
21
3
90.0%
87.5%
0.0021
2.7E−07
20
24


CDH1
MEIS1
0.58
20
2
21
3
90.9%
87.5%
0.0404
7.5E−07
22
24


POV1
TEGT
0.58
18
4
21
3
81.8%
87.5%
0.0052
5.9E−05
22
24


MEIS1
ST14
0.58
18
4
20
4
81.8%
83.3%
6.7E−05
0.0411
22
24


CASP3
ITGAL
0.58
18
2
22
2
90.0%
91.7%
0.0016
1.8E−08
20
24


DAD1
TXNRD1
0.58
19
2
21
3
90.5%
87.5%
4.0E−09
0.0028
21
24


CTNNA1
TXNRD1
0.58
18
3
21
3
85.7%
87.5%
4.0E−09
0.0019
21
24


TIMP1

0.58
21
1
21
3
95.5%
87.5%
1.2E−09

22
24


CAV1
SERPINE1
0.58
18
3
21
3
85.7%
87.5%
4.3E−05
0.0002
21
24


SIAH2
XRCC1
0.58
18
2
20
4
90.0%
83.3%
0.0099
4.7E−08
20
24


CTNNA1
SPARC
0.58
18
3
20
4
85.7%
83.3%
0.0012
0.0021
21
24


ANLN
SRF
0.58
18
3
21
3
85.7%
87.5%
0.0025
3.4E−07
21
24


CASP3
CD59
0.58
17
3
20
4
85.0%
83.3%
0.0153
2.0E−08
20
24


ETS2
ZNF350
0.58
19
2
22
2
90.5%
91.7%
3.9E−09
0.0117
21
24


MEIS1
MSH2
0.58
19
3
21
3
86.4%
87.5%
3.1E−08
0.0457
22
24


MEIS1
NCOA1
0.58
18
4
20
4
81.8%
83.3%
0.0055
0.0461
22
24


CAV1
CEACAM1
0.58
18
3
21
3
85.7%
87.5%
0.0030
0.0002
21
24


POV1
SERPINA1
0.58
17
3
21
3
85.0%
87.5%
0.0054
0.0005
20
24


ING2
XRCC1
0.58
17
4
21
3
81.0%
87.5%
0.0128
3.4E−09
21
24


CD59
DAD1
0.58
18
3
21
3
85.7%
87.5%
0.0032
0.0116
21
24


POV1
RBM5
0.58
17
3
22
2
85.0%
91.7%
0.0001
0.0005
20
24


C1QB
DAD1
0.58
18
3
21
3
85.7%
87.5%
0.0032
5.6E−05
21
24


CNKSR2
XRCC1
0.58
18
3
20
4
85.7%
83.3%
0.0131
2.2E−09
21
24


BCAM
DAD1
0.58
19
2
22
2
90.5%
91.7%
0.0033
8.2E−09
21
24


MAPK14
SERPINA1
0.58
18
2
21
3
90.0%
87.5%
0.0056
1.1E−06
20
24


SERPING1
SRF
0.58
19
2
21
3
90.5%
87.5%
0.0027
7.2E−07
21
24


IGF2BP2
SRF
0.58
17
4
21
3
81.0%
87.5%
0.0028
2.3E−08
21
24


APC
ETS2
0.58
18
3
21
3
85.7%
87.5%
0.0127
2.6E−09
21
24


CASP3
DIABLO
0.58
17
3
21
3
85.0%
87.5%
2.4E−05
2.1E−08
20
24


CASP9
CD59
0.58
18
2
21
3
90.0%
87.5%
0.0169
5.2E−05
20
24


NRAS
ZNF350
0.58
20
1
22
2
95.2%
91.7%
4.2E−09
0.0004
21
24


LGALS8
SP1
0.58
17
3
20
4
85.0%
83.3%
0.0093
3.5E−06
20
24


CD97
SPARC
0.58
17
3
20
4
85.0%
83.3%
0.0011
4.6E−05
20
24


MYC
NUDT4
0.58
17
4
21
3
81.0%
87.5%
3.9E−08
0.0012
21
24


MYC
ZNF350
0.58
19
2
21
3
90.5%
87.5%
4.3E−09
0.0012
21
24


IGFBP3
XRCC1
0.58
19
2
21
3
90.5%
87.5%
0.0139
8.6E−09
21
24


MSH6
NRAS
0.57
18
2
22
2
90.0%
91.7%
0.0004
6.9E−09
20
24


MSH2
MTF1
0.57
18
2
21
3
90.0%
87.5%
0.0423
3.9E−08
20
24


PLAU
XRCC1
0.57
19
2
21
3
90.5%
87.5%
0.0144
0.0011
21
24


DIABLO
SERPINE1
0.57
19
2
21
3
90.5%
87.5%
5.2E−05
2.6E−05
21
24


CDH1
IRF1
0.57
18
3
21
3
85.7%
87.5%
0.0015
1.2E−06
21
24


C1QB
CAV1
0.57
19
2
21
3
90.5%
87.5%
0.0003
6.3E−05
21
24


ITGAL
MEIS1
0.57
18
2
21
3
90.0%
87.5%
0.0336
0.0020
20
24


HSPA1A
TXNRD1
0.57
19
2
22
2
90.5%
91.7%
5.1E−09
0.0039
21
24


DLC1
SRF
0.57
20
1
20
4
95.2%
83.3%
0.0031
4.0E−05
21
24


CAV1
CTNNA1
0.57
19
2
22
2
90.5%
91.7%
0.0025
0.0003
21
24


SPARC
UBE2C
0.57
18
3
21
3
85.7%
87.5%
0.0080
0.0015
21
24


CAV1
PTGS2
0.57
18
3
21
3
85.7%
87.5%
0.0003
0.0003
21
24


TXNRD1
XRCC1
0.57
19
2
21
3
90.5%
87.5%
0.0153
5.3E−09
21
24


CCL3
CD59
0.57
17
4
21
3
81.0%
87.5%
0.0138
7.8E−06
21
24


MSH6
VIM
0.57
18
2
22
2
90.0%
91.7%
5.6E−06
7.6E−09
20
24


MSH2
NCOA1
0.57
18
4
20
4
81.8%
83.3%
0.0069
3.8E−08
22
24


CXCL1
SPARC
0.57
17
4
19
5
81.0%
79.2%
0.0015
7.4E−07
21
24


MSH6
PTPRC
0.57
18
2
21
3
90.0%
87.5%
0.0010
7.7E−09
20
24


MLH1
MTA1
0.57
17
3
21
3
85.0%
87.5%
0.0001
4.2E−09
20
24


DAD1
XK
0.57
19
2
21
3
90.5%
87.5%
9.8E−08
0.0040
21
24


ACPP
TXNRD1
0.57
19
2
20
4
90.5%
83.3%
5.6E−09
0.0018
21
24


MSH2
MTA1
0.57
17
3
20
4
85.0%
83.3%
0.0001
4.4E−08
20
24


S100A4
SRF
0.57
19
2
21
3
90.5%
87.5%
0.0034
1.2E−07
21
24


MTF1
VIM
0.57
18
2
21
3
90.0%
87.5%
5.9E−06
0.0499
20
24


HSPA1A
MME
0.57
19
2
22
2
90.5%
91.7%
2.9E−09
0.0043
21
24


CD59
MTA1
0.57
17
3
21
3
85.0%
87.5%
0.0001
0.0208
20
24


MME
SRF
0.57
20
1
21
3
95.2%
87.5%
0.0034
2.9E−09
21
24


DAD1
NBEA
0.57
18
3
21
3
85.7%
87.5%
1.3E−08
0.0042
21
24


PTEN
SP1
0.57
19
2
20
4
90.5%
83.3%
0.0155
6.2E−09
21
24


C1QB
SRF
0.57
19
2
21
3
90.5%
87.5%
0.0036
7.4E−05
21
24


POV1
TLR2
0.57
19
2
21
3
90.5%
87.5%
0.0003
0.0008
21
24


IRF1
POV1
0.57
19
2
22
2
90.5%
91.7%
0.0008
0.0018
21
24


PTGS2
SPARC
0.57
18
3
21
3
85.7%
87.5%
0.0017
0.0004
21
24


CTNNA1
MSH6
0.57
17
3
20
4
85.0%
83.3%
8.6E−09
0.0023
20
24


APC
SERPINA1
0.57
18
2
22
2
90.0%
91.7%
0.0074
5.3E−09
20
24


IKBKE
MTA1
0.57
18
2
22
2
90.0%
91.7%
0.0001
6.6E−09
20
24


CDH1
S100A4
0.57
20
2
21
3
90.9%
87.5%
8.5E−08
1.2E−06
22
24


DLC1
XRCC1
0.57
17
4
19
5
81.0%
79.2%
0.0181
4.8E−05
21
24


SRF
UBE2C
0.57
18
3
21
3
85.7%
87.5%
0.0095
0.0037
21
24


ELA2
ETS2
0.57
19
2
20
4
90.5%
83.3%
0.0175
9.0E−06
21
24


ACPP
MSH2
0.57
20
2
21
3
90.9%
87.5%
4.5E−08
0.0017
22
24


C1QA
SPARC
0.57
18
3
21
3
85.7%
87.5%
0.0018
2.6E−05
21
24


CEACAM1
HMOX1
0.57
20
1
22
2
95.2%
91.7%
0.0002
0.0044
21
24


DIABLO
XK
0.57
18
3
20
4
85.7%
83.3%
1.1E−07
3.3E−05
21
24


HMGA1
SERPINE1
0.57
22
0
20
3
100.0%
87.0%
3.3E−05
0.0002
22
23


ETS2
ING2
0.57
18
3
20
4
85.7%
83.3%
5.0E−09
0.0186
21
24


TEGT
XK
0.57
17
4
21
3
81.0%
87.5%
1.2E−07
0.0104
21
24


C1QA
SP1
0.56
20
1
22
2
95.2%
91.7%
0.0179
2.7E−05
21
24


DAD1
SERPING1
0.56
18
3
21
3
85.7%
87.5%
1.1E−06
0.0050
21
24


NUDT4
SP1
0.56
18
3
21
3
85.7%
87.5%
0.0187
5.7E−08
21
24


MME
PTPRC
0.56
17
3
20
4
85.0%
83.3%
0.0014
5.9E−09
20
24


MMP9
SPARC
0.56
17
4
21
3
81.0%
87.5%
0.0020
0.0028
21
24


ETS2
VEGF
0.56
20
1
21
3
95.2%
87.5%
0.0001
0.0201
21
24


CASP3
MYD88
0.56
17
3
20
4
85.0%
83.3%
0.0011
3.2E−08
20
24


RP51077B9.4

0.56
18
2
21
3
90.0%
87.5%
5.2E−09

20
24


IQGAP1
SPARC
0.56
18
3
21
3
85.7%
87.5%
0.0021
1.9E−05
21
24


HOXA10
UBE2C
0.56
18
3
20
4
85.7%
83.3%
0.0117
2.8E−06
21
24


CEACAM1
ITGAL
0.56
17
3
22
2
85.0%
91.7%
0.0030
0.0042
20
24


CTSD

0.56
17
4
21
3
81.0%
87.5%
3.4E−09

21
24


ESR1
XRCC1
0.56
19
2
21
3
90.5%
87.5%
0.0226
4.8E−09
21
24


C1QA
XRCC1
0.56
21
0
22
2
100.0%
91.7%
0.0227
3.1E−05
21
24


C1QB
SP1
0.56
19
2
22
2
90.5%
91.7%
0.0205
9.5E−05
21
24


DLC1
ITGAL
0.56
18
2
20
4
90.0%
83.3%
0.0031
6.0E−05
20
24


ELA2
XRCC1
0.56
17
4
21
3
81.0%
87.5%
0.0235
1.1E−05
21
24


C1QB
TEGT
0.56
20
1
21
3
95.2%
87.5%
0.0123
9.7E−05
21
24


E2F1
XRCC1
0.56
19
2
21
3
90.5%
87.5%
0.0237
2.4E−05
21
24


CA4
SPARC
0.56
19
2
20
4
90.5%
83.3%
0.0023
2.6E−05
21
24


MYC
SERPINE1
0.56
20
2
21
3
90.9%
87.5%
4.7E−05
0.0018
22
24


CDH1
MTA1
0.56
16
4
20
4
80.0%
83.3%
0.0002
1.8E−06
20
24


CAV1
HSPA1A
0.56
18
3
21
3
85.7%
87.5%
0.0061
0.0004
21
24


MYC
PLAU
0.56
18
4
21
3
81.8%
87.5%
0.0022
0.0018
22
24


DIABLO
POV1
0.56
17
4
20
4
81.0%
83.3%
0.0011
4.3E−05
21
24


MLH1
SERPINA1
0.56
18
2
21
3
90.0%
87.5%
0.0104
6.2E−09
20
24


GSK3B
SP1
0.56
18
3
21
3
85.7%
87.5%
0.0227
7.2E−07
21
24


ADAM17
TEGT
0.56
16
4
20
4
80.0%
83.3%
0.0149
2.5E−08
20
24


CDH1
TLR2
0.56
18
3
20
4
85.7%
83.3%
0.0005
1.9E−06
21
24


CDH1
ETS2
0.56
18
3
20
4
85.7%
83.3%
0.0249
2.0E−06
21
24


HMGA1
XK
0.56
19
2
19
4
90.5%
82.6%
2.2E−07
0.0005
21
23


CD59
TEGT
0.56
19
3
21
3
86.4%
87.5%
0.0130
0.0163
22
24


CAV1
NRAS
0.56
20
1
22
2
95.2%
91.7%
0.0008
0.0005
21
24


SERPINE1
TEGT
0.56
20
2
22
2
90.9%
91.7%
0.0131
5.4E−05
22
24


SERPINE1
SRF
0.56
19
2
22
2
90.5%
91.7%
0.0056
9.5E−05
21
24


CEACAM1
SRF
0.56
19
2
21
3
90.5%
87.5%
0.0056
0.0064
21
24


CCR7
TEGT
0.56
19
3
21
3
86.4%
87.5%
0.0135
3.1E−09
22
24


PLAU
SRF
0.56
19
2
21
3
90.5%
87.5%
0.0057
0.0021
21
24


CAV1
VEGF
0.56
18
3
22
2
85.7%
91.7%
0.0002
0.0005
21
24


ITGAL
UBE2C
0.56
17
3
21
3
85.0%
87.5%
0.0108
0.0037
20
24


SERPING1
XRCC1
0.55
18
3
20
4
85.7%
83.3%
0.0284
1.4E−06
21
24


BCAM
TEGT
0.55
18
3
21
3
85.7%
87.5%
0.0152
1.7E−08
21
24


PTGS2
UBE2C
0.55
18
3
21
3
85.7%
87.5%
0.0151
0.0006
21
24


HSPA1A
NUDT4
0.55
18
3
22
2
85.7%
91.7%
7.7E−08
0.0074
21
24


BCAM
XRCC1
0.55
18
3
21
3
85.7%
87.5%
0.0295
1.7E−08
21
24


C1QB
ITGAL
0.55
18
2
22
2
90.0%
91.7%
0.0039
0.0001
20
24


CAV1
USP7
0.55
19
2
22
2
90.5%
91.7%
0.0034
0.0005
21
24


CCR7
DAD1
0.55
19
2
22
2
90.5%
91.7%
0.0073
5.1E−09
21
24


DAD1
MME
0.55
19
2
22
2
90.5%
91.7%
5.0E−09
0.0073
21
24


ETS2
SERPINE1
0.55
18
3
22
2
85.7%
91.7%
0.0001
0.0288
21
24


NBEA
TEGT
0.55
17
4
20
4
81.0%
83.3%
0.0160
2.2E−08
21
24


NBEA
RBM5
0.55
17
3
20
4
85.0%
83.3%
0.0003
2.7E−08
20
24


CAV1
MYD88
0.55
19
2
21
3
90.5%
87.5%
0.0012
0.0005
21
24


NCOA1
NUDT4
0.55
19
2
20
4
90.5%
83.3%
8.2E−08
0.0130
21
24


DIABLO
MMP9
0.55
17
4
20
4
81.0%
83.3%
0.0041
5.2E−05
21
24


CA4
POV1
0.55
20
1
21
3
95.2%
87.5%
0.0013
3.3E−05
21
24


CAV1
PLAU
0.55
19
2
22
2
90.5%
91.7%
0.0024
0.0005
21
24


ETS2
MSH2
0.55
18
3
21
3
85.7%
87.5%
6.7E−08
0.0299
21
24


E2F1
SRF
0.55
18
3
20
4
85.7%
83.3%
0.0064
3.1E−05
21
24


PLEK2
SRF
0.55
17
3
20
4
85.0%
83.3%
0.0057
2.8E−08
20
24


SIAH2
TEGT
0.55
18
2
20
4
90.0%
83.3%
0.0187
1.1E−07
20
24


VEGF
XRCC1
0.55
17
4
21
3
81.0%
87.5%
0.0329
0.0002
21
24


CAV1
RBM5
0.55
17
3
21
3
85.0%
87.5%
0.0003
0.0004
20
24


ACPP
MME
0.55
19
2
21
3
90.5%
87.5%
5.4E−09
0.0034
21
24


HMOX1
PLAU
0.55
19
2
21
3
90.5%
87.5%
0.0025
0.0003
21
24


MTA1
POV1
0.55
18
2
20
4
90.0%
83.3%
0.0012
0.0003
20
24


HMGA1
MMP9
0.55
19
3
20
3
86.4%
87.0%
0.0065
0.0004
22
23


IRF1
MSH2
0.55
17
4
20
4
81.0%
83.3%
7.1E−08
0.0033
21
24


HSPA1A
MSH2
0.55
19
3
21
3
86.4%
87.5%
7.8E−08
0.0036
22
24


DAD1
UBE2C
0.55
18
3
21
3
85.7%
87.5%
0.0176
0.0081
21
24


MME
NCOA1
0.55
19
2
21
3
90.5%
87.5%
0.0141
5.5E−09
21
24


ETS2
UBE2C
0.55
19
2
21
3
90.5%
87.5%
0.0176
0.0321
21
24


CAV1
SRF
0.55
20
1
20
4
95.2%
83.3%
0.0068
0.0006
21
24


POV1
ST14
0.55
19
3
20
4
86.4%
83.3%
0.0002
0.0002
22
24


NCOA1
PLAU
0.55
19
3
21
3
86.4%
87.5%
0.0032
0.0152
22
24


IGF2BP2
XRCC1
0.55
18
3
20
4
85.7%
83.3%
0.0344
5.3E−08
21
24


C1QA
PTGS2
0.55
18
3
21
3
85.7%
87.5%
0.0007
4.5E−05
21
24


CAV1
ZNF185
0.55
19
2
22
2
90.5%
91.7%
0.0016
0.0006
21
24


NEDD4L
XRCC1
0.55
17
3
20
4
85.0%
83.3%
0.0277
7.4E−07
20
24


RBM5
UBE2C
0.55
17
3
21
3
85.0%
87.5%
0.0134
0.0003
20
24


CAV1
POV1
0.55
17
4
21
3
81.0%
87.5%
0.0015
0.0006
21
24


MYC
XK
0.55
17
4
20
4
81.0%
83.3%
2.0E−07
0.0030
21
24


ITGAL
PLAU
0.55
19
1
21
3
95.0%
87.5%
0.0095
0.0046
20
24


IQGAP1
MSH6
0.55
18
2
21
3
90.0%
87.5%
1.6E−08
4.5E−05
20
24


CD59
SP1
0.55
18
3
20
4
85.7%
83.3%
0.0324
0.0323
21
24


PTEN
PTPRC
0.55
16
4
20
4
80.0%
83.3%
0.0022
2.1E−08
20
24


ACPP
ZNF350
0.55
18
3
21
3
85.7%
87.5%
1.0E−08
0.0038
21
24


ANLN
XRCC1
0.55
18
3
20
4
85.7%
83.3%
0.0369
9.3E−07
21
24


UBE2C
VEGF
0.55
18
3
21
3
85.7%
87.5%
0.0002
0.0192
21
24


NEDD4L
TEGT
0.55
17
3
20
4
85.0%
83.3%
0.0213
7.8E−07
20
24


DLC1
HMGA1
0.55
18
3
19
4
85.7%
82.6%
0.0006
0.0002
21
23


CEACAM1
SPARC
0.55
19
2
21
3
90.5%
87.5%
0.0035
0.0085
21
24


MYC
POV1
0.55
18
4
21
3
81.8%
87.5%
0.0002
0.0027
22
24


CCL5

0.55
17
3
21
3
85.0%
87.5%
8.4E−09

20
24


POV1
VIM
0.55
19
2
20
4
90.5%
83.3%
1.2E−05
0.0016
21
24


IFI16

0.55
17
3
21
3
85.0%
87.5%
8.5E−09

20
24


MSH6
PLAU
0.55
18
2
22
2
90.0%
91.7%
0.0101
1.7E−08
20
24


DAD1
E2F1
0.55
19
2
21
3
90.5%
87.5%
3.6E−05
0.0092
21
24


APC
HSPA1A
0.55
18
3
21
3
85.7%
87.5%
0.0097
6.7E−09
21
24


DIABLO
ZNF350
0.55
17
4
21
3
81.0%
87.5%
1.1E−08
6.4E−05
21
24


C1QB
HMGA1
0.55
18
3
20
3
85.7%
87.0%
0.0006
0.0002
21
23


ACPP
POV1
0.55
18
4
20
4
81.8%
83.3%
0.0002
0.0035
22
24


DAD1
MMP9
0.55
19
2
21
3
90.5%
87.5%
0.0051
0.0093
21
24


PLAU
SP1
0.55
18
3
21
3
85.7%
87.5%
0.0350
0.0029
21
24


CD59
RBM5
0.55
17
3
21
3
85.0%
87.5%
0.0003
0.0483
20
24


CCR7
SRF
0.55
18
3
20
4
85.7%
83.3%
0.0079
6.4E−09
21
24


CD59
UBE2C
0.55
17
4
20
4
81.0%
83.3%
0.0206
0.0355
21
24


ADAM17
SP1
0.55
17
3
20
4
85.0%
83.3%
0.0262
3.7E−08
20
24


MYD88
TXNRD1
0.55
17
4
21
3
81.0%
87.5%
1.2E−08
0.0015
21
24


CAV1
DAD1
0.55
19
2
22
2
90.5%
91.7%
0.0096
0.0007
21
24


CEACAM1
DAD1
0.55
19
2
22
2
90.5%
91.7%
0.0096
0.0092
21
24


CASP3
TLR2
0.54
18
2
20
4
90.0%
83.3%
0.0009
5.7E−08
20
24


CD59
TXNRD1
0.54
18
3
21
3
85.7%
87.5%
1.3E−08
0.0368
21
24


E2F1
PLAU
0.54
18
3
21
3
85.7%
87.5%
0.0031
3.9E−05
21
24


LARGE
XRCC1
0.54
18
3
20
4
85.7%
83.3%
0.0422
2.9E−08
21
24


HOXA10
MMP9
0.54
18
3
22
2
85.7%
91.7%
0.0055
5.1E−06
21
24


SERPING1
TEGT
0.54
19
3
20
4
86.4%
83.3%
0.0204
2.4E−06
22
24


IRF1
PLAU
0.54
18
3
21
3
85.7%
87.5%
0.0031
0.0042
21
24


GSK3B
TEGT
0.54
17
4
21
3
81.0%
87.5%
0.0221
1.2E−06
21
24


DAD1
SERPINE1
0.54
18
3
21
3
85.7%
87.5%
0.0001
0.0102
21
24


CCL3
SPARC
0.54
18
3
21
3
85.7%
87.5%
0.0040
2.0E−05
21
24


ELA2
SP1
0.54
19
2
22
2
90.5%
91.7%
0.0387
1.9E−05
21
24


NBEA
SRF
0.54
18
3
21
3
85.7%
87.5%
0.0086
2.9E−08
21
24


SPARC
VIM
0.54
18
3
21
3
85.7%
87.5%
1.4E−05
0.0040
21
24


GNB1

0.54
17
4
20
4
81.0%
83.3%
6.1E−09

21
24


CASP9
NUDT4
0.54
18
2
20
4
90.0%
83.3%
1.3E−07
0.0001
20
24


ITGAL
MMP9
0.54
18
2
21
3
90.0%
87.5%
0.0078
0.0056
20
24


ETS2
NUDT4
0.54
17
4
20
4
81.0%
83.3%
1.1E−07
0.0415
21
24


MTA1
NUDT4
0.54
18
2
21
3
90.0%
87.5%
1.3E−07
0.0003
20
24


DAD1
IKBKE
0.54
18
3
21
3
85.7%
87.5%
1.1E−08
0.0104
21
24


MSH2
NRAS
0.54
21
1
21
3
95.5%
87.5%
0.0005
9.9E−08
22
24


TEGT
UBE2C
0.54
17
4
21
3
81.0%
87.5%
0.0229
0.0229
21
24


LGALS8
MSH6
0.54
17
3
21
3
85.0%
87.5%
1.9E−08
1.0E−05
20
24


CTNNA1
MME
0.54
17
4
20
4
81.0%
83.3%
7.0E−09
0.0071
21
24


CEACAM1
TEGT
0.54
19
2
21
3
90.5%
87.5%
0.0232
0.0102
21
24


HSPA1A
ZNF350
0.54
18
3
21
3
85.7%
87.5%
1.2E−08
0.0112
21
24


CD59
E2F1
0.54
19
2
21
3
90.5%
87.5%
4.2E−05
0.0402
21
24


SP1
UBE2C
0.54
18
3
21
3
85.7%
87.5%
0.0238
0.0413
21
24


APC
NCOA1
0.54
18
3
20
4
85.7%
83.3%
0.0191
7.9E−09
21
24


CAV1
MYC
0.54
18
3
22
2
85.7%
91.7%
0.0039
0.0008
21
24


DAD1
TNFSF5
0.54
18
3
21
3
85.7%
87.5%
2.6E−08
0.0110
21
24


CASP3
GSK3B
0.54
16
4
20
4
80.0%
83.3%
1.5E−06
6.4E−08
20
24


ACPP
APC
0.54
17
4
21
3
81.0%
87.5%
8.0E−09
0.0048
21
24


HMGA1
PLAU
0.54
20
2
20
3
90.9%
87.0%
0.0059
0.0005
22
23


IKBKE
TEGT
0.54
18
3
21
3
85.7%
87.5%
0.0246
1.2E−08
21
24


DAD1
NEDD4L
0.54
18
2
22
2
90.0%
91.7%
9.7E−07
0.0080
20
24


SP1
VIM
0.54
20
1
21
3
95.2%
87.5%
1.5E−05
0.0431
21
24


CASP3
NCOA1
0.54
17
3
21
3
85.0%
87.5%
0.0159
6.6E−08
20
24


MME
PLAU
0.54
19
2
22
2
90.5%
91.7%
0.0036
7.6E−09
21
24


PTGS2
SERPINE1
0.54
19
3
20
4
86.4%
83.3%
9.4E−05
0.0011
22
24


GSK3B
SPARC
0.54
18
3
20
4
85.7%
83.3%
0.0046
1.3E−06
21
24


AXIN2
MYC
0.54
19
2
21
3
90.5%
87.5%
0.0041
7.8E−09
21
24


IGF2BP2
TEGT
0.54
17
4
20
4
81.0%
83.3%
0.0260
7.4E−08
21
24


HMOX1
MMP9
0.54
19
2
22
2
90.5%
91.7%
0.0065
0.0004
21
24


CAV1
ITGAL
0.54
17
3
21
3
85.0%
87.5%
0.0063
0.0006
20
24


BAX
CD59
0.54
17
5
20
4
77.3%
83.3%
0.0307
6.2E−07
22
24


HSPA1A
POV1
0.54
19
3
20
4
86.4%
83.3%
0.0002
0.0054
22
24


CEACAM1
POV1
0.54
18
3
21
3
85.7%
87.5%
0.0021
0.0115
21
24


ETS2
PLAU
0.54
19
2
22
2
90.5%
91.7%
0.0037
0.0486
21
24


MSH6
TLR2
0.54
17
3
20
4
85.0%
83.3%
0.0010
2.1E−08
20
24


CAV1
CDH1
0.54
18
3
21
3
85.7%
87.5%
3.6E−06
0.0008
21
24


DAD1
IGF2BP2
0.54
18
3
21
3
85.7%
87.5%
7.5E−08
0.0121
21
24


BCAM
ITGAL
0.54
16
4
21
3
80.0%
87.5%
0.0065
3.8E−08
20
24


C1QA
ETS2
0.54
20
1
22
2
95.2%
91.7%
0.0493
6.5E−05
21
24


AXIN2
DAD1
0.54
19
2
21
3
90.5%
87.5%
0.0123
8.1E−09
21
24


ELA2
NCOA1
0.54
19
2
21
3
90.5%
87.5%
0.0214
2.3E−05
21
24


HMGA1
UBE2C
0.54
18
3
19
4
85.7%
82.6%
0.0199
0.0008
21
23


DIABLO
UBE2C
0.54
18
3
20
4
85.7%
83.3%
0.0273
8.5E−05
21
24


SP1
VEGF
0.54
18
3
21
3
85.7%
87.5%
0.0003
0.0483
21
24


PLAU
UBE2C
0.54
18
3
20
4
85.7%
83.3%
0.0278
0.0039
21
24


CD59
SERPINE1
0.54
19
3
20
4
86.4%
83.3%
0.0001
0.0328
22
24


S100A11

0.54
18
2
21
3
90.0%
87.5%
1.2E−08

20
24


BAX
NUDT4
0.54
19
2
21
3
90.5%
87.5%
1.4E−07
1.0E−06
21
24


SRF
TNFSF5
0.54
20
1
22
2
95.2%
91.7%
3.0E−08
0.0108
21
24


MLH1
PTPRC
0.54
18
2
21
3
90.0%
87.5%
0.0033
1.2E−08
20
24


SERPINE1
SP1
0.54
18
3
21
3
85.7%
87.5%
0.0499
0.0002
21
24


AXIN2
HMGA1
0.54
19
2
21
2
90.5%
91.3%
0.0009
1.2E−08
21
23


DIABLO
MLH1
0.54
17
3
20
4
85.0%
83.3%
1.2E−08
8.5E−05
20
24


MTA1
SERPINE1
0.54
17
3
20
4
85.0%
83.3%
0.0002
0.0004
20
24


POV1
ZNF185
0.54
18
3
20
4
85.7%
83.3%
0.0024
0.0023
21
24


APC
PTPRC
0.54
18
2
20
4
90.0%
83.3%
0.0034
1.4E−08
20
24


CEACAM1
MTA1
0.54
18
2
21
3
90.0%
87.5%
0.0004
0.0102
20
24


NCOA1
UBE2C
0.54
17
4
21
3
81.0%
87.5%
0.0297
0.0237
21
24


APC
IRF1
0.54
19
2
21
3
90.5%
87.5%
0.0057
9.7E−09
21
24


CTNNA1
MSH2
0.54
18
4
20
4
81.8%
83.3%
1.3E−07
0.0053
22
24


ITGAL
TXNRD1
0.54
18
2
20
4
90.0%
83.3%
2.8E−08
0.0073
20
24


E2F1
TEGT
0.53
17
4
20
4
81.0%
83.3%
0.0304
5.3E−05
21
24


CD59
PTEN
0.53
18
4
20
4
81.8%
83.3%
1.2E−08
0.0360
22
24


CD97
MSH6
0.53
18
2
21
3
90.0%
87.5%
2.4E−08
0.0002
20
24


ITGAL
SIAH2
0.53
16
4
20
4
80.0%
83.3%
1.9E−07
0.0074
20
24


C1QB
HSPA1A
0.53
19
2
22
2
90.5%
91.7%
0.0150
0.0002
21
24


C1QB
USP7
0.53
18
3
21
3
85.7%
87.5%
0.0066
0.0002
21
24


CASP9
MSH2
0.53
17
3
20
4
85.0%
83.3%
1.4E−07
0.0002
20
24


MSH6
ST14
0.53
17
3
20
4
85.0%
83.3%
0.0003
2.5E−08
20
24


TLR2
UBE2C
0.53
19
2
21
3
90.5%
87.5%
0.0318
0.0011
21
24


CEACAM1
PLAU
0.53
18
3
21
3
85.7%
87.5%
0.0045
0.0139
21
24


GSK3B
MSH6
0.53
16
4
20
4
80.0%
83.3%
2.5E−08
2.0E−06
20
24


PLAU
ZNF350
0.53
17
4
21
3
81.0%
87.5%
1.7E−08
0.0045
21
24


DAD1
SIAH2
0.53
17
3
20
4
85.0%
83.3%
2.0E−07
0.0103
20
24


IGF2BP2
ITGAL
0.53
16
4
20
4
80.0%
83.3%
0.0078
9.8E−08
20
24


MSH2
S100A4
0.53
19
3
20
4
86.4%
83.3%
2.7E−07
1.4E−07
22
24


PLAU
TEGT
0.53
19
3
21
3
86.4%
87.5%
0.0305
0.0057
22
24


MSH2
SERPINA1
0.53
17
3
21
3
85.0%
87.5%
0.0248
1.4E−07
20
24


MYD88
ZNF350
0.53
18
3
20
4
85.7%
83.3%
1.7E−08
0.0023
21
24


NCOA1
SERPINE1
0.53
19
3
21
3
86.4%
87.5%
0.0001
0.0284
22
24


ANLN
ITGAL
0.53
16
4
20
4
80.0%
83.3%
0.0080
3.1E−06
20
24


AXIN2
SRF
0.53
20
1
20
4
95.2%
83.3%
0.0126
9.8E−09
21
24


PTEN
TEGT
0.53
18
4
21
3
81.8%
87.5%
0.0312
1.3E−08
22
24


C1QA
DAD1
0.53
18
3
21
3
85.7%
87.5%
0.0152
8.0E−05
21
24


ACPP
CDH1
0.53
19
3
20
4
86.4%
83.3%
3.9E−06
0.0058
22
24


C1QA
CEACAM1
0.53
18
3
21
3
85.7%
87.5%
0.0146
8.0E−05
21
24


POV1
PTPRC
0.53
17
3
21
3
85.0%
87.5%
0.0038
0.0022
20
24


CEACAM1
VEGF
0.53
19
2
21
3
90.5%
87.5%
0.0004
0.0147
21
24


DLC1
NCOA1
0.53
17
4
21
3
81.0%
87.5%
0.0270
0.0002
21
24


HMOX1
SERPING1
0.53
17
4
20
4
81.0%
83.3%
3.0E−06
0.0005
21
24


CD59
NCOA1
0.53
18
4
20
4
81.8%
83.3%
0.0294
0.0401
22
24


IQGAP1
TEGT
0.53
19
3
21
3
86.4%
87.5%
0.0318
4.1E−05
22
24


DLC1
HSPA1A
0.53
18
3
21
3
85.7%
87.5%
0.0163
0.0002
21
24


E2F1
MYC
0.53
16
5
21
3
76.2%
87.5%
0.0054
6.0E−05
21
24


C1QA
CTNNA1
0.53
19
2
22
2
90.5%
91.7%
0.0105
8.2E−05
21
24


ELA2
HSPA1A
0.53
17
4
21
3
81.0%
87.5%
0.0165
2.9E−05
21
24


MYC
NEDD4L
0.53
17
3
20
4
85.0%
83.3%
1.3E−06
0.0068
20
24


ELA2
SRF
0.53
18
3
21
3
85.7%
87.5%
0.0131
2.9E−05
21
24


APC
ITGAL
0.53
17
3
20
4
85.0%
83.3%
0.0083
1.7E−08
20
24


LGALS8
SERPINA1
0.53
18
2
21
3
90.0%
87.5%
0.0265
1.4E−05
20
24


CTNNA1
UBE2C
0.53
18
3
21
3
85.7%
87.5%
0.0349
0.0106
21
24


NRAS
UBE2C
0.53
18
3
21
3
85.7%
87.5%
0.0355
0.0018
21
24


MYC
SIAH2
0.53
16
4
20
4
80.0%
83.3%
2.1E−07
0.0069
20
24


ADAM17
SERPINA1
0.53
16
4
20
4
80.0%
83.3%
0.0274
6.0E−08
20
24


C1QA
PLAU
0.53
19
2
21
3
90.5%
87.5%
0.0051
8.6E−05
21
24


CDH1
SERPINA1
0.53
17
3
20
4
85.0%
83.3%
0.0276
4.6E−06
20
24


C1QA
TEGT
0.53
19
2
21
3
90.5%
87.5%
0.0365
8.6E−05
21
24


ITGAL
SERPING1
0.53
16
4
20
4
80.0%
83.3%
3.1E−06
0.0087
20
24


HOXA10
ZNF185
0.53
18
3
21
3
85.7%
87.5%
0.0030
8.0E−06
21
24


C1QB
HMOX1
0.53
19
2
21
3
90.5%
87.5%
0.0006
0.0003
21
24


CDH1
USP7
0.53
18
3
20
4
85.7%
83.3%
0.0080
5.0E−06
21
24


C1QB
NCOA1
0.53
18
3
21
3
85.7%
87.5%
0.0306
0.0003
21
24


IRF1
MYC
0.53
18
3
21
3
85.7%
87.5%
0.0060
0.0071
21
24


CD59
PTPRK
0.53
20
2
20
4
90.9%
83.3%
3.8E−08
0.0455
22
24


DLC1
NRAS
0.53
17
4
19
5
81.0%
79.2%
0.0020
0.0002
21
24


C1QA
HSPA1A
0.53
17
4
21
3
81.0%
87.5%
0.0186
9.2E−05
21
24


PLEK2
TEGT
0.53
16
4
20
4
80.0%
83.3%
0.0431
6.1E−08
20
24


C1QA
NCOA1
0.53
19
2
22
2
90.5%
91.7%
0.0316
9.3E−05
21
24


DLC1
VEGF
0.53
18
3
21
3
85.7%
87.5%
0.0005
0.0002
21
24


DAD1
PLAU
0.53
19
2
21
3
90.5%
87.5%
0.0056
0.0182
21
24


PLAU
ZNF185
0.53
18
3
21
3
85.7%
87.5%
0.0033
0.0056
21
24


CXCL1
TEGT
0.53
18
3
21
3
85.7%
87.5%
0.0407
3.2E−06
21
24


DAD1
IRF1
0.53
18
3
21
3
85.7%
87.5%
0.0076
0.0186
21
24


CAV1
ST14
0.53
19
2
21
3
90.5%
87.5%
0.0004
0.0013
21
24


POV1
SPARC
0.53
17
4
19
5
81.0%
79.2%
0.0072
0.0032
21
24


APC
GSK3B
0.53
18
3
21
3
85.7%
87.5%
2.0E−06
1.3E−08
21
24


IRF1
ZNF350
0.53
18
3
21
3
85.7%
87.5%
2.1E−08
0.0077
21
24


CEACAM1
PTPRK
0.53
18
3
21
3
85.7%
87.5%
6.0E−08
0.0182
21
24


CDH1
ST14
0.53
18
4
20
4
81.8%
83.3%
0.0004
4.8E−06
22
24


MSH2
USP7
0.53
18
3
21
3
85.7%
87.5%
0.0089
1.6E−07
21
24


DIABLO
DLC1
0.53
17
4
21
3
81.0%
87.5%
0.0002
0.0001
21
24


DLC1
SERPINA1
0.53
18
2
22
2
90.0%
91.7%
0.0322
0.0002
20
24


POV1
USP7
0.53
19
2
21
3
90.5%
87.5%
0.0089
0.0033
21
24


BAX
XK
0.53
17
4
20
4
81.0%
83.3%
4.2E−07
1.5E−06
21
24


ING2
NCOA1
0.53
18
3
21
3
85.7%
87.5%
0.0342
1.8E−08
21
24


CASP9
MLH1
0.53
17
3
21
3
85.0%
87.5%
1.7E−08
0.0003
20
24


HMOX1
XK
0.53
17
4
19
5
81.0%
79.2%
4.3E−07
0.0007
21
24


CAV1
TLR2
0.53
18
3
20
4
85.7%
83.3%
0.0015
0.0013
21
24


DIABLO
SIAH2
0.52
18
2
21
3
90.0%
87.5%
2.6E−07
0.0001
20
24


CNKSR2
TEGT
0.52
18
3
21
3
85.7%
87.5%
0.0445
1.2E−08
21
24


IRF1
UBE2C
0.52
17
4
21
3
81.0%
87.5%
0.0447
0.0082
21
24


DAD1
IL8
0.52
19
2
21
3
90.5%
87.5%
3.0E−08
0.0201
21
24


VEGF
ZNF185
0.52
18
3
21
3
85.7%
87.5%
0.0036
0.0005
21
24


TNFRSF1A

0.52
18
4
20
4
81.8%
83.3%
7.6E−09

22
24


CNKSR2
DAD1
0.52
17
4
21
3
81.0%
87.5%
0.0205
1.2E−08
21
24


CDH1
MYD88
0.52
19
3
21
3
86.4%
87.5%
0.0018
5.1E−06
22
24


DLC1
IRF1
0.52
17
4
19
5
81.0%
79.2%
0.0085
0.0002
21
24


PTPRC
SERPINE1
0.52
17
3
20
4
85.0%
83.3%
0.0003
0.0051
20
24


MMP9
POV1
0.52
19
3
21
3
86.4%
87.5%
0.0004
0.0109
22
24


MYC
SERPING1
0.52
19
3
21
3
86.4%
87.5%
4.8E−06
0.0065
22
24


TEGT
TNFSF5
0.52
18
3
21
3
85.7%
87.5%
4.7E−08
0.0481
21
24


MLH1
NCOA1
0.52
17
3
20
4
85.0%
83.3%
0.0296
1.9E−08
20
24


NCOA1
ZNF350
0.52
17
4
19
5
81.0%
79.2%
2.4E−08
0.0384
21
24


BCAM
HMGA1
0.52
17
4
19
4
81.0%
82.6%
0.0014
7.0E−08
21
23


MMP9
SRF
0.52
17
4
21
3
81.0%
87.5%
0.0181
0.0119
21
24


CASP3
IRF1
0.52
19
1
21
3
95.0%
87.5%
0.0071
1.2E−07
20
24


LGALS8
SPARC
0.52
16
4
19
5
80.0%
79.2%
0.0063
1.9E−05
20
24


MME
PTGS2
0.52
18
3
21
3
85.7%
87.5%
0.0018
1.4E−08
21
24


ING2
PTPRC
0.52
17
3
20
4
85.0%
83.3%
0.0054
2.8E−08
20
24


CDH1
UBE2C
0.52
17
4
21
3
81.0%
87.5%
0.0499
6.3E−06
21
24


AXIN2
SPARC
0.52
17
4
20
4
81.0%
83.3%
0.0086
1.4E−08
21
24


IQGAP1
NCOA1
0.52
19
3
21
3
86.4%
87.5%
0.0436
5.8E−05
22
24


CTNNA1
MLH1
0.52
16
4
20
4
80.0%
83.3%
2.0E−08
0.0110
20
24


APC
CTNNA1
0.52
18
3
19
5
85.7%
79.2%
0.0154
1.5E−08
21
24


BCAM
MYC
0.52
17
4
20
4
81.0%
83.3%
0.0080
5.0E−08
21
24


BAX
MSH6
0.52
16
4
19
5
80.0%
79.2%
3.8E−08
1.7E−06
20
24


HMGA1
POV1
0.52
17
5
19
4
77.3%
82.6%
0.0021
0.0010
22
23


CAV1
ELA2
0.52
19
2
21
3
90.5%
87.5%
4.1E−05
0.0016
21
24


CASP3
CEACAM1
0.52
17
3
21
3
85.0%
87.5%
0.0175
1.2E−07
20
24


ACPP
MLH1
0.52
17
3
21
3
85.0%
87.5%
2.0E−08
0.0137
20
24


E2F1
IRF1
0.52
17
4
20
4
81.0%
83.3%
0.0096
8.7E−05
21
24


CNKSR2
SRF
0.52
19
2
21
3
90.5%
87.5%
0.0196
1.4E−08
21
24


MLH1
NRAS
0.52
18
2
21
3
90.0%
87.5%
0.0024
2.1E−08
20
24


HSPA1A
PLAU
0.52
18
4
21
3
81.8%
87.5%
0.0092
0.0107
22
24


CTNNA1
DLC1
0.52
18
3
20
4
85.7%
83.3%
0.0002
0.0160
21
24


AXIN2
DIABLO
0.52
18
3
21
3
85.7%
87.5%
0.0002
1.5E−08
21
24


MNDA
POV1
0.52
19
1
21
3
95.0%
87.5%
0.0034
6.4E−05
20
24


RBM5
TXNRD1
0.52
17
3
21
3
85.0%
87.5%
4.6E−08
0.0008
20
24


IL8
PLAU
0.52
20
2
21
3
90.9%
87.5%
0.0093
3.4E−08
22
24


MSH2
PLAU
0.52
19
3
21
3
86.4%
87.5%
0.0094
2.2E−07
22
24


ITGAL
ZNF350
0.52
17
3
20
4
85.0%
83.3%
3.8E−08
0.0126
20
24


C1QB
PLAU
0.52
18
3
21
3
85.7%
87.5%
0.0075
0.0004
21
24


PLAU
SERPINE1
0.52
20
2
20
4
90.9%
83.3%
0.0002
0.0095
22
24


PTPRC
UBE2C
0.52
17
3
20
4
85.0%
83.3%
0.0388
0.0061
20
24


MMP9
MTA1
0.52
17
3
20
4
85.0%
83.3%
0.0007
0.0184
20
24


ESR2
MYC
0.52
21
0
22
2
100.0%
91.7%
0.0087
2.5E−08
21
24


ANLN
DAD1
0.52
19
2
21
3
90.5%
87.5%
0.0255
2.5E−06
21
24


DAD1
ELA2
0.52
19
2
22
2
90.5%
91.7%
4.5E−05
0.0257
21
24


ELA2
ITGAL
0.52
17
3
20
4
85.0%
83.3%
0.0133
0.0003
20
24


C1QA
SRF
0.52
19
2
22
2
90.5%
91.7%
0.0219
0.0001
21
24


CD97
PLAU
0.52
17
3
20
4
85.0%
83.3%
0.0286
0.0003
20
24


SPARC
TNFSF5
0.52
18
3
20
4
85.7%
83.3%
5.7E−08
0.0101
21
24


MTA1
UBE2C
0.52
18
2
20
4
90.0%
83.3%
0.0416
0.0008
20
24


C1QA
SERPINA1
0.52
17
3
20
4
85.0%
83.3%
0.0448
0.0001
20
24


DLC1
PLAU
0.52
18
3
21
3
85.7%
87.5%
0.0081
0.0003
21
24


CCL3
CEACAM1
0.52
18
3
21
3
85.7%
87.5%
0.0258
4.9E−05
21
24


DAD1
S100A4
0.52
19
2
20
4
90.5%
83.3%
6.7E−07
0.0271
21
24


SERPINA1
UBE2C
0.52
17
3
20
4
85.0%
83.3%
0.0422
0.0452
20
24


PLAU
SERPINA1
0.52
17
3
20
4
85.0%
83.3%
0.0454
0.0295
20
24


MEIS1

0.52
18
4
20
4
81.8%
83.3%
1.0E−08

22
24


CCL3
MMP9
0.52
19
2
22
2
90.5%
91.7%
0.0150
5.0E−05
21
24


ITGAL
NEDD4L
0.52
16
4
20
4
80.0%
83.3%
2.2E−06
0.0144
20
24


DLC1
ZNF185
0.52
19
2
22
2
90.5%
91.7%
0.0050
0.0003
21
24


HMOX1
SERPINE1
0.52
18
3
20
4
85.7%
83.3%
0.0004
0.0010
21
24


CTNNA1
PLAU
0.51
19
3
21
3
86.4%
87.5%
0.0110
0.0111
22
24


APC
MYD88
0.51
18
3
19
5
85.7%
79.2%
0.0043
1.9E−08
21
24


CTNNA1
ING2
0.51
17
4
19
5
81.0%
79.2%
2.6E−08
0.0193
21
24


CTNNA1
SERPINE1
0.51
19
3
21
3
86.4%
87.5%
0.0002
0.0113
22
24


SERPINA1
SERPINE1
0.51
18
2
20
4
90.0%
83.3%
0.0004
0.0485
20
24


CDH1
PLAU
0.51
19
3
20
4
86.4%
83.3%
0.0113
7.2E−06
22
24


E2F1
SERPINA1
0.51
16
4
20
4
80.0%
83.3%
0.0489
7.7E−05
20
24


C1QA
ZNF185
0.51
19
2
22
2
90.5%
91.7%
0.0052
0.0001
21
24


C1QB
ST14
0.51
19
2
21
3
90.5%
87.5%
0.0006
0.0005
21
24


ING2
ITGAL
0.51
17
3
21
3
85.0%
87.5%
0.0155
3.6E−08
20
24


MNDA
SPARC
0.51
16
4
19
5
80.0%
79.2%
0.0085
7.8E−05
20
24


ESR2
SRF
0.51
19
2
21
3
90.5%
87.5%
0.0251
3.0E−08
21
24


CEACAM1
ST14
0.51
18
3
21
3
85.7%
87.5%
0.0006
0.0290
21
24


BCAM
DIABLO
0.51
17
4
19
5
81.0%
79.2%
0.0002
6.4E−08
21
24


C1QA
USP7
0.51
18
3
21
3
85.7%
87.5%
0.0140
0.0002
21
24


DLC1
MTA1
0.51
16
4
20
4
80.0%
83.3%
0.0009
0.0003
20
24


ESR1
ITGAL
0.51
17
3
20
4
85.0%
83.3%
0.0158
2.9E−08
20
24


C1QB
MTA1
0.51
16
4
21
3
80.0%
87.5%
0.0009
0.0004
20
24


ITGAL
PLEK2
0.51
16
4
20
4
80.0%
83.3%
9.8E−08
0.0159
20
24


DAD1
ESR1
0.51
18
3
21
3
85.7%
87.5%
2.3E−08
0.0316
21
24


IRF1
SERPINE1
0.51
18
3
21
3
85.7%
87.5%
0.0004
0.0129
21
24


CASP3
VEGF
0.51
17
3
20
4
85.0%
83.3%
0.0007
1.6E−07
20
24


BAX
CEACAM1
0.51
18
3
21
3
85.7%
87.5%
0.0307
2.4E−06
21
24


CASP9
CEACAM1
0.51
18
2
22
2
90.0%
91.7%
0.0242
0.0004
20
24


MMP9
PTPRK
0.51
19
3
21
3
86.4%
87.5%
6.8E−08
0.0170
22
24


PLAU
PTPRC
0.51
17
3
20
4
85.0%
83.3%
0.0079
0.0357
20
24


HOXA10
IRF1
0.51
19
2
20
4
90.5%
83.3%
0.0135
1.5E−05
21
24


C1QA
NRAS
0.51
18
3
21
3
85.7%
87.5%
0.0037
0.0002
21
24


LTA
MMP9
0.51
17
3
21
3
85.0%
87.5%
0.0247
3.3E−05
20
24


C1QB
ZNF185
0.51
18
3
21
3
85.7%
87.5%
0.0060
0.0005
21
24


PTGS2
ZNF350
0.51
17
4
20
4
81.0%
83.3%
3.5E−08
0.0027
21
24


PLAU
USP7
0.51
18
3
21
3
85.7%
87.5%
0.0156
0.0103
21
24


BAX
BCAM
0.51
17
4
20
4
81.0%
83.3%
7.1E−08
2.5E−06
21
24


ACPP
NUDT4
0.51
17
4
19
5
81.0%
79.2%
3.3E−07
0.0144
21
24


MMP9
VEGF
0.51
19
3
21
3
86.4%
87.5%
0.0001
0.0182
22
24


C1QB
CTNNA1
0.51
17
4
19
5
81.0%
79.2%
0.0234
0.0005
21
24


MSH2
MYD88
0.51
19
3
20
4
86.4%
83.3%
0.0032
3.1E−07
22
24


DIABLO
NEDD4L
0.51
16
4
21
3
80.0%
87.5%
2.7E−06
0.0002
20
24


C1QA
DLC1
0.51
19
2
21
3
90.5%
87.5%
0.0003
0.0002
21
24


HSPA1A
XK
0.51
18
3
21
3
85.7%
87.5%
7.5E−07
0.0387
21
24


CEACAM1
USP7
0.51
18
3
21
3
85.7%
87.5%
0.0171
0.0360
21
24


MTF1

0.51
17
3
20
4
85.0%
83.3%
3.0E−08

20
24


C1QB
POV1
0.51
17
4
20
4
81.0%
83.3%
0.0062
0.0006
21
24


DAD1
PLEK2
0.51
17
3
20
4
85.0%
83.3%
1.2E−07
0.0257
20
24


IRF1
NUDT4
0.51
17
4
20
4
81.0%
83.3%
3.6E−07
0.0154
21
24


E2F1
RBM5
0.51
16
4
20
4
80.0%
83.3%
0.0012
9.8E−05
20
24


MSH2
PTPRC
0.51
18
2
21
3
90.0%
87.5%
0.0091
3.3E−07
20
24


E2F1
PTGS2
0.51
18
3
20
4
85.7%
83.3%
0.0031
0.0001
21
24


PLAU
VEGF
0.51
19
3
20
4
86.4%
83.3%
0.0002
0.0149
22
24


ACPP
PTEN
0.51
20
2
20
4
90.9%
83.3%
3.2E−08
0.0148
22
24


MMP9
USP7
0.51
18
3
21
3
85.7%
87.5%
0.0176
0.0208
21
24


C1QB
PTGS2
0.51
18
3
21
3
85.7%
87.5%
0.0031
0.0006
21
24


ANLN
MYC
0.51
18
4
21
3
81.8%
87.5%
0.0119
1.2E−06
22
24


MSH2
ST14
0.51
19
3
19
5
86.4%
79.2%
0.0009
3.4E−07
22
24


C1QA
MMP9
0.51
19
2
21
3
90.5%
87.5%
0.0215
0.0002
21
24


DAD1
PTGS2
0.50
18
3
21
3
85.7%
87.5%
0.0032
0.0405
21
24


C1QA
PTPRC
0.50
17
3
20
4
85.0%
83.3%
0.0096
0.0002
20
24


ELA2
IRF1
0.50
17
4
20
4
81.0%
83.3%
0.0164
6.9E−05
21
24


E2F1
ITGAL
0.50
17
3
21
3
85.0%
87.5%
0.0207
0.0001
20
24


CEACAM1
LTA
0.50
18
2
22
2
90.0%
91.7%
3.8E−05
0.0301
20
24


SRF
VIM
0.50
18
3
20
4
85.7%
83.3%
5.0E−05
0.0342
21
24


ESR1
MYC
0.50
17
4
20
4
81.0%
83.3%
0.0142
3.0E−08
21
24


HMOX1
NEDD4L
0.50
16
4
20
4
80.0%
83.3%
3.1E−06
0.0011
20
24


DLC1
HMOX1
0.50
18
3
20
4
85.7%
83.3%
0.0014
0.0004
21
24


HSPA1A
NEDD4L
0.50
17
3
20
4
85.0%
83.3%
3.1E−06
0.0387
20
24


E2F1
HSPA1A
0.50
18
3
20
4
85.7%
83.3%
0.0452
0.0002
21
24


MME
RBM5
0.50
18
2
21
3
90.0%
87.5%
0.0014
3.9E−08
20
24


HSPA1A
SERPINE1
0.50
20
2
20
4
90.9%
83.3%
0.0003
0.0198
22
24


ACPP
ING2
0.50
16
5
20
4
76.2%
83.3%
3.8E−08
0.0185
21
24


C1QB
IRF1
0.50
18
3
20
4
85.7%
83.3%
0.0179
0.0007
21
24


ING2
TLR2
0.50
18
3
19
5
85.7%
79.2%
0.0032
3.8E−08
21
24


BAX
MSH2
0.50
19
3
20
4
86.4%
83.3%
3.8E−07
2.1E−06
22
24


ACPP
C1QA
0.50
19
2
21
3
90.5%
87.5%
0.0002
0.0188
21
24


BCAM
HSPA1A
0.50
18
3
21
3
85.7%
87.5%
0.0481
9.1E−08
21
24


IKBKE
SPARC
0.50
18
3
20
4
85.7%
83.3%
0.0172
4.2E−08
21
24


CEACAM1
HSPA1A
0.50
19
2
20
4
90.5%
83.3%
0.0491
0.0443
21
24


BAX
POV1
0.50
19
3
21
3
86.4%
87.5%
0.0009
2.2E−06
22
24


NBEA
PLAU
0.50
18
3
21
3
85.7%
87.5%
0.0139
1.1E−07
21
24


CTNNA1
POV1
0.50
18
4
19
5
81.8%
79.2%
0.0009
0.0181
22
24


DLC1
RBM5
0.50
17
3
20
4
85.0%
83.3%
0.0015
0.0004
20
24


MYD88
POV1
0.50
18
4
21
3
81.8%
87.5%
0.0009
0.0042
22
24


DLC1
TLR2
0.50
19
2
20
4
90.5%
83.3%
0.0034
0.0004
21
24


SRF
VEGF
0.50
17
4
20
4
81.0%
83.3%
0.0011
0.0399
21
24


CCR7
SPARC
0.50
18
3
20
4
85.7%
83.3%
0.0181
2.8E−08
21
24


TXNRD1
USP7
0.50
18
3
20
4
85.7%
83.3%
0.0219
5.3E−08
21
24


MYD88
NUDT4
0.50
18
3
21
3
85.7%
87.5%
4.5E−07
0.0071
21
24


CASP3
USP7
0.50
16
4
20
4
80.0%
83.3%
0.0159
2.3E−07
20
24


MYC
TLR2
0.50
16
5
20
4
76.2%
83.3%
0.0035
0.0165
21
24


IRF1
VEGF
0.50
18
3
20
4
85.7%
83.3%
0.0011
0.0196
21
24


ACPP
CEACAM1
0.50
17
4
19
5
81.0%
79.2%
0.0471
0.0204
21
24


C1QA
CAV1
0.50
19
2
21
3
90.5%
87.5%
0.0032
0.0002
21
24


LTA
MYC
0.50
16
4
20
4
80.0%
83.3%
0.0203
4.6E−05
20
24


ELA2
MYC
0.50
19
2
21
3
90.5%
87.5%
0.0167
8.2E−05
21
24


ING2
MYD88
0.50
16
5
20
4
76.2%
83.3%
0.0073
4.2E−08
21
24


NUDT4
RBM5
0.50
15
5
20
4
75.0%
83.3%
0.0015
5.3E−07
20
24


HSPA1A
MAPK14
0.50
15
5
19
5
75.0%
79.2%
1.3E−05
0.0456
20
24


CASP9
XK
0.50
17
3
21
3
85.0%
87.5%
1.0E−06
0.0006
20
24


CEACAM1
RBM5
0.50
17
3
21
3
85.0%
87.5%
0.0016
0.0373
20
24


CCL3
DLC1
0.50
17
4
19
5
81.0%
79.2%
0.0005
8.8E−05
21
24


ESR1
SRF
0.50
20
1
21
3
95.2%
87.5%
0.0428
3.6E−08
21
24


C1QA
IRF1
0.50
18
3
20
4
85.7%
83.3%
0.0207
0.0002
21
24


NRAS
PLAU
0.50
19
3
21
3
86.4%
87.5%
0.0200
0.0021
22
24


MMP9
RBM5
0.50
18
2
21
3
90.0%
87.5%
0.0016
0.0374
20
24


NRAS
SERPINE1
0.50
17
5
19
5
77.3%
79.2%
0.0004
0.0021
22
24


CDH1
PTPRC
0.50
18
2
20
4
90.0%
83.3%
0.0123
1.3E−05
20
24


IRF1
MME
0.50
17
4
20
4
81.0%
83.3%
3.0E−08
0.0213
21
24


HSPA1A
SIAH2
0.50
16
4
21
3
80.0%
87.5%
6.2E−07
0.0490
20
24


ACPP
E2F1
0.50
17
4
19
5
81.0%
79.2%
0.0002
0.0226
21
24


PTGS2
VEGF
0.50
18
4
21
3
81.8%
87.5%
0.0002
0.0051
22
24


C1QB
LTA
0.50
17
3
20
4
85.0%
83.3%
5.1E−05
0.0007
20
24


AXIN2
ITGAL
0.50
16
4
20
4
80.0%
83.3%
0.0281
4.6E−08
20
24


C1QA
ITGAL
0.50
18
2
22
2
90.0%
91.7%
0.0280
0.0002
20
24


CAV1
HMOX1
0.50
16
5
21
3
76.2%
87.5%
0.0018
0.0036
21
24


E2F1
VEGF
0.50
19
2
22
2
90.5%
91.7%
0.0013
0.0002
21
24


ACPP
PLAU
0.50
18
4
20
4
81.8%
83.3%
0.0219
0.0217
22
24


MMP9
PLAU
0.50
19
3
20
4
86.4%
83.3%
0.0221
0.0299
22
24


C1QB
DIABLO
0.49
18
3
21
3
85.7%
87.5%
0.0004
0.0009
21
24


CDH1
CTNNA1
0.49
18
4
20
4
81.8%
83.3%
0.0227
1.4E−05
22
24


PLAU
TLR2
0.49
17
4
19
5
81.0%
79.2%
0.0041
0.0174
21
24


USP7
VEGF
0.49
19
2
21
3
90.5%
87.5%
0.0014
0.0268
21
24


ACPP
C1QB
0.49
17
4
21
3
81.0%
87.5%
0.0009
0.0249
21
24


CASP3
LGALS8
0.49
16
4
20
4
80.0%
83.3%
4.7E−05
2.8E−07
20
24


ANLN
HMOX1
0.49
16
5
19
5
76.2%
79.2%
0.0020
5.3E−06
21
24


IRF1
MMP9
0.49
17
4
20
4
81.0%
83.3%
0.0322
0.0240
21
24


TLR2
TXNRD1
0.49
18
3
20
4
85.7%
83.3%
6.6E−08
0.0043
21
24


BCAM
HMOX1
0.49
17
4
19
5
81.0%
79.2%
0.0020
1.2E−07
21
24


DLC1
ST14
0.49
17
4
20
4
81.0%
83.3%
0.0012
0.0006
21
24


E2F1
PTPRC
0.49
17
3
20
4
85.0%
83.3%
0.0142
0.0001
20
24


DIABLO
PLAU
0.49
18
3
21
3
85.7%
87.5%
0.0183
0.0004
21
24


DLC1
MYD88
0.49
17
4
19
5
81.0%
79.2%
0.0091
0.0006
21
24


C1QB
RBM5
0.49
18
2
20
4
90.0%
83.3%
0.0019
0.0007
20
24


NBEA
NRAS
0.49
18
3
21
3
85.7%
87.5%
0.0068
1.5E−07
21
24


ADAM17
RBM5
0.49
17
3
20
4
85.0%
83.3%
0.0019
2.0E−07
20
24


CCR7
HMGA1
0.49
20
2
20
3
90.9%
87.0%
0.0027
3.5E−08
22
23


CTNNA1
MMP9
0.49
19
3
21
3
86.4%
87.5%
0.0338
0.0252
22
24


ANLN
IRF1
0.49
17
4
19
5
81.0%
79.2%
0.0260
5.7E−06
21
24


SPARC
ZNF185
0.49
17
4
19
5
81.0%
79.2%
0.0114
0.0248
21
24


CCL3
CDH1
0.49
18
3
20
4
85.7%
83.3%
1.7E−05
0.0001
21
24


SERPINE1
USP7
0.49
19
2
21
3
90.5%
87.5%
0.0302
0.0008
21
24


TLR2
ZNF350
0.49
18
3
21
3
85.7%
87.5%
6.4E−08
0.0047
21
24


HSPA1A
SERPING1
0.49
18
4
20
4
81.8%
83.3%
1.4E−05
0.0310
22
24


MMP9
NRAS
0.49
19
3
21
3
86.4%
87.5%
0.0028
0.0362
22
24


CASP9
MMP9
0.49
19
1
22
2
95.0%
91.7%
0.0496
0.0008
20
24


MLH1
USP7
0.49
17
3
21
3
85.0%
87.5%
0.0226
5.3E−08
20
24


HMGA1
SIAH2
0.49
18
2
19
4
90.0%
82.6%
1.1E−06
0.0037
20
23


NUDT4
ST14
0.49
19
2
21
3
90.5%
87.5%
0.0014
6.3E−07
21
24


RBM5
SIAH2
0.49
16
4
20
4
80.0%
83.3%
7.9E−07
0.0021
20
24


LTA
POV1
0.49
17
3
20
4
85.0%
83.3%
0.0094
6.4E−05
20
24


DLC1
PTPRC
0.49
17
3
20
4
85.0%
83.3%
0.0166
0.0006
20
24


DLC1
USP7
0.49
18
3
20
4
85.7%
83.3%
0.0329
0.0007
21
24


CTNNA1
ESR1
0.49
17
4
19
5
81.0%
79.2%
4.9E−08
0.0486
21
24


MSH2
PTGS2
0.49
18
4
20
4
81.8%
83.3%
0.0068
6.0E−07
22
24


ELA2
MMP9
0.49
18
3
21
3
85.7%
87.5%
0.0393
0.0001
21
24


CAV1
IQGAP1
0.49
18
3
21
3
85.7%
87.5%
0.0002
0.0046
21
24


MMP9
PTGS2
0.49
19
3
21
3
86.4%
87.5%
0.0068
0.0386
22
24


NUDT4
USP7
0.49
18
3
21
3
85.7%
87.5%
0.0334
6.5E−07
21
24


CTNNA1
IL8
0.49
17
5
20
4
77.3%
83.3%
9.5E−08
0.0289
22
24


ADAM17
DAD1
0.49
17
3
21
3
85.0%
87.5%
0.0500
2.3E−07
20
24


HOXA10
PTGS2
0.49
18
3
20
4
85.7%
83.3%
0.0058
3.1E−05
21
24


C1QB
CCL3
0.49
19
2
20
4
90.5%
83.3%
0.0001
0.0011
21
24


ELA2
PTPRC
0.49
16
4
20
4
80.0%
83.3%
0.0173
0.0007
20
24


IGF2BP2
SPARC
0.49
19
2
22
2
90.5%
91.7%
0.0284
3.9E−07
21
24


MYC
PTPRK
0.49
21
1
20
4
95.5%
83.3%
1.5E−07
0.0232
22
24


DIABLO
IGF2BP2
0.49
19
2
21
3
90.5%
87.5%
4.0E−07
0.0005
21
24


C1QB
MYD88
0.49
18
3
21
3
85.7%
87.5%
0.0110
0.0011
21
24


ING2
RBM5
0.49
16
4
20
4
80.0%
83.3%
0.0023
8.2E−08
20
24


CAV1
DLC1
0.49
16
5
19
5
76.2%
79.2%
0.0007
0.0048
21
24


RBM5
SERPINE1
0.49
16
4
20
4
80.0%
83.3%
0.0009
0.0023
20
24


CCL3
POV1
0.49
17
4
21
3
81.0%
87.5%
0.0125
0.0001
21
24


USP7
ZNF350
0.49
17
4
20
4
81.0%
83.3%
7.3E−08
0.0352
21
24


ACPP
VEGF
0.49
19
3
19
5
86.4%
79.2%
0.0003
0.0304
22
24


MMP9
SERPINE1
0.49
18
4
21
3
81.8%
87.5%
0.0006
0.0416
22
24


C1QB
SPARC
0.49
17
4
20
4
81.0%
83.3%
0.0297
0.0011
21
24


MTA1
XK
0.49
16
4
19
5
80.0%
79.2%
1.5E−06
0.0021
20
24


IGF2BP2
MYC
0.49
17
4
19
5
81.0%
79.2%
0.0268
4.1E−07
21
24


ACPP
ADAM17
0.49
17
3
20
4
85.0%
83.3%
2.4E−07
0.0455
20
24


MME
TLR2
0.49
17
4
20
4
81.0%
83.3%
0.0056
4.3E−08
21
24


HOXA10
SERPINE1
0.49
18
3
21
3
85.7%
87.5%
0.0010
3.4E−05
21
24


RBM5
XK
0.49
15
5
20
4
75.0%
83.3%
1.6E−06
0.0024
20
24


C1QB
NRAS
0.49
17
4
20
4
81.0%
83.3%
0.0087
0.0012
21
24


ESR1
MTA1
0.49
17
3
20
4
85.0%
83.3%
0.0021
6.7E−08
20
24


E2F1
TLR2
0.49
18
3
20
4
85.7%
83.3%
0.0057
0.0003
21
24


GADD45A
MYC
0.48
20
2
20
4
90.9%
83.3%
0.0255
6.6E−06
22
24


HMOX1
SIAH2
0.48
16
4
19
5
80.0%
79.2%
9.1E−07
0.0021
20
24


CXCL1
POV1
0.48
18
3
20
4
85.7%
83.3%
0.0136
1.3E−05
21
24


E2F1
MMP9
0.48
19
2
21
3
90.5%
87.5%
0.0456
0.0003
21
24


C1QA
MYD88
0.48
17
4
21
3
81.0%
87.5%
0.0122
0.0004
21
24


ACPP
DLC1
0.48
18
3
21
3
85.7%
87.5%
0.0008
0.0352
21
24


HMGA1
NEDD4L
0.48
20
0
19
4
100.0%
82.6%
5.8E−06
0.0044
20
23


IRF1
MLH1
0.48
16
4
20
4
80.0%
83.3%
6.3E−08
0.0260
20
24


CDH1
IQGAP1
0.48
18
4
20
4
81.8%
83.3%
0.0002
2.0E−05
22
24


LTA
MSH6
0.48
15
5
20
4
75.0%
83.3%
1.2E−07
7.5E−05
20
24


CA4
CAV1
0.48
17
4
20
4
81.0%
83.3%
0.0055
0.0003
21
24


E2F1
HMOX1
0.48
17
4
21
3
81.0%
87.5%
0.0028
0.0003
21
24


SERPINE1
VEGF
0.48
18
4
20
4
81.8%
83.3%
0.0003
0.0006
22
24


ACPP
HOXA10
0.48
18
3
21
3
85.7%
87.5%
3.7E−05
0.0370
21
24


DIABLO
E2F1
0.48
18
3
21
3
85.7%
87.5%
0.0003
0.0005
21
24


CASP3
CASP9
0.48
17
3
20
4
85.0%
83.3%
0.0011
4.0E−07
20
24


PLEK2
SPARC
0.48
18
2
21
3
90.0%
87.5%
0.0240
2.5E−07
20
24


IRF1
XK
0.48
17
4
19
5
81.0%
79.2%
1.7E−06
0.0363
21
24


MMP9
ZNF185
0.48
19
2
20
4
90.5%
83.3%
0.0155
0.0492
21
24


ITGAL
ZNF185
0.48
18
2
20
4
90.0%
83.3%
0.0109
0.0461
20
24


C1QB
SERPINE1
0.48
18
3
21
3
85.7%
87.5%
0.0011
0.0013
21
24


CASP9
SERPING1
0.48
17
3
20
4
85.0%
83.3%
1.5E−05
0.0011
20
24


ITGAL
TNFSF5
0.48
17
3
21
3
85.0%
87.5%
2.4E−07
0.0477
20
24


CASP3
MTA1
0.48
18
2
20
4
90.0%
83.3%
0.0025
4.2E−07
20
24


ELA2
HMOX1
0.48
17
4
20
4
81.0%
83.3%
0.0031
0.0002
21
24


ING2
USP7
0.48
16
5
19
5
76.2%
79.2%
0.0444
7.6E−08
21
24


C1QA
SERPINE1
0.48
17
4
20
4
81.0%
83.3%
0.0012
0.0004
21
24


LTA
MSH2
0.48
16
4
20
4
80.0%
83.3%
7.5E−07
8.4E−05
20
24


IGFBP3
SPARC
0.48
17
4
20
4
81.0%
83.3%
0.0371
1.8E−07
21
24


CDH1
VIM
0.48
16
5
18
6
76.2%
75.0%
0.0001
2.4E−05
21
24


IRF1
TXNRD1
0.48
18
3
21
3
85.7%
87.5%
1.0E−07
0.0396
21
24


MLH1
MYD88
0.48
16
4
19
5
80.0%
79.2%
0.0180
7.2E−08
20
24


APC
TLR2
0.48
17
4
20
4
81.0%
83.3%
0.0068
5.7E−08
21
24


MYD88
PLAU
0.48
18
4
20
4
81.8%
83.3%
0.0390
0.0086
22
24


LARGE
SPARC
0.48
18
3
20
4
85.7%
83.3%
0.0376
2.3E−07
21
24


MAPK14
SPARC
0.48
16
4
19
5
80.0%
79.2%
0.0268
2.3E−05
20
24


POV1
SERPINE1
0.48
19
3
20
4
86.4%
83.3%
0.0007
0.0019
22
24


CD97
ELA2
0.48
17
3
20
4
85.0%
83.3%
0.0010
0.0010
20
24


CASP3
IQGAP1
0.48
17
3
21
3
85.0%
87.5%
0.0004
4.4E−07
20
24


IRF1
NRAS
0.48
17
4
19
5
81.0%
79.2%
0.0108
0.0412
21
24


IKBKE
USP7
0.48
18
3
21
3
85.7%
87.5%
0.0468
8.7E−08
21
24


SERPINE1
SPARC
0.48
17
4
19
5
81.0%
79.2%
0.0388
0.0012
21
24


C1QA
CDH1
0.48
18
3
19
5
85.7%
79.2%
2.6E−05
0.0005
21
24


CASP3
MNDA
0.48
15
5
19
5
75.0%
79.2%
0.0002
4.6E−07
20
24


NBEA
PTPRC
0.48
17
3
21
3
85.0%
87.5%
0.0244
2.8E−07
20
24


XRCC1

0.48
21
0
20
4
100.0%
83.3%
5.0E−08

21
24


DLC1
PTGS2
0.48
18
3
20
4
85.7%
83.3%
0.0082
0.0010
21
24


IQGAP1
POV1
0.48
20
2
20
4
90.9%
83.3%
0.0021
0.0003
22
24


MSH2
VIM
0.48
17
4
19
5
81.0%
79.2%
0.0001
7.6E−07
21
24


ACPP
NBEA
0.48
17
4
20
4
81.0%
83.3%
2.5E−07
0.0465
21
24


ACPP
SERPINE1
0.48
19
3
20
4
86.4%
83.3%
0.0008
0.0443
22
24


ETS2

0.48
19
2
22
2
90.5%
91.7%
5.3E−08

21
24


APC
MYC
0.48
18
3
20
4
85.7%
83.3%
0.0382
6.4E−08
21
24


CNKSR2
DIABLO
0.48
17
4
19
5
81.0%
79.2%
0.0007
5.8E−08
21
24


MYC
ZNF185
0.48
17
4
19
5
81.0%
79.2%
0.0201
0.0399
21
24


DLC1
SPARC
0.48
16
5
18
6
76.2%
75.0%
0.0448
0.0010
21
24


MYD88
SERPINE1
0.47
18
4
20
4
81.8%
83.3%
0.0008
0.0102
22
24


ACPP
SERPING1
0.47
18
4
20
4
81.8%
83.3%
2.4E−05
0.0468
22
24


NEDD4L
RBM5
0.47
16
4
20
4
80.0%
83.3%
0.0034
7.8E−06
20
24


SP1

0.47
18
3
20
4
85.7%
83.3%
5.5E−08

21
24


E2F1
NRAS
0.47
16
5
19
5
76.2%
79.2%
0.0126
0.0004
21
24


HMGA1
TNFSF5
0.47
20
1
20
3
95.2%
87.0%
2.6E−07
0.0070
21
23


PTEN
TLR2
0.47
18
3
21
3
85.7%
87.5%
0.0083
1.3E−07
21
24


C1QA
RBM5
0.47
18
2
21
3
90.0%
87.5%
0.0035
0.0004
20
24


CDH1
PTGS2
0.47
18
4
20
4
81.8%
83.3%
0.0113
2.7E−05
22
24


ACPP
MYC
0.47
19
3
20
4
86.4%
83.3%
0.0378
0.0481
22
24


BCAM
CASP9
0.47
17
3
20
4
85.0%
83.3%
0.0014
2.9E−07
20
24


PTPRK
SPARC
0.47
17
4
20
4
81.0%
83.3%
0.0464
3.2E−07
21
24


HOXA10
PLAU
0.47
18
3
21
3
85.7%
87.5%
0.0362
4.9E−05
21
24


PLAU
SERPING1
0.47
18
4
20
4
81.8%
83.3%
2.4E−05
0.0487
22
24


CCL3
SERPINE1
0.47
19
2
20
4
90.5%
83.3%
0.0014
0.0002
21
24


HMOX1
MLH1
0.47
17
3
21
3
85.0%
87.5%
8.7E−08
0.0030
20
24


HMOX1
IGF2BP2
0.47
16
5
19
5
76.2%
79.2%
6.1E−07
0.0039
21
24


HMGA1
IRF1
0.47
17
4
20
3
81.0%
87.0%
0.0373
0.0072
21
23


PLAU
PTGS2
0.47
18
4
20
4
81.8%
83.3%
0.0114
0.0491
22
24


CAV1
NEDD4L
0.47
16
4
19
5
80.0%
79.2%
8.1E−06
0.0056
20
24


ELA2
RBM5
0.47
18
2
20
4
90.0%
83.3%
0.0036
0.0012
20
24


ELA2
MTA1
0.47
17
3
22
2
85.0%
91.7%
0.0032
0.0012
20
24


C1QB
CASP9
0.47
18
2
22
2
90.0%
91.7%
0.0015
0.0014
20
24


ELA2
HMGA1
0.47
16
5
20
3
76.2%
87.0%
0.0074
0.0002
21
23


C1QB
PTPRC
0.47
17
3
20
4
85.0%
83.3%
0.0294
0.0014
20
24


CAV1
MTA1
0.47
17
3
20
4
85.0%
83.3%
0.0032
0.0058
20
24


CASP3
HMOX1
0.47
17
3
20
4
85.0%
83.3%
0.0031
5.5E−07
20
24


IRF1
NEDD4L
0.47
16
4
19
5
80.0%
79.2%
8.4E−06
0.0394
20
24


MYC
PTGS2
0.47
18
4
20
4
81.8%
83.3%
0.0121
0.0408
22
24


CAV1
HMGA1
0.47
18
3
20
3
85.7%
87.0%
0.0076
0.0111
21
23


CDH1
ZNF185
0.47
18
3
21
3
85.7%
87.5%
0.0227
3.2E−05
21
24


ADAM17
PTPRC
0.47
16
4
20
4
80.0%
83.3%
0.0303
3.8E−07
20
24


E2F1
MYD88
0.47
17
4
19
5
81.0%
79.2%
0.0193
0.0004
21
24


CASP9
ELA2
0.47
16
4
19
5
80.0%
79.2%
0.0013
0.0015
20
24


MSH6
PTGS2
0.47
16
4
19
5
80.0%
79.2%
0.0177
1.8E−07
20
24


ADAM17
SPARC
0.47
16
4
19
5
80.0%
79.2%
0.0367
3.9E−07
20
24


ESR1
HMGA1
0.47
19
2
19
4
90.5%
82.6%
0.0080
1.2E−07
21
23


HOXA10
POV1
0.47
19
2
20
4
90.5%
83.3%
0.0226
5.7E−05
21
24


HMGA1
IGF2BP2
0.47
20
1
19
4
95.2%
82.6%
8.7E−07
0.0083
21
23


MYC
VEGF
0.47
19
3
21
3
86.4%
87.5%
0.0005
0.0448
22
24


APC
NRAS
0.47
18
3
21
3
85.7%
87.5%
0.0151
7.9E−08
21
24


IRF1
SIAH2
0.47
17
3
20
4
85.0%
83.3%
1.5E−06
0.0440
20
24


ELA2
POV1
0.47
18
3
20
4
85.7%
83.3%
0.0239
0.0002
21
24


C1QA
ST14
0.47
19
2
22
2
90.5%
91.7%
0.0027
0.0007
21
24


RBM5
SERPING1
0.47
17
3
19
5
85.0%
79.2%
2.2E−05
0.0043
20
24


MSH2
TLR2
0.47
18
3
20
4
85.7%
83.3%
0.0104
1.0E−06
21
24


HMGA1
TLR2
0.47
19
2
19
4
90.5%
82.6%
0.0095
0.0088
21
23


CASP9
SERPINE1
0.47
17
3
20
4
85.0%
83.3%
0.0016
0.0017
20
24


HMGA1
SERPING1
0.47
18
4
19
4
81.8%
82.6%
5.2E−05
0.0063
22
23


IL8
MYC
0.47
18
4
20
4
81.8%
83.3%
0.0497
1.9E−07
22
24


IQGAP1
MME
0.47
19
2
20
4
90.5%
83.3%
7.9E−08
0.0004
21
24


BAX
DLC1
0.47
17
4
20
4
81.0%
83.3%
0.0014
1.0E−05
21
24


DIABLO
NBEA
0.47
18
3
21
3
85.7%
87.5%
3.5E−07
0.0009
21
24


ELA2
MYD88
0.47
17
4
20
4
81.0%
83.3%
0.0235
0.0002
21
24


CASP3
PTGS2
0.47
16
4
19
5
80.0%
79.2%
0.0213
6.8E−07
20
24


CD59

0.47
19
3
20
4
86.4%
83.3%
5.2E−08

22
24


SIAH2
SPARC
0.47
17
3
21
3
85.0%
87.5%
0.0450
1.7E−06
20
24


DLC1
POV1
0.46
17
4
20
4
81.0%
83.3%
0.0272
0.0015
21
24


ANLN
CD97
0.46
18
2
20
4
90.0%
83.3%
0.0017
2.7E−05
20
24


ELA2
PTGS2
0.46
18
3
20
4
85.7%
83.3%
0.0133
0.0003
21
24


TXNRD1
ZNF185
0.46
17
4
20
4
81.0%
83.3%
0.0302
1.7E−07
21
24


MYD88
NEDD4L
0.46
17
3
20
4
85.0%
83.3%
1.1E−05
0.0318
20
24


CASP9
NEDD4L
0.46
18
2
21
3
90.0%
87.5%
1.1E−05
0.0020
20
24


POV1
S100A4
0.46
19
3
21
3
86.4%
87.5%
2.7E−06
0.0034
22
24


C1QA
HMGA1
0.46
20
1
21
2
95.2%
91.3%
0.0103
0.0008
21
23


IQGAP1
MSH2
0.46
18
4
20
4
81.8%
83.3%
1.4E−06
0.0004
22
24


CASP3
VIM
0.46
16
4
20
4
80.0%
83.3%
0.0002
7.7E−07
20
24


ANLN
RBM5
0.46
17
3
20
4
85.0%
83.3%
0.0053
3.0E−05
20
24


DIABLO
SERPING1
0.46
18
3
20
4
85.7%
83.3%
3.0E−05
0.0011
21
24


ING2
NRAS
0.46
18
3
21
3
85.7%
87.5%
0.0208
1.4E−07
21
24


CDH1
MNDA
0.46
17
3
20
4
85.0%
83.3%
0.0004
4.2E−05
20
24


MTA1
SIAH2
0.46
16
4
20
4
80.0%
83.3%
2.0E−06
0.0049
20
24


HMOX1
TLR2
0.46
18
3
20
4
85.7%
83.3%
0.0138
0.0063
21
24


LGALS8
POV1
0.46
16
4
21
3
80.0%
87.5%
0.0256
0.0001
20
24


DLC1
ELA2
0.46
17
4
20
4
81.0%
83.3%
0.0003
0.0018
21
24


UBE2C

0.46
18
3
20
4
85.7%
83.3%
9.0E−08

21
24


TEGT

0.46
19
3
21
3
86.4%
87.5%
6.4E−08

22
24


C1QB
VEGF
0.46
17
4
21
3
81.0%
87.5%
0.0046
0.0029
21
24


NUDT4
PTPRC
0.46
18
2
20
4
90.0%
83.3%
0.0488
1.9E−06
20
24


CDH1
LTA
0.46
16
4
20
4
80.0%
83.3%
0.0002
4.5E−05
20
24


HMOX1
PTGS2
0.46
17
4
20
4
81.0%
83.3%
0.0163
0.0066
21
24


NRAS
TXNRD1
0.46
16
5
20
4
76.2%
83.3%
2.1E−07
0.0227
21
24


C1QB
CD97
0.46
17
3
20
4
85.0%
83.3%
0.0021
0.0023
20
24


IL8
NRAS
0.46
20
2
20
4
90.9%
83.3%
0.0087
2.6E−07
22
24


CAV1
DIABLO
0.46
18
3
21
3
85.7%
87.5%
0.0012
0.0134
21
24


C1QB
TLR2
0.46
18
3
21
3
85.7%
87.5%
0.0150
0.0030
21
24


TLR2
ZNF185
0.46
17
4
20
4
81.0%
83.3%
0.0380
0.0150
21
24


NCOA1

0.46
19
3
20
4
86.4%
83.3%
6.8E−08

22
24


CNKSR2
RBM5
0.46
17
3
21
3
85.0%
87.5%
0.0063
1.5E−07
20
24


HMGA1
ZNF185
0.46
17
4
19
4
81.0%
82.6%
0.0278
0.0129
21
23


AXIN2
MTA1
0.46
16
4
19
5
80.0%
79.2%
0.0055
1.6E−07
20
24


CAV1
CD97
0.46
16
4
19
5
80.0%
79.2%
0.0022
0.0100
20
24


CAV1
VIM
0.46
17
4
20
4
81.0%
83.3%
0.0002
0.0140
21
24


MYD88
XK
0.46
18
3
21
3
85.7%
87.5%
4.0E−06
0.0331
21
24


IGF2BP2
RBM5
0.46
17
3
19
5
85.0%
79.2%
0.0064
1.1E−06
20
24


CDH1
CXCL1
0.46
17
4
20
4
81.0%
83.3%
3.2E−05
5.4E−05
21
24


TLR2
VEGF
0.46
19
2
22
2
90.5%
91.7%
0.0051
0.0160
21
24


HMGA1
PTGS2
0.46
18
4
19
4
81.8%
82.6%
0.0216
0.0094
22
23


PTGS2
TLR2
0.46
17
4
19
5
81.0%
79.2%
0.0163
0.0181
21
24


CCL3
MSH2
0.46
17
4
20
4
81.0%
83.3%
1.5E−06
0.0004
21
24


CASP9
DLC1
0.46
16
4
20
4
80.0%
83.3%
0.0018
0.0026
20
24


CDH1
VEGF
0.46
18
4
20
4
81.8%
83.3%
0.0009
5.1E−05
22
24


NRAS
POV1
0.46
18
4
19
5
81.8%
79.2%
0.0045
0.0096
22
24


CA4
CDH1
0.45
17
4
20
4
81.0%
83.3%
5.5E−05
0.0008
21
24


MYD88
SIAH2
0.45
17
3
20
4
85.0%
83.3%
2.3E−06
0.0437
20
24


ANLN
CASP9
0.45
18
2
21
3
90.0%
87.5%
0.0027
3.7E−05
20
24


DLC1
LTA
0.45
19
1
20
4
95.0%
83.3%
0.0002
0.0019
20
24


GSK3B
POV1
0.45
19
2
21
3
90.5%
87.5%
0.0396
2.1E−05
21
24


C1QA
MTA1
0.45
18
2
22
2
90.0%
91.7%
0.0060
0.0008
20
24


MTA1
NEDD4L
0.45
15
5
19
5
75.0%
79.2%
1.5E−05
0.0060
20
24


E2F1
HMGA1
0.45
18
3
19
4
85.7%
82.6%
0.0142
0.0007
21
23


MTA1
ZNF350
0.45
17
3
21
3
85.0%
87.5%
2.9E−07
0.0061
20
24


PTGS2
ZNF185
0.45
17
4
20
4
81.0%
83.3%
0.0439
0.0192
21
24


MAPK14
POV1
0.45
17
3
21
3
85.0%
87.5%
0.0322
5.4E−05
20
24


DLC1
SERPINE1
0.45
18
3
20
4
85.7%
83.3%
0.0029
0.0022
21
24


TLR2
XK
0.45
18
3
19
5
85.7%
79.2%
4.4E−06
0.0176
21
24


ESR1
NRAS
0.45
17
4
20
4
81.0%
83.3%
0.0273
1.6E−07
21
24


CD97
SERPINE1
0.45
18
2
21
3
90.0%
87.5%
0.0027
0.0024
20
24


DIABLO
PLEK2
0.45
19
1
21
3
95.0%
87.5%
6.4E−07
0.0013
20
24


HMOX1
VEGF
0.45
18
3
20
4
85.7%
83.3%
0.0057
0.0081
21
24


DLC1
HOXA10
0.45
17
4
20
4
81.0%
83.3%
0.0001
0.0022
21
24


CD97
NUDT4
0.45
16
4
19
5
80.0%
79.2%
2.4E−06
0.0025
20
24


CAV1
XK
0.45
17
4
19
5
81.0%
79.2%
4.6E−06
0.0167
21
24


C1QA
VEGF
0.45
19
2
20
4
90.5%
83.3%
0.0059
0.0012
21
24


SERPINE1
TLR2
0.45
17
4
19
5
81.0%
79.2%
0.0194
0.0032
21
24


SERPINA1

0.45
17
3
20
4
85.0%
83.3%
1.8E−07

20
24


CAV1
HOXA10
0.45
19
2
21
3
90.5%
87.5%
0.0001
0.0177
21
24


ANLN
TLR2
0.45
17
4
19
5
81.0%
79.2%
0.0198
2.2E−05
21
24


CASP3
ZNF185
0.45
18
2
20
4
90.0%
83.3%
0.0335
1.1E−06
20
24


NBEA
PTGS2
0.45
17
4
19
5
81.0%
79.2%
0.0223
6.0E−07
21
24


NUDT4
PTGS2
0.45
17
4
19
5
81.0%
79.2%
0.0223
2.3E−06
21
24


CASP9
IKBKE
0.45
18
2
22
2
90.0%
91.7%
2.7E−07
0.0032
20
24


HMOX1
ZNF350
0.45
18
3
21
3
85.7%
87.5%
2.5E−07
0.0091
21
24


CDH1
NRAS
0.45
18
4
19
5
81.8%
79.2%
0.0120
6.3E−05
22
24


CCR7
MTA1
0.45
16
4
19
5
80.0%
79.2%
0.0073
2.2E−07
20
24


DLC1
MNDA
0.45
17
3
19
5
85.0%
79.2%
0.0006
0.0023
20
24


CAV1
E2F1
0.45
18
3
20
4
85.7%
83.3%
0.0009
0.0187
21
24


MYD88
PTEN
0.45
17
5
20
4
77.3%
83.3%
2.1E−07
0.0270
22
24


CD97
MSH2
0.45
16
4
18
6
80.0%
75.0%
2.1E−06
0.0028
20
24


MSH6
VEGF
0.45
15
5
20
4
75.0%
83.3%
0.0058
3.7E−07
20
24


BCAM
RBM5
0.45
17
3
20
4
85.0%
83.3%
0.0086
6.6E−07
20
24


MSH6
ZNF185
0.45
18
2
21
3
90.0%
87.5%
0.0363
3.8E−07
20
24


CCL3
TLR2
0.45
18
3
21
3
85.7%
87.5%
0.0216
0.0005
21
24


C1QA
SERPING1
0.45
18
3
20
4
85.7%
83.3%
4.8E−05
0.0014
21
24


BCAM
MYD88
0.45
18
3
21
3
85.7%
87.5%
0.0478
5.4E−07
21
24


PLEK2
RBM5
0.45
16
4
19
5
80.0%
79.2%
0.0091
7.9E−07
20
24


ANLN
MTA1
0.45
17
3
20
4
85.0%
83.3%
0.0080
4.9E−05
20
24


CA4
HMGA1
0.45
19
2
19
4
90.5%
82.6%
0.0192
0.0020
21
23


HOXA10
NRAS
0.45
16
5
21
3
76.2%
87.5%
0.0361
0.0001
21
24


CAV1
MNDA
0.45
17
3
20
4
85.0%
83.3%
0.0007
0.0148
20
24


CNKSR2
HMGA1
0.44
18
3
19
4
85.7%
82.6%
0.0194
2.0E−07
21
23


CASP3
ST14
0.44
17
3
19
5
85.0%
79.2%
0.0052
1.3E−06
20
24


CD97
DLC1
0.44
15
5
19
5
75.0%
79.2%
0.0026
0.0032
20
24


IQGAP1
ZNF350
0.44
17
4
19
5
81.0%
79.2%
2.9E−07
0.0009
21
24


CASP9
IGF2BP2
0.44
17
3
20
4
85.0%
83.3%
1.6E−06
0.0037
20
24


NEDD4L
TLR2
0.44
16
4
19
5
80.0%
79.2%
0.0253
2.1E−05
20
24


PTGS2
ST14
0.44
18
4
20
4
81.8%
83.3%
0.0075
0.0339
22
24


CAV1
LGALS8
0.44
17
3
20
4
85.0%
83.3%
0.0002
0.0154
20
24


SERPINE1
ST14
0.44
18
4
20
4
81.8%
83.3%
0.0076
0.0025
22
24


ELA2
TLR2
0.44
17
4
19
5
81.0%
79.2%
0.0247
0.0005
21
24


CASP9
SIAH2
0.44
18
2
20
4
90.0%
83.3%
3.3E−06
0.0039
20
24


HMOX1
IKBKE
0.44
16
5
19
5
76.2%
79.2%
2.7E−07
0.0111
21
24


NRAS
PTGS2
0.44
18
4
20
4
81.8%
83.3%
0.0348
0.0146
22
24


ST14
XK
0.44
18
3
20
4
85.7%
83.3%
6.0E−06
0.0064
21
24


ANLN
C1QA
0.44
18
3
21
3
85.7%
87.5%
0.0015
2.8E−05
21
24


CD97
XK
0.44
16
4
19
5
80.0%
79.2%
6.1E−06
0.0034
20
24


HMGA1
MLH1
0.44
17
3
20
3
85.0%
87.0%
3.1E−07
0.0176
20
23


NUDT4
TLR2
0.44
18
3
19
5
85.7%
79.2%
0.0256
2.9E−06
21
24


C1QA
TLR2
0.44
19
2
21
3
90.5%
87.5%
0.0257
0.0016
21
24


E2F1
ST14
0.44
18
3
20
4
85.7%
83.3%
0.0068
0.0012
21
24


NUDT4
S100A4
0.44
18
3
20
4
85.7%
83.3%
8.0E−06
3.1E−06
21
24


C1QA
LTA
0.44
18
2
22
2
90.0%
91.7%
0.0003
0.0013
20
24


CA4
E2F1
0.44
18
3
21
3
85.7%
87.5%
0.0013
0.0014
21
24


HMGA1
PLEK2
0.44
15
5
20
3
75.0%
87.0%
1.1E−06
0.0203
20
23


CA4
VEGF
0.44
18
3
21
3
85.7%
87.5%
0.0093
0.0015
21
24


ADAM17
TLR2
0.44
16
4
19
5
80.0%
79.2%
0.0311
1.1E−06
20
24


CASP9
ZNF350
0.44
17
3
20
4
85.0%
83.3%
4.7E−07
0.0046
20
24


CAV1
MAPK14
0.44
17
3
19
5
85.0%
79.2%
8.7E−05
0.0187
20
24


CAV1
NUDT4
0.44
16
5
19
5
76.2%
79.2%
3.3E−06
0.0271
21
24


CASP3
HMGA1
0.44
17
3
19
4
85.0%
82.6%
0.0208
2.1E−06
20
23


CD97
NEDD4L
0.44
16
4
19
5
80.0%
79.2%
2.5E−05
0.0040
20
24


DAD1

0.44
18
3
21
3
85.7%
87.5%
1.8E−07

21
24


MTA1
TNFSF5
0.44
17
3
20
4
85.0%
83.3%
9.7E−07
0.0107
20
24


BAX
C1QB
0.44
18
3
21
3
85.7%
87.5%
0.0062
2.7E−05
21
24


CEACAM1

0.44
19
2
20
4
90.5%
83.3%
1.9E−07

21
24


CASP9
CAV1
0.43
17
3
20
4
85.0%
83.3%
0.0214
0.0052
20
24


MYD88
SERPING1
0.43
18
4
20
4
81.8%
83.3%
9.4E−05
0.0460
22
24


MTA1
SERPING1
0.43
16
4
19
5
80.0%
79.2%
6.7E−05
0.0120
20
24


BAX
NEDD4L
0.43
16
4
19
5
80.0%
79.2%
2.9E−05
2.7E−05
20
24


E2F1
MTA1
0.43
16
4
20
4
80.0%
83.3%
0.0121
0.0010
20
24


DIABLO
PTGS2
0.43
18
3
20
4
85.7%
83.3%
0.0405
0.0028
21
24


S100A4
XK
0.43
17
4
20
4
81.0%
83.3%
8.6E−06
1.0E−05
21
24


DLC1
S100A4
0.43
18
3
21
3
85.7%
87.5%
1.0E−05
0.0044
21
24


C1QA
HMOX1
0.43
18
3
21
3
85.7%
87.5%
0.0163
0.0022
21
24


SRF

0.43
19
2
20
4
90.5%
83.3%
2.2E−07

21
24


HOXA10
TLR2
0.43
19
2
21
3
90.5%
87.5%
0.0376
0.0002
21
24


HMOX1
PLEK2
0.43
16
4
18
6
80.0%
75.0%
1.2E−06
0.0122
20
24


CASP3
CAV1
0.43
16
4
19
5
80.0%
79.2%
0.0236
2.0E−06
20
24


MTA1
TLR2
0.43
16
4
19
5
80.0%
79.2%
0.0393
0.0129
20
24


C1QA
IQGAP1
0.43
18
3
21
3
85.7%
87.5%
0.0014
0.0023
21
24


CASP9
E2F1
0.43
18
2
21
3
90.0%
87.5%
0.0011
0.0058
20
24


IGF2BP2
MTA1
0.43
16
4
19
5
80.0%
79.2%
0.0132
2.4E−06
20
24


CD97
VEGF
0.43
17
3
20
4
85.0%
83.3%
0.0103
0.0051
20
24


CASP9
ING2
0.43
17
3
21
3
85.0%
87.5%
4.8E−07
0.0059
20
24


ANLN
DIABLO
0.43
18
3
21
3
85.7%
87.5%
0.0031
4.2E−05
21
24


MNDA
MSH6
0.43
16
4
20
4
80.0%
83.3%
6.4E−07
0.0011
20
24


ST14
TLR2
0.43
17
4
20
4
81.0%
83.3%
0.0402
0.0102
21
24


CA4
PTGS2
0.43
17
4
19
5
81.0%
79.2%
0.0451
0.0019
21
24


CAV1
SIAH2
0.43
16
4
20
4
80.0%
83.3%
5.1E−06
0.0250
20
24


ANLN
HMGA1
0.43
18
4
19
4
81.8%
82.6%
0.0234
1.9E−05
22
23


VIM
ZNF350
0.43
18
3
20
4
85.7%
83.3%
4.6E−07
0.0006
21
24


IQGAP1
SERPINE1
0.43
17
5
19
5
77.3%
79.2%
0.0041
0.0013
22
24


VEGF
ZNF350
0.43
17
4
19
5
81.0%
79.2%
4.6E−07
0.0126
21
24


C1QB
IQGAP1
0.43
17
4
19
5
81.0%
79.2%
0.0015
0.0079
21
24


APC
DIABLO
0.43
19
2
21
3
90.5%
87.5%
0.0032
2.9E−07
21
24


MNDA
SERPINE1
0.43
16
4
19
5
80.0%
79.2%
0.0059
0.0012
20
24


APC
IQGAP1
0.43
17
4
21
3
81.0%
87.5%
0.0016
3.0E−07
21
24


C1QB
PTPRK
0.43
16
5
18
6
76.2%
75.0%
1.4E−06
0.0083
21
24


NUDT4
VIM
0.43
18
3
19
5
85.7%
79.2%
0.0006
4.6E−06
21
24


CCL3
VEGF
0.43
18
3
19
5
85.7%
79.2%
0.0135
0.0009
21
24


CAV1
NBEA
0.43
17
4
19
5
81.0%
79.2%
1.2E−06
0.0397
21
24


BCAM
TLR2
0.43
17
4
20
4
81.0%
83.3%
0.0445
1.0E−06
21
24


DIABLO
TLR2
0.43
17
4
19
5
81.0%
79.2%
0.0448
0.0034
21
24


NBEA
TLR2
0.43
18
3
19
5
85.7%
79.2%
0.0451
1.2E−06
21
24


BCAM
MTA1
0.43
18
2
20
4
90.0%
83.3%
0.0154
1.3E−06
20
24


DIABLO
ELA2
0.43
18
3
21
3
85.7%
87.5%
0.0009
0.0036
21
24


CCL3
NUDT4
0.43
18
3
20
4
85.7%
83.3%
5.0E−06
0.0010
21
24


CAV1
GADD45A
0.43
17
4
19
5
81.0%
79.2%
0.0001
0.0429
21
24


CA4
CCL3
0.43
18
3
20
4
85.7%
83.3%
0.0010
0.0023
21
24


E2F1
IQGAP1
0.42
17
4
19
5
81.0%
79.2%
0.0018
0.0021
21
24


ING2
ST14
0.42
16
5
19
5
76.2%
79.2%
0.0123
4.6E−07
21
24


POV1
VEGF
0.42
18
4
20
4
81.8%
83.3%
0.0025
0.0133
22
24


C1QB
CA4
0.42
18
3
20
4
85.7%
83.3%
0.0023
0.0095
21
24


NRAS
SERPING1
0.42
18
4
21
3
81.8%
87.5%
0.0001
0.0306
22
24


CDH1
LGALS8
0.42
16
4
19
5
80.0%
79.2%
0.0005
0.0001
20
24


MTA1
VEGF
0.42
17
3
20
4
85.0%
83.3%
0.0136
0.0175
20
24


CAV1
GSK3B
0.42
16
5
19
5
76.2%
79.2%
5.9E−05
0.0472
21
24


CAV1
CXCL1
0.42
17
4
20
4
81.0%
83.3%
9.8E−05
0.0483
21
24


GADD45A
HMOX1
0.42
18
3
20
4
85.7%
83.3%
0.0238
0.0001
21
24


CA4
DLC1
0.42
18
3
20
4
85.7%
83.3%
0.0064
0.0025
21
24


CD97
E2F1
0.42
17
3
19
5
85.0%
79.2%
0.0015
0.0069
20
24


HMOX1
ING2
0.42
18
3
21
3
85.7%
87.5%
5.0E−07
0.0239
21
24


CD97
SERPING1
0.42
17
3
20
4
85.0%
83.3%
9.9E−05
0.0069
20
24


MMP9

0.42
18
4
20
4
81.8%
83.3%
2.2E−07

22
24


ELA2
ST14
0.42
18
3
21
3
85.7%
87.5%
0.0145
0.0012
21
24


BCAM
ST14
0.42
17
4
19
5
81.0%
79.2%
0.0149
1.3E−06
21
24


C1QA
E2F1
0.42
17
4
19
5
81.0%
79.2%
0.0025
0.0035
21
24


C1QB
E2F1
0.42
17
4
19
5
81.0%
79.2%
0.0026
0.0115
21
24


ADAM17
CASP3
0.42
16
4
20
4
80.0%
83.3%
3.0E−06
2.0E−06
20
24


HSPA1A

0.42
17
5
19
5
77.3%
79.2%
2.5E−07

22
24


IKBKE
RBM5
0.42
15
5
19
5
75.0%
79.2%
0.0244
7.5E−07
20
24


APC
CASP9
0.42
17
3
20
4
85.0%
83.3%
0.0094
6.0E−07
20
24


SERPING1
VEGF
0.42
18
4
19
5
81.8%
79.2%
0.0032
0.0002
22
24


DIABLO
IL8
0.42
19
2
20
4
90.5%
83.3%
9.7E−07
0.0049
21
24


ITGAL

0.42
16
4
20
4
80.0%
83.3%
5.1E−07

20
24


GSK3B
MSH2
0.42
17
4
20
4
81.0%
83.3%
5.4E−06
7.3E−05
21
24


C1QA
DIABLO
0.42
19
2
21
3
90.5%
87.5%
0.0051
0.0039
21
24


DIABLO
TNFSF5
0.42
17
4
20
4
81.0%
83.3%
1.5E−06
0.0051
21
24


CASP9
VEGF
0.42
18
2
20
4
90.0%
83.3%
0.0174
0.0099
20
24


USP7

0.42
19
2
21
3
90.5%
87.5%
3.7E−07

21
24


HOXA10
SERPING1
0.42
17
4
19
5
81.0%
79.2%
0.0001
0.0003
21
24


CCR7
DIABLO
0.42
17
4
19
5
81.0%
79.2%
0.0052
4.3E−07
21
24


HMOX1
NBEA
0.41
17
4
20
4
81.0%
83.3%
1.8E−06
0.0307
21
24


CNKSR2
MTA1
0.41
16
4
20
4
80.0%
83.3%
0.0232
5.6E−07
20
24


BCAM
CD97
0.41
17
3
20
4
85.0%
83.3%
0.0088
1.9E−06
20
24


CAV1
LTA
0.41
17
3
20
4
85.0%
83.3%
0.0007
0.0431
20
24


AXIN2
HMOX1
0.41
18
3
20
4
85.7%
83.3%
0.0312
4.3E−07
21
24


DLC1
VIM
0.41
16
5
18
6
76.2%
75.0%
0.0010
0.0083
21
24


CA4
CASP3
0.41
16
4
19
5
80.0%
79.2%
3.5E−06
0.0056
20
24


CTNNA1

0.41
18
4
19
5
81.8%
79.2%
2.9E−07

22
24


CAV1
MSH6
0.41
17
3
19
5
85.0%
79.2%
1.1E−06
0.0455
20
24


PLAU

0.41
17
5
19
5
77.3%
79.2%
2.9E−07

22
24


C1QB
DLC1
0.41
17
4
19
5
81.0%
79.2%
0.0087
0.0141
21
24


ACPP

0.41
19
3
21
3
86.4%
87.5%
2.9E−07

22
24


ESR1
RBM5
0.41
16
4
18
6
80.0%
75.0%
0.0286
6.5E−07
20
24


IRF1

0.41
16
5
19
5
76.2%
79.2%
4.2E−07

21
24


HMGA1
VEGF
0.41
19
3
19
4
86.4%
82.6%
0.0039
0.0448
22
23


SPARC

0.41
18
3
19
5
85.7%
79.2%
4.4E−07

21
24


CCR7
NRAS
0.41
18
4
20
4
81.8%
83.3%
0.0498
3.6E−07
22
24


E2F1
MNDA
0.41
16
4
19
5
80.0%
79.2%
0.0022
0.0022
20
24


HMGA1
IL8
0.41
19
3
20
3
86.4%
87.0%
1.9E−06
0.0480
22
23


RBM5
VEGF
0.41
18
2
20
4
90.0%
83.3%
0.0211
0.0315
20
24


LTA
SERPINE1
0.41
16
4
19
5
80.0%
79.2%
0.0113
0.0008
20
24


CA4
MTA1
0.41
15
5
20
4
75.0%
83.3%
0.0275
0.0063
20
24


LGALS8
MSH2
0.41
16
4
19
5
80.0%
79.2%
7.0E−06
0.0007
20
24


APC
HMOX1
0.41
17
4
20
4
81.0%
83.3%
0.0374
5.5E−07
21
24


C1QA
ELA2
0.41
18
3
20
4
85.7%
83.3%
0.0016
0.0049
21
24


IKBKE
LTA
0.41
15
5
19
5
75.0%
79.2%
0.0008
9.6E−07
20
24


BCAM
S100A4
0.41
17
4
21
3
81.0%
87.5%
2.2E−05
1.8E−06
21
24


GADD45A
HMGA1
0.41
18
4
19
4
81.8%
82.6%
0.0500
0.0001
22
23


APC
MTA1
0.41
16
4
20
4
80.0%
83.3%
0.0284
7.7E−07
20
24


CASP3
CD97
0.41
17
3
20
4
85.0%
83.3%
0.0108
4.1E−06
20
24


C1QB
MNDA
0.41
15
5
19
5
75.0%
79.2%
0.0024
0.0125
20
24


CASP9
PLEK2
0.41
18
2
20
4
90.0%
83.3%
2.6E−06
0.0130
20
24


LGALS8
ZNF350
0.41
15
5
18
6
75.0%
75.0%
1.2E−06
0.0008
20
24


ELA2
SERPINE1
0.41
17
4
19
5
81.0%
79.2%
0.0142
0.0018
21
24


RBM5
TNFSF5
0.41
15
5
19
5
75.0%
79.2%
2.5E−06
0.0348
20
24


IL8
RBM5
0.41
18
2
20
4
90.0%
83.3%
0.0349
1.5E−06
20
24


MYC

0.41
19
3
20
4
86.4%
83.3%
3.6E−07

22
24


VEGF
XK
0.41
16
5
20
4
76.2%
83.3%
2.0E−05
0.0289
21
24


ST14
ZNF350
0.41
17
4
19
5
81.0%
79.2%
9.8E−07
0.0237
21
24


IQGAP1
NUDT4
0.41
16
5
18
6
76.2%
75.0%
9.3E−06
0.0034
21
24


C1QA
CD97
0.41
18
2
21
3
90.0%
87.5%
0.0117
0.0039
20
24


C1QB
CXCL1
0.41
18
3
20
4
85.7%
83.3%
0.0002
0.0181
21
24


E2F1
VIM
0.41
17
4
20
4
81.0%
83.3%
0.0013
0.0040
21
24


MTA1
NBEA
0.41
15
5
20
4
75.0%
83.3%
2.7E−06
0.0322
20
24


CDH1
HOXA10
0.41
17
4
21
3
81.0%
87.5%
0.0005
0.0003
21
24


DLC1
E2F1
0.40
16
5
19
5
76.2%
79.2%
0.0042
0.0118
21
24


C1QB
TNFSF5
0.40
18
3
20
4
85.7%
83.3%
2.2E−06
0.0196
21
24


MTA1
PLEK2
0.40
16
4
19
5
80.0%
79.2%
3.0E−06
0.0341
20
24


E2F1
ELA2
0.40
16
5
19
5
76.2%
79.2%
0.0020
0.0043
21
24


E2F1
SERPINE1
0.40
17
4
19
5
81.0%
79.2%
0.0165
0.0044
21
24


ELA2
LTA
0.40
19
1
21
3
95.0%
87.5%
0.0010
0.0125
20
24


ELA2
MNDA
0.40
17
3
20
4
85.0%
83.3%
0.0028
0.0125
20
24


CASP9
TXNRD1
0.40
17
3
21
3
85.0%
87.5%
1.8E−06
0.0155
20
24


BAX
E2F1
0.40
18
3
20
4
85.7%
83.3%
0.0045
8.3E−05
21
24


NBEA
VEGF
0.40
17
4
19
5
81.0%
79.2%
0.0339
2.8E−06
21
24


NEDD4L
S100A4
0.40
17
3
20
4
85.0%
83.3%
3.8E−05
7.9E−05
20
24


IL8
VEGF
0.40
18
4
19
5
81.8%
79.2%
0.0055
1.7E−06
22
24


IQGAP1
MLH1
0.40
17
3
20
4
85.0%
83.3%
8.4E−07
0.0053
20
24


NUDT4
VEGF
0.40
18
3
19
5
85.7%
79.2%
0.0349
1.1E−05
21
24


CDH1
GSK3B
0.40
16
5
18
6
76.2%
75.0%
0.0001
0.0003
21
24


SERPINE1
VIM
0.40
18
3
19
5
85.7%
79.2%
0.0016
0.0187
21
24


C1QA
CA4
0.40
17
4
19
5
81.0%
79.2%
0.0055
0.0069
21
24


CASP9
ESR1
0.40
18
2
20
4
90.0%
83.3%
1.0E−06
0.0175
20
24


CA4
NEDD4L
0.40
17
3
20
4
85.0%
83.3%
8.8E−05
0.0092
20
24


C1QA
CASP9
0.40
17
3
21
3
85.0%
87.5%
0.0176
0.0050
20
24


CCR7
RBM5
0.40
15
5
18
6
75.0%
75.0%
0.0475
1.1E−06
20
24


DIABLO
ESR1
0.40
17
4
18
6
81.0%
75.0%
9.0E−07
0.0093
21
24


MNDA
ZNF350
0.40
15
5
19
5
75.0%
79.2%
1.7E−06
0.0035
20
24


GADD45A
MTA1
0.40
16
4
20
4
80.0%
83.3%
0.0437
0.0002
20
24


CA4
SERPING1
0.40
17
4
19
5
81.0%
79.2%
0.0003
0.0061
21
24


C1QA
CCL3
0.40
18
3
21
3
85.7%
87.5%
0.0026
0.0076
21
24


BAX
IGF2BP2
0.40
17
4
20
4
81.0%
83.3%
7.5E−06
0.0001
21
24


IL8
MTA1
0.40
18
2
20
4
90.0%
83.3%
0.0446
2.2E−06
20
24


CD97
SIAH2
0.40
15
5
19
5
75.0%
79.2%
1.5E−05
0.0165
20
24


C1QB
ELA2
0.40
16
5
19
5
76.2%
79.2%
0.0026
0.0257
21
24


CXCL1
DLC1
0.40
17
4
19
5
81.0%
79.2%
0.0158
0.0002
21
24


CD97
ING2
0.40
16
4
21
3
80.0%
87.5%
1.4E−06
0.0167
20
24


SIAH2
ST14
0.40
17
3
20
4
85.0%
83.3%
0.0282
1.5E−05
20
24


CA4
ELA2
0.39
16
5
19
5
76.2%
79.2%
0.0027
0.0064
21
24


NEDD4L
VEGF
0.39
16
4
19
5
80.0%
79.2%
0.0365
0.0001
20
24


PTPRC

0.39
17
3
20
4
85.0%
83.3%
1.0E−06

20
24


C1QA
XK
0.39
17
4
19
5
81.0%
79.2%
3.0E−05
0.0083
21
24


CA4
DIABLO
0.39
16
5
18
6
76.2%
75.0%
0.0108
0.0066
21
24


IGF2BP2
ST14
0.39
18
3
19
5
85.7%
79.2%
0.0370
8.1E−06
21
24


DIABLO
GADD45A
0.39
18
3
19
5
85.7%
79.2%
0.0003
0.0109
21
24


ELA2
VEGF
0.39
16
5
19
5
76.2%
79.2%
0.0463
0.0028
21
24


CCR7
ST14
0.39
17
5
19
5
77.3%
79.2%
0.0484
6.4E−07
22
24


ELA2
IQGAP1
0.39
17
4
19
5
81.0%
79.2%
0.0053
0.0029
21
24


CD97
IGF2BP2
0.39
15
5
18
6
75.0%
75.0%
8.3E−06
0.0187
20
24


SERPINE1
SERPING1
0.39
17
5
19
5
77.3%
79.2%
0.0004
0.0154
22
24


E2F1
S100A4
0.39
18
3
19
5
85.7%
79.2%
3.8E−05
0.0063
21
24


VIM
XK
0.39
16
5
18
6
76.2%
75.0%
3.2E−05
0.0021
21
24


CCL3
E2F1
0.39
18
3
19
5
85.7%
79.2%
0.0065
0.0031
21
24


APC
VIM
0.39
19
2
20
4
90.5%
83.3%
0.0022
9.9E−07
21
24


CCL3
ELA2
0.39
18
3
21
3
85.7%
87.5%
0.0031
0.0032
21
24


C1QB
VIM
0.39
17
4
19
5
81.0%
79.2%
0.0022
0.0315
21
24


IKBKE
ST14
0.39
17
4
19
5
81.0%
79.2%
0.0437
1.6E−06
21
24


CCR7
LTA
0.39
17
3
19
5
85.0%
79.2%
0.0016
1.4E−06
20
24


GSK3B
SERPINE1
0.39
17
4
19
5
81.0%
79.2%
0.0274
0.0002
21
24


C1QB
LGALS8
0.39
16
4
19
5
80.0%
79.2%
0.0014
0.0238
20
24


CASP9
NBEA
0.39
17
3
20
4
85.0%
83.3%
4.6E−06
0.0248
20
24


TXNRD1
VIM
0.39
17
4
20
4
81.0%
83.3%
0.0023
1.9E−06
21
24


ZNF185

0.39
19
2
20
4
90.5%
83.3%
9.0E−07

21
24


IQGAP1
VEGF
0.39
18
4
19
5
81.8%
79.2%
0.0091
0.0057
22
24


C1QA
MNDA
0.39
17
3
20
4
85.0%
83.3%
0.0047
0.0073
20
24


C1QB
HOXA10
0.39
18
3
20
4
85.7%
83.3%
0.0009
0.0369
21
24


LTA
VEGF
0.39
17
3
20
4
85.0%
83.3%
0.0495
0.0018
20
24


CCL3
XK
0.39
17
4
19
5
81.0%
79.2%
4.0E−05
0.0038
21
24


LTA
NUDT4
0.39
17
3
19
5
85.0%
79.2%
1.9E−05
0.0018
20
24


ING2
VIM
0.39
18
3
21
3
85.7%
87.5%
0.0026
1.6E−06
21
24


DLC1
IQGAP1
0.39
16
5
18
6
76.2%
75.0%
0.0069
0.0230
21
24


ELA2
LGALS8
0.38
17
3
20
4
85.0%
83.3%
0.0016
0.0233
20
24


ELA2
MAPK14
0.38
17
3
20
4
85.0%
83.3%
0.0005
0.0239
20
24


ING2
MNDA
0.38
17
3
20
4
85.0%
83.3%
0.0053
2.1E−06
20
24


AXIN2
CASP9
0.38
17
3
20
4
85.0%
83.3%
0.0307
1.6E−06
20
24


CD97
MLH1
0.38
15
5
19
5
75.0%
79.2%
1.5E−06
0.0261
20
24


C1QB
S100A4
0.38
18
3
20
4
85.7%
83.3%
5.2E−05
0.0418
21
24


E2F1
GSK3B
0.38
16
5
19
5
76.2%
79.2%
0.0002
0.0092
21
24


CCL3
MSH6
0.38
17
3
20
4
85.0%
83.3%
3.0E−06
0.0033
20
24


MLH1
ST14
0.38
16
4
19
5
80.0%
79.2%
0.0480
1.6E−06
20
24


MNDA
NEDD4L
0.38
18
2
19
5
90.0%
79.2%
0.0002
0.0060
20
24


DLC1
LGALS8
0.38
16
4
19
5
80.0%
79.2%
0.0019
0.0229
20
24


IQGAP1
NEDD4L
0.38
16
4
18
6
80.0%
75.0%
0.0002
0.0111
20
24


CA4
NUDT4
0.38
17
4
19
5
81.0%
79.2%
2.2E−05
0.0108
21
24


ANLN
LTA
0.38
15
5
19
5
75.0%
79.2%
0.0022
0.0004
20
24


GSK3B
NBEA
0.38
17
4
19
5
81.0%
79.2%
5.9E−06
0.0002
21
24


IQGAP1
SERPING1
0.38
18
4
20
4
81.8%
83.3%
0.0006
0.0077
22
24


DLC1
PTPRK
0.38
17
4
20
4
81.0%
83.3%
7.0E−06
0.0292
21
24


E2F1
LTA
0.38
19
1
19
5
95.0%
79.2%
0.0024
0.0066
20
24


LGALS8
SERPINE1
0.38
15
5
19
5
75.0%
79.2%
0.0349
0.0021
20
24


ANLN
MNDA
0.38
17
3
20
4
85.0%
83.3%
0.0067
0.0004
20
24


CCL3
MNDA
0.38
17
3
20
4
85.0%
83.3%
0.0068
0.0039
20
24


CXCL1
E2F1
0.38
16
5
19
5
76.2%
79.2%
0.0111
0.0004
21
24


CCL3
GADD45A
0.38
18
3
21
3
85.7%
87.5%
0.0006
0.0052
21
24


C1QA
LGALS8
0.38
18
2
20
4
90.0%
83.3%
0.0022
0.0108
20
24


ANLN
CCL3
0.38
17
4
19
5
81.0%
79.2%
0.0054
0.0003
21
24


APC
CD97
0.38
16
4
19
5
80.0%
79.2%
0.0344
2.2E−06
20
24


CD97
ZNF350
0.37
17
3
20
4
85.0%
83.3%
3.5E−06
0.0350
20
24


C1QA
NEDD4L
0.37
16
4
20
4
80.0%
83.3%
0.0002
0.0113
20
24


CDH1
SERPINE1
0.37
17
5
20
4
77.3%
83.3%
0.0302
0.0008
22
24


E2F1
HOXA10
0.37
18
3
21
3
85.7%
87.5%
0.0014
0.0120
21
24


LTA
XK
0.37
16
4
19
5
80.0%
79.2%
5.6E−05
0.0027
20
24


IQGAP1
SIAH2
0.37
15
5
19
5
75.0%
79.2%
3.1E−05
0.0141
20
24


LGALS8
MLH1
0.37
15
5
18
6
75.0%
75.0%
2.1E−06
0.0024
20
24


CD97
IKBKE
0.37
15
5
19
5
75.0%
79.2%
3.0E−06
0.0373
20
24


CA4
MSH6
0.37
16
4
19
5
80.0%
79.2%
4.0E−06
0.0227
20
24


CA4
LTA
0.37
16
4
19
5
80.0%
79.2%
0.0028
0.0229
20
24


BAX
ELA2
0.37
17
4
20
4
81.0%
83.3%
0.0059
0.0002
21
24


CA4
HOXA10
0.37
16
5
19
5
76.2%
79.2%
0.0015
0.0141
21
24


MNDA
MSH2
0.37
17
3
20
4
85.0%
83.3%
2.3E−05
0.0079
20
24


DIABLO
ING2
0.37
17
4
19
5
81.0%
79.2%
2.5E−06
0.0235
21
24


MYD88

0.37
18
4
19
5
81.8%
79.2%
1.2E−06

22
24


CASP3
S100A4
0.37
17
3
20
4
85.0%
83.3%
0.0001
1.3E−05
20
24


APC
LGALS8
0.37
16
4
18
6
80.0%
75.0%
0.0026
2.6E−06
20
24


CA4
CASP9
0.37
16
4
19
5
80.0%
79.2%
0.0486
0.0248
20
24


DLC1
ESR2
0.37
17
4
19
5
81.0%
79.2%
3.1E−06
0.0419
21
24


CD97
TXNRD1
0.37
17
3
19
5
85.0%
79.2%
5.3E−06
0.0444
20
24


C1QA
PTPRK
0.37
17
4
21
3
81.0%
87.5%
1.0E−05
0.0210
21
24


LTA
MLH1
0.37
16
4
19
5
80.0%
79.2%
2.5E−06
0.0033
20
24


CA4
XK
0.37
18
3
20
4
85.7%
83.3%
7.2E−05
0.0167
21
24


BCAM
VIM
0.37
17
4
19
5
81.0%
79.2%
0.0050
7.1E−06
21
24


ANLN
CA4
0.37
17
4
19
5
81.0%
79.2%
0.0172
0.0003
21
24


CCL3
NEDD4L
0.37
16
4
19
5
80.0%
79.2%
0.0003
0.0055
20
24


ANLN
BAX
0.37
17
5
19
5
77.3%
79.2%
0.0002
0.0001
22
24


CD97
PLEK2
0.37
15
5
18
6
75.0%
75.0%
1.0E−05
0.0488
20
24


IQGAP1
NBEA
0.37
17
4
19
5
81.0%
79.2%
9.3E−06
0.0140
21
24


DLC1
SERPING1
0.37
17
4
20
4
81.0%
83.3%
0.0007
0.0479
21
24


CASP3
ELA2
0.36
18
2
20
4
90.0%
83.3%
0.0469
1.6E−05
20
24


ESR1
LTA
0.36
17
3
20
4
85.0%
83.3%
0.0037
3.0E−06
20
24


S100A4
SIAH2
0.36
15
5
19
5
75.0%
79.2%
4.3E−05
0.0001
20
24


CA4
MME
0.36
16
5
18
6
76.2%
75.0%
2.3E−06
0.0196
21
24


TLR2

0.36
18
3
19
5
85.7%
79.2%
2.1E−06

21
24


NEDD4L
VIM
0.36
16
4
19
5
80.0%
79.2%
0.0049
0.0003
20
24


MLH1
VIM
0.36
15
5
19
5
75.0%
79.2%
0.0050
3.0E−06
20
24


ANLN
HOXA10
0.36
17
4
19
5
81.0%
79.2%
0.0021
0.0004
21
24


C1QA
CXCL1
0.36
17
4
20
4
81.0%
83.3%
0.0007
0.0264
21
24


C1QA
NUDT4
0.36
17
4
19
5
81.0%
79.2%
4.1E−05
0.0269
21
24


ELA2
HOXA10
0.36
17
4
19
5
81.0%
79.2%
0.0022
0.0088
21
24


ELA2
VIM
0.36
17
4
19
5
81.0%
79.2%
0.0062
0.0089
21
24


E2F1
LGALS8
0.36
16
4
19
5
80.0%
79.2%
0.0037
0.0120
20
24


CAV1

0.36
16
5
18
6
76.2%
75.0%
2.3E−06

21
24


AXIN2
LTA
0.36
16
4
19
5
80.0%
79.2%
0.0043
3.4E−06
20
24


MNDA
SERPING1
0.36
15
5
20
4
75.0%
83.3%
0.0008
0.0127
20
24


CA4
SIAH2
0.36
16
4
20
4
80.0%
83.3%
5.0E−05
0.0376
20
24


LTA
NEDD4L
0.36
18
2
20
4
90.0%
83.3%
0.0003
0.0045
20
24


CCL3
HOXA10
0.36
18
3
20
4
85.7%
83.3%
0.0024
0.0100
21
24


CDH1
MAPK14
0.36
17
3
19
5
85.0%
79.2%
0.0012
0.0012
20
24


CXCL1
MSH6
0.36
16
4
20
4
80.0%
83.3%
6.5E−06
0.0009
20
24


MNDA
XK
0.36
16
4
20
4
80.0%
83.3%
9.5E−05
0.0134
20
24


CXCL1
NUDT4
0.36
17
4
19
5
81.0%
79.2%
4.9E−05
0.0009
21
24


MNDA
NUDT4
0.35
16
4
19
5
80.0%
79.2%
5.1E−05
0.0142
20
24


BCAM
CA4
0.35
18
3
21
3
85.7%
87.5%
0.0271
1.1E−05
21
24


CCL3
IQGAP1
0.35
18
3
21
3
85.7%
87.5%
0.0208
0.0114
21
24


C1QA
GSK3B
0.35
18
3
20
4
85.7%
83.3%
0.0006
0.0357
21
24


CCL3
IL8
0.35
18
3
21
3
85.7%
87.5%
7.7E−06
0.0119
21
24


BAX
SERPING1
0.35
17
5
19
5
77.3%
79.2%
0.0015
0.0003
22
24


IGF2BP2
IQGAP1
0.35
16
5
18
6
76.2%
75.0%
0.0223
3.2E−05
21
24


C1QA
VIM
0.35
17
4
21
3
81.0%
87.5%
0.0083
0.0376
21
24


CXCL1
ELA2
0.35
16
5
19
5
76.2%
79.2%
0.0121
0.0010
21
24


CDH1
TNFSF5
0.35
17
4
19
5
81.0%
79.2%
1.2E−05
0.0017
21
24


LTA
SIAH2
0.35
18
2
20
4
90.0%
83.3%
6.3E−05
0.0058
20
24


BCAM
C1QA
0.35
17
4
19
5
81.0%
79.2%
0.0396
1.2E−05
21
24


CXCL1
SERPING1
0.35
16
5
18
6
76.2%
75.0%
0.0012
0.0011
21
24


NRAS

0.35
17
5
19
5
77.3%
79.2%
2.4E−06

22
24


SIAH2
VIM
0.35
15
5
19
5
75.0%
79.2%
0.0076
6.6E−05
20
24


GADD45A
LTA
0.35
17
3
20
4
85.0%
83.3%
0.0061
0.0011
20
24


IQGAP1
PTEN
0.35
18
4
20
4
81.8%
83.3%
5.8E−06
0.0234
22
24


HOXA10
MNDA
0.35
17
3
20
4
85.0%
83.3%
0.0180
0.0035
20
24


ING2
IQGAP1
0.35
17
4
18
6
81.0%
75.0%
0.0257
5.5E−06
21
24


ANLN
VIM
0.35
16
5
18
6
76.2%
75.0%
0.0095
0.0006
21
24


CA4
IGF2BP2
0.35
17
4
20
4
81.0%
83.3%
3.7E−05
0.0338
21
24


IGF2BP2
S100A4
0.35
18
3
19
5
85.7%
79.2%
0.0002
3.7E−05
21
24


HMGA1

0.35
21
1
19
4
95.5%
82.6%
3.3E−06

22
23


CCL3
SIAH2
0.35
16
4
19
5
80.0%
79.2%
7.1E−05
0.0103
20
24


HOXA10
IQGAP1
0.35
16
5
18
6
76.2%
75.0%
0.0265
0.0034
21
24


CXCL1
XK
0.35
18
3
20
4
85.7%
83.3%
0.0001
0.0012
21
24


S100A4
SERPING1
0.34
17
5
19
5
77.3%
79.2%
0.0020
0.0001
22
24


IQGAP1
PLEK2
0.34
15
5
18
6
75.0%
75.0%
2.0E−05
0.0391
20
24


C1QA
MSH2
0.34
18
3
19
5
85.7%
79.2%
5.7E−05
0.0499
21
24


LTA
SERPING1
0.34
18
2
21
3
90.0%
87.5%
0.0012
0.0074
20
24


E2F1
PTPRK
0.34
17
4
18
6
81.0%
75.0%
2.2E−05
0.0358
21
24


CA4
MSH2
0.34
17
4
20
4
81.0%
83.3%
5.8E−05
0.0398
21
24


HOXA10
XK
0.34
16
5
19
5
76.2%
79.2%
0.0002
0.0039
21
24


E2F1
MAPK14
0.34
16
4
19
5
80.0%
79.2%
0.0019
0.0216
20
24


CASP3
MAPK14
0.34
15
5
19
5
75.0%
79.2%
0.0019
3.3E−05
20
24


MME
VIM
0.34
18
3
19
5
85.7%
79.2%
0.0120
4.5E−06
21
24


BCAM
MNDA
0.34
15
5
19
5
75.0%
79.2%
0.0235
2.0E−05
20
24


CCL3
ZNF350
0.34
17
4
19
5
81.0%
79.2%
8.4E−06
0.0186
21
24


HMOX1

0.34
17
4
19
5
81.0%
79.2%
4.3E−06

21
24


IGF2BP2
VIM
0.34
16
5
18
6
76.2%
75.0%
0.0127
4.8E−05
21
24


CXCL1
NEDD4L
0.34
16
4
19
5
80.0%
79.2%
0.0006
0.0016
20
24


CA4
ZNF350
0.34
16
5
18
6
76.2%
75.0%
8.9E−06
0.0477
21
24


MNDA
SIAH2
0.34
16
4
18
6
80.0%
75.0%
9.7E−05
0.0259
20
24


LGALS8
NUDT4
0.34
15
5
18
6
75.0%
75.0%
9.1E−05
0.0079
20
24


BCAM
IQGAP1
0.34
16
5
18
6
76.2%
75.0%
0.0381
1.9E−05
21
24


LTA
NBEA
0.34
15
5
20
4
75.0%
83.3%
2.4E−05
0.0093
20
24


C1QA
CASP3
0.34
16
4
20
4
80.0%
83.3%
4.0E−05
0.0422
20
24


NBEA
VIM
0.34
17
4
19
5
81.0%
79.2%
0.0146
2.4E−05
21
24


CXCL1
MSH2
0.33
17
4
19
5
81.0%
79.2%
7.7E−05
0.0018
21
24


ANLN
IQGAP1
0.33
17
5
18
6
77.3%
75.0%
0.0398
0.0004
22
24


MSH2
PTPRK
0.33
19
3
20
4
86.4%
83.3%
2.4E−05
0.0001
22
24


RBM5

0.33
15
5
18
6
75.0%
75.0%
6.9E−06

20
24


ING2
LGALS8
0.33
15
5
18
6
75.0%
75.0%
0.0090
1.0E−05
20
24


MME
MNDA
0.33
16
4
19
5
80.0%
79.2%
0.0303
8.1E−06
20
24


ANLN
CXCL1
0.33
17
4
20
4
81.0%
83.3%
0.0019
0.0011
21
24


MSH2
TNFSF5
0.33
16
5
18
6
76.2%
75.0%
2.2E−05
8.3E−05
21
24


ST14

0.33
18
4
19
5
81.8%
79.2%
4.3E−06

22
24


MNDA
TXNRD1
0.33
15
5
19
5
75.0%
79.2%
1.8E−05
0.0339
20
24


MTA1

0.33
17
3
20
4
85.0%
83.3%
7.8E−06

20
24


POV1

0.33
19
3
20
4
86.4%
83.3%
4.8E−06

22
24


BAX
PLEK2
0.33
17
3
19
5
85.0%
79.2%
3.3E−05
0.0008
20
24


ELA2
SERPING1
0.33
17
4
19
5
81.0%
79.2%
0.0025
0.0277
21
24


ELA2
GSK3B
0.33
17
4
19
5
81.0%
79.2%
0.0015
0.0302
21
24


CCL3
NBEA
0.32
17
4
19
5
81.0%
79.2%
3.5E−05
0.0322
21
24


IGF2BP2
MNDA
0.32
15
5
19
5
75.0%
79.2%
0.0424
7.4E−05
20
24


HOXA10
MSH2
0.32
17
4
19
5
81.0%
79.2%
0.0001
0.0077
21
24


APC
MNDA
0.32
16
4
19
5
80.0%
79.2%
0.0428
1.1E−05
20
24


CDH1
IKBKE
0.32
16
5
19
5
76.2%
79.2%
1.4E−05
0.0046
21
24


LGALS8
SIAH2
0.32
16
4
19
5
80.0%
79.2%
0.0002
0.0133
20
24


LGALS8
SERPING1
0.32
15
5
18
6
75.0%
75.0%
0.0025
0.0134
20
24


LGALS8
XK
0.32
16
4
18
6
80.0%
75.0%
0.0003
0.0136
20
24


CCL3
MAPK14
0.32
17
3
20
4
85.0%
83.3%
0.0040
0.0254
20
24


GSK3B
MLH1
0.32
15
5
19
5
75.0%
79.2%
1.1E−05
0.0018
20
24


LGALS8
NEDD4L
0.32
15
5
19
5
75.0%
79.2%
0.0011
0.0138
20
24


ADAM17
E2F1
0.32
16
4
18
6
80.0%
75.0%
0.0475
4.5E−05
20
24


MNDA
NBEA
0.32
16
4
20
4
80.0%
83.3%
4.1E−05
0.0483
20
24


GSK3B
MME
0.32
16
5
18
6
76.2%
75.0%
9.2E−06
0.0018
21
24


CDH1
ELA2
0.32
16
5
19
5
76.2%
79.2%
0.0381
0.0052
21
24


AXIN2
CDH1
0.32
16
5
19
5
76.2%
79.2%
0.0052
9.4E−06
21
24


MAPK14
MSH6
0.32
16
4
20
4
80.0%
83.3%
2.2E−05
0.0044
20
24


LGALS8
NBEA
0.32
15
5
18
6
75.0%
75.0%
4.4E−05
0.0152
20
24


CCL3
CXCL1
0.32
18
3
20
4
85.7%
83.3%
0.0034
0.0448
21
24


BCAM
CCL3
0.31
16
5
18
6
76.2%
75.0%
0.0462
3.8E−05
21
24


CCL3
SERPING1
0.31
16
5
18
6
76.2%
75.0%
0.0040
0.0468
21
24


CASP3
CCL3
0.31
17
3
20
4
85.0%
83.3%
0.0329
8.4E−05
20
24


PLEK2
VIM
0.31
16
4
19
5
80.0%
79.2%
0.0259
5.2E−05
20
24


CCL3
VIM
0.31
18
3
21
3
85.7%
87.5%
0.0318
0.0482
21
24


LGALS8
MME
0.31
16
4
19
5
80.0%
79.2%
1.6E−05
0.0183
20
24


CNKSR2
LTA
0.31
16
4
19
5
80.0%
79.2%
0.0218
1.4E−05
20
24


HOXA10
NEDD4L
0.31
15
5
19
5
75.0%
79.2%
0.0015
0.0118
20
24


CXCL1
SIAH2
0.31
15
5
18
6
75.0%
75.0%
0.0002
0.0041
20
24


HOXA10
LGALS8
0.31
19
1
19
5
95.0%
79.2%
0.0199
0.0124
20
24


PLEK2
S100A4
0.31
16
4
19
5
80.0%
79.2%
0.0007
5.9E−05
20
24


CXCL1
IGF2BP2
0.31
17
4
19
5
81.0%
79.2%
0.0001
0.0045
21
24


CCL3
MLH1
0.31
16
4
19
5
80.0%
79.2%
1.7E−05
0.0412
20
24


IL8
LTA
0.31
19
1
20
4
95.0%
83.3%
0.0267
3.8E−05
20
24


CASP9

0.31
17
3
20
4
85.0%
83.3%
1.7E−05

20
24


IGF2BP2
LTA
0.31
16
4
20
4
80.0%
83.3%
0.0277
0.0001
20
24


BAX
CASP3
0.30
17
3
19
5
85.0%
79.2%
0.0001
0.0017
20
24


ANLN
LGALS8
0.30
15
5
18
6
75.0%
75.0%
0.0245
0.0049
20
24


HOXA10
LTA
0.30
19
1
20
4
95.0%
83.3%
0.0287
0.0152
20
24


HOXA10
VIM
0.30
18
3
20
4
85.7%
83.3%
0.0456
0.0153
21
24


HOXA10
MAPK14
0.30
16
4
19
5
80.0%
79.2%
0.0073
0.0157
20
24


DLC1

0.30
16
5
18
6
76.2%
75.0%
1.5E−05

21
24


IL8
VIM
0.30
18
3
21
3
85.7%
87.5%
0.0498
4.1E−05
21
24


SERPINE1

0.30
17
5
19
5
77.3%
79.2%
1.2E−05

22
24


GSK3B
NEDD4L
0.30
15
5
19
5
75.0%
79.2%
0.0022
0.0037
20
24


GADD45A
HOXA10
0.30
16
5
19
5
76.2%
79.2%
0.0201
0.0087
21
24


CDH1
PTPRK
0.30
19
3
19
5
86.4%
79.2%
8.7E−05
0.0126
22
24


BCAM
LGALS8
0.29
16
4
19
5
80.0%
79.2%
0.0369
9.1E−05
20
24


HOXA10
MSH6
0.29
16
4
20
4
80.0%
83.3%
5.0E−05
0.0227
20
24


CCR7
MSH2
0.29
17
5
18
6
77.3%
75.0%
0.0004
1.8E−05
22
24


MAPK14
NEDD4L
0.29
15
5
19
5
75.0%
79.2%
0.0029
0.0108
20
24


DIABLO

0.29
18
3
19
5
85.7%
79.2%
2.2E−05

21
24


CASP3
HOXA10
0.29
15
5
19
5
75.0%
79.2%
0.0278
0.0002
20
24


ANLN
MAPK14
0.29
17
3
20
4
85.0%
83.3%
0.0127
0.0089
20
24


HOXA10
NUDT4
0.29
16
5
18
6
76.2%
75.0%
0.0005
0.0290
21
24


BCAM
HOXA10
0.29
17
4
19
5
81.0%
79.2%
0.0294
0.0001
21
24


BAX
IKBKE
0.28
16
5
19
5
76.2%
79.2%
5.0E−05
0.0044
21
24


C1QA

0.28
17
4
18
6
81.0%
75.0%
2.8E−05

21
24


CXCL1
HOXA10
0.28
17
4
19
5
81.0%
79.2%
0.0343
0.0113
21
24


MAPK14
MSH2
0.28
16
4
20
4
80.0%
83.3%
0.0004
0.0158
20
24


BCAM
CXCL1
0.28
16
5
19
5
76.2%
79.2%
0.0116
0.0001
21
24


MAPK14
NUDT4
0.28
16
4
19
5
80.0%
79.2%
0.0006
0.0165
20
24


CDH1
CNKSR2
0.28
17
4
19
5
81.0%
79.2%
3.5E−05
0.0222
21
24


HOXA10
IL8
0.28
16
5
19
5
76.2%
79.2%
9.5E−05
0.0416
21
24


GSK3B
SIAH2
0.28
15
5
18
6
75.0%
75.0%
0.0007
0.0081
20
24


CA4

0.28
16
5
18
6
76.2%
75.0%
3.5E−05

21
24


CDH1
LARGE
0.28
19
2
18
6
90.5%
75.0%
0.0002
0.0242
21
24


MAPK14
SERPING1
0.27
15
5
19
5
75.0%
79.2%
0.0124
0.0193
20
24


MAPK14
ZNF350
0.27
15
5
18
6
75.0%
75.0%
8.6E−05
0.0197
20
24


HOXA10
IGF2BP2
0.27
16
5
19
5
76.2%
79.2%
0.0004
0.0459
21
24


HOXA10
SIAH2
0.27
16
4
19
5
80.0%
79.2%
0.0008
0.0466
20
24


GSK3B
HOXA10
0.27
17
4
20
4
81.0%
83.3%
0.0478
0.0093
21
24


S100A4
ZNF350
0.27
16
5
19
5
76.2%
79.2%
7.7E−05
0.0020
21
24


ANLN
GSK3B
0.27
16
5
18
6
76.2%
75.0%
0.0094
0.0085
21
24


ADAM17
MSH2
0.27
15
5
19
5
75.0%
79.2%
0.0006
0.0002
20
24


CDH1
TXNRD1
0.27
16
5
18
6
76.2%
75.0%
9.0E−05
0.0283
21
24


CNKSR2
MSH2
0.27
16
5
18
6
76.2%
75.0%
0.0007
4.9E−05
21
24


MAPK14
XK
0.27
16
4
19
5
80.0%
79.2%
0.0018
0.0253
20
24


CXCL1
MME
0.27
16
5
18
6
76.2%
75.0%
5.3E−05
0.0192
21
24


IKBKE
MSH2
0.26
18
3
20
4
85.7%
83.3%
0.0008
9.2E−05
21
24


AXIN2
BAX
0.26
16
5
19
5
76.2%
79.2%
0.0094
6.2E−05
21
24


CDH1
ING2
0.26
16
5
18
6
76.2%
75.0%
9.4E−05
0.0401
21
24


MAPK14
MME
0.26
15
5
18
6
75.0%
75.0%
8.6E−05
0.0333
20
24


BAX
NBEA
0.26
17
4
20
4
81.0%
83.3%
0.0003
0.0106
21
24


GSK3B
PTEN
0.26
18
3
19
5
85.7%
79.2%
0.0002
0.0159
21
24


MAPK14
SIAH2
0.26
15
5
18
6
75.0%
75.0%
0.0014
0.0377
20
24


CXCL1
NBEA
0.26
16
5
18
6
76.2%
75.0%
0.0003
0.0282
21
24


BAX
ZNF350
0.25
17
4
19
5
81.0%
79.2%
0.0001
0.0120
21
24


NEDD4L
TNFSF5
0.25
15
5
18
6
75.0%
75.0%
0.0003
0.0102
20
24


AXIN2
MSH2
0.25
16
5
18
6
76.2%
75.0%
0.0012
8.2E−05
21
24


CCL3

0.25
17
4
20
4
81.0%
83.3%
7.8E−05

21
24


ELA2

0.25
17
4
19
5
81.0%
79.2%
8.1E−05

21
24


CXCL1
GADD45A
0.25
17
4
19
5
81.0%
79.2%
0.0461
0.0353
21
24


LARGE
MSH2
0.25
17
4
19
5
81.0%
79.2%
0.0014
0.0004
21
24


GSK3B
IL8
0.25
17
4
18
6
81.0%
75.0%
0.0002
0.0223
21
24


GSK3B
PLEK2
0.24
15
5
18
6
75.0%
75.0%
0.0005
0.0243
20
24


VIM

0.24
16
5
18
6
76.2%
75.0%
0.0001

21
24


BAX
MLH1
0.24
15
5
18
6
75.0%
75.0%
0.0002
0.0160
20
24


BAX
IL8
0.24
19
3
20
4
86.4%
83.3%
0.0004
0.0184
22
24


BCAM
GSK3B
0.23
17
4
18
6
81.0%
75.0%
0.0372
0.0006
21
24


NEDD4L
PTPRK
0.23
16
4
18
6
80.0%
75.0%
0.0010
0.0209
20
24


CASP3
TXNRD1
0.23
16
4
18
6
80.0%
75.0%
0.0004
0.0012
20
24


SIAH2
TNFSF5
0.23
16
4
18
6
80.0%
75.0%
0.0007
0.0030
20
24


CCR7
NEDD4L
0.23
15
5
18
6
75.0%
75.0%
0.0233
0.0002
20
24


AXIN2
XK
0.23
16
5
18
6
76.2%
75.0%
0.0083
0.0002
21
24


LTA

0.23
17
3
19
5
85.0%
79.2%
0.0002

20
24


APC
CASP3
0.22
15
5
19
5
75.0%
79.2%
0.0021
0.0004
20
24


PTPRK
SIAH2
0.21
15
5
18
6
75.0%
75.0%
0.0058
0.0020
20
24


APC
MSH6
0.21
15
5
18
6
75.0%
75.0%
0.0007
0.0004
20
24


HOXA10

0.21
17
4
19
5
81.0%
79.2%
0.0003

21
24


NBEA
PTPRK
0.21
16
5
18
6
76.2%
75.0%
0.0019
0.0016
21
24


NBEA
TNFSF5
0.21
16
5
18
6
76.2%
75.0%
0.0013
0.0016
21
24


MLH1
MSH2
0.21
15
5
18
6
75.0%
75.0%
0.0049
0.0004
20
24


IL8
S100A4
0.20
18
4
20
4
81.8%
83.3%
0.0187
0.0013
22
24


ESR1
MSH2
0.20
16
5
18
6
76.2%
75.0%
0.0078
0.0006
21
24


APC
ZNF350
0.19
17
4
18
6
81.0%
75.0%
0.0013
0.0008
21
24


MSH6
PTPRK
0.19
16
4
19
5
80.0%
79.2%
0.0048
0.0016
20
24


MAPK14

0.18
15
5
18
6
75.0%
75.0%
0.0008

20
24


CXCL1

0.18
16
5
18
6
76.2%
75.0%
0.0009

21
24


IKBKE
SIAH2
0.16
16
4
18
6
80.0%
75.0%
0.0366
0.0030
20
24


IKBKE
MSH6
0.15
15
5
18
6
75.0%
75.0%
0.0046
0.0035
20
24


CNKSR2
NBEA
0.15
16
5
18
6
76.2%
75.0%
0.0117
0.0023
21
24


APC
NBEA
0.14
16
5
18
6
76.2%
75.0%
0.0154
0.0035
21
24


LARGE
NBEA
0.14
17
4
18
6
81.0%
75.0%
0.0157
0.0157
21
24


CASP3
LARGE
0.14
16
4
18
6
80.0%
75.0%
0.0175
0.0255
20
24


IL8
LARGE
0.13
16
5
18
6
76.2%
75.0%
0.0271
0.0143
21
24


IL8
TNFSF5
0.13
17
4
18
6
81.0%
75.0%
0.0221
0.0146
21
24





















TABLE 5b








Cervical
Normals
Sum



Group Size
52.2%
47.8%
100%



N =
24
22
46



Gene
Mean
Mean
p-val





















EGR1
18.5
20.1
1.4E−15



FOS
14.5
15.9
1.2E−10



TGFB1
11.9
12.9
3.1E−10



PLXDC2
15.6
16.9
5.1E−10



TNF
17.4
18.8
5.4E−10



G6PD
14.8
16.0
9.9E−10



TIMP1
13.7
14.9
1.2E−09



CTSD
12.2
13.4
3.4E−09



RP51077B9.4
15.7
16.5
5.2E−09



GNB1
12.5
13.6
6.1E−09



TNFRSF1A
14.4
15.5
7.6E−09



CCL5
11.2
12.5
8.4E−09



IFI16
13.6
14.6
8.5E−09



MEIS1
21.1
22.2
1.0E−08



S100A11
10.0
11.4
1.2E−08



MTF1
16.7
18.1
3.0E−08



XRCC1
17.6
18.6
5.0E−08



CD59
16.8
17.8
5.2E−08



ETS2
16.1
17.6
5.3E−08



SP1
14.9
16.0
5.5E−08



TEGT
11.7
12.6
6.4E−08



NCOA1
15.3
16.4
6.8E−08



UBE2C
20.1
21.1
9.0E−08



SERPINA1
11.7
12.8
1.8E−07



DAD1
14.8
15.4
1.8E−07



CEACAM1
17.2
18.5
1.9E−07



SRF
15.6
16.5
2.2E−07



MMP9
13.0
15.0
2.2E−07



HSPA1A
13.6
14.8
2.5E−07



CTNNA1
16.2
17.1
2.9E−07



PLAU
22.8
24.4
2.9E−07



ACPP
17.0
18.2
2.9E−07



MYC
17.2
18.3
3.6E−07



USP7
14.6
15.4
3.7E−07



IRF1
12.2
12.9
4.2E−07



SPARC
13.7
15.1
4.4E−07



ITGAL
13.8
14.8
5.1E−07



ZNF185
16.3
17.3
9.0E−07



PTPRC
11.6
12.5
1.0E−06



PTGS2
16.6
17.5
1.1E−06



MYD88
13.7
14.7
1.2E−06



TLR2
15.4
16.2
2.1E−06



CAV1
22.1
23.7
2.3E−06



NRAS
16.4
17.1
2.4E−06



HMGA1
15.0
15.9
3.3E−06



HMOX1
15.4
16.3
4.3E−06



ST14
17.0
17.9
4.3E−06



POV1
17.6
18.3
4.8E−06



RBM5
15.3
16.1
6.9E−06



MTA1
18.7
19.7
7.8E−06



C1QB
19.5
21.0
9.3E−06



SERPINE1
19.9
21.2
1.2E−05



DLC1
22.3
23.4
1.5E−05



CASP9
17.5
18.2
1.7E−05



CD97
12.1
13.0
1.9E−05



DIABLO
17.9
18.6
2.2E−05



VEGF
21.9
23.0
2.4E−05



C1QA
19.4
20.6
2.8E−05



CA4
18.0
19.0
3.5E−05



IQGAP1
13.2
14.1
3.7E−05



E2F1
19.3
20.2
3.9E−05



CCL3
19.5
20.4
7.8E−05



ELA2
19.6
21.4
8.1E−05



MNDA
12.2
12.9
8.2E−05



VIM
10.8
11.6
0.0001



LTA
18.8
19.4
0.0002



LGALS8
16.9
17.5
0.0003



HOXA10
21.6
22.9
0.0003



CDH1
19.4
20.4
0.0004



SERPING1
17.4
18.4
0.0004



MAPK14
14.6
15.4
0.0008



CXCL1
19.4
20.0
0.0009



GADD45A
18.5
19.2
0.0012



GSK3B
15.5
16.0
0.0014



BAX
15.3
15.8
0.0021



NEDD4L
17.6
18.4
0.0030



ANLN
21.8
22.5
0.0033



S100A4
12.9
13.4
0.0063



XK
16.7
17.7
0.0078



MSH2
18.5
17.9
0.0129



NUDT4
15.4
16.0
0.0180



SIAH2
12.7
13.5
0.0218



IGF2BP2
15.0
15.7
0.0323



CASP3
20.7
20.3
0.0593



PTPRK
21.4
22.1
0.0655



NBEA
22.2
21.6
0.0815



LARGE
21.8
22.3
0.0815



ADAM17
18.0
18.4
0.0950



TNFSF5
17.6
17.9
0.1035



PLEK2
17.5
18.0
0.1039



BCAM
19.6
20.2
0.1048



IL8
22.1
21.6
0.1054



IGFBP3
21.6
22.1
0.1429



PTEN
13.8
14.0
0.2043



TXNRD1
16.8
17.0
0.2212



MSH6
19.7
19.5
0.2543



ZNF350
19.6
19.4
0.2558



ESR2
23.7
24.1
0.2809



IKBKE
16.7
16.9
0.2842



ING2
19.5
19.6
0.3245



ESR1
21.7
22.0
0.4260



APC
17.9
18.0
0.5440



CCR7
14.7
14.9
0.6246



AXIN2
19.2
19.3
0.6404



MME
15.2
15.3
0.6622



CNKSR2
21.3
21.4
0.7375



MLH1
17.9
17.9
0.7747























TABLE 5c











Predicted








probability


Patient ID
Group
EGR1
FOS
logit
odds
of cervical cancer







CVC-001-XS:200072799
CervicalCancer
18.89
14.96


1.0000


CVC-002-XS:200072800
CervicalCancer
18.30
14.31


1.0000


CVC-003-XS:200072801
CervicalCancer
18.24
14.54


1.0000


CVC-004-XS:200072802
CervicalCancer
18.73
14.02


1.0000


CVC-005-XS:200072803
CervicalCancer
18.21
14.63


1.0000


CVC-006-XS:200072804
CervicalCancer
18.36
14.23


1.0000


CVC-007-XS:200072805
CervicalCancer
18.73
14.49


1.0000


CVC-008-XS:200072806
CervicalCancer
18.37
14.89


1.0000


CVC-009-XS:200072807
CervicalCancer
18.98
15.73


1.0000


CVC-010-XS:200072808
CervicalCancer
18.33
14.18


1.0000


CVC-011-XS:200072809
CervicalCancer
18.43
13.88


1.0000


CVC-012-XS:200072810
CervicalCancer
19.10
14.61


1.0000


CVC-013-XS:200072811
CervicalCancer
18.59
13.98


1.0000


CVC-014-XS:200072812
CervicalCancer
18.72
15.36


1.0000


CVC-015-XS:200072813
CervicalCancer
18.57
14.56


1.0000


CVC-017-XS:200072815
CervicalCancer
18.56
14.16


1.0000


CVC-018-XS:200072816
CervicalCancer
18.22
14.95


1.0000


CVC-019-XS:200072817
CervicalCancer
18.22
14.50


1.0000


CVC-020-XS:200072818
CervicalCancer
18.65
13.93


1.0000


CVC-031-XS:200072819
CervicalCancer
18.58
13.72


1.0000


CVC-032-XS:200072820
CervicalCancer
17.79
13.96


1.0000


CVC-033-XS:200072821
CervicalCancer
17.84
14.44


1.0000


CVC-034-XS:200072822
CervicalCancer
18.56
14.14


1.0000


CVC-016-XS:200072814
CervicalCancer
19.20
15.57


1.0000


HN-001-XS:200072922
Normal
19.31
15.42


0.0000


HN-050-XS:200073113
Normal
19.41
15.68


0.0000


HN-041-XS:200073106
Normal
19.60
16.34


0.0000


HN-002-XS:200072923
Normal
19.68
16.10


0.0000


HN-150-XS:200073139
Normal
19.74
16.28


0.0000


HN-042-XS:200073107
Normal
19.82
15.29


0.0000


HN-111-XS:200073124
Normal
19.95
15.95


0.0000


HN-146-XS:200073138
Normal
20.02
15.78


0.0000


HN-022-XS:200072948
Normal
20.04
16.23


0.0000


HN-034-XS:200073099
Normal
20.10
15.08


0.0000


HN-110-XS:200073123
Normal
20.16
15.62


0.0000


HN-125-XS:200073136
Normal
20.17
15.70


0.0000


HN-104-XS:200073117
Normal
20.17
17.16


0.0000


HN-120-XS:200073133
Normal
20.27
16.33


0.0000


HN-109-XS:200073122
Normal
20.33
15.87


0.0000


HN-133-XS:200073137
Normal
20.36
15.36


0.0000


HN-103-XS:200073116
Normal
20.53
15.37


0.0000


HN-033-XS:200073098
Normal
20.53
16.24


0.0000


HN-032-XS:200073097
Normal
20.60
15.25


0.0000


HN-028-XS:200073094
Normal
20.61
16.23


0.0000


HN-118-XS:200073131
Normal
20.65
15.85


0.0000








Claims
  • 1. A method for evaluating the presence of cervical cancer in a subject based on a sample from the subject, the sample providing a source of RNAs, comprising: a) determining a quantitative measure of the amount of at least one constituent of any constituent of any one table selected from the group consisting of Tables 1, 2, 3, 4, and 5 as a distinct RNA constituent in the subject sample, wherein such measure is obtained under measurement conditions that are substantially repeatable and the constituent is selected so that measurement of the constituent distinguishes between a normal subject and a cervical cancer-diagnosed subject in a reference population with at least 75% accuracy; andb) comparing the quantitative measure of the constituent in the subject sample to a reference value.
  • 2. A method for assessing or monitoring the response to therapy in a subject having cervical cancer based on a sample from the subject, the sample providing a source of RNAs, comprising: a) determining a quantitative measure of the amount of at least one constituent of any constituent of Tables 1, 2, 3, 4, and 5 as a distinct RNA constituent, wherein such measure is obtained under measurement conditions that are substantially repeatable to produce subject data set; andb) comparing the subject data set to a baseline data set.
  • 3. A method for monitoring the progression of cervical cancer in a subject, based on a sample from the subject, the sample providing a source of RNAs, comprising: a) determining a quantitative measure of the amount of at least one constituent of any constituent of Tables 1, 2, 3, 4, and 5 as a distinct RNA constituent in a sample obtained at a first period of time, wherein such measure is obtained under measurement conditions that are substantially repeatable to produce a first subject data set;b) determining a quantitative measure of the amount of at least one constituent of any constituent of Tables 1, 2, 3, 4, and 5 as a distinct RNA constituent in a sample obtained at a second period of time, wherein such measure is obtained under measurement conditions that are substantially repeatable to produce a second subject data set; andc) comparing the first subject data set and the second subject data set.
  • 4. A method for determining a cervical cancer profile based on a sample from a subject known to have cervical cancer, the sample providing a source of RNAs, the method comprising: a) using amplification for measuring the amount of RNA in a panel of constituents including at least 1 constituent from Tables 1, 2, 3, 4, and 5 andb) arriving at a measure of each constituent,wherein the profile data set comprises the measure of each constituent of the panel and wherein amplification is performed under measurement conditions that are substantially repeatable.
  • 5. The method of claim 1, wherein said constituent is selected from a) Table 1 and is GNB1, MTF1, TIMP1, MYC, TNF, NRAS, MYD88, UBE2C, PTGS2, ITGAL, TEGT, SPACRC, ICAM3, SOCS3, FOXM1, BRAF, VEGF, CASP9, VIM, MCM4, or TP53;b) Table 2 and is EGR1, TNF, IFI16, TGFB1, ICAM1, SERPINA1, TIMP1, IRF1, CCL5, TNFRSF1A, PLAUR, HSPA1A, MMP9, PTGS2, PTPRC, IL1RN, MYC, HMOX1, VEGF, ALOX5, TLR2, SS13, CXCL1, CCL3, or IL18BP;c) Table 3 and is EGR1, SOCS1, FOS, TGFB1, TNF, TIMP1, IFITM1, NME4, TNFRSF1A, ICAM1, RHOA, ABL2, MMP9, SERPINE1, PLAU, BRAF, SEMA4D, MYC, PLAUR, RHOC, NRAS, CDKN1A, CDK2, NOTCH2, IL1B, TP53, AKT1, TNFRSF10B, ABL1, BCL2, or CDC25A;d) Table 4 and is EGR1, FOS, TGFB1, EGR2, EP300, ALOX5, ICAM1, CREBBP, MAPK1, SERPINE1, PLAU, CEBPB, EGR3, SMAD3, TP53, or MAP2K1; ande) Table 5 and is EGR1, FOS, TGFB1, PLXDC2, TNF, G6PD, TIMP1, RP51077B9.4, CTSD, CCL5, IFI16, GNB1, S100A11, TNFRSF1A, MEIS1, MTF1, XRCC1, ETS2, SP1, CD59, UBE2C, TEGT, NCOA1, SERPINA1, DAD1, CEACAM1, SRF, MMP9, HSPAIA, ITGAL, USP7, CTNNA1, PLAU, ACPP, IRF1, SPARC, MYC, PTPRC, ZNF185, MYD88, TLR2, CAV1, NRAS, HMGA1, HMOX1, RBM5, ST14, MTA1, POV1, CASP9, DLC1, SERPINE1, DIABLO, C1QA, CA4, CCL3, ELA2, VIM, LTA, HOXA10, MAPK14, or CXCL1.
  • 6. The method of claim 1, comprising measuring at least two constituents from a) Table 1, wherein the first constituent is selected from the group consisting of ALOX12, APAF1, BIK, BRAF, BRCA1, BRCA2, BRCA2, CASP9, CAV1, CCNB1, CD97, CDH1, CDKN1A, CTGF, CTNNB1, CTSB, E2F1, ERBB2, ESR1, FHIT, FOXM1, FRAP1, GADD45A, GNB1, HIF1A, HRAS, ICAM3, IGF2, IGFBP3, IGSF4, IL10, IL8, ILF2, ITGA6, ITGAL, KIT, MCM2, MCM4, MEST, MTF1, MYBL2, MYC, MYD88, NME1, NRAS, PRDM2, PTGES, PTGS2, SART1, SERPING1, SOCS3, SPARC, TEGT, TIMP1, TNF, and TOP2A and the second constituent is any other constituent selected from Table 1, wherein the constituent is selected so that measurement of the constituent distinguishes between a normal subject and a cervical cancer-diagnosed subject in a reference population with at least 75% accuracy;b) Table 2, wherein the first constituent is selected from the group consisting of ADAM17, ALOX5, APAF1, C1QA, CASP1, CASP3, CCL3, CCL5, CCR3, CCR5, CD19, CD4, CD86, CD8A, CTLA4, CXCL1, CXCR3, DPP4, EGR1, ELA2, GZMB, HLADRA, HMGB1, HMOX1, HSPA1A, ICAM1, IFI16, IFNG, IL10, IL15, IL18, IL18BP, IL1B, 1L1R1, IL1RN, IL32, IL5, IL8, IRF1, MAPK14, MHC2TA, MIF, MMP12, MMP9, MNDA, MYC, NFKB1, PLA2G7, PLAUR, PTGS2, PTPRC, SERPINA1, SERPINE1, SSI3, TGFB1, TIMP1, TLR4, TNF, TNFRSF13B, and TNFRSF1A and the second constituent is any other constituent selected from Table 2, wherein the constituent is selected so that measurement of the constituent distinguishes between a normal subject and a cervical cancer-diagnosed subject in a reference population with at least 75% accuracy;c) Table 3 wherein the first constituent is selected from the group consisting of ABL1, ABL2, AKT1, ANGPT1, APAF1, ATM, BAD, BAX, BCL2, BRAF, BRCA1, CASP8, CCNE1, CDC25A, CDK2, CDK4, CDK5, CDKN1A, CDKN2A, CFLAR, E2F1, ERBB2, FGFR2, FOS, GZMA, HRAS, ICAM1, IFITM1, IFNG, IGFBP3, IL18, IL8, ITGA1, ITGA3, ITGAE, ITGB1, JUN, MMP9, MSH2, MYC, MYCL1, NFKB1, NME1, NME4, NOTCH2, NOTCH4, NRAS, PCNA, PLAU, PLAUR, PTCH1, PTEN, RAF1, RB1, RHOA, RHOC, S100A4, SEMA4D, SERPINE1, SKI, SKIL, SMAD4, SOCS1, SRC, TGFB1, THBS1, TIMP1, TNF, TNFRSF10A, TNFRSF1A, and TP53 and the second constituent is any other constituent selected from Table 3, wherein the constituent is selected so that measurement of the constituent distinguishes between a normal subject and a cervical cancer-diagnosed subject in a reference population with at least 75% accuracy;d) Table 4 wherein the first constituent is selected from the group consisting ofALOX5, CCND2, CDKN2D, CEBPB, CREBBP, EGR1, EGR2, EGR3, EP300, FGF2, FOS, ICAM1, JUN, MAP2K1, MAPK1, NAB1, NAB2, NFATC2, NFKB1, NR4A2, PDGFA, PLAU, RAFT, S100A6, SERPINE1, SMAD3, TGFB1, and TOPBP1 and the second constituent is any other constituent selected from Table 4, wherein the constituent is selected so that measurement of the constituent distinguishes between a normal subject and a cervical cancer-diagnosed subject in a reference population with at least 75% accuracy; ande) Table 5 wherein the first constituent is selected from the group consisting of ACPP, ADAM17, ANLN, APC, AXIN2, BAX, BCAM, C1QA, C1QB, CA4, CASP3, CASP9, CAV1, CCL3, CCL5, CCR7, CD59, CD97, CDH1, CEACAM1, CNKSR2, CTNNA1, CTSD, CXCL1, DAD1, DIABLO, DLC1, E2F1, ELA2, ESR1, ESR2, FOS, G6PD, GADD45A, GNB1, GSK3B, HMGA1, HMOX1, HOXA10, HSPA1A, IFI16, IGF2BP2, IGFBP3, IKBKE, IL8, ING2, IQGAP1, IRF1, ITGAL, LARGE, LGALS8, LTA, MAPK14, MEIS1, MLH1, MME, MMP9, MNDA, MSH2, MSH6, MTA1, MTF1, MYC, MYD88, NBEA, NCOA1, NEDD4L, NRAS, NUDT4, PLAU, PLEK2, PLXDC2, POV1, PTEN, PTGS2, PTPRC, PTPRK, RBM5, RP51077B9.4, S100A11, S100A4, SERPINA1, SERPINE1, SIAH2, SP1, SPARC, SRF, ST14, TEGT, TGFB1, TIMP1, TLR2, TNF, TNFRSF1A, TNFSF5, TXNRD1, UBE2C, USP7, VEGF, VIM, XK, and XRCC1 and the second constituent is any other constituents selected from Table 5, wherein the constituent is selected so that measurement of the constituent distinguishes between a normal subject and a cervical cancer-diagnosed subject in a reference population with at least 75% accuracy.
  • 7. The method of claim 1, wherein the combination of constituents are selected according to any of the models enumerated in Tables 1A, 2A, 3A, 4A or 5A.
  • 8. The method of claim 1, wherein said reference value is an index value.
  • 9. The method of claim 2, wherein said therapy is immunotherapy.
  • 10. The method of claim 9, wherein said constituent is selected from the group constituent is selected from Table 6.
  • 11. The method of claim 1, wherein when the baseline data set is derived from a normal subject a similarity in the subject data set and the baseline date set indicates that said therapy is efficacious.
  • 12. The method of claim 1, wherein when the baseline data set is derived from a subject known to have cervical cancer a similarity in the subject data set and the baseline date set indicates that said therapy is not efficacious.
  • 13. The method of claim 1, wherein expression of said constituent in said subject is increased compared to expression of said constituent in a normal reference sample.
  • 14. The method of claim 1, wherein expression of said constituent in said subject is decreased compared to expression of said constituent in a normal reference sample.
  • 15. The method of claim 1, wherein the sample is selected from the group consisting of blood, a blood fraction, a body fluid, a cells and a tissue.
  • 16. The method of claim 1, wherein the measurement conditions that are substantially repeatable are within a degree of repeatability of better than ten percent.
  • 17. The method of claim 1, wherein the measurement conditions that are substantially repeatable are within a degree of repeatability of better than five percent.
  • 18. The method of claim 1, wherein the measurement conditions that are substantially repeatable are within a degree of repeatability of better than three percent.
  • 19. The method of claim 1, wherein efficiencies of amplification for all constituents are substantially similar.
  • 20. The method of claim 1, wherein the efficiency of amplification for all constituents is within ten percent.
  • 21. The method of claim 1, wherein the efficiency of amplification for all constituents is within five percent.
  • 22. The method of claim 1, wherein the efficiency of amplification for all constituents is within three percent.
  • 23. A kit for detecting cervical cancer in a subject, comprising at least one reagent for the detection or quantification of any constituent measured according to claim 1 and instructions for using the kit.
REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/922,231 filed Apr. 6, 2007 and U.S. Provisional Application No. 60/964,018 filed Aug. 7, 2007, the contents of which are incorporated by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US07/23387 11/6/2007 WO 00 4/26/2010
Provisional Applications (2)
Number Date Country
60922231 Apr 2007 US
60964018 Aug 2007 US