Gene Expression Profiling for Identification, Monitoring and Treatment of Prostate Cancer

Information

  • Patent Application
  • 20100233691
  • Publication Number
    20100233691
  • Date Filed
    November 06, 2007
    17 years ago
  • Date Published
    September 16, 2010
    14 years ago
Abstract
A method is provided in various embodiments for determining a profile data set for a subject with prostate cancer or conditions related to prostate cancer based on a sample from the subject, wherein the sample provides a source of RNAs. The method includes using amplification for measuring the amount of RNA corresponding to at least 1 constituent from Tables 1-4. The profile data set comprises the measure of each constituent, and amplification is performed under measurement conditions that are substantially repeatable.
Description
FIELD OF THE INVENTION

The present invention relates generally to the identification of biological markers associated with the identification of prostate cancer. More specifically, the present invention relates to the use of gene expression data in the identification, monitoring and treatment of prostate cancer and in the characterization and evaluation of conditions induced by or related to prostate cancer.


BACKGROUND OF THE INVENTION

Prostate cancer is the most common cancer diagnosed among American men, with more than 234,000 new cases per year. As a man increases in age, his risk of developing prostate cancer increases exponentially. Under the age of 40, 1 in 1000 men will be diagnosed; between ages 40-59, 1 in 38 men will be diagnosed and between the ages of 60-69, 1 in 14 men will be diagnosed. More that 65% of all prostate cancers are diagnosed in men over 65 years of age. Beyond the significant human health concerns related to this dangerous and common form of cancer, its economic burden in the U.S. has been estimated at $8 billion dollars per year, with average annual costs per patient of approximately $12,000.


Prostate cancer is a heterogeneous disease, ranging from asymptomatic to a rapidly fatal metastatic malignancy. Survival of the patient with prostatic carcinoma is related to the extent of the tumor. When the cancer is confined to the prostate gland, median survival in excess of 5 years can be anticipated. Patients with locally advanced cancer are not usually curable, and a substantial fraction will eventually die of their tumor, though median survival may be as long as 5 years. If prostate cancer has spread to distant organs, current therapy will not cure it. Median survival is usually 1 to 3 years, and most such patients will die of prostate cancer. Even in this group of patients, however, indolent clinical courses lasting for many years may be observed. Other factors affecting the prognosis of patients with prostate cancer that may be useful in making therapeutic decisions include histologic grade of the tumor, patient's age, other medical illnesses, and PSA levels.


Early prostate cancer usually causes no symptoms. However, the symptoms that do present are often similar to those of diseases such as benign prostatic hypertrophy. Such symptoms include frequent urination, increased urination at night, difficulty starting and maintaining a steady stream of urine, blood in the urine, and painful urination. Prostate cancer may also cause problems with sexual function, such as difficulty achieving erection or painful ejaculation.


Currently, there is no single diagnostic test capable of differentiating clinically aggressive from clinically benign disease. Since individuals can have prostate cancer for several years and remain asymptomatic while the disease progresses and metastasizes, screenings is essential to detect prostate cancer at the earliest stage possible. Although early detection of prostate cancer is routinely achieved with physical examination and/or clinical tests such as serum prostate-specific antigen (PSA) test, this test is not definitive, since PSA levels can also be elevated due to prostate infection, enlargement, race and age effects. For example, a PSA level of 3 or less is considered in the normal range for a male under 60 years old, a level of 4 or less is considered normal for a male between the ages of 60-69, and a level of 5 or less is normal for males over the age of 70. Generally, the higher the level of PSA, the more likely prostate cancer is present. However, a PSA level above the normal range (depending on the age of the patient) could be due to benign prostatic disease. In such instances, a diagnosis would be impossible to confirm without biopsying the prostate and assigning a Gleason Score. Additionally, regular screening of asymptomatic men remains controversial since the PSA screening methods currently available are associated with high false-positive rates, resulting in unnecessary biopsies, which can result in significant morbidity.


Additionally, the clinical course of prostate cancer disease can be unpredictable, and the prognostic significance of the current diagnostic measures remains unclear. Furthermore, current tests do not reliably identify patients who are likely to respond to specific therapies—especially for cancer that has spread beyond the prostate gland. Information on any condition of a particular patient and a patient's response to types and dosages of therapeutic or nutritional agents has become an important issue in clinical medicine today not only from the aspect of efficiency of medical practice for the health care industry but for improved outcomes and benefits for the patients. Thus, there is the need for tests which can aid in the diagnosis and monitor the progression and treatment of prostate cancer.


SUMMARY OF THE INVENTION

The invention is in based in part upon the identification of gene expression profiles (Precision Profiles™) associated with prostate cancer. These genes are referred to herein as prostate cancer associated genes or prostate cancer associated constituents. More specifically, the invention is based upon the surprising discovery that detection of as few as one prostate cancer associated gene in a subject derived sample is capable of identifying individuals with or without prostate cancer with at least 75% accuracy. More particularly, the invention is based upon the surprising discovery that the methods provided by the invention are capable of detecting prostate cancer by assaying blood samples.


In various aspects the invention provides methods of evaluating the presence or absence (e.g., diagnosing or prognosing) of prostate cancer, based on a sample from the subject, the sample providing a source of RNAs, and determining a quantitative measure of the amount of at least one constituent of any constituent (e.g., prostate cancer associated gene) of any of Tables 1, 2, 3, and 4 and arriving at a measure of each constituent.


Also provided are methods of assessing or monitoring the response to therapy in a subject having prostate cancer, based on a sample from the subject, the sample providing a source of RNAs, determining a quantitative measure of the amount of at least one constituent of any constituent of Tables 1, 2, 3, 4 or 5 and arriving at a measure of each constituent. The therapy, for example, is immunotherapy. Preferably, one or more of the constituents listed in Table 5 is measured. For example, the response of a subject to immunotherapy is monitored by measuring the expression of TNFRSF10A, TMPRSS2, SPARC, ALOX5, PTPRC, PDGFA, PDGFB, BCL2, BAD, BAK1, BAG2, KIT, MUC1, ADAM17, CD19, CD4, CD40LG, CD86, CCR5, CTLA4, HSPA1A, IFNG, IL23A, PTGS2, TLR2, TGFB1, TNF, TNFRSF13B, TNFRSF10B, VEGF, MYC, AURKA, BAX, CDH1, CASP2, CD22, IGF1R, ITGA5, ITGAV, ITGB1, ITGB3, IL6R, JAK1, JAK2, JAK3, MAP3K1, PDGFRA, COX2, PSCA, THBS1, THBS2, TYMS, TLR1, TLR3, TLR6, TLR7, TLR9, TNFSF10, TNFSF13B, TNFRSF17, TP53, ABL1, ABL2, AKT1, KRAS, BRAF, RAF1, ERBB4, ERBB2, ERBB3, AKT2, EGFR, IL12 or IL15. The subject has received an immunotherapeutic drug such as anti CD19 Mab, rituximab, epratuzumab, lumiliximab, visilizumab (Nuvion), HuMax-CD38, zanolimumab, anti CD40 Mab, anti-CD40L, Mab, galiximab anti-CTLA-4 MAb, ipilimumab, ticilimumab, anti-SDF-1 MAb, panitumumab, nimotuzumab, pertuzumab, trastuzumab, catumaxomab, ertumaxomab, MDX-070, anti ICOS, anti IFNAR, AMG-479, anti-IGF-1R Ab, R1507, IMC-A12, antiangiogenesis MAb, CNTO-95, natalizumab (Tysabri), SM3, IPB-01, hPAM-4, PAM4, Imuteran, huBrE-3 tiuxetan, BrevaRex MAb, PDGFR MAb, IMC-3G3, GC-1008, CNTO-148 (Golimumab), CS-1008, belimumab, anti-BMF MAb, or bevacizumab. Alternatively, the subject has received a placebo.


In a further aspect the invention provides methods of monitoring the progression of prostate cancer in a subject, based on a sample from the subject, the sample providing a source of RNAs, by determining a quantitative measure of the amount of at least one constituent of any constituent of Tables 1, 2, 3, and 4 as a distinct RNA constituent in a sample obtained at a first period of time to produce a first subject data set and determining a quantitative measure of the amount of at least one constituent of any constituent of Tables 1, 2, 3, and 4 as a distinct RNA constituent in a sample obtained at a second period of time to produce a second subject data set. Optionally, the constituents measured in the first sample are the same constituents measured in the second sample. The first subject data set and the second subject data set are compared allowing the progression of prostate cancer in a subject to be determined. The second subject is taken e.g., one day, one week, one month, two months, three months, 1 year, 2 years, or more after the first subject sample. Optionally the first subject sample is taken prior to the subject receiving treatment, e.g. chemotherapy, radiation therapy, or surgery and the second subject sample is taken after treatment.


In various aspects the invention provides a method for determining a profile data set, i.e., a prostate cancer profile, for characterizing a subject with prostate cancer or conditions related to prostate cancer based on a sample from the subject, the sample providing a source of RNAs, by using amplification for measuring the amount of RNA in a panel of constituents including at least 1 constituent from any of Tables 1-4, and arriving at a measure of each constituent. The profile data set contains the measure of each constituent of the panel.


The methods of the invention further include comparing the quantitative measure of the constituent in the subject derived sample to a reference value or a baseline value, e.g. baseline data set. The reference value is for example an index value. Comparison of the subject measurements to a reference value allows for the present or absence of prostate cancer to be determined, response to therapy to be monitored or the progression of prostate cancer to be determined. For example, a similarity in the subject data set compares to a baseline data set derived form a subject having prostate cancer indicates that presence of prostate cancer or response to therapy that is not efficacious. Whereas a similarity in the subject data set compares to a baseline data set derived from a subject not having prostate cancer indicates the absence of prostate cancer or response to therapy that is efficacious. In various embodiments, the baseline data set is derived from one or more other samples from the same subject, taken when the subject is in a biological condition different from that in which the subject was at the time the first sample was taken, with respect to at least one of age, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure, and the baseline profile data set may be derived from one or more other samples from one or more different subjects.


The baseline data set or reference values may be derived from one or more other samples from the same subject taken under circumstances different from those of the first sample, and the circumstances may be selected from the group consisting of (i) the time at which the first sample is taken (e.g., before, after, or during treatment cancer treatment), (ii) the site from which the first sample is taken, (iii) the biological condition of the subject when the first sample is taken.


The measure of the constituent is increased or decreased in the subject compared to the expression of the constituent in the reference, e.g., normal reference sample or baseline value. The measure is increased or decreased 10%, 25%, 50% compared to the reference level. Alternately, the measure is increased or decreased 1, 2, 5 or more fold compared to the reference level.


In various aspects of the invention the methods are carried out wherein the measurement conditions are substantially repeatable, particularly within a degree of repeatability of better than ten percent, five percent or more particularly within a degree of repeatability of better than three percent, and/or wherein efficiencies of amplification for all constituents are substantially similar, more particularly wherein the efficiency of amplification is within ten percent, more particularly wherein the efficiency of amplification for all constituents is within five percent, and still more particularly wherein the efficiency of amplification for all constituents is within three percent or less.


In addition, the one or more different subjects may have in common with the subject at least one of age group, gender, ethnicity, geographic location, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure. A clinical indicator may be used to assess prostate cancer or a condition related to prostate cancer of the one or more different subjects, and may also include interpreting the calibrated profile data set in the context of at least one other clinical indicator, wherein the at least one other clinical indicator includes blood chemistry, X-ray or other radiological or metabolic imaging technique, molecular markers in the blood, other chemical assays, and physical findings.


At least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30 40, 50 or more constituents are measured.


Preferably, at least one constituent is measured. For example the constituent is selected from Table 1 and is selected from:


i) EGR1, POV1, CTNNA1, NCOA4, HSPA1A, CD44, ACPP, MEIS1, MUC1, STAT3, EPAS1, G6PD, CDH1, SVIL, TP53, PYCARD, or BCAM;


ii) EGR1, MEIS1, PLAU, CDH1, SERPINE1, or CTNNA1; or


iii) EGR1, CTNNA1, NCOA4, MEIS1, POV1, G6PD, SERPINE1, or CDH1.


Alternatively the constituent is selected from Table 2 and is selected from:


i) EGR1, CASP1, SERPINA1, ICAM1, NFKB1, ALOX5, HSPA1A, IFI16, ELA2, PLAUR, TLR2, TNF, PLA2G7, IL1R1, MAPK14, IL1RN, TXNRD1, IRF1, MNDA, TLR4, PTGS2, or TNFRSF1A;


ii) MMP9, ELA2, SERPINA1, IFI16, TLR2, MAPK14, ALOX5, EGR1, or SERPINE1; or


iii) SERPINA1, EGR1, ELA2, IFI16, ALOX5, IL1R1, MAPK14, ICAM1, or TIMP1.


Additionally, the constituent is selected from Table 3 and is selected from:


i) EGR1, RB1, CDKN1A, NOTCH2, BRAF, BRCA1, TNF, TGFBI, IFITM1, RHOA, NFKB1, NME4, THBS1, SMAD4, TIMP1, ITGB1, TP53, CDK2, ICAM1, PTEN, E2F1, CDK5, TNFRSF6, SOCS1, SRC, MMP9, PLAUR, VEGF, NRAS, SERPINE1, IL1B, CDC25A, VHL, SEMA4D, FOS, AKT1, BCL2, ABL1, RHOC, IL18, G1P3, SKI, TNFRSF1A, CFLAR, or PTCH1;


ii) E2F1, BRAF, EGR1, MMP9, SERPINE1, IFITM1, SOCS1, NME4, THBS1, PTEN, BRCA1, RB1, CDKN1A, TIMP1, FOS, NOTCH2, TGFBI, RHOA, CDC25A, CFLAR, PLAUR, TNFRSF6, SEMA4D, or NRAS; or


iii) EGR1, BRAF, RB1, E2F1, IFITM1, SOCS1, BRCA1, CDKN1A, NME4, PTEN, MMP9, NOTCH2, THBS1, SERPINE1, TGFB1, TIMP1, RHOA, SMAD4, NFKB1, SEMA4D, ITGB1, TNFRSF6, PLAUR, ICAM1, CDK2, CFLAR, CDC25A, TNFRSF1A, IL18, or CDK5.


Additionally, the constituent is selected from Table 4 and is selected from:


i) EGR1, ALOX5, EP300, SMAD3, MAPK1, TGFB1, CREBBP, NFKB1, TOPBP1, EGR2, ICAM1, THBS1, TP53, TNFRSF6, PTEN, PDGFA, SRC, PLAU, FOS, EGR3, NAB1, CEBPB, or CCND2;


ii) ALOX5, SERPINE1, EP300, EGR1, MAPK1, PDGFA, THBS1, PTEN, PLAU, CREBBP, FOS, TGFBI, or TNFRSF6; or


iii) ALOX5, EP300, EGR1, MAPK1, CREBBP, PTEN, PDGFA, THBS1, SERPINE1, TGFB1, PLAU, TOPBP1, NFKB1, TNFRSF6, ICAM1, or SMAD3.


In one aspect, two constituents from Table 1 are measured. The first constituent is i) ABCC1, ACPP, ADAMTS1, AOC3, AR, BCAM, BCL2, CAV2, CD44, CD48, CD59, CDH1, COL6A2, COVA1, CTNNA1, E2F5, EGR1, EPAS1, G6PD, HSPA1A, IGF1R, KAI1, LGALS8, MEIS1, MUC1, NCOA4, NRP1, PLAU, POV1, PTGS2, PYCARD, SERPINE1, SERPING1, SMARCD3, SORBS1, SOX4, ST14, STAT3, SVIL, or TP53;


ii) ABCC1, ACPP, ADAMTS1, AOC3, AR, BCAM, BCL2, BIRC5, CAV2, CD44, CD48, CD59, CDH1, COL6A2, COVA1, CTNNA1, E2F5, EGR1, EPAS1, FGF2, G6PD, GSTT1, HMGA1, HSPA1A, IGF1R, IL8, KRT5, LGALS8, MEIS1, MYC, NCOA4, NRP1, PLAU, POV1, PTGS2, SERPINE1, SERPING1, SORBS1, SOX4, STAT3, SVIL, or TGFB1; or


iii) ABCC1, ACPP, ADAMTS1, AOC3, AR, BCAM, BCL2, BIRC5, CAV2, CD44, CD48, CD59, CDH1, COL6A2, COVA1, CTNNA1, E2F5, EGR1, EPAS1, FGF2, G6PD, HMGA1, HSPA1A, IGF1R, IL8, KAI1, KRT5, LGALS8, MEIS1, MUC1, MYC, NCOA4, NRP1, PLAU, POV1, PTGS2, PYCARD, SERPINE1, SERPING1, SMARCD3, SORBS1, SOX4, STAT3, SVIL, TGFB1, or TP53; and the second constituent is any other constituent from Table 1.


In another aspect two constituents from Table 2 are measured. The first constituent is i) ADAM17, ALOX5, APAF1, C1QA, CASP1, CASP3, CCL3, CCL5, CCR5, CD19, CD4, CD86, CD8A, CXCL1, DPP4, EGR1, ELA2, HLADRA, HMGB1, HMOX1, HSPA1A, ICAM1, IFI16, IL10, IL15, IL18, IL18BP, IL1B, IL1R1, IL1RN, IL23A, IL32, IL5, IRF1, MAPK14, MHC2TA, MIF, MMP9, MNDA, MYC, NFKB1, PLA2G7, PLAUR, PTPRC, SERPINA1, SERPINE1, or TNF;


ii) ADAM17, ALOX5, APAF1, C1QA, CASP1, CASP3, CCL3, CCL5, CCR3, CCR5, CD19, CD4, CD86, CD8A, CTLA4, CXCL1, CXCR3, DPP4, EGR1, ELA2, HLADRA, HMGB1, HMOX1, HSPA1A, ICAM1, IFI16, IL10, IL15, IL18BP, IL1B, IL1R1, IL1RN, IL23A, IL32, IL5, IL8, IRF1, LTA, MAPK14, MHC2TA, MIF, MMP12, MNDA, MYC, NFKB1, PLA2G7, PLAUR, PTGS2, PTPRC, SERPINA1, SERPINE1, SSI3, TGFB1, TIMP1, TLR2, TLR4, or TNFSF5; or


iii) ADAM17, ALOX5, APAF1, C1QA, CASP1, CCL3, CCL5, CCR3, CCR5, CD19, CD4, CD86, CD8A, CTLA4, CXCL1, CXCR3, DPP4, EGR1, ELA2, HLADRA, HMGB1, HMOX1, HSPA1A, ICAM1, IFI16, IL15, IL18, IL18BP, IL1B, IL1R1, IL1RN, IL23A, IL32, IL5, IL8, IRF1, LTA, MAPK14, MHC2TA, MIF, MMP9, MNDA, MYC, NFKB1, PLA2G7, PLAUR, PTGS2, PTPRC, SERPINA1, SERPINE1, TGFB1, TIMP1, TNFSF5, or TOSO; and the second constituent is any other constituent from Table 2.


In a further aspect two constituents from Table 3 are measured. The first constituent is i) ABL1, ABL2, AKT1, ANGPT1, APAF1, ATM, BAD, BAX, BCL2, BRAF, BRCA1, CASP8, CCNE1, CDC25A, CDK2, CDK4, CDK5, CDKN1A, CDKN2A, CFLAR, E2F1, EGR1, ERBB2, FOS, G1P3, GZMA, HRAS, ICAM1, IFITM1, IFNG, IGFBP3, IL18, IL1B, IL8, ITGA1, ITGA3, ITGAE, ITGB1, JUN, MMP9, MSH2, MYC, MYCL1, NFKB1, NME1, NME4, NOTCH2, NRAS, PCNA, PLAUR, PTCH1, PTEN, RAF1, RB1, RHOA, RHOC, SEMA4D, SERPINE1, SKI, SKIL, SMAD4, SOCS1, SRC, TGFBI, THBS1, TIMP1, TNF, TNFRSF10A, TNFRSF6, TP53, or VEGF;


ii) ABL1, ABL2, AKT1, ANGPT1, APAF1, ATM, BAD, BAX, BCL2, BRAF, BRCA1, CASP8, CCNE1, CDC25A, CDK2, CDK4, CDK5, CDKN1A, CDKN2A, CFLAR, E2F1, EGR1, ERBB2, FGFR2, FOS, G1P3, GZMA, HRAS, ICAM1, IFITM1, IFNG, IGFBP3, IL18, IL1B, IL8, ITGA1, ITGA3, ITGAE, ITGB1, JUN, MMP9, MSH2, MYC, MYCL1, NFKB1, NME1, NME4, NOTCH2, NRAS, PCNA, PLAUR, PTCH1, PTEN, RAF1, RB1, RHOA, RHOC, S100A4, SEMA4D, SERPINE1, SKI, SKIL, SMAD4, SOCS1, SRC, TGFBI, THBS1, TIMP1, TNFRSF10A, TNFRSF10B, TNFRSF1A, or TNFRSF6; or


iii) ABL1, ABL2, AKT1, ANGPT1, APAF1, ATM, BAD, BAX, BCL2, BRAF, BRCA1, CASP8, CCNE1, CDC25A, CDK2, CDK4, CDK5, CDKN1A, CDKN2A, CFLAR, E2F1, EGR1, ERBB2, FGFR2, FOS, G1P3, GZMA, HRAS, ICAM1, IFITM1, IFNG, IGFBP3, IL18, IL1B, IL8, ITGA1, ITGA3, ITGAE, ITGB1, JUN, MMP9, MSH2, MYC, MYCL1, NFKB1, NME1, NME4, NOTCH2, NRAS, PCNA, PLAUR, PTCH1, PTEN, RAF1, RB1, RHOA, RHOC, S100A4, SEMA4D, SERPINE1, SKI, SKIL, SMAD4, SOCS1, SRC, TGFB1, THBS1, TIMP1, TNFRSF10A, TNFRSF10B, TNFRSF1A, TNFRSF6, or VEGF; and the second constituent is any other constituent from Table 3.


In yet another aspect two constituents from Table 4 are measured. The first constituent is, i) ALOX5, CCND2, CEBPB, CREBBP, EGR1, EGR2, EGR3, EP300, FOS, ICAM1, JUN, MAP2K1, MAPK1, NAB1, NAB2, NFATC2, NFKB1, NR4A2, PDGFA, PLAU, PTEN, RAF1, S100A6, SERPINE1, SMAD3, SRC, THBS1, or TNFRSF6


ii) ALOX5, CCND2, CDKN2D, CEBPB, CREBBP, EGR1, EGR2, EGR3, EP300, FOS, ICAM1, JUN, MAP2K1, MAPK1, NAB1, NAB2, NFATC2, NFKB1, NR4A2, PDGFA, PLAU, PTEN, RAF1, S100A6, SERPINE1, SMAD3, SRC, TGFBI, THBS1, or TOPBP1; or


iii) ALOX5, CCND2, CDKN2D, CEBPB, CREBBP, EGR1, EGR2, EGR3, EP300, FOS, ICAM1, JUN, MAP2K1, MAPK1, NAB1, NAB2, NFATC2, NFKB1, NR4A2, PDGFA, PLAU, PTEN, RAF1, S100A6, SERPINE1, SMAD3, SRC, TGFB1, THBS1, or TOPBP1; and the second constituent is any other constituent from Table 4.


The constituents are selected so as to distinguish from a normal reference subject and a prostate cancer-diagnosed subject. The prostate cancer-diagnosed subject is diagnosed with different stages of cancer. Alternatively, the panel of constituents is selected as to permit characterizing the severity of prostate cancer in relation to a normal subject over time so as to track movement toward normal as a result of successful therapy and away from normal in response to cancer recurrence. Thus in some embodiments, the methods of the invention are used to determine efficacy of treatment of a particular subject.


Preferably, the constituents are selected so as to distinguish, e.g., classify between a normal and a prostate cancer-diagnosed subject with at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or greater accuracy. By “accuracy” is meant that the method has the ability to distinguish, e.g., classify, between subjects having prostate cancer or conditions associated with prostate cancer, and those that do not. Accuracy is determined for example by comparing the results of the Gene Precision Profiling™ to standard accepted clinical methods of diagnosing prostate cancer, e.g., PSA test, digital rectal exam, and biopsy procedures.


For example the combination of constituents are selected according to any of the models enumerated in Tables 1A, 2A, 3A, or 4A.


In one embodiment, the methods of the present invention are used in conjunction with the PSA test when PSA levels are above 3 but under 100, more preferably above 3 but under 50, more preferably above 3 but under 30, more preferably above 3 but under 15, and even more preferably above 3 but under 10. In another embodiment, the methods of the present invention are used in conjunction with Gleason Score when Gleason Score is above 2 but under 10, more preferably above 2 but under 8, more preferably above 2 but under 6, and even more preferably above 2 but under 4.


By prostate cancer or conditions related to prostate cancer is meant the malignant growth of abnormal cells in the prostate gland, capable of invading and destroying other prostate cells, and spreading (metastasizing) to other parts of the body, including bones and lymph nodes.


The sample is any sample derived from a subject which contains RNA. For example, the sample is blood, a blood fraction, body fluid, a population of cells or tissue from the subject, a prostate cell, or a rare circulating tumor cell or circulating endothelial cell found in the blood.


Optionally one or more other samples can be taken over an interval of time that is at least one month between the first sample and the one or more other samples, or taken over an interval of time that is at least twelve months between the first sample and the one or more samples, or they may be taken pre-therapy intervention or post-therapy intervention. In such embodiments, the first sample may be derived from blood and the baseline profile data set may be derived from tissue or body fluid of the subject other than blood. Alternatively, the first sample is derived from tissue or bodily fluid of the subject and the baseline profile data set is derived from blood.


Also included in the invention are kits for the detection of prostate cancer in a subject, containing at least one reagent for the detection or quantification of any constituent measured according to the methods of the invention and instructions for using the kit.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


Other features and advantages of the invention will be apparent from the following detailed description and claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graphical representation of a 2-gene model, CDH1 and EGR1, based on the Precision Profile™ for Prostate Cancer (Table 1), capable of distinguishing between subjects afflicted with prostate cancer (cohort 1) and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values to the right of the line represent subjects predicted to be in the normal population. Values to the left of the line represent subjects predicted to be in the Cohort 1 prostate cancer population. CDH1 values are plotted along the Y-axis, EGR1 values are plotted along the X-axis.



FIG. 2 is a graphical representation of a 2-gene model, EGR1 and MYC, based on the Precision Profile™ for Prostate Cancer (Table 1), capable of distinguishing between subjects afflicted with prostate cancer (cohort 4) and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values above the line represent subjects predicted to be in the normal population. Values below the line represent subjects predicted to be in the cohort 4 prostate cancer population. EGR1 values are plotted along the Y-axis, MYC values are plotted along the X-axis.



FIG. 3 is a graphical representation of a 2-gene model, EGR1 and MYC, based on the Precision Profile™ for Prostate Cancer (Table 1), capable of distinguishing between subjects afflicted with prostate cancer (all cohorts) and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values above the line represent subjects predicted to be in the normal population. Values below the line represent subjects predicted to be in the prostate cancer population. EGR1 values are plotted along the Y-axis, MYC values are plotted along the X-axis.



FIG. 4 is a graphical representation of the Z-statistic values for each gene shown in Table 1H. A negative Z statistic means up-regulation of gene expression in prostate cancer (all cohorts) vs. normal patients; a positive Z statistic means down-regulation of gene expression in prostate cancer vs. normal patients.



FIG. 5 is a graphical representation of a prostate cancer index based on the 2-gene logistic regression model, EGR1 and MYC, capable of distinguishing between normal, healthy subjects and subjects suffering from prostate cancer (all cohorts).



FIG. 6 is a graphical representation of a 2-gene model, CASP1 and MIF, based on the Precision Profile™ for Inflammatory Response (Table 2), capable of distinguishing between subjects afflicted with prostate cancer (cohort 1) and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values above the line represent subjects predicted to be in the normal population. Values below the line represent subjects predicted to be in the Cohort 1 prostate cancer population. CASP1 values are plotted along the Y-axis, MIF values are plotted along the X-axis.



FIG. 7 is a graphical representation of a 2-gene model, CCR3 and SERPINA1, based on the Precision Profile™ for Inflammatory Response (Table 2), capable of distinguishing between subjects afflicted with prostate cancer (cohort 4) and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values below the line represent subjects predicted to be in the normal population. Values above the line represent subjects predicted to be in the cohort 4 prostate cancer population. CCR3 values are plotted along the Y-axis, SERPINA1 values are plotted along the X-axis.



FIG. 8 is a graphical representation of a 2-gene model, CASP1 and MIF, based on the Precision Profile™ for Inflammatory Response (Table 2), capable of distinguishing between subjects afflicted with prostate cancer (all cohorts) and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values above and to the left of the line represent subjects predicted to be in the normal population. Values below and to the right of the line represent subjects predicted to be in the prostate cancer population. CASP1 values are plotted along the Y-axis, MIF values are plotted along the X-axis.



FIG. 9 is a graphical representation of a 2-gene model, EGR1 and NME4, based on the Human Cancer General Precision Profile™ (Table 3), capable of distinguishing between subjects afflicted with prostate cancer (cohort 1) and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values above and to the right of the line represent subjects predicted to be in the normal population. Values below and to the left of the line represent subjects predicted to be in the Cohort 1 prostate cancer population. EGR1 values are plotted along the Y-axis, NME4 values are plotted along the X-axis.



FIG. 10 is a graphical representation of a 2-gene model, BAD and RB1, based on the Human Cancer General Precision Profile™ (Table 3), capable of distinguishing between subjects afflicted with prostate cancer (cohort 4) and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values below and to the right of the line represent subjects predicted to be in the normal population. Values above and to the left of the line represent subjects predicted to be in the cohort 4 prostate cancer population. BAD values are plotted along the Y-axis, RB1 values are plotted along the X-axis.



FIG. 11 is a graphical representation of a 2-gene model, BAD and RB1, based on the Human Cancer General Precision Profile™ (Table 3), capable of distinguishing between subjects afflicted with prostate cancer (all cohorts) and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values below and to the right of the line represent subjects predicted to be in the normal population. Values above and to the left of the line represent subjects predicted to be in the prostate cancer population. BAD values are plotted along the Y-axis, RB1 values are plotted along the X-axis.



FIG. 12 is a graphical representation of a 2-gene model, ALOX5 and RAF1, based on the Precision Profile for EGR1™ (Table 4), capable of distinguishing between subjects afflicted with prostate cancer (cohort 1) and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values above and to the left of the line represent subjects predicted to be in the normal population. Values below and to the right of the line represent subjects predicted to be in the Cohort 1 prostate cancer population. ALOX5 values are plotted along the Y-axis, RAF1 values are plotted along the X-axis.



FIG. 13 is a graphical representation of a 2-gene model, ALOX5 and CEBPB based on the Precision Profile for EGR1™ (Table 4), capable of distinguishing between subjects afflicted with prostate cancer (cohort 4) and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values above and to the left of the line represent subjects predicted to be in the normal population. Values below and to the right of the line represent subjects predicted to be in the cohort 4 prostate cancer population. ALOX5 values are plotted along the Y-axis, CEBPB values are plotted along the X-axis.



FIG. 14 is a graphical representation of a 2-gene model, ALOX5 and S100A6, based on the Precision Profile for EGR1™ (Table 4), capable of distinguishing between subjects afflicted with prostate cancer (all cohorts) and normal subjects, with a discrimination line overlaid onto the graph as an example of the Index Function evaluated at a particular logit value. Values is above and to the left of the line represent subjects predicted to be in the normal population. Values below and to the right of the line represent subjects predicted to be in the prostate cancer population. ALOX5 values are plotted along the Y-axis, S100A6 values are plotted along the X-axis.





DETAILED DESCRIPTION

Definitions


The following terms shall have the meanings indicated unless the context otherwise requires:


“Accuracy” refers to the degree of conformity of a measured or calculated quantity (a test reported value) to its actual (or true) value. Clinical accuracy relates to the proportion of true outcomes (true positives (TP) or true negatives (TN)) versus misclassified outcomes (false positives (FP) or false negatives (FN)), and may be stated as a sensitivity, specificity, positive predictive values (PPV) or negative predictive values (NPV), or as a likelihood, odds ratio, among other measures.


“Algorithm” is a set of rules for describing a biological condition. The rule set may be defined exclusively algebraically but may also include alternative or multiple decision points requiring domain-specific knowledge, expert interpretation or other clinical indicators.


An “agent” is a “composition” or a “stimulus”, as those terms are defined herein, or a combination of a composition and a stimulus.


“Amplification” in the context of a quantitative RT-PCR assay is a function of the number of DNA replications that are required to provide a quantitative determination of its concentration. “Amplification” here refers to a degree of sensitivity and specificity of a quantitative assay technique. Accordingly, amplification provides a measurement of concentrations of constituents that is evaluated under conditions wherein the efficiency of amplification and therefore the degree of sensitivity and reproducibility for measuring all constituents is substantially similar.


A “baseline profile data set” is a set of values associated with constituents of a Gene Expression Panel (Precision Profile™) resulting from evaluation of a biological sample (or population or set of samples) under a desired biological condition that is used for mathematically normative purposes. The desired biological condition may be, for example, the condition of a subject (or population or set of subjects) before exposure to an agent or in the presence of an untreated disease or in the absence of a disease. Alternatively, or in addition, the desired biological condition may be health of a subject or a population or set of subjects. Alternatively, or in addition, the desired biological condition may be that associated with a population or set of subjects selected on the basis of at least one of age group, gender, ethnicity, geographic location, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure.


A “biological condition” of a subject is the condition of the subject in a pertinent realm that is under observation, and such realm may include any aspect of the subject capable of being monitored for change in condition, such as health; disease including cancer; trauma; aging; infection; tissue degeneration; developmental steps; physical fitness; obesity, and mood. As can be seen, a condition in this context may be chronic or acute or simply transient. Moreover, a targeted biological condition may be manifest throughout the organism or population of cells or may be restricted to a specific organ (such as skin, heart, eye or blood), but in either case, the condition may be monitored directly by a sample of the affected population of cells or indirectly by a sample derived elsewhere from the subject. The term “biological condition” includes a “physiological condition”.


“Body fluid” of a subject includes blood, urine, spinal fluid, lymph, mucosal secretions, prostatic fluid, semen, haemolymph or any other body fluid known in the art for a subject.


“Calibrated profile data set” is a function of a member of a first profile data set and a corresponding member of a baseline profile data set for a given constituent in a panel.


A “circulating endothelial cell” (“CEC”) is an endothelial cell from the inner wall of blood vessels which sheds into the bloodstream under certain circumstances, including inflammation, and contributes to the formation of new vasculature associated with cancer pathogenesis. CECs may be useful as a marker of tumor progression and/or response to antiangiogenic therapy.


A “circulating tumor cell” (“CTC”) is a tumor cell of epithelial origin which is shed from the primary tumor upon metastasis, and enters the circulation. The number of circulating tumor cells in peripheral blood is associated with prognosis in patients with metastatic cancer. These cells can be separated and quantified using immunologic methods that detect epithelial cells.


A “clinical indicator” is any physiological datum used alone or in conjunction with other data in evaluating the physiological condition of a collection of cells or of an organism. This term includes pre-clinical indicators.


“Clinical parameters” encompasses all non-sample or non-Precision Profiles™ of a subject's health status or other characteristics, such as, without limitation, age (AGE), ethnicity (RACE), gender (SEX), and family history of cancer.


A “composition” includes a chemical compound, a nutraceutical, a pharmaceutical, a homeopathic formulation, an allopathic formulation, a naturopathic formulation, a combination of compounds, a toxin, a food, a food supplement, a mineral, and a complex mixture of substances, in any physical state or in a combination of physical states.


To “derive” a profile data set from a sample includes determining a set of values associated with constituents of a Gene Expression Panel (Precision Profile™) either (i) by direct measurement of such constituents in a biological sample.


“Distinct RNA or protein constituent” in a panel of constituents is a distinct expressed product of a gene, whether RNA or protein. An “expression” product of a gene includes the gene product whether RNA or protein resulting from translation of the messenger RNA.


“FN” is false negative, which for a disease state test means classifying a disease subject incorrectly as non-disease or normal.


“FP” is false positive, which for a disease state test means classifying a normal subject incorrectly as having disease.


A “formula,” “algorithm,” or “model” is any mathematical equation, algorithmic, analytical or programmed process, statistical technique, or comparison, that takes one or more continuous or categorical inputs (herein called “parameters”) and calculates an output value, sometimes referred to as an “index” or “index value.” Non-limiting examples of “formulas” include comparisons to reference values or profiles, sums, ratios, and regression operators, such as coefficients or exponents, value transformations and normalizations (including, without limitation, those normalization schemes based on clinical parameters, such as gender, age, or ethnicity), rules and guidelines, statistical classification models, and neural networks trained on historical populations. Of particular use in combining constituents of a Gene Expression Panel (Precision Profile™) are linear and non-linear equations and statistical significance and classification analyses to determine the relationship between levels of constituents of a Gene Expression Panel (Precision Profile™) detected in a subject sample and the subject's risk of prostate cancer. In panel and combination construction, of particular interest are structural and synactic statistical classification algorithms, and methods of risk index construction, utilizing pattern recognition features, including, without limitation, such established techniques such as cross-correlation, Principal Components Analysis (PCA), factor rotation, Logistic Regression Analysis (LogReg), Kolmogorov Smirnoff tests (KS), Linear Discriminant Analysis (LDA), Eigengene Linear Discriminant Analysis (ELDA), Support Vector Machines (SVM), Random Forest (RF), Recursive Partitioning Tree (RPART), as well as other related decision tree classification techniques (CART, LART, LARTree, FlexTree, amongst others), Shrunken Centroids (SC), StepAIC, K-means, Kth-Nearest Neighbor, Boosting, Decision Trees, Neural Networks, Bayesian Networks, Support Vector Machines, and Hidden Markov Models, among others. Other techniques may be used in survival and time to event hazard analysis, including Cox, Weibull, Kaplan-Meier and Greenwood models well known to those of skill in the art. Many of these techniques are useful either combined with a constituents of a Gene Expression Panel (Precision Profile™) selection technique, such as forward selection, backwards selection, or stepwise selection, complete enumeration of all potential panels of a given size, genetic algorithms, voting and committee methods, or they may themselves include biomarker selection methodologies in their own technique. These may be coupled with information criteria, such as Akaike's Information Criterion (AIC) or Bayes Information Criterion (BIC), in order to quantify the tradeoff between additional biomarkers and model improvement, and to aid in minimizing overfit. The resulting predictive models may be validated in other clinical studies, or cross-validated within the study they were originally trained in, using such techniques as Bootstrap, Leave-One-Out (LOO) and 10-Fold cross-validation (10-Fold CV). At various steps, false discovery rates (FDR) may be estimated by value permutation according to techniques known in the art.


A “Gene Expression Panel” (Precision Profile™) is an experimentally verified set of constituents, each constituent being a distinct expressed product of a gene, whether RNA or protein, wherein constituents of the set are selected so that their measurement provides a measurement of a targeted biological condition.


A “Gene Expression Profile” is a set of values associated with constituents of a Gene Expression Panel (Precision Profile™) resulting from evaluation of a biological sample (or population or set of samples).


A “Gene Expression Profile Inflammation Index” is the value of an index function that provides a mapping from an instance of a Gene Expression Profile into a single-valued measure of inflammatory condition.


A Gene Expression Profile Cancer Index” is the value of an index function that provides a mapping from an instance of a Gene Expression Profile into a single-valued measure of a cancerous condition.


The “health” of a subject includes mental, emotional, physical, spiritual, allopathic, naturopathic and homeopathic condition of the subject.


“Index” is an arithmetically or mathematically derived numerical characteristic developed for aid in simplifying or disclosing or informing the analysis of more complex quantitative information. A disease or population index may be determined by the application of a specific algorithm to a plurality of subjects or samples with a common biological condition.


“Inflammation” is used herein in the general medical sense of the word and may be an acute or chronic; simple or suppurative; localized or disseminated; cellular and tissue response initiated or sustained by any number of chemical, physical or biological agents or combination of agents.


“Inflammatory state” is used to indicate the relative biological condition of a subject resulting from inflammation, or characterizing the degree of inflammation.


A “large number” of data sets based on a common panel of genes is a number of data sets sufficiently large to permit a statistically significant conclusion to be drawn with respect to an instance of a data set based on the same panel.


“Negative predictive value” or “NPV” is calculated by TN/(TN+FN) or the true negative fraction of all negative test results. It also is inherently impacted by the prevalence of the disease and pre-test probability of the population intended to be tested.


See, e.g., O'Marcaigh A S, Jacobson R M, “Estimating the Predictive Value of a Diagnostic Test, How to Prevent Misleading or Confusing Results,” Clin. Ped. 1993, 32(8): 485-491, which discusses specificity, sensitivity, and positive and negative predictive values of a test, e.g., a clinical diagnostic test. Often, for binary disease state classification approaches using a continuous diagnostic test measurement, the sensitivity and specificity is summarized by Receiver Operating Characteristics (ROC) curves according to Pepe et al., “Limitations of the Odds Ratio in Gauging the Performance of a Diagnostic, Prognostic, or Screening Marker,” Am. J. Epidemiol 2004, 159 (9): 882-890, and summarized by the Area Under the Curve (AUC) or c-statistic, an indicator that allows representation of the sensitivity and specificity of a test, assay, or method over the entire range of test (or assay) cut points with just a single value. See also, e.g., Shultz, “Clinical Interpretation of Laboratory Procedures,” chapter 14 in Teitz, Fundamentals of Clinical Chemistry, Burtis and Ashwood (eds.), 4th edition 1996, W.B. Saunders Company, pages 192-199; and Zweig et al., “ROC Curve Analysis: An Example Showing the Relationships Among Serum Lipid and Apolipoprotein Concentrations in Identifying Subjects with Coronary Artery Disease,” Clin. Chem., 1992, 38(8): 1425-1428. An alternative approach using likelihood functions, BIC, odds ratios, information theory, predictive values, calibration (including goodness-of-fit), and reclassification measurements is summarized according to Cook, “Use and Misuse of the Receiver Operating Characteristic Curve in Risk Prediction,” Circulation 2007, 115: 928-935.


A “normal” subject is a subject who is generally in good health, has not been diagnosed with prostate cancer, is asymptomatic for prostate cancer, and lacks the traditional laboratory risk factors for prostate cancer.


A “normative” condition of a subject to whom a composition is to be administered means the condition of a subject before administration, even if the subject happens to be suffering from a disease.


A “panel” of genes is a set of genes including at least two constituents.


A “population of cells” refers to any group of cells wherein there is an underlying commonality or relationship between the members in the population of cells, including a group of cells taken from an organism or from a culture of cells or from a biopsy, for example.


“Positive predictive value” or “PPV” is calculated by TP/(TP+FP) or the true positive fraction of all positive test results. It is inherently impacted by the prevalence of the disease and pre-test probability of the population intended to be tested.


“Prostate cancer” is the malignant growth of abnormal cells in the prostate gland, capable of invading and destroying other prostate cells, and spreading (metastasizing) to other parts of the body, including bones and lymph nodes. As defined herein, the term “prostate cancer” includes Stage 1, Stage 2, Stage 3, and Stage 4 prostate cancer as determined by the Tumor/Nodes/Metastases (“TNM”) system which takes into account the size of the tumor, the number of involved lymph nodes, and the presence of any other metastases; or Stage A, Stage B, Stage C, and Stage D, as determined by the Jewitt-Whitmore system.


“Risk” in the context of the present invention, relates to the probability that an event will occur over a specific time period, and can mean a subject's “absolute” risk or “relative” risk. Absolute risk can be measured with reference to either actual observation post-measurement for the relevant time cohort, or with reference to index values developed from statistically valid historical cohorts that have been followed for the relevant time period. Relative risk refers to the ratio of absolute risks of a subject compared either to the absolute risks of lower risk cohorts, across population divisions (such as tertiles, quartiles, quintiles, or deciles, etc.) or an average population risk, which can vary by how clinical risk factors are assessed. Odds ratios, the proportion of positive events to negative events for a given test result, are also commonly used (odds are according to the formula p/(1−p) where p is the probability of event and (1−p) is the probability of no event) to no-conversion.


“Risk evaluation,” or “evaluation of risk” in the context of the present invention encompasses making a prediction of the probability, odds, or likelihood that an event or disease state may occur, and/or the rate of occurrence of the event or conversion from one disease state to another, i.e., from a normal condition to cancer or from cancer remission to cancer, or from primary cancer occurrence to occurrence of a cancer metastasis. Risk evaluation can also comprise prediction of future clinical parameters, traditional laboratory risk factor values, or other indices of cancer results, either in absolute or relative terms in reference to a previously measured population. Such differing use may require different constituents of a Gene Expression Panel (Precision Profile™) combinations and individualized panels, mathematical algorithms, and/or cut-off points, but be subject to the same aforementioned measurements of accuracy and performance for the respective intended use.


A “sample” from a subject may include a single cell or multiple cells or fragments of cells or an aliquot of body fluid, taken from the subject, by means including venipuncture, excretion, ejaculation, massage, biopsy, needle aspirate, lavage sample, scraping, surgical incision or intervention or other means known in the art. The sample is blood, urine, spinal fluid, lymph, mucosal secretions, prostatic fluid, semen, haemolymph or any other body fluid known in the art for a subject. The sample is also a tissue sample. The sample is or contains a circulating endothelial cell or a circulating tumor cell.


“Sensitivity” is calculated by TP/(TP+FN) or the true positive fraction of disease subjects.


“Specificity” is calculated by TN/(TN+FP) or the true negative fraction of non-disease or normal subjects.


By “statistically significant”, it is meant that the alteration is greater than what might be expected to happen by chance alone (which could be a “false positive”). Statistical significance can be determined by any method known in the art. Commonly used measures of significance include the p-value, which presents the probability of obtaining a result at least as extreme as a given data point, assuming the data point was the result of chance alone. A result is often considered highly significant at a p-value of 0.05 or less and statistically significant at a p-value of 0.10 or less. Such p-values depend significantly on the power of the study performed.


A “set” or “population” of samples or subjects refers to a defined or selected group of samples or subjects wherein there is an underlying commonality or relationship between the members included in the set or population of samples or subjects.


A “Signature Profile” is an experimentally verified subset of a Gene Expression Profile selected to discriminate a biological condition, agent or physiological mechanism of action.


A “Signature Panel” is a subset of a Gene Expression Panel (Precision Profile™), the constituents of which are selected to permit discrimination of a biological condition, agent or physiological mechanism of action.


A “subject” is a cell, tissue, or organism, human or non-human, whether in vivo, ex vivo or in vitro, under observation. As used herein, reference to evaluating the biological condition of a subject based on a sample from the subject, includes using blood or other tissue sample from a human subject to evaluate the human subject's condition; it also includes, for example, using a blood sample itself as the subject to evaluate, for example, the effect of therapy or an agent upon the sample.


A “stimulus” includes (i) a monitored physical interaction with a subject, for example ultraviolet A or B, or light therapy for seasonal affective disorder, or treatment of psoriasis with psoralen or treatment of cancer with embedded radioactive seeds, other radiation exposure, and (ii) any monitored physical, mental, emotional, or spiritual activity or inactivity of a subject.


“Therapy” includes all interventions whether biological, chemical, physical, metaphysical, or combination of the foregoing, intended to sustain or alter the monitored biological condition of a subject.


“TN” is true negative, which for a disease state test means classifying a non-disease or normal subject correctly.


“TP” is true positive, which for a disease state test means correctly classifying a disease subject.


The PCT patent application publication number WO 01/25473, published Apr. 12, 2001, entitled “Systems and Methods for Characterizing a Biological Condition or Agent Using Calibrated Gene Expression Profiles,” filed for an invention by inventors herein, and which is herein incorporated by reference, discloses the use of Gene Expression Panels (Precision Profiles™) for the evaluation of (i) biological condition (including with respect to health and disease) and (ii) the effect of one or more agents on biological condition (including with respect to health, toxicity, therapeutic treatment and drug interaction).


In particular, the Gene Expression Panels (Precision Profiles™) described herein may be used, without limitation, for measurement of the following: therapeutic efficacy of natural or synthetic compositions or stimuli that may be formulated individually or in combinations or mixtures for a range of targeted biological conditions; prediction of toxicological effects and dose effectiveness of a composition or mixture of compositions for an individual or for a population or set of individuals or for a population of cells; determination of how two or more different agents administered in a single treatment might interact so as to detect any of synergistic, additive, negative, neutral or toxic activity; performing pre-clinical and clinical trials by providing new criteria for pre-selecting subjects according to informative profile data sets for revealing disease status; and conducting preliminary dosage studies for these patients prior to conducting phase 1 or 2 trials. These Gene Expression Panels (Precision Profiles™) may be employed with respect to samples derived from subjects in order to evaluate their biological condition.


The present invention provides Gene Expression Panels (Precision Profiles™) for the evaluation or characterization of prostate cancer and conditions related to prostate cancer in a subject. In addition, the Gene Expression Panels described herein also provide for the evaluation of the effect of one or more agents for the treatment of prostate cancer and conditions related to prostate cancer.


The Gene Expression Panels (Precision Profiles™) are referred to herein as the Precision Profile™ for Prostate Cancer, the Precision Profile™ for Inflammatory Response, the Human Cancer General Precision Profile™, and the Precision Profile™ for EGR1. The Precision Profile™ for Prostate Cancer includes one or more genes, e.g., constituents, listed in Table 1, whose expression is associated with prostate cancer or conditions related to prostate cancer. The Precision Profile™ for Inflammatory Response includes one or more genes, e.g., constituents, listed in Table 2, whose expression is associated with inflammatory response and cancer. The Human Cancer General Precision Profile™ includes one or more genes, e.g., constituents, listed in Table 3, whose expression is associated generally with human cancer (including without limitation prostate, breast, ovarian, cervical, lung, colon, and skin cancer).


The Precision Profile™ for EGR1 includes one or more genes, e.g., constituents listed in Table 4, whose expression is associated with the role early growth response (EGR) gene family plays in human cancer. The Precision Profile™ for EGR1 is composed of members of the early growth response (EGR) family of zinc finger transcriptional regulators; EGR1, 2, 3 & 4 and their binding proteins; NAB1 & NAB2 which function to repress transcription induced by some members of the EGR family of transactivators. In addition to the early growth response genes, The Precision Profile™ for EGR1 includes genes involved in the regulation of immediate early gene expression, genes that are themselves regulated by members of the immediate early gene family (and EGR1 in particular) and genes whose products interact with EGR1, serving as co-activators of transcriptional regulation.


Each gene of the Precision Profile™ for Prostate Cancer, the Precision Profile™ for Inflammatory Response, the Human Cancer General Precision Profile™, and the Precision Profile™ for EGR1, is referred to herein as a prostate cancer associated gene or a prostate cancer associated constituent. In addition to the genes listed in the Precision Profiles™ herein, prostate cancer associated genes or prostate cancer associated constituents include oncogenes, tumor suppression genes, tumor progression genes, angiogenesis genes, and lymphogenesis genes.


The present invention also provides a method for monitoring and determining the efficacy of immunotherapy, using the Gene Expression Panels (Precision Profiles™) described herein. Immunotherapy target genes include, without limitation, TNFRSF10A, TMPRSS2, SPARC, ALOX5, PTPRC, PDGFA, PDGFB, BCL2, BAD, BAK1, BAG2, KIT, MUC1, ADAM17, CD19, CD4, CD40LG, CD86, CCR5, CTLA4, HSPA1A, IFNG, IL23A, PTGS2, TLR2, TGFB1, TNF, TNFRSF13B, TNFRSF10B, VEGF, MYC, AURKA, BAX, CDH1, CASP2, CD22, IGF1R, ITGA5, ITGAV, ITGB1, ITGB3, IL6R, JAK1, JAK2, JAK3, MAP3K1, PDGFRA, COX2, PSCA, THBS1, THBS2, TYMS, TLR1, TLR3, TLR6, TLR7, TLR9, TNFSF10, TNFSF13B, TNFRSF17, TP53, ABL1, ABL2, AKT1, KRAS, BRAF, RAF1, ERBB4, ERBB2, ERBB3, AKT2, EGFR, IL12, and IL15. For example, the present invention provides a method for monitoring and determining the efficacy of immunotherapy by monitoring the immunotherapy associated genes, i.e., constituents, listed in Table 5.


It has been discovered that valuable and unexpected results may be achieved when the quantitative measurement of constituents is performed under repeatable conditions (within a degree of repeatability of measurement of better than twenty percent, preferably ten percent or better, more preferably five percent or better, and more preferably three percent or better). For the purposes of this description and the following claims, a degree of repeatability of measurement of better than twenty percent may be used as providing measurement conditions that are “substantially repeatable”. In particular, it is desirable that each time a measurement is obtained corresponding to the level of expression of a constituent in a particular sample, substantially the same measurement should result for substantially the same level of expression. In this manner, expression levels for a constituent in a Gene Expression Panel (Precision Profile™) may be meaningfully compared from sample to sample. Even if the expression level measurements for a particular constituent are inaccurate (for example, say, 30% too low), the criterion of repeatability means that all measurements for this constituent, if skewed, will nevertheless be skewed systematically, and therefore measurements of expression level of the constituent may be compared meaningfully. In this fashion valuable information may be obtained and compared concerning expression of the constituent under varied circumstances.


In addition to the criterion of repeatability, it is desirable that a second criterion also be satisfied, namely that quantitative measurement of constituents is performed under conditions wherein efficiencies of amplification for all constituents are substantially similar as defined herein. When both of these criteria are satisfied, then measurement of the expression level of one constituent may be meaningfully compared with measurement of the expression level of another constituent in a given sample and from sample to sample.


The evaluation or characterization of prostate cancer is defined to be diagnosing prostate cancer, assessing the presence or absence of prostate cancer, assessing the risk of developing prostate cancer or assessing the prognosis of a subject with prostate cancer, assessing the recurrence of prostate cancer or assessing the presence or absence of a metastasis. Similarly, the evaluation or characterization of an agent for treatment of prostate cancer includes identifying agents suitable for the treatment of prostate cancer. The agents can be compounds known to treat prostate cancer or compounds that have not been shown to treat prostate cancer.


The agent to be evaluated or characterized for the treatment of prostate cancer may be an alkylating agent (e.g., Cisplatin, Carboplatin, Oxaliplatin, BBR3464, Chlorambucil, Chlormethine, Cyclophosphamides, Ifosmade, Melphalan, Carmustine, Fotemustine, Lomustine, Streptozocin, Busulfan, Dacarbazine, Mechlorethamine, Procarbazine, Temozolomide, ThioTPA, and Uramustine); an anti-metabolite (e.g., purine (azathioprine, mercaptopurine), pyrimidine (Capecitabine, Cytarabine, Fluorouracil, Gemcitabine), and folic acid (Methotrexate, Pemetrexed, Raltitrexed)); a vinca alkaloid (e.g., Vincristine, Vinblastine, Vinorelbine, Vindesine); a taxane (e.g., paclitaxel, docetaxel, BMS-247550); an anthracycline (e.g., Daunorubicin, Doxorubicin, Epirubicin, Idarubicin, Mitoxantrone, Valrubicin, Bleomycin, Hydroxyurea, and Mitomycin); a topoisomerase inhibitor (e.g., Topotecan, Irinotecan Etoposide, and Teniposide); a monoclonal antibody (e.g., Alemtuzumab, Bevacizumab, Cetuximab, Gemtuzumab, Panitumumab, Rituximab, and Trastuzumab); a photosensitizer (e.g., Aminolevulinic acid, Methyl aminolevulinate, Porfimer sodium, and Verteporfin); a tyrosine kinase inhibitor (e.g., Gleevec™); an epidermal growth factor receptor inhibitor (e.g., Iressa™, erlotinib (Tarceva™), gefitinib); an FPTase inhibitor (e.g., FTIs (R115777, SCH66336, L-778,123)); a KDR inhibitor (e.g., SU6668, PTK787); a proteosome inhibitor (e.g., PS341); a TS/DNA synthesis inhibitor (e.g., ZD9331, Raltirexed (ZD1694, Tomudex), ZD9331, 5-FU)); an S-adenosyl-methionine decarboxylase inhibitor (e.g., SAM468A); a DNA methylating agent (e.g., TMZ); a DNA binding agent (e.g., PZA); an agent which binds and inactivates O6-alkylguanine AGT (e.g., BG); a c-raf-1 antisense oligo-deoxynucleotide (e.g., ISIS-5132 (CGP-69846A)); tumor immunotherapy (see Table 5); a steroidal and/or non-steroidal anti-inflammatory agent (e.g., corticosteroids, COX-2 inhibitors); or other agents such as Alitretinoin, Altretamine, Amsacrine, Anagrelide, Arsenic trioxide, Asparaginase, Bexarotene, Bortezomib, Celecoxib, Dasatinib, Denileukin Diftitox, Estramustine, Hydroxycarbamide, Imatinib, Pentostatin, Masoprocol, Mitotane, Pegaspargase, and Tretinoin.


Prostate cancer and conditions related to prostate cancer is evaluated by determining the level of expression (e.g., a quantitative measure) of an effective number (e.g., one or more) of constituents of a Gene Expression Panel (Precision Profile™) disclosed herein (i.e., Tables 1-4). By an effective number is meant the number of constituents that need to be measured in order to discriminate between a normal subject and a subject having prostate cancer. Preferably the constituents are selected as to discriminate between a normal subject and a subject having prostate cancer with at least 75% accuracy, more preferably 80%, 85%, 90%, 95%, 97%, 98%, 99% or greater accuracy.


The level of expression is determined by any means known in the art, such as for example quantitative PCR. The measurement is obtained under conditions that are substantially repeatable. Optionally, the qualitative measure of the constituent is compared to a reference or baseline level or value (e.g. a baseline profile set). In one embodiment, the reference or baseline level is a level of expression of one or more constituents in one or more subjects known not to be suffering from prostate cancer (e.g., normal, healthy individual(s)). Alternatively, the reference or baseline level is derived from the level of expression of one or more constituents in one or more subjects known to be suffering from prostate cancer. Optionally, the baseline level is derived from the same subject from which the first measure is derived. For example, the baseline is taken from a subject prior to receiving treatment or surgery for prostate cancer, or at different time periods during a course of treatment. Such methods allow for the evaluation of a particular treatment for a selected individual. Comparison can be performed on test (e.g., patient) and reference samples (e.g., baseline) measured concurrently or at temporally distinct times. An example of the latter is the use of compiled expression information, e.g., a gene expression database, which assembles information about expression levels of cancer associated genes.


A reference or baseline level or value as used herein can be used interchangeably and is meant to be relative to a number or value derived from population studies, including without limitation, such subjects having similar age range, subjects in the same or similar ethnic group, sex, or, in female subjects, pre-menopausal or post-menopausal subjects, or relative to the starting sample of a subject undergoing treatment for prostate cancer. Such reference values can be derived from statistical analyses and/or risk prediction data of populations obtained from mathematical algorithms and computed indices of prostate cancer. Reference indices can also be constructed and used using algorithms and other methods of statistical and structural classification.


In one embodiment of the present invention, the reference or baseline value is the amount of expression of a cancer associated gene in a control sample derived from one or more subjects who are both asymptomatic and lack traditional laboratory risk factors for prostate cancer.


In another embodiment of the present invention, the reference or baseline value is the level of cancer associated genes in a control sample derived from one or more subjects who are not at risk or at low risk for developing prostate cancer.


In a further embodiment, such subjects are monitored and/or periodically retested for a diagnostically relevant period of time (“longitudinal studies”) following such test to verify continued absence from prostate cancer (disease or event free survival). Such period of time may be one year, two years, two to five years, five years, five to ten years, ten years, or ten or more years from the initial testing date for determination of the reference or baseline value. Furthermore, retrospective measurement of cancer associated genes in properly banked historical subject samples may be used in establishing these reference or baseline values, thus shortening the study time required, presuming the subjects have been appropriately followed during the intervening period through the intended horizon of the product claim.


A reference or baseline value can also comprise the amounts of cancer associated genes derived from subjects who show an improvement in cancer status as a result of treatments and/or therapies for the cancer being treated and/or evaluated.


In another embodiment, the reference or baseline value is an index value or a baseline value. An index value or baseline value is a composite sample of an effective amount of cancer associated genes from one or more subjects who do not have cancer.


For example, where the reference or baseline level is comprised of the amounts of cancer associated genes derived from one or more subjects who have not been diagnosed with prostate cancer, or are not known to be suffering from prostate cancer, a change (e.g., increase or decrease) in the expression level of a cancer associated gene in the patient-derived sample as compared to the expression level of such gene in the reference or baseline level indicates that the subject is suffering from or is at risk of developing prostate cancer. In contrast, when the methods are applied prophylactically, a similar level of expression in the patient-derived sample of a prostate cancer associated gene compared to such gene in the baseline level indicates that the subject is not suffering from or is at risk of developing prostate cancer.


Where the reference or baseline level is comprised of the amounts of cancer associated genes derived from one or more subjects who have been diagnosed with prostate cancer, or are known to be suffering from prostate cancer, a similarity in the expression pattern in the patient-derived sample of a prostate cancer gene compared to the prostate cancer baseline level indicates that the subject is suffering from or is at risk of developing prostate cancer.


Expression of a prostate cancer gene also allows for the course of treatment of prostate cancer to be monitored. In this method, a biological sample is provided from a subject undergoing treatment, e.g., if desired, biological samples are obtained from the subject at various time points before, during, or after treatment. Expression of a prostate cancer gene is then determined and compared to a reference or baseline profile. The baseline profile may be taken or derived from one or more individuals who have been exposed to the treatment. Alternatively, the baseline level may be taken or derived from one or more individuals who have not been exposed to the treatment. For example, samples may be collected from subjects who have received initial treatment for prostate cancer and subsequent treatment for prostate cancer to monitor the progress of the treatment.


Differences in the genetic makeup of individuals can result in differences in their relative abilities to metabolize various drugs. Accordingly, the Precision Profile™ for Prostate Cancer (Table 1), the Precision Profile™ for Inflammatory Response (Table 2), the Human Cancer General Precision Profile™ (Table 3), and the Precision Profile™ for EGR1 (Table 4), disclosed herein, allow for a putative therapeutic or prophylactic to be tested from a selected subject in order to determine if the agent is suitable for treating or preventing prostate cancer in the subject. Additionally, other genes known to be associated with toxicity may be used. By suitable for treatment is meant determining whether the agent will be efficacious, not efficacious, or toxic for a particular individual. By toxic it is meant that the manifestations of one or more adverse effects of a drug when administered therapeutically. For example, a drug is toxic when it disrupts one or more normal physiological pathways.


To identify a therapeutic that is appropriate for a specific subject, a test sample from the subject is exposed to a candidate therapeutic agent, and the expression of one or more of prostate cancer genes is determined. A subject sample is incubated in the presence of a candidate agent and the pattern of prostate cancer gene expression in the test sample is measured and compared to a baseline profile, e.g., a prostate cancer baseline profile or a non-prostate cancer baseline profile or an index value. The test agent can be any compound or composition. For example, the test agent is a compound known to be useful in the treatment of prostate cancer. Alternatively, the test agent is a compound that has not previously been used to treat prostate cancer.


If the reference sample, e.g., baseline is from a subject that does not have prostate cancer a similarity in the pattern of expression of prostate cancer genes in the test sample compared to the reference sample indicates that the treatment is efficacious. Whereas a change in the pattern of expression of prostate cancer genes in the test sample compared to the reference sample indicates a less favorable clinical outcome or prognosis. By “efficacious” is meant that the treatment leads to a decrease of a sign or symptom of prostate cancer in the subject or a change in the pattern of expression of a prostate cancer gene such that the gene expression pattern has an increase in similarity to that of a reference or baseline pattern. Assessment of prostate cancer is made using standard clinical protocols. Efficacy is determined in association with any known method for diagnosing or treating prostate cancer.


A Gene Expression Panel (Precision Profile™) is selected in a manner so that quantitative measurement of RNA or protein constituents in the Panel constitutes a measurement of a biological condition of a subject. In one kind of arrangement, a calibrated profile data set is employed. Each member of the calibrated profile data set is a function of (i) a measure of a distinct constituent of a Gene Expression Panel (Precision Profile™) and (ii) a baseline quantity.


Additional embodiments relate to the use of an index or algorithm resulting from quantitative measurement of constituents, and optionally in addition, derived from either expert analysis or computational biology (a) in the analysis of complex data sets; (b) to control or normalize the influence of uninformative or otherwise minor variances in gene expression values between samples or subjects; (c) to simplify the characterization of a complex data set for comparison to other complex data sets, databases or indices or algorithms derived from complex data sets; (d) to monitor a biological condition of a subject; (e) for measurement of therapeutic efficacy of natural or synthetic compositions or stimuli that may be formulated individually or in combinations or mixtures for a range of targeted biological conditions; (f) for predictions of toxicological effects and dose effectiveness of a composition or mixture of compositions for an individual or for a population or set of individuals or for a population of cells; (g) for determination of how two or more different agents administered in a single treatment might interact so as to detect any of synergistic, additive, negative, neutral of toxic activity (h) for performing pre-clinical and clinical trials by providing new criteria for pre-selecting subjects according to informative profile data sets for revealing disease status and conducting preliminary dosage studies for these patients prior to conducting Phase 1 or 2 trials.


Gene expression profiling and the use of index characterization for a particular condition or agent or both may be used to reduce the cost of Phase 3 clinical trials and may be used beyond Phase 3 trials; labeling for approved drugs; selection of suitable medication in a class of medications for a particular patient that is directed to their unique physiology; diagnosing or determining a prognosis of a medical condition or an infection which may precede onset of symptoms or alternatively diagnosing adverse side effects associated with administration of a therapeutic agent; managing the health care of a patient; and quality control for different batches of an agent or a mixture of agents.


The Subject

The methods disclosed herein may be applied to cells of humans, mammals or other organisms without the need for undue experimentation by one of ordinary skill in the art because all cells transcribe RNA and it is known in the art how to extract RNA from all types of cells.


A subject can include those who have not been previously diagnosed as having prostate cancer or a condition related to prostate cancer. Alternatively, a subject can also include those who have already been diagnosed as having prostate cancer or a condition related to prostate cancer. Diagnosis of prostate cancer is made, for example, from any one or combination of the following procedures: a medical history, physical examination, e.g., digital rectal examination, blood tests, e.g., a PSA test, and screening tests and tissue sampling procedures e.g., cytoscopy and transrectal ultrasonography, and biopsy, in conjunction with Gleason Score.


Optionally, the subject has been previously treated with a surgical procedure for removing prostate cancer or a condition related to prostate cancer, including but not limited to any one or combination of the following treatments: prostatectomy (including radical retropubic and radical perineal prostatectomy), transurethral resection, orchiectomy, and cryosurgery. Optionally, the subject has previously been treated with radiation therapy including but not limited to external beam radiation therapy and brachytherapy). Optionally, the subject has been treated with hormonal therapy, including but not limited to orchiectomy, anti-androgen therapy (e.g., flutamide, bicalutamide, nilutamide, cyproterone acetate, ketoconazole and aminoglutethimide), and GnRH agonists (e.g., leuprolide, goserelin, triptorelin, and buserelin). Optionally, the subject has previously been treated with chemotherapy for palliative care (e.g., docetaxel with a corticosteroid such as prednisone). Optionally, the subject has previously been treated with any one or combination of such radiation therapy, hormonal therapy, and chemotherapy, as previously described, alone, in combination, or in succession with a surgical procedure for removing prostate cancer as previously described. Optionally, the subject may be treated with any of the agents previously described; alone, or in combination with a surgical procedure for removing prostate cancer and/or radiation therapy as previously described.


A subject can also include those who are suffering from, or at risk of developing prostate cancer or a condition related to prostate cancer, such as those who exhibit known risk factors for prostate cancer or conditions related to prostate cancer. Known risk factors for prostate cancer include, but are not limited to: age (increased risk above age 50), race (higher prevalence among African American men), nationality (higher prevalence in North America and northwestern Europe), family history, and diet (increased risk with a high animal fat diet).


Selecting Constituents of a Gene Expression Panel (Precision Profile™)

The general approach to selecting constituents of a Gene Expression Panel (Precision Profile™) has been described in PCT application publication number WO 01/25473, incorporated herein in its entirety. A wide range of Gene Expression Panels (Precision Profiles™) have been designed and experimentally validated, each panel providing a quantitative measure of biological condition that is derived from a sample of blood or other tissue. For each panel, experiments have verified that a Gene Expression Profile using the panel's constituents is informative of a biological condition. (It has also been demonstrated that in being informative of biological condition, the Gene Expression Profile is used, among other things, to measure the effectiveness of therapy, as well as to provide a target for therapeutic intervention).


In addition to the Precision Profile™ for Prostate Cancer (Table 1), the Precision Profile™ for Inflammatory Response (Table 2), the Human Cancer General Precision Profile™ (Table 3), and the Precision Profile™ for EGR1 (Table 4), include relevant genes which may be selected for a given Precision Profiles™, such as the Precision Profiles™ demonstrated herein to be useful in the evaluation of prostate cancer and conditions related to prostate cancer.


Inflammation and Cancer

Evidence has shown that cancer in adults arises frequently in the setting of chronic inflammation. Epidemiological and experimental studies provide stong support for the concept that inflammation facilitates malignant growth. Inflammatory components have been shown to 1) induce DNA damage, which contributes to genetic instability (e.g., cell mutation) and transformed cell proliferation (Balkwill and Mantovani, Lancet 357:539-545 (2001)); 2) promote angiogenesis, thereby enhancing tumor growth and invasiveness (Coussens L. M. and Z. Werb, Nature 429:860-867 (2002)); and 3) impair myelopoiesis and hemopoiesis, which cause immune dysfunction and inhibit immune surveillance (Kusmartsev and Gabrilovic, Cancer Immunol. Immunother. 51:293-298 (2002); Serafini et al., Cancer Immunol. Immunther. 53:64-72 (2004)).


Studies suggest that inflammation promotes malignancy via proinflammatory cytokines, including but not limited to IL-1β, which enhance immune suppression through the induction of myeloid suppressor cells, and that these cells down regulate immune surveillance and allow the outgrowth and proliferation of malignant cells by inhibiting the activation and/or function of tumor-specific lymphocytes. (Bunt et al., J. Immunol. 176: 284-290 (2006). Such studies are consistent with findings that myeloid suppressor cells are found in many cancer patients, including lung and breast cancer, and that chronic inflammation in some of these malignancies may enhance malignant growth (Coussens L. M. and Z. Werb, 2002).


Additionally, many cancers express an extensive repertoire of chemokines and chemokine receptors, and may be characterized by dis-regulated production of chemokines and abnormal chemokine receptor signaling and expression. Tumor-associated chemokines are thought to play several roles in the biology of primary and metastatic cancer such as: control of leukocyte infiltration into the tumor, manipulation of the tumor immune response, regulation of angiogenesis, autocrine or paracrine growth and survival factors, and control of the movement of the cancer cells. Thus, these activities likely contribute to growth within/outside the tumor microenvironment and to stimulate anti-tumor host responses.


As tumors progress, it is common to observe immune deficits not only within cells in the tumor microenvironment but also frequently in the systemic circulation. Whole blood contains representative populations of all the mature cells of the immune system as well as secretory proteins associated with cellular communications. The earliest observable changes of cellular immune activity are altered levels of gene expression within the various immune cell types. Immune responses are now understood to be a rich, highly complex tapestry of cell-cell signaling events driven by associated pathways and cascades—all involving modified activities of gene transcription. This highly interrelated system of cell response is immediately activated upon any immune challenge, including the events surrounding host response to prostate cancer and treatment. Modified gene expression precedes the release of cytokines and other immunologically important signaling elements.


As such, inflammation genes, such as the genes listed in the Precision Profile™ for Inflammatory Response (Table 2) are useful for distinguishing between subjects suffering from prostate cancer and normal subjects, in addition to the other gene panels, i.e., Precision Profiles™, described herein.


Early Growth Response Gene Family and Cancer

The early growth response (EGR) genes are rapidly induced following mitogenic stimulation in diverse cell types, including fibroblasts, epithelial cells and B lymphocytes. The EGR genes are members of the broader “Immediate Early Gene” (IEG) family, whose genes are activated in the first round of response to extracellular signals such as growth factors and neurotransmitters, prior to new protein synthesis. The IEG's are well known as early regulators of cell growth and differentiation signals, in addition to playing a role in other cellular processes. Some other well characterized members of the IEG family include the c-myc, c-fos and c-jun oncogenes. Many of the immediate early gene products function as transcription factors and DNA-binding proteins, though other IEG's also include secreted proteins, cytoskeletal proteins and receptor subunits. EGR1 expression is induced by a wide variety of stimuli. It is rapidly induced by mitogens such as platelet derived growth factor (PDGF), fibroblast growth factor (FGF), and epidermal growth factor (EGF), as well as by modified lipoproteins, shear/mechanical stresses, and free radicals. Interestingly, expression of the EGR1 gene is also regulated by the oncogenes v-raf, v-fps and v-src as demonstrated in transfection analysis of cells using promoter-reporter constructs. This regulation is mediated by the serum response elements (SREs) present within the EGR1 promoter region. It has also been demonstrated that hypoxia, which occurs during development of cancers, induces EGR1 expression. EGR1 subsequently enhances the expression of endogenous EGFR, which plays an important role in cell growth (over-expression of EGFR can lead to transformation). Finally, EGR1 has also been shown to be induced by Smad3, a signaling component of the TGFB pathway.


In its role as a transcriptional regulator, the EGR1 protein binds specifically to the G+C rich EGR consensus sequence present within the promoter region of genes activated by EGR1. EGR1 also interacts with additional proteins (CREBBP/EP300) which co-regulate transcription of EGR1 activated genes. Many of the genes activated by EGR1 also stimulate the expression of EGR1, creating a positive feedback loop. Genes regulated by EGR1 include the mitogens: platelet derived growth factor (PDGFA), fibroblast growth factor (FGF), and epidermal growth factor (EGF) in addition to TNF, IL2, PLAU, ICAM1, TP53, ALOX5, PTEN, FN1 and TGFB1.


As such, early growth response genes, or genes associated therewith, such as the genes listed in the Precision Profile™ for EGR1 (Table 4) are useful for distinguishing between subjects suffering from prostate cancer and normal subjects, in addition to the other gene panels, i.e., Precision Profiles™, described herein.


In general, panels may be constructed and experimentally validated by one of ordinary skill in the art in accordance with the principles articulated in the present application.


Gene Expression Profiles Based on Gene Expression Panels of the Present Invention


Tables 1A-1I were derived from a study of the gene expression patterns described in Example 3 below. Tables 1A, 1D, and 1G describe all 1 and 2-gene logistic regression models based on genes from the Precision Profile™ for Prostate Cancer (Table 1) which are capable of distinguishing between subjects suffering from prostate cancer and normal subjects with at least 75% accuracy. For example, the first row of Table 1A, describes a 2-gene model, CDH1 and EGR1, capable of correctly classifying prostate cancer (cohort 1)-afflicted subjects with 100% accuracy, and normal subjects with 98% accuracy. The first row of Table 1D describes a 2-gene model, EGR1 and MYC, capable of correctly classifying prostate cancer (cohort 4)-afflicted subjects with 89.5% accuracy, and normal subjects with 90% accuracy. The first row of Table 1G describes a 2-gene model, EGR1 and MYC, capable of classifying prostate cancer-afflicted subjects (all cohorts) with 85% accuracy, and normal subjects with 86% accuracy.


Tables 2A-2I were derived from a study of the gene expression patterns described in Example 4 below. Tables 2A, 2D and 2G describe all 1 and 2-gene logistic regression models based on genes from the Precision Profile™ for Inflammatory Response (Table 2), which are capable of distinguishing between subjects suffering from prostate cancer and normal subjects with at least 75% accuracy. For example, the first row of Table 2A, describes a 2-gene model, CASP1 and MIF, capable of correctly classifying prostate cancer (cohort 1)-afflicted subjects with 100% accuracy, and normal subjects with 98% accuracy. The first row of Table 2D describes a 2-gene model, CCR3 and SERPINA1, capable of correctly classifying prostate cancer (cohort 4)-afflicted subjects with 94.7% accuracy, and normal subjects with 96% accuracy. The first row of Table 2G describes a 2-gene model, CASP1 and MIF, capable of classifying prostate cancer-afflicted subjects (all cohorts) with 95% accuracy, and normal subjects with 96% accuracy.


Tables 3A-3I were derived from a study of the gene expression patterns described in Example 5 below. Tables 3A, 3D and 3G describe all 1 and 2-gene logistic regression models based on genes from the Human Cancer General Precision Profile™ (Table 3), which are capable of distinguishing between subjects suffering from prostate cancer and normal subjects with at least 75% accuracy. For example, the first row of Table 3A, describes a 2-gene model, EGR1 and NME4, capable of correctly classifying prostate cancer (cohort 1)-afflicted subjects with 100% accuracy, and normal subjects with 100% accuracy. The first row of Table 3D describes a 2-gene model, BAD and RB1, capable of correctly classifying prostate cancer (cohort 4)-afflicted subjects with 96% accuracy, and normal subjects with 98% accuracy. The first row of Table 3G describes a 2-gene model, BAD and RB1, capable of classifying prostate cancer-afflicted subjects (all cohorts) with 98.3% accuracy, and normal subjects with 98% accuracy.


Tables 4A-4I were derived from a study of the gene expression patterns described in Example 6 below. Tables 4A, 4D and 4G describe all 1 and 2-gene logistic regression models based on genes from the Precision Profile™ for EGR1 (Table 4), which are capable of distinguishing between subjects suffering from prostate cancer and normal subjects with at least 75% accuracy. For example, the first row of Table 4A, describes a 2-gene model, ALOX5 and RAF1, capable of correctly classifying prostate cancer (cohort 1)-afflicted subjects with 100% accuracy, and normal subjects with 96% accuracy. The first row of Table 4D describes a 2-gene model, ALOX5 and CEBPB, capable of correctly classifying prostate cancer (cohort 4)-afflicted subjects with 95.8% accuracy, and normal subjects with 96% accuracy. The first row of Table 4G describes a 2-gene model, ALOX5 and S100A6, capable of classifying prostate cancer-afflicted subjects (all cohorts) with 91.2% accuracy, and normal subjects with 92% accuracy.


Design of Assays

Typically, a sample is run through a panel in replicates of three for each target gene (assay); that is, a sample is divided into aliquots and for each aliquot the concentrations of each constituent in a Gene Expression Panel (Precision Profile™) is measured. From over thousands of constituent assays, with each assay conducted in triplicate, an average coefficient of variation was found (standard deviation/average)*100, of less than 2 percent among the normalized ΔCt measurements for each assay (where normalized quantitation of the target mRNA is determined by the difference in threshold cycles between the internal control (e.g., an endogenous marker such as 18S rRNA, or an exogenous marker) and the gene of interest. This is a measure called “intra-assay variability”. Assays have also been conducted on different occasions using the same sample material. This is a measure of “inter-assay variability”. Preferably, the average coefficient of variation of intra-assay variability or inter-assay variability is less than 20%, more preferably less than 10%, more preferably less than 5%, more preferably less than 4%, more preferably less than 3%, more preferably less than 2%, and even more preferably less than 1%.


It has been determined that it is valuable to use the quadruplicate or triplicate test results to identify and eliminate data points that are statistical “outliers”; such data points are those that differ by a percentage greater, for example, than 3% of the average of all three or four values. Moreover, if more than one data point in a set of three or four is excluded by this procedure, then all data for the relevant constituent is discarded.


Measurement of Gene Expression for a Constituent in the Panel

For measuring the amount of a particular RNA in a sample, methods known to one of ordinary skill in the art were used to extract and quantify transcribed RNA from a sample with respect to a constituent of a Gene Expression Panel (Precision Profile™). (See detailed protocols below. Also see PCT application publication number WO 98/24935 herein incorporated by reference for RNA analysis protocols). Briefly, RNA is extracted from a sample such as any tissue, body fluid, cell (e.g., circulating tumor cell) or culture medium in which a population of cells of a subject might be growing. For example, cells may be lysed and RNA eluted in a suitable solution in which to conduct a DNAse reaction. Subsequent to RNA extraction, first strand synthesis may be performed using a reverse transcriptase. Gene amplification, more specifically quantitative PCR assays, can then be conducted and the gene of interest calibrated against an internal marker such as 18S rRNA (Hirayama et al., Blood 92, 1998: 46-52). Any other endogenous marker can be used, such as 28S-25S rRNA and 5S rRNA. Samples are measured in multiple replicates, for example, 3 replicates. In an embodiment of the invention, quantitative PCR is performed using amplification, reporting agents and instruments such as those supplied commercially by Applied Biosystems (Foster City, Calif.). Given a defined efficiency of amplification of target transcripts, the point (e.g., cycle number) that signal from amplified target template is detectable may be directly related to the amount of specific message transcript in the measured sample. Similarly, other quantifiable signals such as fluorescence, enzyme activity, disintegrations per minute, absorbance, etc., when correlated to a known concentration of target templates (e.g., a reference standard curve) or normalized to a standard with limited variability can be used to quantify the number of target templates in an unknown sample.


Although not limited to amplification methods, quantitative gene expression techniques may utilize amplification of the target transcript. Alternatively or in combination with amplification of the target transcript, quantitation of the reporter signal for an internal marker generated by the exponential increase of amplified product may also be used. Amplification of the target template may be accomplished by isothermic gene amplification strategies or by gene amplification by thermal cycling such as PCR.


It is desirable to obtain a definable and reproducible correlation between the amplified target or reporter signal, i.e., internal marker, and the concentration of starting templates. It has been discovered that this objective can be achieved by careful attention to, for example, consistent primer-template ratios and a strict adherence to a narrow permissible level of experimental amplification efficiencies (for example 80.0 to 100%+/−5% relative efficiency, typically 90.0 to 100%+/−5% relative efficiency, more typically 95.0 to 100%+/−2%, and most typically 98 to 100%+/−1% relative efficiency). In determining gene expression levels with regard to a single Gene Expression Profile, it is necessary that all constituents of the panels, including endogenous controls, maintain similar amplification efficiencies, as defined herein, to permit accurate and precise relative measurements for each constituent. Amplification efficiencies are regarded as being “substantially similar”, for the purposes of this description and the following claims, if they differ by no more than approximately 10%, preferably by less than approximately 5%, more preferably by less than approximately 3%, and more preferably by less than approximately 1%. Measurement conditions are regarded as being “substantially repeatable, for the purposes of this description and the following claims, if they differ by no more than approximately +/−10% coefficient of variation (CV), preferably by less than approximately +/−5% CV, more preferably +/−2% CV. These constraints should be observed over the entire range of concentration levels to be measured associated with the relevant biological condition. While it is thus necessary for various embodiments herein to satisfy criteria that measurements are achieved under measurement conditions that are substantially repeatable and wherein specificity and efficiencies of amplification for all constituents are substantially similar, nevertheless, it is within the scope of the present invention as claimed herein to achieve such measurement conditions by adjusting assay results that do not satisfy these criteria directly, in such a manner as to compensate for errors, so that the criteria are satisfied after suitable adjustment of assay results.


In practice, tests are run to assure that these conditions are satisfied. For example, the design of all primer-probe sets are done in house, experimentation is performed to determine which set gives the best performance. Even though primer-probe design can be enhanced using computer techniques known in the art, and notwithstanding common practice, it has been found that experimental validation is still useful. Moreover, in the course of experimental validation, the selected primer-probe combination is associated with a set of features:


The reverse primer should be complementary to the coding DNA strand. In one embodiment, the primer should be located across an intron-exon junction, with not more than four bases of the three-prime end of the reverse primer complementary to the proximal exon. (If more than four bases are complementary, then it would tend to competitively amplify genomic DNA.)


In an embodiment of the invention, the primer probe set should amplify cDNA of less than 110 bases in length and should not amplify, or generate fluorescent signal from, genomic DNA or transcripts or cDNA from related but biologically irrelevant loci.


A suitable target of the selected primer probe is first strand cDNA, which in one embodiment may be prepared from whole blood as follows:


(a) Use of Whole Blood for Ex Vivo Assessment of a Biological Condition


Human blood is obtained by venipuncture and prepared for assay. The aliquots of heparinized, whole blood are mixed with additional test therapeutic compounds and held at 37° C. in an atmosphere of 5% CO2 for 30 minutes. Cells are lysed and nucleic acids, e.g., RNA, are extracted by various standard means.


Nucleic acids, RNA and or DNA, are purified from cells, tissues or fluids of the test population of cells. RNA is preferentially obtained from the nucleic acid mix using a variety of standard procedures (or RNA Isolation Strategies, pp. 55-104, in RNA Methodologies, A laboratory guide for isolation and characterization, 2nd edition, 1998, Robert E. Farrell, Jr., Ed., Academic Press), in the present using a filter-based RNA isolation system from Ambion (RNAqueous™, Phenol-free Total RNA Isolation Kit, Catalog #1912, version 9908; Austin, Tex.).


(b) Amplification Strategies.


Specific RNAs are amplified using message specific primers or random primers. The specific primers are synthesized from data obtained from public databases (e.g., Unigene, National Center for Biotechnology Information, National Library of Medicine, Bethesda, Md.), including information from genomic and cDNA libraries obtained from humans and other animals. Primers are chosen to preferentially amplify from specific RNAs obtained from the test or indicator samples (see, for example, RT PCR, Chapter 15 in RNA Methodologies, A Laboratory Guide for Isolation and Characterization, 2nd edition, 1998, Robert E. Farrell, Jr., Ed., Academic Press; or Chapter 22 pp. 143-151, RNA Isolation and Characterization Protocols, Methods in Molecular Biology, Volume 86, 1998, R. Rapley and D. L. Manning Eds., Human Press, or Chapter 14 Statistical refinement of primer design parameters; or Chapter 5, pp. 55-72, PCR Applications: protocols for functional genomics, M. A. Innis, D. H. Gelfand and J. J. Sninsky, Eds., 1999, Academic Press). Amplifications are carried out in either isothermic conditions or using a thermal cycler (for example, a ABI 9600 or 9700 or 7900 obtained from Applied Biosystems, Foster City, Calif.; see Nucleic acid detection methods, pp. 1-24, in Molecular Methods for Virus Detection, D. L. Wiedbrauk and D. H., Farkas, Eds., 1995, Academic Press). Amplified nucleic acids are detected using fluorescent-tagged detection oligonucleotide probes (see, for example, Taqman™ PCR Reagent Kit, Protocol, part number 402823, Revision A, 1996, Applied Biosystems, Foster City Calif.) that are identified and synthesized from publicly known databases as described for the amplification primers.


For example, without limitation, amplified cDNA is detected and quantified using detection systems such as the ABI Prism® 7900 Sequence Detection System (Applied Biosystems (Foster City, Calif.)), the Cepheid SmartCycler® and Cepheid GeneXpert® Systems, the Fluidigm BioMark™ System, and the Roche LightCycler® 480 Real-Time PCR System. Amounts of specific RNAs contained in the test sample can be related to the relative quantity of fluorescence observed (see for example, Advances in Quantitative PCR Technology: 5′ Nuclease Assays, Y. S. Lie and C. J. Petropolus, Current Opinion in Biotechnology, 1998, 9:43-48, or Rapid Thermal Cycling and PCR Kinetics, pp. 211-229, chapter 14 in PCR applications: protocols for functional genomics, M. A. Innis, D. H. Gelfand and J. J. Sninsky, Eds., 1999, Academic Press). Examples of the procedure used with several of the above-mentioned detection systems are described below. In some embodiments, these procedures can be used for both whole blood RNA and RNA extracted from cultured cells (e.g., without limitation, CTCs, and CECs). In some embodiments, any tissue, body fluid, or cell(s) (e.g., circulating tumor cells (CTCs) or circulating endothelial cells (CECs)) may be used for ex vivo assessment of a biological condition affected by an agent. Methods herein may also be applied using proteins where sensitive quantitative techniques, such as an Enzyme Linked ImmunoSorbent Assay (ELISA) or mass spectroscopy, are available and well-known in the art for measuring the amount of a protein constituent (see WO 98/24935 herein incorporated by reference).


An example of a procedure for the synthesis of first strand cDNA for use in PCR amplification is as follows:


Materials


1. Applied Biosystems TAQMAN Reverse Transcription Reagents Kit (P/N 808-0234). Kit Components: 10× TaqMan RT Buffer, 25 mM Magnesium chloride, deoxyNTPs mixture, Random Hexamers, RNase Inhibitor, MultiScribe Reverse Transcriptase (50 U/mL) (2) RNase/DNase free water (DEPC Treated Water from Ambion (P/N 9915G), or equivalent).


Methods


1. Place RNase Inhibitor and MultiScribe Reverse Transcriptase on ice immediately. All other reagents can be thawed at room temperature and then placed on ice.


2. Remove RNA samples from −80° C. freezer and thaw at room temperature and then place immediately on ice.


3. Prepare the following cocktail of Reverse Transcriptase Reagents for each 100 mL RT reaction (for multiple samples, prepare extra cocktail to allow for pipetting error):
















1 reaction (mL)
11X, e.g. 10 samples (μL)





















10X RT Buffer
10.0
110.0




25 mM MgCl2
22.0
242.0



dNTPs
20.0
220.0



Random Hexamers
5.0
55.0



RNAse Inhibitor
2.0
22.0



Reverse Transcriptase
2.5
27.5



Water
18.5
203.5



Total:
80.0
880.0
(80 μL per sample)










4. Bring each RNA sample to a total volume of 20 μL in a 1.5 mL microcentrifuge tube (for example, remove 10 μL RNA and dilute to 20 μL with RNase/DNase free water, for whole blood RNA use 20 μL total RNA) and add 80 μL RT reaction mix from step 5,2,3. Mix by pipetting up and down.


5. Incubate sample at room temperature for 10 minutes.


6. Incubate sample at 37° C. for 1 hour.


7. Incubate sample at 90° C. for 10 minutes.


8. Quick spin samples in microcentrifuge.


9. Place sample on ice if doing PCR immediately, otherwise store sample at −20° C. for future use.


10. PCR QC should be run on all RT samples using 18S and β-actin.


Following the synthesis of first strand cDNA, one particular embodiment of the approach for amplification of first strand cDNA by PCR, followed by detection and quantification of constituents of a Gene Expression Panel (Precision Profile™) is performed using the ABI Prism® 7900 Sequence Detection System as follows:


Materials


1. 20× Primer/Probe Mix for each gene of interest.


2. 20× Primer/Probe Mix for 18S endogenous control.


3. 2× Taqman Universal PCR Master Mix.


4. cDNA transcribed from RNA extracted from cells.


5. Applied Biosystems 96-Well Optical Reaction Plates.


6. Applied Biosystems Optical Caps, or optical-clear film.


7. Applied Biosystem Prism® 7700 or 7900 Sequence Detector.


Methods


1. Make stocks of each Primer/Probe mix containing the Primer/Probe for the gene of interest, Primer/Probe for 18S endogenous control, and 2× PCR Master Mix as follows. Make sufficient excess to allow for pipetting error e.g., approximately 10% excess. The following example illustrates a typical set up for one gene with quadruplicate samples testing two conditions (2 plates).















1X (1 well) (μL)



















2X Master Mix
7.5



20X 18S Primer/Probe Mix
0.75



20X Gene of interest Primer/Probe Mix
0.75



Total
9.0










2. Make stocks of cDNA targets by diluting 95 μL of cDNA into 2000 μL of water. The amount of cDNA is adjusted to give Ct values between 10 and 18, typically between 12 and 16.


3. Pipette 9 μL of Primer/Probe mix into the appropriate wells of an Applied Biosystems 384-Well Optical Reaction Plate.


4. Pipette 10 μL of cDNA stock solution into each well of the Applied Biosystems 384-Well Optical Reaction Plate.


5. Seal the plate with Applied Biosystems Optical Caps, or optical-clear film.


6. Analyze the plate on the ABI Prism® 7900 Sequence Detector.


In another embodiment of the invention, the use of the primer probe with the first strand cDNA as described above to permit measurement of constituents of a Gene Expression Panel (Precision Profile™) is performed using a QPCR assay on Cepheid SmartCycler® and GeneXpert® Instruments as follows:

  • I. To run a QPCR assay in duplicate on the Cepheid SmartCycler® instrument containing three target genes and one reference gene, the following procedure should be followed.


A. With 20× Primer/Probe Stocks.


Materials

    • 1. SmartMix™-HM lyophilized Master Mix.
    • 2. Molecular grade water.
    • 3. 20× Primer/Probe Mix for the 18S endogenous control gene. The endogenous control gene will be dual labeled with VIC-MGB or equivalent.
    • 4. 20× Primer/Probe Mix for each for target gene one, dual labeled with FAM-BHQ1 or equivalent.
    • 5. 20× Primer/Probe Mix for each for target gene two, dual labeled with Texas Red-BHQ2 or equivalent.
    • 6. 20× Primer/Probe Mix for each for target gene three, dual labeled with Alexa 647-BHQ3 or equivalent.
    • 7. Tris buffer, pH 9.0
    • 8. cDNA transcribed from RNA extracted from sample.
    • 9. SmartCycler® 25 μL tube.
    • 10. Cepheid SmartCycler® instrument.


Methods

    • 1. For each cDNA sample to be investigated, add the following to a sterile 650 μL tube.



















SmartMix ™-HM lyophilized Master Mix
1
bead



20X 18S Primer/Probe Mix
2.5
μL



20X Target Gene 1 Primer/Probe Mix
2.5
μL



20X Target Gene 2 Primer/Probe Mix
2.5
μL



20X Target Gene 3 Primer/Probe Mix
2.5
μL



Tris Buffer, pH 9.0
2.5
μL



Sterile Water
34.5
μL



Total
47
μL












    •  Vortex the mixture for 1 second three times to completely mix the reagents. Briefly centrifuge the tube after vortexing.

    • 2. Dilute the cDNA sample so that a 3 μL addition to the reagent mixture above will give an 18S reference gene CT value between 12 and 16.

    • 3. Add 3 μL of the prepared cDNA sample to the reagent mixture bringing the total volume to 50 μL. Vortex the mixture for 1 second three times to completely mix the reagents. Briefly centrifuge the tube after vortexing.

    • 4. Add 25 μL of the mixture to each of two SmartCycler® tubes, cap the tube and spin for 5 seconds in a microcentrifuge having an adapter for SmartCycler® tubes.

    • 5. Remove the two SmartCycler® tubes from the microcentrifuge and inspect for air bubbles. If bubbles are present, re-spin, otherwise, load the tubes into the SmartCycler® instrument.

    • 6. Run the appropriate QPCR protocol on the SmartCycler®, export the data and analyze the results.





B. With Lyophilized SmartBeads™.


Materials

    • 1. SmartMix™-HM lyophilized Master Mix.
    • 2. Molecular grade water.
    • 3. SmartBeads™ containing the 18S endogenous control gene dual labeled with VIC-MGB or equivalent, and the three target genes, one dual labeled with FAM-BHQ1 or equivalent, one dual labeled with Texas Red-BHQ2 or equivalent and one dual labeled with Alexa 647-BHQ3 or equivalent.
    • 4. Tris buffer, pH 9.0
    • 5. cDNA transcribed from RNA extracted from sample.
    • 6. SmartCycler® 25 μL tube.
    • 7. Cepheid SmartCycler® instrument.


Methods

    • 1. For each cDNA sample to be investigated, add the following to a sterile 650 μL tube.



















SmartMix ™-HM lyophilized Master Mix
1
bead



SmartBead ™ containing four primer/probe sets
1
bead



Tris Buffer, pH 9.0
2.5
μL



Sterile Water
44.5
μL



Total
47
μL












    •  Vortex the mixture for 1 second three times to completely mix the reagents. Briefly centrifuge the tube after vortexing.

    • 2. Dilute the cDNA sample so that a 3 μL addition to the reagent mixture above will give an 18S reference gene CT value between 12 and 16.

    • 3. Add 3 μL of the prepared cDNA sample to the reagent mixture bringing the total volume to 50 μL. Vortex the mixture for 1 second three times to completely mix the reagents. Briefly centrifuge the tube after vortexing.

    • 4. Add 25 μL of the mixture to each of two SmartCycler® tubes, cap the tube and spin for 5 seconds in a microcentrifuge having an adapter for SmartCycler® tubes.

    • 5. Remove the two SmartCycler® tubes from the microcentrifuge and inspect for air bubbles. If bubbles are present, re-spin, otherwise, load the tubes into the SmartCycler® instrument.

    • 6. Run the appropriate QPCR protocol on the SmartCycler®, export the data and analyze the results.



  • II. To run a QPCR assay on the Cepheid GeneXpert® instrument containing three target genes and one reference gene, the following procedure should be followed. Note that to do duplicates, two self contained cartridges need to be loaded and run on the GeneXpert® instrument.



Materials

    • 1. Cepheid GeneXpert® self contained cartridge preloaded with a lyophilized SmartMix™-HM master mix bead and a lyophilized SmartBead™ containing four primer/probe sets.
    • 2. Molecular grade water, containing Tris buffer, pH 9.0.
    • 3. Extraction and purification reagents.
    • 4. Clinical sample (whole blood, RNA, etc.)
    • 5. Cepheid GeneXpert® instrument.


Methods

    • 1. Remove appropriate GeneXpert® self contained cartridge from packaging.
    • 2. Fill appropriate chamber of self contained cartridge with molecular grade water with Tris buffer, pH 9.0.
    • 3. Fill appropriate chambers of self contained cartridge with extraction and purification reagents.
    • 4. Load aliquot of clinical sample into appropriate chamber of self contained cartridge.
    • 5. Seal cartridge and load into GeneXpert® instrument.
    • 6. Run the appropriate extraction and amplification protocol on the GeneXpert® and analyze the resultant data.


In yet another embodiment of the invention, the use of the primer probe with the first strand cDNA as described above to permit measurement of constituents of a Gene Expression Panel (Precision Profile™) is performed using a QPCR assay on the Roche LightCycler® 480 Real-Time PCR System as follows:


Materials

    • 1. 20× Primer/Probe stock for the 18S endogenous control gene. The endogenous control gene may be dual labeled with either VIC-MGB or VIC-TAMRA.
    • 2. 20× Primer/Probe stock for each target gene, dual labeled with either FAM-TAMRA or FAM-BHQ1.
    • 3. 2× LightCycler® 490 Probes Master (master mix).
    • 4. 1× cDNA sample stocks transcribed from RNA extracted from samples.
    • 5. 1× TE buffer, pH 8.0.
    • 6. LightCycler® 480 384-well plates.
    • 7. Source MDx 24 gene Precision Profile™ 96-well intermediate plates.
    • 8. RNase/DNase free 96-well plate.
    • 9. 1.5 mL microcentrifuge tubes.
    • 10. Beckman/Coulter Biomek® 3000 Laboratory Automation Workstation.
    • 11. Velocity11 Bravo™ Liquid Handling Platform.
    • 12. LightCycler® 480 Real-Time PCR System.


Methods

    • 1. Remove a Source MDx 24 gene Precision Profile™ 96-well intermediate plate from the freezer, thaw and spin in a plate centrifuge.
    • 2. Dilute four (4) 1× cDNA sample stocks in separate 1.5 mL microcentrifuge tubes with the total final volume for each of 540 μL.
    • 3. Transfer the 4 diluted cDNA samples to an empty RNase/DNase free 96-well plate using the Biomek® 3000 Laboratory Automation Workstation.
    • 4. Transfer the cDNA samples from the cDNA plate created in step 3 to the thawed and centrifuged Source MDx 24 gene Precision Profile™ 96-well intermediate plate using Biomek® 3000 Laboratory Automation Workstation. Seal the plate with a foil seal and spin in a plate centrifuge.
    • 5. Transfer the contents of the cDNA-loaded Source MDx 24 gene Precision Profile™ 96-well intermediate plate to a new LightCycler® 480 384-well plate using the Bravo™ Liquid Handling Platform. Seal the 384-well plate with a LightCycler® 480 optical sealing foil and spin in a plate centrifuge for 1 minute at 2000 rpm.
    • 6. Place the sealed in a dark 4° C. refrigerator for a minimum of 4 minutes.
    • 7. Load the plate into the LightCycler® 480 Real-Time PCR System and start the LightCycler® 480 software. Chose the appropriate run parameters and start the run.
    • 8. At the conclusion of the run, analyze the data and export the resulting CP values to the database.


In some instances, target gene FAM measurements may be beyond the detection limit of the particular platform instrument used to detect and quantify constituents of a Gene Expression Panel (Precision Profile™). To address the issue of “undetermined” gene expression measures as lack of expression for a particular gene, the detection limit may be reset and the “undetermined” constituents may be “flagged”. For example without limitation, the ABI Prism® 7900HT Sequence Detection System reports target gene FAM measurements that are beyond the detection limit of the instrument (>40 cycles) as “undetermined”. Detection Limit Reset is performed when at least 1 of 3 target gene FAM CT replicates are not detected after 40 cycles and are designated as “undetermined”. “Undetermined” target gene FAM CT replicates are re-set to 40 and flagged. CT normalization (Δ CT) and relative expression calculations that have used re-set FAM CT values are also flagged.


Baseline Profile Data Sets

The analyses of samples from single individuals and from large groups of individuals provide a library of profile data sets relating to a particular panel or series of panels. These profile data sets may be stored as records in a library for use as baseline profile data sets. As the term “baseline” suggests, the stored baseline profile data sets serve as comparators for providing a calibrated profile data set that is informative about a biological condition or agent. Baseline profile data sets may be stored in libraries and classified in a number of cross-referential ways. One form of classification may rely on the characteristics of the panels from which the data sets are derived. Another form of classification may be by particular biological condition, e.g., prostate cancer. The concept of a biological condition encompasses any state in which a cell or population of cells may be found at any one time. This state may reflect geography of samples, sex of subjects or any other discriminator. Some of the discriminators may overlap. The libraries may also be accessed for records associated with a single subject or particular clinical trial. The classification of baseline profile data sets may further be annotated with medical information about a particular subject, a medical condition, and/or a particular agent.


The choice of a baseline profile data set for creating a calibrated profile data set is related to the biological condition to be evaluated, monitored, or predicted, as well as, the intended use of the calibrated panel, e.g., as to monitor drug development, quality control or other uses. It may be desirable to access baseline profile data sets from the same subject for whom a first profile data set is obtained or from different subject at varying times, exposures to stimuli, drugs or complex compounds; or may be derived from like or dissimilar populations or sets of subjects. The baseline profile data set may be normal, healthy baseline.


The profile data set may arise from the same subject for which the first data set is obtained, where the sample is taken at a separate or similar time, a different or similar site or in a different or similar biological condition. For example, a sample may be taken before stimulation or after stimulation with an exogenous compound or substance, such as before or after therapeutic treatment. Alternatively the sample is taken before or include before or after a surgical procedure for prostate cancer. The profile data set obtained from the unstimulated sample may serve as a baseline profile data set for the sample taken after stimulation. The baseline data set may also be derived from a library containing profile data sets of a population or set of subjects having some defining characteristic or biological condition. The baseline profile data set may also correspond to some ex vivo or in vitro properties associated with an in vitro cell culture. The resultant calibrated profile data sets may then be stored as a record in a database or library along with or separate from the baseline profile data base and optionally the first profile data set al. though the first profile data set would normally become incorporated into a baseline profile data set under suitable classification criteria. The remarkable consistency of Gene Expression Profiles associated with a given biological condition makes it valuable to store profile data, which can be used, among other things for normative reference purposes. The normative reference can serve to indicate the degree to which a subject conforms to a given biological condition (healthy or diseased) and, alternatively or in addition, to provide a target for clinical intervention.


Calibrated Data

Given the repeatability achieved in measurement of gene expression, described above in connection with “Gene Expression Panels” (Precision Profiles™) and “gene amplification”, it was concluded that where differences occur in measurement under such conditions, the is differences are attributable to differences in biological condition. Thus, it has been found that calibrated profile data sets are highly reproducible in samples taken from the same individual under the same conditions. Similarly, it has been found that calibrated profile data sets are reproducible in samples that are repeatedly tested. Also found have been repeated instances wherein calibrated profile data sets obtained when samples from a subject are exposed ex vivo to a compound are comparable to calibrated profile data from a sample that has been exposed to a sample in vivo.


Calculation of Calibrated Profile Data Sets and Computational Aids

The calibrated profile data set may be expressed in a spreadsheet or represented graphically for example, in a bar chart or tabular form but may also be expressed in a three dimensional representation. The function relating the baseline and profile data may be a ratio expressed as a logarithm. The constituent may be itemized on the x-axis and the logarithmic scale may be on the y-axis. Members of a calibrated data set may be expressed as a positive value representing a relative enhancement of gene expression or as a negative value representing a relative reduction in gene expression with respect to the baseline.


Each member of the calibrated profile data set should be reproducible within a range with respect to similar samples taken from the subject under similar conditions. For example, the calibrated profile data sets may be reproducible within 20%, and typically within 10%. In accordance with embodiments of the invention, a pattern of increasing, decreasing and no change in relative gene expression from each of a plurality of gene loci examined in the Gene Expression Panel (Precision Profile™) may be used to prepare a calibrated profile set that is informative with regards to a biological condition, biological efficacy of an agent treatment conditions or for comparison to populations or sets of subjects or samples, or for comparison to populations of cells. Patterns of this nature may be used to identify likely candidates for a drug trial, used alone or in combination with other clinical indicators to be diagnostic or prognostic with respect to a biological condition or may be used to guide the development of a pharmaceutical or nutraceutical through manufacture, testing and marketing.


The numerical data obtained from quantitative gene expression and numerical data from calibrated gene expression relative to a baseline profile data set may be stored in databases or digital storage mediums and may be retrieved for purposes including managing patient health care or for conducting clinical trials or for characterizing a drug. The data may be transferred in physical or wireless networks via the World Wide Web, email, or internet access site for example or by hard copy so as to be collected and pooled from distant geographic sites.


The method also includes producing a calibrated profile data set for the panel, wherein each member of the calibrated profile data set is a function of a corresponding member of the first profile data set and a corresponding member of a baseline profile data set for the panel, and wherein the baseline profile data set is related to the prostate cancer or conditions related to prostate cancer to be evaluated, with the calibrated profile data set being a comparison between the first profile data set and the baseline profile data set, thereby providing evaluation of prostate cancer or conditions related to prostate cancer of the subject.


In yet other embodiments, the function is a mathematical function and is other than a simple difference, including a second function of the ratio of the corresponding member of first profile data set to the corresponding member of the baseline profile data set, or a logarithmic function. In such embodiments, the first sample is obtained and the first profile data set quantified at a first location, and the calibrated profile data set is produced using a network to access a database stored on a digital storage medium in a second location, wherein the database may be updated to reflect the first profile data set quantified from the sample. Additionally, using a network may include accessing a global computer network.


In an embodiment of the present invention, a descriptive record is stored in a single database or multiple databases where the stored data includes the raw gene expression data (first profile data set) prior to transformation by use of a baseline profile data set, as well as a record of the baseline profile data set used to generate the calibrated profile data set including for example, annotations regarding whether the baseline profile data set is derived from a particular Signature Panel and any other annotation that facilitates interpretation and use of the data.


Because the data is in a universal format, data handling may readily be done with a computer. The data is organized so as to provide an output optionally corresponding to a graphical representation of a calibrated data set.


The above described data storage on a computer may provide the information in a form that can be accessed by a user. Accordingly, the user may load the information onto a second access site including downloading the information. However, access may be restricted to users having a password or other security device so as to protect the medical records contained within. A feature of this embodiment of the invention is the ability of a user to add new or annotated records to the data set so the records become part of the biological information.


The graphical representation of calibrated profile data sets pertaining to a product such as a drug provides an opportunity for standardizing a product by means of the calibrated profile, more particularly a signature profile. The profile may be used as a feature with which to demonstrate relative efficacy, differences in mechanisms of actions, etc. compared to other drugs approved for similar or different uses.


The various embodiments of the invention may be also implemented as a computer program product for use with a computer system. The product may include program code for deriving a first profile data set and for producing calibrated profiles. Such implementation may include a series of computer instructions fixed either on a tangible medium, such as a computer readable medium (for example, a diskette, CD-ROM, ROM, or fixed disk), or transmittable to a computer system via a modem or other interface device, such as a communications adapter coupled to a network. The network coupling may be for example; over optical or wired communications lines or via wireless techniques (for example, microwave, infrared or other transmission techniques) or some combination of these. The series of computer instructions preferably embodies all or part of the functionality previously described herein with respect to the system. Those skilled in the art should appreciate that such computer instructions can be written in a number of programming languages for use with many computer architectures or operating systems. Furthermore, such instructions may be stored in any memory device, such as semiconductor, magnetic, optical or other memory devices, and may be transmitted using any communications technology, such as optical, infrared, microwave, or other transmission technologies. It is expected that such a computer program product may be distributed as a removable medium with accompanying printed or electronic documentation (for example, shrink wrapped software), preloaded with a computer system (for example, on system ROM or fixed disk), or distributed from a server or electronic bulletin board over a network (for example, the Internet or World Wide Web). In addition, a computer system is further provided including derivative modules for deriving a first data set and a calibration profile data set.


The calibration profile data sets in graphical or tabular form, the associated databases, and the calculated index or derived algorithm, together with information extracted from the panels, the databases, the data sets or the indices or algorithms are commodities that can be sold together or separately for a variety of purposes as described in WO 01/25473.


In other embodiments, a clinical indicator may be used to assess the prostate cancer or conditions related to prostate cancer of the relevant set of subjects by interpreting the calibrated profile data set in the context of at least one other clinical indicator, wherein the at least one other clinical indicator is selected from the group consisting of blood chemistry, (e.g., PSA levels) X-ray or other radiological or metabolic imaging technique, molecular markers in the blood, other chemical assays, and physical findings.


Index Construction

In combination, (i) the remarkable consistency of Gene Expression Profiles with respect to a biological condition across a population or set of subject or samples, or across a population of cells and (ii) the use of procedures that provide substantially reproducible measurement of constituents in a Gene Expression Panel (Precision Profile™) giving rise to a Gene Expression Profile, under measurement conditions wherein specificity and efficiencies of amplification for all constituents of the panel are substantially similar, make possible the use of an index that characterizes a Gene Expression Profile, and which therefore provides a measurement of a biological condition.


An index may be constructed using an index function that maps values in a Gene Expression Profile into a single value that is pertinent to the biological condition at hand. The values in a Gene Expression Profile are the amounts of each constituent of the Gene Expression Panel (Precision Profile™). These constituent amounts form a profile data set, and the index function generates a single value—the index—from the members of the profile data set.


The index function may conveniently be constructed as a linear sum of terms, each term being what is referred to herein as a “contribution function” of a member of the profile data set.


For example, the contribution function may be a constant times a power of a member of the profile data set. So the index function would have the form





I=ΣCiMiP(i),


where I is the index, Mi is the value of the member i of the profile data set, Ci is a constant, and P(i) is a power to which Mi is raised, the sum being formed for all integral values of i up to the number of members in the data set. We thus have a linear polynomial expression. The role of the coefficient Ci for a particular gene expression specifies whether a higher ΔCt value for this gene either increases (a positive Ci) or decreases (a lower value) the likelihood of prostate cancer, the ΔCt values of all other genes in the expression being held constant.


The values Ci and P(i) may be determined in a number of ways, so that the index I is informative of the pertinent biological condition. One way is to apply statistical techniques, such as latent class modeling, to the profile data sets to correlate clinical data or experimentally derived data, or other data pertinent to the biological condition. In this connection, for example, may be employed the software from Statistical Innovations, Belmont, Mass., called Latent Gole®. Alternatively, other simpler modeling techniques may be employed in a manner known in the art. The index function for prostate cancer may be constructed, for example, in a manner that a greater degree of prostate cancer (as determined by the profile data set for the any of the Precision Profiles™ (listed in Tables 1-4) described herein) correlates with a large value of the index function.


Just as a baseline profile data set, discussed above, can be used to provide an appropriate normative reference, and can even be used to create a Calibrated profile data set, as discussed above, based on the normative reference, an index that characterizes a Gene Expression Profile can also be provided with a normative value of the index function used to create the index. This normative value can be determined with respect to a relevant population or set of subjects or samples or to a relevant population of cells, so that the index may be interpreted in relation to the normative value. The relevant population or set of subjects or samples, or relevant population of cells may have in common a property that is at least one of age range, gender, ethnicity, geographic location, nutritional history, medical condition, clinical indicator, medication, physical activity, body mass, and environmental exposure.


As an example, the index can be constructed, in relation to a normative Gene Expression Profile for a population or set of healthy subjects, in such a way that a reading of approximately 1 characterizes normative Gene Expression Profiles of healthy subjects. Let us further assume that the biological condition that is the subject of the index is prostate cancer; a reading of 1 in this example thus corresponds to a Gene Expression Profile that matches the norm for healthy subjects. A substantially higher reading then may identify a subject experiencing prostate cancer, or a condition related to prostate cancer. The use of 1 as identifying a normative value, however, is only one possible choice; another logical choice is to use 0 as identifying the normative value. With this choice, deviations in the index from zero can be indicated in standard deviation units (so that values lying between −1 and +1 encompass 90% of a normally distributed reference population or set of subjects. Since it was determined that Gene Expression Profile values (and accordingly constructed indices based on them) tend to be normally distributed, the 0-centered index constructed in this manner is highly informative. It therefore facilitates use of the index in diagnosis of disease and setting objectives for treatment.


Still another embodiment is a method of providing an index pertinent to prostate cancer or conditions related to prostate cancer of a subject based on a first sample from the subject, the first sample providing a source of RNAs, the method comprising deriving from the first sample a profile data set, the profile data set including a plurality of members, each member being a quantitative measure of the amount of a distinct RNA constituent in a panel of constituents selected so that measurement of the constituents is indicative of the presumptive signs of prostate cancer, the panel including at least one constituent of any of the genes listed in the Precision Profiles™ (listed in Tables 1-4). In deriving the profile data set, such measure for each constituent is achieved under measurement conditions that are substantially repeatable, at least one measure from the profile data set is applied to an index function that provides a mapping from at least one measure of the profile data set into one measure of the presumptive signs of prostate cancer, so as to produce an index pertinent to the prostate cancer or conditions related to prostate cancer of the subject.


As another embodiment of the invention, an index function I of the form






I=C
0
+ΣC
i
M
Ii
P1(i)
M
2i
P2(i),


can be employed, where M1 and M2 are values of the member i of the profile data set, Ci is a constant determined without reference to the profile data set, and P1 and P2 are powers to which M1 and M2 are raised. The role of P1(i) and P2(i) is to specify the specific functional form of the quadratic expression, whether in fact the equation is linear, quadratic, contains cross-product terms, or is constant. For example, when P1=P2=0, the index function is simply the sum of constants; when P1=1 and P2=0, the index function is a linear expression; when P1=P2=1, the index function is a quadratic expression.


The constant C0 serves to calibrate this expression to the biological population of interest to that is characterized by having prostate cancer. In this embodiment, when the index value equals 0, the odds are 50:50 of the subject having prostate cancer vs a normal subject. More generally, the predicted odds of the subject having prostate cancer is [exp(Ii)], and therefore the predicted probability of having prostate cancer is [exp(Ii)]/[1+exp(Ii)]. Thus, when the index exceeds 0, the predicted probability that a subject has prostate cancer is higher than 0.5, and when it falls below 0, the predicted probability is less than 0.5.


The value of C0 may be adjusted to reflect the prior probability of being in this population based on known exogenous risk factors for the subject. In an embodiment where C0 is adjusted as a function of the subject's risk factors, where the subject has prior probability pi of having prostate cancer based on such risk factors, the adjustment is made by increasing (decreasing) the unadjusted C0 value by adding to C0 the natural logarithm of the following ratio: the prior odds of having prostate cancer taking into account the risk factors/the overall prior odds of having prostate cancer without taking into account the risk factors.


Performance and Accuracy Measures of the Invention

The performance and thus absolute and relative clinical usefulness of the invention may be assessed in multiple ways as noted above. Amongst the various assessments of performance, the invention is intended to provide accuracy in clinical diagnosis and prognosis. The accuracy of a diagnostic or prognostic test; assay, or method concerns the ability of the test, assay, or method to distinguish between subjects having prostate cancer is based on whether the subjects have an “effective amount” or a “significant alteration” in the levels of a cancer associated gene. By “effective amount” or “significant alteration”, it is meant that the measurement of an appropriate number of cancer associated gene (which may be one or more) is different than the predetermined cut-off point (or threshold value) for that cancer associated gene and therefore indicates that the subject has prostate cancer for which the cancer associated gene(s) is a determinant.


The difference in the level of cancer associated gene(s) between normal and abnormal is preferably statistically significant. As noted below, and without any limitation of the invention, achieving statistical significance, and thus the preferred analytical and clinical accuracy, generally but not always requires that combinations of several cancer associated gene(s) be used together in panels and combined with mathematical algorithms in order to achieve a statistically significant cancer associated gene index.


In the categorical diagnosis of a disease state, changing the cut point or threshold value of a test (or assay) usually changes the sensitivity and specificity, but in a qualitatively inverse relationship. Therefore, in assessing the accuracy and usefulness of a proposed medical test, assay, or method for assessing a subject's condition, one should always take both sensitivity and specificity into account and be mindful of what the cut point is at which the sensitivity and specificity are being reported because sensitivity and specificity may vary significantly over the range of cut points. Use of statistics such as AUC, encompassing all potential cut point values, is preferred for most categorical risk measures using the invention, while for continuous risk measures, statistics of goodness-of-fit and calibration to observed results or other gold standards, are preferred.


Using such statistics, an “acceptable degree of diagnostic accuracy”, is herein defined as a test or assay (such as the test of the invention for determining an effective amount or a significant alteration of cancer associated gene(s), which thereby indicates the presence of a prostate cancer in which the AUC (area under the ROC curve for the test or assay) is at least 0.60, desirably at least 0.65, more desirably at least 0.70, preferably at least 0.75, more preferably at least 0.80, and most preferably at least 0.85.


By a “very high degree of diagnostic accuracy”, it is meant a test or assay in which the AUC (area under the ROC curve for the test or assay) is at least 0.75, desirably at least 0.775, more desirably at least 0.800, preferably at least 0.825, more preferably at least 0.850, and most preferably at least 0.875.


The predictive value of any test depends on the sensitivity and specificity of the test, and on the prevalence of the condition in the population being tested. This notion, based on Bayes' theorem, provides that the greater the likelihood that the condition being screened for is present in an individual or in the population (pre-test probability), the greater the validity of a positive test and the greater the likelihood that the result is a true positive. Thus, the problem with using a test in any population where there is a low likelihood of the condition being present is that a positive result has limited value (i.e., more likely to be a false positive). Similarly, in populations at very high risk, a negative test result is more likely to be a false negative.


As a result, ROC and AUC can be misleading as to the clinical utility of a test in low disease prevalence tested populations (defined as those with less than 1% rate of occurrences (incidence) per annum, or less than 10% cumulative prevalence over a specified time horizon). Alternatively, absolute risk and relative risk ratios as defined elsewhere in this disclosure can be employed to determine the degree of clinical utility. Populations of subjects to be tested can also be categorized into quartiles by the test's measurement values, where the top quartile (25% of the population) comprises the group of subjects with the highest relative risk for developing prostate cancer, and the bottom quartile comprising the group of subjects having the lowest relative risk for developing prostate cancer. Generally, values derived from tests or assays having over 2.5 times the relative risk from top to bottom quartile in a low prevalence population are considered to have a “high degree of diagnostic accuracy,” and those with five to seven times the relative risk for each quartile are considered to have a “very high degree of diagnostic accuracy.” Nonetheless, values derived from tests or assays having only 1.2 to 2.5 times the relative risk for each quartile remain clinically useful are widely used as risk factors for a disease. Often such lower diagnostic accuracy tests must be combined with additional parameters in order to derive meaningful clinical thresholds for therapeutic intervention, as is done with the aforementioned global risk assessment indices.


A health economic utility function is yet another means of measuring the performance and clinical value of a given test, consisting of weighting the potential categorical test outcomes based on actual measures of clinical and economic value for each. Health economic performance is closely related to accuracy, as a health economic utility function specifically assigns an economic value for the benefits of correct classification and the costs of misclassification of tested subjects. As a performance measure, it is not unusual to require a test to achieve a level of performance which results in an increase in health economic value per test (prior to testing costs) in excess of the target price of the test.


In general, alternative methods of determining diagnostic accuracy are commonly used for continuous measures, when a disease category or risk category (such as those at risk for having a bone fracture) has not yet been clearly defined by the relevant medical societies and practice of medicine, where thresholds for therapeutic use are not yet established, or where there is no existing gold standard for diagnosis of the pre-disease. For continuous measures of risk, measures of diagnostic accuracy for a calculated index are typically based on curve fit and calibration between the predicted continuous value and the actual observed values (or a historical index calculated value) and utilize measures such as R squared, Hosmer-Lemeshow P-value statistics and confidence intervals. It is not unusual for predicted values using such algorithms to be reported including a confidence interval (usually 90% or 95% CI) based on a historical observed cohort's predictions, as in the test for risk of future breast cancer recurrence commercialized by Genomic Health, Inc. (Redwood City, Calif.).


In general, by defining the degree of diagnostic accuracy, i.e., cut points on a ROC curve, defining an acceptable AUC value, and determining the acceptable ranges in relative concentration of what constitutes an effective amount of the cancer associated gene(s) of the invention allows for one of skill in the art to use the cancer associated gene(s) to identify, diagnose, or prognose subjects with a pre-determined level of predictability and performance.


Results from the cancer associated gene(s) indices thus derived can then be validated through their calibration with actual results, that is, by comparing the predicted versus observed rate of disease in a given population, and the best predictive cancer associated gene(s) selected for and optimized through mathematical models of increased complexity. Many such formula may be used; beyond the simple non-linear transformations, such as logistic regression, of particular interest in this use of the present invention are structural and synactic classification algorithms, and methods of risk index construction, utilizing pattern recognition features, including established techniques such as the Kth-Nearest Neighbor, Boosting, Decision Trees, Neural Networks, Bayesian Networks, Support Vector Machines, and Hidden Markov Models, as well as other formula described herein.


Furthermore, the application of such techniques to panels of multiple cancer associated gene(s) is provided, as is the use of such combination to create single numerical “risk indices” or “risk scores” encompassing information from multiple cancer associated gene(s) inputs. Individual B cancer associated gene(s) may also be included or excluded in the panel of cancer associated gene(s) used in the calculation of the cancer associated gene(s) indices so derived above, based on various measures of relative performance and calibration in validation, and employing through repetitive training methods such as forward, reverse, and stepwise selection, as well as with genetic algorithm approaches, with or without the use of constraints on the complexity of the resulting cancer associated gene(s) indices.


The above measurements of diagnostic accuracy for cancer associated gene(s) are only a few of the possible measurements of the clinical performance of the invention. It should be noted that the appropriateness of one measurement of clinical accuracy or another will vary based upon the clinical application, the population tested, and the clinical consequences of any potential misclassification of subjects. Other important aspects of the clinical and overall performance of the invention include the selection of cancer associated gene(s) so as to reduce overall cancer associated gene(s) variability (whether due to method (analytical) or biological (pre-analytical variability, for example, as in diurnal variation), or to the integration and analysis of results (post-analytical variability) into indices and cut-off ranges), to assess analyte stability or sample integrity, or to allow the use of differing sample matrices amongst blood, cells, serum, plasma, urine, etc.


Kits

The invention also includes a prostate cancer detection reagent, i.e., nucleic acids that specifically identify one or more prostate cancer or condition related to prostate cancer nucleic acids (e.g., any gene listed in Tables 1-4, oncogenes, tumor suppression genes, tumor progression genes, angiogenesis genes and lymphogenesis genes; sometimes referred to herein as prostate cancer associated genes or prostate cancer associated constituents) by having homologous nucleic acid sequences, such as oligonucleotide sequences, complementary to a portion of the prostate cancer genes nucleic acids or antibodies to proteins encoded by the prostate cancer gene nucleic acids packaged together in the form of a kit. The oligonucleotides can be fragments of the prostate cancer genes. For example the oligonucleotides can be 200, 150, 100, 50, 25, 10 or less nucleotides in length. The kit may contain in separate containers a nucleic acid or antibody (either already bound to a solid matrix or packaged separately with reagents for binding them to the matrix), control formulations (positive and/or negative), and/or a detectable label. Instructions (i.e., written, tape, VCR, CD-ROM, etc.) for carrying out the assay may be included in the kit. The assay may for example be in the form of PCR, a Northern hybridization or a sandwich ELISA, as known in the art.


For example, prostate cancer gene detection reagents can be immobilized on a solid matrix such as a porous strip to form at least one prostate cancer gene detection site. The measurement or detection region of the porous strip may include a plurality of sites containing a nucleic acid. A test strip may also contain sites for negative and/or positive controls. Alternatively, control sites can be located on a separate strip from the test strip. Optionally, the different detection sites may contain different amounts of immobilized nucleic acids, i.e., a higher amount in the first detection site and lesser amounts in subsequent sites. Upon the addition of test sample, the number of sites displaying a detectable signal provides a quantitative indication of the amount of prostate cancer genes present in the sample. The detection sites may be configured in any suitably detectable shape and are typically in the shape of a bar or dot spanning the width of a test strip.


Alternatively, prostate cancer detection genes can be labeled (e.g., with one or more fluorescent dyes) and immobilized on lyophilized beads to form at least one prostate cancer gene detection site. The beads may also contain sites for negative and/or positive controls. Upon addition of the test sample, the number of sites displaying a detectable signal provides a quantitative indication of the amount of prostate cancer genes present in the sample.


Alternatively, the kit contains a nucleic acid substrate array comprising one or more nucleic acid sequences. The nucleic acids on the array specifically identify one or more nucleic acid sequences represented by prostate cancer genes (see Tables 1-4). In various embodiments, the expression of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 40 or 50 or more of the sequences represented by prostate cancer genes (see Tables 1-4) can be identified by virtue of binding to the array. The substrate array can be on, i.e., a solid substrate, i.e., a “chip” as described in U.S. Pat. No. 5,744,305. Alternatively, the substrate array can be a solution array, i.e., Luminex, Cyvera, Vitra and Quantum Dots' Mosaic.


The skilled artisan can routinely make antibodies, nucleic acid probes, i.e., oligonucleotides, aptamers, siRNAs, antisense oligonucleotides, against any of the prostate cancer genes listed in Tables 14.


Other Embodiments

While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.


Examples
Example 1
Patient Population

RNA was isolated using the PAXgene System from blood samples obtained from a total of 57 subjects suffering from prostate cancer and 50 healthy, normal male subjects (i.e., not suffering from or diagnosed with prostate cancer) subjects. These RNA samples were used for the gene expression analysis studies described in Examples 3-6 below.


The inclusion criteria for the prostate cancer subjects that participated in the study were as follows: each of the subjects had ongoing prostate cancer or a history of previously treated prostate cancer, each subject in the study was 18 years or older, and able to provide consent. No exclusion criteria were used when screening participants.


The 57 prostate cancer subjects from which blood samples were obtained were divided into four cohorts as follows:


Cohort 1: untreated localized prostate cancer (low, medium, or high risk) (N=14);


Cohort 2: rising PSA level after local therapy and prior to androgen deprivation therapy (N=1);


Cohort 3: no detectable metastases, on primary hormones, and in remission (N=2);


Cohort 4: hormone or taxane refractory disease, with or without bone metastasis (N=19)


Disease Status unknown N=21.


Examples 3-6 below describe 1 and 2-gene logistic regregression models capable of distinguishing between prostate cancer subjects from cohort 1 and normal, healthy subjects, prostate cancer subjects from cohort 4 and normal, healthy subjects, and prostate cancer subjects from all groups collectively (i.e., cohort 1, cohort 2, cohort 3, cohort 4, and disease status unknown) and normal, healthy subjects.


Example 2
Enumeration and Classification Methodology based on Logistic Regression Models Introduction

The following methods were used to generate 1, 2, and 3-gene models capable of distinguishing between subjects diagnosed with prostate cancer and normal subjects, with at least 75% classification accurary, as described in Examples 3-6 below.


Given measurements on G genes from samples of N1 subjects belonging to group 1 and N2 members of group 2, the purpose was to identify models containing g<G genes which discriminate between the 2 groups. The groups might be such that one consists of reference subjects (e.g., healthy, normal subjects) while the other group might have a specific disease, or subjects in group 1 may have disease A while those in group 2 may have disease B.


Specifically, parameters from a linear logistic regression model were estimated to predict a subject's probability of belonging to group 1 given his (her) measurements on the g genes in the model. After all the models were estimated (all G 1-gene models were estimated, as well as all








(



G




2



)

=

G
*


(

G
-
1

)

/
2






2


-


gene





models


,




and all (G 3)=G*(G−1)*(G−2)/6 3-gene models based on G genes (number of combinations taken 3 at a time from G)), they were evaluated using a 2-dimensional screening process. The first dimension employed a statistical screen (significance of incremental p-values) that eliminated models that were likely to overfit the data and thus may not validate when applied to new subjects. The second dimension employed a clinical screen to eliminate models for which the expected misclassification rate was higher than anacceptable level. As a threshold analysis, the gene models showing less than 75% discrimination between N1 subjects belonging to group 1 and N2 members of group 2 (i.e., misclassification of 25% or more of subjects in either of the 2 sample groups), and genes with incremental p-values that were not statistically significant, were eliminated.


Methodological, Statistical and Computing Tools Used

The Latent GOLD program (Vermunt and Magidson, 2005) was used to estimate the logistic regression models. For efficiency in processing the models, the LG-Syntax™ Module available with version 4.5 of the program (Vermunt and Magidson, 2007) was used in batch mode, and all g-gene models associated with a particular dataset were submitted in a single run to be estimated. That is, all 1-gene models were submitted in a single run, all 2-gene models were submitted in a second run, etc.


The Data

The data consists of ΔCT values for each sample subject in each of the 2 groups (e.g., prostate cancer subject vs. reference (e.g., healthy, normal subjects) on each of G(k) genes obtained from a particular class k of genes. For a given disease, separate analyses were performed based on disease specific genes, including without limitation genes specific for prostate, breast, ovarian, cervical, lung, colon, and skin cancer, (k=1), inflammatory genes (k=2), human cancer general genes (k=3), genes and genes in the EGR family (k=4).


Analysis Steps

The steps in a given analysis of the G(k) genes measured on N1 subjects in group 1 and N2 subjects in group 2 are as follows:

    • 1) Eliminate low expressing genes: In some instances, target gene FAM measurements were beyond the detection limit (i.e., very high ΔCT values which indicate low expression) of the particular platform instrument used to detect and quantify constituents of a Gene Expression Panel (Precision Profile™). To address the issue of “undetermined” gene expression measures as lack of expression for a particular gene, the detection limit was reset and the “undetermined” constituents were “flagged”, as previously described. CT normalization (ΔCT) and relative expression calculations that have used re-set FAM CT values were also flagged. In some instances, these low expressing genes (i.e., re-set FAM CT values) were eliminated from the analysis in step 1 if 50% or more ΔCT values from either of the 2 groups were flagged. Although such genes were eliminated from the statistical analyses described herein, one skilled in the art would recognize that such genes may be relevant in a disease state.
    • 2) Estimate logistic regression (logit) models predicting P(i)=the probability of being in group 1 for each subject i=1,2, . . . , N1+N2. Since there are only 2 groups, the probability of being in group 2 equals 1−P(i). The maximum likelihood (ML) algorithm implemented in Latent GOLD 4.0 (Vermunt and Magidson, 2005) was used to estimate the model parameters. All 1-gene models were estimated first, followed by all 2-gene models and in cases where the sample sizes N1 and N2 were sufficiently large, all 3-gene models were estimated.
    • 3) Screen out models that fail to meet the statistical or clinical criteria: Regarding the statistical criteria, models were retained if the incremental p-values for the parameter estimates for each gene (i.e., for each predictor in the model) fell below the cutoff point alpha=0.05. Regarding the clinical criteria, models were retained if the percentage of cases within each group (e.g., disease group, and reference group (e.g., healthy, normal subjects) that was correctly predicted to be in that group was at least 75%. For technical details, see the section “Application of the Statistical and Clinical Criteria to Screen Models”.
    • 4) Each model yielded an index that could be used to rank the sample subjects. Such an index value could also be computed for new cases not included in the sample. See the section “Computing Model-based Indices for each Subject” for details on how this index was calculated.
    • 5) A cutoff value somewhere between the lowest and highest index value was selected and based on this cutoff, subjects with indices above the cutoff were classified (predicted to be) in the disease group, those below the cutoff were classified into the reference group (i.e., normal, healthy subjects). Based on such classifications, the percent of each group that is correctly classified was determined. See the section labeled “Classifying Subjects into Groups” for details on how the cutoff was chosen.
    • 6) Among all models that survived the screening criteria (Step 3), an entropy-based R2 statistic was used to rank the models from high to low, i.e., the models with the highest percent -classification rate to the lowest percent classification,rate. The top 5 such models are then evaluated with respect to the percent correctly classified and the one having the highest percentages was selected as the single “best” model. A discrimination plot was provided for the best model having an 85% or greater percent classification rate. For details on how this plot was developed, see the section “Discrimination Plots” below.


While there are several possible R2 statistics that might be used for this purpose, it was determined that the one based on entropy was most sensitive to the extent to which a model yields clear separation between the 2 groups. Such sensitivity provides a model which can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) to ascertain the necessity of future screening or treatment options. For more detail on this issue, see the section labeled “Using R2 Statistics to Rank Models” below.


Computing Model-Based Indices for Each Subject

The model parameter estimates were used to compute a numeric value (logit, odds or probability) for each diseased and reference subject (e.g., healthy, normal subject) in the sample. For illustrative purposes only, in an example of a 2-gene logit model for prostate cancer containing the genes ALOX5 and S100A6, the following parameter estimates listed in Table A were obtained:













TABLE A









Prostate Cancer
alpha(1)
18.37



Normals
alpha(2)
−18.37



Predictors



ALOX5
beta(1)
−4.81



S100A6
beta(2)
2.79











For a given subject with particular ΔCT values observed for these genes, the predicted logit associated with prostate cancer vs. reference (i.e., normals) was computed as:





LOGIT(ALOX5, S100A6)=[alpha(1)−alpha(2)]+beta(1)*ALOX5+beta(2)*S100A6.


The predicted odds of having prostate cancer would be:





ODDS(ALOX5, S100A6)=exp[LOGIT(ALOX5, S100A6)]


and the predicted probability of belonging to the prostate cancer group is:






P(ALOX5, S100A6)=ODDS(ALOX5, S100A6)/[1+ODDS(ALOX5, S100A6)]


Note that the ML estimates for the alpha parameters were based on the relative proportion of the group sample sizes. Prior to computing the predicted probabilities, the alpha estimates may be adjusted to take into account the relative proportion in the population to which the model will be applied (e.g., the incidence of prostate cancer in the population of adult men in the U.S.)


Classifying Subjects into Groups


The “modal classification rule” was used to predict into which group a given case belongs. This rule classifies a case into the group for which the model yields the highest predicted probability. Using the same prostate cancer example previously described (for illustrative purposes only), use of the modal classification rule would classify any subject having P>0.5 into the prostate cancer group, the others into the reference group (e.g., healthy, normal subjects). The percentage of all N1 prostate cancer subjects that were correctly classified were computed as the number of such subjects having P>0.5 divided by N1. Similarly, the percentage of all N2 reference (e.g., normal healthy) subjects that were correctly classified were computed as the number of such subjects having P≦0.5 divided by N2. Alternatively, a cutoff point P0 could be used instead of the modal classification rule so that any subject i having P(i)>P0 assigned to the prostate cancer group, and otherwise to the Reference group (e.g., normal, healthy group).


Application of the Statistical and Clinical Criteria to Screen Models
Clinical Screening Criteria

In order to determine whether a model met the clinical 75% correct classification criteria, the following approach was used:

    • A. All sample subjects were ranked from high to low by their predicted probability P (e.g., see Table B).
    • B. Taking P0(i)=P(i) for each subject, one at a time, the percentage of group 1 and group 2 that would be correctly classified, P1(i) and P2(i) was computed.
    • C. The information in the resulting table was scanned and any models for which none of the potential cutoff probabilities met the clinical criteria (i.e., no cutoffs P0(i) exist such that both P1(i)>0.75 and P2(i)>0.75) were eliminated. Hence, models that did not meet the clinical criteria were eliminated.


The example shown in Table B has many cut-offs that meet this criteria. For example, the cutoff P0=0.4 yields correct classification rates of 92% for the reference group (i.e., normal, healthy subjects), and 93% for Prostate Cancer subjects. A plot based on this cutoff is shown in FIG. 14 and described in the section “Discrimination Plots”.


Statistical Screening Criteria

In order to determine whether a model met the statistical criteria, the following approach was used to compute the incremental p-value for each gene g=1,2, . . . , G as follows:

    • i. Let LSQ(0) denote the overall model L-squared output by Latent GOLD for an unrestricted model.
    • ii. Let LSQ(g) denote the overall model L-squared output by Latent GOLD for the restricted version of the model where the effect of gene g is restricted to 0.
    • iii. With 1 degree of freedom, use a ‘components of chi-square’ table to determine the p-value associated with the LR difference statistic LSQ(g)−LSQ(0).


      Note that this approach required estimating g restricted models as well as 1 unrestricted model.


Discrimination Plots

For a 2-gene model, a discrimination plot consisted of plotting the ΔCT values for each subject in a scatterplot where the values associated with one of the genes served as the vertical axis, the other serving as the horizontal axis. Two different symbols were used for the points to denote whether the subject belongs to group 1 or 2.


A line was appended to a discrimination graph to illustrate how well the 2-gene model discriminated between the 2 groups. The slope of the line was determined by computing the ratio of the ML parameter estimate associated with the gene plotted along the horizontal axis divided by the corresponding estimate associated with the gene plotted along the vertical axis. The intercept of the line was determined as a function of the cutoff point. For the prostate cancer example model based on the 2 genes ALOX5 and S100A6 shown in FIG. 14, the equation for the line associated with the cutoff of 0.4 is ALOX5=7.7+0.58*S100A6. This line provides correct classification rates of 93% and 92% (4 of 57 prostate cancer subjects misclassified and only 4 of 50 reference (i.e., normal) subjects misclassified).


For a 3-gene model, a 2-dimensional slice defined as a linear combination of 2 of the genes was plotted along one of the axes, the remaining gene being plotted along the other axis. The particular linear combination was determined based on the parameter estimates. For example, if a 3rd gene were added to the 2-gene model consisting of ALOX5 and S100A6 and the parameter estimates for ALOX5 and S100A6 were beta(1) and beta(2) respectively, the linear combination beta(1)* ALOX5+beta(2)*S100A6 could be used. This approach can be readily extended to the situation with 4 or more genes in the model by taking additional linear combinations. For example, with 4 genes one might use beta(1)*ALOX5+beta(2)*S100A6 along one axis and beta(3)*gene3+beta(4)*gene4 along the other, or beta(1)*ALOX5+beta(2)*S100A6+beta(3)*gene3 along one axis and gene4 along the other axis. When producing such plots with 3 or more genes, genes with parameter estimates having the same sign were chosen for combination.


Using R2 Statistics to Rank Models

The R2 in traditional OLS (ordinary least squares) linear regression of a continuous dependent variable can be interpreted in several different ways, such as 1) proportion of variance accounted for, 2) the squared correlation between the observed and predicted values, and 3) a transformation of the F-statistic. When the dependent variable is not continuous but categorical (in our models the dependent variable is dichotomous—membership in the diseased group or reference group), this standard R2 defined in terms of variance (see definition 1 above) is only one of several possible measures. The term ‘pseudo R2’ has been coined for the generalization of the standard variance-based R2 for use with categorical dependent variables, as well as other settings where the usual assumptions that justify OLS do not apply.


The general definition of the (pseudo) R2 for an estimated model is the reduction of errors compared to the errors of a baseline model. For the purpose of the present invention, the estimated model is a logistic regression model for predicting group membership based on 1 or more continuous predictors (ΔCT measurements of different genes). The baseline model is the regression model that contains no predictors; that is, a model where the regression coefficients are restricted to 0. More precisely, the pseudo R2 is defined as:






R
2=[Error(baseline)−Error(model)]/Error(baseline)


Regardless how error is defined, if prediction is perfect, Error(model)=0 which yields R2=1. Similarly, if all of the regression coefficients do in fact turn out to equal 0, the model is equivalent to the baseline, and thus R2=0. In general, this pseudo R2 falls somewhere between 0 and 1.


When Error is defined in terms of variance, the pseudo R2 becomes the standard R2. When the dependent variable is dichotomous group membership, scores of 1 and 0, −1 and +1, or any other 2 numbers for the 2 categories yields the same value for R2. For example, if the dichotomous dependent variable takes on the scores of 1 and 0, the variance is defined as P*(1−P) where P is the probability of being in 1 group and 1−P the probability of being in the other.


A common alternative in the case of a dichotomous dependent variable, is to define error in terms of entropy. In this situation, entropy can be defined as P*ln(P)*(1−P)*ln(1−P) (for further discussion of the variance and the entropy based R2, see Magidson, Jay, “Qualitative Variance, Entropy and Correlation Ratios for Nominal Dependent Variables,” Social Science Research 10 (June), pp. 177-194).


The R2 statistic was used in the enumeration methods described herein to identify the “best” gene-model. R2 can be calculated in different ways depending upon how the error variation and total observed variation are defined. For example, four different R2 measures output by Latent GOLD are based on:

  • a) Standard variance and mean squared error (MSE)
  • b) Entropy and minus mean log-likelihood (−MLL)
  • c) Absolute variation and mean absolute error (MAE)
  • d) Prediction errors and the proportion of errors under modal assignment (PPE)


Each of these 4 measures equal 0 when the predictors provide zero discrimination between the groups, and equal 1 if the model is able to classify each subject into their actual group with 0 error. For each measure, Latent GOLD defines the total variation as the error of the baseline (intercept-only) model which restricts the effects of all predictors to 0. Then for each, R2 is defined as the proportional reduction of errors in the estimated model compared to the baseline model. For the 2-gene prostate cancer example used to illustrate the enumeration methodology described herein, the baseline model classifies all cases as being in the diseased group since this group has a larger sample size, resulting in 50 misclassifications (all 50 normal subjects are misclassified) for a prediction error of 50/107=0.467. In contrast, there are only 10 prediction errors (=10/107=0.093) based on the 2-gene model using the modal assignment rule, thus yielding a prediction error R2 of 1−0.093/.467=0.8. As shown in Exhibit 1, 4 normal and 6 cancer subjects would be misclassified using the modal assignment rule. Note that the modal rule utilizes P0=0.5 as the cutoff. If P0=0.4 were used instead, there would be only 8 misclassified subjects.


The sample discrimination plot shown in FIG. 14 is for a 2-gene model for prostate cancer based on disease-specific genes. The 2 genes in the model are ALOX5 and S100A6 and only 8 subjects are misclassified (4 blue circles corresponding to normal subjects fall to the right and below the line, while 4 red Xs corresponding to misclassified PC subjects lie above the line).


To reduce the likelihood of obtaining models that capitalize on chance variations in the observed samples the models may be limited to contain only M genes as predictors in the model. (Although a model may meet the significance criteria, it may overfit data and thus would not be expected to validate when applied to a new sample of subjects.) For example, for M=2, all models would be estimated which contain:










A
.




1



-


gene


--


G





such





models













B
.




2



-


gene





models


--



(



G




2



)


=

G
*


(

G
-
1

)

/
2






such





models














C
.




3



-


gene





models


--



(

G





3

)


=

G
*

(

G
-
1

)

*


(

G
-
2

)

/
6






such





models













Computation of the Z-Statistic

The Z-Statistic associated with the test of significance between the mean ΔCT values for the cancer and normal groups for any gene g was calculated as follows:

  • i. Let LL[g] denote the log of the likelihood function that is maximized under the logistic regression model that predicts group membership (Cancer vs. Normal) as a function of the ΔCT value associated with gene g. There are 2 parameters in this model−an intercept and a slope.
  • ii. Let LL(0) denote the overall model L-squared output by Latent GOLD for the restricted version of the model where the slope parameter reflecting the effect of gene g is restricted to 0. This model has only 1 unrestricted parameter—the intercept.
  • iii. With 2−1=1 degree of freedom (the difference in the number of unrestricted parameters in the models), one can use a ‘components of chi-square’ table to determine the p-value associated with the Log Likelihood difference statistic LLDiff=−2*(LL[0]−LL[g])=2*(LL[g]−LL[0]).
  • iv. Since the chi-squared statistic with 1 df is the square of a Z-statistic, the magnitude of the Z-statistic can be computed as the square root of the LLDiff. The sign of Z is negative if the mean ΔCT value for the cancer group on gene g is less than the corresponding mean for the normal group, and positive if it is greater.
  • v. These Z-statistics can be plotted as a bar graph. The length of the bar has a monotonic relationship with the p-value.









TABLE B







ΔCT Values and Model Predicted Probability of


Prostate Cancer for Each Subject










ALOX5
S100A6
P
Group













13.92
16.13
1.0000
Cancer


13.90
15.77
1.0000
Cancer


13.75
15.17
1.0000
Cancer


13.62
14.51
1.0000
Cancer


15.33
17.16
1.0000
Cancer


13.86
14.61
1.0000
Cancer


14.14
15.09
1.0000
Cancer


13.49
13.60
0.9999
Cancer


15.24
16.61
0.9999
Cancer


14.03
14.45
0.9999
Cancer


14.98
16.05
0.9999
Cancer


13.95
14.25
0.9999
Cancer


14.09
14.13
0.9998
Cancer


15.01
15.69
0.9997
Cancer


14.13
14.15
0.9997
Cancer


14.37
14.43
0.9996
Cancer


14.14
13.88
0.9994
Cancer


14.33
14.17
0.9993
Cancer


14.97
15.06
0.9988
Cancer


14.59
14.30
0.9984
Cancer


14.45
13.93
0.9978
Cancer


14.40
13.77
0.9972
Cancer


14.72
14.31
0.9971
Cancer


14.81
14.38
0.9963
Cancer


14.54
13.91
0.9963
Cancer


14.88
14.48
0.9962
Cancer


14.85
14.42
0.9959
Cancer


15.40
15.30
0.9951
Cancer


15.58
15.60
0.9951
Cancer


14.82
14.28
0.9950
Cancer


14.78
14.06
0.9924
Cancer


14.68
13.88
0.9922
Cancer


14.54
13.64
0.9922
Cancer


15.86
15.91
0.9920
Cancer


15.71
15.60
0.9908
Cancer


16.24
16.36
0.9858
Cancer


16.09
15.94
0.9774
Cancer


15.26
14.41
0.9705
Cancer


14.93
13.81
0.9693
Cancer


15.44
14.67
0.9670
Cancer


15.69
15.08
0.9663
Cancer


15.40
14.54
0.9615
Cancer


15.80
15.21
0.9586
Cancer


15.98
15.43
0.9485
Cancer


15.20
14.08
0.9461
Normal


15.03
13.62
0.9196
Cancer


15.20
13.91
0.9184
Cancer


15.04
13.54
0.8972
Cancer


15.30
13.92
0.8774
Cancer


15.80
14.68
0.8404
Cancer


15.61
14.23
0.7939
Normal


15.89
14.64
0.7577
Normal


15.44
13.66
0.6445
Cancer


16.52
15.38
0.5343
Cancer


15.54
13.67
0.5255
Normal


15.28
13.11
0.4537
Cancer


15.96
14.23
0.4207
Cancer


15.96
14.20
0.3928
Normal


16.25
14.69
0.3887
Cancer


16.04
14.32
0.3874
Cancer


16.26
14.71
0.3863
Normal


15.97
14.18
0.3710
Cancer


15.93
14.06
0.3407
Normal


16.23
14.41
0.2378
Cancer


16.02
13.91
0.1743
Normal


15.99
13.78
0.1501
Normal


16.74
15.05
0.1389
Normal


16.66
14.90
0.1349
Normal


16.91
15.20
0.0994
Normal


16.47
14.31
0.0721
Normal


16.63
14.57
0.0672
Normal


16.25
13.90
0.0663
Normal


16.82
14.84
0.0596
Normal


16.75
14.73
0.0587
Normal


16.69
14.54
0.0474
Normal


17.13
15.25
0.0416
Normal


16.87
14.72
0.0329
Normal


16.35
13.76
0.0285
Normal


16.41
13.83
0.0255
Normal


16.68
14.20
0.0205
Normal


16.58
13.97
0.0169
Normal


16.66
14.09
0.0167
Normal


16.92
14.49
0.0140
Normal


16.93
14.51
0.0139
Normal


17.27
15.04
0.0123
Normal


16.45
13.60
0.0116
Normal


17.52
15.44
0.0110
Normal


17.12
14.46
0.0051
Normal


17.13
14.46
0.0048
Normal


16.78
13.86
0.0047
Normal


17.10
14.36
0.0041
Normal


16.75
13.69
0.0034
Normal


17.27
14.49
0.0027
Normal


17.07
14.08
0.0022
Normal


17.16
14.08
0.0014
Normal


17.50
14.41
0.0007
Normal


17.50
14.18
0.0004
Normal


17.45
14.02
0.0003
Normal


17.53
13.90
0.0001
Normal


18.21
15.06
0.0001
Normal


17.99
14.63
0.0001
Normal


17.73
14.05
0.0001
Normal


17.97
14.40
0.0001
Normal


17.98
14.35
0.0001
Normal


18.47
15.16
0.0001
Normal


18.28
14.59
0.0000
Normal


18.37
14.71
0.0000
Normal









Example 3
Precision Profile™ for Prostate Cancer
Gene Expression Profiles for Prostate Cancer-Cohort 1:

Custom primers and probes were prepared for the targeted 74 genes shown in the Precision Profile™ for Prostate Cancer (shown in Table 1), selected to be informative relative to biological state of prostate cancer patients. Gene expression profiles for the 74 prostate cancer specific genes were analyzed using 14 RNA samples obtained from cohort 1 prostate cancer subjects, and the 50 RNA samples obtained from normal subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with prostate cancer (cohort 1) and normal subjects were generated using the enumeration and to classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with prostate cancer (cohort 1) and normal subjects with at least 75% accuracy is shown in Table 1A, (read from left to right).


As shown in Table 1A, the 1 and 2-gene models are identified in the first two columns on the left side of Table 1A, ranked by their entropy R2 value (shown in column 3, ranked from high to low). The number of subjects correctly classified or misclassified by each 1 or 2-gene model for each patient group (i.e., normal vs. prostate cancer) is shown in columns 4-7. The percent normal subjects and percent prostate cancer subjects correctly classified by the corresponding gene model is shown in columns 8 and 9. The incremental p-value for each first and second gene in the 1 or 2-gene model is shown in columns 10-11 (note p-values smaller than 1×10−17 are reported as ‘0’). The total number of RNA samples analyzed in each patient group (i.e., normals vs. prostate cancer), after exclusion of missing values, is shown in columns 12 and 13. The values missing from the total sample number for normal and/or prostate cancer subjects shown in columns 12 and 13 correspond to instances in which values were excluded from the logistic regression analysis due to reagent limitations and/or instances where replicates did not meet quality metrics.


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 74 genes included in the Precision Profile™ for Prostate Cancer is shown in the first row of Table 1A, read left to right. The first row of Table 1A lists a 2-gene model, CDH1 and EGR1, capable of classifying normal subjects with 98% accuracy, and cohort 1 prostate cancer subjects with 100% accuracy. Each of the 50 normal RNA samples and the 14 cohort 1 prostate cancer RNA samples were analyzed for this 2-gene model, no values were excluded. As shown in Table 1A, this 2-gene model correctly classifies 49 of the normal subjects as being in the normal patient population, and misclassifies 1 of the normal subjects as being in the cohort 1 prostate cancer patient population. This 2-gene model correctly classifies all 14 of the cohort 1 prostate cancer subjects as being in the prostate cancer patient population. The p-value for the first gene, CDH1, is 0.0183, the incremental p-value for the second gene, EGR1 is 5.5E−10.


A discrimination plot of the 2-gene model, CDH1 and EGR1, is shown in FIG. 1. As shown in FIG. 1, the normal subjects are represented by circles, whereas the cohort 1 prostate cancer subjects are represented by X's. The line appended to the discrimination graph in FIG. 1 illustrates how well the 2-gene model discriminates between the 2 groups. Values to the right of the line represent subjects predicted by the 2-gene model to be in the normal population. Values to the left of the line represent subjects predicted to be in the cohort 1 prostate cancer population. As shown in FIG. 1, only 1 normal subject (circles) and no prostate cancer (cohort 1) subjects (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 1:






CDH1=96.1358−3.9637*EGR1


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.19325 was used to compute alpha (equals −1.4290291 in logit units).


Subjects to the left this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.19325.


The intercept C0=96.1358 was computed by taking the difference between the intercepts for the 2 groups [104.3138−(−104.3138)=208.6276] and subtracting the log-odds of the cutoff probability (−1.4290291). This quantity was then multiplied by −1/X where X is the coefficient for CDH1 (−2.185).


A ranking of the top 51 prostate cancer specific genes for which gene expression profiles were obtained, from most to least significant, is shown in Table 1B. Table 1B summarizes the results of significance tests (Z-statistic and p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from prostate cancer (cohort 1). A negative Z-statistic means that the ΔCT for the cohort 1 prostate cancer subjects is less than that of the normals, i.e., genes having a negative Z-statistic are up-regulated in prostate cancer (cohort 1) subjects as compared to normal subjects. A positive Z-statistic means that the ΔCT for the prostate cancer (cohort 1) subjects is higher than that of of the normals, i.e., genes with a positive Z-statistic are down-regulated in cohort 1 prostate cancer subjects as compared to normal subjects.


The expression values (ΔCT) for the 2-gene model, CDH1 and EGR1, for each of the 14 cohort 1 prostate cancer samples and 50 normal subject samples used in the analysis, and their predicted probability of having prostate cancer (cohort 1), is shown in Table 1C. As shown in Table 1C, the predicted probability of a subject having prostate cancer (cohort 1), based on the 2-gene model CDH1 and EGR1 is based on a scale of 0 to 1, “0” indicating no prostate cancer (cohort 1) (i.e., normal healthy subject), “1” indicating the subject has prostate cancer (cohort 1). This predicted probability can be used to create a prostate cancer index based on the 2-gene model CDH1 and EGR1, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of prostate cancer (cohort 1) and to ascertain the necessity of future screening or treatment options.


Gene Expression Profiles for Prostate Cancer-Cohort 4:

Using the custom primers and probes prepared for the targeted 74 genes shown in the Precision Profile™ for Prostate Cancer (shown in Table 1), gene expression profiles were analyzed using 19 RNA samples obtained from cohort 4 prostate cancer subjects, and the 50 RNA samples obtained from the normal subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with prostate cancer (cohort 4) and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with prostate cancer (cohort 4) and normal subjects with at least 75% accuracy is shown in Table 1D, (read from left to right, and interpreted as described above for Table 1A).


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 74 genes included in the Precision Profile™ for Prostate Cancer is shown in the first row of Table 1D. The first row of Table 1D lists a 2-gene model, EGR1 and MYC, capable of classifying normal subjects with 90% accuracy, and cohort 4 prostate cancer subjects with 89.5% accuracy. Each of the 50 normal RNA samples and the 19 cohort 4 prostate cancer RNA samples were analyzed for this 2-gene model, no values were excluded. As shown in Table 1D, this 2-gene model correctly classifies 45 of the normal subjects as being in the normal patient population, and misclassifies 5 of the normal subjects as being in the cohort 4 prostate cancer patient population. This 2-gene model correctly classifies 17 of the cohort 4 prostate cancer subjects as being in the prostate cancer patient population, and misclassifies only 2 of the cohort 4 prostate cancer subjects as being in the normal patient population. The p-value for the first gene, EGR1 is 8.0E−12, the incremental p-value for the second gene, MYC, is 8.4E−05.


A discrimination plot of the 2-gene model, EGR1 and MYC, is shown in FIG. 2. As shown in FIG. 2, the normal subjects are represented by circles, whereas the cohort 4 prostate cancer subjects are represented by X's. The line appended to the discrimination graph in FIG. 2 illustrates how well the 2-gene model discriminates between the 2 groups. Values above and to the left of the line represent subjects predicted by the 2-gene model to be in the normal population. Values below and to the right of line represent subjects predicted to be in the cohort 4 prostate cancer population. As shown in FIG. 2, only 5 normal subjects (circles) and 1 cohort 1 prostate cancer subject (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 2:






EGR1=9.212321+0.591792*MYC


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.31465 was used to compute alpha (equals −0.77847 in logit units).


Subjects below and to the right of this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.31465.


The intercept C0=9.212321 was computed by taking the difference between the intercepts for the 2 groups [24.8189−(−24.8189)=49.6378] and subtracting the log-odds of the cutoff probability (−0.77847). This quantity was then multiplied by −1/X where X is the coefficient for EGR1 (−5.4727).


A ranking of the top 51 prostate cancer specific genes for which gene expression profiles were obtained, from most to least significant, is shown in Table 1E. Table 1E summarizes the results of significance tests (Z-statistic and p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from prostate cancer (cohort 4). A negative Z-statistic means that the ΔCT for the cohort 4 prostate cancer subjects is less than that of the normals, i.e., genes having a negative Z-statistic are up-regulated in cohort 4 prostate cancer subjects as compared to normal subjects. A positive Z-statistic means that the ΔCT for the cohort 4 prostate cancer subjects is higher than that of of the normals, i.e., genes with a positive Z-statistic are down-regulated in cohort 4 prostate cancer subjects as compared to normal subjects.


The expression values (ΔCT) for the 2-gene model, EGR1 and MYC, for each of the 19 cohort 4 prostate cancer samples and 50 normal subject samples used in the analysis, and their predicted probability of having prostate cancer (cohort 4), is shown in Table 1F. As shown in Table 1F, the predicted probability of a subject having prostate cancer (cohort 4), based on the 2-gene model EGR1 and MYC is based on a scale of 0 to 1, “0” indicating no prostate cancer (cohort 4) (i.e., normal healthy subject), “1” indicating the subject has prostate cancer (cohort 4). This predicted probability can be used to create a prostate cancer index based on the 2-gene model EGR1 and MYC, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of prostate cancer (cohort 4) and to ascertain the necessity of future screening or treatment options.


Gene Expression Profiles for Prostate Cancer-All Cohorts:

Using the custom primers and probes prepared for the targeted 74 genes shown in the Precision Profile™ for Prostate Cancer (shown in Table 1), gene expression profiles were analyzed using 40 of the RNA samples obtained from all cohorts of prostate cancer subjects, and the 50 RNA samples obtained from the normal subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with prostate cancer (all cohorts) and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with prostate cancer (all cohorts) and normal subjects with at least 75% accuracy is shown in Table 1G, (read from left to right, and interpreted as described above for Table 1A).


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 74 genes included in the Precision Profile™ for Prostate Cancer is shown in the first row of Table 1G. The first row of Table 1G lists a 2-gene model, EGR1 and MYC, capable of classifying normal subjects with 86% accuracy, and prostate cancer (all cohorts) subjects with 85% accuracy. Each of the 50 normal RNA samples and the 40 prostate cancer (all cohorts) RNA samples were analyzed for this 2-gene model, no values were excluded. As shown in Table 1G, this 2-gene model correctly classifies 43 of the normal subjects as being in the normal patient population, and misclassifies 7 of the normal subjects as being in the prostate cancer (all cohorts) patient population. This 2-gene model correctly classifies 34 of the prostate cancer (all cohorts) subjects as being in the prostate cancer patient population, and misclassifies only 6 of the prostate cancer (all cohorts) subjects as being in the normal patient population. The p-value for the first gene, EGR1, is smaller than 1×10−17 (reported as 0), the incremental p-value for the second gene, MYC, is 0.0012.


A discrimination plot of the 2-gene model, EGR1 and MYC, is shown in FIG. 3. As shown in FIG. 3, the normal subjects are represented by circles, whereas the prostate cancer to (all cohorts) subjects are represented by X's. The line appended to the discrimination graph in FIG. 3 illustrates how well the 2-gene model discriminates between the 2 groups. Values above and to the left of the line represent subjects predicted by the 2-gene model to be in the normal population. Values below and to the right of line represent subjects predicted to be in the prostate cancer (all cohorts) population. As shown in FIG. 3, 7 normal subjects (circles) and 5 prostate cancer (all cohorts) subjects (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 3:






EGR1=11.82397+0.443712*MYC


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.42055 was used to compute alpha (equals −0.32052 in logit units).


Subjects below and to the right of this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.42055.


The intercept C0=11.82397 was computed by taking the difference between the intercepts for the 2 groups [25.5616−(−25.5616)=51.1232] and subtracting the log-odds of the cutoff probability (−0.32052). This quantity was then multiplied by −1/X where X is the coefficient for EGR1 (−4.3508).


A ranking of the top 51 prostate cancer specific genes for which gene expression profiles were obtained, from most to least significant, is shown in Table 1H. Table 1H summarizes the results of significance tests (Z-statistic and p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from prostate cancer (all cohorts). A negative Z-statistic means that the ΔCT for the prostate cancer (all cohorts) subjects is less than that of the normals, i.e., genes having a negative Z-statistic are up-regulated in prostate cancer (all cohorts) subjects as compared to normal subjects. A positive Z-statistic means that the ΔCT for the prostate cancer (all cohorts) subjects is higher than that of of the normals, i.e., genes with a positive Z-statistic are down-regulated in prostate cancer (all cohorts) subjects as compared to normal subjects. FIG. 4 shows a graphical representation of the Z-statistic for each of the 51 genes shown in Table 1H, indicating which genes are up-regulated and down-regulated in prostate cancer subjects (all cohorts) as compared to normal subjects.


The expression values (ΔCT) for the 2-gene model, EGR1 and MYC for each of the 40 prostate cancer (all cohorts) samples and 50 normal subject samples used in the analysis, and their predicted probability of having prostate cancer (all cohorts), is shown in Table 1I. As shown in Table 1I, the predicted probability of a subject having prostate cancer (all cohorts), based on the 2-gene model EGR1 and MYC is based on a scale of 0 to 1, “0” indicating no prostate cancer (all cohorts) (i.e., normal healthy subject), “1” indicating the subject has prostate cancer (all cohorts). A graphical representation of the predicted probabilities of a subject having prostate cancer (all cohorts) (i.e., a prostate cancer index), based on this 2-gene model, is shown in FIG. 5. Such an index can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of prostate cancer (all cohorts) and to ascertain the necessity of future screening or treatment options.


Example 4
Precision Profile™ for Inflammatory Response
Gene Expression Profiles for Prostate Cancer-Cohort 1:

Custom primers and probes were prepared for the targeted 72 genes shown in the Precision Profile™ for Inflammatory Response (shown in Table 2), selected to be informative relative to biological state of inflammation and cancer. Gene expression profiles for the 72 inflammatory response genes were analyzed using 14 RNA samples obtained from cohort 1 prostate cancer subjects, and the 50 RNA samples obtained from normal subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with prostate cancer (cohort 1) and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with prostate cancer (cohort 1) and normal subjects with at least 75% accuracy is shown in Table 2A, (read from left to right).


As shown in Table 2A, the 1 and 2-gene models are identified in the first two columns on the left side of Table 2A, ranked by their entropy R2 value (shown in column 3, ranked from high to low). The number of subjects correctly classified or misclassified by each 1 or 2-gene model for each patient group (i.e., normal vs. prostate cancer) is shown in columns 4-7. The percent normal subjects and percent prostate cancer subjects correctly classified by the corresponding gene model is shown in columns 8 and 9. The incremental p-value for each first and second gene in the 1 or 2-gene model is shown in columns 10-11 (note p-values smaller than 1×10−17 are reported as ‘0’). The total number of RNA samples analyzed in each patient group (i.e., normals vs. prostate cancer), after exclusion of missing values, is shown in columns 12 and 13. The values missing from the total sample number for normal and/or prostate cancer subjects shown in columns 12 and 13 correspond to instances in which values were excluded from the logistic regression analysis due to reagent limitations and/or instances where replicates did not meet quality metrics.


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 72 genes included in the Precision Profile™ for Inflammatory Response is shown in the first row of Table 2A, read left to right. The first row of Table 2A lists a 2-gene model, CASP1 and MIF, capable of classifying normal subjects with 98% accuracy, and Cohort 1 prostate cancer subjects with 100% accuracy. Each of the 50 normal RNA samples and the 14 Cohort 1 prostate cancer RNA samples were analyzed for this 2-gene model, no values were excluded. As shown in Table 2A, this 2-gene model correctly classifies 49 of the normal subjects as being in the normal patient population, and misclassifies 1 of the normal subjects as being in the Cohort 1 prostate cancer patient population. This 2-gene model correctly classifies all 14 cohort 1 prostate cancer subjects as being in the prostate cancer patient population. The p-value for the first gene, CASP1, is 1.6E−14, the incremental p-value for the second gene, MIF, is 2.4E−08.


A discrimination plot of the 2-gene model, CASP1 and MIF, is shown in FIG. 6. As shown in FIG. 6, the normal subjects are represented by circles, whereas the cohort 1 prostate cancer subjects are represented by X's. The line appended to the discrimination graph in FIG. 6 illustrates how well the 2-gene model discriminates between the 2 groups. Values above and to the left of the line represent subjects predicted by the 2-gene model to be in the normal population. Values below and to the right of the line represent subjects predicted to be in the cohort 1 prostate cancer population. As shown in FIG. 6, 1 normal subject (circles) and no cohort 1 prostate cancer subjects (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 6:






CASP1=3.164023+0.837326*MIF


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.3054 was used to compute alpha (equals −0.82171 in logit units).


Subjects below and to the right of this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.3054.


The intercept C0=3.164023 was computed by taking the difference between the intercepts for the 2 groups [52.855−(−52.855)=105.71] and subtracting the log-odds of the cutoff probability (−0.82171). This quantity was then multiplied by −1/X where X is the coefficient for CASP1 (−33.6697).


A ranking of the top 68 inflammatory response specific genes for which gene expression profiles were obtained, from most to least significant, is shown in Table 2B. Table 2B summarizes the results of significance tests (p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from prostate cancer (cohort 1).


The expression values (ΔCT) for the 2-gene model, CASP1 and MIF, for each of the 14 cohort 1 prostate cancer samples and 50 normal subject samples used in the analysis, and their predicted probability of having prostate cancer (cohort 1), is shown in Table 2C. As shown in Table 2C, the predicted probability of a subject having prostate cancer (cohort 1), based on the 2-gene model CASP1 and MIF is based on a scale of 0 to 1, “0” indicating no prostate cancer (cohort 1) (i.e., normal healthy subject), “1” indicating the subject has prostate cancer (cohort 1). This predicted probability can be used to create a prostate cancer index based on the 2-gene model CASP1 and MIF, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of prostate cancer (cohort 1) and to ascertain the necessity of future screening or treatment options.


Gene Expression Profiles for Prostate Cancer-Cohort 4:

Using the custom primers and probes prepared for the targeted 72 genes shown in the Precision Profile™ for Inflammatory Response (shown in Table 2), gene expression profiles were analyzed using 19 RNA samples obtained from cohort 4 prostate cancer subjects, and the 50 RNA samples obtained from the normal subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with prostate cancer (cohort 4) and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with prostate cancer (cohort 4) and normal subjects with at least 75% accuracy is shown in Table 2D, (read from left to right, and interpreted as described above for Table 2A).


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 72 genes included in the Precision Profile™ for Inflammatory Response is shown in the first row of Table 2D. The first row of Table 2D lists a 2-gene model, CCR3 and SERPINAL capable of classifying normal subjects with 96% accuracy, and cohort 4 prostate cancer subjects with 94.7% accuracy. Each of the 50 normal RNA samples and the 19 cohort 4 prostate cancer RNA samples were analyzed for this 2-gene model, no values were excluded. As shown in Table 2D, this 2-gene model correctly classifies 48 of the normal subjects as being in the normal patient population, and misclassifies 2 of the normal subjects as being in the cohort 4 prostate cancer patient population. This 2-gene model correctly classifies 18 of the cohort 4 prostate cancer subjects as being in the prostate cancer patient population, and misclassifies only 1 of the cohort 4 prostate cancer subjects as being in the normal patient population. The p-value for the first gene, CCR3, is 5.3E−09, the incremental p-value for the second gene SERPINA1 is 2.0E−10.


A discrimination plot of the 2-gene model, CCR3 and SERPINA1, is shown in FIG. 7. As shown in FIG. 7, the normal subjects are represented by circles, whereas the cohort 4 prostate cancer subjects are represented by X's. The line appended to the discrimination graph in FIG. 7 illustrates how well the 2-gene model discriminates between the 2 groups. Values below and to the right of the line represent subjects predicted by the 2-gene model to be in the normal population. Values above and to the left of line represent subjects predicted to be in the cohort 4 prostate cancer population. As shown in FIG. 7, only 2 normal subjects (circles) and 1 cohort 4 prostate cancer subject (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 7:






CCR3=2.172181+1.137269*SERPINA1


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.3351 was used to compute alpha (equals −0.68521 in logit units).


Subjects above and to the left of this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.3351.


The intercept C0=2.172181 was computed by taking the difference between the to intercepts for the 2 groups [−5.8985−(5.8985)=−11.797] and subtracting the log-odds of the cutoff probability (−0.68521). This quantity was then multiplied by −1/X where X is the coefficient for CCR3 (5.115).


A ranking of the top 68 inflammatory response specific genes for which gene expression profiles were obtained, from most to least significant, is shown in Table 2E. Table 2E summarizes the results of significance tests (p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from prostate cancer (cohort 4).


The expression values (ΔCT) for the 2-gene model, CCR3 and SERPINA1, for each of the 19 cohort 4 prostate cancer samples and 50 normal subject samples used in the analysis, and their predicted probability of having prostate cancer (cohort 4), is shown in Table 2F. As shown in Table 2F, the predicted probability of a subject having prostate cancer (cohort 4), based on the 2-gene model CCR3 and SERPINA1 is based on a scale of 0 to 1, “0” indicating no prostate cancer (cohort 4) (i.e., normal healthy subject), “1” indicating the subject has prostate cancer (cohort 4). This predicted probability can be used to create a prostate cancer index based on the 2-gene model CCR3 and SERPINA1, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of prostate cancer (cohort 4) and to ascertain the necessity of future screening or treatment options.


Gene Expression Profiles for Prostate Cancer-All Cohorts:

Using the custom primers and probes prepared for the targeted 72 genes shown in the Precision Profile™ for Inflammatory Response (shown in Table 2), gene expression profiles were analyzed using 40 of the RNA samples obtained from all cohorts of the prostate cancer subjects, and the 50 RNA samples obtained from the normal subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with prostate cancer (all cohorts) and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with prostate cancer (all cohorts) and normal subjects with at least 75% accuracy is shown in Table 2G, (read from left to right, and interpreted as described above for Table 2A).


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 72 genes included in the Precision Profile™ for Inflammatory Response is shown in the first row of Table 2G. The first row of Table 2G lists a 2-gene model, CASP1 and MIF, capable of classifying normal subjects with 96% accuracy, and prostate cancer (all cohorts) subjects with 95% accuracy. Each of the 50 normal RNA samples and the 40 prostate cancer (all cohorts) RNA samples were analyzed for this 2-gene model, no values were excluded. As shown in Table 2G, this 2-gene model correctly classifies 48 of the normal subjects as being in the normal patient population, and misclassifies 2 of the normal subjects as being in the prostate cancer (all cohorts) patient population. This 2-gene model correctly classifies 38 of the prostate cancer (all cohorts) subjects as being in the prostate cancer patient population, and misclassifies only 2 of the prostate cancer (all cohorts) subjects as being in the normal patient population. The p-value for the first gene, CASP1, is less than 1×10−17 (reported as 0), the incremental p-value for the second gene, MIF, is 4.0E−15.


A discrimination plot of the 2-gene model, CASP1 and MIF, is shown in FIG. 8. As shown in FIG. 8, the normal subjects are represented by circles, whereas the prostate cancer (all cohorts) subjects are represented by X's. The line appended to the discrimination graph in FIG. 8 illustrates how well the 2-gene model discriminates between the 2 groups. Values above and to the left of the line represent subjects predicted by the 2-gene model to be in the normal population. Values below and to the right of line represent subjects predicted to be in the prostate cancer (all cohorts) population. As shown in FIG. 8, 1 normal subject (circles) and 2 prostate cancer (all cohorts) subjects (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 8:






CASP1=4.9157+0.7245*MIF


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.39515 was used to compute alpha (equals −0.425715054 in logit units).


Subjects below and to the right of this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.39515.


The intercept C0=4.9157 was computed by taking the difference between the intercepts for the 2 groups [15.8305−(−15.8305)=31.661] and subtracting the log-odds of the cutoff probability (−0.425715054). This quantity was then multiplied by −1/X where X is the coefficient for CASP1 (−6.5273).


A ranking of the top 68 inflammatory response specific genes for which gene expression profiles were obtained, from most to least significant, is shown in Table 2H. Table 2H summarizes the results of significance tests (p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from prostate cancer (all cohorts).


The expression values (ΔCT) for the 2-gene model, CASP1 and MIF for each of the 40 prostate cancer (all cohorts) samples and 50 normal subject samples used in the analysis, and their predicted probability of having prostate cancer (all cohorts), is shown in Table 2I. As shown in Table 2I, the predicted probability of a subject having prostate cancer (all cohorts), based on the 2-gene model CASP1 and MIF is based on a scale of 0 to 1, “0” indicating no prostate cancer (all cohorts) (i.e., normal healthy subject), “1” indicating the subject has prostate cancer (all cohorts). This predicted probability can be used to create a prostate cancer index based on the 2-gene model CASP1 and MIF, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of prostate cancer (all cohorts) and to ascertain the necessity of future screening or treatment options.


Example 5
Human Cancer General Precision Profile™
Gene Expression Profiles for Prostate Cancer-Cohort 1:

Custom primers and probes were prepared for the targeted 91 genes shown in the Human Cancer Precision Profile™ (shown in Table 3), selected to be informative relative to the biological condition of human cancer, including but not limited to breast, ovarian, cervical, prostate, lung, colon, and skin cancer. Gene expression profiles for these 91 genes were analyzed using 16 RNA samples obtained from cohort 1 prostate cancer subjects, and the 50 RNA samples obtained from normal subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with prostate cancer (cohort 1) and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with prostate cancer (cohort 1) and normal subjects with at least 75% accuracy is shown in Table 3A, (read from left to right).


As shown in Table 3A, the 1 and 2-gene models are identified in the first two columns on the left side of Table 3A, ranked by their entropy R2 value (shown in column 3, ranked from high to low). The number of subjects correctly classified or misclassified by each 1 or 2-gene model for each patient group (i.e., normal vs. prostate cancer) is shown in columns 4-7. The percent normal subjects and percent prostate cancer subjects correctly classified by the corresponding gene model is shown in columns 8 and 9. The incremental p-value for each first and second gene in the 1 or 2-gene model is shown in columns 10-11 (note p-values smaller than 1×10−17 are reported as ‘0’). The total number of RNA samples analyzed in each patient group (i.e., normals vs. prostate cancer), after exclusion of missing values, is shown in columns 12 and 13. The values missing from the total sample number for normal and/or prostate cancer subjects shown in columns 12 and 13 correspond to instances in which values were excluded from the logistic regression analysis due to reagent limitations and/or instances where replicates did not meet quality metrics.


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 91 genes included in the Human Cancer Precision Profile™ (shown in Table 3) is shown in the first row of Table 3A, read left to right. The first row of Table 3A lists a 2-gene model, EGR1 and NME4, capable of classifying normal subjects with 100% accuracy, and cohort 1 prostate cancer subjects with 100% accuracy. Each of the 50 normal RNA samples and the 16 cohort 1 prostate cancer RNA samples were analyzed for this 2-gene model, no values were excluded. As shown in Table 3A, this 2-gene model correctly classifies all 50 of the normal subjects as being in the normal patient population, and correctly classifies all 16 of the cohort 1 prostate cancer subjects as being in the prostate cancer patient population. The p-value for the first gene, EGR1, is 3.7E−10, the incremental p-value for the second gene, NME4, is 0.00005.


A discrimination plot of the 2-gene model, EGR1 and NME4, is shown in FIG. 9. As shown in FIG. 9, the normal subjects are represented by circles, whereas the cohort 1 prostate cancer subjects are represented by X's. The line appended to the discrimination graph in FIG. 9 illustrates how well the 2-gene model discriminates between the 2 groups. Values above and to the right of the line represent subjects predicted by the 2-gene model to be in the normal population. Values below and to the left of the line represent subjects predicted to be in the cohort 1 prostate cancer population. As shown in FIG. 9, no normal subjects (circles) and no cohort 1 prostate cancer subject (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 9:





EGR1=32.42863−0.72511*NME4


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.5 was used to compute alpha (equals 0 in logit units).


Subjects below and to the left of this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.5.


The intercept C0=32.42863 was computed by taking the difference between the intercepts for the 2 groups [5258.156−(−5258.156)=10516.312] and subtracting the log-odds of the cutoff probability (0). This quantity was then multiplied by −1/X where X is the coefficient for EGR1 (−324.291).


A ranking of the top 77 genes for which gene expression profiles were obtained, from most to least significant, is shown in Table 3B. Table 3B summarizes the results of significance tests (p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from prostate cancer (cohort 1).


The expression values (ΔCT) for the 2-gene model, EGR1 and NME4, for each of the 16 cohort 1 prostate cancer samples and 50 normal subject samples used in the analysis, and their predicted probability of having prostate cancer (cohort 1), is shown in Table 3C. As shown in Table 3C, the predicted probability of a subject having prostate cancer (cohort 1), based on the 2-gene model EGR1 and NME4 is based on a scale of 0 to 1, “0” indicating no prostate cancer (cohort 1) (i.e., normal healthy subject), “1” indicating the subject has prostate cancer (cohort 1). This predicted probability can be used to create a prostate cancer index based on the 2-gene model EGR1 and NME4, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of prostate cancer (cohort 1) and to ascertain the necessity of future screening or treatment options.


Gene Expression Profiles for Prostate Cancer-Cohort 4:

Using the custom primers and probes prepared for the targeted 91 genes shown in the Human Cancer General Precision Profile™ (shown in Table 3), gene expression profiles were analyzed using 25 RNA samples obtained from cohort 4 prostate cancer subjects, and the 50 RNA samples obtained from the normal subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with prostate cancer (cohort 4) and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with prostate cancer (cohort 4) and normal subjects with at least 75% accuracy is shown in Table 3D, (read from left to right, and interpreted as described above for Table 3A).


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 91 genes included in the Human Cancer Precision Profile™ (shown in Table 3) is shown in the first row of Table 3D. The first row of Table 3D lists a 2-gene model, BAD and RB1, capable of classifying normal subjects with 98% accuracy, and cohort 4 prostate cancer subjects with 96% accuracy. Each of the 50 normal RNA samples and the 25 cohort 4 prostate cancer RNA samples were analyzed for this 2-gene model, no values were excluded. As shown in Table 3D, this 2-gene model correctly classifies 49 of the normal subjects as being in the normal patient population, and misclassifies 1 of the normal subjects as being in the cohort 4 prostate cancer patient population. This 2-gene model correctly classifies 24 of the cohort 4 prostate cancer subjects as being in the prostate cancer patient population, and misclassifies only 1 of the cohort 4 prostate cancer subjects as being in the normal patient population. The p-value for the first gene, BAD, is 2.1E−12, the incremental p-value for the second gene RB1 is less than 1×10−17 (reported as 0).


A discrimination plot of the 2-gene model, BAD and RB1, is shown in FIG. 10. As shown in FIG. 10, the normal subjects are represented by circles, whereas the cohort 4 prostate cancer subjects are represented by X's. The line appended to the discrimination graph in FIG. 10 illustrates how well the 2-gene model discriminates between the 2 groups. Values to the right of the line represent subjects predicted by the 2-gene model to be in the normal population. Values to the left of line represent subjects predicted to be in the cohort 4 prostate cancer population. As shown in FIG. 10, only 1 normal subject (circles) and no cohort 4 prostate cancer subjects (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 10:





BAD=0.608109+1.007301*RB1


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.3583 was used to compute alpha (equals −0.58275 in logit units).


Subjects to the left of this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.3583.


The intercept C0=0.608109 was computed by taking the difference between the intercepts for the 2 groups [−6.7671−(6.7671)=−13.5342] and subtracting the log-odds of the cutoff probability (−0.58275). This quantity was then multiplied by −1/X where X is the coefficient for BAD (21.2979).


A ranking of the top 77 genes for which gene expression profiles were obtained, from most to least significant, is shown in Table 3E. Table 3E summarizes the results of significance tests (p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from prostate cancer (cohort 4).


The expression values (ΔCT) for the 2-gene model, BAD and RB1, for each of the 25 cohort 4 prostate cancer samples and 50 normal subject samples used in the analysis, and their predicted probability of having prostate cancer (cohort 4), is shown in Table 3F. As shown in Table 3F, the predicted probability of a subject having prostate cancer (cohort 4), based on the 2-gene model BAD and RB1 is based on a scale of 0 to 1, “0” indicating no prostate cancer (cohort 4) (i.e., normal healthy subject), “1” indicating the subject has prostate cancer (cohort 4). This predicted probability can be used to create a prostate cancer index based on the 2-gene model BAD and RB1, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of prostate cancer (cohort 4) and to ascertain the necessity of future screening or treatment options.


Gene Expression Profiles for Prostate Cancer-All Cohorts:

Using the custom primers and probes prepared for the targeted 91 genes shown in the Human Cancer General Precision Profile™ (shown in Table 3), gene expression profiles were analyzed using the 57 RNA samples obtained from all cohorts of the prostate cancer subjects, and the 50 RNA samples obtained from the normal subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with prostate cancer (all cohorts) and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with prostate cancer (all cohorts) and normal subjects with at least 75% accuracy is shown in Table 3G, (read from left to right, and interpreted as described above for Table 3A).


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 91 genes included in the Human Cancer Precision Profile™ (shown in Table 3) is shown in the first row of Table 3G. The first row of Table 3G lists a 2-gene model, BAD and RB1, capable of classifying normal subjects with 98% accuracy, and prostate cancer (all cohorts) subjects with 98.3% accuracy. Each of the 50 normal RNA samples and the 57 prostate cancer (all cohorts) RNA samples were analyzed for this 2-gene model, no values were excluded. As shown in Table 3G, this 2-gene model correctly classifies 49 of the normal subjects as being in the normal patient population, and misclassifies 1 of the normal subjects as being in the prostatecancer (all cohorts) patient population. This 2-gene model correctly classifies 56 of the prostate cancer (all cohorts) subjects as being in the prostate cancer patient population, and misclassifies only 1 of the prostate cancer (all cohorts) subjects as being in the normal patient population. The p-value for the first gene, BAD, is 1.8E−14, the incremental value for the second gene, RB1, is smaller than 1×10−17 (reported as 0).


A discrimination plot of the 2-gene model, BAD and RB1, is shown in FIG. 11. As shown in FIG. 11, the normal subjects are represented by circles, whereas the prostate cancer (all cohorts) subjects are represented by X's. The line appended to the discrimination graph in FIG. 11 illustrates how well the 2-gene model discriminates between the 2 groups. Values to the right of the line represent subjects predicted by the 2-gene model to be in the normal population. Values to the left of the line represent subjects predicted to be in the prostate cancer (all cohorts) population. As shown in FIG. 11, 1 normal subject (circles) and 1 prostate cancer (all cohorts) subject (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 11:





BAD=0.236056+1.028981*RB1


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows: A cutoff of 0.58815 was used to compute alpha (equals 0.356323 in logit units).


Subjects to the left of this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.58815.


The intercept C0=0.236056 was computed by taking the difference between the intercepts for the 2 groups [−2.2353−(2.2353)=−4.4706] and subtracting the log-odds of the cutoff probability (0.356323). This quantity was then multiplied by −1/X where X is the coefficient for BAD (20.4482).


A ranking of the top 77 genes for which gene expression profiles were obtained, from most to least significant, is shown in Table 3H. Table 3H summarizes the results of significance tests (p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from prostate cancer (all cohorts).


The expression values (ΔCT) for the 2-gene model, BAD and RB1 for each of the 57 prostate cancer (all cohorts) samples and 50 normal subject samples used in the analysis, and their predicted probability of having prostate cancer (all cohorts), is shown in Table 3I. As shown in Table 31, the predicted probability of a subject having prostate cancer (all cohorts), based on the 2-gene model BAD and RB1 is based on a scale of 0 to 1, “0” indicating no prostate cancer (all cohorts) (i.e., normal healthy subject), “1” indicating the subject has prostate cancer (all cohorts). This predicted probability can be used to create a prostate cancer index based on the 2-gene model BAD and RB1, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of prostate cancer (all cohorts) and to ascertain the necessity of future screening or treatment options.


Example 6
EGR1 Precision Profile™
Gene Expression Profiles for Prostate Cancer-Cohort 1:

Custom primers and probes were prepared for the targeted 39 genes shown in the Precision Profile™ for EGR1 (shown in Table 4), selected to be informative of the biological role early growth response genes play in human cancer (including but not limited to breast, ovarian, cervical, prostate, lung, colon, and skin cancer). Gene expression profiles for these 39 genes were analyzed using 15 RNA samples obtained from cohort 1 prostate cancer subjects, and the 50 RNA samples obtained from normal subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with prostate cancer (cohort 1) and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with prostate cancer (cohort 1) and normal subjects with at least 75% accuracy is shown in Table 4A, (read from left to right).


As shown in Table 4A, the 1 and 2-gene models are identified in the first two columns on the left side of Table 4A, ranked by their entropy R2 value (shown in column 3, ranked from high to low). The number of subjects correctly classified or misclassified by each 1 or 2-gene model for each patient group (i.e., normal vs. prostate cancer) is shown in columns 4-7. The percent normal subjects and percent prostate cancer subjects correctly classified by the corresponding gene model is shown in columns 8 and 9. The incremental p-value for each first and second gene in the 1 or 2-gene model is shown in columns 10-11 (note p-values smaller than 1×10−17 are reported as ‘0’). The total number of RNA samples analyzed in each patient group (i.e., normals vs. prostate cancer), after exclusion of missing values, is shown in columns 12 and 13. The values missing from the total sample number for normal and/or prostate cancer subjects shown in columns 12 and 13 correspond to instances in which values were excluded from the logistic regression analysis due to reagent limitations and/or instances where replicates did not meet quality metrics.


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 39 genes included in the Precision Profile™ for EGR1 (shown in Table 4) is shown in the first row of Table 4A, read left to right. The first row of Table 4A lists a 2-gene model, ALOX5 and RAF1, capable of classifying normal subjects with 96% accuracy, and cohort 1 prostate cancer subjects with 100% accuracy. Each of the 50 normal RNA samples and the 15 cohort 1 prostate cancer RNA samples were analyzed for this 2-gene model, no values were excluded. As shown in Table 4A, this 2-gene model correctly classifies 48 of the normal subjects as being in the normal patient population, and misclassifies 2 of the normal subjects as being in the cohort 1 prostate cancer patient population. This 2-gene model correctly classifies all 15 of the cohort 1 prostate cancer subjects as being in the prostate cancer patient population. The p-value for the first gene, ALOX5, is 1.6E−12, the incremental p-value for the second gene, RAF1 is 0.0004.


A discrimination plot of the 2-gene model, ALOX5 and RAF1, is shown in FIG. 12. As shown in FIG. 12, the normal subjects are represented by circles, whereas the cohort 1 prostate cancer subjects are represented by X's. The line appended to the discrimination graph in FIG. 12 illustrates how well the 2-gene model discriminates between the 2 groups. Values above and to the left of the line represent subjects predicted by the 2-gene model to be in the normal population. Values below and to the right of the line represent subjects predicted to be in the cohort 1 prostate cancer population. As shown in FIG. 12, 2 normal subjects (circles) and no cohort 1 prostate cancer subjects (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 12:






ALOX5=4.68184+0.775848*RAF1


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.15005 was used to compute alpha (equals −1.73391 in logit units).


Subjects below and to the right of this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.15005.


The intercept C0=4.68184 was computed by taking the difference between the intercepts for the 2-groups [17.4726−(−17.4726)=34.9452] and subtracting the log-odds of the cutoff probability (−1.733913). This quantity was then multiplied by −1/X where X is the coefficient for ALOX 5 (−7.8344).


A ranking of the top 32 genes for which gene expression profiles were obtained, from most to least significant, is shown in Table 4B. Table 4B summarizes the results of significance tests (p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from prostate cancer (cohort 1).


The expression values (ΔCT) for the 2-gene model, ALOX5 and RAF1, for each of the 15 cohort 1 prostate cancer samples and 50 normal subject samples used in the analysis, and their predicted probability of having prostate cancer (cohort 1), is shown in Table 4C. As shown in Table 4C, the predicted probability of a subject having prostate cancer (cohort 1), based on the 2-gene model ALOX5 and RAF1 is based on a scale of 0 to 1, “0” indicating no prostate cancer (cohort 1) (i.e., normal healthy subject), “1” indicating the subject has prostate cancer (cohort 1). This predicted probability can be used to create a prostate cancer index based on the 2-gene model ALOX5 and RAF1, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.).for diagnosis of prostate cancer (cohort 1) and to ascertain the necessity of future screening or treatment options.


Gene Expression Profiles for Prostate Cancer-Cohort 4:

Using the custom primers and probes prepared for the targeted 39 genes shown in the Precision Profile™ for EGR1 (shown in Table 4), gene expression profiles were analyzed using 24 RNA samples obtained from cohort 4 prostate cancer subjects, and the 50 RNA samples obtained from the normal subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with prostate cancer (cohort 4) and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with prostate cancer (cohort 4) and normal subjects with at least 75% accuracy is shown in Table 4D, (read from left to right, and interpreted as described above for Table 4A).


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 39 genes included in the Precision Profile™ for EGR1 (shown in Table 4) is shown in the first row of Table 4D. The first row of Table 4D lists a 2-gene model, ALOX5 and CEBPB, capable of classifying normal subjects with 96% accuracy, and prostate cancer (cohort 4) subjects with 95.8% accuracy. Each of the 50 normal RNA samples and the 24 cohort 4 prostate cancer RNA samples were analyzed for this 2-gene model, no values were excluded. As shown in Table 4D, this 2-gene model correctly classifies 48 of the normal subjects as being in the normal patient population, and misclassifies 2 of the normal subjects as being in the cohort 4 prostate cancer patient population. This 2-gene model correctly classifies 23 of the cohort 4 prostate cancer subjects as being in the prostate cancer patient population, and misclassifies only 1 of the cohort 4 prostate cancer subjects as being in the normal patient population. The p-value for the first gene, ALOX5, is 9.1E−15, the incremental p-value for the second gene CEBPB is 3.5E−05.


A discrimination plot of the 2-gene model, ALOX5 and CEBPB, is shown in FIG. 13. As shown in FIG. 13, the normal subjects are represented by circles, whereas the cohort 4 prostate cancer subjects are represented by X's. The line appended to the discrimination graph in FIG. 13 illustrates how well the 2-gene model discriminates between the 2 groups. Values above and to the left of the line represent subjects predicted by the 2-gene model to be in the normal population. Values below and to the right of the line represent subjects predicted to be in the cohort 4 prostate cancer population. As shown in FIG. 13, only 2 normal subjects (circles) and 1 cohort 4 prostate cancer subject (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 13:






ALOX5=3.526028+0.830406*CEBPB


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.44485 was used to compute alpha (equals −0.2215 in logit units).


Subjects below and to the right of this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.44485.


The intercept C0=3.526028 was computed by taking the difference between the intercepts for the 2 groups [21.2397−(−21.2397)=39.4848] and subtracting the log-odds of the cutoff probability (−0.2215). This quantity was then multiplied by −1/X where X is the coefficient for ALOX5 (−12.1119).


A ranking of the top 33 genes for which gene expression profiles were obtained, from most to least significant, is shown in Table 4E. Table 4E summarizes the results of significance tests (p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from prostate cancer (cohort 4).


The expression values (ΔCT) for the 2-gene model, ALOX5 and CEBPB, for each of the 24 cohort 4 prostate cancer samples and 50 normal subject samples used in the analysis, and their predicted probability of having prostate cancer (cohort 4), is shown in Table 4F. As shown in Table 4F, the predicted probability of a subject having prostate cancer (cohort 4), based on the 2-gene model ALOX5 and CEBPB is based on a scale of 0 to 1, “0” indicating no prostate cancer (cohort 4) (i.e., normal healthy subject), “1” indicating the subject has prostate cancer (cohort 4). This predicted probability can be used to create a prostate cancer index based on the 2-gene model ALOX5 and CEBPB, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of prostate cancer (cohort 4) and to ascertain the necessity of future screening or treatment options.


Gene Expression Profiles for Prostate Cancer-All Cohorts:

Using the custom primers and probes prepared for the targeted 39 genes shown in the Precision Profile™ for EGR1 (shown in Table 4), gene expression profiles were analyzed using the 57 RNA samples obtained from all cohorts of the prostate cancer subjects, and the 50 RNA samples obtained from the normal subjects, as described in Example 1.


Logistic regression models yielding the best discrimination between subjects diagnosed with prostate cancer (all cohorts) and normal subjects were generated using the enumeration and classification methodology described in Example 2. A listing of all 1 and 2-gene logistic regression models capable of distinguishing between subjects diagnosed with prostate cancer (all cohorts) and normal subjects with at least 75% accuracy is shown in Table 4G, (read from left to right, and interpreted as described above for Table 4A).


For example, the “best” logistic regression model (defined as the model with the highest entropy R2 value, as described in Example 2) based on the 39 genes included in the Precision Profile™ for EGR1 (shown in Table 4) is shown in the first row of Table 4G. The first row of Table 4G lists a 2-gene model, ALOX5 and S100A6, capable of classifying normal subjects with 92% accuracy, and prostate cancer (all cohorts) subjects with 91.2% accuracy. Each of the 50 normal RNA samples and the 57 prostate cancer (all cohorts) RNA samples were analyzed for this 2-gene model, no values were excluded. As shown in Table 4G, this 2-gene model correctly classifies 46 of the normal subjects as being in the normal patient population, and misclassifies 4 of the normal subjects as being in the prostate cancer (all cohorts) patient population. This 2-gene model correctly classifies 52 of the prostate cancer (all cohorts) subjects as being in the prostate cancer patient population, and misclassifies only 5 of the prostate cancer (all cohorts) subjects as being in the normal patient population. The p-value for the first gene, ALOX5, is smaller than 1×10−17 (reported as 0), the incremental p-value for the second gene, S100A6, is 7.5E−05:


A discrimination plot of the 2-gene model, ALOX5 and S100A6, is shown in FIG. 14. As shown in FIG. 14, the normal subjects are represented by circles, whereas the prostate cancer (all cohorts) subjects are represented by X's. The line appended to the discrimination graph in FIG. 14 illustrates how well the 2-gene model discriminates between the 2 groups. Values above and to the left of the line represent subjects predicted by the 2-gene model to be in the normal population. Values below and to the right of the line represent subjects predicted to be in the prostate cancer (all cohorts) population. As shown in FIG. 14, 4 normal subjects (circles) and 1 prostate cancer (all cohorts) subject (X's) are classified in the wrong patient population.


The following equation describes the discrimination line shown in FIG. 14:






ALOX5=7.713601+0.579953*S100A6


The intercept (alpha) and slope (beta) of the discrimination line was computed as follows. A cutoff of 0.40675 was used to compute alpha (equals −0.37739 in logit units).


Subjects below and to the right of this discrimination line have a predicted probability of being in the diseased group higher than the cutoff probability of 0.40675.


The intercept C0=7.713601 was computed by taking the difference between the intercepts for the 2 groups [18.3733−(−18.3733)=36.7466] and subtracting the log-odds of the, cutoff probability (−0.37739). This quantity was then multiplied by −1/X where X is the coefficient for ALOX5 (−4.8128).


A ranking of the top 33 genes for which gene expression profiles were obtained, from most to least significant, is shown in Table 4H. Table 4H summarizes the results of significance tests (p-values) for the difference in the mean expression levels for normal subjects and subjects suffering from prostate cancer (all cohorts).


The expression values (ΔCT) for the 2-gene model, ALOX5 and S100A6 for each of the 57 prostate cancer (all cohorts) samples and 50 normal subject samples used in the analysis, and their predicted probability of having prostate cancer (all cohorts), is shown in Table 41. As shown in Table 41, the predicted probability of a subject having prostate cancer (all cohorts), based on the 2-gene model ALOX5 and S100A6 is based on a scale of 0 to 1, “0” indicating no prostate cancer (all cohorts) (i.e., normal healthy subject), “1” indicating the subject has prostate cancer (all cohorts). This predicted probability can be used to create a prostate cancer index based on the 2-gene model ALOX5 and S100A6, that can be used as a tool by a practitioner (e.g., primary care physician, oncologist, etc.) for diagnosis of prostate cancer (all cohorts) and to ascertain the necessity of future screening or treatment options.


These data support that Gene Expression Profiles with sufficient precision and calibration as described herein (1) can determine subsets of individuals with a known biological condition, particularly individuals with prostate cancer or individuals with conditions related to prostate cancer; (2) may be used to monitor the response of patients to therapy; (3) may be used to assess the efficacy and safety of therapy; and (4) may be used to guide the medical management of a patient by adjusting therapy to bring one or more relevant Gene Expression Profiles closer to a target set of values, which may be normative values or other desired or achievable values.


Gene Expression Profiles are used for characterization and monitoring of treatment efficacy of individuals with prostate cancer, or individuals with conditions related to prostate cancer. Use of the algorithmic and statistical approaches discussed above to achieve such identification and to discriminate in such fashion is within the scope of various embodiments herein.


These data support that Gene Expression Profiles with sufficient precision and calibration as described herein (1) can determine subsets of individuals with a known biological condition, particularly individuals with prostate cancer or individuals with conditions related to prostate cancer; (2) may be used to monitor the response of patients to therapy; (3) may be used to assess the efficacy and safety of therapy; and (4) may be used to guide the medical management of a patient by adjusting therapy to bring one or more relevant Gene Expression Profiles closer to a target set of values, which may be normative values or other desired or achievable values.


Gene Expression Profiles are used for characterization and monitoring of treatment efficacy of individuals with prostate cancer, or individuals with conditions related to prostate cancer. Use of the algorithmic and statistical approaches discussed above to achieve such identification and to discriminate in such fashion is within the scope of various embodiments herein.


The references listed below are hereby incorporated herein by reference.


REFERENCES

Magidson, J. GOLDMineR User's Guide (1998). Belmont, Mass.: Statistical Innovations Inc.


Vermunt and Magidson (2005). Latent GOLD 4.0 Technical Guide, Belmont Mass.: Statistical Innovations.


Vermunt and Magidson (2007). LG-Syntax™ User's Guide: Manual for Latent GOLD® 4.5 Syntax Module, Belmont Mass.: Statistical Innovations.


Vermunt J. K. and J. Magidson. Latent Class Cluster Analysis in (2002) J. A. Hagenaars and A. L. McCutcheon (eds.), Applied Latent Class Analysis, 89-106. Cambridge: Cambridge University Press.


Magidson, J. “Maximum Likelihood Assessment of Clinical Trials Based on an Ordered Categorical Response.” (1996) Drug Information Journal, Maple Glen, Pa.: Drug Information Association, Vol. 30, No. 1, pp 143-170.









TABLE 1







Precision Profile ™ for Prostate Cancer









Gene

Gene Accession


Symbol
Gene Name
Number





ABCC1
ATP-binding cassette, sub-family C (CFTR/MRP), member 1
NM_004996


ACPP
acid phosphatase, prostate
NM_001099


ADAMTS1
A disintegrin-like and metalloprotease (reprolysin type) with
NM_006988



thrombospondin type 1 motif, 1


AOC3
amine oxidase, copper containing 3 (vascular adhesion protein 1)
NM_003734


AR
androgen receptor (dihydrotestosterone receptor; testicular feminization;
NM_000044



spinal and bulbar muscular atrophy; Kennedy disease)


BCAM
basal cell adhesion molecule (Lutheran blood group)
NM_005581


BCL2
B-cell CLL/lymphoma 2
NM_000633


BIRC5
baculoviral IAP repeat-containing 5 (survivin)
NM_001168


BMP7
bone morphogenetic protein 7 (osteogenic protein 1)
NM_001719


CAV2
caveolin 2
NM_001233


CCL14
chemokine (C-C motif) ligand 14
NM_032962


CD44
CD44 antigen (homing function and Indian blood group system)
NM_000610


CD48
CD48 antigen (B-cell membrane protein)
NM_001778


CD59
CD59 antigen p18-20
NM_000611


CDH1
cadherin 1, type 1, E-cadherin (epithelial)
NM_004360


COL6A2
collagen, type VI, alpha 2
NM_001849


COVA1
cytosolic ovarian carcinoma antigen 1
NM_006375


CSPG4
chondroitin sulfate proteoglycan 4 (melanoma-associated)
NM_001897


CSRP3
cysteine and glycine-rich protein 3 (cardiac LIM protein)
NM_003476


CTNNA1
catenin (cadherin-associated protein), alpha 1, 102 kDa
NM_001903


E2F5
E2F transcription factor 5, p130-binding
NM_001951


EGFR
epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b)
NM_005228



oncogene homolog, avian)


EGR1
Early growth response-1
NM_001964


EPAS1
endothelial PAS domain protein 1
NM_001430


FABP1
fatty acid binding protein 1, liver
NM_001443


FAM107A
family with sequence similarity 107, member A
NM_007177


FGF2
Fibroblast growth factor 2 (basic)
NM_002006


FOLH1
folate hydrolase (prostate-specific membrane antigen) 1
NM_004476


G6PD
glucose-6-phosphate dehydrogenase
NM_000402


GSTT1
glutathione S-transferase theta 1
NM_000853


HMGA1
high mobility group AT-hook 1
NM_145899


HPN
hepsin (transmembrane protease, serine 1)
NM_002151


HSPA1A
Heat shock protein 70
NM_005345


IGF1R
insulin-like growth factor 1 receptor
NM_000875


IL6
interleukin 6 (interferon, beta 2)
NM_000600


IL8
interleukin 8
NM_000584


KAI1
CD82 antigen
NM_002231


KLK3
kallikrein 3, (prostate specific antigen)
NM_001648


KRT19
keratin 19
NM_002276


KRT5
keratin 5 (epidermolysis bullosa simplex, Dowling-Meara/Kobner/Weber-
NM_000424



Cockayne types)


LGALS8
lectin, galactoside-binding, soluble, 8 (galectin 8)
NM_006499


MEIS1
Meis1, myeloid ecotropic viral integration site 1 homolog (mouse)
NM_002398


MUC1
mucin 1, cell surface associated
NM_002456


MUC4
mucin 4, cell surface associated
NM_018406


MYC
v-myc myelocytomatosis viral oncogene homolog (avian)
NM_002467


NCOA4
nuclear receptor coactivator 4
NM_005437


NRP1
neuropilin 1
NM_003873


OR51E2
olfactory receptor, family 51, subfamily E, member 2
NM_030774


PCA3
prostate cancer antigen 3
AF103907


PDLIM4
PDZ and LIM domain 4
NM_003687


PLAU
plasminogen activator, urokinase
NM_002658


POV1
solute carrier family 43, member
NM_003627


PRIMA1
proline rich membrane anchor 1
NM_178013


PTGS2
prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and
NM_000963



cyclooxygenase)


PYCARD
PYD and CARD domain containing
NM_013258


RARB
retinoic acid receptor, beta
NM_000965


RGN
regucalcin (senescence marker protein-30)
NM_004683


S100A14
S100 calcium binding protein A14
NM_020672


SERPINB5
serpin peptidase inhibitor, clade B (ovalbumin), member 5
NM_002639


SERPINE1
serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor
NM_000602



type 1), member 1


SERPING1
serpin peptidase inhibitor, clade G (C1 inhibitor), member 1, (angioedema,
NM_000062



hereditary)


SMARCD3
SWI/SNF related, matrix associated, actin dependent regulator of
NM_001003801



chromatin, subfamily d, member 3


SORBS1
sorbin and SH3 domain containing 1
NM_001034954


SOX4
SRY (sex determining region Y)-box 4
NM_003107


ST14
suppression of tumorigenicity 14 (colon carcinoma)
NM_021978


STAT3
signal transducer and activator of transcription 3 (acute-phase response
NM_003150



factor)


SVIL
supervillin
NM_003174


TERT
telomerase-reverse transcriptase
NM_003219


TGFB1
transforming growth factor, beta 1 (Camurati-Engelmann disease)
NM_000660


TMEM35
transmembrane protein 35
NM_021637


TNF
tumor necrosis factor (TNF superfamily, member 2)
NM_000594


TP53
tumor protein p53 (Li-Fraumeni syndrome)
NM_000546


TPD52
tumor protein D52
NM_001025252


VEGF
vascular endothelial growth factor
NM_003376
















TABLE 2







Precision Profile ™ for Inflammatory Response









Gene

Gene Accession


Symbol
Gene Name
Number





ADAM17
a disintegrin and metalloproteinase domain 17 (tumor necrosis factor,
NM_003183



alpha, converting enzyme)


ALOX5
arachidonate 5-lipoxygenase
NM_000698


APAF1
apoptotic Protease Activating Factor 1
NM_013229


C1QA
complement component 1, q subcomponent, alpha polypeptide
NM_015991


CASP1
caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta,
NM_033292



convertase)


CASP3
caspase 3, apoptosis-related cysteine peptidase
NM_004346


CCL3
chemokine (C-C motif) ligand 3
NM_002983


CCL5
chemokine (C-C motif) ligand 5
NM_002985


CCR3
chemokine (C-C motif) receptor 3
NM_001837


CCR5
chemokine (C-C motif) receptor 5
NM_000579


CD19
CD19 Antigen
NM_001770


CD4
CD4 antigen (p55)
NM_000616


CD86
CD86 antigen (CD28 antigen ligand 2, B7-2 antigen)
NM_006889


CD8A
CD8 antigen, alpha polypeptide
NM_001768


CSF2
colony stimulating factor 2 (granulocyte-macrophage)
NM_000758


CTLA4
cytotoxic T-lymphocyte-associated protein 4
NM_005214


CXCL1
chemokine (C—X—C motif) ligand 1 (melanoma growth stimulating
NM_001511



activity, alpha)


CXCL10
chemokine (C—X—C moif) ligand 10
NM_001565


CXCR3
chemokine (C—X—C motif) receptor 3
NM_001504


DPP4
Dipeptidylpeptidase 4
NM_001935


EGR1
early growth response-1
NM_001964


ELA2
elastase 2, neutrophil
NM_001972


GZMB
granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine
NM_004131



esterase 1)


HLA-DRA
major histocompatibility complex, class II, DR alpha
NM_019111


HMGB1
high-mobility group box 1
NM_002128


HMOX1
heme oxygenase (decycling) 1
NM_002133


HSPA1A
heat shock protein 70
NM_005345


ICAM1
Intercellular adhesion molecule 1
NM_000201


IFI16
interferon inducible protein 16, gamma
NM_005531


IFNG
interferon gamma
NM_000619


IL10
interleukin 10
NM_000572


IL12B
interleukin 12 p40
NM_002187


IL15
Interleukin 15
NM_000585


IL18
interleukin 18
NM_001562


IL18BP
IL-18 Binding Protein
NM_005699


IL1B
interleukin 1, beta
NM_000576


IL1R1
interleukin 1 receptor, type I
NM_000877


IL1RN
interleukin 1 receptor antagonist
NM_173843


IL23A
interleukin 23, alpha subunit p19
NM_016584


IL32
interleukin 32
NM_001012631


IL5
interleukin 5 (colony-stimulating factor, eosinophil)
NM_000879


IL6
interleukin 6 (interferon, beta 2)
NM_000600


IL8
interleukin 8
NM_000584


IRF1
interferon regulatory factor 1
NM_002198


LTA
lymphotoxin alpha (TNF superfamily, member 1)
NM_000595


MAPK14
mitogen-activated protein kinase 14
NM_001315


MHC2TA
class II, major histocompatibility complex, transactivator
NM_000246


MIF
macrophage migration inhibitory factor (glycosylation-inhibiting factor)
NM_002415


MMP12
matrix metallopeptidase 12 (macrophage elastase)
NM_002426


MMP9
matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type
NM_004994



IV collagenase)


MNDA
myeloid cell nuclear differentiation antigen
NM_002432


MYC
v-myc myelocytomatosis viral oncogene homolog (avian)
NM_002467


NFKB1
nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
NM_003998



(p105)


PLA2G7
phospholipase A2, group VII (platelet-activating factor acetylhydrolase,
NM_005084



plasma)


PLAUR
plasminogen activator, urokinase receptor
NM_002659


PTGS2
prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and
NM_000963



cyclooxygenase)


PTPRC
protein tyrosine phosphatase, receptor type, C
NM_002838


SERPINA1
serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase,
NM_000295



antitrypsin), member 1


SERPINE1
serpin peptidase inhibitor, clade E (nexin, plasminogen activator
NM_000602



inhibitor type 1), member 1


SSI-3
suppressor of cytokine signaling 3
NM_003955


TGFB1
transforming growth factor, beta 1 (Camurati-Engelmann disease)
NM_000660


TIMP1
tissue inhibitor of metalloproteinase 1
NM_003254


TLR2
toll-like receptor 2
NM_003264


TLR4
toll-like receptor 4
NM_003266


TNF
tumor necrosis factor (TNF superfamily, member 2)
NM_000594


TNFRSF13B
tumor necrosis factor receptor superfamily, member 13B
NM_012452


TNFRSF1A
tumor necrosis factor receptor superfamily, member 1A
NM_001065


TNFSF5
CD40 ligand (TNF superfamily, member 5, hyper-IgM syndrome)
NM_000074


TNFSF6
Fas ligand (TNF superfamily, member 6)
NM_000639


TOSO
Fas apoptotic inhibitory molecule 3
NM_005449


TXNRD1
thioredoxin reductase
NM_003330


VEGF
vascular endothelial growth factor
NM_003376
















TABLE 3







Human Cancer General Precision Profile ™









Gene

Gene Accession


Symbol
Gene Name
Number





ABL1
v-abl Abelson murine leukemia viral oncogene homolog 1
NM_007313


ABL2
v-abl Abelson murine leukemia viral oncogene homolog 2 (arg, Abelson-
NM_007314



related gene)


AKT1
v-akt murine thymoma viral oncogene homolog 1
NM_005163


ANGPT1
angiopoietin 1
NM_001146


ANGPT2
angiopoietin 2
NM_001147


APAF1
Apoptotic Protease Activating Factor 1
NM_013229


ATM
ataxia telangiectasia mutated (includes complementation groups A, C and
NM_138293



D)


BAD
BCL2-antagonist of cell death
NM_004322


BAX
BCL2-associated X protein
NM_138761


BCL2
BCL2-antagonist of cell death
NM_004322


BRAF
v-raf murine sarcoma viral oncogene homolog B1
NM_004333


BRCA1
breast cancer 1, early onset
NM_007294


CASP8
caspase 8, apoptosis-related cysteine peptidase
NM_001228


CCNE1
Cyclin E1
NM_001238


CDC25A
cell division cycle 25A
NM_001789


CDK2
cyclin-dependent kinase 2
NM_001798


CDK4
cyclin-dependent kinase 4
NM_000075


CDK5
Cyclin-dependent kinase 5
NM_004935


CDKN1A
cyclin-dependent kinase inhibitor 1A (p21, Cip1)
NM_000389


CDKN2A
cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)
NM_000077


CFLAR
CASP8 and FADD-like apoptosis regulator
NM_003879


COL18A1
collagen, type XVIII, alpha 1
NM_030582


E2F1
E2F transcription factor 1
NM_005225


EGFR
epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b)
NM_005228



oncogene homolog, avian)


EGR1
Early growth response-1
NM_001964


ERBB2
V-erb-b2 erythroblastic leukemia viral oncogene homolog 2,
NM_004448



neuro/glioblastoma derived oncogene homolog (avian)


FAS
Fas (TNF receptor superfamily, member 6)
NM_000043


FGFR2
fibroblast growth factor receptor 2 (bacteria-expressed kinase,
NM_000141



keratinocyte growth factor receptor, craniofacial dysostosis 1)


FOS
v-fos FBJ murine osteosarcoma viral oncogene homolog
NM_005252


GZMA
Granzyme A (granzyme 1, cytotoxic T-lymphocyte-associated serine
NM_006144



esterase 3)


HRAS
v-Ha-ras Harvey rat sarcoma viral oncogene homolog
NM_005343


ICAM1
Intercellular adhesion molecule 1
NM_000201


IFI6
interferon, alpha-inducible protein 6
NM_002038


IFITM1
interferon induced transmembrane protein 1 (9-27)
NM_003641


IFNG
interferon gamma
NM_000619


IGF1
insulin-like growth factor 1 (somatomedin C)
NM_000618


IGFBP3
insulin-like growth factor binding protein 3
NM_001013398


IL18
Interleukin 18
NM_001562


IL1B
Interleukin 1, beta
NM_000576


IL8
interleukin 8
NM_000584


ITGA1
integrin, alpha 1
NM_181501


ITGA3
integrin, alpha 3 (antigen CD49C, alpha 3 subunit of VLA-3 receptor)
NM_005501


ITGAE
integrin, alpha E (antigen CD103, human mucosal lymphocyte antigen 1;
NM_002208



alpha polypeptide)


ITGB1
integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29
NM_002211



includes MDF2, MSK12)


JUN
v-jun sarcoma virus 17 oncogene homolog (avian)
NM_002228


KDR
kinase insert domain receptor (a type III receptor tyrosine kinase)
NM_002253


MCAM
melanoma cell adhesion molecule
NM_006500


MMP2
matrix metallopeptidase 2 (gelatinase A, 72 kDa gelatinase, 72 kDa type IV
NM_004530



collagenase)


MMP9
matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV
NM_004994



collagenase)


MSH2
mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)
NM_000251


MYC
v-myc myelocytomatosis viral oncogene homolog (avian)
NM_002467


MYCL1
v-myc myelocytomatosis viral oncogene homolog 1, lung carcinoma
NM_001033081



derived (avian)


NFKB1
nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
NM_003998



(p105)


NME1
non-metastatic cells 1, protein (NM23A) expressed in
NM_198175


NME4
non-metastatic cells 4, protein expressed in
NM_005009


NOTCH2
Notch homolog 2
NM_024408


NOTCH4
Notch homolog 4 (Drosophila)
NM_004557


NRAS
neuroblastoma RAS viral (v-ras) oncogene homolog
NM_002524


PCNA
proliferating cell nuclear antigen
NM_002592


PDGFRA
platelet-derived growth factor receptor, alpha polypeptide
NM_006206


PLAU
plasminogen activator, urokinase
NM_002658


PLAUR
plasminogen activator, urokinase receptor
NM_002659


PTCH1
patched homolog 1 (Drosophila)
NM_000264


PTEN
phosphatase and tensin homolog (mutated in multiple advanced cancers 1)
NM_000314


RAF1
v-raf-1 murine leukemia viral oncogene homolog 1
NM_002880


RB1
retinoblastoma 1 (including osteosarcoma)
NM_000321


RHOA
ras homolog gene family, member A
NM_001664


RHOC
ras homolog gene family, member C
NM_175744


S100A4
S100 calcium binding protein A4
NM_002961


SEMA4D
sema domain, immunoglobulin domain (Ig), transmembrane domain (TM)
NM_006378



and short cytoplasmic domain, (semaphorin) 4D


SERPINB5
serpin peptidase inhibitor, clade B (ovalbumin), member 5
NM_002639


SERPINE1
serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor
NM_000602



type 1), member 1


SKI
v-ski sarcoma viral oncogene homolog (avian)
NM_003036


SKIL
SKI-like oncogene
NM_005414


SMAD4
SMAD family member 4
NM_005359


SOCS1
suppressor of cytokine signaling 1
NM_003745


SRC
v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian)
NM_198291


TERT
telomerase-reverse transcriptase
NM_003219


TGFB1
transforming growth factor, beta 1 (Camurati-Engelmann disease)
NM_000660


THBS1
thrombospondin 1
NM_003246


TIMP1
tissue inhibitor of metalloproteinase 1
NM_003254


TIMP3
Tissue inhibitor of metalloproteinase 3 (Sorsby fundus dystrophy,
NM_000362



pseudoinflammatory)


TNF
tumor necrosis factor (TNF superfamily, member 2)
NM_000594


TNFRSF10A
tumor necrosis factor receptor superfamily, member 10a
NM_003844


TNFRSF10B
tumor necrosis factor receptor superfamily, member 10b
NM_003842


TNFRSF1A
tumor necrosis factor receptor superfamily, member 1A
NM_001065


TP53
tumor protein p53 (Li-Fraumeni syndrome)
NM_000546


VEGF
vascular endothelial growth factor
NM_003376


VHL
von Hippel-Lindau tumor suppressor
NM_000551


WNT1
wingless-type MMTV integration site family, member 1
NM_005430


WT1
Wilms tumor 1
NM_000378
















TABLE 4







Precision Profile ™ for EGR1









Gene

Gene Accession


Symbol
Gene Name
Number





ALOX5
arachidonate 5-lipoxygenase
NM_000698


APOA1
apolipoprotein A-I
NM_000039


CCND2
cyclin D2
NM_001759


CDKN2D
cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4)
NM_001800


CEBPB
CCAAT/enhancer binding protein (C/EBP), beta
NM_005194


CREBBP
CREB binding protein (Rubinstein-Taybi syndrome)
NM_004380


EGFR
epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b)
NM_005228



oncogene homolog, avian)


EGR1
early growth response 1
NM_001964


EGR2
early growth response 2 (Krox-20 homolog, Drosophila)
NM_000399


EGR3
early growth response 3
NM_004430


EGR4
early growth response 4
NM_001965


EP300
E1A binding protein p300
NM_001429


F3
coagulation factor III (thromboplastin, tissue factor)
NM_001993


FGF2
fibroblast growth factor 2 (basic)
NM_002006


FN1
fibronectin 1
NM_00212482


FOS
v-fos FBJ murine osteosarcoma viral oncogene homolog
NM_005252


ICAM1
Intercellular adhesion molecule 1
NM_000201


JUN
jun oncogene
NM_002228


MAP2K1
mitogen-activated protein kinase kinase 1
NM_002755


MAPK1
mitogen-activated protein kinase 1
NM_002745


NAB1
NGFI-A binding protein 1 (EGR1 binding protein 1)
NM_005966


NAB2
NGFI-A binding protein 2 (EGR1 binding protein 2)
NM_005967


NFATC2
nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2
NM_173091


NFκB1
nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
NM_003998



(p105)


NR4A2
nuclear receptor subfamily 4, group A, member 2
NM_006186


PDGFA
platelet-derived growth factor alpha polypeptide
NM_002607


PLAU
plasminogen activator, urokinase
NM_002658


PTEN
phosphatase and tensin homolog (mutated in multiple advanced cancers
NM_000314



1)


RAF1
v-raf-1 murine leukemia viral oncogene homolog 1
NM_002880


S100A6
S100 calcium binding protein A6
NM_014624


SERPINE1
serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor
NM_000302



type 1), member 1


SMAD3
SMAD, mothers against DPP homolog 3 (Drosophila)
NM_005902


SRC
v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian)
NM_198291


TGFB1
transforming growth factor, beta 1
NM_000660


THBS1
thrombospondin 1
NM_003246


TOPBP1
topoisomerase (DNA) II binding protein 1
NM_007027


TNFRSF6
Fas (TNF receptor superfamily, member 6)
NM_000043


TP53
tumor protein p53 (Li-Fraumeni syndrome)
NM_000546


WT1
Wilms tumor 1
NM_000378
















TABLE 5





Precision Profile ™ for Immunotherapy


Gene Symbol

















ABL1



ABL2



ADAM17



ALOX5



CD19



CD4



CD40LG



CD86



CCR5



CTLA4



EGFR



ERBB2



HSPA1A



IFNG



IL12



IL15



IL23A



KIT



MUC1



MYC



PDGFRA



PTGS2



PTPRC



RAF1



TGFB1



TLR2



TNF



TNFRSF10B



TNFRSF13B



VEGF

























TABLE 1A















total used






Normal
Prostate

(excludes



En-

N =
50
14

missing)


















2-gene models and
tropy
#normal
#normal
#pc
#pc
Correct
Correct


#
#


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
normals
disease






















CCH1
EGR1
0.83
49
1
14
0
98.0%
100.0%
0.0183
5.5E−10
50
14


EGR1
POV1
0.82
48
2
13
1
96.0%
92.9%
3.6E−07
0.0299
50
14


EGR1
PTGS2
0.81
48
2
13
1
96.0%
92.9%
4.5E−11
0.0314
50
14


BCAM
EGR1
0.81
48
2
13
1
96.0%
92.9%
0.0355
1.4E−11
50
14


EGR1

0.75
47
3
13
1
94.0%
92.9%
1.5E−12

50
14


CDH1
POV1
0.66
43
7
12
2
86.0%
85.7%
7.2E−05
1.6E−07
50
14


CDH1
CTNNA1
0.65
45
5
12
2
90.0%
85.7%
3.5E−05
3.0E−07
50
14


EPAS1
POV1
0.61
47
3
13
1
94.0%
92.9%
0.0004
1.3E−06
50
14


NCOA4
POV1
0.59
45
4
13
1
91.8%
92.9%
0.0016
0.0002
49
14


CDH1
HSPA1A
0.59
43
7
12
2
86.0%
85.7%
4.3E−05
2.5E−06
50
14


CD44
MYC
0.57
44
6
12
2
88.0%
85.7%
8.1E−10
3.5E−05
50
14


NCOA4
NRP1
0.57
46
3
13
1
93.9%
92.9%
1.8E−07
0.0003
49
14


POV1
SERPING1
0.57
44
6
12
2
88.0%
85.7%
1.1E−05
0.0022
50
14


CD48
POV1
0.57
45
5
13
1
90.0%
92.9%
0.0022
1.2E−09
50
14


CTNNA1
POV1
0.57
45
5
13
1
90.0%
92.9%
0.0025
0.0006
50
14


CDH1
LGALS8
0.57
38
11
12
2
77.6%
85.7%
7.2E−06
4.6E−06
49
14


MEIS1
POV1
0.55
45
5
12
2
90.0%
85.7%
0.0041
2.6E−05
50
14


BCL2
CD44
0.55
44
6
12
2
88.0%
85.7%
8.6E−05
1.3E−09
50
14


CDH1
TGFB1
0.54
48
2
12
2
96.0%
85.7%
3.0E−05
1.0E−05
50
14


CTNNA1
TPD52
0.54
42
7
12
2
85.7%
85.7%
6.2E−09
0.0021
49
14


MUC1
NCOA4
0.54
43
6
12
2
87.8%
85.7%
0.0009
3.3E−05
49
14


CTNNA1
NCOA4
0.54
46
3
13
1
93.9%
92.9%
0.0009
0.0015
49
14


CD44
CDH1
0.54
45
5
12
2
90.0%
85.7%
1.4E−05
0.0001
50
14


POV1
TPD52
0.53
43
6
12
2
87.8%
85.7%
8.5E−09
0.0077
49
14


CDH1
SERPING1
0.53
45
5
12
2
90.0%
85.7%
4.0E−05
1.6E−05
50
14


ACPP
POV1
0.53
44
5
12
2
89.8%
85.7%
0.0084
5.9E−05
49
14


NRP1
POV1
0.53
44
6
13
1
88.0%
92.9%
0.0101
7.9E−07
50
14


LGALS8
TPD52
0.53
42
6
12
2
87.5%
85.7%
1.2E−08
2.9E−05
48
14


CDH1
STAT3
0.53
38
12
12
2
76.0%
85.7%
4.2E−05
1.9E−05
50
14


HSPA1A
POV1
0.53
44
6
12
2
88.0%
85.7%
0.0110
0.0004
50
14


G6PD
POV1
0.53
45
5
12
2
90.0%
85.7%
0.0110
2.3E−05
50
14


BCAM
CTNNA1
0.53
45
5
13
1
90.0%
92.9%
0.0027
2.5E−07
50
14


CD44
NCOA4
0.52
46
3
12
2
93.9%
85.7%
0.0018
0.0002
49
14


E2F5
POV1
0.51
45
5
12
2
90.0%
85.7%
0.0173
5.3E−09
50
14


BCL2
POV1
0.51
40
10
12
2
80.0%
85.7%
0.0175
4.4E−09
50
14


POV1
VEGF
0.51
44
4
12
2
91.7%
85.7%
2.1E−06
0.0151
48
14


POV1
PTGS2
0.51
45
5
13
1
90.0%
92.9%
1.7E−06
0.0204
50
14


CDH1
SMARCD3
0.51
40
10
12
2
80.0%
85.7%
1.4E−05
3.6E−05
50
14


POV1
PYCARD
0.51
44
6
12
2
88.0%
85.7%
1.4E−06
0.0224
50
14


MEIS1
NCOA4
0.51
42
7
12
2
85.7%
85.7%
0.0032
0.0001
49
14


LGALS8
NCOA4
0.50
41
7
12
2
85.4%
85.7%
0.0054
6.0E−05
48
14


BCL2
CTNNA1
0.50
47
3
12
2
94.0%
85.7%
0.0067
6.9E−09
50
14


POV1
SERPINE1
0.50
45
5
12
2
90.0%
85.7%
2.8E−06
0.0319
50
14


BCAM
POV1
0.50
45
5
12
2
90.0%
85.7%
0.0354
7.1E−07
50
14


SERPING1
SORBS1
0.49
41
9
11
3
82.0%
78.6%
7.5E−06
0.0002
50
14


ACPP
CDH1
0.49
47
2
12
2
95.9%
85.7%
6.7E−05
0.0002
49
14


CD48
CTNNA1
0.49
43
7
12
2
86.0%
85.7%
0.0105
1.9E−08
50
14


POV1
STAT3
0.49
44
6
12
2
88.0%
85.7%
0.0002
0.0474
50
14


CD48
LGALS8
0.49
42
7
12
2
85.7%
85.7%
0.0001
2.1E−08
49
14


CAV2
POV1
0.49
43
7
12
2
86.0%
85.7%
0.0497
4.9E−08
50
14


TP53
TPD52
0.48
39
9
12
2
81.3%
85.7%
4.9E−08
2.3E−05
48
14


MUC1
TPD52
0.48
44
5
13
1
89.8%
92.9%
5.1E−08
0.0003
49
14


NCOA4
TP53
0.48
41
7
12
2
85.4%
85.7%
1.9E−05
0.0068
48
14


CTNNA1
SERPING1
0.48
45
5
13
1
90.0%
92.9%
0.0003
0.0152
50
14


NCOA4
SERPING1
0.48
40
9
11
3
81.6%
78.6%
0.0003
0.0086
49
14


NCOA4
TNF
0.48
37
9
11
3
80.4%
78.6%
1.5E−05
0.0183
46
14


CDH1
SOX4
0.47
45
5
12
2
90.0%
85.7%
1.4E−06
0.0001
50
14


CDH1
NCOA4
0.47
44
5
13
1
89.8%
92.9%
0.0119
0.0002
49
14


CD59
CDH1
0.47
41
9
12
2
82.0%
85.7%
0.0002
2.4E−05
50
14


BCL2
LGALS8
0.47
42
7
12
2
85.7%
85.7%
0.0002
2.6E−08
49
14


CD44
CD48
0.47
44
6
12
2
88.0%
85.7%
4.2E−08
0.0017
50
14


CDH1
TP53
0.47
42
7
11
3
85.7%
78.6%
3.4E−05
0.0002
49
14


CDH1
KAI1
0.46
46
4
12
2
92.0%
85.7%
2.4E−06
0.0002
50
14


COL6A2
CTNNA1
0.46
42
8
12
2
84.0%
85.7%
0.0289
2.7E−08
50
14


CTNNA1
E2F5
0.46
46
4
12
2
92.0%
85.7%
3.2E−08
0.0291
50
14


CTNNA1
MEIS1
0.46
45
5
12
2
90.0%
85.7%
0.0007
0.0331
50
14


NCOA4
SORBS1
0.46
43
6
12
2
87.8%
85.7%
3.2E−05
0.0176
49
14


CD44
TPD52
0.45
42
7
11
3
85.7%
78.6%
1.3E−07
0.0025
49
14


CDH1
SVIL
0.45
41
8
12
2
83.7%
85.7%
8.3E−05
0.0003
49
14


CD44
SERPING1
0.45
43
7
12
2
86.0%
85.7%
0.0007
0.0027
50
14


CDH1
COVA1
0.45
42
8
12
2
84.0%
85.7%
8.7E−06
0.0003
50
14


BCAM
LGALS8
0.45
42
7
12
2
85.7%
85.7%
0.0005
3.9E−06
49
14


CDH1
MUC1
0.45
42
8
12
2
84.0%
85.7%
0.0011
0.0003
50
14


E2F5
LGALS8
0.44
42
7
12
2
85.7%
85.7%
0.0005
7.4E−08
49
14


CD44
HMGA1
0.44
43
6
11
2
87.8%
84.6%
7.3E−07
0.0030
49
13


NCOA4
SOX4
0.44
41
8
12
2
83.7%
85.7%
3.2E−06
0.0315
49
14


MEIS1
SERPING1
0.44
42
8
11
3
84.0%
78.6%
0.0010
0.0013
50
14


HSPA1A
MUC1
0.44
43
7
12
2
86.0%
85.7%
0.0014
0.0085
50
14


COVA1
NCOA4
0.44
39
10
11
3
79.6%
78.6%
0.0412
1.4E−05
49
14


EPAS1
NCOA4
0.44
43
6
12
2
87.8%
85.7%
0.0424
0.0006
49
14


HSPA1A
NCOA4
0.43
42
7
12
2
85.7%
85.7%
0.0485
0.0092
49
14


BCAM
HSPA1A
0.43
40
10
12
2
80.0%
85.7%
0.0116
6.9E−06
50
14


CDH1
G6PD
0.43
44
6
11
3
88.0%
78.6%
0.0007
0.0006
50
14


POV1

0.43
43
7
11
3
86.0%
78.6%
7.5E−08

50
14


CD44
EPAS1
0.43
43
7
12
2
86.0%
85.7%
0.0009
0.0067
50
14


CD44
E2F5
0.43
42
8
11
3
84.0%
78.6%
1.1E−07
0.0073
50
14


CDH1
PYCARD
0.43
45
5
12
2
90.0%
85.7%
2.4E−05
0.0007
50
14


CD48
HSPA1A
0.43
41
9
11
3
82.0%
78.6%
0.0142
1.7E−07
50
14


CDH1
EPAS1
0.42
42
8
11
3
84.0%
78.6%
0.0011
0.0007
50
14


CDH1
TNF
0.42
43
7
11
3
91.5%
78.6%
9.9E−05
0.0007
47
14


CDH1
MEIS1
0.42
43
7
11
3
86.0%
78.6%
0.0027
0.0008
50
14


HSPA1A
SERPING1
0.42
42
8
12
2
84.0%
85.7%
0.0020
0.0156
50
14


BCAM
CD44
0.42
44
6
11
3
88.0%
78.6%
0.0087
9.5E−06
50
14


COVA1
TPD52
0.42
44
5
11
3
89.8%
78.6%
4.0E−07
2.6E−05
49
14


HSPA1A
MEIS1
0.42
44
6
12
2
88.0%
85.7%
0.0032
0.0187
50
14


CD44
MEIS1
0.42
44
6
12
2
88.0%
85.7%
0.0034
0.0104
50
14


MUC1
SERPING1
0.42
41
9
12
2
82.0%
85.7%
0.0027
0.0034
50
14


ACPP
BCAM
0.42
41
8
11
3
83.7%
78.6%
1.3E−05
0.0038
49
14


LGALS8
MEIS1
0.41
42
7
12
2
85.7%
85.7%
0.0050
0.0017
49
14


EPAS1
SERPING1
0.41
45
5
12
2
90.0%
85.7%
0.0038
0.0021
50
14


HSPA1A
TPD52
0.41
38
11
11
3
77.6%
78.6%
7.0E−07
0.0361
49
14


CD48
MUC1
0.40
46
4
12
2
92.0%
85.7%
0.0052
3.5E−07
50
14


HSPA1A
NRP1
0.40
39
11
12
2
78.0%
85.7%
6.5E−05
0.0341
50
14


CDH1
NRP1
0.40
41
9
12
2
82.0%
85.7%
6.6E−05
0.0017
50
14


SERPING1
SMARCD3
0.40
44
6
12
2
88.0%
85.7%
0.0006
0.0044
50
14


ACPP
SERPING1
0.40
42
7
12
2
85.7%
85.7%
0.0043
0.0061
49
14


MEIS1
SORBS1
0.40
43
7
12
2
86.0%
85.7%
0.0002
0.0060
50
14


G6PD
SERPING1
0.40
45
5
12
2
90.0%
85.7%
0.0047
0.0020
50
14


ACPP
MEIS1
0.40
42
7
12
2
85.7%
85.7%
0.0056
0.0065
49
14


ACPP
CD48
0.40
42
7
12
2
85.7%
85.7%
4.6E−07
0.0068
49
14


SERPING1
TP53
0.40
41
8
11
3
83.7%
78.6%
0.0004
0.0048
49
14


BCAM
SMARCD3
0.39
42
8
12
2
84.0%
85.7%
0.0008
2.5E−05
50
14


MEIS1
SMARCD3
0.39
43
7
12
2
86.0%
85.7%
0.0008
0.0079
50
14


BCAM
SOX4
0.39
39
11
11
3
78.0%
78.6%
2.0E−05
2.5E−05
50
14


BCAM
MEIS1
0.39
41
9
12
2
82.0%
85.7%
0.0080
2.5E−05
50
14


NRP1
SERPING1
0.39
40
10
12
2
80.0%
85.7%
0.0061
9.0E−05
50
14


BCAM
EPAS1
0.39
45
5
12
2
90.0%
85.7%
0.0034
2.6E−05
50
14


MUC1
STAT3
0.39
44
6
12
2
88.0%
85.7%
0.0054
0.0081
50
14


CTNNA1

0.39
45
5
12
2
90.0%
85.7%
2.9E−07

50
14


LGALS8
SERPING1
0.39
41
8
12
2
83.7%
85.7%
0.0123
0.0035
49
14


MEIS1
MUC1
0.39
40
10
11
3
80.0%
78.6%
0.0085
0.0090
50
14


CD44
NRP1
0.39
46
4
12
2
92.0%
85.7%
0.0001
0.0295
50
14


MUC1
TGFB1
0.39
41
9
11
3
82.0%
78.6%
0.0084
0.0093
50
14


EPAS1
SORBS1
0.39
43
7
12
2
86.0%
85.7%
0.0003
0.0042
50
14


SERPING1
ST14
0.39
43
7
12
2
86.0%
85.7%
1.2E−05
0.0078
50
14


ACPP
MUC1
0.39
41
8
11
3
83.7%
78.6%
0.0099
0.0109
49
14


SERPING1
TGFB1
0.39
39
11
12
2
78.0%
85.7%
0.0092
0.0079
50
14


EPAS1
LGALS8
0.39
41
8
12
2
83.7%
85.7%
0.0042
0.0086
49
14


EPAS1
MUC1
0.39
41
9
12
2
82.0%
85.7%
0.0103
0.0043
50
14


BCL2
MUC1
0.38
42
8
12
2
84.0%
85.7%
0.0121
4.3E−07
50
14


CD44
COL6A2
0.38
41
9
12
2
82.0%
85.7%
4.5E−07
0.0420
50
14


CD59
MEIS1
0.38
42
8
12
2
84.0%
85.7%
0.0135
0.0005
50
14


MUC1
PLAU
0.38
42
6
12
2
87.5%
85.7%
0.0001
0.0123
48
14


ACPP
SORBS1
0.38
43
6
12
2
87.8%
85.7%
0.0005
0.0146
49
14


ACPP
TPD52
0.38
40
8
11
3
83.3%
78.6%
2.0E−06
0.0154
48
14


NCOA4

0.37
42
7
12
2
85.7%
85.7%
5.7E−07

49
14


E2F5
MUC1
0.37
42
8
12
2
84.0%
85.7%
0.0163
6.9E−07
50
14


ABCC1
SERPING1
0.37
43
7
12
2
86.0%
85.7%
0.0128
2.6E−05
50
14


CD59
SERPING1
0.37
41
9
12
2
82.0%
85.7%
0.0132
0.0007
50
14


SERPING1
SOX4
0.37
42
8
11
3
84.0%
78.6%
4.3E−05
0.0134
50
14


SERPING1
STAT3
0.37
39
11
12
2
78.0%
85.7%
0.0118
0.0140
50
14


CDH1
HMGA1
0.37
39
10
11
2
79.6%
84.6%
8.4E−06
0.0033
49
13


BCAM
MUC1
0.37
44
6
11
3
88.0%
78.6%
0.0188
5.9E−05
50
14


BCAM
TP53
0.37
40
9
11
3
81.6%
78.6%
0.0010
8.9E−05
49
14


MEIS1
STAT3
0.37
44
6
12
2
88.0%
85.7%
0.0127
0.0203
50
14


CD48
SMARCD3
0.37
43
7
12
2
86.0%
85.7%
0.0021
1.2E−06
50
14


MEIS1
TGFB1
0.37
41
9
12
2
82.0%
85.7%
0.0193
0.0225
50
14


CD59
NRP1
0.37
43
7
11
3
86.0%
78.6%
0.0002
0.0009
50
14


CDH1
PTGS2
0.37
41
9
12
2
82.0%
85.7%
0.0003
0.0063
50
14


IGF1R
STAT3
0.37
38
12
11
3
76.0%
78.6%
0.0147
3.3E−05
50
14


CDH1
PLAU
0.37
42
6
12
2
87.5%
85.7%
0.0002
0.0123
48
14


BCL2
TP53
0.37
37
12
11
3
75.5%
78.6%
0.0012
8.3E−07
49
14


MEIS1
PTGS2
0.36
41
9
12
2
82.0%
85.7%
0.0003
0.0248
50
14


CDH1
VEGF
0.36
41
7
11
3
85.4%
78.6%
0.0004
0.0055
48
14


EPAS1
MEIS1
0.36
41
9
11
3
82.0%
78.6%
0.0267
0.0105
50
14


MUC1
SMARCD3
0.36
41
9
11
3
82.0%
78.6%
0.0027
0.0255
50
14


SERPING1
SVIL
0.36
43
6
12
2
87.8%
85.7%
0.0022
0.0176
49
14


BCAM
STAT3
0.36
42
8
11
3
84.0%
78.6%
0.0180
8.3E−05
50
14


SORBS1
STAT3
0.36
47
3
11
3
94.0%
78.6%
0.0185
0.0009
50
14


G6PD
MUC1
0.36
40
10
11
3
80.0%
78.6%
0.0282
0.0094
50
14


NRP1
STAT3
0.36
40
10
11
3
80.0%
78.6%
0.0186
0.0003
50
14


MEIS1
PLAU
0.36
40
8
12
2
83.3%
85.7%
0.0002
0.0244
48
14


CD48
COVA1
0.36
42
8
12
2
84.0%
85.7%
0.0003
1.9E−06
50
14


CD59
MUC1
0.36
42
8
11
3
84.0%
78.6%
0.0323
0.0013
50
14


EPAS1
TPD52
0.36
38
11
12
2
77.6%
85.7%
3.9E−06
0.0309
49
14


BCAM
SERPING1
0.35
46
4
11
3
92.0%
78.6%
0.0268
0.0001
50
14


ACPP
NRP1
0.35
38
11
11
3
77.6%
78.6%
0.0004
0.0378
49
14


BCAM
PYCARD
0.35
41
9
11
3
82.0%
78.6%
0.0003
0.0001
50
14


COVA1
SERPING1
0.35
40
10
12
2
80.0%
85.7%
0.0287
0.0003
50
14


E2F5
TP53
0.35
42
7
12
2
85.7%
85.7%
0.0019
1.6E−06
49
14


CD48
TP53
0.35
41
8
12
2
83.7%
85.7%
0.0019
2.4E−06
49
14


CDH1
IGF1R
0.35
39
11
11
3
78.0%
78.6%
5.5E−05
0.0112
50
14


MUC1
NRP1
0.35
40
10
11
3
80.0%
78.6%
0.0004
0.0399
50
14


ACPP
TNF
0.35
36
10
11
3
78.3%
78.6%
0.0014
0.0347
46
14


SORBS1
TGFB1
0.35
46
4
12
2
92.0%
85.7%
0.0370
0.0013
50
14


ABCC1
CDH1
0.35
38
12
11
3
76.0%
78.6%
0.0124
6.4E−05
50
14


G6PD
SORBS1
0.35
44
6
12
2
88.0%
85.7%
0.0014
0.0148
50
14


ADAMTS1
CDH1
0.35
41
9
11
3
82.0%
78.6%
0.0133
4.6E−06
50
14


MEIS1
TP53
0.35
39
10
12
2
79.6%
85.7%
0.0023
0.0455
49
14


COL6A2
TGFB1
0.35
42
8
11
3
84.0%
78.6%
0.0437
1.5E−06
50
14


CDH1
ST14
0.35
40
10
12
2
80.0%
85.7%
5.1E−05
0.0137
50
14


MEIS1
SVIL
0.35
42
7
12
2
85.7%
85.7%
0.0040
0.0431
49
14


MUC1
PYCARD
0.35
40
10
11
3
80.0%
78.6%
0.0004
0.0499
50
14


CDH1
SORBS1
0.34
39
11
11
3
78.0%
78.6%
0.0016
0.0144
50
14


MUC1
SVIL
0.34
40
9
11
3
81.6%
78.6%
0.0042
0.0447
49
14


EPAS1
TNF
0.34
41
6
11
3
87.2%
78.6%
0.0016
0.0138
47
14


EPAS1
TGFB1
0.34
44
6
12
2
88.0%
85.7%
0.0477
0.0214
50
14


BCAM
SVIL
0.34
44
5
11
3
89.8%
78.6%
0.0048
0.0002
49
14


CD48
STAT3
0.34
38
12
11
3
76.0%
78.6%
0.0396
3.3E−06
50
14


STAT3
TPD52
0.34
38
11
11
3
77.6%
78.6%
6.7E−06
0.0466
49
14


SERPINE1
SERPING1
0.34
38
12
11
3
76.0%
78.6%
0.0497
0.0008
50
14


BCAM
CD59
0.34
44
6
11
3
88.0%
78.6%
0.0025
0.0002
50
14


PYCARD
SORBS1
0.34
40
10
12
2
80.0%
85.7%
0.0020
0.0006
50
14


LGALS8
SERPINE1
0.34
39
10
11
3
79.6%
78.6%
0.0011
0.0263
49
14


CDH1
SERPINE1
0.34
40
10
11
3
80.0%
78.6%
0.0009
0.0191
50
14


SMARCD3
SORBS1
0.34
43
7
12
2
86.0%
85.7%
0.0021
0.0070
50
14


HSPA1A

0.34
41
9
11
3
82.0%
78.6%
2.0E−06

50
14


BCAM
TNF
0.34
40
7
12
2
85.1%
85.7%
0.0022
0.0002
47
14


CD59
EPAS1
0.34
41
9
11
3
82.0%
78.6%
0.0292
0.0027
50
14


SMARCD3
TPD52
0.33
44
5
12
2
89.8%
85.7%
8.4E−06
0.0080
49
14


CAV2
CDH1
0.33
40
10
11
3
80.0%
78.6%
0.0223
1.1E−05
50
14


EPAS1
TP53
0.33
38
11
11
3
77.6%
78.6%
0.0041
0.0313
49
14


PTGS2
SORBS1
0.33
40
10
11
3
80.0%
78.6%
0.0029
0.0011
50
14


EPAS1
SMARCD3
0.33
42
8
11
3
84.0%
78.6%
0.0103
0.0431
50
14


AR
CDH1
0.32
42
8
12
2
84.0%
85.7%
0.0313
1.4E−05
50
14


EPAS1
SERPINE1
0.32
41
9
11
3
82.0%
78.6%
0.0014
0.0480
50
14


LGALS8
NRP1
0.32
39
10
11
3
79.6%
78.6%
0.0014
0.0461
49
14


SORBS1
SVIL
0.32
41
8
12
2
83.7%
85.7%
0.0102
0.0042
49
14


SERPINE1
SMARCD3
0.32
42
8
11
3
84.0%
78.6%
0.0130
0.0016
50
14


CD44

0.32
42
8
12
2
84.0%
85.7%
3.5E−06

50
14


ABCC1
TPD52
0.32
38
11
11
3
77.6%
78.6%
1.4E−05
0.0002
49
14


AOC3
CDH1
0.32
38
12
11
3
76.0%
78.6%
0.0453
5.9E−05
50
14


COL6A2
TP53
0.31
42
7
11
3
85.7%
78.6%
0.0077
5.1E−06
49
14


BCAM
VEGF
0.31
36
12
11
3
75.0%
78.6%
0.0023
0.0005
48
14


G6PD
TNF
0.31
39
8
12
2
83.0%
85.7%
0.0052
0.0482
47
14


ST14
TPD52
0.31
40
9
11
3
81.6%
78.6%
1.9E−05
0.0002
49
14


NRP1
SERPINE1
0.31
40
10
11
3
80.0%
78.6%
0.0027
0.0021
50
14


KAI1
SORBS1
0.30
42
8
12
2
84.0%
85.7%
0.0068
0.0007
50
14


SMARCD3
TNF
0.30
38
9
12
2
80.9%
85.7%
0.0076
0.0218
47
14


SERPINE1
TP53
0.30
38
11
11
3
77.6%
78.6%
0.0129
0.0037
49
14


CD59
SORBS1
0.30
43
7
11
3
86.0%
78.6%
0.0081
0.0102
50
14


BCAM
KAI1
0.30
42
8
11
3
84.0%
78.6%
0.0009
0.0008
50
14


CD59
TPD52
0.30
40
9
11
3
81.6%
78.6%
3.0E−05
0.0115
49
14


CD59
SERPINE1
0.29
44
6
11
3
88.0%
78.6%
0.0045
0.0136
50
14


SVIL
TNF
0.29
37
9
11
3
80.4%
78.6%
0.0110
0.0273
46
14


COVA1
E2F5
0.29
39
11
11
3
78.0%
78.6%
1.3E−05
0.0028
50
14


ACPP

0.29
41
8
11
3
83.7%
78.6%
1.1E−05

49
14


MEIS1

0.29
39
11
11
3
78.0%
78.6%
1.0E−05

50
14


SORBS1
VEGF
0.29
38
10
11
3
79.2%
78.6%
0.0055
0.0127
48
14


MUC1

0.29
38
12
11
3
76.0%
78.6%
1.1E−05

50
14


NRP1
SVIL
0.29
39
10
11
3
79.6%
78.6%
0.0363
0.0052
49
14


PTGS2
SERPINE1
0.29
41
9
11
3
82.0%
78.6%
0.0056
0.0049
50
14


PTGS2
TP53
0.29
42
7
11
3
85.7%
78.6%
0.0218
0.0043
49
14


SERPINE1
SORBS1
0.29
40
10
11
3
80.0%
78.6%
0.0138
0.0058
50
14


CD59
TP53
0.28
39
10
11
3
79.6%
78.6%
0.0285
0.0186
49
14


SORBS1
TNF
0.28
40
7
11
3
85.1%
78.6%
0.0175
0.0170
47
14


SVIL
TP53
0.28
39
9
11
3
81.3%
78.6%
0.0456
0.0449
48
14


STAT3

0.28
39
11
11
3
78.0%
78.6%
1.6E−05

50
14


PYCARD
SERPINE1
0.28
38
12
11
3
76.0%
78.6%
0.0085
0.0055
50
14


PLAU
SORBS1
0.27
39
9
11
3
81.3%
78.6%
0.0227
0.0045
48
14


PLAU
TP53
0.27
40
7
11
3
85.1%
78.6%
0.0307
0.0046
47
14


PTGS2
TNF
0.27
36
11
11
3
76.6%
78.6%
0.0246
0.0083
47
14


COVA1
SERPINE1
0.27
40
10
11
3
80.0%
78.6%
0.0121
0.0068
50
14


NRP1
PTGS2
0.27
40
10
11
3
80.0%
78.6%
0.0106
0.0094
50
14


NRP1
TNF
0.27
39
8
12
2
83.0%
85.7%
0.0289
0.0084
47
14


EPAS1

0.27
41
9
11
3
82.0%
78.6%
2.4E−05

50
14


PYCARD
TPD52
0.26
37
12
11
3
75.5%
78.6%
0.0001
0.0101
49
14


CD59
VEGF
0.26
37
11
11
3
77.1%
78.6%
0.0152
0.0433
48
14


NRP1
TPD52
0.26
37
12
11
3
75.5%
78.6%
0.0001
0.0151
49
14


G6PD

0.26
41
9
11
3
82.0%
78.6%
3.0E−05

50
14


SORBS1
SOX4
0.26
40
10
12
2
80.0%
85.7%
0.0026
0.0401
50
14


CAV2
SORBS1
0.26
39
11
11
3
78.0%
78.6%
0.0425
0.0002
50
14


CDH1

0.26
40
10
11
3
80.0%
78.6%
3.4E−05

50
14


SOX4
TPD52
0.25
39
10
11
3
79.6%
78.6%
0.0001
0.0032
49
14


BCL2
COVA1
0.25
42
8
11
3
84.0%
78.6%
0.0135
4.8E−05
50
14


ABCC1
SERPINE1
0.24
39
11
11
3
78.0%
78.6%
0.0279
0.0027
50
14


BCAM
SERPINE1
0.24
41
9
11
3
82.0%
78.6%
0.0284
0.0057
50
14


PLAU
VEGF
0.24
38
9
11
3
80.9%
78.6%
0.0443
0.0237
47
14


CD48
PTGS2
0.23
39
11
11
3
78.0%
78.6%
0.0389
0.0002
50
14


COVA1
PTGS2
0.23
39
11
11
3
78.0%
78.6%
0.0485
0.0306
50
14


COVA1
PLAU
0.22
40
8
11
3
83.3%
78.6%
0.0301
0.0286
48
14


SVIL

0.22
40
9
12
2
81.6%
85.7%
0.0001

49
14


AR
BCAM
0.21
41
9
11
3
82.0%
78.6%
0.0172
0.0007
50
14


BCAM
IGF1R
0.21
38
12
11
3
76.0%
78.6%
0.0079
0.0174
50
14


ABCC1
CD48
0.21
40
10
11
3
80.0%
78.6%
0.0004
0.0102
50
14


TP53

0.21
37
12
11
3
75.5%
78.6%
0.0002

49
14


E2F5
ST14
0.20
41
9
11
3
82.0%
78.6%
0.0103
0.0003
50
14


PYCARD

0.16
40
10
11
3
80.0%
78.6%
0.0010

50
14


BCAM

0.13
40
10
11
3
80.0%
78.6%
0.0031

50
14




















TABLE 1B






PC Cancer
Normals
Sum



Group Size
21.9%
78.1%
100%


N =
14
50
64


Gene
Mean
Mean
Z-statistic
p-val



















EGR1
18.4
20.1
−7.08
1.5E−12


POV1
17.7
18.3
−5.38
7.5E−08


CTNNA1
16.0
17.1
−5.13
2.9E−07


NCOA4
10.9
11.8
−5.00
5.7E−07


HSPA1A
13.3
14.5
−4.76
2.0E−06


CD44
13.1
13.9
−4.64
3.5E−06


MEIS1
21.3
22.3
−4.41
1.0E−05


MUC1
21.6
22.6
−4.40
1.1E−05


ACPP
16.7
17.6
−4.40
1.1E−05


TGFB1
12.1
12.8
−4.38
1.2E−05


SERPING1
17.4
18.8
−4.35
1.3E−05


STAT3
13.0
13.9
−4.32
1.6E−05


EPAS1
19.7
20.9
−4.22
2.4E−05


LGALS8
16.4
17.1
−4.19
2.7E−05


G6PD
15.1
15.9
−4.18
3.0E−05


CDH1
19.6
20.7
−4.15
3.4E−05


SMARCD3
16.2
16.9
−3.92
9.0E−05


SVIL
15.9
16.8
−3.85
0.0001


TP53
15.1
15.7
−3.72
0.0002


CD59
17.2
17.8
−3.69
0.0002


SORBS1
22.1
22.9
−3.63
0.0003


TNF
17.2
17.9
−3.56
0.0004


SERPINE1
20.8
21.7
−3.41
0.0007


VEGF
21.3
22.2
−3.38
0.0007


PTGS2
16.1
16.8
−3.37
0.0008


NRP1
21.4
22.3
−3.34
0.0008


PYCARD
14.0
14.5
−3.29
0.0010


COVA1
18.1
18.6
−3.25
0.0011


PLAU
22.8
23.7
−3.18
0.0015


KAI1
14.2
14.7
−3.01
0.0026


BCAM
19.6
20.9
−2.96
0.0031


SOX4
18.3
18.8
−2.88
0.0039


ABCC1
15.2
15.8
−2.73
0.0063


IGF1R
14.9
15.5
−2.71
0.0066


ST14
16.8
17.4
−2.62
0.0088


AOC3
18.5
19.1
−2.25
0.0244


HMGA1
14.8
15.1
−1.94
0.0523


CAV2
23.3
23.8
−1.73
0.0832


AR
23.6
24.2
−1.72
0.0857


FGF2
23.8
24.2
−1.65
0.0990


BIRC5
22.5
22.9
−1.63
0.1040


ADAMTS1
21.5
21.9
−1.52
0.1293


MYC
17.1
17.3
−0.96
0.3377


GSTT1
20.7
21.2
−0.87
0.3863


KRT5
24.3
24.5
−0.71
0.4774


IL8
20.8
21.0
−0.57
0.5659


BCL2
15.1
15.2
−0.37
0.7094


COL6A2
18.2
18.1
0.43
0.6648


E2F5
20.7
20.5
0.72
0.4726


CD48
14.6
14.4
1.13
0.2588


TPD52
18.2
18.0
1.56
0.1188






















TABLE 1C











Predicted








probability


Patient





of prostate


ID
Goup
CDH1
EGR1
logit
odds
cancer





















60
Cancer
18.75
17.75
13.90
1082910.44
1.0000


69
Cancer
19.17
17.74
13.15
512893.76
1.0000


85
Cancer
19.31
17.96
10.91
54722.59
1.0000


17
Cancer
18.84
18.12
10.51
36529.54
1.0000


62
Cancer
18.92
18.39
7.99
2941.24
0.9997


84
Cancer
19.10
18.47
6.91
1002.92
0.9990


125
Cancer
19.76
18.39
6.23
505.47
0.9980


129
Cancer
20.56
18.33
4.99
146.37
0.9932


70
Cancer
18.43
18.93
4.46
86.07
0.9885


30
Cancer
20.64
18.41
4.07
58.70
0.9832


105
Cancer
19.89
18.82
2.16
8.71
0.8970


243
Normal
20.52
18.74
1.51
4.52
0.8189


10
Cancer
20.10
18.89
1.08
2.95
0.7469


29
Cancer
21.80
18.64
−0.44
0.65
0.3929


128
Cancer
19.40
19.36
−1.42
0.24
0.1940


239
Normal
21.42
18.85
−1.43
0.24
0.1927


83
Normal
18.98
19.47
−1.45
0.23
0.1895


154
Normal
19.87
19.27
−1.68
0.19
0.1569


86
Normal
21.41
18.89
−1.74
0.18
0.1492


150
Normal
19.50
19.44
−2.34
0.10
0.0875


74
Normal
19.76
19.40
−2.60
0.07
0.0692


56
Normal
19.25
19.55
−2.75
0.06
0.0602


100
Normal
20.78
19.24
−3.41
0.03
0.0318


167
Normal
20.40
19.39
−3.93
0.02
0.0193


257
Normal
19.24
19.71
−4.13
0.02
0.0159


236
Normal
20.73
19.40
−4.69
0.01
0.0091


156
Normal
20.26
19.62
−5.58
0.00
0.0038


220
Normal
20.65
19.66
−6.77
0.00
0.0012


78
Normal
20.48
19.75
−7.12
0.00
0.0008


158
Normal
20.67
19.70
−7.14
0.00
0.0008


138
Normal
19.39
20.05
−7.37
0.00
0.0006


161
Normal
21.42
19.57
−7.69
0.00
0.0005


152
Normal
20.02
19.93
−7.71
0.00
0.0004


57
Normal
20.87
19.76
−8.12
0.00
0.0003


61
Normal
21.65
19.63
−8.69
0.00
0.0002


45
Normal
20.72
19.90
−8.96
0.00
0.0001


145
Normal
19.69
20.22
−9.52
0.00
0.0001


157
Normal
20.58
20.02
−9.71
0.00
0.0001


62
Normal
21.76
19.91
−11.35
0.00
0.0000


136
Normal
20.87
20.15
−11.46
0.00
0.0000


155
Normal
21.70
20.00
−11.97
0.00
0.0000


265
Normal
21.98
19.99
−12.53
0.00
0.0000


110
Normal
20.43
20.38
−12.55
0.00
0.0000


184
Normal
20.37
20.44
−12.90
0.00
0.0000


269
Normal
21.64
20.15
−13.15
0.00
0.0000


147
Normal
20.50
20.46
−13.36
0.00
0.0000


191
Normal
21.20
20.29
−13.42
0.00
0.0000


245
Normal
21.26
20.31
−13.70
0.00
0.0000


51
Normal
20.95
20.40
−13.84
0.00
0.0000


246
Normal
21.29
20.35
−14.17
0.00
0.0000


249
Normal
21.52
20.31
−14.26
0.00
0.0000


180
Normal
20.42
20.59
−14.33
0.00
0.0000


267
Normal
20.99
20.46
−14.42
0.00
0.0000


102
Normal
20.71
20.63
−15.30
0.00
0.0000


142
Normal
20.97
20.58
−15.41
0.00
0.0000


176
Normal
20.56
20.75
−16.02
0.00
0.0000


248
Normal
20.15
21.02
−17.48
0.00
0.0000


85
Normal
20.63
20.92
−17.65
0.00
0.0000


133
Normal
20.51
21.02
−18.28
0.00
0.0000


109
Normal
20.04
21.22
−18.96
0.00
0.0000


253
Normal
21.31
20.92
−19.11
0.00
0.0000


151
Normal
21.86
20.80
−19.31
0.00
0.0000


252
Normal
21.86
20.84
−19.60
0.00
0.0000


119
Normal
21.07
21.09
−20.08
0.00
0.0000
























TABLE 1D















total used






Normal
Prostate

(excludes



En-

N =
50
19

missing)


















2-gene models and
tropy
#normal
#normal
#pc
#pc
Correct
Correct


#
#


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
normals
disease






















EGR1
MYC
0.60
45
5
17
2
90.0%
89.5%
8.0E−12
8.4E−05
50
19


EGR1
TPD52
0.55
42
7
16
3
85.7%
84.2%
5.3E−08
0.0028
49
19


CD48
CD59
0.55
42
8
16
3
84.0%
84.2%
5.6E−06
2.6E−08
50
19


E2F5
EGR1
0.54
45
5
16
3
90.0%
84.2%
0.0012
4.6E−07
50
19


CTNNA1
MYC
0.54
43
7
16
3
86.0%
84.2%
1.4E−10
4.4E−07
50
19


EGR1
TP53
0.53
40
9
16
3
81.6%
84.2%
2.1E−10
0.0024
49
19


BCAM
EGR1
0.52
41
9
16
3
82.0%
84.2%
0.0039
2.4E−05
50
19


CD48
EGR1
0.51
45
5
16
3
90.0%
84.2%
0.0043
1.2E−07
50
19


G6PD
MYC
0.51
43
7
16
3
86.0%
84.2%
4.3E−10
4.0E−06
50
19


EGR1
VEGF
0.51
40
8
16
3
83.3%
84.2%
2.1E−10
0.0060
48
19


EGR1
SOX4
0.50
41
9
15
4
82.0%
79.0%
1.8E−10
0.0066
50
19


CD59
E2F5
0.50
47
3
16
3
94.0%
84.2%
2.3E−06
4.0E−05
50
19


EGR1
TNF
0.50
42
5
16
3
89.4%
84.2%
7.1E−09
0.0052
47
19


CTNNA1
E2F5
0.49
43
7
17
2
86.0%
89.5%
3.5E−06
2.5E−06
50
19


EGR1
ST14
0.49
41
9
16
3
82.0%
84.2%
2.7E−10
0.0107
50
19


CDH1
HSPA1A
0.49
41
9
16
3
82.0%
84.2%
3.8E−06
3.3E−05
50
19


BCAM
HSPA1A
0.49
38
12
15
4
76.0%
79.0%
4.0E−06
8.6E−05
50
19


BCAM
CD59
0.49
42
8
16
3
84.0%
84.2%
8.6E−05
8.8E−05
50
19


BCL2
EGR1
0.48
42
8
16
3
84.0%
84.2%
0.0162
1.7E−08
50
19


EGR1
MEIS1
0.48
45
5
16
3
90.0%
84.2%
0.0001
0.0181
50
19


EGR1
NRP1
0.48
40
10
16
3
80.0%
84.2%
2.4E−08
0.0185
50
19


BCAM
PLAU
0.48
43
5
15
4
89.6%
79.0%
0.0001
0.0002
48
19


EGR1
SERPINE1
0.48
44
6
16
3
88.0%
84.2%
4.2E−05
0.0228
50
19


COVA1
EGR1
0.48
41
9
16
3
82.0%
84.2%
0.0255
9.7E−10
50
19


EGR1
FGF2
0.48
43
7
16
3
86.0%
84.2%
3.3E−06
0.0256
50
19


BCAM
CTNNA1
0.47
40
10
15
4
80.0%
79.0%
5.6E−06
0.0001
50
19


EGR1
KRT5
0.47
44
6
16
3
88.0%
84.2%
1.3E−08
0.0263
50
19


CD59
EGR1
0.47
43
7
16
3
86.0%
84.2%
0.0291
0.0002
50
19


ABCC1
EGR1
0.47
41
9
16
3
82.0%
84.2%
0.0298
1.2E−09
50
19


BCAM
MEIS1
0.47
43
7
16
3
86.0%
84.2%
0.0002
0.0002
50
19


CD48
CTNNA1
0.47
43
7
16
3
86.0%
84.2%
7.1E−06
7.9E−07
50
19


CTNNA1
TPD52
0.47
40
9
16
3
81.6%
84.2%
1.9E−06
1.2E−05
49
19


BCAM
G6PD
0.47
41
9
16
3
82.0%
84.2%
2.3E−05
0.0002
50
19


EGR1
PLAU
0.46
36
12
16
3
75.0%
84.2%
0.0003
0.0455
48
19


EGR1
IL8
0.46
42
8
17
2
84.0%
89.5%
2.6E−06
0.0480
50
19


BCAM
SVIL
0.45
41
8
16
3
83.7%
84.2%
4.9E−07
0.0003
49
19


IL8
NCOA4
0.45
42
7
16
3
85.7%
84.2%
0.0007
6.9E−06
49
19


CD59
TNF
0.45
36
11
15
4
76.6%
79.0%
5.1E−08
0.0008
47
19


BCAM
FGF2
0.45
42
8
15
4
84.0%
79.0%
9.5E−06
0.0004
50
19


CTNNA1
TNF
0.45
40
7
16
3
85.1%
84.2%
5.7E−08
1.9E−05
47
19


CD59
CDH1
0.45
40
10
15
4
80.0%
79.0%
0.0002
0.0005
50
19


CTNNA1
TP53
0.45
38
11
15
4
77.6%
79.0%
7.7E−09
1.9E−05
49
19


CD48
NCOA4
0.45
41
8
16
3
83.7%
84.2%
0.0010
2.4E−06
49
19


CD48
G6PD
0.44
45
5
16
3
90.0%
84.2%
5.9E−05
2.2E−06
50
19


CD59
IL8
0.44
42
8
15
4
84.0%
79.0%
5.7E−06
0.0005
50
19


PLAU
TNF
0.44
35
10
15
4
77.8%
79.0%
7.5E−08
0.0005
45
19


BCAM
SERPING1
0.44
40
10
15
4
80.0%
79.0%
3.7E−05
0.0006
50
19


E2F5
G6PD
0.44
45
5
17
2
90.0%
89.5%
7.2E−05
3.4E−05
50
19


E2F5
LGALS8
0.44
42
7
16
3
85.7%
84.2%
5.7E−09
6.3E−05
49
19


IL8
PLAU
0.44
40
8
15
4
83.3%
79.0%
0.0008
1.2E−05
48
19


CD59
MEIS1
0.44
42
8
16
3
84.0%
84.2%
0.0008
0.0007
50
19


E2F5
PLAU
0.43
41
7
16
3
85.4%
84.2%
0.0009
5.4E−05
48
19


CTNNA1
SOX4
0.43
44
6
15
4
88.0%
79.0%
3.8E−09
3.5E−05
50
19


E2F5
HSPA1A
0.43
43
7
17
2
86.0%
89.5%
4.2E−05
5.0E−05
50
19


CD59
SERPINE1
0.43
44
6
15
4
88.0%
79.0%
0.0003
0.0010
50
19


G6PD
TPD52
0.43
42
7
16
3
85.7%
84.2%
9.3E−06
0.0002
49
19


BCAM
SERPINE1
0.43
43
7
16
3
86.0%
84.2%
0.0004
0.0012
50
19


CDH1
SERPING1
0.43
43
7
17
2
86.0%
89.5%
7.6E−05
0.0005
50
19


CDH1
PLAU
0.43
43
5
15
4
89.6%
79.0%
0.0014
0.0009
48
19


HSPA1A
TPD52
0.42
41
8
16
3
83.7%
84.2%
1.1E−05
7.4E−05
49
19


PLAU
TPD52
0.42
39
8
16
3
83.0%
84.2%
1.3E−05
0.0015
47
19


MEIS1
NCOA4
0.42
40
9
16
3
81.6%
84.2%
0.0027
0.0013
49
19


BCAM
IGF1R
0.42
43
7
15
4
86.0%
79.0%
8.3E−07
0.0014
50
19


CD48
HSPA1A
0.42
40
10
15
4
80.0%
79.0%
6.6E−05
6.0E−06
50
19


CD48
PLAU
0.42
38
10
15
4
79.2%
79.0%
0.0017
6.5E−06
48
19


CDH1
MEIS1
0.42
41
9
16
3
82.0%
84.2%
0.0019
0.0007
50
19


CD59
FGF2
0.41
43
7
16
3
86.0%
84.2%
4.4E−05
0.0019
50
19


KRT5
MEIS1
0.41
44
6
16
3
88.0%
84.2%
0.0022
1.6E−07
50
19


CDH1
STAT3
0.41
45
5
16
3
90.0%
84.2%
3.3E−06
0.0008
50
19


EGR1

0.41
45
5
16
3
90.0%
84.2%
6.8E−09

50
19


NRP1
PLAU
0.41
37
11
15
4
77.1%
79.0%
0.0023
5.2E−07
48
19


NCOA4
VEGF
0.41
38
9
15
4
80.9%
79.0%
1.1E−08
0.0033
47
19


CD59
TPD52
0.41
39
10
15
4
79.6%
79.0%
1.9E−05
0.0022
49
19


AOC3
HSPA1A
0.41
39
11
16
3
78.0%
84.2%
9.9E−05
7.9E−09
50
19


CDH1
FGF2
0.41
43
7
15
4
86.0%
79.0%
5.2E−05
0.0010
50
19


BIRC5
MEIS1
0.41
40
9
15
4
81.6%
79.0%
0.0022
2.0E−06
49
19


NCOA4
SERPING1
0.41
37
12
15
4
75.5%
79.0%
0.0002
0.0047
49
19


E2F5
MEIS1
0.41
45
5
15
4
90.0%
79.0%
0.0028
0.0001
50
19


CDH1
SVIL
0.41
42
7
15
4
85.7%
79.0%
3.4E−06
0.0011
49
19


HSPA1A
NCOA4
0.41
42
7
15
4
85.7%
79.0%
0.0050
9.4E−05
49
19


CDH1
TGFB1
0.41
39
11
16
3
78.0%
84.2%
2.2E−07
0.0011
50
19


PLAU
SERPINE1
0.41
36
12
15
4
75.0%
79.0%
0.0006
0.0030
48
19


BCAM
TGFB1
0.41
41
9
15
4
82.0%
79.0%
2.3E−07
0.0027
50
19


AOC3
PLAU
0.41
44
4
15
4
91.7%
79.0%
0.0031
1.3E−08
48
19


BCAM
EPAS1
0.41
44
6
15
4
88.0%
79.0%
6.9E−06
0.0030
50
19


CDH1
IGF1R
0.40
40
10
16
3
80.0%
84.2%
1.7E−06
0.0012
50
19


CDH1
SERPINE1
0.40
45
5
16
3
90.0%
84.2%
0.0010
0.0012
50
19


HSPA1A
MYC
0.40
42
8
16
3
84.0%
84.2%
3.4E−08
0.0001
50
19


CTNNA1
NRP1
0.40
42
8
16
3
84.0%
84.2%
7.1E−07
0.0001
50
19


FGF2
NCOA4
0.40
44
5
16
3
89.8%
84.2%
0.0073
7.1E−05
49
19


HSPA1A
TNF
0.40
37
10
15
4
78.7%
79.0%
4.0E−07
0.0001
47
19


KRT5
PLAU
0.40
42
6
15
4
87.5%
79.0%
0.0046
4.4E−07
48
19


E2F5
SVIL
0.40
44
5
16
3
89.8%
84.2%
5.4E−06
0.0002
49
19


HSPA1A
IL8
0.40
39
11
15
4
78.0%
79.0%
4.1E−05
0.0002
50
19


KRT5
POV1
0.40
40
10
16
3
80.0%
84.2%
0.0004
3.4E−07
50
19


AOC3
G6PD
0.39
43
7
16
3
86.0%
84.2%
0.0005
1.6E−08
50
19


CTNNA1
ST14
0.39
41
9
15
4
82.0%
79.0%
1.7E−08
0.0002
50
19


IL8
SERPING1
0.39
43
7
15
4
86.0%
79.0%
0.0003
4.6E−05
50
19


BCL2
CD59
0.39
38
12
15
4
76.0%
79.0%
0.0048
7.6E−07
50
19


CD59
MYC
0.39
41
9
15
4
82.0%
79.0%
5.0E−08
0.0049
50
19


SVIL
TPD52
0.39
39
9
16
3
81.3%
84.2%
3.8E−05
1.0E−05
48
19


BCAM
NCOA4
0.39
37
12
15
4
75.5%
79.0%
0.0096
0.0041
49
19


E2F5
IGF1R
0.39
41
9
16
3
82.0%
84.2%
2.7E−06
0.0003
50
19


CDH1
CTNNA1
0.39
38
12
15
4
76.0%
79.0%
0.0002
0.0020
50
19


NCOA4
SERPINE1
0.39
41
8
16
3
83.7%
84.2%
0.0013
0.0098
49
19


CD48
POV1
0.39
39
11
16
3
78.0%
84.2%
0.0005
2.0E−05
50
19


MEIS1
TPD52
0.39
41
8
15
4
83.7%
79.0%
4.5E−05
0.0052
49
19


KRT5
SERPING1
0.39
43
7
15
4
86.0%
79.0%
0.0003
4.1E−07
50
19


MEIS1
SERPING1
0.39
38
12
15
4
76.0%
79.0%
0.0003
0.0060
50
19


CD48
SERPING1
0.39
42
8
16
3
84.0%
84.2%
0.0003
2.2E−05
50
19


CD48
MEIS1
0.39
42
8
16
3
84.0%
84.2%
0.0065
2.3E−05
50
19


STAT3
TPD52
0.39
41
8
16
3
83.7%
84.2%
5.0E−05
1.2E−05
49
19


E2F5
STAT3
0.39
40
10
16
3
80.0%
84.2%
9.6E−06
0.0003
50
19


G6PD
TP53
0.39
40
9
15
4
81.6%
79.0%
8.7E−08
0.0006
49
19


HSPA1A
KRT5
0.39
43
7
17
2
86.0%
89.5%
4.8E−07
0.0003
50
19


MYC
PLAU
0.39
38
10
15
4
79.2%
79.0%
0.0072
7.8E−08
48
19


G6PD
TNF
0.39
38
9
15
4
80.9%
79.0%
6.7E−07
0.0006
47
19


E2F5
SERPING1
0.39
47
3
16
3
94.0%
84.2%
0.0004
0.0003
50
19


MEIS1
NRP1
0.39
42
8
16
3
84.0%
84.2%
1.3E−06
0.0075
50
19


PLAU
POV1
0.38
43
5
15
4
89.6%
79.0%
0.0005
0.0081
48
19


BIRC5
E2F5
0.38
41
8
16
3
83.7%
84.2%
0.0004
5.9E−06
49
19


LGALS8
TPD52
0.38
45
3
15
4
93.8%
79.0%
6.3E−05
6.4E−08
48
19


MEIS1
POV1
0.38
41
9
16
3
82.0%
84.2%
0.0007
0.0084
50
19


CTNNA1
IL8
0.38
38
12
15
4
76.0%
79.0%
7.4E−05
0.0003
50
19


G6PD
SOX4
0.38
41
9
15
4
82.0%
79.0%
2.8E−08
0.0008
50
19


CD44
E2F5
0.38
45
5
16
3
90.0%
84.2%
0.0004
9.5E−08
50
19


NCOA4
PLAU
0.38
40
7
15
4
85.1%
79.0%
0.0081
0.0131
47
19


SERPING1
TNF
0.38
36
11
15
4
76.6%
79.0%
9.3E−07
0.0006
47
19


POV1
SERPINE1
0.38
42
8
16
3
84.0%
84.2%
0.0031
0.0008
50
19


SERPING1
TPD52
0.38
37
12
16
3
75.5%
84.2%
8.2E−05
0.0008
49
19


IL8
SERPINE1
0.38
40
10
15
4
80.0%
79.0%
0.0033
9.6E−05
50
19


HSPA1A
NRP1
0.38
42
8
15
4
84.0%
79.0%
2.0E−06
0.0004
50
19


IL8
MEIS1
0.38
41
9
16
3
82.0%
84.2%
0.0124
0.0001
50
19


F2F5
FGF2
0.37
43
7
16
3
86.0%
84.2%
0.0002
0.0006
50
19


CD44
CD48
0.37
40
10
15
4
80.0%
79.0%
4.3E−05
1.3E−07
50
19


BIRC5
CD48
0.37
42
7
15
4
85.7%
79.0%
4.3E−05
9.2E−06
49
19


CD59
SERPING1
0.37
42
8
16
3
84.0%
84.2%
0.0008
0.0134
50
19


CTNNA1
NCOA4
0.37
39
10
16
3
79.6%
84.2%
0.0267
0.0004
49
19


PLAU
ST14
0.37
41
7
15
4
85.4%
79.0%
6.1E−08
0.0161
48
19


HSPA1A
SERPINE1
0.37
40
10
16
3
80.0%
84.2%
0.0047
0.0006
50
19


PLAU
SOX4
0.37
38
10
15
4
79.2%
79.0%
7.1E−08
0.0164
48
19


CD48
SVIL
0.37
40
9
15
4
81.6%
79.0%
1.8E−05
5.9E−05
49
19


FGF2
POV1
0.37
42
8
16
3
84.0%
84.2%
0.0013
0.0003
50
19


G6PD
ST14
0.37
38
12
15
4
76.0%
79.0%
5.0E−08
0.0016
50
19


IL8
STAT3
0.37
41
9
15
4
82.0%
79.0%
2.4E−05
0.0001
50
19


TGFB1
TPD52
0.37
38
11
16
3
77.6%
84.2%
0.0001
1.6E−06
49
19


G6PD
NRP1
0.37
38
12
15
4
76.0%
79.0%
3.2E−06
0.0018
50
19


CAV2
CD59
0.37
45
5
16
3
90.0%
84.2%
0.0177
4.2E−06
50
19


MEIS1
TNF
0.37
38
9
15
4
80.9%
79.0%
1.6E−06
0.0147
47
19


IL8
SVIL
0.37
46
3
15
4
93.9%
79.0%
2.1E−05
0.0001
49
19


CD59
NRP1
0.36
42
8
15
4
84.0%
79.0%
3.3E−06
0.0183
50
19


NCOA4
TPD52
0.36
38
10
15
4
79.2%
79.0%
0.0001
0.0374
48
19


BIRC5
SERPINE1
0.36
40
9
15
4
81.6%
79.0%
0.0049
1.4E−05
49
19


KRT5
NCOA4
0.36
40
9
15
4
81.6%
79.0%
0.0381
1.3E−06
49
19


CDH1
POV1
0.36
40
10
15
4
80.0%
79.0%
0.0016
0.0075
50
19


E2F5
SERPINE1
0.36
39
11
15
4
78.0%
79.0%
0.0061
0.0009
50
19


FGF2
TPD52
0.36
46
3
15
4
93.9%
79.0%
0.0001
0.0004
49
19


BCL2
G6PD
0.36
38
12
15
4
76.0%
79.0%
0.0020
2.8E−06
50
19


CTNNA1
MEIS1
0.36
39
11
16
3
78.0%
84.2%
0.0217
0.0007
50
19


MEIS1
MYC
0.36
39
11
15
4
78.0%
79.0%
2.1E−07
0.0254
50
19


CD44
TPD52
0.36
47
2
16
3
95.9%
84.2%
0.0002
2.8E−07
49
19


SERPINE1
SERPING1
0.36
41
9
15
4
82.0%
79.0%
0.0013
0.0074
50
19


BCAM
CDH1
0.36
40
10
15
4
80.0%
79.0%
0.0094
0.0245
50
19


HSPA1A
MEIS1
0.36
42
8
16
3
84.0%
84.2%
0.0282
0.0010
50
19


CTNNA1
SERPINE1
0.36
40
10
16
3
80.0%
84.2%
0.0088
0.0009
50
19


CD48
LGALS8
0.36
39
10
15
4
79.6%
79.0%
1.8E−07
9.2E−05
49
19


FGF2
IL8
0.36
43
7
16
3
86.0%
84.2%
0.0002
0.0006
50
19


CD59
KRT5
0.35
39
11
15
4
78.0%
79.0%
2.1E−06
0.0315
50
19


BCAM
PYCARD
0.35
44
6
15
4
88.0%
79.0%
1.2E−07
0.0354
50
19


E2F5
TGFB1
0.35
41
9
16
3
82.0%
84.2%
2.5E−06
0.0016
50
19


BCL2
PLAU
0.35
39
9
15
4
81.3%
79.0%
0.0416
5.5E−06
48
19


FGF2
PLAU
0.35
40
8
15
4
83.3%
79.0%
0.0416
0.0007
48
19


G6PD
PYCARD
0.35
40
10
15
4
80.0%
79.0%
1.3E−07
0.0039
50
19


BCL2
HSPA1A
0.35
39
11
15
4
78.0%
79.0%
0.0015
5.4E−06
50
19


G6PD
KRT5
0.35
42
8
16
3
84.0%
84.2%
2.6E−06
0.0040
50
19


CDH1
IL8
0.35
40
10
15
4
80.0%
79.0%
0.0003
0.0160
50
19


G6PD
SERPINE1
0.35
40
10
15
4
80.0%
79.0%
0.0128
0.0041
50
19


CDH1
KAI1
0.35
41
9
16
3
82.0%
84.2%
1.4E−07
0.0161
50
19


PLAU
SERPING1
0.35
43
5
17
2
89.6%
89.5%
0.0016
0.0454
48
19


COVA1
G6PD
0.35
38
12
15
4
76.0%
79.0%
0.0043
2.1E−07
50
19


CD59
VEGF
0.35
37
11
15
4
77.1%
79.0%
1.5E−07
0.0395
48
19


GSTT1
PLAU
0.35
38
10
15
4
79.2%
79.0%
0.0485
1.7E−07
48
19


KRT5
STAT3
0.35
43
7
16
3
86.0%
84.2%
6.0E−05
2.8E−06
50
19


CTNNA1
PLAU
0.35
38
10
15
4
79.2%
79.0%
0.0486
0.0013
48
19


HSPA1A
TP53
0.35
40
9
15
4
81.6%
79.0%
5.2E−07
0.0014
49
19


NRP1
SERPINE1
0.35
40
10
15
4
80.0%
79.0%
0.0143
7.7E−06
50
19


FGF2
SERPING1
0.35
38
12
15
4
76.0%
79.0%
0.0025
0.0009
50
19


FGF2
HSPA1A
0.34
40
10
15
4
80.0%
79.0%
0.0019
0.0009
50
19


G6PD
POV1
0.34
40
10
15
4
80.0%
79.0%
0.0043
0.0053
50
19


CD59
TP53
0.34
38
11
15
4
77.6%
79.0%
6.8E−07
0.0490
49
19


BIRC5
FGF2
0.34
37
12
16
3
75.5%
84.2%
0.0015
4.1E−05
49
19


FGF2
G6PD
0.34
40
10
15
4
80.0%
79.0%
0.0070
0.0013
50
19


G6PD
SERPING1
0.33
42
8
16
3
84.0%
84.2%
0.0046
0.0084
50
19


CD44
TNF
0.33
38
9
15
4
80.9%
79.0%
7.2E−06
1.1E−06
47
19


MYC
SERPING1
0.33
42
8
15
4
84.0%
79.0%
0.0050
7.6E−07
50
19


AOC3
SVIL
0.33
40
9
16
3
81.6%
84.2%
0.0001
2.8E−07
49
19


BIRC5
CDH1
0.33
39
10
15
4
79.6%
79.0%
0.0406
6.4E−05
49
19


CD48
CDH1
0.33
39
11
15
4
78.0%
79.0%
0.0402
0.0003
50
19


CTNNA1
KRT5
0.33
44
6
16
3
88.0%
84.2%
6.2E−06
0.0032
50
19


G6PD
PTGS2
0.33
43
7
16
3
86.0%
84.2%
3.6E−07
0.0104
50
19


ADAMTS1
CDH1
0.33
41
9
16
3
82.0%
84.2%
0.0433
4.5E−07
50
19


IGF1R
IL8
0.33
38
12
15
4
76.0%
79.0%
0.0009
4.9E−05
50
19


CDH1
E2F5
0.33
43
7
15
4
86.0%
79.0%
0.0050
0.0439
50
19


IL8
POV1
0.33
38
12
15
4
76.0%
79.0%
0.0087
0.0009
50
19


FGF2
SERPINE1
0.33
38
12
15
4
76.0%
79.0%
0.0352
0.0021
50
19


E2F5
EPAS1
0.33
45
5
16
3
90.0%
84.2%
0.0002
0.0052
50
19


BIRC5
TPD52
0.32
38
10
15
4
79.2%
79.0%
0.0008
8.0E−05
48
19


CDH1
LGALS8
0.32
38
11
15
4
77.6%
79.0%
6.8E−07
0.0386
49
19


SERPINE1
SORBS1
0.32
39
11
16
3
78.0%
84.2%
8.8E−05
0.0384
50
19


E2F5
MUC1
0.32
43
7
15
4
86.0%
79.0%
5.1E−07
0.0056
50
19


SVIL
TNF
0.32
38
8
15
4
82.6%
79.0%
1.1E−05
0.0001
46
19


CTNNA1
POV1
0.32
42
8
16
3
84.0%
84.2%
0.0110
0.0044
50
19


HSPA1A
SERPING1
0.32
41
9
16
3
82.0%
84.2%
0.0075
0.0053
50
19


NRP1
SERPING1
0.32
44
6
16
3
88.0%
84.2%
0.0080
2.3E−05
50
19


CD48
FGF2
0.31
39
11
16
3
78.0%
84.2%
0.0034
0.0006
50
19


SERPINE1
TNF
0.31
39
8
15
4
83.0%
79.0%
1.4E−05
0.0412
47
19


FGF2
NRP1
0.31
40
10
15
4
80.0%
79.0%
3.0E−05
0.0036
50
19


ABCC1
CTNNA1
0.31
40
10
15
4
80.0%
79.0%
0.0065
9.5E−07
50
19


MYC
SVIL
0.31
41
8
15
4
83.7%
79.0%
0.0002
1.6E−06
49
19


MYC
STAT3
0.31
38
12
15
4
76.0%
79.0%
0.0003
1.7E−06
50
19


COL6A2
CTNNA1
0.31
41
9
16
3
82.0%
84.2%
0.0071
2.2E−06
50
19


ACPP
E2F5
0.31
47
2
15
4
95.9%
79.0%
0.0095
5.4E−06
49
19


CAV2
IL8
0.31
38
12
15
4
76.0%
79.0%
0.0019
4.7E−05
50
19


SOX4
SVIL
0.31
41
8
15
4
83.7%
79.0%
0.0002
6.8E−07
49
19


HSPA1A
SORBS1
0.31
42
8
15
4
84.0%
79.0%
0.0002
0.0099
50
19


BIRC5
G6PD
0.31
42
7
15
4
85.7%
79.0%
0.0330
0.0002
49
19


CTNNA1
SERPING1
0.30
40
10
15
4
80.0%
79.0%
0.0169
0.0098
50
19


CD44
MYC
0.30
40
10
15
4
80.0%
79.0%
2.5E−06
2.9E−06
50
19


AOC3
STAT3
0.30
41
9
15
4
82.0%
79.0%
0.0004
8.0E−07
50
19


EPAS1
SERPING1
0.30
41
9
15
4
82.0%
79.0%
0.0183
0.0006
50
19


ABCC1
G6PD
0.30
39
11
16
3
78.0%
84.2%
0.0352
1.5E−06
50
19


CAV2
POV1
0.30
39
11
15
4
78.0%
79.0%
0.0303
7.2E−05
50
19


COVA1
E2F5
0.30
42
8
16
3
84.0%
84.2%
0.0171
1.6E−06
50
19


MEIS1

0.30
40
10
15
4
80.0%
79.0%
8.5E−07

50
19


PLAU

0.30
37
11
15
4
77.1%
79.0%
1.1E−06

48
19


G6PD
VEGF
0.30
38
10
15
4
79.2%
79.0%
1.1E−06
0.0338
48
19


ADAMTS1
E2F5
0.29
40
10
15
4
80.0%
79.0%
0.0212
1.7E−06
50
19


FGF2
IGF1R
0.29
38
12
15
4
76.0%
79.0%
0.0002
0.0087
50
19


FGF2
KRT5
0.29
38
12
15
4
76.0%
79.0%
3.0E−05
0.0099
50
19


POV1
SVIL
0.29
38
11
15
4
77.6%
79.0%
0.0005
0.0442
49
19


FGF2
TNF
0.29
39
8
15
4
83.0%
79.0%
3.7E−05
0.0061
47
19


AOC3
CTNNA1
0.29
41
9
15
4
82.0%
79.0%
0.0184
1.3E−06
50
19


BCL2
FGF2
0.29
40
10
15
4
80.0%
79.0%
0.0107
6.7E−05
50
19


KRT5
SVIL
0.29
39
10
15
4
79.6%
79.0%
0.0006
3.2E−05
49
19


COL6A2
HSPA1A
0.29
39
11
15
4
78.0%
79.0%
0.0257
6.1E−06
50
19


IL8
TGFB1
0.28
41
9
15
4
82.0%
79.0%
4.2E−05
0.0056
50
19


COVA1
TPD52
0.28
38
11
15
4
77.6%
79.0%
0.0048
3.2E−06
49
19


SOX4
STAT3
0.28
38
12
15
4
76.0%
79.0%
0.0010
2.1E−06
50
19


E2F5
KAI1
0.28
39
11
15
4
78.0%
79.0%
2.6E−06
0.0460
50
19


CTNNA1
LGALS8
0.28
37
12
15
4
75.5%
79.0%
4.8E−06
0.0342
49
19


CDH1

0.28
40
10
15
4
80.0%
79.0%
2.2E−06

50
19


E2F5
TP53
0.28
42
7
16
3
85.7%
84.2%
9.8E−06
0.0440
49
19


BIRC5
CTNNA1
0.28
39
10
15
4
79.6%
79.0%
0.0392
0.0006
49
19


CD48
EPAS1
0.27
40
10
15
4
80.0%
79.0%
0.0019
0.0033
50
19


LGALS8
TNF
0.27
37
9
15
4
80.4%
79.0%
7.9E−05
7.4E−06
46
19


CAV2
CTNNA1
0.27
40
10
15
4
80.0%
79.0%
0.0392
0.0002
50
19


SERPINE1

0.27
40
10
15
4
80.0%
79.0%
2.7E−06

50
19


IGF1R
TNF
0.27
36
11
15
4
76.6%
79.0%
9.1E−05
0.0007
47
19


NRP1
SVIL
0.27
39
10
15
4
79.6%
79.0%
0.0013
0.0002
49
19


AR
IL8
0.26
43
7
15
4
86.0%
79.0%
0.0159
1.2E−05
50
19


FGF2
TP53
0.26
38
11
15
4
77.6%
79.0%
1.9E−05
0.0386
49
19


NRP1
TGFB1
0.25
39
11
15
4
78.0%
79.0%
0.0002
0.0004
50
19


IL8
PYCARD
0.25
38
12
15
4
76.0%
79.0%
7.8E−06
0.0242
50
19


BIRC5
EPAS1
0.25
38
11
16
3
77.6%
84.2%
0.0083
0.0020
49
19


ADAMTS1
TPD52
0.25
37
12
15
4
75.5%
79.0%
0.0263
1.6E−05
49
19


IGF1R
KRT5
0.24
42
8
15
4
84.0%
79.0%
0.0002
0.0018
50
19


CD48
MUC1
0.23
39
11
15
4
78.0%
79.0%
2.3E−05
0.0213
50
19


SORBS1
SVIL
0.23
38
11
15
4
77.6%
79.0%
0.0067
0.0056
49
19


PTGS2
SVIL
0.23
40
9
15
4
81.6%
79.0%
0.0079
2.6E−05
49
19


CAV2
EPAS1
0.22
38
12
15
4
76.0%
79.0%
0.0221
0.0021
50
19


CTNNA1

0.22
39
11
15
4
78.0%
79.0%
2.3E−05

50
19


CAV2
IGF1R
0.21
38
12
15
4
76.0%
79.0%
0.0068
0.0030
50
19


IGF1R
NRP1
0.21
38
12
15
4
76.0%
79.0%
0.0028
0.0085
50
19


BIRC5
KRT5
0.21
39
10
15
4
79.6%
79.0%
0.0011
0.0137
49
19


ABCC1
STAT3
0.20
42
8
15
4
84.0%
79.0%
0.0431
0.0001
50
19


ACPP
NRP1
0.19
37
12
15
4
75.5%
79.0%
0.0053
0.0008
49
19


SORBS1
TGFB1
0.19
43
7
15
4
86.0%
79.0%
0.0024
0.0329
50
19


ACPP
KRT5
0.17
40
9
15
4
81.6%
79.0%
0.0055
0.0023
49
19


HMGA1
TGFB1
0.13
37
12
15
4
75.5%
79.0%
0.0311
0.0010
49
19




















TABLE 1E






PC Cancer
Normals
Sum



Group Size
27.5%
72.5%
100%


N =
19
50
69


Gene
Mean
Mean
Z-statistic
p-val



















EGR1
19.0
20.1
−5.80
6.8E−09


NCOA4
10.6
11.8
−5.00
5.7E−07


MEIS1
21.3
22.3
−4.92
8.5E−07


BCAM
18.5
20.9
−4.91
9.1E−07


CD59
16.9
17.8
−4.91
9.3E−07


PLAU
22.4
23.7
−4.87
1.1E−06


CDH1
19.4
20.7
−4.73
2.2E−06


SERPINE1
20.5
21.7
−4.69
2.7E−06


G6PD
15.1
15.9
−4.47
7.8E−06


POV1
17.7
18.3
−4.43
9.6E−06


SERPING1
17.5
18.8
−4.35
1.4E−05


E2F5
21.8
20.5
4.31
1.6E−05


HSPA1A
13.6
14.5
−4.27
1.9E−05


CTNNA1
16.3
17.1
−4.24
2.3E−05


FGF2
23.1
24.2
−4.12
3.8E−05


IL8
22.6
21.0
3.93
8.6E−05


TPD52
18.8
18.0
3.86
0.0001


CD48
15.2
14.4
3.70
0.0002


EPAS1
19.8
20.9
−3.57
0.0004


STAT3
13.3
13.9
−3.46
0.0005


SVIL
16.1
16.8
−3.37
0.0008


SORBS1
22.1
22.9
−3.31
0.0009


BIRC5
22.1
22.9
−3.23
0.0012


IGF1R
14.9
15.5
−3.16
0.0016


CAV2
22.8
23.8
−2.92
0.0035


NRP1
23.3
22.3
2.83
0.0047


BCL2
15.8
15.2
2.75
0.0059


TGFB1
12.4
12.8
−2.51
0.0120


KRT5
25.0
24.5
2.48
0.0130


TNF
18.4
17.9
2.45
0.0144


SMARCD3
16.5
16.9
−2.31
0.0212


ACPP
17.2
17.6
−2.06
0.0390


COL6A2
18.6
18.1
1.67
0.0944


TP53
16.1
15.7
1.63
0.1038


CD44
13.7
13.9
−1.61
0.1074


MYC
17.5
17.3
1.52
0.1291


AR
23.7
24.2
−1.45
0.1482


LGALS8
16.9
17.1
−1.20
0.2296


ABCC1
16.1
15.8
1.15
0.2501


COVA1
18.8
18.6
1.10
0.2715


MUC1
22.3
22.6
−1.03
0.3016


ADAMTS1
21.7
21.9
−1.02
0.3098


PTGS2
16.7
16.8
−0.82
0.4119


PYCARD
14.4
14.5
−0.72
0.4734


KAI1
14.6
14.7
−0.70
0.4808


GSTT1
21.6
21.2
0.59
0.5540


SOX4
18.9
18.8
0.56
0.5727


ST14
17.5
17.4
0.45
0.6552


AOC3
19.2
19.1
0.32
0.7494


VEGF
22.2
22.2
−0.20
0.8433


HMGA1
15.0
15.1
−0.10
0.9232






















TABLE 1F











Predicted


Patient





probability of


ID
Group
EGR1
MYC
logit
odds
prostate cancer





















32
Cancer
18.00
18.60
11.35
84755.94
1.0000


99
Cancer
18.44
18.56
8.85
6979.46
0.9999


72
Cancer
18.32
17.65
6.55
696.69
0.9986


46
Cancer
18.01
16.51
4.55
94.59
0.9895


26
Cancer
19.02
18.02
3.94
51.43
0.9809


63
Cancer
18.89
17.80
3.87
48.15
0.9797


15
Cancer
18.53
17.18
3.84
46.43
0.9789


56
Cancer
18.89
17.58
3.20
24.43
0.9607


124
Cancer
18.93
17.33
2.16
8.66
0.8965


9
Cancer
19.12
17.64
2.11
8.24
0.8918


83
Normal
19.47
18.08
1.64
5.13
0.8369


59
Cancer
19.06
17.25
1.18
3.24
0.7641


74
Normal
19.40
17.77
0.99
2.69
0.7293


154
Normal
19.27
17.49
0.82
2.28
0.6951


113
Cancer
20.02
18.65
0.50
1.65
0.6223


78
Cancer
18.75
16.49
0.43
1.53
0.6047


68
Cancer
19.37
17.48
0.24
1.27
0.5596


243
Normal
18.74
16.27
−0.23
0.80
0.4431


86
Normal
18.89
16.47
−0.40
0.67
0.4021


47
Cancer
18.97
16.56
−0.52
0.60
0.3732


66
Cancer
19.21
16.93
−0.65
0.52
0.3425


6
Cancer
20.14
18.50
−0.69
0.50
0.3347


1
Cancer
19.61
17.58
−0.75
0.47
0.3215


100
Normal
19.24
16.93
−0.81
0.44
0.3073


239
Normal
18.85
16.23
−0.95
0.39
0.2790


150
Normal
19.44
17.13
−1.27
0.28
0.2200


56
Normal
19.55
17.26
−1.45
0.23
0.1901


246
Normal
20.35
18.61
−1.48
0.23
0.1854


156
Normal
19.62
17.34
−1.58
0.21
0.1708


119
Cancer
19.34
16.83
−1.70
0.18
0.1547


236
Normal
19.40
16.80
−2.13
0.12
0.1059


152
Normal
19.93
17.63
−2.33
0.10
0.0886


245
Normal
20.31
18.26
−2.36
0.09
0.0862


61
Normal
19.63
17.05
−2.58
0.08
0.0704


220
Normal
19.66
17.07
−2.67
0.07
0.0645


249
Normal
20.31
18.13
−2.77
0.06
0.0588


45
Normal
19.90
17.38
−2.95
0.05
0.0499


167
Normal
19.39
16.51
−3.02
0.05
0.0466


180
Normal
20.59
18.46
−3.26
0.04
0.0368


161
Normal
19.57
16.68
−3.44
0.03
0.0310


158
Normal
19.70
16.85
−3.60
0.03
0.0267


267
Normal
20.46
17.99
−4.06
0.02
0.0170


145
Normal
20.22
17.57
−4.11
0.02
0.0161


265
Normal
19.99
17.11
−4.33
0.01
0.0129


155
Normal
20.00
17.05
−4.59
0.01
0.0101


257
Normal
19.71
16.52
−4.73
0.01
0.0088


109
Normal
21.22
19.04
−4.83
0.01
0.0079


51
Normal
20.40
17.57
−5.11
0.01
0.0060


138
Normal
20.05
16.93
−5.25
0.01
0.0052


252
Normal
20.84
18.20
−5.44
0.00
0.0043


62
Normal
19.91
16.61
−5.54
0.00
0.0039


176
Normal
20.75
17.99
−5.67
0.00
0.0034


78
Normal
19.75
16.28
−5.68
0.00
0.0034


253
Normal
20.92
18.21
−5.87
0.00
0.0028


157
Normal
20.02
16.62
−6.10
0.00
0.0022


147
Normal
20.46
17.30
−6.31
0.00
0.0018


102
Normal
20.63
17.55
−6.43
0.00
0.0016


136
Normal
20.15
16.73
−6.43
0.00
0.0016


57
Normal
19.76
16.03
−6.60
0.00
0.0014


269
Normal
20.15
16.67
−6.66
0.00
0.0013


191
Normal
20.29
16.89
−6.71
0.00
0.0012


110
Normal
20.38
16.96
−6.97
0.00
0.0009


184
Normal
20.44
16.87
−7.60
0.00
0.0005


133
Normal
21.02
17.67
−8.21
0.00
0.0003


142
Normal
20.58
16.84
−8.45
0.00
0.0002


248
Normal
21.02
17.58
−8.47
0.00
0.0002


151
Normal
20.80
17.08
−8.88
0.00
0.0001


119
Normal
21.09
17.55
−8.97
0.00
0.0001


85
Normal
20.92
16.73
−10.66
0.00
0.0000
























TABLE 1G















total used






Normal
Prostate

(excludes



En-

N =
50
40

missing)


















2-gene models and
tropy
#normal
#normal
#pc
#pc
Correct
Correct


#
#


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
normals
disease






















EGR1
MYC
0.58
43
7
34
6
86.0%
85.0%
0.0E+00
0.0012
50
40


EGR1
TPD52
0.58
43
6
35
5
87.8%
87.5%
8.0E−15
0.0105
49
40


EGR1
SERPING1
0.56
42
8
35
5
84.0%
87.5%
3.9E−09
0.0062
50
40


CD59
EGR1
0.56
43
7
34
6
86.0%
85.0%
0.0065
2.3E−09
50
40


EGR1
POV1
0.56
42
8
35
5
84.0%
87.5%
7.1E−08
0.0085
50
40


EGR1
MEIS1
0.55
45
5
35
5
90.0%
87.5%
1.2E−07
0.0111
50
40


BCAM
EGR1
0.55
42
8
34
6
84.0%
85.0%
0.0115
1.1E−11
50
40


EGR1
SOX4
0.54
42
8
34
6
84.0%
85.0%
4.4E−16
0.0173
50
40


EGR1
NCOA4
0.54
43
6
35
5
87.8%
87.5%
2.7E−07
0.0170
49
40


CDH1
EGR1
0.54
42
8
34
6
84.0%
85.0%
0.0250
1.4E−09
50
40


EGR1
TP53
0.54
42
7
35
5
85.7%
87.5%
8.9E−16
0.0445
49
40


E2F5
EGR1
0.53
43
7
35
5
86.0%
87.5%
0.0358
6.1E−14
50
40


EGR1
SERPINE1
0.53
44
6
34
6
88.0%
85.0%
4.2E−09
0.0385
50
40


CDH1
HSPA1A
0.51
41
9
34
6
82.0%
85.0%
2.4E−08
1.2E−08
50
40


EGR1

0.50
45
5
35
5
90.0%
87.5%
4.0E−15

50
40


BCAM
CTNNA1
0.50
42
8
34
6
84.0%
85.0%
9.3E−06
2.8E−10
50
40


CTNNA1
TPD52
0.50
42
7
33
7
85.7%
82.5%
1.1E−12
2.2E−05
49
40


CD48
CTNNA1
0.49
43
7
34
6
86.0%
85.0%
1.5E−05
4.1E−13
50
40


EPAS1
POV1
0.48
44
6
34
6
88.0%
85.0%
9.8E−06
1.1E−08
50
40


CDH1
CTNNA1
0.48
43
7
33
7
86.0%
82.5%
4.1E−05
8.4E−08
50
40


CTNNA1
E2F5
0.47
41
9
34
6
82.0%
85.0%
4.5E−12
7.6E−05
50
40


MEIS1
POV1
0.47
41
9
33
7
82.0%
82.5%
2.3E−05
3.0E−05
50
40


CD59
MEIS1
0.46
42
8
34
6
84.0%
85.0%
3.2E−05
9.6E−07
50
40


CTNNA1
SOX4
0.46
42
8
34
6
84.0%
85.0%
1.0E−13
0.0001
50
40


CTNNA1
POV1
0.45
43
7
35
5
86.0%
87.5%
4.7E−05
0.0002
50
40


CTNNA1
MYC
0.45
43
7
34
6
86.0%
85.0%
8.4E−14
0.0002
50
40


MEIS1
NCOA4
0.45
42
7
34
6
85.7%
85.0%
8.6E−05
5.5E−05
49
40


CTNNA1
MEIS1
0.45
42
8
34
6
84.0%
85.0%
7.8E−05
0.0002
50
40


CTNNA1
NCOA4
0.45
43
6
34
6
87.8%
85.0%
9.3E−05
0.0002
49
40


BCL2
CTNNA1
0.45
40
10
33
7
80.0%
82.5%
0.0002
2.4E−13
50
40


CD48
CD59
0.45
40
10
32
8
80.0%
80.0%
2.5E−06
5.6E−12
50
40


CD59
CDH1
0.45
41
9
33
7
82.0%
82.5%
4.6E−07
2.5E−06
50
40


G6PD
POV1
0.45
42
8
33
7
84.0%
82.5%
8.3E−05
2.0E−05
50
40


MEIS1
SERPING1
0.44
39
11
31
9
78.0%
77.5%
7.1E−06
0.0001
50
40


CDH1
STAT3
0.44
42
8
33
7
84.0%
82.5%
1.4E−07
7.4E−07
50
40


CTNNA1
ST14
0.44
40
10
32
8
80.0%
80.0%
4.8E−13
0.0005
50
40


CDH1
TGFB1
0.44
41
9
33
7
82.0%
82.5%
8.5E−09
1.0E−06
50
40


CDH1
SERPING1
0.44
42
8
34
6
84.0%
85.0%
1.0E−05
1.0E−06
50
40


NCOA4
SERPING1
0.43
38
11
32
8
77.6%
80.0%
1.9E−05
0.0003
49
40


CDH1
POV1
0.43
40
10
32
8
80.0%
80.0%
0.0002
1.6E−06
50
40


CTNNA1
SERPINE1
0.43
41
9
34
6
82.0%
85.0%
3.7E−06
0.0010
50
40


POV1
SERPING1
0.43
40
10
32
8
80.0%
80.0%
2.1E−05
0.0003
50
40


CTNNA1
IL8
0.42
43
7
34
6
86.0%
85.0%
5.1E−12
0.0012
50
40


POV1
SERPINE1
0.42
42
8
34
6
84.0%
85.0%
4.6E−06
0.0003
50
40


CDH1
SVIL
0.42
40
9
33
7
81.6%
82.5%
4.8E−08
2.6E−06
49
40


HSPA1A
POV1
0.42
40
10
32
8
80.0%
80.0%
0.0004
5.4E−06
50
40


COVA1
CTNNA1
0.42
41
9
32
8
82.0%
80.0%
0.0015
1.5E−12
50
40


BCAM
G6PD
0.42
38
12
31
9
76.0%
77.5%
0.0001
4.8E−08
50
40


HSPA1A
NCOA4
0.42
40
9
33
7
81.6%
82.5%
0.0008
5.2E−06
49
40


BCAM
MEIS1
0.42
41
9
32
8
82.0%
80.0%
0.0007
5.1E−08
50
40


CTNNA1
TP53
0.42
40
9
33
7
81.6%
82.5%
1.8E−12
0.0021
49
40


CD48
POV1
0.41
41
9
33
7
82.0%
82.5%
0.0006
5.1E−11
50
40


BCAM
HSPA1A
0.41
40
10
32
8
80.0%
80.0%
9.6E−06
6.6E−08
50
40


CDH1
MEIS1
0.41
41
9
33
7
82.0%
82.5%
0.0011
5.7E−06
50
40


BCAM
CD59
0.41
42
8
33
7
84.0%
82.5%
3.3E−05
8.2E−08
50
40


CTNNA1
SERPING1
0.41
42
8
33
7
84.0%
82.5%
6.0E−05
0.0034
50
40


CD59
SERPINE1
0.41
44
6
33
7
88.0%
82.5%
1.2E−05
3.3E−05
50
40


NCOA4
POV1
0.41
40
9
33
7
81.6%
82.5%
0.0017
0.0014
49
40


G6PD
SERPING1
0.40
42
8
34
6
84.0%
85.0%
8.8E−05
0.0003
50
40


HSPA1A
MEIS1
0.40
42
8
34
6
84.0%
85.0%
0.0018
1.8E−05
50
40


CD44
NCOA4
0.40
40
9
33
7
81.6%
82.5%
0.0024
1.3E−08
49
40


CDH1
LGALS8
0.40
38
11
31
9
77.6%
77.5%
2.1E−09
8.7E−06
49
40


G6PD
NCOA4
0.40
42
7
33
7
85.7%
82.5%
0.0026
0.0003
49
40


BIRC5
MEIS1
0.40
38
11
31
8
77.6%
79.5%
0.0020
5.7E−10
49
39


EPAS1
NCOA4
0.40
40
9
33
7
81.6%
82.5%
0.0031
1.5E−06
49
40


BCL2
CD44
0.40
40
10
32
8
80.0%
80.0%
1.9E−08
7.3E−12
50
40


PLAU
POV1
0.40
37
11
32
8
77.1%
80.0%
0.0015
3.7E−06
48
40


CDH1
EPAS1
0.40
39
11
31
9
78.0%
77.5%
2.2E−06
1.5E−05
50
40


CD59
CTNNA1
0.39
43
7
33
7
86.0%
82.5%
0.0091
8.6E−05
50
40


CD44
CDH1
0.39
43
7
31
9
86.0%
77.5%
1.7E−05
2.2E−08
50
40


BCAM
EPAS1
0.39
40
10
33
7
80.0%
82.5%
2.6E−06
2.4E−07
50
40


CTNNA1
FGF2
0.39
41
9
33
7
82.0%
82.5%
5.2E−09
0.0107
50
40


G6PD
MYC
0.39
41
9
33
7
82.0%
82.5%
4.2E−12
0.0008
50
40


LGALS8
NCOA4
0.39
40
8
33
7
83.3%
82.5%
0.0086
3.6E−09
48
40


MEIS1
PLAU
0.39
36
12
32
8
75.0%
80.0%
5.7E−06
0.0025
48
40


POV1
SVIL
0.39
41
8
33
7
83.7%
82.5%
4.4E−07
0.0035
49
40


E2F5
POV1
0.39
43
7
32
8
86.0%
80.0%
0.0037
6.3E−10
50
40


SERPINE1
SERPING1
0.39
40
10
32
8
80.0%
80.0%
0.0002
4.8E−05
50
40


G6PD
TPD52
0.39
37
12
32
8
75.5%
80.0%
1.0E−09
0.0015
49
40


POV1
STAT3
0.39
38
12
32
8
76.0%
80.0%
4.4E−06
0.0038
50
40


LGALS8
TPD52
0.39
41
7
32
8
85.4%
80.0%
1.3E−09
5.7E−09
48
40


CTNNA1
TNF
0.39
38
9
33
7
80.9%
82.5%
9.8E−12
0.0123
47
40


CTNNA1
NRP1
0.39
42
8
34
6
84.0%
85.0%
4.8E−12
0.0159
50
40


CD48
LGALS8
0.39
40
9
33
7
81.6%
82.5%
4.9E−09
3.3E−10
49
40


AOC3
CTNNA1
0.38
43
7
34
6
86.0%
85.0%
0.0186
1.6E−11
50
40


G6PD
MEIS1
0.38
40
10
32
8
80.0%
80.0%
0.0062
0.0011
50
40


CD59
SERPING1
0.38
41
9
34
6
82.0%
85.0%
0.0003
0.0002
50
40


COL6A2
CTNNA1
0.38
42
8
34
6
84.0%
85.0%
0.0189
6.6E−12
50
40


SERPING1
SORBS1
0.38
40
10
32
8
80.0%
80.0%
1.5E−07
0.0003
50
40


CAV2
POV1
0.38
39
11
32
8
78.0%
80.0%
0.0053
6.7E−09
50
40


NCOA4
SERPINE1
0.38
40
9
33
7
81.6%
82.5%
4.7E−05
0.0077
49
40


CD48
G6PD
0.38
40
10
32
8
80.0%
80.0%
0.0012
3.8E−10
50
40


MEIS1
SORBS1
0.38
42
8
34
6
84.0%
85.0%
1.6E−07
0.0072
50
40


BCAM
LGALS8
0.38
41
8
31
9
83.7%
77.5%
6.1E−09
4.6E−07
49
40


CD44
CD48
0.38
38
12
31
9
76.0%
77.5%
4.0E−10
4.5E−08
50
40


CAV2
CTNNA1
0.38
42
8
34
6
84.0%
85.0%
0.0227
7.3E−09
50
40


MUC1
NCOA4
0.38
40
9
32
8
81.6%
80.0%
0.0084
8.0E−10
49
40


CDH1
PLAU
0.38
40
8
32
8
83.3%
80.0%
9.1E−06
7.9E−05
48
40


NCOA4
TGFB1
0.38
39
10
33
7
79.6%
82.5%
2.6E−07
0.0089
49
40


NCOA4
STAT3
0.38
40
9
32
8
81.6%
80.0%
5.0E−06
0.0090
49
40


CD59
POV1
0.38
40
10
33
7
80.0%
82.5%
0.0066
0.0002
50
40


E2F5
LGALS8
0.38
41
8
33
7
83.7%
82.5%
7.3E−09
2.0E−09
49
40


CTNNA1
SORBS1
0.38
40
10
32
8
80.0%
80.0%
2.1E−07
0.0289
50
40


BCAM
SVIL
0.38
40
9
33
7
81.6%
82.5%
8.6E−07
5.9E−07
49
40


BCAM
SERPING1
0.38
42
8
32
8
84.0%
80.0%
0.0005
6.2E−07
50
40


CTNNA1
KRT5
0.38
42
8
34
6
84.0%
85.0%
1.3E−11
0.0302
50
40


AOC3
G6PD
0.38
41
9
32
8
82.0%
80.0%
0.0019
2.6E−11
50
40


CTNNA1
PYCARD
0.38
39
11
32
8
78.0%
80.0%
2.3E−10
0.0332
50
40


KRT5
POV1
0.38
39
11
32
8
78.0%
80.0%
0.0084
1.4E−11
50
40


CD44
MYC
0.38
39
11
33
7
78.0%
82.5%
9.4E−12
6.5E−08
50
40


CD48
NCOA4
0.38
38
11
31
9
77.6%
77.5%
0.0125
7.4E−10
49
40


BCL2
POV1
0.38
40
10
31
9
80.0%
77.5%
0.0088
2.6E−11
50
40


HSPA1A
SERPINE1
0.37
40
10
32
8
80.0%
80.0%
0.0001
0.0001
50
40


BCAM
POV1
0.37
39
11
31
9
78.0%
77.5%
0.0096
7.7E−07
50
40


BCAM
STAT3
0.37
42
8
31
9
84.0%
77.5%
1.1E−05
8.3E−07
50
40


G6PD
SERPINE1
0.37
39
11
32
8
78.0%
80.0%
0.0001
0.0024
50
40


POV1
TPD52
0.37
40
9
31
9
81.6%
77.5%
2.6E−09
0.0084
49
40


HSPA1A
SERPING1
0.37
41
9
33
7
82.0%
82.5%
0.0007
0.0001
50
40


CDH1
NCOA4
0.37
41
8
32
8
83.7%
80.0%
0.0166
7.0E−05
49
40


FGF2
POV1
0.37
42
8
33
7
84.0%
82.5%
0.0121
2.0E−08
50
40


CD59
E2F5
0.37
41
9
31
9
82.0%
77.5%
1.9E−09
0.0004
50
40


CD44
TPD52
0.37
40
9
32
8
81.6%
80.0%
3.0E−09
9.8E−08
49
40


CTNNA1
PLAU
0.37
39
9
33
7
81.3%
82.5%
1.9E−05
0.0319
48
40


EPAS1
SERPING1
0.37
41
9
33
7
82.0%
82.5%
0.0009
1.2E−05
50
40


CDH1
KAI1
0.37
40
10
33
7
80.0%
82.5%
1.3E−10
8.3E−05
50
40


ACPP
POV1
0.37
41
8
33
7
83.7%
82.5%
0.0126
2.0E−07
49
40


CDH1
SERPINE1
0.37
41
9
33
7
82.0%
82.5%
0.0002
8.5E−05
50
40


CDH1
IGF1R
0.37
40
10
32
8
80.0%
80.0%
2.2E−08
8.8E−05
50
40


EPAS1
MEIS1
0.37
41
9
32
8
82.0%
80.0%
0.0202
1.3E−05
50
40


ACPP
BCAM
0.37
39
10
31
9
79.6%
77.5%
1.3E−06
2.1E−07
49
40


CD48
HSPA1A
0.37
39
11
32
8
78.0%
80.0%
0.0002
1.1E−09
50
40


CD59
NCOA4
0.37
40
9
32
8
81.6%
80.0%
0.0243
0.0005
49
40


MEIS1
STAT3
0.37
40
10
34
6
80.0%
85.0%
1.9E−05
0.0236
50
40


G6PD
IL8
0.36
41
9
33
7
82.0%
82.5%
2.3E−10
0.0044
50
40


E2F5
G6PD
0.36
40
10
32
8
80.0%
80.0%
0.0047
3.1E−09
50
40


MYC
POV1
0.36
38
12
32
8
76.0%
80.0%
0.0230
2.3E−11
50
40


LGALS8
MEIS1
0.36
41
8
33
7
83.7%
82.5%
0.0393
2.2E−08
49
40


CD59
G6PD
0.36
45
5
33
7
90.0%
82.5%
0.0052
0.0008
50
40


CD44
MEIS1
0.36
42
8
33
7
84.0%
82.5%
0.0338
1.8E−07
50
40


POV1
TGFB1
0.36
41
9
32
8
82.0%
80.0%
1.1E−06
0.0256
50
40


BCAM
TGFB1
0.36
41
9
32
8
82.0%
80.0%
1.1E−06
1.9E−06
50
40


BCAM
CD44
0.36
41
9
31
9
82.0%
77.5%
1.8E−07
2.0E−06
50
40


MEIS1
TPD52
0.36
39
10
32
8
79.6%
80.0%
6.0E−09
0.0272
49
40


IGF1R
POV1
0.36
40
10
33
7
80.0%
82.5%
0.0281
3.8E−08
50
40


FGF2
NCOA4
0.36
39
10
32
8
79.6%
80.0%
0.0411
3.9E−08
49
40


MEIS1
SMARCD3
0.36
41
9
32
8
82.0%
80.0%
2.8E−08
0.0411
50
40


NCOA4
SVIL
0.36
40
8
33
7
83.3%
82.5%
2.2E−06
0.0371
48
40


IL8
NCOA4
0.36
38
11
32
8
77.6%
80.0%
0.0462
5.8E−10
49
40


HSPA1A
TPD52
0.36
40
9
32
8
81.6%
80.0%
7.1E−09
0.0006
49
40


MEIS1
MUC1
0.36
40
10
32
8
80.0%
80.0%
4.4E−09
0.0456
50
40


CD59
TPD52
0.36
38
11
32
8
77.6%
80.0%
7.6E−09
0.0011
49
40


CD48
SERPING1
0.36
39
11
32
8
78.0%
80.0%
0.0021
2.1E−09
50
40


MEIS1
SVIL
0.36
42
7
34
6
85.7%
85.0%
3.6E−06
0.0318
49
40


CAV2
CD59
0.35
44
6
33
7
88.0%
82.5%
0.0013
4.4E−08
50
40


ACPP
CDH1
0.35
39
10
32
8
79.6%
80.0%
0.0003
5.7E−07
49
40


HMGA1
POV1
0.35
37
12
30
9
75.5%
76.9%
0.0334
3.0E−10
49
39


HSPA1A
SORBS1
0.35
39
11
32
8
78.0%
80.0%
1.5E−06
0.0007
50
40


EPAS1
SERPINE1
0.35
38
12
30
10
76.0%
75.0%
0.0007
5.2E−05
50
40


HSPA1A
IL8
0.35
40
10
30
10
80.0%
75.0%
7.5E−10
0.0008
50
40


CD44
E2F5
0.34
39
11
31
9
78.0%
77.5%
1.0E−08
4.9E−07
50
40


FGF2
G6PD
0.34
42
8
33
7
84.0%
82.5%
0.0181
1.2E−07
50
40


CDH1
PYCARD
0.34
40
10
32
8
80.0%
80.0%
1.9E−09
0.0004
50
40


G6PD
SORBS1
0.34
41
9
33
7
82.0%
82.5%
1.9E−06
0.0183
50
40


G6PD
SOX4
0.34
39
11
31
9
78.0%
77.5%
1.6E−10
0.0209
50
40


CAV2
HSPA1A
0.34
41
9
32
8
82.0%
80.0%
0.0011
9.8E−08
50
40


G6PD
ST14
0.34
40
10
31
9
80.0%
77.5%
2.2E−10
0.0224
50
40


BCL2
G6PD
0.34
38
12
31
9
76.0%
77.5%
0.0227
2.4E−10
50
40


CD59
HSPA1A
0.34
41
9
33
7
82.0%
82.5%
0.0012
0.0033
50
40


CTNNA1

0.34
40
10
32
8
80.0%
80.0%
9.1E−11

50
40


CDH1
SMARCD3
0.34
39
11
31
9
78.0%
77.5%
9.1E−08
0.0006
50
40


CD59
EPAS1
0.34
39
11
31
9
78.0%
77.5%
8.8E−05
0.0036
50
40


PLAU
SERPINE1
0.34
37
11
30
10
77.1%
75.0%
0.0007
0.0001
48
40


SERPING1
TPD52
0.34
40
9
31
9
81.6%
77.5%
2.4E−08
0.0124
49
40


FGF2
SERPING1
0.34
39
11
31
9
78.0%
77.5%
0.0078
1.9E−07
50
40


PLAU
SERPING1
0.33
41
7
34
6
85.4%
85.0%
0.0043
0.0002
48
40


BCAM
PLAU
0.33
38
10
30
10
79.2%
75.0%
0.0002
2.5E−05
48
40


SERPING1
STAT3
0.33
38
12
31
9
76.0%
77.5%
0.0001
0.0094
50
40


CAV2
G6PD
0.33
41
9
32
8
82.0%
80.0%
0.0377
1.6E−07
50
40


STAT3
TPD52
0.33
39
10
31
9
79.6%
77.5%
3.3E−08
0.0002
49
40


G6PD
PYCARD
0.33
39
11
31
9
78.0%
77.5%
4.1E−09
0.0445
50
40


HSPA1A
MYC
0.33
39
11
32
8
78.0%
80.0%
1.6E−10
0.0021
50
40


CAV2
CDH1
0.33
39
11
31
9
78.0%
77.5%
0.0010
1.9E−07
50
40


E2F5
HSPA1A
0.33
40
10
33
7
80.0%
82.5%
0.0021
2.5E−08
50
40


SERPING1
SVIL
0.33
40
9
33
7
81.6%
82.5%
1.9E−05
0.0093
49
40


NCOA4

0.32
37
12
31
9
75.5%
77.5%
2.8E−10

49
40


MEIS1

0.32
39
11
31
9
78.0%
77.5%
2.5E−10

50
40


EPAS1
SORBS1
0.32
42
8
31
9
84.0%
77.5%
6.8E−06
0.0002
50
40


FGF2
HSPA1A
0.32
39
11
31
9
78.0%
77.5%
0.0034
4.2E−07
50
40


SVIL
TPD52
0.32
37
11
31
9
77.1%
77.5%
6.0E−08
6.3E−05
48
40


CDH1
PTGS2
0.32
39
11
31
9
78.0%
77.5%
2.2E−08
0.0017
50
40


BCAM
SERPINE1
0.32
41
9
33
7
82.0%
82.5%
0.0036
2.1E−05
50
40


CD59
FGF2
0.32
39
11
31
9
78.0%
77.5%
4.8E−07
0.0115
50
40


BCL2
CD59
0.32
38
12
31
9
76.0%
77.5%
0.0124
8.5E−10
50
40


BIRC5
SERPINE1
0.32
38
11
31
8
77.6%
79.5%
0.0060
6.8E−08
49
39


EPAS1
TPD52
0.32
37
12
31
9
75.5%
77.5%
7.1E−08
0.0008
49
40


POV1

0.32
39
11
31
9
78.0%
77.5%
3.2E−10

50
40


CD59
STAT3
0.32
41
9
33
7
82.0%
82.5%
0.0004
0.0132
50
40


CDH1
FGF2
0.32
38
12
30
10
76.0%
75.0%
5.8E−07
0.0023
50
40


SERPINE1
SORBS1
0.32
40
10
32
8
80.0%
80.0%
9.4E−06
0.0047
50
40


IL8
STAT3
0.32
39
11
31
9
78.0%
77.5%
0.0004
4.1E−09
50
40


SERPINE1
STAT3
0.32
40
10
32
8
80.0%
80.0%
0.0004
0.0049
50
40


CAV2
SERPING1
0.32
38
12
31
9
76.0%
77.5%
0.0298
4.5E−07
50
40


CD44
SERPINE1
0.32
38
12
31
9
76.0%
77.5%
0.0055
2.9E−06
50
40


CD59
TGFB1
0.32
42
8
34
6
84.0%
85.0%
2.0E−05
0.0176
50
40


E2F5
SERPING1
0.32
39
11
31
9
78.0%
77.5%
0.0335
6.3E−08
50
40


SERPINE1
SVIL
0.32
38
11
31
9
77.6%
77.5%
4.8E−05
0.0057
49
40


CD44
SERPING1
0.31
41
9
32
8
82.0%
80.0%
0.0361
3.4E−06
50
40


CDH1
MUC1
0.31
41
9
32
8
82.0%
80.0%
6.8E−08
0.0033
50
40


HSPA1A
KRT5
0.31
39
11
32
8
78.0%
80.0%
7.5E−10
0.0070
50
40


SORBS1
STAT3
0.31
39
11
30
10
78.0%
75.0%
0.0006
1.4E−05
50
40


AR
CD59
0.31
38
12
31
9
76.0%
77.5%
0.0246
2.0E−08
50
40


SERPINE1
SMARCD3
0.31
38
12
30
10
76.0%
75.0%
5.9E−07
0.0085
50
40


LGALS8
SERPINE1
0.31
37
12
31
9
75.5%
77.5%
0.0142
6.3E−07
49
40


COVA1
TPD52
0.30
40
9
31
9
81.6%
77.5%
1.9E−07
2.7E−09
49
40


CD59
SORBS1
0.30
38
12
30
10
76.0%
75.0%
2.6E−05
0.0435
50
40


KRT5
STAT3
0.30
41
9
33
7
82.0%
82.5%
0.0012
1.5E−09
50
40


CDH1
HMGA1
0.30
38
11
30
9
77.6%
76.9%
6.1E−09
0.0040
49
39


TP53
TPD52
0.30
38
10
31
9
79.2%
77.5%
2.4E−07
3.2E−09
48
40


G6PD

0.30
39
11
32
8
78.0%
80.0%
1.2E−09

50
40


BCAM
SMARCD3
0.30
39
11
30
10
78.0%
75.0%
1.3E−06
0.0001
50
40


AR
CDH1
0.30
42
8
33
7
84.0%
82.5%
0.0095
4.5E−08
50
40


ADAMTS1
CDH1
0.30
41
9
33
7
82.0%
82.5%
0.0097
5.0E−09
50
40


ACPP
CD48
0.30
38
11
31
9
77.6%
77.5%
9.1E−08
1.9E−05
49
40


CDH1
SOX4
0.30
38
12
30
10
76.0%
75.0%
2.8E−09
0.0106
50
40


ACPP
SERPINE1
0.30
37
12
30
10
75.5%
75.0%
0.0169
2.1E−05
49
40


CD48
TGFB1
0.29
39
11
30
10
78.0%
75.0%
8.1E−05
1.0E−07
50
40


HSPA1A
SOX4
0.29
38
12
30
10
76.0%
75.0%
3.7E−09
0.0314
50
40


MUC1
TPD52
0.29
39
10
31
9
79.6%
77.5%
4.3E−07
3.5E−07
49
40


SERPINE1
TGFB1
0.29
39
11
31
9
78.0%
77.5%
9.6E−05
0.0312
50
40


BCAM
PTGS2
0.29
41
9
31
9
82.0%
77.5%
1.6E−07
0.0002
50
40


IL8
SVIL
0.29
39
10
31
9
79.6%
77.5%
0.0002
2.4E−08
49
40


SORBS1
SVIL
0.29
39
10
32
8
79.6%
80.0%
0.0002
7.3E−05
49
40


EPAS1
HSPA1A
0.29
39
11
31
9
78.0%
77.5%
0.0355
0.0022
50
40


BCAM
IGF1R
0.29
40
10
32
8
80.0%
80.0%
3.2E−06
0.0002
50
40


AR
BCAM
0.29
40
10
32
8
80.0%
80.0%
0.0002
8.1E−08
50
40


PTGS2
SERPINE1
0.29
38
12
30
10
76.0%
75.0%
0.0397
2.0E−07
50
40


CDH1
TP53
0.29
37
12
31
9
75.5%
77.5%
5.3E−09
0.0324
49
40


CDH1
COVA1
0.29
39
11
31
9
78.0%
77.5%
6.9E−09
0.0199
50
40


PLAU
SORBS1
0.29
36
12
31
9
75.0%
77.5%
8.5E−05
0.0041
48
40


ACPP
TPD52
0.29
38
10
31
9
79.2%
77.5%
6.5E−07
4.3E−05
48
40


FGF2
STAT3
0.28
40
10
32
8
80.0%
80.0%
0.0039
5.2E−06
50
40


CDH1
SORBS1
0.28
38
12
30
10
76.0%
75.0%
8.7E−05
0.0240
50
40


AOC3
CDH1
0.28
38
12
31
9
76.0%
77.5%
0.0260
9.4E−09
50
40


E2F5
SVIL
0.28
37
12
31
9
75.5%
77.5%
0.0004
5.5E−07
49
40


MYC
STAT3
0.28
39
11
31
9
78.0%
77.5%
0.0044
3.4E−09
50
40


CAV2
STAT3
0.28
39
11
31
9
78.0%
77.5%
0.0062
5.6E−06
50
40


E2F5
EPAS1
0.28
41
9
31
9
82.0%
77.5%
0.0050
7.0E−07
50
40


CDH1
ST14
0.28
38
12
30
10
76.0%
75.0%
1.2E−08
0.0397
50
40


BCAM
COVA1
0.28
40
10
30
10
80.0%
75.0%
1.5E−08
0.0005
50
40


E2F5
MUC1
0.28
41
9
33
7
82.0%
82.5%
7.8E−07
8.4E−07
50
40


BCAM
KAI1
0.27
39
11
31
9
78.0%
77.5%
5.0E−08
0.0005
50
40


CD48
EPAS1
0.27
40
10
30
10
80.0%
75.0%
0.0065
3.8E−07
50
40


SORBS1
TGFB1
0.27
39
11
31
9
78.0%
77.5%
0.0003
0.0002
50
40


EPAS1
PLAU
0.27
37
11
31
9
77.1%
77.5%
0.0103
0.0054
48
40


EPAS1
FGF2
0.27
38
12
30
10
76.0%
75.0%
1.2E−05
0.0074
50
40


KAI1
STAT3
0.27
39
11
30
10
78.0%
75.0%
0.0107
6.6E−08
50
40


CD44
TNF
0.27
36
11
31
9
76.6%
77.5%
1.5E−08
6.5E−05
47
40


CAV2
EPAS1
0.27
40
10
31
9
80.0%
77.5%
0.0102
1.1E−05
50
40


BCL2
TGFB1
0.27
39
11
30
10
78.0%
75.0%
0.0005
2.7E−08
50
40


EPAS1
STAT3
0.26
41
9
31
9
82.0%
77.5%
0.0164
0.0131
50
40


BCAM
SOX4
0.26
41
9
31
9
82.0%
77.5%
2.2E−08
0.0010
50
40


MUC1
PLAU
0.26
39
9
30
10
81.3%
75.0%
0.0211
2.2E−06
48
40


CAV2
PLAU
0.26
38
10
31
9
79.2%
77.5%
0.0228
1.2E−05
48
40


PLAU
STAT3
0.26
36
12
30
10
75.0%
75.0%
0.0117
0.0240
48
40


FGF2
PLAU
0.26
36
12
31
9
75.0%
77.5%
0.0252
2.6E−05
48
40


ACPP
SORBS1
0.26
40
9
32
8
81.6%
80.0%
0.0005
0.0002
49
40


BIRC5
EPAS1
0.26
40
9
31
8
81.6%
79.5%
0.0226
2.9E−06
49
39


IGF1R
SORBS1
0.26
39
11
31
9
78.0%
77.5%
0.0005
2.7E−05
50
40


BIRC5
STAT3
0.26
37
12
30
9
75.5%
76.9%
0.0213
3.9E−06
49
39


SERPINE1

0.25
39
11
30
10
78.0%
75.0%
2.1E−08

50
40


FGF2
SVIL
0.25
38
11
30
10
77.6%
75.0%
0.0027
3.4E−05
49
40


EPAS1
TGFB1
0.25
39
11
31
9
78.0%
77.5%
0.0012
0.0279
50
40


AR
PLAU
0.25
38
10
31
9
79.2%
77.5%
0.0464
8.5E−07
48
40


CAV2
SORBS1
0.25
40
10
31
9
80.0%
77.5%
0.0009
3.7E−05
50
40


BCAM
TP53
0.25
37
12
30
10
75.5%
75.0%
6.2E−08
0.0054
49
40


ACPP
IL8
0.25
39
10
31
9
79.6%
77.5%
3.7E−07
0.0005
49
40


CAV2
SVIL
0.25
40
9
31
9
81.6%
77.5%
0.0044
3.7E−05
49
40


MYC
TGFB1
0.25
38
12
30
10
76.0%
75.0%
0.0021
3.8E−08
50
40


CAV2
CD44
0.25
39
11
31
9
78.0%
77.5%
0.0003
4.7E−05
50
40


CDH1

0.24
39
11
31
9
78.0%
77.5%
4.1E−08

50
40


PTGS2
SORBS1
0.24
38
12
30
10
76.0%
75.0%
0.0014
3.7E−06
50
40


CD44
FGF2
0.24
39
11
31
9
78.0%
77.5%
0.0001
0.0005
50
40


KRT5
SVIL
0.24
38
11
30
10
77.6%
75.0%
0.0087
1.1E−07
49
40


MYC
SVIL
0.24
39
10
32
8
79.6%
80.0%
0.0094
8.1E−08
49
40


FGF2
TGFB1
0.23
39
11
30
10
78.0%
75.0%
0.0042
0.0001
50
40


SOX4
SVIL
0.23
37
12
30
10
75.5%
75.0%
0.0107
2.1E−07
49
40


CD44
SORBS1
0.23
44
6
33
7
88.0%
82.5%
0.0032
0.0008
50
40


AOC3
BCAM
0.22
38
12
30
10
76.0%
75.0%
0.0148
4.0E−07
50
40


CD48
MUC1
0.22
38
12
30
10
76.0%
75.0%
2.1E−05
9.3E−06
50
40


CAV2
SMARCD3
0.22
38
12
30
10
76.0%
75.0%
0.0002
0.0002
50
40


SMARCD3
SORBS1
0.22
38
12
31
9
76.0%
77.5%
0.0058
0.0002
50
40


PYCARD
SORBS1
0.22
40
10
32
8
80.0%
80.0%
0.0061
4.7E−06
50
40


LGALS8
SORBS1
0.22
37
12
30
10
75.5%
75.0%
0.0073
0.0002
49
40


CAV2
IGF1R
0.22
38
12
31
9
76.0%
77.5%
0.0003
0.0003
50
40


KAI1
SORBS1
0.22
38
12
32
8
76.0%
80.0%
0.0069
1.7E−06
50
40


ABCC1
BCAM
0.22
41
9
30
10
82.0%
75.0%
0.0239
3.3E−07
50
40


TGFB1
TNF
0.22
36
11
30
10
76.6%
75.0%
3.4E−07
0.0075
47
40


ACPP
CAV2
0.22
38
11
30
10
77.6%
75.0%
0.0003
0.0039
49
40


CD44
IL8
0.21
38
12
30
10
76.0%
75.0%
4.3E−06
0.0033
50
40


ACPP
FGF2
0.21
38
11
31
9
77.6%
77.5%
0.0011
0.0065
49
40


CAV2
LGALS8
0.21
37
12
31
9
75.5%
77.5%
0.0005
0.0008
49
40


AR
SORBS1
0.20
38
12
30
10
76.0%
75.0%
0.0189
1.8E−05
50
40


NRP1
TGFB1
0.20
38
12
30
10
76.0%
75.0%
0.0472
6.5E−07
50
40


BCL2
MUC1
0.20
39
11
30
10
78.0%
75.0%
1.0E−04
1.8E−06
50
40


CD44
SOX4
0.18
38
12
31
9
76.0%
77.5%
3.7E−06
0.0200
50
40


E2F5
PYCARD
0.17
38
12
30
10
76.0%
75.0%
0.0001
0.0006
50
40


CAV2
PTGS2
0.17
39
11
30
10
78.0%
75.0%
0.0004
0.0059
50
40


BIRC5
CD44
0.17
37
12
30
9
75.5%
76.9%
0.0379
0.0008
49
39




















TABLE 1H






PC Cancer
Normals
Sum



Group Size
44.4%
55.6%
100%


N =
40
50
90


Gene
Mean
Mean
Z-statistic
p-val



















EGR1
18.7954
20.0631
−7.85
4.0E−15


CTNNA1
16.1036
17.1161
−6.48
9.1E−11


MEIS1
21.2168
22.2689
−6.33
2.5E−10


NCOA4
10.7362
11.8104
−6.31
2.8E−10


POV1
17.6818
18.3393
−6.29
3.2E−10


G6PD
15.0638
15.8914
−6.07
1.2E−09


SERPING1
17.4154
18.8124
−5.87
4.3E−09


CD59
17.0286
17.7808
−5.78
7.6E−09


HSPA1A
13.5259
14.4929
−5.61
2.1E−08


SERPINE1
20.618
21.7098
−5.61
2.1E−08


CDH1
19.4863
20.6958
−5.49
4.1E−08


STAT3
13.1854
13.936
−5.18
2.2E−07


PLAU
22.5917
23.7344
−5.15
2.6E−07


EPAS1
19.7631
20.867
−5.15
2.7E−07


SVIL
16.0658
16.8326
−4.70
2.7E−06


BCAM
19.0857
20.8537
−4.67
2.9E−06


TGFB1
12.2516
12.7663
−4.57
4.9E−06


SORBS1
22.0232
22.8558
−4.45
8.6E−06


ACPP
16.9676
17.6043
−4.25
2.1E−05


CD44
13.37
13.9323
−4.16
3.2E−05


FGF2
23.4294
24.2457
−3.80
0.0001


IGF1R
14.9526
15.5304
−3.76
0.0002


CAV2
22.864
23.7986
−3.71
0.0002


SMARCD3
16.4454
16.9132
−3.66
0.0002


LGALS8
16.6097
17.0572
−3.60
0.0003


TPD52
18.5019
17.9662
3.19
0.0014


E2F5
21.1998
20.4992
3.12
0.0018


MUC1
22.0065
22.5769
−3.10
0.0019


BIRC5
22.2666
22.9421
−3.10
0.0020


PTGS2
16.3613
16.8272
−2.94
0.0033


CD48
14.88
14.4414
2.85
0.0044


AR
23.4615
24.1611
−2.63
0.0087


PYCARD
14.2363
14.5323
−2.52
0.0117


VEGF
21.693
22.2252
−2.48
0.0130


IL8
21.6926
21.0291
2.19
0.0286


KAI1
14.4415
14.6936
−2.05
0.0406


HMGA1
14.8807
15.0523
−1.63
0.1040


ADAMTS1
21.6246
21.947
−1.62
0.1062


AOC3
18.8199
19.0996
−1.44
0.1486


BCL2
15.4404
15.2036
1.41
0.1594


COVA1
18.4302
18.6386
−1.40
0.1621


ST14
17.1293
17.3901
−1.34
0.1787


SOX4
18.6126
18.7871
−1.14
0.2550


TP53
15.5373
15.7078
−1.05
0.2933


ABCC1
15.6185
15.7934
−0.95
0.3423


KRT5
24.6833
24.5142
0.91
0.3624


GSTT1
20.9067
21.2331
−0.72
0.4695


COL6A2
18.2573
18.1291
0.60
0.5500


TNF
17.8047
17.8569
−0.31
0.7579


NRP1
22.3984
22.3386
0.22
0.8257


MYC
17.283
17.2512
0.22
0.8284






















TABLE 1I











Predicted








probability


Patient ID
Group
EGR1
MYC
logit
odds
of prostate cancer





















32
Cancer
18.00
18.60
8.70
5993.92
0.9998


69
Cancer
17.74
17.41
7.57
1933.30
0.9995


85
Cancer
17.96
17.56
6.90
992.66
0.9990


60
Cancer
17.75
17.07
6.84
932.98
0.9989


99
Cancer
18.44
18.56
6.74
843.84
0.9988


72
Cancer
18.32
17.65
5.49
243.21
0.9959


44
Cancer
18.57
18.01
5.11
165.20
0.9940


62
Cancer
18.39
17.55
4.98
145.68
0.9932


84
Cancer
18.47
17.63
4.78
119.55
0.9917


46
Cancer
18.01
16.51
4.64
103.66
0.9904


17
Cancer
18.12
16.68
4.47
87.61
0.9887


129
Cancer
18.33
17.12
4.44
85.20
0.9884


125
Cancer
18.39
17.16
4.27
71.17
0.9861


10
Cancer
18.89
18.08
3.83
45.85
0.9787


15
Cancer
18.53
17.18
3.65
38.35
0.9746


63
Cancer
18.89
17.80
3.27
26.43
0.9635


26
Cancer
19.02
18.02
3.18
24.10
0.9602


30
Cancer
18.41
16.61
3.08
21.67
0.9559


56
Cancer
18.89
17.58
2.87
17.70
0.9465


118
Cancer
18.67
16.97
2.63
13.93
0.9330


7
Cancer
19.08
17.87
2.63
13.87
0.9327


29
Cancer
18.64
16.84
2.53
12.58
0.9264


126
Cancer
18.52
16.39
2.22
9.18
0.9017


124
Cancer
18.93
17.33
2.21
9.13
0.9013


9
Cancer
19.12
17.64
1.97
7.20
0.8781


59
Cancer
19.06
17.25
1.48
4.41
0.8150


78
Cancer
18.75
16.49
1.37
3.95
0.7980


83
Normal
19.47
18.08
1.32
3.73
0.7885


154
Normal
19.27
17.49
1.05
2.85
0.7401


70
Cancer
18.93
16.70
1.03
2.81
0.7375


74
Normal
19.40
17.77
1.00
2.72
0.7313


243
Normal
18.74
16.27
1.00
2.72
0.7308


130
Cancer
18.37
15.39
0.91
2.49
0.7131


86
Normal
18.89
16.47
0.74
2.09
0.6763


68
Cancer
19.37
17.48
0.59
1.81
0.6438


47
Cancer
18.97
16.56
0.58
1.78
0.6408


239
Normal
18.85
16.23
0.45
1.56
0.6100


66
Cancer
19.21
16.93
0.24
1.27
0.5588


100
Normal
19.24
16.93
0.11
1.11
0.5263


113
Cancer
20.02
18.65
0.04
1.04
0.5106


1
Cancer
19.61
17.58
−0.26
0.77
0.4360


150
Normal
19.44
17.13
−0.38
0.68
0.4055


105
Cancer
18.82
15.72
−0.43
0.65
0.3949


119
Cancer
19.34
16.83
−0.53
0.59
0.3708


56
Normal
19.55
17.26
−0.61
0.54
0.3518


128
Cancer
19.36
16.77
−0.73
0.48
0.3261


156
Normal
19.62
17.34
−0.77
0.46
0.3169


6
Cancer
20.14
18.50
−0.80
0.45
0.3097


236
Normal
19.40
16.80
−0.86
0.42
0.2977


61
Normal
19.63
17.05
−1.37
0.25
0.2018


167
Normal
19.39
16.51
−1.38
0.25
0.2013


220
Normal
19.66
17.07
−1.46
0.23
0.1880


246
Normal
20.35
18.61
−1.51
0.22
0.1816


152
Normal
19.93
17.63
−1.55
0.21
0.1751


65
Cancer
19.86
17.44
−1.61
0.20
0.1665


161
Normal
19.57
16.68
−1.83
0.16
0.1387


45
Normal
19.90
17.38
−1.88
0.15
0.1323


245
Normal
20.31
18.26
−1.98
0.14
0.1214


158
Normal
19.70
16.85
−2.05
0.13
0.1136


249
Normal
20.31
18.13
−2.23
0.11
0.0975


74
Cancer
19.93
17.21
−2.38
0.09
0.0843


257
Normal
19.71
16.52
−2.74
0.06
0.0607


265
Normal
19.99
17.11
−2.81
0.06
0.0567


180
Normal
20.59
18.46
−2.83
0.06
0.0558


145
Normal
20.22
17.57
−2.93
0.05
0.0506


155
Normal
20.00
17.05
−2.97
0.05
0.0488


267
Normal
20.46
17.99
−3.16
0.04
0.0408


78
Normal
19.75
16.28
−3.35
0.04
0.0340


138
Normal
20.05
16.93
−3.42
0.03
0.0318


62
Normal
19.91
16.61
−3.44
0.03
0.0311


51
Normal
20.40
17.57
−3.72
0.02
0.0237


157
Normal
20.02
16.62
−3.89
0.02
0.0200


57
Normal
19.76
16.03
−3.91
0.02
0.0196


136
Normal
20.15
16.73
−4.23
0.01
0.0143


269
Normal
20.15
16.67
−4.37
0.01
0.0125


252
Normal
20.84
18.20
−4.39
0.01
0.0122


176
Normal
20.75
17.99
−4.44
0.01
0.0117


109
Normal
21.22
19.04
−4.45
0.01
0.0116


147
Normal
20.46
17.30
−4.50
0.01
0.0110


191
Normal
20.29
16.89
−4.55
0.01
0.0104


253
Normal
20.92
18.21
−4.74
0.01
0.0087


102
Normal
20.63
17.55
−4.76
0.01
0.0085


110
Normal
20.38
16.96
−4.81
0.01
0.0081


184
Normal
20.44
16.87
−5.25
0.01
0.0052


142
Normal
20.58
16.84
−5.91
0.00
0.0027


133
Normal
21.02
17.67
−6.25
0.00
0.0019


248
Normal
21.02
17.58
−6.40
0.00
0.0017


151
Normal
20.80
17.08
−6.41
0.00
0.0016


119
Normal
21.09
17.55
−6.77
0.00
0.0011


85
Normal
20.92
16.73
−7.59
0.00
0.0005





















TABLE 2a












total used






(excludes



Normal
Prostate

missing)






















N =
50
14

#



2-gene models and
Entropy
#normal
#normal
#pc
#pc
Correct
Correct

nor-
#


















1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
mals
disease






















CASP1
MIF
0.93
49
1
14
0
98.0%
100.0%
1.6E−14
2.4E−08
50
14


CD86
MIF
0.70
48
2
13
1
96.0%
92.9%
3.6E−11
1.3E−07
50
14


CASP1
EGR1
0.67
46
4
13
1
92.0%
92.9%
0.0119
0.0002
50
14


CASP1
HMGB1
0.66
46
4
12
2
92.0%
85.7%
3.2E−11
0.0003
50
14


MYC
NFKB1
0.66
50
0
13
1
100.0%
92.9%
1.7E−05
2.8E−11
50
14


EGR1
PLA2G7
0.66
46
4
13
1
92.0%
92.9%
1.2E−07
0.0165
50
14


EGR1
MMP12
0.65
46
4
13
1
92.0%
92.9%
4.2E−11
0.0211
50
14


EGR1
MYC
0.64
46
4
13
1
92.0%
92.9%
5.0E−11
0.0310
50
14


EGR1
ICAM1
0.64
46
4
13
1
92.0%
92.9%
3.4E−05
0.0320
50
14


EGR1
SERPINA1
0.64
46
4
13
1
92.0%
92.9%
0.0001
0.0353
50
14


ALOX5
EGR1
0.64
46
4
13
1
92.0%
92.9%
0.0379
1.3E−05
50
14


EGR1
IFI16
0.64
47
3
13
1
94.0%
92.9%
3.9E−06
0.0379
50
14


EGR1
ELA2
0.64
46
4
13
1
92.0%
92.9%
2.5E−06
0.0404
50
14


CASP1
SERPINE1
0.62
42
8
12
1
84.0%
92.3%
2.4E−08
0.0314
50
13


SERPINA1
TNFRSF1A
0.61
44
5
13
1
89.8%
92.9%
1.2E−08
0.0006
49
14


CASP1
CCR5
0.61
44
6
12
2
88.0%
85.7%
2.1E−10
0.0019
50
14


HLADRA
MIF
0.60
45
5
12
2
90.0%
85.7%
1.1E−09
3.9E−08
50
14


CASP1
IL23A
0.58
41
9
12
2
82.0%
85.7%
5.0E−10
0.0063
50
14


EGR1

0.57
46
4
13
1
92.0%
92.9%
5.5E−10

50
14


NFKB1
TNFSF5
0.57
45
5
12
2
90.0%
85.7%
5.8E−10
0.0004
50
14


CASP1
CD8A
0.57
44
6
12
2
88.0%
85.7%
2.3E−09
0.0086
50
14


DPP4
NFKB1
0.56
47
3
12
2
94.0%
85.7%
0.0005
3.4E−09
50
14


CASP1
TNFSF5
0.56
42
8
12
2
84.0%
85.7%
8.6E−10
0.0112
50
14


CASP1
CASP3
0.56
39
11
12
2
78.0%
85.7%
2.6E−08
0.0132
50
14


CASP1
IL18
0.54
47
3
12
2
94.0%
85.7%
7.5E−08
0.0239
50
14


PTPRC
SERPINA1
0.54
43
7
11
2
86.0%
84.6%
0.0304
2.3E−06
50
13


IFI16
MIF
0.54
45
5
13
1
90.0%
92.9%
1.0E−08
0.0001
50
14


CASP1
IL8
0.54
43
7
13
1
86.0%
92.9%
2.5E−09
0.0263
50
14


MIF
NFKB1
0.53
46
4
12
2
92.0%
85.7%
0.0014
1.1E−08
50
14


CASP1
HLADRA
0.53
41
9
12
2
82.0%
85.7%
4.3E−07
0.0296
50
14


MIF
SERPINA1
0.53
42
8
12
2
84.0%
85.7%
0.0062
1.2E−08
50
14


CASP1
IFNG
0.53
39
11
12
2
78.0%
85.7%
2.4E−09
0.0335
50
14


CASP1
CTLA4
0.53
43
7
12
2
86.0%
85.7%
5.0E−09
0.0404
50
14


CASP1
TNFSF6
0.52
45
5
12
2
90.0%
85.7%
5.9E−09
0.0476
50
14


SERPINA1
SSI3
0.52
45
5
12
2
90.0%
85.7%
3.5E−08
0.0109
50
14


CXCL1
SERPINA1
0.51
46
4
13
1
92.0%
92.9%
0.0140
4.2E−08
50
14


ELA2
PLA2G7
0.51
43
7
12
2
86.0%
85.7%
2.1E−05
0.0002
50
14


NFKB1
TOSO
0.51
44
6
12
2
88.0%
85.7%
1.4E−08
0.0041
50
14


MIF
PLA2G7
0.50
45
5
12
2
90.0%
85.7%
2.7E−05
3.3E−08
50
14


SERPINA1
TXNRD1
0.50
42
8
12
2
84.0%
85.7%
7.3E−06
0.0244
50
14


IRF1
SERPINA1
0.50
46
4
13
1
92.0%
92.9%
0.0257
4.4E−06
50
14


SERPINA1
TNFSF5
0.49
44
6
12
2
88.0%
85.7%
8.2E−09
0.0272
50
14


ICAM1
IRF1
0.49
46
4
12
2
92.0%
85.7%
4.7E−06
0.0069
50
14


MYC
SERPINA1
0.49
46
4
12
2
92.0%
85.7%
0.0331
9.7E−09
50
14


ALOX5
MIF
0.49
38
12
12
2
76.0%
85.7%
5.7E−08
0.0027
50
14


CD86
ELA2
0.48
41
9
12
2
82.0%
85.7%
0.0005
0.0003
50
14


APAF1
MIF
0.48
40
10
11
3
80.0%
78.6%
6.7E−08
0.0003
50
14


IL15
MIF
0.48
43
7
12
2
86.0%
85.7%
7.2E−08
6.1E−06
50
14


ADAM17
SERPINA1
0.48
42
8
11
3
84.0%
78.6%
0.0471
1.4E−06
50
14


IL18
MIF
0.48
43
7
12
2
86.0%
85.7%
8.1E−08
6.5E−07
50
14


IL23A
NFKB1
0.47
42
8
12
2
84.0%
85.7%
0.0132
1.6E−08
50
14


ALOX5
ELA2
0.47
42
8
12
2
84.0%
85.7%
0.0008
0.0045
50
14


CD8A
NFKB1
0.47
47
3
12
2
94.0%
85.7%
0.0141
5.9E−08
50
14


CASP1

0.46
41
9
12
2
82.0%
85.7%
2.3E−08

50
14


HMOX1
MIF
0.46
42
8
12
2
84.0%
85.7%
1.4E−07
0.0002
50
14


ELA2
NFKB1
0.46
44
6
11
3
88.0%
78.6%
0.0217
0.0012
50
14


CXCL1
ICAM1
0.46
42
8
12
2
84.0%
85.7%
0.0268
2.7E−07
50
14


ELA2
MHC2TA
0.46
39
10
12
2
79.6%
85.7%
1.1E−05
0.0012
49
14


IL18BP
MIF
0.46
49
1
11
3
98.0%
78.6%
1.8E−07
2.3E−05
50
14


ICAM1
PLA2G7
0.45
45
5
12
2
90.0%
85.7%
0.0002
0.0310
50
14


ICAM1
MIF
0.45
48
2
11
3
96.0%
78.6%
1.9E−07
0.0322
50
14


CD19
NFKB1
0.45
40
10
11
3
80.0%
78.6%
0.0299
5.5E−08
50
14


ICAM1
TNFRSF1A
0.45
44
5
12
2
89.8%
85.7%
3.0E−06
0.0441
49
14


HMGB1
NFKB1
0.45
43
7
12
2
86.0%
85.7%
0.0348
4.8E−08
50
14


ALOX5
TNFRSF1A
0.44
43
6
12
2
87.8%
85.7%
4.0E−06
0.0350
49
14


CD86
ICAM1
0.44
44
6
12
2
88.0%
85.7%
0.0465
0.0011
50
14


IFI16
TNFSF5
0.44
40
10
11
3
80.0%
78.6%
4.9E−08
0.0040
50
14


ALOX5
SSI3
0.44
47
3
12
2
94.0%
85.7%
5.8E−07
0.0175
50
14


MIF
TLR2
0.43
41
8
11
3
83.7%
78.6%
0.0006
4.5E−07
49
14


CD86
SERPINE1
0.43
45
5
11
2
90.0%
84.6%
1.6E−05
0.0096
50
13


ELA2
TNF
0.43
41
9
12
2
82.0%
85.7%
0.0006
0.0045
50
14


ELA2
HSPA1A
0.43
44
6
11
3
88.0%
78.6%
0.0120
0.0046
50
14


ELA2
IL15
0.42
41
9
12
2
82.0%
85.7%
4.6E−05
0.0047
50
14


IFI16
MYC
0.42
45
5
12
2
90.0%
85.7%
9.4E−08
0.0082
50
14


SERPINA1

0.42
44
6
12
2
88.0%
85.7%
1.0E−07

50
14


CD19
IFI16
0.42
40
10
12
2
80.0%
85.7%
0.0097
1.8E−07
50
14


CD19
CD86
0.42
42
8
11
3
84.0%
78.6%
0.0028
1.8E−07
50
14


ADAM17
ALOX5
0.42
41
9
12
2
82.0%
85.7%
0.0378
1.2E−05
50
14


APAF1
ELA2
0.42
43
7
12
2
86.0%
85.7%
0.0061
0.0028
50
14


CD86
HSPA1A
0.42
43
7
12
2
86.0%
85.7%
0.0166
0.0031
50
14


ELA2
HMOX1
0.42
39
11
12
2
78.0%
85.7%
0.0013
0.0064
50
14


ELA2
IFI16
0.42
43
7
11
3
86.0%
78.6%
0.0113
0.0065
50
14


CD19
MHC2TA
0.41
45
4
12
2
91.8%
85.7%
5.2E−05
2.3E−07
49
14


ELA2
IL18BP
0.41
38
12
11
3
76.0%
78.6%
0.0001
0.0071
50
14


MHC2TA
MIF
0.41
38
11
11
3
77.6%
78.6%
9.9E−07
6.0E−05
49
14


HSPA1A
PLA2G7
0.41
41
9
12
2
82.0%
85.7%
0.0008
0.0223
50
14


PLA2G7
SERPINE1
0.41
39
11
11
2
78.0%
84.6%
3.1E−05
0.0015
50
13


CCL3
ELA2
0.40
39
11
11
3
78.0%
78.6%
0.0104
7.5E−05
50
14


CD4
ELA2
0.40
46
4
12
2
92.0%
85.7%
0.0107
0.0002
50
14


CXCL1
HSPA1A
0.40
41
9
11
3
82.0%
78.6%
0.0317
2.1E−06
50
14


C1QA
HSPA1A
0.40
42
8
12
2
84.0%
85.7%
0.0333
0.0001
50
14


HSPA1A
MIF
0.40
39
11
11
3
78.0%
78.6%
1.4E−06
0.0353
50
14


ADAM17
MIF
0.40
41
9
11
3
82.0%
78.6%
1.4E−06
2.7E−05
50
14


C1QA
ELA2
0.40
39
11
12
2
78.0%
85.7%
0.0141
0.0001
50
14


IFI16
PLA2G7
0.39
43
7
12
2
86.0%
85.7%
0.0015
0.0270
50
14


IFI16
SSI3
0.39
45
5
12
2
90.0%
85.7%
2.8E−06
0.0273
50
14


CCL3
HSPA1A
0.39
43
7
12
2
86.0%
85.7%
0.0431
0.0001
50
14


IL15
SERPINE1
0.39
41
9
11
2
82.0%
84.6%
5.4E−05
0.0018
50
13


ICAM1

0.39
45
5
12
2
90.0%
85.7%
3.6E−07

50
14


C1QA
IFI16
0.39
38
12
12
2
76.0%
85.7%
0.0365
0.0002
50
14


NFKB1

0.38
46
4
11
3
92.0%
78.6%
3.9E−07

50
14


IFI16
IL23A
0.38
42
8
12
2
84.0%
85.7%
3.9E−07
0.0394
50
14


HLADRA
SERPINE1
0.38
42
8
11
2
84.0%
84.6%
7.2E−05
0.0006
50
13


CD86
HMGB1
0.38
42
8
12
2
84.0%
85.7%
5.2E−07
0.0118
50
14


CD8A
TNF
0.38
40
10
11
3
80.0%
78.6%
0.0028
1.5E−06
50
14


CD8A
IFI16
0.38
45
5
12
2
90.0%
85.7%
0.0455
1.5E−06
50
14


CD86
CD8A
0.38
38
12
11
3
76.0%
78.6%
1.5E−06
0.0126
50
14


ELA2
GZMB
0.37
46
4
12
2
92.0%
85.7%
5.8E−06
0.0345
50
14


ELA2
TIMP1
0.37
42
8
12
2
84.0%
85.7%
0.0003
0.0363
50
14


MIF
TXNRD1
0.37
42
8
11
3
84.0%
78.6%
0.0007
3.7E−06
50
14


CCR5
CD86
0.37
42
8
11
3
84.0%
78.6%
0.0197
8.3E−07
50
14


ELA2
IL5
0.37
39
11
11
3
78.0%
78.6%
0.0002
0.0438
50
14


ELA2
MIF
0.36
43
7
11
3
86.0%
78.6%
4.4E−06
0.0480
50
14


ELA2
IL32
0.36
39
11
11
3
78.0%
78.6%
1.7E−05
0.0481
50
14


CD86
PLAUR
0.36
40
10
12
2
80.0%
85.7%
0.0068
0.0230
50
14


CD4
MIF
0.36
43
7
12
2
86.0%
85.7%
4.5E−06
0.0008
50
14


CD86
MMP9
0.36
45
5
11
3
90.0%
78.6%
0.0006
0.0244
50
14


CD4
TNFSF5
0.36
43
7
12
2
86.0%
85.7%
8.3E−07
0.0009
50
14


CD86
IL1R1
0.35
41
9
12
2
82.0%
85.7%
0.0037
0.0330
50
14


ALOX5

0.35
43
7
12
2
86.0%
85.7%
1.1E−06

50
14


IL18BP
TNFSF5
0.35
46
4
11
3
92.0%
78.6%
1.1E−06
0.0009
50
14


CD86
TNFSF5
0.35
38
12
11
3
76.0%
78.6%
1.2E−06
0.0362
50
14


TNF
TNFSF5
0.35
38
12
11
3
76.0%
78.6%
1.2E−06
0.0084
50
14


CD86
TNF
0.35
41
9
12
2
82.0%
85.7%
0.0085
0.0375
50
14


APAF1
TNF
0.35
44
6
11
3
88.0%
78.6%
0.0084
0.0346
50
14


CD86
TLR2
0.35
41
8
11
3
83.7%
78.6%
0.0111
0.0456
49
14


PLA2G7
TLR2
0.35
38
11
12
2
77.6%
85.7%
0.0125
0.0223
49
14


MIF
PTPRC
0.35
40
10
10
3
80.0%
76.9%
0.0015
1.1E−05
50
13


C1QA
PLAUR
0.34
43
7
12
2
86.0%
85.7%
0.0166
0.0011
50
14


PLA2G7
TNF
0.34
45
5
11
3
90.0%
78.6%
0.0134
0.0107
50
14


CCL3
PLAUR
0.34
41
9
12
2
82.0%
85.7%
0.0180
0.0008
50
14


CCL3
SERPINE1
0.34
41
9
11
2
82.0%
84.6%
0.0003
0.0016
50
13


IL5
MIF
0.33
39
11
11
3
78.0%
78.6%
1.3E−05
0.0007
50
14


PLAUR
TNF
0.33
44
6
11
3
88.0%
78.6%
0.0175
0.0226
50
14


C1QA
TLR2
0.33
44
5
11
3
89.8%
78.6%
0.0230
0.0017
49
14


HSPA1A

0.33
40
10
11
3
80.0%
78.6%
2.4E−06

50
14


MHC2TA
MMP9
0.33
41
8
11
3
83.7%
78.6%
0.0025
0.0010
49
14


IL1R1
TNF
0.33
47
3
11
3
94.0%
78.6%
0.0196
0.0095
50
14


C1QA
MMP9
0.33
40
10
11
3
80.0%
78.6%
0.0021
0.0017
50
14


IL18BP
IL23A
0.33
39
11
11
3
78.0%
78.6%
2.8E−06
0.0023
50
14


IL1R1
PLA2G7
0.33
43
7
11
3
86.0%
78.6%
0.0174
0.0106
50
14


CCL3
MMP9
0.33
40
10
12
2
80.0%
85.7%
0.0023
0.0012
50
14


PLA2G7
PLAUR
0.32
42
8
11
3
84.0%
78.6%
0.0303
0.0186
50
14


CCL3
TNF
0.32
38
12
11
3
76.0%
78.6%
0.0239
0.0013
50
14


HMOX1
MMP9
0.32
43
7
11
3
86.0%
78.6%
0.0026
0.0435
50
14


C1QA
IL1R1
0.32
38
12
11
3
76.0%
78.6%
0.0127
0.0022
50
14


CCL5
IL1R1
0.32
41
9
11
3
82.0%
78.6%
0.0128
0.0002
50
14


IL18BP
MMP9
0.32
42
8
12
2
84.0%
85.7%
0.0027
0.0029
50
14


HMOX1
TNF
0.32
40
10
11
3
80.0%
78.6%
0.0272
0.0472
50
14


MMP9
TNF
0.32
46
4
11
3
92.0%
78.6%
0.0274
0.0028
50
14


IFI16

0.32
41
9
11
3
82.0%
78.6%
3.5E−06

50
14


MAPK14
TNF
0.32
43
4
11
3
91.5%
78.6%
0.0412
0.0091
47
14


IL15
PLAUR
0.32
40
10
12
2
80.0%
85.7%
0.0409
0.0022
50
14


HMGB1
PLA2G7
0.32
41
9
11
3
82.0%
78.6%
0.0260
5.1E−06
50
14


CD4
PLAUR
0.31
45
5
11
3
90.0%
78.6%
0.0481
0.0054
50
14


IL1RN
PLA2G7
0.31
39
11
11
3
78.0%
78.6%
0.0298
0.0093
50
14


C1QA
TNF
0.31
41
9
11
3
82.0%
78.6%
0.0378
0.0030
50
14


CD19
TNF
0.31
41
9
11
3
82.0%
78.6%
0.0397
8.0E−06
50
14


CCL3
IL1R1
0.31
42
8
12
2
84.0%
85.7%
0.0192
0.0021
50
14


IL1R1
MHC2TA
0.31
43
6
11
3
87.8%
78.6%
0.0022
0.0202
49
14


CASP3
SERPINE1
0.31
42
8
11
2
84.0%
84.6%
0.0010
0.0005
50
13


ELA2

0.31
39
11
11
3
78.0%
78.6%
5.8E−06

50
14


MAPK14
PLA2G7
0.31
39
8
11
3
83.0%
78.6%
0.0416
0.0146
47
14


IL15
IL1R1
0.30
42
8
11
3
84.0%
78.6%
0.0242
0.0035
50
14


MMP9
PTPRC
0.30
43
7
11
2
86.0%
84.6%
0.0078
0.0377
50
13


C1QA
TGFB1
0.30
43
7
11
3
86.0%
78.6%
0.0295
0.0045
50
14


C1QA
IL1RN
0.30
44
6
11
3
88.0%
78.6%
0.0150
0.0048
50
14


CXCL1
IL1RN
0.30
42
8
11
3
84.0%
78.6%
0.0150
7.1E−05
50
14


IL15
MMP9
0.30
41
9
11
3
82.0%
78.6%
0.0064
0.0044
50
14


CD8A
TGFB1
0.30
43
7
11
3
86.0%
78.6%
0.0347
2.8E−05
50
14


CCL3
MIF
0.30
40
10
11
3
80.0%
78.6%
4.6E−05
0.0035
50
14


IL18BP
IL1R1
0.30
41
9
12
2
82.0%
85.7%
0.0327
0.0070
50
14


IL18BP
MYC
0.30
45
5
11
3
90.0%
78.6%
8.3E−06
0.0074
50
14


IL5
SERPINE1
0.29
41
9
11
2
82.0%
84.6%
0.0014
0.0056
50
13


IL10
MIF
0.29
38
12
10
3
76.0%
76.9%
4.3E−05
0.0007
50
13


IL1R1
IL32
0.29
43
7
11
3
86.0%
78.6%
0.0002
0.0368
50
14


CCL3
MAPK14
0.29
39
8
12
2
83.0%
85.7%
0.0236
0.0038
47
14


SERPINE1
TIMP1
0.29
39
11
10
3
78.0%
76.9%
0.0062
0.0016
50
13


IL32
MMP9
0.29
39
11
11
3
78.0%
78.6%
0.0084
0.0002
50
14


HLADRA
IL1R1
0.29
41
9
11
3
82.0%
78.6%
0.0432
0.0026
50
14


C1QA
IL5
0.29
40
10
11
3
80.0%
78.6%
0.0034
0.0070
50
14


MIF
VEGF
0.29
38
12
11
3
76.0%
78.6%
0.0010
6.2E−05
50
14


CD4
CD8A
0.29
41
9
11
3
82.0%
78.6%
4.0E−05
0.0144
50
14


C1QA
PTGS2
0.29
45
5
11
3
90.0%
78.6%
0.0031
0.0081
50
14


IL1RN
MHC2TA
0.28
37
12
11
3
75.5%
78.6%
0.0055
0.0294
49
14


CCL3
TLR4
0.28
41
9
11
3
82.0%
78.6%
0.0039
0.0058
50
14


SERPINE1
TXNRD1
0.28
41
9
11
2
82.0%
84.6%
0.0341
0.0022
50
13


C1QA
CCL3
0.28
43
7
11
3
86.0%
78.6%
0.0063
0.0096
50
14


CD8A
CXCR3
0.28
39
11
11
3
78.0%
78.6%
0.0001
4.9E−05
50
14


CCL3
IL1RN
0.28
42
8
12
2
84.0%
85.7%
0.0323
0.0066
50
14


IL18BP
MAPK14
0.28
39
8
11
3
83.0%
78.6%
0.0391
0.0124
47
14


PTPRC
SERPINE1
0.28
46
4
9
3
92.0%
75.0%
0.0023
0.0450
50
12


C1QA
TXNRD1
0.28
45
5
11
3
90.0%
78.6%
0.0203
0.0106
50
14


IL18
SERPINE1
0.28
43
7
10
3
86.0%
76.9%
0.0026
0.0013
50
13


CCL5
MAPK14
0.28
39
8
11
3
83.0%
78.6%
0.0424
0.0016
47
14


IL5
MAPK14
0.27
39
8
11
3
83.0%
78.6%
0.0483
0.0052
47
14


IL15
MAPK14
0.27
36
11
11
3
76.6%
78.6%
0.0490
0.0351
47
14


MNDA
SERPINE1
0.27
39
11
11
2
78.0%
84.6%
0.0032
0.0182
50
13


IL18BP
IL1RN
0.27
38
12
11
3
76.0%
78.6%
0.0461
0.0188
50
14


CCL5
IL1RN
0.27
40
10
11
3
80.0%
78.6%
0.0492
0.0011
50
14


IL1RN
SERPINE1
0.27
40
10
10
3
80.0%
76.9%
0.0036
0.0466
50
13


CD4
PTGS2
0.27
40
10
11
3
80.0%
78.6%
0.0062
0.0302
50
14


C1QA
IRF1
0.27
42
8
11
3
84.0%
78.6%
0.0172
0.0165
50
14


CD19
IL15
0.26
42
8
12
2
84.0%
85.7%
0.0159
4.2E−05
50
14


C1QA
CD4
0.26
42
8
11
3
84.0%
78.6%
0.0349
0.0186
50
14


MYC
PTPRC
0.26
42
8
10
3
84.0%
76.9%
0.0311
4.5E−05
50
13


IRF1
MHC2TA
0.26
40
9
12
2
81.6%
85.7%
0.0120
0.0364
49
14


CCL5
MMP9
0.26
38
12
11
3
76.0%
78.6%
0.0246
0.0014
50
14


CCL3
MNDA
0.26
40
10
12
2
80.0%
85.7%
0.0179
0.0129
50
14


CCL3
IL10
0.26
40
10
10
3
80.0%
76.9%
0.0022
0.0347
50
13


C1QA
MNDA
0.26
45
5
11
3
90.0%
78.6%
0.0193
0.0213
50
14


C1QA
TNFRSF1A
0.26
42
7
11
3
85.7%
78.6%
0.0028
0.0305
49
14


CCL3
TIMP1
0.26
39
11
11
3
78.0%
78.6%
0.0209
0.0140
50
14


C1QA
IL18BP
0.26
41
9
11
3
82.0%
78.6%
0.0291
0.0219
50
14


MHC2TA
TNFRSF13B
0.26
39
10
11
3
79.6%
78.6%
3.3E−05
0.0136
49
14


CD4
TLR4
0.26
40
10
11
3
80.0%
78.6%
0.0096
0.0413
50
14


CD8A
IL32
0.26
43
7
11
3
86.0%
78.6%
0.0007
0.0001
50
14


IL23A
IL5
0.26
39
11
11
3
78.0%
78.6%
0.0113
3.2E−05
50
14


DPP4
IL18BP
0.26
44
6
11
3
88.0%
78.6%
0.0327
0.0002
50
14


MYC
TXNRD1
0.26
39
11
11
3
78.0%
78.6%
0.0487
3.4E−05
50
14


CD8A
TXNRD1
0.26
43
7
11
3
86.0%
78.6%
0.0497
0.0001
50
14


CCL3
PTGS2
0.26
41
9
12
2
82.0%
85.7%
0.0097
0.0168
50
14


PLAUR

0.25
44
6
11
3
88.0%
78.6%
3.5E−05

50
14


TLR2

0.25
41
8
11
3
83.7%
78.6%
3.8E−05

49
14


CCL3
IRF1
0.25
43
7
12
2
86.0%
85.7%
0.0282
0.0175
50
14


MHC2TA
TNFSF5
0.25
38
11
11
3
77.6%
78.6%
4.2E−05
0.0180
49
14


MHC2TA
MNDA
0.25
39
10
11
3
79.6%
78.6%
0.0361
0.0191
49
14


MHC2TA
TLR4
0.25
39
10
11
3
79.6%
78.6%
0.0133
0.0199
49
14


MHC2TA
PTGS2
0.25
42
7
11
3
85.7%
78.6%
0.0131
0.0199
49
14


C1QA
CCL5
0.25
45
5
11
3
90.0%
78.6%
0.0023
0.0330
50
14


IL18BP
TLR4
0.25
38
12
11
3
76.0%
78.6%
0.0144
0.0444
50
14


TNF

0.25
41
9
11
3
82.0%
78.6%
4.4E−05

50
14


CD8A
HLADRA
0.25
39
11
11
3
78.0%
78.6%
0.0123
0.0002
50
14


IL1B
MHC2TA
0.25
41
8
11
3
83.7%
78.6%
0.0222
0.0098
49
14


C1QA
MHC2TA
0.24
40
9
11
3
81.6%
78.6%
0.0241
0.0375
49
14


IL15
PTGS2
0.24
38
12
11
3
76.0%
78.6%
0.0147
0.0340
50
14


IL5
IRF1
0.24
41
9
11
3
82.0%
78.6%
0.0438
0.0197
50
14


PLA2G7

0.24
39
11
11
3
78.0%
78.6%
5.5E−05

50
14


CCL3
MHC2TA
0.24
38
11
11
3
77.6%
78.6%
0.0289
0.0279
49
14


CCL3
IL1B
0.24
41
9
11
3
82.0%
78.6%
0.0083
0.0307
50
14


CCL5
SERPINE1
0.24
39
11
10
3
78.0%
76.9%
0.0102
0.0049
50
13


IL1B
IL5
0.24
41
9
11
3
82.0%
78.6%
0.0241
0.0089
50
14


IL32
MIF
0.23
42
8
11
3
84.0%
78.6%
0.0005
0.0018
50
14


CD8A
IL5
0.23
38
12
11
3
76.0%
78.6%
0.0301
0.0003
50
14


IL1R1

0.23
40
10
11
3
80.0%
78.6%
8.7E−05

50
14


HLADRA
IL1B
0.23
40
10
11
3
80.0%
78.6%
0.0128
0.0261
50
14


CCL5
TLR4
0.23
38
12
11
3
76.0%
78.6%
0.0360
0.0055
50
14


IL32
SERPINE1
0.22
41
9
10
3
82.0%
76.9%
0.0171
0.0047
50
13


ADAM17
CD19
0.22
39
11
11
3
78.0%
78.6%
0.0002
0.0154
50
14


MAPK14

0.21
37
10
11
3
78.7%
78.6%
0.0002

47
14


IL1RN

0.21
41
9
11
3
82.0%
78.6%
0.0002

50
14


TXNRD1

0.20
39
11
11
3
78.0%
78.6%
0.0003

50
14


ADAM17
CD8A
0.20
42
8
11
3
84.0%
78.6%
0.0011
0.0423
50
14


CD19
IL10
0.19
39
11
10
3
78.0%
76.9%
0.0326
0.0008
50
13


IRF1

0.18
38
12
11
3
76.0%
78.6%
0.0005

50
14


MNDA

0.18
39
11
11
3
78.0%
78.6%
0.0005

50
14


TLR4

0.16
38
12
11
3
76.0%
78.6%
0.0011

50
14


PTGS2

0.16
38
12
11
3
76.0%
78.6%
0.0012

50
14


TNFRSF1A

0.13
37
12
11
3
75.5%
78.6%
0.0037

49
14





















TABLE 2B








Prostate
Normals
Sum



Group Size
21.9%
78.1%
100%



N =
14
50
64



Gene
Mean
Mean
p-val









EGR1
18.6
20.0
5.5E−10



CASP1
15.2
16.2
2.3E−08



SERPINA1
12.3
13.5
1.0E−07



ICAM1
16.8
17.8
3.6E−07



NFKB1
16.4
17.4
3.9E−07



ALOX5
16.4
17.5
1.1E−06



HSPA1A
14.0
15.2
2.4E−06



IFI16
13.4
14.4
3.5E−06



ELA2
18.7
21.0
5.8E−06



CD86
16.2
17.1
1.1E−05



APAF1
16.9
17.8
1.2E−05



HMOX1
14.9
15.7
2.7E−05



PLAUR
14.1
15.0
3.5E−05



TLR2
14.7
15.7
3.8E−05



TNF
17.3
18.0
4.4E−05



PLA2G7
17.9
19.0
5.5E−05



TGFB1
12.2
12.8
8.2E−05



IL1R1
19.3
20.3
8.7E−05



IL1RN
15.5
16.2
0.0002



MAPK14
13.7
14.5
0.0002



TXNRD1
16.0
16.7
0.0003



CD4
14.8
15.5
0.0003



IL18BP
16.6
17.1
0.0004



MMP9
13.9
15.1
0.0004



IRF1
12.7
13.3
0.0005



PTPRC
10.6
11.2
0.0005



C1QA
20.0
20.9
0.0005



TIMP1
13.5
14.0
0.0005



MNDA
11.5
12.2
0.0005



IL15
19.8
20.5
0.0006



CCL3
20.1
20.9
0.0007



MHC2TA
14.7
15.3
0.0008



IL5
21.2
22.0
0.0010



TLR4
13.9
14.7
0.0011



PTGS2
16.2
17.0
0.0012



HLADRA
11.0
11.5
0.0013



IL1B
15.2
15.9
0.0025



ADAM17
17.0
17.6
0.0027



SERPINE1
20.8
21.7
0.0031



VEGF
21.4
22.1
0.0035



TNFRSF1A
14.0
14.5
0.0037



CCL5
12.2
12.7
0.0065



IL10
21.6
22.5
0.0065



IL18
20.4
20.9
0.0066



CASP3
20.3
20.7
0.0116



IL32
13.6
14.0
0.0151



GZMB
17.1
17.8
0.0345



SSI3
17.1
17.6
0.0346



CXCL1
19.2
19.7
0.0368



CXCR3
16.9
17.3
0.0375



LTA
17.9
18.2
0.0452



MIF
15.1
14.8
0.0666



CCR3
16.0
16.5
0.0719



DPP4
18.3
18.5
0.0887



CD8A
16.4
16.1
0.1222



TOSO
15.5
15.7
0.1786



TNFSF6
19.8
20.0
0.2618



CTLA4
18.5
18.7
0.2720



CD19
18.1
17.9
0.3251



IL8
20.8
21.1
0.4409



HMGB1
16.9
17.0
0.5096



CCR5
17.0
17.2
0.5185



MMP12
23.8
23.9
0.5896



IFNG
22.3
22.4
0.7284



TNFRSF13B
19.9
19.8
0.8172



TNFSF5
17.3
17.3
0.8676



MYC
17.3
17.3
0.9774



IL23A
20.4
20.4
0.9840























TABLE 2C











Predicted


Patient





probability of


ID
Group
CASP1
MIF
logit
odds
prostate cancer





















62
Cancer
14.92
15.50
40.22
2.9E+17
1.0000


69
Cancer
14.80
15.45
43.01
4.8E+18
1.0000


125
Cancer
15.40
15.91
35.65
3.0E+15
1.0000


129
Cancer
15.05
15.50
36.12
4.8E+15
1.0000


60
Cancer
15.12
15.23
25.95
1.9E+11
1.0000


128
Cancer
16.17
16.47
25.49
1.2E+11
1.0000


105
Cancer
14.92
14.88
22.89
8.8E+09
1.0000


10
Cancer
15.26
15.17
19.38
2.6E+08
1.0000


85
Cancer
15.01
14.80
17.66
4.7E+07
1.0000


30
Cancer
14.43
14.03
15.13
3.7E+06
1.0000


17
Cancer
16.18
16.03
12.57
2.9E+05
1.0000


84
Cancer
14.61
13.85
4.19
6.6E+01
0.9850


239
Normal
15.00
14.19
0.92
2.5E+00
0.7158


70
Cancer
15.68
15.00
0.69
2.0E+00
0.6660


29
Cancer
14.70
13.81
0.10
1.1E+00
0.5243


220
Normal
15.73
14.95
−2.36
9.5E−02
0.0866


78
Normal
15.76
14.91
−4.41
1.2E−02
0.0120


155
Normal
15.67
14.77
−5.61
3.7E−03
0.0037


180
Normal
16.48
15.71
−6.09
2.3E−03
0.0023


265
Normal
15.20
14.18
−6.18
2.1E−03
0.0021


133
Normal
15.99
15.13
−6.33
1.8E−03
0.0018


236
Normal
15.64
14.64
−8.16
2.9E−04
0.0003


110
Normal
15.72
14.73
−8.22
2.7E−04
0.0003


150
Normal
16.40
15.50
−9.29
9.3E−05
0.0001


83
Normal
16.43
15.52
−9.90
5.0E−05
0.0001


100
Normal
15.98
14.96
−10.61
2.5E−05
0.0000


102
Normal
15.67
14.54
−11.89
6.8E−06
0.0000


184
Normal
16.20
15.13
−13.19
1.9E−06
0.0000


62
Normal
15.57
14.37
−13.39
1.5E−06
0.0000


156
Normal
16.24
15.15
−14.08
7.7E−07
0.0000


267
Normal
16.10
14.97
−14.15
7.2E−07
0.0000


257
Normal
16.07
14.90
−15.55
1.8E−07
0.0000


136
Normal
15.68
14.41
−15.99
1.1E−07
0.0000


86
Normal
15.81
14.50
−17.62
2.2E−08
0.0000


154
Normal
16.17
14.90
−18.63
8.1E−09
0.0000


152
Normal
16.38
15.14
−19.07
5.2E−09
0.0000


145
Normal
16.61
15.40
−19.50
3.4E−09
0.0000


85
Normal
15.90
14.55
−19.57
3.2E−09
0.0000


51
Normal
16.06
14.74
−19.73
2.7E−09
0.0000


167
Normal
15.61
14.17
−20.50
1.3E−09
0.0000


245
Normal
16.27
14.92
−21.49
4.6E−10
0.0000


253
Normal
16.08
14.67
−22.20
2.3E−10
0.0000


161
Normal
15.93
14.44
−23.42
6.7E−11
0.0000


243
Normal
15.70
14.15
−24.03
3.7E−11
0.0000


74
Normal
16.55
15.14
−24.58
2.1E−11
0.0000


61
Normal
15.60
14.00
−24.79
1.7E−11
0.0000


109
Normal
17.01
15.68
−25.10
1.3E−11
0.0000


57
Normal
15.43
13.77
−25.57
7.8E−12
0.0000


151
Normal
16.35
14.82
−27.12
1.7E−12
0.0000


138
Normal
16.48
14.95
−27.43
1.2E−12
0.0000


269
Normal
16.39
14.77
−29.67
1.3E−13
0.0000


147
Normal
16.34
14.70
−30.06
8.8E−14
0.0000


56
Normal
16.82
15.25
−30.69
4.7E−14
0.0000


157
Normal
16.00
14.26
−30.88
3.9E−14
0.0000


191
Normal
16.45
14.76
−31.91
1.4E−14
0.0000


249
Normal
16.90
15.10
−37.63
4.6E−17
0.0000


176
Normal
16.82
14.95
−39.16
9.9E−18
0.0000


142
Normal
16.57
14.59
−40.89
1.7E−18
0.0000


252
Normal
16.79
14.84
−41.05
1.5E−18
0.0000


246
Normal
17.23
15.34
−41.87
6.5E−19
0.0000


119
Normal
17.00
14.93
−45.60
1.6E−20
0.0000


248
Normal
17.65
15.63
−47.68
2.0E−21
0.0000


45
Normal
16.98
14.70
−51.80
3.2E−23
0.0000


158
Normal
16.69
14.27
−54.07
3.3E−24
0.0000
























TABLE 2D















total used






Normal
Prostate

(excludes



En-

N =
50
19

missing)


















2-gene models and
tropy
#normal
#normal
#pc
#pc
Correct
Correct


#
#


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
normals
disease






















CCR3
SERPINA1
0.79
48
2
18
1
96.0%
94.7%
5.3E−09
2.0E−10
50
19


CCR3
MMP9
0.76
47
3
17
2
94.0%
89.5%
7.9E−06
8.5E−10
50
19


CCR3
MAPK14
0.76
45
2
16
2
95.7%
88.9%
3.4E−09
7.1E−09
47
18


ALOX5
CCR3
0.71
47
3
18
1
94.0%
94.7%
5.8E−09
1.9E−09
50
19


CCR3
HSPA1A
0.70
46
4
17
2
92.0%
89.5%
4.9E−09
1.1E−08
50
19


CCR3
TIMP1
0.67
45
5
18
1
90.0%
94.7%
3.4E−11
3.0E−08
50
19


SERPINA1
TNFRSF1A
0.67
46
3
18
1
93.9%
94.7%
1.0E−12
1.6E−06
49
19


CASP1
MIF
0.66
50
0
17
2
100.0%
89.5%
6.4E−08
8.2E−12
50
19


CCR3
IL1R1
0.66
46
4
17
2
92.0%
89.5%
1.2E−06
5.1E−08
50
19


CASP1
CCR3
0.66
47
3
17
2
94.0%
89.5%
5.7E−08
1.0E−11
50
19


CCR3
TLR4
0.65
46
4
17
2
92.0%
89.5%
7.9E−10
6.5E−08
50
19


CD19
MAPK14
0.65
43
4
17
1
91.5%
94.4%
2.1E−07
7.8E−07
47
18


CCR3
PLAUR
0.63
43
7
17
2
86.0%
89.5%
5.2E−12
1.8E−07
50
19


CD4
SERPINA1
0.63
44
6
17
2
88.0%
89.5%
5.4E−06
5.8E−11
50
19


CCR3
TGFB1
0.63
41
9
17
2
82.0%
89.5%
1.9E−11
2.1E−07
50
19


MAPK14
MIF
0.63
44
3
16
2
93.6%
88.9%
4.8E−06
5.7E−07
47
18


CCR3
ELA2
0.62
48
2
16
3
96.0%
84.2%
0.0001
2.8E−07
50
19


CCR3
ICAM1
0.62
46
4
17
2
92.0%
89.5%
9.2E−11
3.2E−07
50
19


ELA2
MAPK14
0.61
43
4
16
2
91.5%
88.9%
9.3E−07
0.0027
47
18


CCR3
TLR2
0.61
44
5
17
2
89.8%
89.5%
8.7E−07
3.5E−07
49
19


CASP1
HMGB1
0.61
49
1
17
2
98.0%
89.5%
2.2E−09
7.5E−11
50
19


IFI16
LTA
0.60
40
7
16
2
85.1%
88.9%
1.8E−10
0.0051
47
18


ELA2
MMP9
0.60
39
11
17
2
78.0%
89.5%
0.0076
0.0003
50
19


IFI16
MIF
0.59
44
6
16
3
88.0%
84.2%
1.3E−06
2.4E−06
50
19


CCR3
IL1RN
0.59
42
8
17
2
84.0%
89.5%
5.5E−11
9.3E−07
50
19


CCR3
MNDA
0.59
44
6
17
2
88.0%
89.5%
2.5E−11
9.6E−07
50
19


CCR3
IFI16
0.59
46
4
16
3
92.0%
84.2%
2.7E−06
1.0E−06
50
19


APAF1
CCR3
0.59
42
8
17
2
84.0%
89.5%
1.1E−06
3.9E−11
50
19


MIF
SERPINA1
0.58
46
4
17
2
92.0%
89.5%
3.5E−05
1.7E−06
50
19


MIF
NFKB1
0.57
44
6
17
2
88.0%
89.5%
7.6E−11
2.8E−06
50
19


CASP1
TNFSF5
0.57
42
8
17
2
84.0%
89.5%
2.2E−08
3.5E−10
50
19


ELA2
IL1R1
0.57
42
8
17
2
84.0%
89.5%
5.2E−05
0.0011
50
19


CCR3
TXNRD1
0.57
44
6
16
3
88.0%
84.2%
2.6E−11
2.2E−06
50
19


MIF
TIMP1
0.57
47
3
17
2
94.0%
89.5%
2.4E−09
3.2E−06
50
19


CD4
NFKB1
0.57
47
3
17
2
94.0%
89.5%
9.2E−11
7.1E−10
50
19


ELA2
IFI16
0.56
43
7
17
2
86.0%
89.5%
7.6E−06
0.0014
50
19


CD19
MMP9
0.56
48
2
17
2
96.0%
89.5%
0.0406
5.5E−07
50
19


CASP1
CD4
0.56
43
7
17
2
86.0%
89.5%
9.2E−10
5.3E−10
50
19


CASP1
MMP9
0.56
45
5
16
3
90.0%
84.2%
0.0479
5.8E−10
50
19


HMGB1
SERPINA1
0.56
48
2
16
3
96.0%
84.2%
0.0001
1.7E−08
50
19


MIF
TGFB1
0.56
44
6
17
2
88.0%
89.5%
3.0E−10
5.1E−06
50
19


IL1B
SERPINA1
0.55
42
8
17
2
84.0%
89.5%
0.0001
2.1E−11
50
19


ELA2
HSPA1A
0.55
45
5
16
3
90.0%
84.2%
2.2E−06
0.0026
50
19


MHC2TA
SERPINA1
0.55
45
4
17
2
91.8%
89.5%
0.0002
4.2E−09
49
19


MAPK14
MHC2TA
0.55
41
6
15
3
87.2%
83.3%
2.8E−08
1.2E−05
47
18


ELA2
SERPINA1
0.55
43
7
16
3
86.0%
84.2%
0.0002
0.0029
50
19


ELA2
TLR2
0.55
42
7
16
3
85.7%
84.2%
1.5E−05
0.0028
49
19


ELA2
MIF
0.55
38
12
16
3
76.0%
84.2%
8.9E−06
0.0033
50
19


IL23A
MAPK14
0.54
41
6
15
2
87.2%
88.2%
9.7E−06
1.7E−06
47
17


CD86
SERPINA1
0.54
45
5
17
2
90.0%
89.5%
0.0002
1.8E−10
50
19


CD4
TIMP1
0.54
43
7
17
2
86.0%
89.5%
7.9E−09
2.2E−09
50
19


IRF1
SERPINA1
0.54
44
6
17
2
88.0%
89.5%
0.0002
4.3E−11
50
19


MYC
SERPINA1
0.54
43
7
16
3
86.0%
84.2%
0.0002
2.0E−10
50
19


PTPRC
SERPINA1
0.54
39
11
16
3
78.0%
84.2%
0.0003
7.7E−11
50
19


CASP1
CCR5
0.54
42
8
17
2
84.0%
89.5%
9.2E−09
1.5E−09
50
19


CTLA4
SERPINA1
0.54
43
7
17
2
86.0%
89.5%
0.0003
6.0E−08
50
19


HSPA1A
MIF
0.53
46
4
16
3
92.0%
84.2%
1.4E−05
4.4E−06
50
19


ADAM17
CCR3
0.53
44
6
16
3
88.0%
84.2%
1.0E−05
4.4E−09
50
19


ADAM17
MIF
0.53
44
6
17
2
88.0%
89.5%
1.8E−05
5.4E−09
50
19


IFI16
TNFSF5
0.53
41
9
16
3
82.0%
84.2%
1.5E−07
3.6E−05
50
19


SERPINA1
TNFSF5
0.53
44
6
16
3
88.0%
84.2%
1.5E−07
0.0004
50
19


CD19
SERPINA1
0.52
44
6
17
2
88.0%
89.5%
0.0005
2.9E−06
50
19


CCR3
PTGS2
0.52
42
8
17
2
84.0%
89.5%
1.1E−10
1.6E−05
50
19


MAPK14
TNFRSF1A
0.52
39
7
15
3
84.8%
83.3%
1.6E−09
0.0001
46
18


CTLA4
MAPK14
0.52
41
6
16
2
87.2%
88.9%
3.8E−05
4.6E−07
47
18


CASP1
IL23A
0.52
45
5
16
2
90.0%
88.9%
6.2E−07
7.3E−09
50
18


ELA2
IL8
0.52
47
3
15
4
94.0%
79.0%
1.1E−07
0.0107
50
19


IL1R1
TNFRSF1A
0.52
43
6
16
3
87.8%
84.2%
5.8E−10
0.0010
49
19


IFI16
IL23A
0.52
42
8
15
3
84.0%
83.3%
6.9E−07
3.4E−05
50
18


CD4
MAPK14
0.52
42
5
15
3
89.4%
83.3%
4.5E−05
1.8E−08
47
18


PLAUR
SERPINA1
0.52
42
8
17
2
84.0%
89.5%
0.0007
5.8E−10
50
19


CD4
HSPA1A
0.52
42
8
16
3
84.0%
84.2%
9.6E−06
6.3E−09
50
19


CD19
IFI16
0.52
41
9
17
2
82.0%
89.5%
6.1E−05
4.3E−06
50
19


CCR3
NFKB1
0.51
43
7
17
2
86.0%
89.5%
8.5E−10
2.3E−05
50
19


IFI16
TNFRSF1A
0.51
45
4
17
2
91.8%
89.5%
6.6E−10
0.0004
49
19


ELA2
HMGB1
0.51
39
11
16
3
78.0%
84.2%
1.2E−07
0.0138
50
19


MAPK14
TOSO
0.51
42
5
15
3
89.4%
83.3%
1.2E−07
5.2E−05
47
18


MMP9

0.51
44
6
16
3
88.0%
84.2%
1.1E−10

50
19


IL23A
SERPINA1
0.51
43
7
16
2
86.0%
88.9%
0.0004
8.5E−07
50
18


CXCL1
IL1R1
0.51
42
8
16
3
84.0%
84.2%
0.0007
1.6E−10
50
19


CASP3
SERPINA1
0.51
46
4
16
3
92.0%
84.2%
0.0009
3.9E−10
50
19


IL1R1
MYC
0.51
44
6
16
3
88.0%
84.2%
7.9E−10
0.0008
50
19


CASP1
HLADRA
0.51
43
7
17
2
86.0%
89.5%
2.4E−08
5.2E−09
50
19


MNDA
SERPINA1
0.51
45
5
16
3
90.0%
84.2%
0.0010
8.1E−10
50
19


ELA2
SSI3
0.51
45
5
16
3
90.0%
84.2%
1.7E−07
0.0196
50
19


CD4
IFI16
0.51
44
6
16
3
88.0%
84.2%
9.3E−05
9.8E−09
50
19


IL1R1
IL8
0.50
46
4
17
2
92.0%
89.5%
2.1E−07
0.0009
50
19


DPP4
SERPINA1
0.50
41
9
16
3
82.0%
84.2%
0.0012
2.1E−08
50
19


EGR1
ELA2
0.50
42
8
16
3
84.0%
84.2%
0.0231
7.6E−06
50
19


ELA2
IL23A
0.50
41
9
15
3
82.0%
83.3%
1.3E−06
0.0138
50
18


IL5
MIF
0.50
43
7
16
3
86.0%
84.2%
5.8E−05
1.2E−09
50
19


LTA
MAPK14
0.50
35
9
14
3
79.6%
82.4%
0.0084
2.7E−08
44
17


SERPINA1
TXNRD1
0.50
42
8
16
3
84.0%
84.2%
4.6E−10
0.0013
50
19


CCR3
IRF1
0.50
41
9
15
4
82.0%
79.0%
2.2E−10
4.1E−05
50
19


MAPK14
TNFSF5
0.50
38
9
14
4
80.9%
77.8%
1.6E−06
8.4E−05
47
18


PLA2G7
SERPINA1
0.50
44
6
16
3
88.0%
84.2%
0.0013
1.2E−08
50
19


CCR5
ELA2
0.50
47
3
16
3
94.0%
84.2%
0.0249
4.2E−08
50
19


CCR5
SERPINA1
0.50
40
10
16
3
80.0%
84.2%
0.0013
4.3E−08
50
19


IFI16
MYC
0.50
45
5
16
3
90.0%
84.2%
1.1E−09
0.0001
50
19


HLADRA
SERPINA1
0.50
42
8
17
2
84.0%
89.5%
0.0014
3.4E−08
50
19


ELA2
MYC
0.50
43
7
16
3
86.0%
84.2%
1.1E−09
0.0264
50
19


CD19
HSPA1A
0.50
45
5
17
2
90.0%
89.5%
2.0E−05
8.6E−06
50
19


ICAM1
MIF
0.50
44
6
16
3
88.0%
84.2%
6.8E−05
1.3E−08
50
19


IL1R1
MIF
0.50
40
10
16
3
80.0%
84.2%
7.3E−05
0.0013
50
19


ELA2
PLA2G7
0.50
44
6
15
4
88.0%
79.0%
1.5E−08
0.0311
50
19


DPP4
ELA2
0.50
43
7
15
4
86.0%
79.0%
0.0312
2.8E−08
50
19


HSPA1A
TNFRSF1A
0.50
42
7
16
3
85.7%
84.2%
1.5E−09
6.6E−05
49
19


APAF1
SERPINA1
0.50
43
7
16
3
86.0%
84.2%
0.0017
1.8E−09
50
19


CASP1
CTLA4
0.49
41
9
16
3
82.0%
84.2%
3.5E−07
9.1E−09
50
19


ALOX5
ELA2
0.49
41
9
15
4
82.0%
79.0%
0.0355
1.9E−05
50
19


IFI16
MHC2TA
0.49
43
6
17
2
87.8%
89.5%
4.3E−08
0.0002
49
19


SERPINA1
TOSO
0.49
46
4
17
2
92.0%
89.5%
3.0E−08
0.0018
50
19


CCR5
IFI16
0.49
44
6
16
3
88.0%
84.2%
0.0002
5.9E−08
50
19


IL8
SERPINA1
0.49
43
7
16
3
86.0%
84.2%
0.0021
3.9E−07
50
19


ELA2
TLR4
0.49
41
9
16
3
82.0%
84.2%
8.0E−07
0.0445
50
19


ELA2
HLADRA
0.49
42
8
16
3
84.0%
84.2%
5.5E−08
0.0458
50
19


MIF
TLR2
0.49
39
10
16
3
79.6%
84.2%
0.0002
0.0001
49
19


CD4
ELA2
0.49
45
5
16
3
90.0%
84.2%
0.0493
2.1E−08
50
19


CXCL1
SERPINA1
0.49
41
9
16
3
82.0%
84.2%
0.0025
4.6E−10
50
19


IL15
MIF
0.49
43
7
17
2
86.0%
89.5%
0.0001
1.3E−09
50
19


ALOX5
CD19
0.48
44
6
17
2
88.0%
89.5%
1.5E−05
2.7E−05
50
19


CCR5
TIMP1
0.48
40
10
16
3
80.0%
84.2%
8.7E−08
8.5E−08
50
19


CD19
IL1R1
0.48
41
9
17
2
82.0%
89.5%
0.0024
1.7E−05
50
19


CASP1
IL18BP
0.48
41
9
16
3
82.0%
84.2%
4.1E−09
1.6E−08
50
19


IFI16
TNF
0.48
42
8
16
3
84.0%
84.2%
3.4E−09
0.0003
50
19


CASP1
PLA2G7
0.48
40
10
16
3
80.0%
84.2%
2.9E−08
1.6E−08
50
19


CCR3
EGR1
0.48
40
10
16
3
80.0%
84.2%
2.0E−05
0.0001
50
19


IL18BP
SERPINA1
0.48
45
5
16
3
90.0%
84.2%
0.0034
4.4E−09
50
19


CCR3
SERPINE1
0.48
41
9
16
3
82.0%
84.2%
1.7E−05
0.0001
50
19


IL23A
NFKB1
0.48
42
8
16
2
84.0%
88.9%
5.8E−09
3.3E−06
50
18


CD4
IL1R1
0.48
40
10
16
3
80.0%
84.2%
0.0030
3.1E−08
50
19


NFKB1
TNFSF5
0.48
41
9
16
3
82.0%
84.2%
1.2E−06
4.2E−09
50
19


SERPINA1
TNF
0.48
44
6
16
3
88.0%
84.2%
4.0E−09
0.0038
50
19


CTLA4
IFI16
0.48
43
7
17
2
86.0%
89.5%
0.0003
7.4E−07
50
19


C1QA
CCR3
0.48
46
4
16
3
92.0%
84.2%
0.0001
3.9E−08
50
19


EGR1
MIF
0.47
45
5
17
2
90.0%
89.5%
0.0002
2.6E−05
50
19


IFI16
TOSO
0.47
44
6
17
2
88.0%
89.5%
7.0E−08
0.0004
50
19


HMGB1
MAPK14
0.47
40
7
15
3
85.1%
83.3%
0.0003
2.4E−06
47
18


IL1RN
MIF
0.47
39
11
15
4
78.0%
79.0%
0.0002
8.0E−09
50
19


CXCR3
SERPINA1
0.47
39
11
16
3
78.0%
84.2%
0.0050
2.4E−08
50
19


HMOX1
MIF
0.47
40
10
17
2
80.0%
89.5%
0.0002
7.7E−10
50
19


CTLA4
IL1R1
0.47
43
7
16
3
86.0%
84.2%
0.0045
1.0E−06
50
19


HSPA1A
MHC2TA
0.47
39
10
16
3
79.6%
84.2%
1.2E−07
7.3E−05
49
19


HMGB1
HSPA1A
0.47
42
8
16
3
84.0%
84.2%
7.3E−05
8.0E−07
50
19


PTGS2
SERPINA1
0.47
44
6
16
3
88.0%
84.2%
0.0057
1.1E−09
50
19


HMGB1
IFI16
0.47
42
8
16
3
84.0%
84.2%
0.0005
8.4E−07
50
19


CCR3
CXCL1
0.47
42
8
16
3
84.0%
84.2%
1.1E−09
0.0002
50
19


MIF
TXNRD1
0.47
39
11
16
3
78.0%
84.2%
2.0E−09
0.0003
50
19


IL1R1
IL23A
0.47
42
8
16
2
84.0%
88.9%
5.7E−06
0.0025
50
18


DPP4
IFI16
0.46
45
5
16
3
90.0%
84.2%
0.0005
1.1E−07
50
19


CCR3
HMOX1
0.46
44
6
16
3
88.0%
84.2%
1.0E−09
0.0002
50
19


TIMP1
TNFSF5
0.46
40
10
16
3
80.0%
84.2%
2.2E−06
2.1E−07
50
19


CCR3
IL18
0.46
43
7
16
3
86.0%
84.2%
1.2E−09
0.0002
50
19


CASP1
MHC2TA
0.46
46
3
16
3
93.9%
84.2%
1.6E−07
4.2E−08
49
19


NFKB1
SERPINA1
0.46
40
10
16
3
80.0%
84.2%
0.0078
8.1E−09
50
19


MIF
TLR4
0.46
43
7
16
3
86.0%
84.2%
2.6E−06
0.0003
50
19


HSPA1A
IL23A
0.46
41
9
15
3
82.0%
83.3%
6.9E−06
5.5E−05
50
18


IL1B
MAPK14
0.46
42
5
15
3
89.4%
83.3%
0.0004
3.1E−09
47
18


CCR5
HSPA1A
0.46
41
9
15
4
82.0%
79.0%
0.0001
2.4E−07
50
19


CD19
TLR2
0.46
40
9
16
3
81.6%
84.2%
0.0006
4.3E−05
49
19


HMOX1
SERPINA1
0.46
38
12
16
3
76.0%
84.2%
0.0088
1.3E−09
50
19


CCR5
MAPK14
0.46
40
7
15
3
85.1%
83.3%
0.0005
9.1E−07
47
18


MIF
PLAUR
0.46
41
9
15
4
82.0%
79.0%
7.0E−09
0.0004
50
19


HMGB1
IL1R1
0.45
44
6
15
4
88.0%
79.0%
0.0085
1.4E−06
50
19


IL1R1
TNFSF5
0.45
43
7
15
4
86.0%
79.0%
3.3E−06
0.0088
50
19


IL1RN
SERPINA1
0.45
43
7
16
3
86.0%
84.2%
0.0109
1.7E−08
50
19


HLADRA
MAPK14
0.45
39
8
15
3
83.0%
83.3%
0.0006
1.4E−06
47
18


CTLA4
HSPA1A
0.45
40
10
16
3
80.0%
84.2%
0.0001
2.0E−06
50
19


IL23A
TIMP1
0.45
44
6
16
2
88.0%
88.9%
1.3E−06
9.3E−06
50
18


CCR3
IL10
0.45
40
10
15
4
80.0%
79.0%
3.8E−09
0.0003
50
19


ALOX5
HMGB1
0.45
42
8
16
3
84.0%
84.2%
1.6E−06
0.0001
50
19


ICAM1
SERPINA1
0.45
43
7
17
2
86.0%
89.5%
0.0121
8.9E−08
50
19


CASP1
DPP4
0.45
40
10
16
3
80.0%
84.2%
1.9E−07
5.5E−08
50
19


CCR3
TNFRSF1A
0.45
40
9
16
3
81.6%
84.2%
9.5E−09
0.0003
49
19


IL1B
IL1R1
0.45
43
7
16
3
86.0%
84.2%
0.0110
1.7E−09
50
19


DPP4
MAPK14
0.45
38
9
15
3
80.9%
83.3%
0.0007
5.4E−07
47
18


APAF1
MIF
0.45
45
5
15
4
90.0%
79.0%
0.0006
1.3E−08
50
19


HSPA1A
TNFSF5
0.45
41
9
15
4
82.0%
79.0%
4.3E−06
0.0002
50
19


IL32
SERPINA1
0.45
43
7
16
3
86.0%
84.2%
0.0146
1.7E−07
50
19


CD4
TGFB1
0.45
38
12
15
4
76.0%
79.0%
3.3E−08
1.1E−07
50
19


CCR3
IL5
0.44
40
10
16
3
80.0%
84.2%
1.5E−08
0.0005
50
19


CCR3
IL1B
0.44
39
11
16
3
78.0%
84.2%
2.2E−09
0.0005
50
19


IL1R1
PTPRC
0.44
42
8
15
4
84.0%
79.0%
4.0E−09
0.0146
50
19


CCR3
PTPRC
0.44
41
9
16
3
82.0%
84.2%
4.0E−09
0.0005
50
19


CD19
EGR1
0.44
43
7
16
3
86.0%
84.2%
0.0001
0.0001
50
19


IFI16
IRF1
0.44
45
5
16
3
90.0%
84.2%
2.7E−09
0.0015
50
19


MIF
TNFSF6
0.44
48
2
15
4
96.0%
79.0%
4.6E−09
0.0008
50
19


C1QA
MIF
0.44
48
2
15
4
96.0%
79.0%
0.0009
1.8E−07
50
19


IL8
MAPK14
0.44
41
6
15
3
87.2%
83.3%
0.0011
6.2E−06
47
18


SERPINA1
TNFRSF13B
0.44
45
5
16
3
90.0%
84.2%
4.8E−08
0.0213
50
19


ELA2

0.44
46
4
15
4
92.0%
79.0%
2.4E−09

50
19


IFI16
PLA2G7
0.44
42
8
17
2
84.0%
89.5%
1.8E−07
0.0018
50
19


MAPK14
MYC
0.44
40
7
15
3
85.1%
83.3%
2.9E−08
0.0011
47
18


TGFB1
TNFSF5
0.44
44
6
17
2
88.0%
89.5%
6.6E−06
4.9E−08
50
19


HSPA1A
TOSO
0.44
43
7
16
3
86.0%
84.2%
3.1E−07
0.0003
50
19


MIF
MNDA
0.44
40
10
15
4
80.0%
79.0%
1.5E−08
0.0010
50
19


CTLA4
EGR1
0.44
40
10
16
3
80.0%
84.2%
0.0001
4.0E−06
50
19


IL1R1
MHC2TA
0.44
44
5
15
4
89.8%
79.0%
4.7E−07
0.0186
49
19


CD8A
SERPINA1
0.44
40
10
16
3
80.0%
84.2%
0.0250
2.3E−07
50
19


DPP4
IL1R1
0.43
42
8
15
4
84.0%
79.0%
0.0213
3.8E−07
50
19


IL23A
IL5
0.43
39
11
14
4
78.0%
77.8%
4.1E−08
2.0E−05
50
18


ALOX5
CTLA4
0.43
41
9
16
3
82.0%
84.2%
4.4E−06
0.0002
50
19


IL15
SERPINA1
0.43
41
9
16
3
82.0%
84.2%
0.0277
1.2E−08
50
19


CD86
MAPK14
0.43
39
8
15
3
83.0%
83.3%
0.0014
3.7E−08
47
18


IFI16
IL18BP
0.43
46
4
16
3
92.0%
84.2%
3.1E−08
0.0023
50
19


PLA2G7
TIMP1
0.43
43
7
16
3
86.0%
84.2%
7.8E−07
2.3E−07
50
19


MAPK14
PLA2G7
0.43
38
9
15
3
80.9%
83.3%
4.1E−07
0.0015
47
18


CD4
ICAM1
0.43
41
9
15
4
82.0%
79.0%
2.1E−07
2.2E−07
50
19


ADAM17
SERPINA1
0.43
41
9
16
3
82.0%
84.2%
0.0310
3.3E−07
50
19


IL1R1
TOSO
0.43
42
8
15
4
84.0%
79.0%
4.1E−07
0.0252
50
19


MMP12
SERPINA1
0.43
41
9
16
3
82.0%
84.2%
0.0314
3.7E−09
50
19


HSPA1A
MYC
0.43
42
8
16
3
84.0%
84.2%
2.0E−08
0.0004
50
19


MAPK14
TNFRSF13B
0.43
42
5
15
3
89.4%
83.3%
3.7E−07
0.0016
47
18


IL32
MAPK14
0.43
37
10
15
3
78.7%
83.3%
0.0016
3.1E−06
47
18


ALOX5
IL8
0.43
40
10
16
3
80.0%
84.2%
5.1E−06
0.0003
50
19


HSPA1A
IRF1
0.43
43
7
15
4
86.0%
79.0%
4.5E−09
0.0004
50
19


NFKB1
TOSO
0.43
46
4
16
3
92.0%
84.2%
4.7E−07
3.2E−08
50
19


HLADRA
IFI16
0.43
43
7
16
3
86.0%
84.2%
0.0028
7.0E−07
50
19


IL23A
TGFB1
0.43
44
6
16
2
88.0%
88.9%
2.1E−07
2.7E−05
50
18


CASP3
IL1R1
0.43
40
10
15
4
80.0%
79.0%
0.0297
1.2E−08
50
19


CTLA4
TIMP1
0.43
45
5
16
3
90.0%
84.2%
1.0E−06
6.3E−06
50
19


APAF1
IL1R1
0.43
43
7
15
4
86.0%
79.0%
0.0318
3.2E−08
50
19


IFI16
IL8
0.43
44
6
17
2
88.0%
89.5%
5.9E−06
0.0030
50
19


CASP3
MAPK14
0.42
38
9
14
4
80.9%
77.8%
0.0019
3.8E−08
47
18


IL1R1
PTGS2
0.42
41
9
16
3
82.0%
84.2%
6.9E−09
0.0338
50
19


ALOX5
MHC2TA
0.42
42
7
16
3
85.7%
84.2%
7.7E−07
0.0004
49
19


HMGB1
TIMP1
0.42
43
7
17
2
86.0%
89.5%
1.1E−06
5.2E−06
50
19


CXCL1
MAPK14
0.42
43
4
15
3
91.5%
83.3%
0.0021
1.5E−08
47
18


CCR3
VEGF
0.42
40
10
15
4
80.0%
79.0%
6.5E−09
0.0012
50
19


IFI16
IL1B
0.42
43
7
16
3
86.0%
84.2%
5.5E−09
0.0038
50
19


ALOX5
IL23A
0.42
42
8
14
4
84.0%
77.8%
3.7E−05
0.0002
50
18


CTLA4
TLR2
0.42
38
11
15
4
77.6%
79.0%
0.0034
1.0E−05
49
19


CD86
IFI16
0.42
45
5
16
3
90.0%
84.2%
0.0040
3.0E−08
50
19


ICAM1
IL23A
0.42
41
9
15
3
82.0%
83.3%
3.9E−05
5.5E−07
50
18


IL18BP
MAPK14
0.42
37
10
15
3
78.7%
83.3%
0.0025
2.0E−07
47
18


EGR1
MYC
0.42
40
10
16
3
80.0%
84.2%
3.3E−08
0.0003
50
19


MIF
PTPRC
0.42
42
8
15
4
84.0%
79.0%
1.1E−08
0.0022
50
19


DPP4
NFKB1
0.42
44
6
15
4
88.0%
79.0%
4.8E−08
7.5E−07
50
19


HLADRA
HSPA1A
0.42
42
8
15
4
84.0%
79.0%
0.0006
1.0E−06
50
19


ADAM17
CD19
0.42
42
8
16
3
84.0%
84.2%
0.0003
5.8E−07
50
19


CASP3
IFI16
0.42
46
4
16
3
92.0%
84.2%
0.0044
1.9E−08
50
19


CXCR3
IFI16
0.42
43
7
16
3
86.0%
84.2%
0.0044
2.3E−07
50
19


ALOX5
TNFSF5
0.42
39
11
15
4
78.0%
79.0%
1.6E−05
0.0005
50
19


HLADRA
TIMP1
0.41
42
8
16
3
84.0%
84.2%
1.6E−06
1.2E−06
50
19


HSPA1A
LTA
0.41
37
10
14
4
78.7%
77.8%
3.3E−07
0.0244
47
18


HSPA1A
PLA2G7
0.41
43
7
15
4
86.0%
79.0%
4.9E−07
0.0008
50
19


MAPK14
PTGS2
0.41
37
10
15
3
78.7%
83.3%
2.6E−08
0.0032
47
18


TLR2
TNFRSF1A
0.41
38
10
15
4
79.2%
79.0%
5.7E−08
0.0387
48
19


ALOX5
MYC
0.41
40
10
15
4
80.0%
79.0%
4.4E−08
0.0006
50
19


IL18BP
TIMP1
0.41
42
8
16
3
84.0%
84.2%
1.8E−06
7.5E−08
50
19


CD4
EGR1
0.41
38
12
16
3
76.0%
84.2%
0.0004
5.1E−07
50
19


IFI16
IL32
0.41
43
7
16
3
86.0%
84.2%
7.9E−07
0.0059
50
19


ALOX5
CASP3
0.41
41
9
15
4
82.0%
79.0%
2.5E−08
0.0007
50
19


CD86
MIF
0.41
41
9
16
3
82.0%
84.2%
0.0032
4.3E−08
50
19


CXCR3
MAPK14
0.41
41
6
15
3
87.2%
83.3%
0.0037
1.2E−06
47
18


CASP1
CD86
0.41
44
6
16
3
88.0%
84.2%
4.5E−08
3.2E−07
50
19


ALOX5
TNFRSF1A
0.41
40
9
16
3
81.6%
84.2%
5.2E−08
0.0018
49
19


IL10
MIF
0.41
45
5
16
3
90.0%
84.2%
0.0033
2.4E−08
50
19


DPP4
HSPA1A
0.41
40
10
15
4
80.0%
79.0%
0.0010
1.1E−06
50
19


APAF1
HSPA1A
0.41
41
9
16
3
82.0%
84.2%
0.0010
6.6E−08
50
19


ALOX5
CCR5
0.41
42
8
15
4
84.0%
79.0%
2.1E−06
0.0007
50
19


CASP1
LTA
0.41
39
8
16
2
83.0%
88.9%
4.1E−07
8.2E−06
47
18


MAPK14
TNF
0.41
40
7
15
3
85.1%
83.3%
1.4E−07
0.0040
47
18


CCR5
TGFB1
0.41
42
8
15
4
84.0%
79.0%
1.8E−07
2.2E−06
50
19


TLR2
TNFSF5
0.41
38
11
15
4
77.6%
79.0%
2.6E−05
0.0061
49
19


IL1RN
IL23A
0.41
44
6
14
4
88.0%
77.8%
6.7E−05
1.4E−07
50
18


CASP1
CD19
0.40
43
7
16
3
86.0%
84.2%
0.0005
3.9E−07
50
19


CXCR3
HSPA1A
0.40
40
10
15
4
80.0%
79.0%
0.0012
4.1E−07
50
19


CXCL1
HSPA1A
0.40
40
10
15
4
80.0%
79.0%
0.0012
1.5E−08
50
19


ALOX5
DPP4
0.40
39
11
15
4
78.0%
79.0%
1.4E−06
0.0009
50
19


CCL5
MIF
0.40
39
11
15
4
78.0%
79.0%
0.0044
5.3E−08
50
19


MHC2TA
TLR2
0.40
39
9
16
3
81.3%
84.2%
0.0066
2.0E−06
48
19


DPP4
TIMP1
0.40
42
8
16
3
84.0%
84.2%
2.9E−06
1.5E−06
50
19


IL8
TLR2
0.40
42
7
15
4
85.7%
79.0%
0.0077
1.6E−05
49
19


ALOX5
CXCL1
0.40
42
8
16
3
84.0%
84.2%
1.6E−08
0.0010
50
19


HSPA1A
IL1B
0.40
42
8
16
3
84.0%
84.2%
1.3E−08
0.0014
50
19


HSPA1A
IL8
0.40
43
7
15
4
86.0%
79.0%
1.7E−05
0.0014
50
19


CD19
TLR4
0.40
42
8
15
4
84.0%
79.0%
3.4E−05
0.0006
50
19


HSPA1A
IL18BP
0.40
40
10
15
4
80.0%
79.0%
1.2E−07
0.0014
50
19


CD19
SSI3
0.40
41
9
16
3
82.0%
84.2%
1.5E−05
0.0006
50
19


CASP3
HSPA1A
0.40
40
10
15
4
80.0%
79.0%
0.0015
3.9E−08
50
19


CD8A
IFI16
0.40
42
8
17
2
84.0%
89.5%
0.0103
1.1E−06
50
19


CCL5
CCR5
0.40
44
6
15
4
88.0%
79.0%
3.2E−06
6.3E−08
50
19


MYC
TLR2
0.40
42
7
16
3
85.7%
84.2%
0.0087
8.1E−08
49
19


MHC2TA
TIMP1
0.40
42
7
16
3
85.7%
84.2%
3.8E−06
2.4E−06
49
19


CD19
NFKB1
0.40
45
5
16
3
90.0%
84.2%
1.2E−07
0.0007
50
19


CASP1
IL32
0.40
41
9
16
3
82.0%
84.2%
1.4E−06
5.5E−07
50
19


IL32
TIMP1
0.40
43
7
15
4
86.0%
79.0%
3.6E−06
1.5E−06
50
19


CXCR3
TIMP1
0.39
43
7
15
4
86.0%
79.0%
3.7E−06
5.8E−07
50
19


CTLA4
ICAM1
0.39
41
9
16
3
82.0%
84.2%
9.4E−07
2.3E−05
50
19


HSPA1A
TNF
0.39
43
7
15
4
86.0%
79.0%
1.2E−07
0.0018
50
19


IFI16
SERPINE1
0.39
43
7
16
3
86.0%
84.2%
0.0006
0.0122
50
19


ICAM1
TNFSF5
0.39
44
6
16
3
88.0%
84.2%
4.1E−05
9.6E−07
50
19


MHC2TA
NFKB1
0.39
40
9
15
4
81.6%
79.0%
1.6E−07
2.7E−06
49
19


IFI16
TNFRSF13B
0.39
43
7
17
2
86.0%
89.5%
3.1E−07
0.0123
50
19


APAF1
MAPK14
0.39
41
6
16
2
87.2%
88.9%
0.0072
2.4E−07
47
18


CD4
TLR2
0.39
37
12
15
4
75.5%
79.0%
0.0109
1.1E−06
49
19


IFI16
IL15
0.39
44
6
17
2
88.0%
89.5%
6.3E−08
0.0131
50
19


HSPA1A
TNFRSF13B
0.39
41
9
16
3
82.0%
84.2%
3.4E−07
0.0019
50
19


CCR3
IL15
0.39
40
10
15
4
80.0%
79.0%
6.7E−08
0.0049
50
19


EGR1
MHC2TA
0.39
42
7
16
3
85.7%
84.2%
3.1E−06
0.0014
49
19


EGR1
MAPK14
0.39
41
6
15
3
87.2%
83.3%
0.0083
0.0022
47
18


CD8A
MAPK14
0.39
39
8
15
3
83.0%
83.3%
0.0085
1.1E−05
47
18


CCL5
CCR3
0.39
45
5
15
4
90.0%
79.0%
0.0055
9.3E−08
50
19


HMGB1
TLR2
0.39
43
6
15
4
87.8%
79.0%
0.0141
2.4E−05
49
19


CTLA4
IL1RN
0.39
41
9
16
3
82.0%
84.2%
2.8E−07
3.4E−05
50
19


CD19
TGFB1
0.39
43
7
16
3
86.0%
84.2%
4.1E−07
0.0011
50
19


CTLA4
TGFB1
0.39
42
8
15
4
84.0%
79.0%
4.2E−07
3.4E−05
50
19


LTA
NFKB1
0.39
39
8
15
3
83.0%
83.3%
3.8E−06
9.7E−07
47
18


CCL3
MIF
0.38
39
11
15
4
78.0%
79.0%
0.0098
3.2E−08
50
19


ADAM17
IL23A
0.38
40
10
15
3
80.0%
83.3%
0.0002
1.9E−06
50
18


MIF
PTGS2
0.38
40
10
15
4
80.0%
79.0%
3.7E−08
0.0101
50
19


EGR1
IFI16
0.38
40
10
16
3
80.0%
84.2%
0.0204
0.0013
50
19


MIF
VEGF
0.38
41
9
15
4
82.0%
79.0%
3.5E−08
0.0110
50
19


EGR1
TNFSF5
0.38
40
10
15
4
80.0%
79.0%
7.2E−05
0.0014
50
19


IL15
MAPK14
0.38
39
8
15
3
83.0%
83.3%
0.0124
2.5E−07
47
18


IFI16
PTPRC
0.38
39
11
16
3
78.0%
84.2%
5.2E−08
0.0231
50
19


ICAM1
MHC2TA
0.38
41
8
16
3
83.7%
84.2%
4.8E−06
2.5E−06
49
19


CCR5
NFKB1
0.38
39
11
16
3
78.0%
84.2%
2.4E−07
6.7E−06
50
19


ALOX5
APAF1
0.38
45
5
16
3
90.0%
84.2%
2.2E−07
0.0025
50
19


ALOX5
CD86
0.38
40
10
16
3
80.0%
84.2%
1.5E−07
0.0026
50
19


ADAM17
IFI16
0.38
42
8
15
4
84.0%
79.0%
0.0261
3.0E−06
50
19


SERPINE1
TLR2
0.38
39
10
16
3
79.6%
84.2%
0.0218
0.0014
49
19


IL23A
TXNRD1
0.38
43
7
15
3
86.0%
83.3%
1.3E−07
0.0002
50
18


CCR5
TLR2
0.38
41
8
16
3
83.7%
84.2%
0.0224
7.5E−06
49
19


EGR1
IL23A
0.38
39
11
15
3
78.0%
83.3%
0.0002
0.0009
50
18


DPP4
MIF
0.38
39
11
15
4
78.0%
79.0%
0.0146
4.4E−06
50
19


ALOX5
PLA2G7
0.37
41
9
15
4
82.0%
79.0%
2.5E−06
0.0033
50
19


CD19
SERPINE1
0.37
39
11
15
4
78.0%
79.0%
0.0015
0.0019
50
19


SERPINA1

0.37
46
4
15
4
92.0%
79.0%
3.7E−08

50
19


CD19
TIMP1
0.37
44
6
16
3
88.0%
84.2%
9.3E−06
0.0019
50
19


ALOX5
IL1B
0.37
41
9
15
4
82.0%
79.0%
4.0E−08
0.0035
50
19


CD4
MIF
0.37
42
8
16
3
84.0%
84.2%
0.0179
2.7E−06
50
19


CXCL1
IFI16
0.37
46
4
15
4
92.0%
79.0%
0.0357
5.5E−08
50
19


EGR1
TLR2
0.37
40
9
16
3
81.6%
84.2%
0.0312
0.0023
49
19


CD19
ICAM1
0.37
43
7
16
3
86.0%
84.2%
2.7E−06
0.0022
50
19


IL8
TLR4
0.37
39
11
15
4
78.0%
79.0%
0.0001
6.7E−05
50
19


IL23A
SSI3
0.37
39
11
14
4
78.0%
77.8%
2.8E−05
0.0003
50
18


IL23A
TLR4
0.37
39
11
14
4
78.0%
77.8%
7.6E−05
0.0003
50
18


APAF1
CD19
0.37
42
8
15
4
84.0%
79.0%
0.0025
3.7E−07
50
19


IL23A
PLAUR
0.37
39
11
14
4
78.0%
77.8%
5.7E−07
0.0003
50
18


IL1B
MIF
0.37
38
12
15
4
76.0%
79.0%
0.0226
5.2E−08
50
19


MAPK14
PLAUR
0.37
40
7
15
3
85.1%
83.3%
7.4E−07
0.0236
47
18


HMGB1
TXNRD1
0.37
41
9
15
4
82.0%
79.0%
1.4E−07
6.4E−05
50
19


CASP1
CASP3
0.36
44
6
16
3
88.0%
84.2%
1.6E−07
2.0E−06
50
19


CCR5
EGR1
0.36
39
11
15
4
78.0%
79.0%
0.0029
1.3E−05
50
19


IFI16
PTGS2
0.36
40
10
15
4
80.0%
79.0%
8.3E−08
0.0490
50
19


EGR1
TOSO
0.36
39
11
16
3
78.0%
84.2%
6.8E−06
0.0030
50
19


CCR5
ICAM1
0.36
41
9
16
3
82.0%
84.2%
3.4E−06
1.3E−05
50
19


HSPA1A
SERPINE1
0.36
43
7
15
4
86.0%
79.0%
0.0023
0.0069
50
19


MIF
TNF
0.36
39
11
15
4
78.0%
79.0%
4.4E−07
0.0251
50
19


CD86
TIMP1
0.36
43
7
17
2
86.0%
89.5%
1.4E−05
3.0E−07
50
19


CTLA4
TLR4
0.36
41
9
15
4
82.0%
79.0%
0.0002
8.8E−05
50
19


IL32
MIF
0.36
39
11
15
4
78.0%
79.0%
0.0257
5.7E−06
50
19


EGR1
HLADRA
0.36
43
7
16
3
86.0%
84.2%
1.1E−05
0.0032
50
19


TLR2
TOSO
0.36
39
10
15
4
79.6%
79.0%
7.6E−06
0.0445
49
19


LTA
TIMP1
0.36
38
9
15
3
80.9%
83.3%
0.0005
2.4E−06
47
18


CASP1
IL8
0.36
38
12
15
4
76.0%
79.0%
8.9E−05
2.3E−06
50
19


DPP4
EGR1
0.36
42
8
15
4
84.0%
79.0%
0.0035
8.4E−06
50
19


HLADRA
TGFB1
0.36
43
7
15
4
86.0%
79.0%
1.2E−06
1.2E−05
50
19


HMGB1
TLR4
0.36
40
10
15
4
80.0%
79.0%
0.0002
7.8E−05
50
19


HMOX1
TIMP1
0.36
41
9
15
4
82.0%
79.0%
1.6E−05
7.6E−08
50
19


ALOX5
IL18BP
0.36
40
10
15
4
80.0%
79.0%
6.4E−07
0.0061
50
19


HMOX1
MAPK14
0.36
42
5
15
3
89.4%
83.3%
0.0316
1.8E−07
47
18


TNFSF5
TXNRD1
0.36
41
9
15
4
82.0%
79.0%
1.7E−07
0.0002
50
19


HSPA1A
PTGS2
0.36
39
11
15
4
78.0%
79.0%
1.1E−07
0.0086
50
19


TIMP1
TOSO
0.36
42
8
16
3
84.0%
84.2%
8.6E−06
1.7E−05
50
19


EGR1
HMGB1
0.36
39
11
15
4
78.0%
79.0%
8.8E−05
0.0040
50
19


HMOX1
HSPA1A
0.36
38
12
15
4
76.0%
79.0%
0.0099
8.9E−08
50
19


EGR1
SERPINE1
0.36
44
6
16
3
88.0%
84.2%
0.0035
0.0044
50
19


HMGB1
TGFB1
0.36
43
7
15
4
86.0%
79.0%
1.5E−06
9.7E−05
50
19


CCR3
CD86
0.36
38
12
15
4
76.0%
79.0%
4.3E−07
0.0258
50
19


TGFB1
TOSO
0.36
45
5
15
4
90.0%
79.0%
1.0E−05
1.5E−06
50
19


HMGB1
ICAM1
0.36
42
8
16
3
84.0%
84.2%
5.1E−06
9.8E−05
50
19


CD19
IL1RN
0.35
39
11
15
4
78.0%
79.0%
1.0E−06
0.0044
50
19


CASP3
MIF
0.35
44
6
15
4
88.0%
79.0%
0.0426
2.7E−07
50
19


HLADRA
ICAM1
0.35
40
10
15
4
80.0%
79.0%
5.6E−06
1.6E−05
50
19


C1QA
CD19
0.35
39
11
16
3
78.0%
84.2%
0.0050
7.2E−06
50
19


C1QA
MAPK14
0.35
36
11
14
4
76.6%
77.8%
0.0463
7.5E−05
47
18


MAPK14
TXNRD1
0.35
38
9
14
4
80.9%
77.8%
4.9E−07
0.0476
47
18


CD8A
TIMP1
0.35
45
5
15
4
90.0%
79.0%
2.5E−05
8.5E−06
50
19


CTLA4
TXNRD1
0.35
43
7
16
3
86.0%
84.2%
2.6E−07
0.0002
50
19


ALOX5
SERPINE1
0.35
41
9
16
3
82.0%
84.2%
0.0045
0.0097
50
19


MAPK14
NFKB1
0.35
38
9
14
4
80.9%
77.8%
1.6E−06
0.0491
47
18


ADAM17
CTLA4
0.35
41
9
15
4
82.0%
79.0%
0.0002
1.1E−05
50
19


CASP1
CD8A
0.35
43
7
16
3
86.0%
84.2%
9.4E−06
4.2E−06
50
19


MYC
NFKB1
0.35
40
10
16
3
80.0%
84.2%
9.3E−07
6.4E−07
50
19


C1QA
HMGB1
0.35
44
6
15
4
88.0%
79.0%
0.0001
8.7E−06
50
19


EGR1
HSPA1A
0.35
42
8
16
3
84.0%
84.2%
0.0166
0.0071
50
19


APAF1
CTLA4
0.34
41
9
16
3
82.0%
84.2%
0.0002
1.0E−06
50
19


CASP3
CCR3
0.34
38
12
15
4
76.0%
79.0%
0.0480
4.3E−07
50
19


ALOX5
TNFRSF13B
0.34
39
11
15
4
78.0%
79.0%
2.8E−06
0.0139
50
19


HSPA1A
PTPRC
0.34
39
11
15
4
78.0%
79.0%
2.7E−07
0.0193
50
19


DPP4
TGFB1
0.34
46
4
16
3
92.0%
84.2%
2.8E−06
2.0E−05
50
19


C1QA
IL23A
0.34
40
10
14
4
80.0%
77.8%
0.0010
6.1E−05
50
18


CCR5
TLR4
0.34
41
9
15
4
82.0%
79.0%
0.0004
3.7E−05
50
19


ALOX5
EGR1
0.34
42
8
16
3
84.0%
84.2%
0.0091
0.0157
50
19


ALOX5
IRF1
0.34
42
8
15
4
84.0%
79.0%
1.9E−07
0.0158
50
19


SERPINE1
SSI3
0.34
44
6
15
4
88.0%
79.0%
0.0002
0.0072
50
19


CD86
EGR1
0.34
40
10
16
3
80.0%
84.2%
0.0094
8.6E−07
50
19


CTLA4
PTPRC
0.34
44
6
15
4
88.0%
79.0%
3.1E−07
0.0003
50
19


IL18BP
TGFB1
0.34
42
8
16
3
84.0%
84.2%
3.1E−06
1.6E−06
50
19


APAF1
IL23A
0.34
42
8
14
4
84.0%
77.8%
0.0012
1.5E−06
50
18


EGR1
IL8
0.34
41
9
16
3
82.0%
84.2%
0.0003
0.0102
50
19


CD19
TXNRD1
0.34
42
8
15
4
84.0%
79.0%
4.5E−07
0.0101
50
19


ALOX5
PTPRC
0.34
39
11
15
4
78.0%
79.0%
3.5E−07
0.0191
50
19


ADAM17
MHC2TA
0.33
39
10
15
4
79.6%
79.0%
3.3E−05
2.2E−05
49
19


IL23A
SERPINE1
0.33
39
11
14
4
78.0%
77.8%
0.0145
0.0014
50
18


CD19
PLAUR
0.33
38
12
15
4
76.0%
79.0%
1.3E−06
0.0123
50
19


IE23A
MNDA
0.33
42
8
14
4
84.0%
77.8%
1.8E−06
0.0015
50
18


ALOX5
TNF
0.33
39
11
15
4
78.0%
79.0%
1.8E−06
0.0227
50
19


DPP4
ICAM1
0.33
40
10
15
4
80.0%
79.0%
1.4E−05
3.0E−05
50
19


HLADRA
NFKB1
0.33
38
12
15
4
76.0%
79.0%
1.9E−06
4.2E−05
50
19


CTLA4
PLAUR
0.33
41
9
16
3
82.0%
84.2%
1.4E−06
0.0004
50
19


CTLA4
IL5
0.33
41
9
15
4
82.0%
79.0%
1.8E−06
0.0004
50
19


CD4
TXNRD1
0.33
38
12
15
4
76.0%
79.0%
6.4E−07
1.7E−05
50
19


CASP1
IL15
0.33
40
10
15
4
80.0%
79.0%
9.8E−07
9.9E−06
50
19


HSPA1A
NFKB1
0.33
38
12
15
4
76.0%
79.0%
2.2E−06
0.0383
50
19


TIMP1
TNF
0.33
41
9
15
4
82.0%
79.0%
2.2E−06
6.8E−05
50
19


IL8
SERPINE1
0.33
39
11
15
4
78.0%
79.0%
0.0130
0.0004
50
19


EGR1
IL18BP
0.33
42
8
15
4
84.0%
79.0%
2.8E−06
0.0173
50
19


ADAM17
CCR5
0.33
41
9
15
4
82.0%
79.0%
7.0E−05
2.9E−05
50
19


EGR1
TLR4
0.32
41
9
16
3
82.0%
84.2%
0.0009
0.0178
50
19


CXCR3
NFKB1
0.32
42
8
16
3
84.0%
84.2%
2.4E−06
1.1E−05
50
19


IL1RN
MHC2TA
0.32
40
9
15
4
81.6%
79.0%
5.1E−05
4.4E−06
49
19


CCR5
SERPINE1
0.32
43
7
16
3
86.0%
84.2%
0.0146
7.5E−05
50
19


CD19
IL5
0.32
39
11
15
4
78.0%
79.0%
2.3E−06
0.0188
50
19


MHC2TA
TLR4
0.32
41
8
15
4
83.7%
79.0%
0.0009
5.5E−05
49
19


ICAM1
TOSO
0.32
42
8
16
3
84.0%
84.2%
4.4E−05
2.2E−05
50
19


EGR1
SSI3
0.32
39
11
16
3
78.0%
84.2%
0.0004
0.0219
50
19


ALOX5
IL15
0.32
40
10
15
4
80.0%
79.0%
1.4E−06
0.0389
50
19


CTLA4
SERPINE1
0.32
38
12
15
4
76.0%
79.0%
0.0179
0.0006
50
19


LTA
TGFB1
0.32
38
9
15
3
80.9%
83.3%
0.0003
1.5E−05
47
18


HMGB1
SERPINE1
0.32
39
11
16
3
78.0%
84.2%
0.0198
0.0005
50
19


IFI16

0.32
43
7
16
3
86.0%
84.2%
3.9E−07

50
19


EGR1
IL32
0.32
38
12
15
4
76.0%
79.0%
4.2E−05
0.0259
50
19


CD4
SERPINE1
0.32
40
10
15
4
80.0%
79.0%
0.0203
2.8E−05
50
19


ALOX5
MNDA
0.32
40
10
15
4
80.0%
79.0%
2.3E−06
0.0467
50
19


IL32
NFKB1
0.32
38
12
15
4
76.0%
79.0%
3.5E−06
4.3E−05
50
19


HLADRA
TXNRD1
0.32
39
11
15
4
78.0%
79.0%
1.1E−06
7.9E−05
50
19


MYC
TIMP1
0.32
40
10
15
4
80.0%
79.0%
0.0001
2.4E−06
50
19


HMGB1
IL15
0.31
41
9
15
4
82.0%
79.0%
3.2E−06
0.0006
50
19


CASP1
TNF
0.31
39
11
15
4
78.0%
79.0%
3.7E−06
1.8E−05
50
19


C1QA
CD4
0.31
38
12
15
4
76.0%
79.0%
3.3E−05
3.8E−05
50
19


TLR2

0.31
40
9
15
4
81.6%
79.0%
5.2E−07

49
19


EGR1
PLA2G7
0.31
44
6
16
3
88.0%
84.2%
3.5E−05
0.0321
50
19


IL15
TIMP1
0.31
45
5
16
3
90.0%
84.2%
0.0001
1.9E−06
50
19


CASP1
SERPINE1
0.31
39
11
15
4
78.0%
79.0%
0.0265
2.0E−05
50
19


EGR1
HMOX1
0.31
42
8
15
4
84.0%
79.0%
6.3E−07
0.0363
50
19


PLA2G7
TLR4
0.31
38
12
15
4
76.0%
79.0%
0.0019
4.4E−05
50
19


MHC2TA
SERPINE1
0.31
38
11
15
4
77.6%
79.0%
0.0273
0.0001
49
19


CXCR3
TGFB1
0.31
43
7
15
4
86.0%
79.0%
1.2E−05
2.4E−05
50
19


CD8A
EGR1
0.30
40
10
15
4
80.0%
79.0%
0.0460
5.9E−05
50
19


CCL3
CD19
0.30
38
12
15
4
76.0%
79.0%
0.0442
9.2E−07
50
19


EGR1
TNF
0.30
39
11
15
4
78.0%
79.0%
5.5E−06
0.0467
50
19


IL8
TIMP1
0.30
39
11
15
4
78.0%
79.0%
0.0002
0.0011
50
19


ICAM1
PLA2G7
0.30
40
10
15
4
80.0%
79.0%
5.1E−05
4.6E−05
50
19


HLADRA
SERPINE1
0.30
39
11
15
4
78.0%
79.0%
0.0388
0.0001
50
19


CXCR3
ICAM1
0.30
38
12
15
4
76.0%
79.0%
4.9E−05
3.0E−05
50
19


HLADRA
TLR4
0.30
38
12
15
4
76.0%
79.0%
0.0025
0.0001
50
19


DPP4
IL1RN
0.30
38
12
15
4
76.0%
79.0%
1.0E−05
0.0001
50
19


CXCL1
TLR4
0.30
39
11
15
4
78.0%
79.0%
0.0026
1.1E−06
50
19


IL32
SERPINE1
0.30
41
9
15
4
82.0%
79.0%
0.0453
8.8E−05
50
19


MAPK14

0.30
37
10
14
4
78.7%
77.8%
1.7E−06

47
18


TLR4
TOSO
0.30
38
12
15
4
76.0%
79.0%
0.0001
0.0027
50
19


APAF1
MHC2TA
0.30
37
12
15
4
75.5%
79.0%
0.0002
7.5E−06
49
19


HMGB1
PLAUR
0.30
39
11
15
4
78.0%
79.0%
5.5E−06
0.0012
50
19


IL23A
IRF1
0.30
47
3
14
4
94.0%
77.8%
1.9E−06
0.0067
50
18


CASP1
MYC
0.30
39
11
15
4
78.0%
79.0%
5.9E−06
4.0E−05
50
19


MHC2TA
TXNRD1
0.29
37
12
15
4
75.5%
79.0%
3.1E−06
0.0002
49
19


TLR4
TNFRSF1A
0.29
39
10
15
4
79.6%
79.0%
6.7E−06
0.0113
49
19


HMOX1
TNFSF5
0.29
45
5
15
4
90.0%
79.0%
0.0035
1.3E−06
50
19


ICAM1
LTA
0.29
36
11
14
4
76.6%
77.8%
4.6E−05
0.0011
47
18


APAF1
CCR5
0.29
41
9
15
4
82.0%
79.0%
0.0003
1.0E−05
50
19


CCL5
IL23A
0.29
38
12
14
4
76.0%
77.8%
0.0100
1.1E−05
50
18


NFKB1
PLA2G7
0.29
39
11
15
4
78.0%
79.0%
0.0001
1.2E−05
50
19


IL15
IL23A
0.29
39
11
14
4
78.0%
77.8%
0.0108
4.1E−06
50
18


PLA2G7
TGFB1
0.29
41
9
15
4
82.0%
79.0%
2.9E−05
0.0001
50
19


ADAM17
DPP4
0.28
41
9
15
4
82.0%
79.0%
0.0002
0.0002
50
19


HMOX1
IL23A
0.28
41
9
14
4
82.0%
77.8%
0.0136
2.8E−06
50
18


IL5
TOSO
0.28
38
12
15
4
76.0%
79.0%
0.0003
1.4E−05
50
19


CCR5
TXNRD1
0.28
40
10
15
4
80.0%
79.0%
5.7E−06
0.0006
50
19


IL32
TLR4
0.28
41
9
15
4
82.0%
79.0%
0.0080
0.0003
50
19


MYC
TGFB1
0.27
46
4
15
4
92.0%
79.0%
4.7E−05
1.4E−05
50
19


ICAM1
MYC
0.27
38
12
15
4
76.0%
79.0%
1.5E−05
0.0002
50
19


IL23A
TNFRSF1A
0.27
38
11
14
4
77.6%
77.8%
1.3E−05
0.0187
49
18


CXCL1
IL8
0.27
40
10
15
4
80.0%
79.0%
0.0045
3.6E−06
50
19


IL10
IL23A
0.27
39
11
14
4
78.0%
77.8%
0.0199
1.3E−05
50
18


MYC
SSI3
0.27
39
11
15
4
78.0%
79.0%
0.0042
1.8E−05
50
19


CCL3
CTLA4
0.27
38
12
15
4
76.0%
79.0%
0.0058
4.3E−06
50
19


ALOX5

0.27
41
9
15
4
82.0%
79.0%
3.1E−06

50
19


HMGB1
IL10
0.27
38
12
15
4
76.0%
79.0%
9.9E−06
0.0048
50
19


IL18BP
TLR4
0.26
41
9
15
4
82.0%
79.0%
0.0135
3.8E−05
50
19


CCR5
PLAUR
0.26
44
6
15
4
88.0%
79.0%
2.3E−05
0.0010
50
19


CCL5
HMGB1
0.26
40
10
15
4
80.0%
79.0%
0.0055
1.9E−05
50
19


C1QA
IL32
0.26
39
11
15
4
78.0%
79.0%
0.0004
0.0003
50
19


IL18BP
TNFSF5
0.26
40
10
15
4
80.0%
79.0%
0.0171
5.0E−05
50
19


EGR1

0.26
38
12
15
4
76.0%
79.0%
5.2E−06

50
19


CASP3
TIMP1
0.25
38
12
15
4
76.0%
79.0%
0.0016
1.8E−05
50
19


CCL3
HMGB1
0.25
40
10
15
4
80.0%
79.0%
0.0089
8.4E−06
50
19


CD8A
NFKB1
0.25
39
11
15
4
78.0%
79.0%
5.3E−05
0.0006
50
19


IL8
TXNRD1
0.25
39
11
15
4
78.0%
79.0%
1.6E−05
0.0115
50
19


SERPINE1

0.25
38
12
15
4
76.0%
79.0%
6.5E−06

50
19


PLA2G7
TXNRD1
0.25
39
11
15
4
78.0%
79.0%
2.1E−05
0.0006
50
19


CASP1
TNFRSF13B
0.24
40
10
15
4
80.0%
79.0%
0.0002
0.0004
50
19


ADAM17
CXCR3
0.24
38
12
15
4
76.0%
79.0%
0.0005
0.0014
50
19


SSI3
TIMP1
0.24
39
11
15
4
78.0%
79.0%
0.0037
0.0200
50
19


NFKB1
TNF
0.23
38
12
15
4
76.0%
79.0%
0.0001
0.0001
50
19


APAF1
MYC
0.20
38
12
15
4
76.0%
79.0%
0.0003
0.0004
50
19


IL1B
IL1RN
0.19
39
11
15
4
78.0%
79.0%
0.0011
8.6E−05
50
19


IRF1
PLA2G7
0.18
42
8
15
4
84.0%
79.0%
0.0098
0.0001
50
19





















TABLE 2E








Prostate
Normals
Sum



Group Size
27.5%
72.5%
100%



N =
19
50
69



Gene
Mean
Mean
p-val









MMP9
12.7
15.1
1.1E−10



ELA2
17.3
21.0
2.4E−09



SERPINA1
12.3
13.5
3.7E−08



IL1R1
18.8
20.3
4.4E−08



IFI16
13.4
14.4
3.9E−07



TLR2
14.4
15.7
5.2E−07



MIF
16.1
14.8
7.2E−07



CCR3
18.2
16.5
1.0E−06



MAPK14
13.5
14.5
1.7E−06



HSPA1A
14.2
15.2
2.4E−06



ALOX5
16.6
17.5
3.1E−06



EGR1
19.1
20.0
5.2E−06



CD19
19.6
17.9
5.4E−06



SERPINE1
20.4
21.7
6.5E−06



IL23A
21.7
20.4
6.4E−05



TLR4
13.9
14.7
9.2E−05



TNFSF5
18.4
17.3
9.7E−05



CTLA4
19.7
18.7
0.0002



IL8
22.5
21.1
0.0002



SSI3
16.7
17.6
0.0002



HMGB1
17.7
17.0
0.0002



TIMP1
13.5
14.0
0.0011



CCR5
18.1
17.2
0.0011



HLADRA
12.4
11.5
0.0015



MHC2TA
16.1
15.3
0.0018



DPP4
19.2
18.5
0.0021



TOSO
16.3
15.7
0.0023



IL32
14.8
14.0
0.0028



ADAM17
17.0
17.6
0.0028



CD8A
16.9
16.1
0.0033



C1QA
20.1
20.9
0.0037



PLA2G7
20.1
19.0
0.0041



CD4
16.2
15.5
0.0043



ICAM1
17.3
17.8
0.0046



CXCR3
18.0
17.3
0.0078



CASP1
15.8
16.2
0.0078



TNFRSF13B
20.5
19.8
0.0157



TGFB1
12.4
12.8
0.0167



LTA
18.7
18.2
0.0180



IFNG
23.1
22.4
0.0233



IL1RN
15.8
16.2
0.0262



IL18BP
17.5
17.1
0.0348



NFKB1
17.1
17.4
0.0416



TNF
18.4
18.0
0.0436



APAF1
17.5
17.8
0.0461



IL5
21.6
22.0
0.0500



PLAUR
14.6
15.0
0.0609



MYC
17.7
17.3
0.0638



MNDA
11.9
12.2
0.0673



TNFRSF1A
14.2
14.5
0.0691



CD86
17.5
17.1
0.0700



CCL5
12.4
12.7
0.0804



IL15
21.0
20.5
0.1039



CASP3
21.0
20.7
0.1360



IL10
22.1
22.5
0.1499



TXNRD1
16.4
16.7
0.1738



TNFSF6
20.3
20.0
0.2374



PTPRC
11.1
11.2
0.2585



PTGS2
16.8
17.0
0.3425



CCL3
20.7
20.9
0.4216



CXCL1
19.5
19.7
0.4257



VEGF
21.9
22.1
0.4270



IL18
20.8
20.9
0.4988



IRF1
13.2
13.3
0.5201



HMOX1
15.9
15.7
0.5619



MMP12
24.0
23.9
0.6881



IL1B
15.8
15.9
0.7473



GZMB
17.8
17.8
0.9601























TABLE 2F











Predicted


Pa-





probability


tient





of prostate


ID
Group
CCR3
SERPINA1
logit
odds
cancer





















99
Cancer
21.36
11.28
31.87
6.9E+13
1.0000


113
Cancer
21.72
12.57
26.18
2.3E+11
1.0000


63
Cancer
20.90
12.42
22.86
8.4E+09
1.0000


56
Cancer
21.60
13.51
20.10
5.3E+08
1.0000


72
Cancer
18.60
11.45
16.74
1.9E+07
1.0000


47
Cancer
17.88
11.62
12.08
1.8E+05
1.0000


32
Cancer
18.62
12.35
11.59
1.1E+05
1.0000


124
Cancer
17.73
12.01
9.04
8.4E+03
0.9999


6
Cancer
19.01
13.44
7.25
1.4E+03
0.9993


46
Cancer
16.59
11.32
7.22
1.4E+03
0.9993


15
Cancer
17.58
12.33
6.39
6.0E+02
0.9983


78
Cancer
16.92
12.06
4.60
9.9E+01
0.9900


66
Cancer
17.19
12.32
4.46
8.7E+01
0.9886


9
Cancer
15.66
11.32
2.46
1.2E+01
0.9214


26
Cancer
17.01
12.68
1.43
4.2E+00
0.8075


119
Cancer
16.78
12.53
1.10
3.0E+00
0.7503


57
Normal
15.97
11.91
0.65
1.9E+00
0.6575


243
Normal
17.27
13.06
0.56
1.8E+00
0.6367


1
Cancer
17.23
13.11
0.07
1.1E+00
0.5180


59
Cancer
16.46
12.54
−0.55
5.8E−01
0.3658


184
Normal
16.96
13.03
−0.83
4.4E−01
0.3042


155
Normal
16.64
12.77
−0.97
3.8E−01
0.2744


161
Normal
17.07
13.34
−2.08
1.3E−01
0.1115


154
Normal
16.71
13.04
−2.18
1.1E−01
0.1019


62
Normal
17.13
13.45
−2.41
9.0E−02
0.0823


68
Cancer
16.73
13.12
−2.56
7.7E−02
0.0716


180
Normal
17.38
13.72
−2.72
6.6E−02
0.0617


138
Normal
16.85
13.26
−2.78
6.2E−02
0.0587


151
Normal
17.57
13.90
−2.78
6.2E−02
0.0582


147
Normal
18.08
14.36
−2.88
5.6E−02
0.0532


102
Normal
16.48
13.00
−3.10
4.5E−02
0.0430


100
Normal
16.33
12.88
−3.18
4.2E−02
0.0399


236
Normal
15.26
12.07
−3.99
1.8E−02
0.0181


133
Normal
16.41
13.15
−4.35
1.3E−02
0.0127


78
Normal
16.03
12.87
−4.70
9.1E−03
0.0090


246
Normal
17.73
14.38
−4.75
8.7E−03
0.0086


220
Normal
16.12
12.98
−4.85
7.8E−03
0.0077


150
Normal
16.58
13.42
−5.06
6.3E−03
0.0063


119
Normal
17.55
14.27
−5.09
6.1E−03
0.0061


267
Normal
16.12
13.08
−5.46
4.2E−03
0.0042


157
Normal
17.11
13.99
−5.67
3.4E−03
0.0034


74
Normal
17.24
14.12
−5.74
3.2E−03
0.0032


239
Normal
14.82
11.99
−5.78
3.1E−03
0.0031


83
Normal
15.92
12.97
−5.80
3.0E−03
0.0030


145
Normal
17.05
13.98
−5.91
2.7E−03
0.0027


245
Normal
16.48
13.48
−5.94
2.6E−03
0.0026


156
Normal
16.30
13.36
−6.09
2.3E−03
0.0023


191
Normal
16.55
13.59
−6.22
2.0E−03
0.0020


257
Normal
15.75
12.93
−6.43
1.6E−03
0.0016


136
Normal
15.61
12.81
−6.45
1.6E−03
0.0016


252
Normal
16.93
13.97
−6.47
1.6E−03
0.0015


85
Normal
16.98
14.03
−6.55
1.4E−03
0.0014


167
Normal
15.22
12.50
−6.68
1.3E−03
0.0013


51
Normal
16.01
13.27
−7.12
8.1E−04
0.0008


142
Normal
16.68
13.88
−7.20
7.4E−04
0.0007


249
Normal
16.36
13.68
−7.67
4.7E−04
0.0005


158
Normal
16.58
13.90
−7.81
4.1E−04
0.0004


109
Normal
16.76
14.16
−8.47
2.1E−04
0.0002


61
Normal
16.03
13.56
−8.67
1.7E−04
0.0002


248
Normal
17.62
14.99
−8.85
1.4E−04
0.0001


265
Normal
15.41
13.18
−9.66
6.4E−05
0.0001


176
Normal
16.59
14.22
−9.67
6.3E−05
0.0001


152
Normal
16.14
13.83
−9.69
6.2E−05
0.0001


269
Normal
15.75
13.54
−10.00
4.5E−05
0.0000


110
Normal
15.22
13.18
−10.60
2.5E−05
0.0000


56
Normal
16.46
14.33
−10.99
1.7E−05
0.0000


45
Normal
16.08
14.08
−11.47
1.0E−05
0.0000


86
Normal
15.21
13.33
−11.50
1.0E−05
0.0000


253
Normal
15.72
14.08
−13.33
1.6E−06
0.0000





















TABLE 2G












total used






(excludes



Normal
Prostate

missing)




















#
#

N =
50
40



#


2-gene models and
Entropy
normal
normal
# pc
# pc
Correct
Correct


#
dis-


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
normals
ease






















CASP1
MIF
0.73
48
2
38
2
96.0%
95.0%
0.0E+00
4.0E−15
50
40


SERPINA1
TNFRSF1A
0.66
44
5
36
4
89.8%
90.0%
0.0E+00
1.3E−07
49
40


CASP1
HMGB1
0.59
42
8
35
5
84.0%
87.5%
1.1E−16
2.2E−11
50
40


MIF
SERPINA1
0.56
46
4
34
6
92.0%
85.0%
4.6E−05
2.1E−12
50
40


MIF
NFKB1
0.55
44
6
35
5
88.0%
87.5%
2.3E−11
2.8E−12
50
40


IFI16
MIF
0.55
45
5
35
5
90.0%
87.5%
3.2E−12
3.3E−07
50
40


CASP1
CCR5
0.55
43
7
34
6
86.0%
85.0%
6.7E−16
3.7E−10
50
40


CASP1
TNFSF5
0.54
40
10
35
5
80.0%
87.5%
8.3E−15
5.4E−10
50
40


NFKB1
TNFSF5
0.54
44
6
34
6
88.0%
85.0%
1.1E−14
6.0E−11
50
40


IL1B
SERPINA1
0.54
44
6
35
5
88.0%
87.5%
0.0002
4.3E−15
50
40


EGR1
ELA2
0.53
44
6
34
6
88.0%
85.0%
2.0E−06
6.0E−05
50
40


CCR3
SERPINA1
0.53
44
6
34
6
88.0%
85.0%
0.0003
2.9E−15
50
40


IRF1
SERPINA1
0.53
43
7
36
4
86.0%
90.0%
0.0003
3.4E−14
50
40


EGR1
MMP9
0.52
44
6
34
6
88.0%
85.0%
2.0E−06
0.0001
50
40


CASP1
IL23A
0.52
43
7
33
6
86.0%
84.6%
7.6E−14
4.7E−09
50
39


CXCL1
SERPINA1
0.52
46
4
34
6
92.0%
85.0%
0.0006
7.3E−15
50
40


PTPRC
SERPINA1
0.52
43
7
33
6
86.0%
84.6%
0.0015
3.1E−13
50
39


ELA2
SERPINA1
0.52
42
8
34
6
84.0%
85.0%
0.0006
5.4E−06
50
40


IFI16
LTA
0.51
42
5
33
6
89.4%
84.6%
7.1E−15
0.0280
47
39


EGR1
MYC
0.51
45
5
35
5
90.0%
87.5%
3.0E−15
0.0003
50
40


MNDA
SERPINA1
0.50
44
6
34
6
88.0%
85.0%
0.0015
1.1E−12
50
40


SERPINA1
TNFSF5
0.50
41
9
34
6
82.0%
85.0%
9.1E−14
0.0015
50
40


EGR1
SERPINA1
0.50
44
6
34
6
88.0%
85.0%
0.0016
0.0004
50
40


HMGB1
SERPINA1
0.50
40
10
32
8
80.0%
80.0%
0.0016
2.8E−14
50
40


EGR1
IFI16
0.50
42
8
34
6
84.0%
85.0%
7.1E−06
0.0005
50
40


IL15
MIF
0.50
45
5
34
6
90.0%
85.0%
8.0E−11
6.0E−15
50
40


EGR1
MIF
0.50
43
7
35
5
86.0%
87.5%
9.2E−11
0.0007
50
40


PLAUR
SERPINA1
0.50
42
8
33
7
84.0%
82.5%
0.0026
2.8E−12
50
40


ELA2
IFI16
0.49
43
7
34
6
86.0%
85.0%
1.3E−05
2.6E−05
50
40


CASP1
HLADRA
0.49
42
8
33
7
84.0%
82.5%
8.5E−15
1.1E−08
50
40


IL23A
NFKB1
0.49
43
7
34
5
86.0%
87.2%
1.2E−09
4.2E−13
50
39


EGR1
MAPK14
0.49
41
6
34
5
87.2%
87.2%
1.8E−07
0.0028
47
39


SERPINA1
TXNRD1
0.49
45
5
33
7
90.0%
82.5%
2.0E−12
0.0045
50
40


MYC
SERPINA1
0.48
42
8
34
6
84.0%
85.0%
0.0053
1.3E−14
50
40


CASP1
ELA2
0.48
41
9
34
6
82.0%
85.0%
4.7E−05
2.0E−08
50
40


CASP1
MMP9
0.48
40
10
33
7
80.0%
82.5%
2.6E−05
2.4E−08
50
40


IL23A
SERPINA1
0.48
41
9
33
6
82.0%
84.6%
0.0044
8.9E−13
50
39


CD4
SERPINA1
0.48
41
9
34
6
82.0%
85.0%
0.0078
1.4E−14
50
40


ELA2
HSPA1A
0.48
42
8
33
7
84.0%
82.5%
1.2E−06
7.0E−05
50
40


ALOX5
ELA2
0.48
41
9
33
7
82.0%
82.5%
8.0E−05
1.8E−05
50
40


IFI16
TNFRSF1A
0.48
42
7
34
6
85.7%
85.0%
1.3E−12
0.0006
49
40


IL18BP
MIF
0.48
40
10
33
7
80.0%
82.5%
3.3E−10
2.6E−14
50
40


EGR1
IL1R1
0.48
43
7
34
6
86.0%
85.0%
5.8E−06
0.0027
50
40


ELA2
MAPK14
0.48
40
7
34
5
85.1%
87.2%
4.1E−07
0.0004
47
39


MAPK14
MIF
0.47
38
9
31
8
80.9%
79.5%
1.8E−09
4.4E−07
47
39


PTGS2
SERPINA1
0.47
40
10
34
6
80.0%
85.0%
0.0120
1.2E−12
50
40


CCR5
SERPINA1
0.47
43
7
34
6
86.0%
85.0%
0.0124
7.6E−14
50
40


CD19
SERPINA1
0.47
43
7
33
7
86.0%
82.5%
0.0142
9.7E−12
50
40


ALOX5
EGR1
0.47
44
6
35
5
88.0%
87.5%
0.0039
2.7E−05
50
40


IL8
SERPINA1
0.47
43
7
34
6
86.0%
85.0%
0.0150
1.3E−13
50
40


CTLA4
EGR1
0.47
44
6
35
5
88.0%
87.5%
0.0041
1.5E−13
50
40


DPP4
SERPINA1
0.47
41
9
33
7
82.0%
82.5%
0.0160
4.2E−14
50
40


APAF1
SERPINA1
0.47
41
9
34
6
82.0%
85.0%
0.0162
1.8E−10
50
40


ALOX5
MIF
0.47
38
12
33
7
76.0%
82.5%
5.3E−10
3.0E−05
50
40


ADAM17
SERPINA1
0.47
41
9
32
8
82.0%
80.0%
0.0167
1.7E−10
50
40


DPP4
NFKB1
0.47
40
10
33
7
80.0%
82.5%
4.5E−09
4.5E−14
50
40


ELA2
IL1R1
0.47
42
8
34
6
84.0%
85.0%
1.1E−05
0.0002
50
40


CASP1
CTLA4
0.47
40
10
34
6
80.0%
85.0%
1.9E−13
6.7E−08
50
40


IL1RN
SERPINA1
0.46
44
6
33
7
88.0%
82.5%
0.0214
1.6E−10
50
40


IFI16
TNFSF5
0.46
40
10
33
7
80.0%
82.5%
1.1E−12
8.6E−05
50
40


CTLA4
SERPINA1
0.46
43
7
34
6
86.0%
85.0%
0.0236
2.2E−13
50
40


CD4
NFKB1
0.46
44
6
35
5
88.0%
87.5%
6.1E−09
3.8E−14
50
40


ICAM1
MIF
0.46
42
8
34
6
84.0%
85.0%
8.3E−10
3.9E−08
50
40


SERPINA1
SERPINE1
0.46
41
9
32
7
82.0%
82.1%
1.5E−07
0.0291
50
39


EGR1
HSPA1A
0.46
45
5
35
5
90.0%
87.5%
4.0E−06
0.0083
50
40


EGR1
SERPINE1
0.46
42
8
33
6
84.0%
84.6%
1.6E−07
0.0088
50
39


ADAM17
MIF
0.46
42
8
32
8
84.0%
80.0%
1.0E−09
3.2E−10
50
40


SERPINA1
TNFRSF13B
0.46
44
6
35
5
88.0%
87.5%
4.9E−13
0.0375
50
40


ELA2
MMP9
0.45
39
11
33
7
78.0%
82.5%
0.0001
0.0003
50
40


ELA2
NFKB1
0.45
40
10
34
6
80.0%
85.0%
1.0E−08
0.0003
50
40


CD19
EGR1
0.45
42
8
34
6
84.0%
85.0%
0.0114
2.7E−11
50
40


MMP9
SERPINA1
0.45
44
6
33
7
88.0%
82.5%
0.0456
0.0001
50
40


EGR1
TNFSF5
0.45
45
5
34
6
90.0%
85.0%
2.5E−12
0.0150
50
40


ALOX5
TNFRSF1A
0.45
41
8
33
7
83.7%
82.5%
6.6E−12
0.0004
49
40


HSPA1A
MIF
0.45
39
11
33
7
78.0%
82.5%
1.7E−09
7.0E−06
50
40


CASP1
EGR1
0.45
43
7
34
6
86.0%
85.0%
0.0158
1.8E−07
50
40


IFI16
IL23A
0.45
42
8
33
6
84.0%
84.6%
6.3E−12
0.0001
50
39


CD4
EGR1
0.45
44
6
34
6
88.0%
85.0%
0.0184
1.0E−13
50
40


CD86
MIF
0.45
41
9
32
8
82.0%
80.0%
2.1E−09
2.0E−13
50
40


CASP1
CCR3
0.45
40
10
32
8
80.0%
80.0%
4.4E−13
2.2E−07
50
40


MIF
TIMP1
0.45
39
11
32
8
78.0%
80.0%
3.9E−09
2.1E−09
50
40


EGR1
IL23A
0.45
45
5
33
6
90.0%
84.6%
8.2E−12
0.0137
50
39


EGR1
TLR2
0.44
41
8
34
6
83.7%
85.0%
6.4E−07
0.0221
49
40


CASP1
SERPINE1
0.44
41
9
32
7
82.0%
82.1%
4.3E−07
6.7E−07
50
39


CD19
IFI16
0.44
40
10
33
7
80.0%
82.5%
0.0004
6.4E−11
50
40


IL5
MMP9
0.44
40
10
33
7
80.0%
82.5%
0.0004
2.2E−10
50
40


CASP1
DPP4
0.44
40
10
32
8
80.0%
80.0%
2.6E−13
3.4E−07
50
40


CCR3
EGR1
0.44
42
8
34
6
84.0%
85.0%
0.0348
7.4E−13
50
40


IL5
MIF
0.44
40
10
33
7
80.0%
82.5%
3.9E−09
2.7E−10
50
40


EGR1
TLR4
0.44
42
8
33
7
84.0%
82.5%
2.6E−09
0.0443
50
40


EGR1
SSI3
0.43
43
7
34
6
86.0%
85.0%
2.3E−10
0.0464
50
40


EGR1
HLADRA
0.43
43
7
34
6
86.0%
85.0%
3.5E−13
0.0474
50
40


ELA2
ICAM1
0.43
43
7
34
6
86.0%
85.0%
2.2E−07
0.0013
50
40


LTA
NFKB1
0.43
39
8
33
6
83.0%
84.6%
7.5E−06
9.3E−13
47
39


IL18
MIF
0.43
41
9
32
8
82.0%
80.0%
6.0E−09
3.2E−12
50
40


APAF1
MIF
0.43
40
10
31
9
80.0%
77.5%
6.3E−09
2.2E−09
50
40


HSPA1A
TNFRSF1A
0.43
40
9
33
7
81.6%
82.5%
2.7E−11
0.0001
49
40


MIF
TXNRD1
0.43
40
10
32
8
80.0%
80.0%
8.6E−11
7.0E−09
50
40


MYC
NFKB1
0.43
42
8
34
6
84.0%
85.0%
6.0E−08
4.9E−13
50
40


ALOX5
CD19
0.43
41
9
34
6
82.0%
85.0%
1.6E−10
0.0005
50
40


ALOX5
CCR3
0.42
41
9
33
7
82.0%
82.5%
1.8E−12
0.0005
50
40


IFI16
MMP9
0.42
40
10
33
7
80.0%
82.5%
0.0011
0.0012
50
40


MIF
TGFB1
0.42
38
12
32
8
76.0%
80.0%
1.3E−09
8.8E−09
50
40


NFKB1
TOSO
0.42
43
7
33
7
86.0%
82.5%
6.4E−13
7.3E−08
50
40


ELA2
TLR2
0.42
41
8
33
7
83.7%
82.5%
2.3E−06
0.0020
49
40


SERPINA1

0.42
44
6
34
6
88.0%
85.0%
5.1E−13

50
40


IFI16
SERPINE1
0.42
43
7
34
5
86.0%
87.2%
1.8E−06
0.0011
50
39


IFI16
MYC
0.42
44
6
34
6
88.0%
85.0%
9.6E−13
0.0020
50
40


MMP9
NFKB1
0.42
44
6
32
8
88.0%
80.0%
1.3E−07
0.0020
50
40


CCR5
IFI16
0.41
43
7
34
6
86.0%
85.0%
0.0024
3.1E−12
50
40


ELA2
TIMP1
0.41
42
8
34
6
84.0%
85.0%
3.3E−08
0.0053
50
40


CCL3
MMP9
0.41
41
9
32
8
82.0%
80.0%
0.0024
6.4E−11
50
40


ELA2
SERPINE1
0.41
39
11
32
7
78.0%
82.1%
3.2E−06
0.0100
50
39


CXCL1
IL1R1
0.41
40
10
32
8
80.0%
80.0%
0.0004
6.2E−12
50
40


CASP1
CD19
0.41
43
7
33
7
86.0%
82.5%
4.3E−10
2.2E−06
50
40


ELA2
MIF
0.41
43
7
32
8
86.0%
80.0%
2.2E−08
0.0066
50
40


ALOX5
HMGB1
0.41
44
6
33
7
88.0%
82.5%
1.2E−11
0.0017
50
40


HMGB1
IFI16
0.41
43
7
34
6
86.0%
85.0%
0.0039
1.2E−11
50
40


ELA2
IL5
0.41
41
9
33
7
82.0%
82.5%
1.9E−09
0.0085
50
40


CASP1
CD8A
0.41
41
9
33
7
82.0%
82.5%
1.0E−11
3.1E−06
50
40


CASP1
CASP3
0.40
43
7
32
8
86.0%
80.0%
2.2E−12
3.4E−06
50
40


ALOX5
CXCL1
0.40
42
8
34
6
84.0%
85.0%
1.0E−11
0.0021
50
40


CCL5
MMP9
0.40
38
12
33
7
76.0%
82.5%
0.0043
9.2E−10
50
40


EGR1

0.40
42
8
34
6
84.0%
85.0%
1.7E−12

50
40


CCR3
ICAM1
0.40
40
10
33
7
80.0%
82.5%
1.7E−06
7.2E−12
50
40


CASP1
CD4
0.40
42
8
34
6
84.0%
85.0%
1.8E−12
3.8E−06
50
40


APAF1
ELA2
0.40
40
10
32
8
80.0%
80.0%
0.0121
1.3E−08
50
40


CD19
NFKB1
0.40
42
8
33
7
84.0%
82.5%
3.3E−07
8.1E−10
50
40


CASP1
PLA2G7
0.40
41
9
33
7
82.0%
82.5%
2.0E−12
4.4E−06
50
40


ICAM1
MMP9
0.40
41
9
33
7
82.0%
82.5%
0.0058
2.1E−06
50
40


ICAM1
IL23A
0.40
41
9
32
7
82.0%
82.1%
1.4E−10
3.0E−06
50
39


IL1R1
MIF
0.40
38
12
30
10
76.0%
75.0%
4.5E−08
0.0009
50
40


DPP4
IFI16
0.40
42
8
34
6
84.0%
85.0%
0.0067
3.6E−12
50
40


CCL5
ELA2
0.40
39
11
32
8
78.0%
80.0%
0.0148
1.3E−09
50
40


CTLA4
NFKB1
0.40
40
10
33
7
80.0%
82.5%
3.9E−07
1.3E−11
50
40


ADAM17
ELA2
0.40
39
11
31
9
78.0%
77.5%
0.0159
1.5E−08
50
40


ALOX5
TNFSF5
0.40
41
9
33
7
82.0%
82.5%
7.8E−11
0.0036
50
40


CASP1
LTA
0.39
37
10
32
7
78.7%
82.1%
8.6E−12
0.0005
47
39


C1QA
MMP9
0.39
38
12
32
8
76.0%
80.0%
0.0079
7.0E−09
50
40


ICAM1
TNFSF5
0.39
40
10
34
6
80.0%
85.0%
8.3E−11
2.8E−06
50
40


IFI16
TNFRSF13B
0.39
43
7
34
6
86.0%
85.0%
2.5E−11
0.0087
50
40


ALOX5
MMP9
0.39
41
9
32
8
82.0%
80.0%
0.0087
0.0042
50
40


ALOX5
SERPINE1
0.39
42
8
34
5
84.0%
87.2%
9.9E−06
0.0037
50
39


CTLA4
IFI16
0.39
42
8
34
6
84.0%
85.0%
0.0094
1.8E−11
50
40


CCR3
IFI16
0.39
41
9
33
7
82.0%
82.5%
0.0101
1.3E−11
50
40


CCL5
CD8A
0.39
40
10
31
9
80.0%
77.5%
2.3E−11
1.9E−09
50
40


ALOX5
IL8
0.39
42
8
34
6
84.0%
85.0%
1.7E−11
0.0047
50
40


MIF
TLR2
0.39
39
10
32
8
79.6%
80.0%
1.8E−05
8.0E−08
49
40


IL1RN
MIF
0.39
38
12
30
10
76.0%
75.0%
7.4E−08
1.7E−08
50
40


ALOX5
IL23A
0.39
42
8
32
7
84.0%
82.1%
2.8E−10
0.0035
50
39


ELA2
TGFB1
0.39
40
10
32
8
80.0%
80.0%
1.4E−08
0.0333
50
40


ELA2
TLR4
0.39
39
11
32
8
78.0%
80.0%
6.0E−08
0.0362
50
40


ELA2
TXNRD1
0.39
40
10
32
8
80.0%
80.0%
1.3E−09
0.0368
50
40


CASP1
IL18BP
0.38
40
10
32
8
80.0%
80.0%
8.5E−12
1.2E−05
50
40


CCR3
NFKB1
0.38
39
11
31
9
78.0%
77.5%
9.6E−07
2.3E−11
50
40


CASP1
IL8
0.38
41
9
32
8
82.0%
80.0%
2.9E−11
1.3E−05
50
40


MMP9
SERPINE1
0.38
40
10
31
8
80.0%
79.5%
1.8E−05
0.0107
50
39


MMP9
TIMP1
0.38
41
9
32
8
82.0%
80.0%
2.2E−07
0.0178
50
40


CD8A
IFI16
0.38
44
6
33
7
88.0%
82.5%
0.0196
4.1E−11
50
40


ALOX5
IL1B
0.38
42
8
34
6
84.0%
85.0%
6.5E−11
0.0088
50
40


CD19
MAPK14
0.38
38
9
33
6
80.9%
84.6%
0.0001
1.1E−08
47
39


CXCL1
HSPA1A
0.38
39
11
32
8
78.0%
80.0%
0.0006
3.8E−11
50
40


ELA2
IL1RN
0.38
42
8
32
8
84.0%
80.0%
3.0E−08
0.0469
50
40


ELA2
SSI3
0.38
38
12
31
9
76.0%
77.5%
6.4E−09
0.0481
50
40


IL1R1
TNFRSF1A
0.38
40
9
33
7
81.6%
82.5%
4.9E−10
0.0085
49
40


CCR5
NFKB1
0.38
40
10
33
7
80.0%
82.5%
1.1E−06
2.4E−11
50
40


ALOX5
TNFRSF13B
0.38
40
10
32
8
80.0%
80.0%
5.9E−11
0.0100
50
40


HMGB1
NFKB1
0.38
40
10
31
9
80.0%
77.5%
1.2E−06
6.1E−11
50
40


CD19
HSPA1A
0.38
40
10
32
8
80.0%
80.0%
0.0007
3.1E−09
50
40


IFI16
IL1B
0.38
41
9
33
7
82.0%
82.5%
8.1E−11
0.0249
50
40


IFI16
TOSO
0.38
42
8
33
7
84.0%
82.5%
1.1E−11
0.0250
50
40


IFI16
IRF1
0.38
43
7
33
7
86.0%
82.5%
3.6E−10
0.0257
50
40


IFI16
IL8
0.38
42
8
34
6
84.0%
85.0%
3.8E−11
0.0258
50
40


ALOX5
MYC
0.38
38
12
32
8
76.0%
80.0%
1.1E−11
0.0121
50
40


CCR3
HSPA1A
0.38
40
10
32
8
80.0%
80.0%
0.0008
3.4E−11
50
40


CASP1
TOSO
0.38
42
8
32
8
84.0%
80.0%
1.2E−11
1.9E−05
50
40


CCL5
IL1R1
0.38
44
6
34
6
88.0%
85.0%
0.0037
4.9E−09
50
40


ALOX5
CCR5
0.38
39
11
33
7
78.0%
82.5%
3.1E−11
0.0129
50
40


ADAM17
IFI16
0.38
40
10
32
8
80.0%
80.0%
0.0310
5.7E−08
50
40


IL32
MMP9
0.38
39
11
31
9
78.0%
77.5%
0.0289
1.1E−11
50
40


CXCL1
IFI16
0.38
43
7
32
8
86.0%
80.0%
0.0318
5.6E−11
50
40


CASP1
IL1R1
0.37
39
11
32
8
78.0%
80.0%
0.0044
2.2E−05
50
40


ALOX5
IFI16
0.37
41
9
32
8
82.0%
80.0%
0.0402
0.0176
50
40


IFI16
IL1R1
0.37
41
9
33
7
82.0%
82.5%
0.0051
0.0405
50
40


CASP1
IL15
0.37
41
9
32
8
82.0%
80.0%
1.6E−11
2.6E−05
50
40


HMOX1
MIF
0.37
41
9
32
8
82.0%
80.0%
2.4E−07
4.7E−11
50
40


MMP9
TNFSF6
0.37
41
9
31
9
82.0%
77.5%
1.3E−11
0.0410
50
40


IL1R1
SERPINE1
0.37
40
10
31
8
80.0%
79.5%
4.1E−05
0.0041
50
39


IL1R1
IL8
0.37
40
10
32
8
80.0%
80.0%
6.3E−11
0.0057
50
40


HSPA1A
MMP9
0.37
40
10
32
8
80.0%
80.0%
0.0425
0.0013
50
40


CD4
IFI16
0.37
41
9
34
6
82.0%
85.0%
0.0482
1.3E−11
50
40


MIF
MNDA
0.37
38
12
31
9
76.0%
77.5%
5.1E−09
2.8E−07
50
40


HSPA1A
IL23A
0.37
39
11
31
8
78.0%
79.5%
1.0E−09
0.0010
50
39


ALOX5
CTLA4
0.37
41
9
33
7
82.0%
82.5%
9.3E−11
0.0260
50
40


CASP1
CD86
0.37
40
10
32
8
80.0%
80.0%
3.1E−11
3.8E−05
50
40


CASP1
IL32
0.37
39
11
32
8
78.0%
80.0%
2.0E−11
3.9E−05
50
40


C1QA
IL1R1
0.37
38
12
30
10
76.0%
75.0%
0.0082
4.4E−08
50
40


HSPA1A
TNFSF5
0.37
39
11
31
9
78.0%
77.5%
5.3E−10
0.0018
50
40


HSPA1A
SERPINE1
0.37
39
11
30
9
78.0%
76.9%
6.1E−05
0.0012
50
39


ALOX5
C1QA
0.36
38
12
31
9
76.0%
77.5%
4.7E−08
0.0312
50
40


HMGB1
HSPA1A
0.36
38
12
30
10
76.0%
75.0%
0.0019
1.7E−10
50
40


ALOX5
DPP4
0.36
40
10
32
8
80.0%
80.0%
3.3E−11
0.0351
50
40


CASP1
CXCR3
0.36
42
8
31
9
84.0%
77.5%
2.3E−11
4.8E−05
50
40


ALOX5
APAF1
0.36
41
9
33
7
82.0%
82.5%
1.7E−07
0.0405
50
40


CASP1
MHC2TA
0.36
39
10
33
7
79.6%
82.5%
3.1E−11
6.2E−05
49
40


MIF
PLAUR
0.36
39
11
32
8
78.0%
80.0%
1.5E−08
5.2E−07
50
40


SERPINE1
TLR2
0.36
39
10
31
8
79.6%
79.5%
0.0001
9.9E−05
49
39


ALOX5
CD8A
0.36
40
10
32
8
80.0%
80.0%
1.9E−10
0.0480
50
40


ALOX5
CASP3
0.36
42
8
33
7
84.0%
82.5%
3.8E−11
0.0484
50
40


IL23A
IL5
0.36
39
11
30
9
78.0%
76.9%
6.5E−08
1.8E−09
50
39


CCL3
IL1R1
0.36
41
9
33
7
82.0%
82.5%
0.0153
2.1E−09
50
40


IL1R1
IL5
0.35
40
10
31
9
80.0%
77.5%
5.7E−08
0.0203
50
40


ELA2

0.35
39
11
31
9
78.0%
77.5%
4.7E−11

50
40


CD19
IL1R1
0.35
38
12
32
8
76.0%
80.0%
0.0261
2.1E−08
50
40


HSPA1A
TNFRSF13B
0.35
39
11
32
8
78.0%
80.0%
4.4E−10
0.0055
50
40


IL23A
MAPK14
0.35
40
7
30
8
85.1%
79.0%
0.0007
1.1E−08
47
38


CXCR3
NFKB1
0.35
39
11
31
9
78.0%
77.5%
1.2E−05
7.1E−11
50
40


IL1R1
MYC
0.34
41
9
33
7
82.0%
82.5%
9.1E−11
0.0384
50
40


HSPA1A
MYC
0.34
39
11
30
10
78.0%
75.0%
9.5E−11
0.0081
50
40


HSPA1A
IL8
0.34
40
10
32
8
80.0%
80.0%
3.8E−10
0.0086
50
40


MAPK14
TNFRSF1A
0.34
36
10
31
8
78.3%
79.5%
1.3E−08
0.0117
46
39


CASP1
TNFRSF13B
0.34
42
8
30
10
84.0%
75.0%
7.2E−10
0.0002
50
40


MHC2TA
MIF
0.34
38
11
31
9
77.6%
77.5%
2.1E−06
1.1E−10
49
40


IL1R1
IL23A
0.34
38
12
30
9
76.0%
76.9%
5.7E−09
0.0272
50
39


MIF
VEGF
0.34
38
12
30
10
76.0%
75.0%
2.2E−09
1.9E−06
50
40


ICAM1
SERPINE1
0.34
39
11
31
8
78.0%
79.5%
0.0003
9.3E−05
50
39


CTLA4
ICAM1
0.34
40
10
31
9
80.0%
77.5%
0.0001
5.6E−10
50
40


IFI16

0.34
41
9
32
8
82.0%
80.0%
9.7E−11

50
40


MAPK14
SERPINE1
0.34
37
10
29
9
78.7%
76.3%
0.0002
0.0021
47
38


MAPK14
TNFSF5
0.34
37
10
30
9
78.7%
76.9%
7.9E−09
0.0026
47
39


IRF1
MIF
0.34
40
10
31
9
80.0%
77.5%
2.5E−06
5.8E−09
50
40


CTLA4
HSPA1A
0.33
38
12
30
10
76.0%
75.0%
0.0150
7.3E−10
50
40


NFKB1
SERPINE1
0.33
40
10
30
9
80.0%
76.9%
0.0005
2.5E−05
50
39


IL32
NFKB1
0.33
41
9
32
8
82.0%
80.0%
2.7E−05
1.7E−10
50
40


CASP1
TLR2
0.33
39
10
31
9
79.6%
77.5%
0.0009
0.0005
49
40


ICAM1
IRF1
0.33
39
11
33
7
78.0%
82.5%
8.0E−09
0.0002
50
40


CCR5
ICAM1
0.33
39
11
32
8
78.0%
80.0%
0.0002
6.3E−10
50
40


MIF
PLA2G7
0.33
41
9
33
7
82.0%
82.5%
1.8E−10
3.9E−06
50
40


CD4
ICAM1
0.33
41
9
32
8
82.0%
80.0%
0.0002
1.9E−10
50
40


ALOX5

0.33
40
10
32
8
80.0%
80.0%
2.0E−10

50
40


CD8A
NFKB1
0.33
40
10
32
8
80.0%
80.0%
3.7E−05
1.4E−09
50
40


HMGB1
ICAM1
0.33
39
11
31
9
78.0%
77.5%
0.0002
1.9E−09
50
40


CASP1
MYC
0.33
42
8
33
7
84.0%
82.5%
2.8E−10
0.0005
50
40


CD4
MIF
0.33
42
8
32
8
84.0%
80.0%
4.6E−06
2.1E−10
50
40


DPP4
ICAM1
0.33
38
12
30
10
76.0%
75.0%
0.0002
3.5E−10
50
40


HSPA1A
IL1B
0.33
38
12
31
9
76.0%
77.5%
2.5E−09
0.0287
50
40


CD4
HSPA1A
0.33
38
12
30
10
76.0%
75.0%
0.0288
2.3E−10
50
40


CASP1
IFNG
0.32
40
10
32
8
80.0%
80.0%
2.9E−10
0.0006
50
40


TIMP1
TNFSF5
0.32
38
12
30
10
76.0%
75.0%
7.5E−09
1.0E−05
50
40


NFKB1
TNFRSF13B
0.32
38
12
31
9
76.0%
77.5%
2.6E−09
5.4E−05
50
40


HLADRA
NFKB1
0.32
38
12
32
8
76.0%
80.0%
5.6E−05
4.5E−10
50
40


HSPA1A
TOSO
0.32
38
12
30
10
76.0%
75.0%
4.5E−10
0.0419
50
40


CCL5
HSPA1A
0.32
39
11
32
8
78.0%
80.0%
0.0485
2.1E−07
50
40


HMGB1
MAPK14
0.32
38
9
31
8
80.9%
79.5%
0.0081
6.9E−09
47
39


IL23A
TIMP1
0.32
39
11
30
9
78.0%
76.9%
4.4E−05
2.4E−08
50
39


ICAM1
LTA
0.32
36
11
30
9
76.6%
76.9%
9.4E−10
0.0164
47
39


CCL3
SERPINE1
0.32
40
10
31
8
80.0%
79.5%
0.0014
3.3E−08
50
39


IL18BP
NFKB1
0.32
40
10
32
8
80.0%
80.0%
7.3E−05
5.9E−10
50
40


CXCL1
MAPK14
0.32
38
9
30
9
80.9%
76.9%
0.0089
4.1E−09
47
39


C1QA
MIF
0.32
38
12
30
10
76.0%
75.0%
8.7E−06
1.0E−06
50
40


SERPINE1
TIMP1
0.32
39
11
30
9
78.0%
76.9%
1.6E−05
0.0015
50
39


MHC2TA
NFKB1
0.31
39
10
32
8
79.6%
80.0%
0.0001
5.7E−10
49
40


CCL3
MIF
0.31
39
11
31
9
78.0%
77.5%
1.0E−05
3.3E−08
50
40


CASP1
TNFSF6
0.31
38
12
30
10
76.0%
75.0%
5.0E−10
0.0013
50
40


CASP1
TNF
0.31
38
12
30
10
76.0%
75.0%
5.9E−10
0.0013
50
40


MAPK14
TNFRSF13B
0.31
37
10
31
8
78.7%
79.5%
1.4E−08
0.0116
47
39


TGFB1
TNFSF5
0.31
39
11
32
8
78.0%
80.0%
1.5E−08
1.6E−06
50
40


CASP1
MAPK14
0.31
37
10
31
8
78.7%
79.5%
0.0119
0.0038
47
39


ICAM1
MYC
0.31
42
8
32
8
84.0%
80.0%
7.0E−10
0.0006
50
40


APAF1
SERPINE1
0.31
39
11
30
9
78.0%
76.9%
0.0022
4.2E−06
50
39


CCR5
TIMP1
0.31
38
12
30
10
76.0%
75.0%
2.4E−05
2.2E−09
50
40


IL1R1

0.31
39
11
31
9
78.0%
77.5%
6.2E−10

50
40


IL23A
TXNRD1
0.31
40
10
32
7
80.0%
82.1%
2.1E−07
4.0E−08
50
39


CASP1
HMOX1
0.31
38
12
30
10
76.0%
75.0%
2.5E−09
0.0017
50
40


ICAM1
TLR2
0.31
39
10
32
8
79.6%
80.0%
0.0046
0.0011
49
40


CCL5
MAPK14
0.31
39
8
33
6
83.0%
84.6%
0.0190
1.1E−06
47
39


CCR5
MAPK14
0.31
37
10
31
8
78.7%
79.5%
0.0193
6.5E−09
47
39


CCL5
TLR2
0.30
39
10
32
8
79.6%
80.0%
0.0052
4.8E−07
49
40


IL1RN
IL23A
0.30
39
11
30
9
78.0%
76.9%
5.7E−08
4.0E−06
50
39


IL23A
TGFB1
0.30
39
11
31
8
78.0%
79.5%
6.5E−06
5.7E−08
50
39


TIMP1
TLR2
0.30
37
12
30
10
75.5%
75.0%
0.0057
8.1E−05
49
40


HLADRA
ICAM1
0.30
39
11
32
8
78.0%
80.0%
0.0012
1.5E−09
50
40


ADAM17
CD19
0.30
39
11
32
8
78.0%
80.0%
4.7E−07
7.4E−06
50
40


ICAM1
IL1B
0.30
38
12
31
9
76.0%
77.5%
1.2E−08
0.0014
50
40


IL23A
TLR2
0.30
37
12
30
9
75.5%
76.9%
0.0043
1.0E−07
49
39


IL5
TLR2
0.30
37
12
30
10
75.5%
75.0%
0.0085
2.1E−06
49
40


CCL5
CCR5
0.30
42
8
32
8
84.0%
80.0%
5.1E−09
8.5E−07
50
40


APAF1
CD19
0.30
39
11
31
9
78.0%
77.5%
6.4E−07
1.1E−05
50
40


APAF1
HMGB1
0.30
40
10
32
8
80.0%
80.0%
1.3E−08
1.1E−05
50
40


IL18BP
IL23A
0.30
38
12
30
9
76.0%
76.9%
9.6E−08
4.1E−09
50
39


IL18
MAPK14
0.30
36
11
30
9
76.6%
76.9%
0.0379
4.8E−08
47
39


CD19
TLR2
0.30
40
9
32
8
81.6%
80.0%
0.0099
6.8E−07
49
40


MIF
TOSO
0.30
39
11
32
8
78.0%
80.0%
2.2E−09
3.5E−05
50
40


CCL3
MAPK14
0.29
37
10
31
8
78.7%
79.5%
0.0398
2.4E−07
47
39


DPP4
MIF
0.29
39
11
31
9
78.0%
77.5%
3.8E−05
2.7E−09
50
40


ICAM1
MAPK14
0.29
37
10
32
7
78.7%
82.1%
0.0433
0.0112
47
39


IL32
MIF
0.29
38
12
31
9
76.0%
77.5%
4.9E−05
2.5E−09
50
40


TNFSF5
TXNRD1
0.29
40
10
31
9
80.0%
77.5%
5.6E−07
6.5E−08
50
40


ICAM1
IL32
0.29
41
9
32
8
82.0%
80.0%
3.0E−09
0.0032
50
40


SERPINE1
SSI3
0.29
38
12
30
9
76.0%
76.9%
3.7E−06
0.0104
50
39


CCL3
TLR2
0.29
38
11
31
9
77.6%
77.5%
0.0190
1.7E−07
49
40


ICAM1
MHC2TA
0.29
39
10
33
7
79.6%
82.5%
3.5E−09
0.0067
49
40


APAF1
CCR3
0.28
39
11
30
10
78.0%
75.0%
1.4E−08
2.7E−05
50
40


CXCR3
ICAM1
0.28
38
12
31
9
76.0%
77.5%
0.0045
3.9E−09
50
40


IL18
SERPINE1
0.28
38
12
30
9
76.0%
76.9%
0.0169
5.3E−08
50
39


NFKB1
TNF
0.28
38
12
31
9
76.0%
77.5%
4.8E−09
0.0008
50
40


HMGB1
TIMP1
0.28
40
10
30
10
80.0%
75.0%
0.0002
3.9E−08
50
40


MIF
SERPINE1
0.28
40
10
30
9
80.0%
76.9%
0.0180
6.5E−05
50
39


IL18BP
TNFSF5
0.28
38
12
31
9
76.0%
77.5%
1.5E−07
7.5E−09
50
40


ICAM1
TNFRSF13B
0.28
40
10
30
10
80.0%
75.0%
4.4E−08
0.0066
50
40


ICAM1
TNF
0.28
40
10
32
8
80.0%
80.0%
5.9E−09
0.0067
50
40


IL8
TLR2
0.28
37
12
30
10
75.5%
75.0%
0.0383
2.9E−08
49
40


CASP1
IRF1
0.28
38
12
30
10
76.0%
75.0%
2.6E−07
0.0169
50
40


CXCR3
MIF
0.28
39
11
30
10
78.0%
75.0%
0.0001
6.0E−09
50
40


ADAM17
IL23A
0.27
38
12
30
9
76.0%
76.9%
3.5E−07
2.8E−05
50
39


CD19
TIMP1
0.27
39
11
31
9
78.0%
77.5%
0.0003
3.2E−06
50
40


IL8
NFKB1
0.27
38
12
32
8
76.0%
80.0%
0.0016
3.8E−08
50
40


CD19
SERPINE1
0.27
38
12
30
9
76.0%
76.9%
0.0346
4.8E−06
50
39


APAF1
CTLA4
0.26
38
12
30
10
76.0%
75.0%
7.1E−08
9.7E−05
50
40


CD19
TGFB1
0.26
41
9
31
9
82.0%
77.5%
4.7E−05
6.3E−06
50
40


CD19
IL5
0.26
39
11
31
9
78.0%
77.5%
2.2E−05
6.3E−06
50
40


NFKB1
PLA2G7
0.26
41
9
32
8
82.0%
80.0%
1.5E−08
0.0033
50
40


MAPK14

0.26
36
11
30
9
76.6%
76.9%
3.1E−08

47
39


ICAM1
PLA2G7
0.26
38
12
31
9
76.0%
77.5%
1.7E−08
0.0256
50
40


CXCL1
ICAM1
0.25
40
10
32
8
80.0%
80.0%
0.0319
1.3E−07
50
40


ADAM17
HMGB1
0.25
38
12
31
9
76.0%
77.5%
1.9E−07
0.0002
50
40


CD19
TXNRD1
0.25
39
11
31
9
78.0%
77.5%
6.1E−06
1.0E−05
50
40


CCR3
IL1RN
0.25
40
10
30
10
80.0%
75.0%
0.0002
1.3E−07
50
40


CD86
NFKB1
0.25
38
12
31
9
76.0%
77.5%
0.0077
6.1E−08
50
40


CD19
IL1RN
0.25
42
8
31
9
84.0%
77.5%
0.0002
1.5E−05
50
40


HMOX1
NFKB1
0.24
38
12
30
10
76.0%
75.0%
0.0107
1.8E−07
50
40


CD4
TIMP1
0.23
38
12
30
10
76.0%
75.0%
0.0035
7.1E−08
50
40


ADAM17
CCR5
0.23
39
11
30
10
78.0%
75.0%
3.5E−07
0.0007
50
40


CD19
TLR4
0.23
38
12
30
10
76.0%
75.0%
0.0016
5.0E−05
50
40


C1QA
NFKB1
0.23
38
12
31
9
76.0%
77.5%
0.0300
0.0003
50
40


TGFB1
TNFRSF13B
0.23
39
11
30
10
78.0%
75.0%
1.1E−06
0.0004
50
40


CCL5
TLR4
0.23
40
10
30
10
80.0%
75.0%
0.0019
8.0E−05
50
40


PLA2G7
TIMP1
0.22
39
11
30
10
78.0%
75.0%
0.0105
2.0E−07
50
40


CD19
MNDA
0.22
39
11
31
9
78.0%
77.5%
9.0E−05
9.9E−05
50
40


CD19
PLAUR
0.22
41
9
30
10
82.0%
75.0%
0.0001
0.0001
50
40


ICAM1

0.22
38
12
30
10
76.0%
75.0%
2.2E−07

50
40


CCR3
TXNRD1
0.22
38
12
30
10
76.0%
75.0%
6.5E−05
9.8E−07
50
40


TIMP1
TLR4
0.21
38
12
30
10
76.0%
75.0%
0.0044
0.0152
50
40


IL8
TIMP1
0.21
38
12
31
9
76.0%
77.5%
0.0193
1.8E−06
50
40


IL5
SSI3
0.21
38
12
30
10
76.0%
75.0%
0.0005
0.0007
50
40


HMGB1
PLAUR
0.21
38
12
30
10
76.0%
75.0%
0.0003
4.3E−06
50
40


CCL3
TLR4
0.20
39
11
31
9
78.0%
77.5%
0.0091
4.0E−05
50
40


ADAM17
C1QA
0.20
38
12
30
10
76.0%
75.0%
0.0020
0.0055
50
40


MIF
TNFSF5
0.20
39
11
30
10
78.0%
75.0%
2.7E−05
0.0273
50
40


ADAM17
IL8
0.19
39
11
31
9
78.0%
77.5%
5.5E−06
0.0095
50
40


CXCL1
IL1RN
0.19
38
12
31
9
76.0%
77.5%
0.0072
7.0E−06
50
40


ADAM17
CD8A
0.19
38
12
30
10
76.0%
75.0%
1.0E−05
0.0134
50
40


CCL5
IL1RN
0.19
39
11
31
9
78.0%
77.5%
0.0100
0.0010
50
40


CXCR3
TGFB1
0.19
38
12
30
10
76.0%
75.0%
0.0070
1.9E−06
50
40


CCR5
TLR4
0.18
38
12
30
10
76.0%
75.0%
0.0348
6.8E−06
50
40


C1QA
CCR3
0.18
39
11
30
10
78.0%
75.0%
1.1E−05
0.0093
50
40


ADAM17
MYC
0.17
39
11
30
10
78.0%
75.0%
4.4E−06
0.0336
50
40


TOSO
TXNRD1
0.17
38
12
30
10
76.0%
75.0%
0.0010
5.1E−06
50
40


CCL5
PLAUR
0.17
39
11
30
10
78.0%
75.0%
0.0039
0.0038
50
40


CCR3
PTGS2
0.17
39
11
31
9
78.0%
77.5%
0.0004
2.5E−05
50
40


TIMP1

0.17
39
11
31
9
78.0%
77.5%
5.9E−06

50
40


C1QA
CTLA4
0.16
38
12
30
10
76.0%
75.0%
5.0E−05
0.0315
50
40


CCL3
CCR5
0.14
39
11
31
9
78.0%
77.5%
9.5E−05
0.0021
50
40


CCL3
PLAUR
0.13
40
10
30
10
80.0%
75.0%
0.0432
0.0040
50
40





















TABLE 2H








Prostate
Normals
Sum



Group Size
44.4%
55.6%
100%



N =
40
50
90



Gene
Mean
Mean
p-val









SERPINA1
12.3
13.5
5.1E−13



EGR1
18.9
20.0
1.7E−12



ELA2
18.1
21.0
4.7E−11



IFI16
13.5
14.4
9.7E−11



MMP9
13.3
15.1
1.0E−10



ALOX5
16.5
17.5
2.0E−10



IL1R1
19.1
20.3
6.2E−10



HSPA1A
14.2
15.2
2.6E−09



MAPK14
13.6
14.5
3.1E−08



TLR2
14.7
15.7
5.6E−08



SERPINE1
20.5
21.7
9.6E−08



CASP1
15.5
16.2
1.0E−07



ICAM1
17.0
17.8
2.2E−07



NFKB1
16.7
17.4
1.3E−06



TIMP1
13.5
14.0
5.9E−06



MIF
15.6
14.8
1.1E−05



TLR4
13.9
14.7
1.9E−05



APAF1
17.2
17.8
3.2E−05



ADAM17
17.0
17.6
3.6E−05



IL1RN
15.6
16.2
4.8E−05



TGFB1
12.3
12.8
7.8E−05



C1QA
20.0
20.9
9.3E−05



IL5
21.3
22.0
0.0002



SSI3
16.9
17.6
0.0002



PLAUR
14.4
15.0
0.0004



CCL5
12.2
12.7
0.0004



CD19
18.8
17.9
0.0006



MNDA
11.7
12.2
0.0007



TXNRD1
16.2
16.7
0.0010



PTPRC
10.9
11.2
0.0015



CCL3
20.4
20.9
0.0041



TNFRSF1A
14.1
14.5
0.0047



PTGS2
16.5
17.0
0.0049



IL23A
21.0
20.4
0.0059



IRF1
12.9
13.3
0.0060



TNFSF5
17.8
17.3
0.0101



VEGF
21.6
22.1
0.0125



IL1B
15.6
15.9
0.0306



IL18
20.6
20.9
0.0313



HMGB1
17.3
17.0
0.0384



TNFRSF13B
20.2
19.8
0.0396



CD8A
16.5
16.1
0.0520



CXCL1
19.4
19.7
0.0593



CTLA4
19.0
18.7
0.0635



IL8
21.6
21.1
0.0754



IL10
22.1
22.5
0.0806



GZMB
17.3
17.8
0.0904



CCR3
16.9
16.5
0.0962



HMOX1
15.5
15.7
0.1003



CCR5
17.5
17.2
0.1129



CD86
16.9
17.1
0.2680



DPP4
18.7
18.5
0.3436



IL18BP
17.0
17.1
0.3629



HLADRA
11.7
11.5
0.3689



TOSO
15.8
15.7
0.4004



IL15
20.4
20.5
0.4123



CASP3
20.6
20.7
0.4209



MYC
17.4
17.3
0.4644



IFNG
22.5
22.4
0.5571



TNF
17.9
18.0
0.5671



IL32
14.2
14.0
0.5704



CXCR3
17.4
17.3
0.6513



LTA
18.3
18.2
0.7094



MMP12
23.8
23.9
0.7456



MHC2TA
15.3
15.3
0.7770



TNFSF6
20.0
20.0
0.8169



CD4
15.5
15.5
0.9353



PLA2G7
19.0
19.0
0.9748























TABLE 2I











Predicted








probability








of


Patient ID
Group
CASP1
MIF
logit
odds
Prostate Inf





















113
Cancer
16.50
18.38
10.89
53659.17
1.0000


99
Cancer
16.13
17.79
10.48
35683.59
1.0000


46
Cancer
15.37
16.54
9.58
14418.28
0.9999


72
Cancer
15.73
16.96
9.23
10230.80
0.9999


69
Cancer
14.80
15.45
8.13
3394.92
0.9997


47
Cancer
15.09
15.75
7.63
2068.48
0.9995


62
Cancer
14.92
15.50
7.55
1904.56
0.9995


44
Cancer
15.30
16.01
7.51
1819.44
0.9995


9
Cancer
14.83
15.24
6.94
1036.48
0.9990


129
Cancer
15.05
15.50
6.76
859.86
0.9988


32
Cancer
16.54
17.54
6.67
790.83
0.9987


63
Cancer
16.58
17.55
6.43
618.07
0.9984


125
Cancer
15.40
15.91
6.37
582.68
0.9983


118
Cancer
15.34
15.67
5.63
279.01
0.9964


124
Cancer
15.88
16.39
5.51
248.04
0.9960


126
Cancer
15.42
15.72
5.37
214.88
0.9954


60
Cancer
15.12
15.23
4.98
146.15
0.9932


7
Cancer
15.45
15.64
4.81
122.44
0.9919


105
Cancer
14.92
14.88
4.65
104.34
0.9905


78
Cancer
14.87
14.77
4.46
86.08
0.9885


128
Cancer
16.17
16.47
3.98
53.63
0.9817


119
Cancer
15.28
15.19
3.79
44.04
0.9778


30
Cancer
14.43
14.03
3.77
43.59
0.9776


10
Cancer
15.26
15.17
3.76
42.85
0.9772


6
Cancer
16.09
16.29
3.71
40.76
0.9761


85
Cancer
15.01
14.80
3.69
40.08
0.9757


74
Cancer
14.65
14.17
3.09
22.04
0.9566


65
Cancer
15.16
14.83
2.83
16.86
0.9440


56
Cancer
17.34
17.82
2.71
14.98
0.9374


26
Cancer
15.72
15.46
2.13
8.39
0.8935


15
Cancer
15.24
14.75
1.97
7.14
0.8771


17
Cancer
16.18
16.03
1.81
6.09
0.8589


84
Cancer
14.61
13.85
1.78
5.96
0.8562


1
Cancer
15.04
14.39
1.53
4.63
0.8225


66
Cancer
15.88
15.50
1.32
3.75
0.7896


29
Cancer
14.70
13.81
1.02
2.77
0.7344


239
Normal
15.00
14.19
0.90
2.45
0.7104


70
Cancer
15.68
15.00
0.26
1.30
0.5648


220
Normal
15.73
14.95
−0.30
0.74
0.4258


130
Cancer
15.83
15.08
−0.38
0.68
0.4057


265
Normal
15.20
14.18
−0.47
0.62
0.3844


78
Normal
15.76
14.91
−0.67
0.51
0.3389


155
Normal
15.67
14.77
−0.79
0.45
0.3112


236
Normal
15.64
14.64
−1.19
0.30
0.2330


133
Normal
15.99
15.13
−1.20
0.30
0.2322


110
Normal
15.72
14.73
−1.27
0.28
0.2188


59
Cancer
15.61
14.56
−1.40
0.25
0.1977


180
Normal
16.48
15.71
−1.58
0.21
0.1705


102
Normal
15.67
14.54
−1.84
0.16
0.1368


100
Normal
15.98
14.96
−1.90
0.15
0.1297


62
Normal
15.57
14.37
−2.01
0.13
0.1186


150
Normal
16.40
15.50
−2.05
0.13
0.1143


83
Normal
16.43
15.52
−2.18
0.11
0.1016


184
Normal
16.20
15.13
−2.53
0.08
0.0737


136
Normal
15.68
14.41
−2.54
0.08
0.0728


267
Normal
16.10
14.97
−2.60
0.07
0.0691


156
Normal
16.24
15.15
−2.72
0.07
0.0620


257
Normal
16.07
14.90
−2.81
0.06
0.0566


86
Normal
15.81
14.50
−2.93
0.05
0.0508


167
Normal
15.61
14.17
−3.24
0.04
0.0378


85
Normal
15.90
14.55
−3.34
0.04
0.0342


154
Normal
16.17
14.90
−3.41
0.03
0.0319


51
Normal
16.06
14.74
−3.51
0.03
0.0291


152
Normal
16.38
15.14
−3.67
0.03
0.0247


243
Normal
15.70
14.15
−3.91
0.02
0.0197


57
Normal
15.43
13.77
−3.93
0.02
0.0193


253
Normal
16.08
14.67
−3.94
0.02
0.0192


61
Normal
15.60
14.00
−3.95
0.02
0.0190


145
Normal
16.61
15.40
−3.95
0.02
0.0188


245
Normal
16.27
14.92
−3.98
0.02
0.0183


161
Normal
15.93
14.44
−4.01
0.02
0.0179


74
Normal
16.55
15.14
−4.75
0.01
0.0086


151
Normal
16.35
14.82
−5.00
0.01
0.0067


138
Normal
16.48
14.95
−5.16
0.01
0.0057


109
Normal
17.01
15.68
−5.24
0.01
0.0053


157
Normal
16.00
14.26
−5.32
0.00
0.0049


269
Normal
16.39
14.77
−5.46
0.00
0.0042


147
Normal
16.34
14.70
−5.48
0.00
0.0042


191
Normal
16.45
14.76
−5.89
0.00
0.0028


56
Normal
16.82
15.25
−6.01
0.00
0.0024


68
Cancer
16.17
14.22
−6.62
0.00
0.0013


249
Normal
16.90
15.10
−7.24
0.00
0.0007


176
Normal
16.82
14.95
−7.43
0.00
0.0006


142
Normal
16.57
14.59
−7.50
0.00
0.0006


252
Normal
16.79
14.84
−7.72
0.00
0.0004


246
Normal
17.23
15.34
−8.25
0.00
0.0003


119
Normal
17.00
14.93
−8.67
0.00
0.0002


248
Normal
17.65
15.63
−9.59
0.00
0.0001


45
Normal
16.98
14.70
−9.69
0.00
0.0001


158
Normal
16.69
14.27
−9.82
0.00
0.0001





















TABLE 3A












total used






(excludes



Normal
Prostate

missing)




















#
#

N =
50
16



#


2-gene models and
Entropy
normal
normal
# pc
# pc
Correct
Correct


#
dis-


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
normals
ease






















EGR1
NME4
1.00
50
0
16
0
100.0%
100.0%
3.7E−10
0.0005
50
16


BAD
RB1
1.00
50
0
16
0
100.0%
100.0%
3.7E−06
0.0E+00
50
16


EGR1
HRAS
0.94
49
1
16
0
98.0%
100.0%
1.7E−15
0.0062
50
16


CDC25A
EGR1
0.92
49
1
16
0
98.0%
100.0%
0.0102
2.6E−11
50
16


EGR1
SOCS1
0.92
48
2
16
0
96.0%
100.0%
5.2E−10
0.0119
50
16


RAF1
RB1
0.92
49
1
16
0
98.0%
100.0%
8.6E−05
4.0E−14
50
16


EGR1
IFITM1
0.91
48
2
16
0
96.0%
100.0%
3.2E−08
0.0144
50
16


E2F1
EGR1
0.91
49
1
16
0
98.0%
100.0%
0.0159
1.1E−09
50
16


BRCA1
CASP8
0.91
47
3
15
0
94.0%
100.0%
1.4E−15
3.5E−07
50
15


CDKN2A
EGR1
0.89
49
1
16
0
98.0%
100.0%
0.0330
1.4E−12
50
16


EGR1
NRAS
0.89
48
2
16
0
96.0%
100.0%
1.7E−10
0.0445
50
16


JUN
RB1
0.89
49
1
16
0
98.0%
100.0%
0.0003
1.3E−14
50
16


RB1
TNFRSF10A
0.86
49
1
16
0
98.0%
100.0%
2.8E−14
0.0009
50
16


CDK4
RB1
0.86
47
3
15
1
94.0%
93.8%
0.0010
2.7E−14
50
16


CDC25A
RB1
0.84
49
1
15
1
98.0%
93.8%
0.0018
5.7E−10
50
16


EGR1

0.83
48
2
15
1
96.0%
93.8%
6.1E−15

50
16


ATM
RB1
0.83
48
2
16
0
96.0%
100.0%
0.0026
8.3E−13
50
16


BRCA1
RAF1
0.83
48
2
15
1
96.0%
93.8%
1.2E−12
8.0E−06
50
16


CASP8
RB1
0.82
50
0
14
1
100.0%
93.3%
0.0034
4.2E−14
50
15


CDK5
HRAS
0.81
47
3
15
1
94.0%
93.8%
1.8E−13
4.4E−08
50
16


RB1
TNFRSF10B
0.81
48
2
15
1
96.0%
93.8%
1.2E−11
0.0065
50
16


HRAS
RB1
0.81
49
1
15
1
98.0%
93.8%
0.0072
2.0E−13
50
16


BAX
RB1
0.80
47
3
15
1
94.0%
93.8%
0.0077
4.4E−13
50
16


NME1
RB1
0.80
47
3
15
1
94.0%
93.8%
0.0078
2.9E−14
50
16


E2F1
RB1
0.80
50
0
15
1
100.0%
93.8%
0.0102
7.9E−08
50
16


ITGA1
RB1
0.80
48
2
15
1
96.0%
93.8%
0.0105
3.2E−11
50
16


MYC
RB1
0.80
48
2
15
1
96.0%
93.8%
0.0106
7.2E−11
50
16


CDKN1A
RB1
0.79
48
2
15
1
96.0%
93.8%
0.0127
0.0011
50
16


BRCA1
CDKN1A
0.79
49
1
15
1
98.0%
93.8%
0.0011
2.9E−05
50
16


CFLAR
RB1
0.79
50
0
15
1
100.0%
93.8%
0.0137
2.2E−11
50
16


ABL2
RB1
0.79
49
1
15
1
98.0%
93.8%
0.0148
6.4E−11
50
16


CDKN1A
IFITM1
0.79
47
3
15
1
94.0%
93.8%
4.1E−06
0.0013
50
16


AKT1
RB1
0.79
46
4
15
1
92.0%
93.8%
0.0162
1.1E−09
50
16


BAD
SMAD4
0.78
48
2
15
1
96.0%
93.8%
1.2E−06
6.1E−14
50
16


BRCA1
CFLAR
0.78
45
5
15
1
90.0%
93.8%
3.2E−11
4.5E−05
50
16


CDKN1A
TNFRSF6
0.77
48
2
15
1
96.0%
93.8%
1.3E−07
0.0023
50
16


MSH2
RB1
0.77
47
3
15
1
94.0%
93.8%
0.0297
1.4E−13
50
16


CDKN1A
NME4
0.77
47
3
15
1
94.0%
93.8%
2.2E−06
0.0026
50
16


NOTCH2
RAF1
0.77
47
3
15
1
94.0%
93.8%
1.1E−11
0.0002
50
16


BCL2
RB1
0.77
47
3
15
1
94.0%
93.8%
0.0374
1.6E−09
50
16


HRAS
SMAD4
0.77
44
6
15
1
88.0%
93.8%
2.3E−06
9.1E−13
50
16


CDC25A
CDKN1A
0.76
47
3
15
1
94.0%
93.8%
0.0033
1.0E−08
50
16


NOTCH2
SEMA4D
0.76
47
3
15
1
94.0%
93.8%
5.2E−09
0.0002
50
16


BAD
BRCA1
0.76
47
3
15
1
94.0%
93.8%
9.3E−05
1.3E−13
50
16


CDKN1A
PLAUR
0.76
48
2
15
1
96.0%
93.8%
5.3E−08
0.0035
50
16


RB1
SEMA4D
0.76
46
4
15
1
92.0%
93.8%
5.7E−09
0.0470
50
16


RAF1
RHOA
0.74
47
3
15
1
94.0%
93.8%
1.8E−05
2.5E−11
50
16


BRCA1
E2F1
0.74
45
5
15
1
90.0%
93.8%
6.5E−07
0.0002
50
16


CDKN1A
PTEN
0.74
45
5
14
2
90.0%
87.5%
1.0E−06
0.0088
50
16


CDKN1A
FOS
0.74
49
1
14
2
98.0%
87.5%
9.5E−09
0.0089
50
16


CASP8
NOTCH2
0.73
48
2
14
1
96.0%
93.3%
0.0006
9.0E−13
50
15


E2F1
NOTCH2
0.73
46
4
15
1
92.0%
93.8%
0.0009
1.1E−06
50
16


BAD
RHOA
0.73
45
5
15
1
90.0%
93.8%
3.6E−05
4.7E−13
50
16


CDKN1A
NOTCH2
0.73
46
4
15
1
92.0%
93.8%
0.0009
0.0148
50
16


CDKN1A
MMP9
0.73
44
6
15
1
88.0%
93.8%
2.8E−07
0.0156
50
16


CDKN1A
VEGF
0.72
48
2
15
1
96.0%
93.8%
1.6E−07
0.0163
50
16


BAD
BRAF
0.72
46
4
15
1
92.0%
93.8%
0.0007
5.4E−13
50
16


CDKN1A
IL1B
0.72
45
5
15
1
90.0%
93.8%
5.5E−08
0.0206
50
16


BAD
NOTCH2
0.71
44
6
15
1
88.0%
93.8%
0.0015
7.8E−13
50
16


E2F1
PLAUR
0.71
46
4
15
1
92.0%
93.8%
3.4E−07
2.0E−06
50
16


BRAF
CDKN1A
0.71
43
7
15
1
86.0%
93.8%
0.0271
0.0010
50
16


CFLAR
NOTCH2
0.71
48
2
15
1
96.0%
93.8%
0.0018
4.4E−10
50
16


BRAF
CDC25A
0.71
45
5
14
2
90.0%
87.5%
7.7E−08
0.0011
50
16


CASP8
RHOA
0.71
49
1
14
1
98.0%
93.3%
6.1E−05
2.1E−12
50
15


BAD
TNF
0.71
48
2
15
1
96.0%
93.8%
0.0008
9.9E−13
50
16


RB1

0.71
48
2
15
1
96.0%
93.8%
6.5E−13

50
16


HRAS
NOTCH2
0.71
49
1
14
2
98.0%
87.5%
0.0020
8.1E−12
50
16


BRCA1
HRAS
0.71
47
3
14
2
94.0%
87.5%
8.2E−12
0.0008
50
16


IFITM1
THBS1
0.71
47
3
15
1
94.0%
93.8%
2.2E−05
8.9E−05
50
16


HRAS
TNF
0.71
47
3
15
1
94.0%
93.8%
0.0008
8.3E−12
50
16


BRAF
RAF1
0.70
46
4
15
1
92.0%
93.8%
1.2E−10
0.0015
50
16


CASP8
TNFRSF6
0.70
43
7
14
1
86.0%
93.3%
1.3E−06
2.6E−12
50
15


CDKN1A
SMAD4
0.70
45
5
15
1
90.0%
93.8%
2.9E−05
0.0461
50
16


E2F1
TNF
0.70
48
2
15
1
96.0%
93.8%
0.0010
3.3E−06
50
16


HRAS
TP53
0.70
48
2
14
2
96.0%
87.5%
1.2E−05
1.2E−11
50
16


CASP8
PLAUR
0.70
47
3
13
2
94.0%
86.7%
5.9E−07
3.1E−12
50
15


BAX
NOTCH2
0.69
43
7
15
1
86.0%
93.8%
0.0035
2.8E−11
50
16


CASP8
PTEN
0.69
42
8
14
1
84.0%
93.3%
4.6E−06
3.6E−12
50
15


BRAF
CDK4
0.69
46
4
15
1
92.0%
93.8%
1.2E−11
0.0024
50
16


HRAS
ITGB1
0.69
49
1
14
2
98.0%
87.5%
2.2E−05
1.5E−11
50
16


E2F1
TNFRSF6
0.69
47
3
15
1
94.0%
93.8%
3.2E−06
4.8E−06
50
16


HRAS
NFKB1
0.69
46
4
15
1
92.0%
93.8%
8.0E−05
1.6E−11
50
16


BRAF
INFRSF10A
0.69
47
3
15
1
94.0%
93.8%
1.7E−11
0.0029
50
16


BRCA1
JUN
0.69
46
4
15
1
92.0%
93.8%
2.1E−11
0.0018
50
16


HRAS
TIMP1
0.68
47
3
15
1
94.0%
93.8%
3.7E−05
1.9E−11
50
16


CDK4
TP53
0.68
42
8
15
1
84.0%
93.8%
2.1E−05
1.7E−11
50
16


CDC25A
ITGB1
0.68
45
5
14
2
90.0%
87.5%
3.1E−05
2.3E−07
50
16


CDC25A
NOTCH2
0.68
45
5
14
2
90.0%
87.5%
0.0060
2.4E−07
50
16


CDK2
HRAS
0.68
48
2
14
2
96.0%
87.5%
2.3E−11
2.3E−05
50
16


BRAF
JUN
0.68
46
4
15
1
92.0%
93.8%
2.9E−11
0.0039
50
16


E2F1
PTEN
0.68
45
5
15
1
90.0%
93.8%
1.1E−05
8.0E−06
50
16


E2F1
NFKB1
0.68
47
3
14
2
94.0%
87.5%
0.0001
8.2E−06
50
16


NOTCH2
SKI
0.67
48
2
15
1
96.0%
93.8%
4.6E−09
0.0075
50
16


CDC25A
TNF
0.67
46
4
15
1
92.0%
93.8%
0.0029
3.1E−07
50
16


BRAF
HRAS
0.67
45
5
15
1
90.0%
93.8%
3.1E−11
0.0054
50
16


E2F1
IFITM1
0.67
46
4
14
2
92.0%
87.5%
0.0004
1.0E−05
50
16


BRAF
CASP8
0.67
47
3
14
1
94.0%
93.3%
8.7E−12
0.0039
50
15


NOTCH2
SOCS1
0.67
43
7
15
1
86.0%
93.8%
6.9E−06
0.0096
50
16


HRAS
NRAS
0.67
45
5
14
2
90.0%
87.5%
6.9E−07
3.6E−11
50
16


G1P3
NOTCH2
0.67
45
5
14
2
90.0%
87.5%
0.0106
7.4E−09
50
16


HRAS
RHOA
0.67
47
3
14
2
94.0%
87.5%
0.0004
3.8E−11
50
16


CDK4
SMAD4
0.67
46
4
15
1
92.0%
93.8%
0.0001
3.3E−11
50
16


NME1
TNF
0.66
46
4
14
2
92.0%
87.5%
0.0041
5.2E−12
50
16


HRAS
TGFBI
0.66
46
4
14
2
92.0%
87.5%
0.0016
4.0E−11
50
16


E2F1
TGFBI
0.66
45
5
14
2
90.0%
87.5%
0.0018
1.4E−05
50
16


IFITM1
TNF
0.66
46
4
15
1
92.0%
93.8%
0.0049
0.0005
50
16


BRCA1
THBS1
0.66
47
3
15
1
94.0%
93.8%
0.0001
0.0052
50
16


BRAF
NME1
0.66
45
5
15
1
90.0%
93.8%
6.4E−12
0.0086
50
16


E2F1
VEGF
0.66
44
6
14
2
88.0%
87.5%
1.9E−06
1.5E−05
50
16


BRAF
TNFRSF10B
0.66
46
4
15
1
92.0%
93.8%
3.1E−09
0.0088
50
16


BRCA1
CDC25A
0.66
46
4
14
2
92.0%
87.5%
5.3E−07
0.0054
50
16


ATM
BRAF
0.66
47
3
15
1
94.0%
93.8%
0.0090
5.2E−10
50
16


TNFRSF10A
TP53
0.66
46
4
15
1
92.0%
93.8%
5.3E−05
5.0E−11
50
16


NME1
SMAD4
0.66
45
5
15
1
90.0%
93.8%
0.0001
6.7E−12
50
16


E2F1
RHOA
0.66
45
5
15
1
90.0%
93.8%
0.0006
1.6E−05
50
16


BRAF
E2F1
0.66
45
5
14
2
90.0%
87.5%
1.7E−05
0.0096
50
16


E2F1
SMAD4
0.65
46
4
14
2
92.0%
87.5%
0.0002
1.8E−05
50
16


BAX
BRCA1
0.65
45
5
14
2
90.0%
87.5%
0.0063
1.1E−10
50
16


CDK2
NME1
0.65
44
6
15
1
88.0%
93.8%
7.8E−12
6.0E−05
50
16


E2F1
ICAM1
0.65
47
3
15
1
94.0%
93.8%
3.0E−05
1.9E−05
50
16


CASP8
IFITM1
0.65
45
5
13
2
90.0%
86.7%
0.0005
1.5E−11
50
15


NME1
TP53
0.65
44
6
15
1
88.0%
93.8%
6.9E−05
8.6E−12
50
16


JUN
NOTCH2
0.65
44
6
14
2
88.0%
87.5%
0.0195
8.2E−11
50
16


NOTCH2
TNFRSF10B
0.65
46
4
15
1
92.0%
93.8%
4.3E−09
0.0198
50
16


BRAF
G1P3
0.65
46
4
14
2
92.0%
87.5%
1.3E−08
0.0125
50
16


CDC25A
SMAD4
0.65
46
4
15
1
92.0%
93.8%
0.0002
7.8E−07
50
16


CDK5
NME1
0.65
46
4
15
1
92.0%
93.8%
1.1E−11
2.3E−05
50
16


CDKN1A

0.65
47
3
15
1
94.0%
93.8%
6.5E−12

50
16


TNF
TNFRSF10A
0.65
40
10
14
2
80.0%
87.5%
8.1E−11
0.0091
50
16


CDKN2A
NOTCH2
0.64
44
6
15
1
88.0%
93.8%
0.0251
1.7E−08
50
16


BRCA1
TNFRSF1A
0.64
46
4
14
2
92.0%
87.5%
5.7E−09
0.0097
50
16


NOTCH2
TNFRSF10A
0.64
45
5
15
1
90.0%
93.8%
8.7E−11
0.0269
50
16


BAD
TGFBI
0.64
43
7
14
2
86.0%
87.5%
0.0037
1.1E−11
50
16


BRCA1
SOCS1
0.64
43
7
14
2
86.0%
87.5%
1.8E−05
0.0105
50
16


CASP8
TGFBI
0.64
44
6
14
1
88.0%
93.3%
0.0034
2.2E−11
50
15


E2F1
TIMP1
0.64
46
4
14
2
92.0%
87.5%
0.0002
3.0E−05
50
16


IFITM1
ITGB1
0.64
45
5
14
2
90.0%
87.5%
0.0002
0.0012
50
16


JUN
TNF
0.64
43
7
14
2
86.0%
87.5%
0.0113
1.2E−10
50
16


NME4
THBS1
0.64
44
6
14
2
88.0%
87.5%
0.0003
0.0003
50
16


NME1
NOTCH2
0.64
46
4
14
2
92.0%
87.5%
0.0315
1.3E−11
50
16


BRCA1
IL8
0.64
46
4
15
1
92.0%
93.8%
1.3E−11
0.0120
50
16


BRAF
SKI
0.64
46
4
15
1
92.0%
93.8%
1.7E−08
0.0200
50
16


HRAS
VHL
0.64
44
6
14
2
88.0%
87.5%
9.0E−07
1.0E−10
50
16


HRAS
PCNA
0.64
43
7
14
2
86.0%
87.5%
1.4E−08
1.1E−10
50
16


BRCA1
TNFRSF10B
0.64
46
4
15
1
92.0%
93.8%
7.2E−09
0.0131
50
16


NME4
TNF
0.64
43
7
15
1
86.0%
93.8%
0.0133
0.0004
50
16


SKI
TGFBI
0.64
46
4
15
1
92.0%
93.8%
0.0050
1.9E−08
50
16


BRCA1
SERPINE1
0.64
46
4
14
2
92.0%
87.5%
1.3E−06
0.0140
50
16


AKT1
NOTCH2
0.64
46
4
15
1
92.0%
93.8%
0.0381
3.1E−07
50
16


BAX
BRAF
0.63
46
4
15
1
92.0%
93.8%
0.0238
2.4E−10
50
16


CDK2
TNFRSF10A
0.63
48
2
14
2
96.0%
87.5%
1.2E−10
0.0001
50
16


BRCA1
G1P3
0.63
45
5
14
2
90.0%
87.5%
2.4E−08
0.0148
50
16


BRCA1
TNF
0.63
45
5
15
1
90.0%
93.8%
0.0153
0.0158
50
16


NME4
NOTCH2
0.63
46
4
15
1
92.0%
93.8%
0.0427
0.0004
50
16


IFITM1
SRC
0.63
46
4
15
1
92.0%
93.8%
1.6E−05
0.0016
50
16


E2F1
ITGB1
0.63
45
5
14
2
90.0%
87.5%
0.0002
4.3E−05
50
16


HRAS
SKIL
0.63
43
7
14
2
86.0%
87.5%
2.8E−08
1.4E−10
50
16


NOTCH2
TNFRSF1A
0.63
47
3
15
1
94.0%
93.8%
1.0E−08
0.0482
50
16


BAX
RHOA
0.63
44
6
14
2
88.0%
87.5%
0.0016
3.0E−10
50
16


BAX
TGFBI
0.63
45
5
14
2
90.0%
87.5%
0.0067
3.1E−10
50
16


RHOA
TNFRSF10B
0.63
45
5
14
2
90.0%
87.5%
1.0E−08
0.0018
50
16


BAD
CDK2
0.63
47
3
15
1
94.0%
93.8%
0.0002
2.0E−11
50
16


RAF1
TGFBI
0.63
46
4
14
2
92.0%
87.5%
0.0074
2.1E−09
50
16


MSH2
TP53
0.63
44
6
14
2
88.0%
87.5%
0.0002
3.1E−11
50
16


CDC25A
IFITM1
0.63
46
4
15
1
92.0%
93.8%
0.0021
1.8E−06
50
16


BRAF
MSH2
0.62
47
3
15
1
94.0%
93.8%
3.6E−11
0.0409
50
16


THBS1
TNFRSF6
0.62
46
4
15
1
92.0%
93.8%
4.1E−05
0.0006
50
16


CDC25A
TIMP1
0.62
44
6
14
2
88.0%
87.5%
0.0004
2.2E−06
50
16


CDC25A
TGFBI
0.62
46
4
14
2
92.0%
87.5%
0.0092
2.2E−06
50
16


BAD
NFKB1
0.62
44
6
14
2
88.0%
87.5%
0.0012
2.6E−11
50
16


TGFBI
TNFRSF10A
0.62
44
6
14
2
88.0%
87.5%
2.1E−10
0.0097
50
16


BRAF
THBS1
0.62
44
6
15
1
88.0%
93.8%
0.0007
0.0456
50
16


MSH2
TNF
0.62
40
10
14
2
80.0%
87.5%
0.0266
4.0E−11
50
16


BRCA1
NME1
0.62
45
5
15
1
90.0%
93.8%
3.1E−11
0.0301
50
16


CASP8
SMAD4
0.62
46
4
13
2
92.0%
86.7%
0.0004
5.4E−11
50
15


CDC25A
THBS1
0.62
45
5
14
2
90.0%
87.5%
0.0007
2.6E−06
50
16


CDK5
IFITM1
0.62
45
5
14
2
90.0%
87.5%
0.0031
7.0E−05
50
16


PTEN
THBS1
0.61
45
5
14
2
90.0%
87.5%
0.0008
0.0001
50
16


SEMA4D
TGFBI
0.61
47
3
14
2
94.0%
87.5%
0.0117
1.4E−06
50
16


SOCS1
TGFBI
0.61
46
4
15
1
92.0%
93.8%
0.0119
5.3E−05
50
16


BRCA1
CDKN2A
0.61
44
6
14
2
88.0%
87.5%
5.6E−08
0.0367
50
16


BRCA1
NME4
0.61
45
5
14
2
90.0%
87.5%
0.0009
0.0369
50
16


ABL1
HRAS
0.61
49
1
14
2
98.0%
87.5%
2.8E−10
3.1E−07
50
16


NME1
TGFBI
0.61
45
5
15
1
90.0%
93.8%
0.0131
3.7E−11
50
16


E2F1
SKIL
0.61
47
3
14
2
94.0%
87.5%
5.8E−08
9.4E−05
50
16


CDC25A
RHOA
0.61
47
3
14
2
94.0%
87.5%
0.0034
3.2E−06
50
16


NME1
RHOA
0.61
43
7
14
2
86.0%
87.5%
0.0036
4.0E−11
50
16


BRCA1
TNFRSF10A
0.61
44
6
14
2
88.0%
87.5%
3.1E−10
0.0413
50
16


IFITM1
TIMP1
0.61
42
8
14
2
84.0%
87.5%
0.0007
0.0040
50
16


E2F1
SRC
0.61
43
7
14
2
86.0%
87.5%
4.0E−05
0.0001
50
16


IFITM1
SOCS1
0.61
45
5
14
2
90.0%
87.5%
6.8E−05
0.0042
50
16


E2F1
IL1B
0.61
44
6
15
1
88.0%
93.8%
3.6E−06
0.0001
50
16


NFKB1
TNFRSF10A
0.61
45
5
14
2
90.0%
87.5%
3.3E−10
0.0019
50
16


ATM
BRCA1
0.61
45
5
14
2
90.0%
87.5%
0.0460
3.5E−09
50
16


ATM
SMAD4
0.61
44
6
14
2
88.0%
87.5%
0.0010
3.5E−09
50
16


MMP9
TNF
0.61
47
3
14
2
94.0%
87.5%
0.0451
2.5E−05
50
16


BRCA1
SRC
0.61
45
5
14
2
90.0%
87.5%
4.3E−05
0.0472
50
16


CDK4
TNF
0.61
45
5
13
3
90.0%
81.3%
0.0470
3.0E−10
50
16


IFITM1
TNFRSF1A
0.60
44
6
14
2
88.0%
87.5%
2.6E−08
0.0049
50
16


JUN
SMAD4
0.60
44
6
15
1
88.0%
93.8%
0.0012
4.7E−10
50
16


G1P3
TGFBI
0.60
43
7
14
2
86.0%
87.5%
0.0186
7.6E−08
50
16


NME4
SRC
0.60
44
6
14
2
88.0%
87.5%
4.9E−05
0.0013
50
16


NME4
TIMP1
0.60
40
10
14
2
80.0%
87.5%
0.0009
0.0014
50
16


CASP8
TNF
0.60
49
1
13
2
98.0%
86.7%
0.0317
9.5E−11
50
15


MMP9
SOCS1
0.60
47
3
14
2
94.0%
87.5%
9.1E−05
3.2E−05
50
16


BAD
PTEN
0.60
45
5
14
2
90.0%
87.5%
0.0002
5.3E−11
50
16


G1P3
NFKB1
0.60
45
5
14
2
90.0%
87.5%
0.0026
8.6E−08
50
16


NFKB1
NME1
0.60
42
8
14
2
84.0%
87.5%
5.9E−11
0.0026
50
16


IFITM1
TGFBI
0.60
47
3
14
2
94.0%
87.5%
0.0245
0.0066
50
16


SMAD4
THBS1
0.60
42
8
14
2
84.0%
87.5%
0.0016
0.0016
50
16


E2F1
THBS1
0.60
44
6
14
2
88.0%
87.5%
0.0016
0.0002
50
16


PTEN
RAF1
0.60
44
6
15
1
88.0%
93.8%
6.6E−09
0.0002
50
16


CDC25A
CDK2
0.59
44
6
14
2
88.0%
87.5%
0.0006
6.0E−06
50
16


NME4
TGFBI
0.59
46
4
14
2
92.0%
87.5%
0.0279
0.0019
50
16


PLAUR
THBS1
0.59
45
5
14
2
90.0%
87.5%
0.0018
3.2E−05
50
16


IFITM1
TP53
0.59
45
5
15
1
90.0%
93.8%
0.0007
0.0079
50
16


CFLAR
IFITM1
0.59
45
5
14
2
90.0%
87.5%
0.0084
3.8E−08
50
16


ITGB1
NME1
0.59
43
7
14
2
86.0%
87.5%
8.3E−11
0.0011
50
16


JUN
TGFBI
0.59
44
6
14
2
88.0%
87.5%
0.0324
7.8E−10
50
16


CDC25A
SRC
0.59
45
5
15
1
90.0%
93.8%
8.2E−05
7.2E−06
50
16


TGFBI
TNFRSF10B
0.59
44
6
15
1
88.0%
93.8%
4.5E−08
0.0358
50
16


E2F1
G1P3
0.59
48
2
15
1
96.0%
93.8%
1.4E−07
0.0002
50
16


IFITM1
RHOC
0.59
46
4
15
1
92.0%
93.8%
3.1E−07
0.0100
50
16


MMP9
SRC
0.59
47
3
14
2
94.0%
87.5%
9.2E−05
5.4E−05
50
16


CASP8
NFKB1
0.59
44
6
13
2
88.0%
86.7%
0.0044
1.6E−10
50
15


CDK4
RHOA
0.58
44
6
14
2
88.0%
87.5%
0.0101
6.7E−10
50
16


E2F1
FOS
0.58
43
7
14
2
86.0%
87.5%
3.3E−06
0.0003
50
16


CFLAR
TGFBI
0.58
48
2
14
2
96.0%
87.5%
0.0436
5.0E−08
50
16


IL1B
THBS1
0.58
45
5
14
2
90.0%
87.5%
0.0027
9.3E−06
50
16


ITGB1
TNFRSF10A
0.58
41
9
14
2
82.0%
87.5%
8.2E−10
0.0014
50
16


HRAS
ICAM1
0.58
47
3
14
2
94.0%
87.5%
0.0005
8.3E−10
50
16


JUN
RHOA
0.58
46
4
14
2
92.0%
87.5%
0.0108
1.0E−09
50
16


CFLAR
RHOA
0.58
45
5
14
2
90.0%
87.5%
0.0111
5.3E−08
50
16


NME4
VEGF
0.58
43
7
14
2
86.0%
87.5%
3.6E−05
0.0032
50
16


NME1
NRAS
0.58
44
6
14
2
88.0%
87.5%
1.8E−05
1.2E−10
50
16


RHOA
TNFRSF10A
0.58
44
6
14
2
88.0%
87.5%
8.9E−10
0.0115
50
16


SERPINE1
SMAD4
0.58
45
5
15
1
90.0%
93.8%
0.0030
1.0E−05
50
16


NFKB1
SOCS1
0.58
45
5
14
2
90.0%
87.5%
0.0002
0.0058
50
16


CDK2
E2F1
0.58
44
6
14
2
88.0%
87.5%
0.0003
0.0011
50
16


IFITM1
NFKB1
0.58
46
4
15
1
92.0%
93.8%
0.0060
0.0136
50
16


SMAD4
TNFRSF10A
0.58
44
6
14
2
88.0%
87.5%
9.7E−10
0.0032
50
16


APAF1
E2F1
0.58
45
5
14
2
90.0%
87.5%
0.0004
3.1E−06
50
16


NOTCH2

0.58
45
5
14
2
90.0%
87.5%
8.6E−11

50
16


AKT1
E2F1
0.58
44
6
14
2
88.0%
87.5%
0.0004
3.0E−06
50
16


E2F1
TP53
0.57
44
6
14
2
88.0%
87.5%
0.0014
0.0004
50
16


PTEN
SOCS1
0.57
43
7
14
2
86.0%
87.5%
0.0003
0.0006
50
16


FOS
THBS1
0.57
47
3
14
2
94.0%
87.5%
0.0041
5.0E−06
50
16


ITGB1
NME4
0.57
47
3
14
2
94.0%
87.5%
0.0045
0.0021
50
16


CDK4
ITGB1
0.57
42
8
14
2
84.0%
87.5%
0.0022
1.1E−09
50
16


BAD
IFITM1
0.57
39
11
14
2
78.0%
87.5%
0.0189
1.6E−10
50
16


MMP9
THBS1
0.57
46
4
14
2
92.0%
87.5%
0.0044
9.8E−05
50
16


RHOA
THBS1
0.57
45
5
14
2
90.0%
87.5%
0.0044
0.0173
50
16


RHOA
SKI
0.57
44
6
14
2
88.0%
87.5%
2.2E−07
0.0173
50
16


CDK2
MSH2
0.57
45
5
15
1
90.0%
93.8%
2.4E−10
0.0015
50
16


BAD
TP53
0.57
47
3
14
2
94.0%
87.5%
0.0016
1.6E−10
50
16


CDC25A
NRAS
0.57
44
6
14
2
88.0%
87.5%
2.8E−05
1.5E−05
50
16


IFITM1
RAF1
0.57
46
4
14
2
92.0%
87.5%
1.8E−08
0.0208
50
16


CASP8
ICAM1
0.57
49
1
13
2
98.0%
86.7%
0.0005
3.0E−10
50
15


E2F1
MMP9
0.57
45
5
14
2
90.0%
87.5%
0.0001
0.0005
50
16


CDC25A
NFKB1
0.57
45
5
14
2
90.0%
87.5%
0.0092
1.6E−05
50
16


SOCS1
THBS1
0.57
45
5
14
2
90.0%
87.5%
0.0051
0.0003
50
16


IFITM1
NME4
0.57
44
6
14
2
88.0%
87.5%
0.0056
0.0224
50
16


CDK5
E2F1
0.57
44
6
14
2
88.0%
87.5%
0.0005
0.0005
50
16


BAD
ITGB1
0.57
45
5
14
2
90.0%
87.5%
0.0026
1.8E−10
50
16


CDC25A
E2F1
0.57
44
6
14
2
88.0%
87.5%
0.0005
1.7E−05
50
16


BAD
TIMP1
0.57
42
8
14
2
84.0%
87.5%
0.0039
2.0E−10
50
16


CDK2
THBS1
0.57
44
6
14
2
88.0%
87.5%
0.0056
0.0019
50
16


E2F1
SOCS1
0.57
44
6
14
2
88.0%
87.5%
0.0004
0.0006
50
16


CDK5
MMP9
0.57
40
10
14
2
80.0%
87.5%
0.0001
0.0005
50
16


BRAF

0.56
44
6
14
2
88.0%
87.5%
1.3E−10

50
16


MSH2
SMAD4
0.56
44
6
14
2
88.0%
87.5%
0.0057
3.0E−10
50
16


BAX
NFKB1
0.56
46
4
14
2
92.0%
87.5%
0.0111
3.4E−09
50
16


AKT1
RHOA
0.56
44
6
14
2
88.0%
87.5%
0.0236
4.7E−06
50
16


CDK2
IFITM1
0.56
45
5
14
2
90.0%
87.5%
0.0266
0.0020
50
16


ATM
CDK2
0.56
43
7
14
2
86.0%
87.5%
0.0021
1.8E−08
50
16


NFKB1
THBS1
0.56
42
8
14
2
84.0%
87.5%
0.0062
0.0116
50
16


SOCS1
VEGF
0.56
44
6
15
1
88.0%
93.8%
7.4E−05
0.0004
50
16


NFKB1
NME4
0.56
43
7
14
2
86.0%
87.5%
0.0068
0.0118
50
16


CFLAR
PTEN
0.56
45
5
14
2
90.0%
87.5%
0.0009
1.1E−07
50
16


CDC25A
SOCS1
0.56
45
5
14
2
90.0%
87.5%
0.0004
2.1E−05
50
16


RHOA
SOCS1
0.56
43
7
14
2
86.0%
87.5%
0.0004
0.0260
50
16


MMP9
TP53
0.56
45
5
14
2
90.0%
87.5%
0.0023
0.0001
50
16


ERBB2
IFITM1
0.56
45
5
14
2
90.0%
87.5%
0.0291
1.9E−07
50
16


THBS1
VEGF
0.56
40
10
13
3
80.0%
81.3%
7.9E−05
0.0067
50
16


CDC25A
TP53
0.56
43
7
14
2
86.0%
87.5%
0.0024
2.2E−05
50
16


ATM
RHOA
0.56
45
5
14
2
90.0%
87.5%
0.0265
2.0E−08
50
16


CDC25A
NME4
0.56
44
6
14
2
88.0%
87.5%
0.0074
2.2E−05
50
16


MMP9
NME4
0.56
44
6
14
2
88.0%
87.5%
0.0075
0.0002
50
16


E2F1
IL18
0.56
44
6
13
3
88.0%
81.3%
7.9E−07
0.0007
50
16


RHOA
S100A4
0.56
46
4
14
2
92.0%
87.5%
7.8E−10
0.0297
50
16


IFITM1
SMAD4
0.56
46
4
14
2
92.0%
87.5%
0.0074
0.0331
50
16


NFKB1
TIMP1
0.56
43
7
14
2
86.0%
87.5%
0.0055
0.0149
50
16


CDK5
NME4
0.56
43
7
14
2
86.0%
87.5%
0.0086
0.0007
50
16


G1P3
THBS1
0.56
43
7
14
2
86.0%
87.5%
0.0079
4.4E−07
50
16


ITGB1
SERPINE1
0.56
44
6
14
2
88.0%
87.5%
2.6E−05
0.0041
50
16


ITGB1
MMP9
0.56
42
8
14
2
84.0%
87.5%
0.0002
0.0040
50
16


CDC25A
G1P3
0.56
46
4
14
2
92.0%
87.5%
4.5E−07
2.6E−05
50
16


ABL2
NFKB1
0.56
47
3
14
2
94.0%
87.5%
0.0155
3.9E−07
50
16


E2F1
NRAS
0.56
43
7
13
3
86.0%
81.3%
4.8E−05
0.0008
50
16


ITGB1
MSH2
0.56
44
6
13
3
88.0%
81.3%
4.3E−10
0.0042
50
16


IFITM1
VEGF
0.56
45
5
14
2
90.0%
87.5%
0.0001
0.0381
50
16


NME1
TIMP1
0.55
42
8
14
2
84.0%
87.5%
0.0061
3.2E−10
50
16


NME4
RHOA
0.55
44
6
14
2
88.0%
87.5%
0.0348
0.0094
50
16


THBS1
TIMP1
0.55
42
8
14
2
84.0%
87.5%
0.0061
0.0087
50
16


G1P3
NME4
0.55
43
7
14
2
86.0%
87.5%
0.0098
5.0E−07
50
16


SRC
TNFRSF6
0.55
46
4
14
2
92.0%
87.5%
0.0006
0.0003
50
16


PLAUR
SOCS1
0.55
46
4
14
2
92.0%
87.5%
0.0006
0.0001
50
16


SOCS1
TIMP1
0.55
48
2
14
2
96.0%
87.5%
0.0065
0.0006
50
16


IFITM1
SERPINE1
0.55
45
5
14
2
90.0%
87.5%
3.0E−05
0.0417
50
16


CDK2
CDK4
0.55
45
5
14
2
90.0%
87.5%
2.2E−09
0.0031
50
16


BRCA1

0.55
43
7
14
2
86.0%
87.5%
2.1E−10

50
16


CDKN2A
RHOA
0.55
46
4
14
2
92.0%
87.5%
0.0385
5.4E−07
50
16


TNF

0.55
42
8
14
2
84.0%
87.5%
2.1E−10

50
16


MSH2
NFKB1
0.55
44
6
14
2
88.0%
87.5%
0.0186
4.9E−10
50
16


CDKN2A
IFITM1
0.55
44
6
14
2
88.0%
87.5%
0.0450
5.7E−07
50
16


E2F1
NME4
0.55
42
8
13
3
84.0%
81.3%
0.0110
0.0010
50
16


CDKN2A
NFKB1
0.55
44
6
14
2
88.0%
87.5%
0.0193
5.8E−07
50
16


IFITM1
RHOA
0.55
45
5
14
2
90.0%
87.5%
0.0412
0.0457
50
16


NME4
SMAD4
0.55
42
8
14
2
84.0%
87.5%
0.0101
0.0112
50
16


IFITM1
ITGA3
0.55
45
5
15
1
90.0%
93.8%
1.1E−07
0.0467
50
16


SMAD4
TNFRSF10B
0.55
45
5
14
2
90.0%
87.5%
1.9E−07
0.0105
50
16


SERPINE1
TIMP1
0.55
43
7
14
2
86.0%
87.5%
0.0075
3.4E−05
50
16


ICAM1
SOCS1
0.55
45
5
14
2
90.0%
87.5%
0.0007
0.0017
50
16


RHOA
TNFRSF1A
0.55
46
4
14
2
92.0%
87.5%
2.1E−07
0.0451
50
16


ATM
TP53
0.55
46
4
15
1
92.0%
93.8%
0.0040
3.3E−08
50
16


NME4
PTEN
0.55
46
4
14
2
92.0%
87.5%
0.0016
0.0126
50
16


ICAM1
NME4
0.55
45
5
14
2
90.0%
87.5%
0.0126
0.0018
50
16


CDK2
MMP9
0.55
48
2
14
2
96.0%
87.5%
0.0003
0.0040
50
16


NFKB1
VEGF
0.55
42
8
14
2
84.0%
87.5%
0.0001
0.0237
50
16


NME4
SERPINE1
0.55
43
7
14
2
86.0%
87.5%
4.0E−05
0.0137
50
16


GZMA
ITGB1
0.54
42
8
13
3
84.0%
81.3%
0.0066
2.9E−10
50
16


TIMP1
TNFRSF6
0.54
42
8
13
3
84.0%
81.3%
0.0008
0.0093
50
16


SERPINE1
SOCS1
0.54
41
9
13
3
82.0%
81.3%
0.0008
4.3E−05
50
16


NFKB1
SRC
0.54
44
6
14
2
88.0%
87.5%
0.0005
0.0266
50
16


NFKB1
SKI
0.54
43
7
14
2
86.0%
87.5%
6.8E−07
0.0291
50
16


PTEN
SRC
0.54
45
5
14
2
90.0%
87.5%
0.0006
0.0021
50
16


SERPINE1
TNFRSF6
0.54
44
6
14
2
88.0%
87.5%
0.0010
4.9E−05
50
16


BAX
SMAD4
0.54
44
6
14
2
88.0%
87.5%
0.0159
8.6E−09
50
16


NME4
SOCS1
0.54
43
7
14
2
86.0%
87.5%
0.0010
0.0182
50
16


RAF1
SMAD4
0.54
45
5
14
2
90.0%
87.5%
0.0165
5.7E−08
50
16


JUN
NFKB1
0.54
46
4
15
1
92.0%
93.8%
0.0323
5.4E−09
50
16


SERPINE1
VEGF
0.54
43
7
14
2
86.0%
87.5%
0.0002
5.2E−05
50
16


CDC25A
CDK5
0.54
43
7
14
2
86.0%
87.5%
0.0014
5.2E−05
50
16


CDC25A
TNFRSF6
0.54
41
9
14
2
82.0%
87.5%
0.0011
5.4E−05
50
16


NME4
TNFRSF6
0.54
42
8
14
2
84.0%
87.5%
0.0011
0.0193
50
16


NME4
PLAUR
0.54
45
5
14
2
90.0%
87.5%
0.0003
0.0195
50
16


MMP9
SMAD4
0.54
46
4
14
2
92.0%
87.5%
0.0180
0.0004
50
16


AKT1
HRAS
0.54
43
7
14
2
86.0%
87.5%
4.8E−09
1.4E−05
50
16


ITGB1
PTEN
0.54
44
6
14
2
88.0%
87.5%
0.0026
0.0096
50
16


MMP9
TIMP1
0.54
43
7
14
2
86.0%
87.5%
0.0133
0.0004
50
16


CDK2
TIMP1
0.54
42
8
14
2
84.0%
87.5%
0.0136
0.0064
50
16


CDKN2A
THBS1
0.54
48
2
14
2
96.0%
87.5%
0.0197
1.1E−06
50
16


HRAS
SRC
0.53
46
4
14
2
92.0%
87.5%
0.0007
5.1E−09
50
16


CDK4
CDK5
0.53
43
7
14
2
86.0%
87.5%
0.0017
4.3E−09
50
16


ICAM1
THBS1
0.53
44
6
14
2
88.0%
87.5%
0.0204
0.0031
50
16


CDK2
G1P3
0.53
44
6
14
2
88.0%
87.5%
1.1E−06
0.0069
50
16


MMP9
NFKB1
0.53
44
6
14
2
88.0%
87.5%
0.0412
0.0004
50
16


CDC25A
PTEN
0.53
43
7
14
2
86.0%
87.5%
0.0032
6.9E−05
50
16


IL8
TNFRSF6
0.53
44
6
13
3
88.0%
81.3%
0.0015
7.5E−10
50
16


HRAS
PTEN
0.53
39
11
13
3
78.0%
81.3%
0.0034
6.1E−09
50
16


E2F1
SEMA4D
0.53
41
9
13
3
82.0%
81.3%
3.7E−05
0.0024
50
16


ITGB1
JUN
0.53
41
9
14
2
82.0%
87.5%
7.9E−09
0.0127
50
16


E2F1
VHL
0.53
45
5
13
3
90.0%
81.3%
6.0E−05
0.0024
50
16


CDK5
THBS1
0.53
41
9
14
2
82.0%
87.5%
0.0255
0.0021
50
16


TNFRSF6
TP53
0.53
43
7
14
2
86.0%
87.5%
0.0089
0.0016
50
16


THBS1
TP53
0.53
45
5
14
2
90.0%
87.5%
0.0091
0.0265
50
16


TGFBI

0.53
44
6
14
2
88.0%
87.5%
5.2E−10

50
16


IL18
THBS1
0.53
42
8
14
2
84.0%
87.5%
0.0265
2.7E−06
50
16


SOCS1
TNFRSF6
0.53
44
6
14
2
88.0%
87.5%
0.0017
0.0016
50
16


TP53
VEGF
0.53
42
8
13
3
84.0%
81.3%
0.0003
0.0095
50
16


CASP8
TIMP1
0.53
46
4
13
2
92.0%
86.7%
0.0132
1.4E−09
50
15


NME4
TP53
0.53
44
6
14
2
88.0%
87.5%
0.0098
0.0314
50
16


NME1
NME4
0.53
41
9
14
2
82.0%
87.5%
0.0324
9.6E−10
50
16


CDC25A
MMP9
0.53
45
5
13
3
90.0%
81.3%
0.0006
8.7E−05
50
16


IL1B
TP53
0.52
44
6
14
2
88.0%
87.5%
0.0105
9.0E−05
50
16


ITGB1
THBS1
0.52
42
8
14
2
84.0%
87.5%
0.0315
0.0156
50
16


ICAM1
TIMP1
0.52
39
11
13
3
78.0%
81.3%
0.0221
0.0048
50
16


HRAS
SOCS1
0.52
45
5
14
2
90.0%
87.5%
0.0019
7.7E−09
50
16


NME4
RHOC
0.52
42
8
14
2
84.0%
87.5%
3.5E−06
0.0355
50
16


CDC25A
VEGF
0.52
43
7
14
2
86.0%
87.5%
0.0004
9.4E−05
50
16


PTEN
TIMP1
0.52
41
9
14
2
82.0%
87.5%
0.0235
0.0046
50
16


CDK5
TNFRSF6
0.52
45
5
14
2
90.0%
87.5%
0.0021
0.0028
50
16


ABL1
TP53
0.52
47
3
14
2
94.0%
87.5%
0.0116
9.8E−06
50
16


AKT1
THBS1
0.52
45
5
14
2
90.0%
87.5%
0.0344
2.3E−05
50
16


BCL2
HRAS
0.52
48
2
14
2
96.0%
87.5%
8.2E−09
1.7E−05
50
16


BAD
TNFRSF6
0.52
45
5
14
2
90.0%
87.5%
0.0021
1.0E−09
50
16


CDK2
NME4
0.52
42
8
14
2
84.0%
87.5%
0.0381
0.0112
50
16


NRAS
THBS1
0.52
40
10
14
2
80.0%
87.5%
0.0358
0.0002
50
16


BAD
CDK5
0.52
44
6
14
2
88.0%
87.5%
0.0029
1.0E−09
50
16


HRAS
VEGF
0.52
43
7
14
2
86.0%
87.5%
0.0004
8.6E−09
50
16


HRAS
TNFRSF6
0.52
41
9
14
2
82.0%
87.5%
0.0022
8.6E−09
50
16


CDC25A
IL1B
0.52
43
7
14
2
86.0%
87.5%
0.0001
0.0001
50
16


SRC
VEGF
0.52
43
7
14
2
86.0%
87.5%
0.0004
0.0013
50
16


ITGB1
VEGF
0.52
40
10
14
2
80.0%
87.5%
0.0004
0.0181
50
16


CDK5
MSH2
0.52
45
5
14
2
90.0%
87.5%
1.6E−09
0.0030
50
16


FOS
ITGB1
0.52
42
8
13
3
84.0%
81.3%
0.0184
3.9E−05
50
16


ABL2
E2F1
0.52
45
5
13
3
90.0%
81.3%
0.0035
1.6E−06
50
16


APAF1
THBS1
0.52
43
7
14
2
86.0%
87.5%
0.0378
2.8E−05
50
16


SMAD4
VEGF
0.52
41
9
13
3
82.0%
81.3%
0.0004
0.0373
50
16


GZMA
SMAD4
0.52
44
6
14
2
88.0%
87.5%
0.0375
7.5E−10
50
16


HRAS
THBS1
0.52
44
6
14
2
88.0%
87.5%
0.0386
9.1E−09
50
16


CDK5
IL1B
0.52
43
7
14
2
86.0%
87.5%
0.0001
0.0032
50
16


CDK2
VEGF
0.52
45
5
14
2
90.0%
87.5%
0.0004
0.0128
50
16


ITGB1
SOCS1
0.52
46
4
14
2
92.0%
87.5%
0.0023
0.0198
50
16


IL18
NME4
0.52
43
7
14
2
86.0%
87.5%
0.0441
3.9E−06
50
16


IL1B
NME4
0.52
45
5
14
2
90.0%
87.5%
0.0450
0.0001
50
16


CDK2
SRC
0.52
44
6
14
2
88.0%
87.5%
0.0014
0.0133
50
16


HRAS
NME4
0.52
45
5
14
2
90.0%
87.5%
0.0475
1.0E−08
50
16


ITGAE
NME4
0.52
44
6
14
2
88.0%
87.5%
0.0478
4.3E−07
50
16


ITGB1
TNFRSF6
0.52
44
6
14
2
88.0%
87.5%
0.0026
0.0219
50
16


CFLAR
E2F1
0.52
43
7
13
3
86.0%
81.3%
0.0041
6.6E−07
50
16


ITGB1
PLAUR
0.52
43
7
14
2
86.0%
87.5%
0.0007
0.0226
50
16


PCNA
THBS1
0.51
46
4
14
2
92.0%
87.5%
0.0468
1.4E−06
50
16


IL1B
TIMP1
0.51
42
8
13
3
84.0%
81.3%
0.0326
0.0001
50
16


FOS
SOCS1
0.51
43
7
14
2
86.0%
87.5%
0.0027
4.8E−05
50
16


MMP9
RHOC
0.51
42
8
14
2
84.0%
87.5%
4.9E−06
0.0009
50
16


IL1B
SRC
0.51
44
6
14
2
88.0%
87.5%
0.0016
0.0001
50
16


IL1B
SOCS1
0.51
46
4
14
2
92.0%
87.5%
0.0029
0.0001
50
16


E2F1
ITGA1
0.51
44
6
14
2
88.0%
87.5%
1.4E−06
0.0046
50
16


CDC25A
SERPINE1
0.51
41
9
13
3
82.0%
81.3%
0.0001
0.0001
50
16


PLAUR
TP53
0.51
45
5
14
2
90.0%
87.5%
0.0176
0.0008
50
16


G1P3
TP53
0.51
44
6
14
2
88.0%
87.5%
0.0176
2.5E−06
50
16


E2F1
ITGAE
0.51
42
8
14
2
84.0%
87.5%
5.2E−07
0.0049
50
16


ICAM1
ITGB1
0.51
44
6
14
2
88.0%
87.5%
0.0268
0.0080
50
16


ATM
ITGB1
0.51
45
5
14
2
90.0%
87.5%
0.0268
1.3E−07
50
16


G1P3
ICAM1
0.51
42
8
14
2
84.0%
87.5%
0.0082
2.6E−06
50
16


G1P3
TIMP1
0.51
38
12
14
2
76.0%
87.5%
0.0396
2.7E−06
50
16


MMP9
NRAS
0.51
45
5
14
2
90.0%
87.5%
0.0003
0.0011
50
16


IL1B
ITGB1
0.51
45
5
14
2
90.0%
87.5%
0.0292
0.0002
50
16


CDKN2A
ICAM1
0.51
42
8
14
2
84.0%
87.5%
0.0091
3.0E−06
50
16


PTEN
TP53
0.51
46
4
14
2
92.0%
87.5%
0.0214
0.0083
50
16


CDK5
PTEN
0.51
39
11
14
2
78.0%
87.5%
0.0086
0.0052
50
16


SRC
TIMP1
0.51
42
8
14
2
84.0%
87.5%
0.0473
0.0022
50
16


E2F1
IL8
0.51
45
5
14
2
90.0%
87.5%
1.9E−09
0.0062
50
16


CDK5
PLAUR
0.51
42
8
14
2
84.0%
87.5%
0.0010
0.0055
50
16


TIMP1
VEGF
0.51
45
5
13
3
90.0%
81.3%
0.0007
0.0487
50
16


AKT1
CASP8
0.50
44
6
13
2
88.0%
86.7%
3.0E−09
3.1E−05
50
15


PLAUR
SRC
0.50
44
6
14
2
88.0%
87.5%
0.0024
0.0010
50
16


CDK2
PLAUR
0.50
42
8
14
2
84.0%
87.5%
0.0011
0.0246
50
16


FOS
SRC
0.50
44
6
13
3
88.0%
81.3%
0.0026
7.6E−05
50
16


E2F1
SERPINE1
0.50
44
6
13
3
88.0%
81.3%
0.0002
0.0071
50
16


SOCS1
TP53
0.50
45
5
14
2
90.0%
87.5%
0.0271
0.0045
50
16


E2F1
RAF1
0.50
41
9
13
3
82.0%
81.3%
2.3E−07
0.0073
50
16


CDK2
JUN
0.50
46
4
13
3
92.0%
81.3%
2.3E−08
0.0266
50
16


CDK2
SERPINE1
0.50
43
7
14
2
86.0%
87.5%
0.0002
0.0265
50
16


BCL2
E2F1
0.50
41
9
13
3
82.0%
81.3%
0.0075
3.7E−05
50
16


NME1
VHL
0.50
42
8
14
2
84.0%
87.5%
0.0002
2.4E−09
50
16


E2F1
SKI
0.50
42
8
13
3
84.0%
81.3%
3.3E−06
0.0079
50
16


CDC25A
ICAM1
0.50
43
7
14
2
86.0%
87.5%
0.0127
0.0002
50
16


ITGB1
PTCH1
0.50
39
11
14
2
78.0%
87.5%
1.2E−06
0.0448
50
16


JUN
TP53
0.50
47
3
14
2
94.0%
87.5%
0.0304
2.4E−08
50
16


CDK5
FOS
0.50
45
5
13
3
90.0%
81.3%
9.0E−05
0.0073
50
16


G1P3
ITGB1
0.50
41
9
13
3
82.0%
81.3%
0.0465
4.2E−06
50
16


E2F1
TNFRSF1A
0.50
43
7
14
2
86.0%
87.5%
1.5E−06
0.0085
50
16


BCL2
CDC25A
0.50
44
6
14
2
88.0%
87.5%
0.0003
4.3E−05
50
16


FOS
TP53
0.50
45
5
14
2
90.0%
87.5%
0.0338
9.6E−05
50
16


IL8
PTEN
0.50
47
3
14
2
94.0%
87.5%
0.0131
2.7E−09
50
16


IFITM1

0.50
44
6
14
2
88.0%
87.5%
1.7E−09

50
16


PLAUR
SERPINE1
0.50
42
8
13
3
84.0%
81.3%
0.0003
0.0014
50
16


NME1
PCNA
0.50
46
4
14
2
92.0%
87.5%
2.8E−06
2.9E−09
50
16


ANGPT1
E2F1
0.49
41
9
14
2
82.0%
87.5%
0.0095
1.5E−06
50
16


RHOA

0.49
42
8
14
2
84.0%
87.5%
1.9E−09

50
16


E2F1
IGFBP3
0.49
44
6
13
3
88.0%
81.3%
7.1E−07
0.0101
50
16


CDK4
NRAS
0.49
41
9
13
3
82.0%
81.3%
0.0006
2.1E−08
50
16


CDK2
ICAM1
0.49
40
10
14
2
80.0%
87.5%
0.0170
0.0377
50
16


CDK2
SOCS1
0.49
44
6
14
2
88.0%
87.5%
0.0065
0.0376
50
16


NRAS
SERPINE1
0.49
40
10
14
2
80.0%
87.5%
0.0003
0.0006
50
16


E2F1
ITGA3
0.49
43
7
13
3
86.0%
81.3%
1.0E−06
0.0107
50
16


CDK5
SERPINE1
0.49
42
8
13
3
84.0%
81.3%
0.0003
0.0094
50
16


CDK5
VEGF
0.49
43
7
13
3
86.0%
81.3%
0.0012
0.0097
50
16


CDK2
PTEN
0.49
44
6
14
2
88.0%
87.5%
0.0164
0.0407
50
16


CASP8
ITGB1
0.49
43
7
13
2
86.0%
86.7%
0.0310
5.2E−09
50
15


BAD
NRAS
0.49
40
10
13
3
80.0%
81.3%
0.0006
3.3E−09
50
16


PTEN
RHOC
0.49
43
7
13
3
86.0%
81.3%
1.2E−05
0.0169
50
16


ABL1
E2F1
0.49
42
8
13
3
84.0%
81.3%
0.0117
3.3E−05
50
16


BAX
CDK2
0.49
43
7
14
2
86.0%
87.5%
0.0436
5.8E−08
50
16


ICAM1
SERPINE1
0.49
42
8
14
2
84.0%
87.5%
0.0004
0.0197
50
16


ICAM1
RAF1
0.49
44
6
14
2
88.0%
87.5%
3.8E−07
0.0200
50
16


G1P3
MMP9
0.49
46
4
13
3
92.0%
81.3%
0.0026
6.0E−06
50
16


ERBB2
PTEN
0.49
43
7
14
2
86.0%
87.5%
0.0183
3.1E−06
50
16


CDC25A
PLAUR
0.49
44
6
14
2
88.0%
87.5%
0.0020
0.0004
50
16


SERPINE1
TP53
0.49
46
4
14
2
92.0%
87.5%
0.0489
0.0004
50
16


APAF1
SOCS1
0.49
43
7
13
3
86.0%
81.3%
0.0079
9.6E−05
50
16


G1P3
PTEN
0.49
43
7
14
2
86.0%
87.5%
0.0188
6.2E−06
50
16


ERBB2
MMP9
0.49
42
8
14
2
84.0%
87.5%
0.0029
3.4E−06
50
16


SOCS1
SRC
0.49
45
5
14
2
90.0%
87.5%
0.0051
0.0087
50
16


E2F1
MYCL1
0.49
42
8
14
2
84.0%
87.5%
5.3E−06
0.0143
50
16


BAX
HRAS
0.49
45
5
14
2
90.0%
87.5%
3.3E−08
6.7E−08
50
16


E2F1
TNFRSF10B
0.48
41
9
13
3
82.0%
81.3%
2.3E−06
0.0146
50
16


HRAS
PLAUR
0.48
49
1
13
3
98.0%
81.3%
0.0023
3.4E−08
50
16


CDK5
SOCS1
0.48
44
6
14
2
88.0%
87.5%
0.0093
0.0132
50
16


NME1
PTEN
0.48
43
7
13
3
86.0%
81.3%
0.0221
4.6E−09
50
16


CASP8
CDK2
0.48
43
7
13
2
86.0%
86.7%
0.0273
7.0E−09
50
15


CASP8
CFLAR
0.48
45
5
12
3
90.0%
80.0%
2.2E−06
7.1E−09
50
15


IL18
SOCS1
0.48
43
7
14
2
86.0%
87.5%
0.0102
1.6E−05
50
16


HRAS
MYCL1
0.48
41
9
14
2
82.0%
87.5%
6.2E−06
3.8E−08
50
16


PTEN
SERPINE1
0.48
42
8
14
2
84.0%
87.5%
0.0005
0.0248
50
16


CDK5
ICAM1
0.48
43
7
14
2
86.0%
87.5%
0.0277
0.0149
50
16


BAD
ICAM1
0.48
40
10
14
2
80.0%
87.5%
0.0277
4.7E−09
50
16


E2F1
PCNA
0.48
38
12
13
3
76.0%
81.3%
5.3E−06
0.0178
50
16


BAD
VHL
0.48
47
3
14
2
94.0%
87.5%
0.0004
5.1E−09
50
16


ICAM1
SRC
0.48
43
7
14
2
86.0%
87.5%
0.0068
0.0312
50
16


CDC25A
VHL
0.48
40
10
13
3
80.0%
81.3%
0.0004
0.0006
50
16


NFKB1

0.48
44
6
13
3
88.0%
81.3%
3.6E−09

50
16


PTEN
S100A4
0.48
43
7
13
3
86.0%
81.3%
1.7E−08
0.0306
50
16


CDK5
S100A4
0.48
46
4
14
2
92.0%
87.5%
1.8E−08
0.0187
50
16


CDC25A
ITGA3
0.48
45
5
13
3
90.0%
81.3%
2.0E−06
0.0006
50
16


E2F1
RHOC
0.47
42
8
13
3
84.0%
81.3%
2.2E−05
0.0220
50
16


BCL2
MMP9
0.47
44
6
14
2
88.0%
87.5%
0.0045
0.0001
50
16


MMP9
SERPINE1
0.47
45
5
13
3
90.0%
81.3%
0.0006
0.0045
50
16


E2F1
ERBB2
0.47
43
7
13
3
86.0%
81.3%
5.5E−06
0.0240
50
16


APAF1
CASP8
0.47
45
5
13
2
90.0%
86.7%
9.8E−09
0.0001
50
15


ICAM1
MMP9
0.47
43
7
14
2
86.0%
87.5%
0.0050
0.0411
50
16


ANGPT1
SOCS1
0.47
39
11
14
2
78.0%
87.5%
0.0156
3.6E−06
50
16


ICAM1
VEGF
0.47
45
5
13
3
90.0%
81.3%
0.0028
0.0436
50
16


CDC25A
CDKN2A
0.47
41
9
13
3
82.0%
81.3%
1.3E−05
0.0008
50
16


CASP8
IL1B
0.47
43
7
13
2
86.0%
86.7%
0.0006
1.1E−08
50
15


E2F1
MYC
0.47
40
10
13
3
80.0%
81.3%
1.7E−05
0.0279
50
16


MMP9
VHL
0.47
39
11
14
2
78.0%
87.5%
0.0006
0.0058
50
16


ITGA3
MMP9
0.47
46
4
13
3
92.0%
81.3%
0.0058
2.6E−06
50
16


CDC25A
IGFBP3
0.47
44
6
13
3
88.0%
81.3%
1.9E−06
0.0008
50
16


HRAS
IL18
0.47
45
5
15
1
90.0%
93.8%
2.7E−05
6.5E−08
50
16


IL18
SERPINE1
0.47
40
10
13
3
80.0%
81.3%
0.0009
3.0E−05
50
16


CDKN2A
SRC
0.46
42
8
14
2
84.0%
87.5%
0.0117
1.5E−05
50
16


PTEN
VEGF
0.46
42
8
13
3
84.0%
81.3%
0.0035
0.0493
50
16


ABL1
MMP9
0.46
43
7
14
2
86.0%
87.5%
0.0067
8.8E−05
50
16


CDC25A
FOS
0.46
43
7
13
3
86.0%
81.3%
0.0003
0.0009
50
16


ABL1
CDC25A
0.46
42
8
14
2
84.0%
87.5%
0.0010
9.1E−05
50
16


BAX
E2F1
0.46
40
10
12
4
80.0%
75.0%
0.0352
1.5E−07
50
16


CDC25A
RHOC
0.46
42
8
14
2
84.0%
87.5%
3.4E−05
0.0010
50
16


NME4

0.46
42
8
13
3
84.0%
81.3%
6.1E−09

50
16


G1P3
TNFRSF6
0.46
47
3
14
2
94.0%
87.5%
0.0244
1.7E−05
50
16


ERBB2
SERPINE1
0.46
42
8
13
3
84.0%
81.3%
0.0011
8.7E−06
50
16


E2F1
PTCH1
0.46
41
9
13
3
82.0%
81.3%
4.9E−06
0.0397
50
16


THBS1

0.46
46
4
14
2
92.0%
87.5%
6.5E−09

50
16


CDK5
TNFRSF10A
0.46
46
4
13
3
92.0%
81.3%
8.4E−08
0.0355
50
16


CDK5
G1P3
0.46
43
7
14
2
86.0%
87.5%
1.8E−05
0.0358
50
16


CDC25A
PCNA
0.46
42
8
13
3
84.0%
81.3%
1.1E−05
0.0011
50
16


SMAD4

0.46
43
7
13
3
86.0%
81.3%
6.6E−09

50
16


APAF1
CDC25A
0.46
42
8
13
3
84.0%
81.3%
0.0011
0.0003
50
16


NME1
TNFRSF6
0.46
41
9
13
3
82.0%
81.3%
0.0261
1.1E−08
50
16


CDK5
GZMA
0.46
41
9
13
3
82.0%
81.3%
7.2E−09
0.0376
50
16


HRAS
SEMA4D
0.46
43
7
14
2
86.0%
87.5%
0.0006
9.0E−08
50
16


CDKN2A
PLAUR
0.46
40
10
14
2
80.0%
87.5%
0.0067
2.0E−05
50
16


ATM
E2F1
0.46
39
11
13
3
78.0%
81.3%
0.0466
1.0E−06
50
16


ANGPT1
CDK5
0.46
40
10
13
3
80.0%
81.3%
0.0416
6.3E−06
50
16


MMP9
VEGF
0.46
43
7
13
3
86.0%
81.3%
0.0049
0.0094
50
16


G1P3
VEGF
0.46
42
8
13
3
84.0%
81.3%
0.0050
2.1E−05
50
16


ITGAE
SOCS1
0.46
42
8
14
2
84.0%
87.5%
0.0301
4.3E−06
50
16


MMP9
PCNA
0.45
46
4
13
3
92.0%
81.3%
1.4E−05
0.0100
50
16


ABL1
NME1
0.45
42
8
14
2
84.0%
87.5%
1.3E−08
0.0001
50
16


CDC25A
PTCH1
0.45
42
8
13
3
84.0%
81.3%
6.2E−06
0.0014
50
16


SEMA4D
SOCS1
0.45
42
8
13
3
84.0%
81.3%
0.0343
0.0007
50
16


TIMP1

0.45
42
8
13
3
84.0%
81.3%
9.1E−09

50
16


CDC25A
SEMA4D
0.45
42
8
13
3
84.0%
81.3%
0.0008
0.0015
50
16


CDKN2A
TNFRSF6
0.45
43
7
14
2
86.0%
87.5%
0.0368
2.5E−05
50
16


CDC25A
TNFRSF10B
0.45
40
10
13
3
80.0%
81.3%
8.1E−06
0.0016
50
16


SKIL
SOCS1
0.45
44
6
14
2
88.0%
87.5%
0.0378
2.7E−05
50
16


RHOC
TNFRSF6
0.45
42
8
14
2
84.0%
87.5%
0.0391
5.7E−05
50
16


CCNE1
SRC
0.45
44
6
14
2
88.0%
87.5%
0.0215
3.9E−06
50
16


AKT1
BAD
0.45
43
7
13
3
86.0%
81.3%
1.5E−08
0.0004
50
16


CDC25A
ERBB2
0.45
42
8
14
2
84.0%
87.5%
1.4E−05
0.0017
50
16


NRAS
VEGF
0.45
41
9
13
3
82.0%
81.3%
0.0067
0.0032
50
16


MMP9
TNFRSF6
0.45
47
3
13
3
94.0%
81.3%
0.0417
0.0129
50
16


AKT1
SOCS1
0.45
42
8
13
3
84.0%
81.3%
0.0404
0.0004
50
16


ITGAE
SRC
0.45
43
7
14
2
86.0%
87.5%
0.0229
5.6E−06
50
16


ABL2
HRAS
0.45
46
4
13
3
92.0%
81.3%
1.3E−07
2.4E−05
50
16


G1P3
PLAUR
0.45
45
5
14
2
90.0%
87.5%
0.0098
2.8E−05
50
16


ITGA3
SOCS1
0.45
41
9
14
2
82.0%
87.5%
0.0416
5.5E−06
50
16


IL1B
SERPINE1
0.45
42
8
13
3
84.0%
81.3%
0.0018
0.0018
50
16


BCL2
VEGF
0.45
39
11
13
3
78.0%
81.3%
0.0074
0.0003
50
16


PLAUR
RAF1
0.45
43
7
14
2
86.0%
87.5%
1.9E−06
0.0105
50
16


HRAS
TNFRSF10B
0.45
46
4
13
3
92.0%
81.3%
9.7E−06
1.4E−07
50
16


CDC25A
MYC
0.45
43
7
14
2
86.0%
87.5%
4.0E−05
0.0019
50
16


NME1
SOCS1
0.45
41
9
14
2
82.0%
87.5%
0.0464
1.9E−08
50
16


CDKN2A
MMP9
0.45
43
7
13
3
86.0%
81.3%
0.0150
3.3E−05
50
16


ANGPT1
SRC
0.44
41
9
14
2
82.0%
87.5%
0.0275
1.0E−05
50
16


ITGB1

0.44
41
9
14
2
82.0%
87.5%
1.2E−08

50
16


CDKN2A
VEGF
0.44
42
8
13
3
84.0%
81.3%
0.0084
3.5E−05
50
16


CASP8
FOS
0.44
44
6
13
2
88.0%
86.7%
0.0007
2.9E−08
50
15


NRAS
PLAUR
0.44
45
5
14
2
90.0%
87.5%
0.0128
0.0042
50
16


G1P3
SERPINE1
0.44
39
11
13
3
78.0%
81.3%
0.0024
3.7E−05
50
16


SERPINE1
SRC
0.44
43
7
13
3
86.0%
81.3%
0.0320
0.0024
50
16


ATM
HRAS
0.44
40
10
13
3
80.0%
81.3%
1.8E−07
1.9E−06
50
16


HRAS
RHOC
0.44
47
3
13
3
94.0%
81.3%
8.5E−05
1.8E−07
50
16


MMP9
MYC
0.44
47
3
13
3
94.0%
81.3%
5.3E−05
0.0192
50
16


IL18
SRC
0.44
42
8
13
3
84.0%
81.3%
0.0351
8.2E−05
50
16


CDC25A
IL18
0.44
41
9
13
3
82.0%
81.3%
8.4E−05
0.0026
50
16


SERPINE1
SKIL
0.44
40
10
13
3
80.0%
81.3%
4.4E−05
0.0027
50
16


ITGA3
VEGF
0.44
39
11
13
3
78.0%
81.3%
0.0106
8.3E−06
50
16


APAF1
HRAS
0.44
40
10
13
3
80.0%
81.3%
2.1E−07
0.0007
50
16


RHOC
SERPINE1
0.44
41
9
13
3
82.0%
81.3%
0.0028
9.7E−05
50
16


BCL2
PLAUR
0.43
43
7
14
2
86.0%
87.5%
0.0169
0.0005
50
16


PLAUR
RHOC
0.43
43
7
14
2
86.0%
87.5%
0.0001
0.0169
50
16


TP53

0.43
46
4
14
2
92.0%
87.5%
1.7E−08

50
16


SERPINE1
VHL
0.43
43
7
14
2
86.0%
87.5%
0.0025
0.0031
50
16


MMP9
PTCH1
0.43
47
3
13
3
94.0%
81.3%
1.4E−05
0.0241
50
16


IL1B
NRAS
0.43
43
7
14
2
86.0%
87.5%
0.0059
0.0032
50
16


CDK2

0.43
39
11
13
3
78.0%
81.3%
1.8E−08

50
16


IL1B
VEGF
0.43
44
6
13
3
88.0%
81.3%
0.0128
0.0033
50
16


PLAUR
VEGF
0.43
47
3
13
3
94.0%
81.3%
0.0128
0.0184
50
16


CASP8
MMP9
0.43
39
11
13
2
78.0%
86.7%
0.0269
4.5E−08
50
15


ITGA1
SERPINE1
0.43
42
8
13
3
84.0%
81.3%
0.0038
3.4E−05
50
16


CDC25A
ITGA1
0.43
41
9
13
3
82.0%
81.3%
3.4E−05
0.0038
50
16


CDKN2A
IL1B
0.43
42
8
14
2
84.0%
87.5%
0.0038
6.1E−05
50
16


AKT1
CDC25A
0.43
41
9
13
3
82.0%
81.3%
0.0038
0.0009
50
16


ANGPT1
CDC25A
0.43
40
10
13
3
80.0%
81.3%
0.0039
1.8E−05
50
16


BAD
PLAUR
0.43
39
11
14
2
78.0%
87.5%
0.0238
3.6E−08
50
16


CDK4
VHL
0.43
42
8
13
3
84.0%
81.3%
0.0034
2.6E−07
50
16


CASP8
SEMA4D
0.43
40
10
13
2
80.0%
86.7%
0.0015
5.2E−08
50
15


GZMA
NRAS
0.43
42
8
13
3
84.0%
81.3%
0.0082
2.6E−08
50
16


CDC25A
SKIL
0.42
41
9
13
3
82.0%
81.3%
7.1E−05
0.0045
50
16


AKT1
NME1
0.42
41
9
13
3
82.0%
81.3%
4.2E−08
0.0010
50
16


CDC25A
MYCL1
0.42
42
8
13
3
84.0%
81.3%
5.5E−05
0.0046
50
16


MSH2
NRAS
0.42
43
7
13
3
86.0%
81.3%
0.0087
6.0E−08
50
16


ERBB2
PLAUR
0.42
43
7
14
2
86.0%
87.5%
0.0271
3.6E−05
50
16


IFNG
MMP9
0.42
46
4
13
3
92.0%
81.3%
0.0408
3.8E−07
50
16


SEMA4D
VEGF
0.42
40
10
13
3
80.0%
81.3%
0.0211
0.0026
50
16


MMP9
MYCL1
0.42
48
2
13
3
96.0%
81.3%
6.3E−05
0.0418
50
16


IL1B
VHL
0.42
42
8
13
3
84.0%
81.3%
0.0042
0.0053
50
16


IL1B
ITGA3
0.42
43
7
14
2
86.0%
87.5%
1.6E−05
0.0054
50
16


VEGF
VHL
0.42
39
11
13
3
78.0%
81.3%
0.0043
0.0216
50
16


BCL2
IL1B
0.42
44
6
13
3
88.0%
81.3%
0.0055
0.0009
50
16


PCNA
SERPINE1
0.42
40
10
12
4
80.0%
75.0%
0.0055
5.2E−05
50
16


ERBB2
IL1B
0.42
44
6
13
3
88.0%
81.3%
0.0055
4.2E−05
50
16


IL8
PLAUR
0.42
43
7
13
3
86.0%
81.3%
0.0329
5.0E−08
50
16


ITGAE
MMP9
0.42
44
6
13
3
88.0%
81.3%
0.0461
1.8E−05
50
16


FOS
SERPINE1
0.42
41
9
13
3
82.0%
81.3%
0.0060
0.0021
50
16


CFLAR
PLAUR
0.42
42
8
13
3
84.0%
81.3%
0.0347
2.7E−05
50
16


FOS
RHOC
0.42
41
9
13
3
82.0%
81.3%
0.0002
0.0022
50
16


HRAS
MYC
0.42
42
8
14
2
84.0%
87.5%
0.0001
4.4E−07
50
16


ABL1
VEGF
0.42
40
10
12
4
80.0%
75.0%
0.0263
0.0006
50
16


BCL2
NME1
0.42
43
7
14
2
86.0%
87.5%
5.9E−08
0.0010
50
16


HRAS
SKI
0.41
38
12
13
3
76.0%
81.3%
8.7E−05
4.7E−07
50
16


ICAM1

0.41
43
7
14
2
86.0%
87.5%
3.7E−08

50
16


PLAUR
VHL
0.41
43
7
14
2
86.0%
87.5%
0.0055
0.0411
50
16


FOS
NRAS
0.41
43
7
13
3
86.0%
81.3%
0.0134
0.0025
50
16


ITGAE
VEGF
0.41
42
8
13
3
84.0%
81.3%
0.0293
2.2E−05
50
16


MYC
VEGF
0.41
41
9
13
3
82.0%
81.3%
0.0305
0.0001
50
16


PTEN

0.41
43
7
13
3
86.0%
81.3%
4.1E−08

50
16


G1P3
IL1B
0.41
43
7
13
3
86.0%
81.3%
0.0077
0.0001
50
16


CDC25A
ITGAE
0.41
42
8
13
3
84.0%
81.3%
2.5E−05
0.0083
50
16


CDC25A
SKI
0.41
42
8
13
3
84.0%
81.3%
0.0001
0.0084
50
16


CDKN2A
SERPINE1
0.41
38
12
12
4
76.0%
75.0%
0.0088
0.0001
50
16


CDC25A
TNFRSF1A
0.41
38
12
12
4
76.0%
75.0%
4.5E−05
0.0088
50
16


HRAS
PTCH1
0.41
42
8
14
2
84.0%
87.5%
3.8E−05
6.1E−07
50
16


BCL2
SERPINE1
0.40
42
8
13
3
84.0%
81.3%
0.0102
0.0016
50
16


NRAS
TNFRSF10A
0.40
41
9
12
4
82.0%
75.0%
6.9E−07
0.0194
50
16


G1P3
NRAS
0.40
42
8
14
2
84.0%
87.5%
0.0201
0.0002
50
16


ABL2
CDC25A
0.40
40
10
13
3
80.0%
81.3%
0.0107
0.0001
50
16


E2F1

0.40
42
8
13
3
84.0%
81.3%
5.7E−08

50
16


ERBB2
VEGF
0.40
38
12
13
3
76.0%
81.3%
0.0454
8.1E−05
50
16


BCL2
FOS
0.40
41
9
14
2
82.0%
87.5%
0.0039
0.0017
50
16


CCNE1
CDC25A
0.40
42
8
14
2
84.0%
87.5%
0.0112
2.4E−05
50
16


RHOC
VEGF
0.40
41
9
13
3
82.0%
81.3%
0.0468
0.0004
50
16


AKT1
SERPINE1
0.40
39
11
13
3
78.0%
81.3%
0.0117
0.0026
50
16


IL1B
RHOC
0.40
41
9
14
2
82.0%
87.5%
0.0004
0.0120
50
16


NME1
VEGF
0.40
41
9
13
3
82.0%
81.3%
0.0497
1.0E−07
50
16


CDK5

0.40
39
11
12
4
78.0%
75.0%
6.4E−08

50
16


ABL1
IL1B
0.40
46
4
13
3
92.0%
81.3%
0.0133
0.0012
50
16


ERBB2
HRAS
0.40
43
7
13
3
86.0%
81.3%
8.7E−07
9.6E−05
50
16


FOS
G1P3
0.40
41
9
14
2
82.0%
87.5%
0.0002
0.0046
50
16


APAF1
BAD
0.40
42
8
14
2
84.0%
87.5%
1.1E−07
0.0032
50
16


ABL1
SERPINE1
0.40
41
9
13
3
82.0%
81.3%
0.0139
0.0012
50
16


G1P3
SEMA4D
0.40
44
6
13
3
88.0%
81.3%
0.0067
0.0002
50
16


ERBB2
FOS
0.39
42
8
14
2
84.0%
87.5%
0.0053
0.0001
50
16


CDC25A
CFLAR
0.39
41
9
13
3
82.0%
81.3%
7.2E−05
0.0165
50
16


HRAS
IL1B
0.39
42
8
14
2
84.0%
87.5%
0.0168
1.1E−06
50
16


TNFRSF6

0.39
42
8
13
3
84.0%
81.3%
8.6E−08

50
16


SEMA4D
SERPINE1
0.39
42
8
13
3
84.0%
81.3%
0.0179
0.0085
50
16


SOCS1

0.39
41
9
13
3
82.0%
81.3%
8.9E−08

50
16


CDC25A
IFNG
0.39
42
8
13
3
84.0%
81.3%
1.2E−06
0.0185
50
16


APAF1
SERPINE1
0.39
42
8
13
3
84.0%
81.3%
0.0195
0.0046
50
16


MSH2
VHL
0.39
42
8
13
3
84.0%
81.3%
0.0162
2.4E−07
50
16


PTCH1
SERPINE1
0.39
40
10
13
3
80.0%
81.3%
0.0215
8.4E−05
50
16


FOS
ITGA3
0.39
38
12
13
3
76.0%
81.3%
6.1E−05
0.0077
50
16


FOS
VHL
0.39
44
6
13
3
88.0%
81.3%
0.0178
0.0077
50
16


ATM
NRAS
0.39
41
9
13
3
82.0%
81.3%
0.0439
1.6E−05
50
16


AKT1
G1P3
0.38
41
9
13
3
82.0%
81.3%
0.0003
0.0051
50
16


ATM
CDC25A
0.38
38
12
13
3
76.0%
81.3%
0.0243
1.7E−05
50
16


NME1
SKIL
0.38
41
9
13
3
82.0%
81.3%
0.0004
2.0E−07
50
16


ABL2
SERPINE1
0.38
40
10
13
3
80.0%
81.3%
0.0272
0.0003
50
16


ITGA3
SERPINE1
0.38
38
12
12
4
76.0%
75.0%
0.0272
7.2E−05
50
16


G1P3
VHL
0.38
41
9
14
2
82.0%
87.5%
0.0222
0.0004
50
16


ABL1
FOS
0.38
43
7
13
3
86.0%
81.3%
0.0096
0.0024
50
16


TNFRSF10A
VHL
0.38
42
8
13
3
84.0%
81.3%
0.0223
1.8E−06
50
16


ITGAE
SERPINE1
0.38
39
11
13
3
78.0%
81.3%
0.0294
8.0E−05
50
16


HRAS
ITGA3
0.38
42
8
13
3
84.0%
81.3%
7.8E−05
1.8E−06
50
16


SRC

0.38
43
7
14
2
86.0%
87.5%
1.5E−07

50
16


IL1B
MYC
0.38
39
11
13
3
78.0%
81.3%
0.0006
0.0322
50
16


BAX
VHL
0.38
42
8
13
3
84.0%
81.3%
0.0270
4.3E−06
50
16


CDKN2A
SEMA4D
0.38
42
8
13
3
84.0%
81.3%
0.0165
0.0005
50
16


CDKN2A
FOS
0.38
44
6
13
3
88.0%
81.3%
0.0118
0.0005
50
16


ATM
SERPINE1
0.37
41
9
12
4
82.0%
75.0%
0.0357
2.4E−05
50
16


CCNE1
SERPINE1
0.37
38
12
13
3
76.0%
81.3%
0.0388
7.6E−05
50
16


RHOC
SEMA4D
0.37
44
6
13
3
88.0%
81.3%
0.0188
0.0012
50
16


IL1B
PTCH1
0.37
43
7
14
2
86.0%
87.5%
0.0002
0.0410
50
16


BCL2
G1P3
0.37
42
8
13
3
84.0%
81.3%
0.0006
0.0061
50
16


SERPINE1
TNFRSF10B
0.37
38
12
12
4
76.0%
75.0%
0.0002
0.0428
50
16


IGFBP3
SERPINE1
0.37
40
10
12
4
80.0%
75.0%
0.0432
7.9E−05
50
16


CDKN2A
IL18
0.37
41
9
13
3
82.0%
81.3%
0.0012
0.0006
50
16


CDC25A
CDK4
0.37
40
10
13
3
80.0%
81.3%
2.2E−06
0.0441
50
16


AKT1
CDKN2A
0.37
44
6
13
3
88.0%
81.3%
0.0006
0.0093
50
16


ABL1
G1P3
0.37
38
12
13
3
76.0%
81.3%
0.0006
0.0037
50
16


CASP8
VHL
0.37
42
8
12
3
84.0%
80.0%
0.0148
4.1E−07
50
15


IL18
NME1
0.37
44
6
14
2
88.0%
87.5%
3.4E−07
0.0012
50
16


BCL2
TNFRSF10A
0.37
44
6
13
3
88.0%
81.3%
2.8E−06
0.0068
50
16


FOS
HRAS
0.37
46
4
12
4
92.0%
75.0%
2.9E−06
0.0166
50
16


CDK4
HRAS
0.37
41
9
12
4
82.0%
75.0%
3.0E−06
2.6E−06
50
16


ABL1
BAD
0.36
43
7
14
2
86.0%
87.5%
3.8E−07
0.0045
50
16


MMP9

0.36
41
9
13
3
82.0%
81.3%
2.5E−07

50
16


APAF1
CDKN2A
0.36
40
10
12
4
80.0%
75.0%
0.0008
0.0138
50
16


AKT1
RAF1
0.36
40
10
13
3
80.0%
81.3%
5.2E−05
0.0141
50
16


FOS
PTCH1
0.36
45
5
13
3
90.0%
81.3%
0.0003
0.0231
50
16


AKT1
BAX
0.36
42
8
13
3
84.0%
81.3%
8.8E−06
0.0159
50
16


PLAUR

0.36
43
7
13
3
86.0%
81.3%
3.3E−07

50
16


BAD
SEMA4D
0.36
40
10
13
3
80.0%
81.3%
0.0360
5.1E−07
50
16


APAF1
G1P3
0.36
41
9
14
2
82.0%
87.5%
0.0010
0.0176
50
16


FOS
MYC
0.36
41
9
13
3
82.0%
81.3%
0.0014
0.0265
50
16


ANGPT1
BCL2
0.36
43
7
13
3
86.0%
81.3%
0.0116
0.0003
50
16


ABL1
MSH2
0.35
38
12
12
4
76.0%
75.0%
9.0E−07
0.0074
50
16


APAF1
BCL2
0.35
42
8
13
3
84.0%
81.3%
0.0134
0.0216
50
16


HRAS
TNFRSF10A
0.35
40
10
12
4
80.0%
75.0%
5.6E−06
5.6E−06
50
16


VEGF

0.35
38
12
12
4
76.0%
75.0%
4.5E−07

50
16


MYC
NME1
0.35
39
11
13
3
78.0%
81.3%
8.1E−07
0.0020
50
16


G1P3
ITGAE
0.35
40
10
13
3
80.0%
81.3%
0.0003
0.0015
50
16


FOS
ITGAE
0.35
39
11
13
3
78.0%
81.3%
0.0003
0.0409
50
16


FOS
MYCL1
0.34
43
7
13
3
86.0%
81.3%
0.0012
0.0428
50
16


BAD
FOS
0.34
44
6
13
3
88.0%
81.3%
0.0432
8.2E−07
50
16


APAF1
NME1
0.34
43
7
13
3
86.0%
81.3%
9.4E−07
0.0318
50
16


ABL1
TNFRSF10A
0.34
40
10
13
3
80.0%
81.3%
7.6E−06
0.0116
50
16


APAF1
RAF1
0.34
39
11
12
4
78.0%
75.0%
0.0001
0.0337
50
16


ANGPT1
ERBB2
0.34
42
8
13
3
84.0%
81.3%
0.0009
0.0005
50
16


BCL2
MSH2
0.34
40
10
13
3
80.0%
81.3%
1.4E−06
0.0208
50
16


AKT1
RHOC
0.34
43
7
13
3
86.0%
81.3%
0.0044
0.0330
50
16


ANGPT1
RHOC
0.34
40
10
13
3
80.0%
81.3%
0.0045
0.0006
50
16


G1P3
IL18
0.33
45
5
13
3
90.0%
81.3%
0.0051
0.0025
50
16


MYCL1
NME1
0.33
42
8
13
3
84.0%
81.3%
1.3E−06
0.0019
50
16


AKT1
ERBB2
0.33
39
11
12
4
78.0%
75.0%
0.0013
0.0446
50
16


G1P3
SKI
0.33
39
11
13
3
78.0%
81.3%
0.0023
0.0028
50
16


NRAS

0.33
39
11
12
4
78.0%
75.0%
9.1E−07

50
16


ABL2
NME1
0.33
38
12
13
3
76.0%
81.3%
1.6E−06
0.0025
50
16


BAD
BCL2
0.33
39
11
12
4
78.0%
75.0%
0.0347
1.4E−06
50
16


G1P3
PTCH1
0.33
43
7
13
3
86.0%
81.3%
0.0008
0.0030
50
16


ABL1
CDK4
0.33
39
11
13
3
78.0%
81.3%
1.1E−05
0.0203
50
16


BCL2
CDKN2A
0.33
39
11
12
4
78.0%
75.0%
0.0033
0.0373
50
16


G1P3
SKIL
0.33
43
7
12
4
86.0%
75.0%
0.0033
0.0032
50
16


CDKN2A
SKIL
0.33
39
11
13
3
78.0%
81.3%
0.0034
0.0034
50
16


CDKN2A
G1P3
0.33
42
8
13
3
84.0%
81.3%
0.0033
0.0034
50
16


BCL2
CDK4
0.33
47
3
13
3
94.0%
81.3%
1.2E−05
0.0407
50
16


ERBB2
G1P3
0.33
42
8
13
3
84.0%
81.3%
0.0034
0.0017
50
16


ABL1
CDKN2A
0.32
39
11
12
4
78.0%
75.0%
0.0040
0.0257
50
16


ABL1
ANGPT1
0.32
41
9
13
3
82.0%
81.3%
0.0012
0.0263
50
16


HRAS
MSH2
0.32
43
7
12
4
86.0%
75.0%
3.1E−06
1.7E−05
50
16


CDKN2A
TNFRSF1A
0.32
38
12
12
4
76.0%
75.0%
0.0016
0.0052
50
16


ERBB2
IL18
0.32
38
12
12
4
76.0%
75.0%
0.0109
0.0025
50
16


SERPINE1

0.31
38
12
12
4
76.0%
75.0%
1.6E−06

50
16


IL1B

0.31
41
9
13
3
82.0%
81.3%
1.6E−06

50
16


CDC25A

0.31
40
10
13
3
80.0%
81.3%
1.6E−06

50
16


ANGPT1
G1P3
0.31
42
8
13
3
84.0%
81.3%
0.0059
0.0017
50
16


G1P3
HRAS
0.31
44
6
12
4
88.0%
75.0%
2.4E−05
0.0059
50
16


G1P3
ITGA3
0.31
39
11
12
4
78.0%
75.0%
0.0011
0.0060
50
16


G1P3
MYCL1
0.31
44
6
14
2
88.0%
87.5%
0.0050
0.0065
50
16


CDKN2A
ITGA3
0.31
39
11
12
4
78.0%
75.0%
0.0012
0.0069
50
16


VHL

0.31
38
12
12
4
76.0%
75.0%
2.0E−06

50
16


BAD
SKIL
0.31
39
11
12
4
78.0%
75.0%
0.0073
3.3E−06
50
16


CDKN2A
SKI
0.31
40
10
12
4
80.0%
75.0%
0.0059
0.0073
50
16


NME1
RHOC
0.31
41
9
14
2
82.0%
87.5%
0.0163
3.5E−06
50
16


CCNE1
G1P3
0.31
41
9
12
4
82.0%
75.0%
0.0074
0.0010
50
16


ATM
NME1
0.31
41
9
12
4
82.0%
75.0%
3.8E−06
0.0003
50
16


G1P3
TNFRSF1A
0.30
43
7
13
3
86.0%
81.3%
0.0026
0.0080
50
16


G1P3
PCNA
0.30
39
11
12
4
78.0%
75.0%
0.0049
0.0081
50
16


HRAS
TNFRSF1A
0.30
38
12
12
4
76.0%
75.0%
0.0026
3.2E−05
50
16


ANGPT1
CDKN2A
0.30
39
11
13
3
78.0%
81.3%
0.0086
0.0024
50
16


CDKN2A
RHOC
0.30
40
10
13
3
80.0%
81.3%
0.0193
0.0086
50
16


ANGPT1
ITGA3
0.30
38
12
12
4
76.0%
75.0%
0.0015
0.0025
50
16


RHOC
TNFRSF1A
0.30
42
8
13
3
84.0%
81.3%
0.0029
0.0210
50
16


CFLAR
G1P3
0.30
42
8
13
3
84.0%
81.3%
0.0098
0.0028
50
16


MYC
RHOC
0.30
42
8
13
3
84.0%
81.3%
0.0230
0.0133
50
16


G1P3
IGFBP3
0.30
40
10
13
3
80.0%
81.3%
0.0013
0.0104
50
16


ANGPT1
MYC
0.30
38
12
12
4
76.0%
75.0%
0.0140
0.0030
50
16


ITGA1
RHOC
0.30
41
9
14
2
82.0%
87.5%
0.0254
0.0061
50
16


CDKN2A
CFLAR
0.30
38
12
12
4
76.0%
75.0%
0.0031
0.0114
50
16


SEMA4D

0.30
39
11
13
3
78.0%
81.3%
3.2E−06

50
16


ANGPT1
PTCH1
0.30
38
12
13
3
76.0%
81.3%
0.0030
0.0033
50
16


CDKN2A
MYC
0.30
38
12
12
4
76.0%
75.0%
0.0155
0.0119
50
16


HRAS
RAF1
0.30
40
10
12
4
80.0%
75.0%
0.0006
4.5E−05
50
16


BAD
IL18
0.30
38
12
13
3
76.0%
81.3%
0.0252
5.3E−06
50
16


G1P3
ITGA1
0.29
41
9
12
4
82.0%
75.0%
0.0067
0.0120
50
16


G1P3
RHOC
0.29
44
6
14
2
88.0%
87.5%
0.0289
0.0123
50
16


G1P3
TNFRSF10B
0.29
44
6
13
3
88.0%
81.3%
0.0037
0.0124
50
16


CDKN2A
PCNA
0.29
38
12
12
4
76.0%
75.0%
0.0080
0.0136
50
16


CFLAR
RHOC
0.29
42
8
13
3
84.0%
81.3%
0.0315
0.0038
50
16


ABL2
RHOC
0.29
40
10
13
3
80.0%
81.3%
0.0327
0.0117
50
16


CDKN2A
ITGA1
0.29
40
10
12
4
80.0%
75.0%
0.0079
0.0147
50
16


ABL2
CDKN2A
0.29
40
10
12
4
80.0%
75.0%
0.0149
0.0122
50
16


CASP8
SKI
0.29
43
7
12
3
86.0%
80.0%
0.0074
7.5E−06
50
15


RHOC
SKI
0.29
43
7
13
3
86.0%
81.3%
0.0122
0.0346
50
16


FOS

0.29
38
12
13
3
76.0%
81.3%
4.4E−06

50
16


CDKN2A
ITGAE
0.29
38
12
12
4
76.0%
75.0%
0.0029
0.0165
50
16


ATM
G1P3
0.29
39
11
13
3
78.0%
81.3%
0.0170
0.0007
50
16


BAD
TNFRSF10B
0.29
38
12
12
4
76.0%
75.0%
0.0051
7.5E−06
50
16


GZMA
RHOC
0.28
42
8
13
3
84.0%
81.3%
0.0443
5.4E−06
50
16


ERBB2
RHOC
0.28
43
7
14
2
86.0%
87.5%
0.0479
0.0096
50
16


ITGA3
RHOC
0.28
43
7
13
3
86.0%
81.3%
0.0487
0.0036
50
16


ABL2
ITGAE
0.28
39
11
12
4
78.0%
75.0%
0.0038
0.0176
50
16


BAD
SKI
0.28
38
12
12
4
76.0%
75.0%
0.0178
9.2E−06
50
16


ANGPT1
MYCL1
0.28
40
10
12
4
80.0%
75.0%
0.0165
0.0062
50
16


ABL2
ANGPT1
0.28
39
11
12
4
78.0%
75.0%
0.0062
0.0185
50
16


IL18
PTCH1
0.28
39
11
12
4
78.0%
75.0%
0.0057
0.0484
50
16


ANGPT1
ITGA1
0.28
41
9
12
4
82.0%
75.0%
0.0137
0.0070
50
16


AKT1

0.28
41
9
13
3
82.0%
81.3%
6.7E−06

50
16


ERBB2
NME1
0.28
39
11
12
4
78.0%
75.0%
1.1E−05
0.0119
50
16


ITGAE
SKIL
0.28
38
12
12
4
76.0%
75.0%
0.0260
0.0045
50
16


CFLAR
ERBB2
0.28
39
11
12
4
78.0%
75.0%
0.0119
0.0070
50
16


CDKN2A
TNFRSF10B
0.28
39
11
12
4
78.0%
75.0%
0.0079
0.0278
50
16


ANGPT1
SKIL
0.28
41
9
12
4
82.0%
75.0%
0.0281
0.0076
50
16


BAD
PCNA
0.28
38
12
12
4
76.0%
75.0%
0.0162
1.1E−05
50
16


CASP8
IL18
0.27
38
12
13
2
76.0%
86.7%
0.0244
1.3E−05
50
15


ERBB2
SKIL
0.27
40
10
12
4
80.0%
75.0%
0.0294
0.0134
50
16


ITGA3
ITGAE
0.27
38
12
13
3
76.0%
81.3%
0.0051
0.0049
50
16


ABL2
ERBB2
0.27
39
11
12
4
78.0%
75.0%
0.0147
0.0262
50
16


ITGAE
SKI
0.27
44
6
12
4
88.0%
75.0%
0.0266
0.0057
50
16


CASP8
TNFRSF1A
0.27
40
10
12
3
80.0%
80.0%
0.0052
1.5E−05
50
15


G1P3
RAF1
0.27
42
8
13
3
84.0%
81.3%
0.0017
0.0332
50
16


ERBB2
SKI
0.27
39
11
12
4
78.0%
75.0%
0.0278
0.0158
50
16


NME1
PTCH1
0.27
40
10
12
4
80.0%
75.0%
0.0086
1.5E−05
50
16


ANGPT1
CCNE1
0.27
39
11
12
4
78.0%
75.0%
0.0045
0.0097
50
16


CDKN2A
RAF1
0.27
39
11
13
3
78.0%
81.3%
0.0018
0.0375
50
16


BCL2

0.27
40
10
13
3
80.0%
81.3%
9.5E−06

50
16


ABL2
CASP8
0.27
41
9
12
3
82.0%
80.0%
1.8E−05
0.0455
50
15


ITGA1
TNFRSF1A
0.26
40
10
12
4
80.0%
75.0%
0.0139
0.0248
50
16


ITGA1
SKI
0.26
38
12
12
4
76.0%
75.0%
0.0384
0.0254
50
16


ANGPT1
IGFBP3
0.26
41
9
12
4
82.0%
75.0%
0.0057
0.0130
50
16


ERBB2
ITGA1
0.26
39
11
13
3
78.0%
81.3%
0.0294
0.0251
50
16


ERBB2
TNFRSF10B
0.26
38
12
12
4
76.0%
75.0%
0.0165
0.0268
50
16


ERBB2
MYCL1
0.26
39
11
13
3
78.0%
81.3%
0.0455
0.0280
50
16


ERBB2
ITGAE
0.25
39
11
12
4
78.0%
75.0%
0.0111
0.0300
50
16


ABL1

0.25
39
11
12
4
78.0%
75.0%
1.6E−05

50
16


BAX
NME1
0.25
38
12
12
4
76.0%
75.0%
2.9E−05
0.0005
50
16


PTCH1
TNFRSF1A
0.25
39
11
12
4
78.0%
75.0%
0.0238
0.0194
50
16


HRAS
ITGAE
0.25
38
12
12
4
76.0%
75.0%
0.0137
0.0003
50
16


ITGA1
PTCH1
0.25
39
11
12
4
78.0%
75.0%
0.0220
0.0491
50
16


IGFBP3
TNFRSF1A
0.24
40
10
12
4
80.0%
75.0%
0.0311
0.0119
50
16


CCNE1
ITGAE
0.24
39
11
12
4
78.0%
75.0%
0.0212
0.0152
50
16


CCNE1
TNFRSF1A
0.24
39
11
12
4
78.0%
75.0%
0.0419
0.0169
50
16


CFLAR
PTCH1
0.24
40
10
13
3
80.0%
81.3%
0.0344
0.0373
50
16


CFLAR
NME1
0.23
40
10
13
3
80.0%
81.3%
6.8E−05
0.0481
50
16


RHOC

0.23
41
9
13
3
82.0%
81.3%
4.3E−05

50
16


IL18

0.23
39
11
13
3
78.0%
81.3%
4.7E−05

50
16


G1P3

0.21
39
11
13
3
78.0%
81.3%
9.5E−05

50
16


SKI

0.20
42
8
12
4
84.0%
75.0%
0.0001

50
16


TNFRSF1A

0.18
40
10
12
4
80.0%
75.0%
0.0003

50
16


CFLAR

0.18
39
11
12
4
78.0%
75.0%
0.0003

50
16


PTCH1

0.18
38
12
12
4
76.0%
75.0%
0.0003

50
16





















TABLE 3B








Prostate
Normals
Sum



Group Size
24.2%
75.8%
100%



N =
16
50
66



Gene
Mean
Mean
p-val





















EGR1
19.0
21.0
6.1E−15



RB1
16.8
18.0
6.5E−13



CDKN1A
16.0
17.4
6.5E−12



NOTCH2
15.6
17.1
8.6E−11



BRAF
16.5
17.6
1.3E−10



BRCA1
20.6
22.2
2.1E−10



TNF
17.8
18.8
2.1E−10



TGFBI
12.6
13.5
5.2E−10



IFITM1
8.6
9.9
1.7E−09



RHOA
11.4
12.3
1.9E−09



NFKB1
16.4
17.6
3.6E−09



NME4
17.1
18.0
6.1E−09



THBS1
17.7
19.4
6.5E−09



SMAD4
16.8
17.6
6.6E−09



TIMP1
14.2
15.2
9.1E−09



ITGB1
14.4
15.3
1.2E−08



TP53
15.9
17.0
1.7E−08



CDK2
19.0
20.0
1.8E−08



ICAM1
16.8
18.0
3.7E−08



PTEN
13.6
14.5
4.1E−08



E2F1
20.3
21.1
5.7E−08



CDK5
18.3
19.0
6.4E−08



TNFRSF6
16.0
16.8
8.6E−08



SOCS1
16.9
17.6
8.9E−08



SRC
18.2
19.1
1.5E−07



MMP9
14.3
16.1
2.5E−07



PLAUR
14.9
15.9
3.3E−07



VEGF
22.0
23.1
4.5E−07



NRAS
16.6
17.3
9.1E−07



IL1B
15.6
16.7
1.6E−06



SERPINE1
21.3
22.6
1.6E−06



CDC25A
22.8
24.3
1.6E−06



VHL
17.1
17.7
2.0E−06



SEMA4D
14.2
15.1
3.2E−06



FOS
15.4
16.4
4.4E−06



APAF1
16.7
17.6
6.2E−06



AKT1
15.0
15.6
6.7E−06



BCL2
16.9
17.7
9.5E−06



ABL1
18.1
18.9
1.6E−05



RHOC
16.2
16.8
4.3E−05



IL18
21.1
21.8
4.7E−05



MYC
17.6
18.3
7.2E−05



SKIL
17.6
18.1
9.2E−05



CDKN2A
20.8
21.5
9.2E−05



G1P3
15.2
16.1
9.5E−05



ABL2
20.0
20.7
0.0001



SKI
17.2
17.9
0.0001



MYCL1
18.2
18.9
0.0001



PCNA
17.8
18.3
0.0002



ITGA1
20.7
21.6
0.0002



ERBB2
22.2
23.1
0.0002



TNFRSF1A
15.2
16.0
0.0003



TNFRSF10B
16.9
17.5
0.0003



ANGPT1
20.1
20.9
0.0003



CFLAR
14.6
15.3
0.0003



PTCH1
20.2
21.0
0.0003



ITGAE
23.1
24.3
0.0005



ITGA3
21.7
22.4
0.0005



CCNE1
22.7
23.6
0.0007



IGFBP3
21.7
22.7
0.0007



RAF1
14.3
14.9
0.0016



ATM
16.3
16.9
0.0020



BAX
15.6
15.9
0.0119



JUN
21.1
21.6
0.0206



IFNG
22.7
23.5
0.0251



TNFRSF10A
20.6
21.0
0.0263



HRAS
20.4
20.1
0.0264



CDK4
17.6
17.9
0.0316



WNT1
21.4
22.0
0.0327



S100A4
13.2
13.5
0.0818



FGFR2
23.0
23.5
0.1746



MSH2
17.9
18.2
0.2010



NME1
19.4
19.2
0.3189



IL8
21.3
21.6
0.3421



BAD
18.2
18.3
0.3582



CASP8
15.1
15.1
0.5795



GZMA
17.7
17.7
0.7867























TABLE 3C











Predicted probability


Patient ID
Group
EGR1
NME4
logit
odds
of prostate cancer





















DF015
Cancer
19.41
17.14
192.87
5.8E+83
1.0000


DF017
Cancer
18.68
16.82
503.32
3.9E+218
1.0000


DF029
Cancer
19.30
17.91
45.78
7.6E+19
1.0000


DF030
Cancer
19.72
16.59
221.61
1.8E+96
1.0000


DF060
Cancer
18.66
16.74
530.51
2.5E+230
1.0000


DF062
Cancer
19.08
18.19
53.53
1.8E+23
1.0000


DF069
Cancer
18.70
17.14
420.45
4.0E+182
1.0000


DF070
Cancer
19.93
16.94
67.91
3.1E+29
1.0000


DF085
Cancer
18.59
17.35
410.48
1.9E+178
1.0000


DF105
Cancer
18.94
16.82
419.33
1.3E+182
1.0000


DF125
Cancer
18.87
17.80
213.32
4.4E+92
1.0000


DF126
Cancer
18.51
16.52
626.53
1.2E+272
1.0000


DF128
Cancer
19.09
16.32
487.34
4.5E+211
1.0000


DF129
Cancer
18.62
16.66
560.45
2.5E+243
1.0000


DF130
Cancer
18.83
16.80
458.55
1.4E+199
1.0000


DF010
Cancer
19.66
17.55
14.49
2.0E+06
1.0000


086-HCG
Normals
19.58
17.78
−14.87
3.5E−07
0.0000


239-HCG
Normals
20.03
17.16
−15.49
1.9E−07
0.0000


236-HCG
Normals
19.76
17.55
−20.98
7.7E−10
0.0000


243-HCG
Normals
19.64
17.79
−36.07
2.2E−16
0.0000


057-HCG
Normals
20.57
17.24
−209.76
8.0E−92
0.0000


167-HCG
Normals
20.62
17.22
−219.30
5.7E−96
0.0000


031-HCG
Normals
20.30
17.70
−226.45
4.5E−99
0.0000


029-HCG
Normals
20.97
19.29
−818.42
0.0E+00
0.0000


180-HCG
Normals
21.82
19.27
−1091.91
0.0E+00
0.0000


154-HCG
Normals
20.30
18.33
−378.20
5.6E−165
0.0000


083-HCG
Normals
20.54
18.45
−484.65
3.3E−211
0.0000


145-HCG
Normals
20.87
18.60
−625.64
1.9E−272
0.0000


246-HCG
Normals
20.52
18.31
−443.54
2.4E−193
0.0000


156-HCG
Normals
20.78
18.46
−564.59
6.4E−246
0.0000


100-HCG
Normals
20.44
18.13
−375.75
6.5E−164
0.0000


157-HCG
Normals
20.32
18.00
−304.07
8.8E−133
0.0000


265-HCG
Normals
20.75
18.25
−505.05
4.5E−220
0.0000


074-HCG
Normals
20.86
18.32
−555.10
8.4E−242
0.0000


078-HCG
Normals
20.22
17.91
−251.80
4.4E−110
0.0000


248-HCG
Normals
21.82
18.88
−998.84
0.0E+00
0.0000


138-HCG
Normals
20.41
18.00
−337.31
3.2E−147
0.0000


267-HCG
Normals
21.23
18.47
−711.48
0.0E+00
0.0000


056-HCG
Normals
20.88
18.21
−539.20
6.8E−235
0.0000


150-HCG
Normals
20.69
17.99
−423.28
1.5E−184
0.0000


110-HCG
Normals
21.21
18.24
−650.14
4.4E−283
0.0000


220-HCG
Normals
20.83
17.90
−449.50
6.1E−196
0.0000


253-HCG
Normals
21.67
18.39
−835.18
0.0E+00
0.0000


245-HCG
Normals
21.05
18.00
−541.05
1.1E−235
0.0000


155-HCG
Normals
20.63
17.73
−343.47
6.8E−150
0.0000


176-HCG
Normals
21.09
18.02
−559.16
1.4E−243
0.0000


045-HCG
Normals
21.19
18.04
−596.51
8.7E−260
0.0000


033-HCG
Normals
21.44
18.19
−713.55
0.0E+00
0.0000


142-HCG
Normals
21.24
18.07
−621.35
1.4E−270
0.0000


269-HCG
Normals
21.12
17.99
−563.16
2.7E−245
0.0000


109-HCG
Normals
22.05
18.55
−997.12
0.0E+00
0.0000


119-HCG
Normals
21.75
18.36
−855.66
0.0E+00
0.0000


152-HCG
Normals
20.66
17.65
−334.24
6.9E−146
0.0000


147-HCG
Normals
20.88
17.76
−430.17
1.5E−187
0.0000


249-HCG
Normals
22.04
18.46
−970.27
0.0E+00
0.0000


161-HCG
Normals
20.80
17.64
−377.19
1.5E−164
0.0000


158-HCG
Normals
20.79
17.54
−349.87
1.1E−152
0.0000


151-HCG
Normals
21.80
18.15
−819.51
0.0E+00
0.0000


133-HCG
Normals
21.68
18.05
−760.07
0.0E+00
0.0000


257-HCG
Normals
20.83
17.50
−354.93
7.2E−155
0.0000


062-HCG
Normals
20.74
17.42
−305.68
1.8E−133
0.0000


061-HCG
Normals
21.18
17.46
−458.67
6.4E−200
0.0000


136-HCG
Normals
21.32
17.52
−518.24
8.5E−226
0.0000


252-HCG
Normals
21.59
17.66
−636.49
3.8E−277
0.0000


085-HCG
Normals
22.02
17.81
−810.86
0.0E+00
0.0000


030-HCG
Normals
22.11
17.78
−834.63
0.0E+00
0.0000























TABLE 3D














total used






Normal
Prostate

(excludes


2-gene
En-

N =
50
25

missing)


















models and
tropy
#normal
#normal
#pc
#pc
Correct
Correct


#
#


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
normals
disease






















BAD
RB1
0.91
49
1
24
1
98.0%
96.0%
2.1E−12
0.0E+00
50
25


EGR1
MYCL1
0.90
49
1
24
1
98.0%
96.0%
0.0E+00
1.7E−07
50
25


AKT1
BRAF
0.89
49
1
23
1
98.0%
95.8%
2.3E−06
0.0E+00
50
24


HRAS
ITGB1
0.89
50
0
24
1
100.0%
96.0%
8.9E−16
1.2E−15
50
25


BRAF
CDK4
0.87
50
0
24
1
100.0%
96.0%
0.0E+00
3.4E−06
50
25


BRAF
TP53
0.87
47
3
24
1
94.0%
96.0%
0.0E+00
3.6E−06
50
25


EGR1
HRAS
0.87
49
1
24
1
98.0%
96.0%
3.1E−15
7.8E−07
50
25


E2F1
PTEN
0.87
50
0
24
1
100.0%
96.0%
4.3E−10
1.0E−05
50
25


BRAF
MYCL1
0.86
48
2
24
1
96.0%
96.0%
0.0E+00
5.7E−06
50
25


BRAF
HRAS
0.85
49
1
24
1
98.0%
96.0%
5.8E−15
7.8E−06
50
25


BAD
BRAF
0.85
48
2
24
1
96.0%
96.0%
8.2E−06
0.0E+00
50
25


HRAS
RB1
0.85
48
2
24
1
96.0%
96.0%
4.2E−11
6.4E−15
50
25


BRAF
E2F1
0.85
47
3
24
1
94.0%
96.0%
2.3E−05
9.7E−06
50
25


BRAF
MYC
0.85
49
1
24
1
98.0%
96.0%
0.0E+00
1.1E−05
50
25


MYCL1
RB1
0.84
47
3
24
1
94.0%
96.0%
9.3E−11
0.0E+00
50
25


E2F1
IFITM1
0.83
48
2
24
1
96.0%
96.0%
3.2E−07
5.6E−05
50
25


CDK4
RB1
0.83
47
3
24
1
94.0%
96.0%
1.3E−10
0.0E+00
50
25


BRCA1
CASP8
0.83
47
3
24
1
94.0%
96.0%
0.0E+00
2.2E−10
50
25


BRAF
TNFRSF10B
0.82
46
4
24
1
92.0%
96.0%
0.0E+00
3.6E−05
50
25


EGR1
MMP9
0.82
47
3
24
1
94.0%
96.0%
6.4E−06
7.0E−06
50
25


CDK5
HRAS
0.82
49
1
24
1
98.0%
96.0%
2.7E−14
0.0E+00
50
25


E2F1
EGR1
0.82
49
1
24
1
98.0%
96.0%
8.2E−06
0.0001
50
25


BAX
BRAF
0.82
49
1
23
2
98.0%
92.0%
4.7E−05
0.0E+00
50
25


BRCA1
E2F1
0.82
47
3
24
1
94.0%
96.0%
0.0001
3.5E−10
50
25


BRAF
S100A4
0.82
47
3
24
1
94.0%
96.0%
0.0E+00
5.2E−05
50
25


BRAF
TNFRSF10A
0.82
48
2
24
1
96.0%
96.0%
0.0E+00
5.3E−05
50
25


BRAF
SKI
0.82
48
2
24
1
96.0%
96.0%
0.0E+00
5.3E−05
50
25


BRAF
CASP8
0.81
48
2
24
1
96.0%
96.0%
0.0E+00
6.4E−05
50
25


E2F1
SERPINE1
0.81
46
4
24
1
92.0%
96.0%
2.7E−06
0.0002
50
25


SERPINE1
SOCS1
0.81
48
2
24
1
96.0%
96.0%
9.7E−08
2.8E−06
50
25


E2F1
SOCS1
0.81
48
2
24
1
96.0%
96.0%
1.0E−07
0.0002
50
25


E2F1
MMP9
0.80
48
2
24
1
96.0%
96.0%
1.6E−05
0.0002
50
25


RB1
TNFRSF10A
0.80
49
1
24
1
98.0%
96.0%
0.0E+00
4.4E−10
50
25


BRAF
JUN
0.80
47
3
24
1
94.0%
96.0%
0.0E+00
9.9E−05
50
25


ATM
BRAF
0.80
47
3
24
1
94.0%
96.0%
0.0001
0.0E+00
50
25


E2F1
NOTCH2
0.80
47
3
23
2
94.0%
92.0%
1.3E−11
0.0003
50
25


BRAF
FGFR2
0.80
48
2
24
1
96.0%
96.0%
0.0E+00
0.0001
50
25


BRAF
VHL
0.80
47
3
24
1
94.0%
96.0%
0.0E+00
0.0002
50
25


ABL1
BRAF
0.79
47
3
24
1
94.0%
96.0%
0.0002
0.0E+00
50
25


CDK2
HRAS
0.79
48
2
24
1
96.0%
96.0%
1.3E−13
2.9E−15
50
25


MMP9
SOCS1
0.79
46
4
23
2
92.0%
92.0%
2.4E−07
3.8E−05
50
25


HRAS
NRAS
0.78
45
5
23
2
90.0%
92.0%
2.1E−14
1.8E−13
50
25


BRAF
NME1
0.78
47
3
23
2
94.0%
92.0%
2.7E−15
0.0003
50
25


NME1
RB1
0.78
46
4
23
2
92.0%
92.0%
1.3E−09
2.9E−15
50
25


BCL2
BRAF
0.78
47
3
23
2
94.0%
92.0%
0.0003
0.0E+00
50
25


BRAF
MMP9
0.78
47
3
23
2
94.0%
92.0%
5.7E−05
0.0003
50
25


HRAS
TGFBI
0.78
48
2
23
2
96.0%
92.0%
2.3E−11
2.5E−13
50
25


HRAS
NFKB1
0.78
46
4
23
2
92.0%
92.0%
1.1E−13
2.6E−13
50
25


BAX
RB1
0.77
49
1
24
1
98.0%
96.0%
1.9E−09
0.0E+00
50
25


E2F1
FOS
0.77
47
3
24
1
94.0%
96.0%
6.6E−11
0.0012
50
25


BRAF
RHOA
0.77
47
3
23
2
94.0%
92.0%
3.1E−11
0.0005
50
25


RB1
TNFRSF10B
0.77
45
5
23
2
90.0%
92.0%
0.0E+00
2.4E−09
50
25


CASP8
RB1
0.77
46
4
23
2
92.0%
92.0%
2.7E−09
0.0E+00
50
25


EGR1
IFITM1
0.77
47
3
23
2
94.0%
92.0%
8.2E−06
0.0001
50
25


BRAF
MSH2
0.76
47
3
23
2
94.0%
92.0%
0.0E+00
0.0007
50
25


CFLAR
E2F1
0.76
48
2
24
1
96.0%
96.0%
0.0018
1.6E−12
50
25


CDK4
EGR1
0.76
49
1
23
2
98.0%
92.0%
0.0001
0.0E+00
50
25


E2F1
NME4
0.76
49
1
24
1
98.0%
96.0%
8.3E−08
0.0020
50
25


APAF1
BRAF
0.76
47
3
23
2
94.0%
92.0%
0.0009
4.9E−14
50
25


BRAF
RAF1
0.76
47
3
23
2
94.0%
92.0%
1.8E−15
0.0009
50
25


BRAF
SEMA4D
0.76
47
3
23
2
94.0%
92.0%
1.2E−12
0.0010
50
25


E2F1
RB1
0.76
48
2
23
2
96.0%
92.0%
4.3E−09
0.0025
50
25


BRAF
SMAD4
0.76
49
1
23
2
98.0%
92.0%
3.8E−13
0.0011
50
25


BRAF
CDK5
0.76
47
3
23
2
94.0%
92.0%
5.6E−16
0.0011
50
25


HRAS
SMAD4
0.75
46
4
23
2
92.0%
92.0%
4.4E−13
7.5E−13
50
25


EGR1
SERPINE1
0.75
48
2
24
1
96.0%
96.0%
3.9E−05
0.0002
50
25


RB1
S100A4
0.75
46
4
24
1
92.0%
96.0%
0.0E+00
5.4E−09
50
25


EGR1
TNFRSF10B
0.75
48
2
23
2
96.0%
92.0%
0.0E+00
0.0002
50
25


BRAF
TNF
0.75
46
4
23
2
92.0%
92.0%
0.0E+00
0.0014
50
25


HRAS
ICAM1
0.75
47
3
23
2
94.0%
92.0%
1.3E−13
9.1E−13
50
25


EGR1
NME1
0.75
49
1
23
2
98.0%
92.0%
1.4E−14
0.0003
50
25


G1P3
MMP9
0.75
48
2
23
2
96.0%
92.0%
0.0003
1.8E−15
50
25


HRAS
TIMP1
0.75
47
3
24
1
94.0%
96.0%
8.2E−10
1.0E−12
50
25


MMP9
NME4
0.75
47
3
23
2
94.0%
92.0%
1.6E−07
0.0003
50
25


EGR1
FGFR2
0.75
47
3
23
2
94.0%
92.0%
4.4E−16
0.0003
50
25


E2F1
PLAUR
0.75
47
3
24
1
94.0%
96.0%
3.4E−12
0.0044
50
25


E2F1
GZMA
0.74
48
2
24
1
96.0%
96.0%
1.1E−16
0.0049
50
25


CDC25A
IFITM1
0.74
47
3
23
2
94.0%
92.0%
2.7E−05
3.6E−11
50
25


ITGB1
MMP9
0.74
46
4
22
3
92.0%
88.0%
0.0004
9.0E−13
50
25


MMP9
SERPINE1
0.74
49
1
24
1
98.0%
96.0%
7.3E−05
0.0004
50
25


EGR1
TNFRSF10A
0.74
49
1
23
2
98.0%
92.0%
3.3E−16
0.0004
50
25


HRAS
TNFRSF6
0.74
47
3
23
2
94.0%
92.0%
3.1E−12
1.5E−12
50
25


CDKN1A
MMP9
0.74
46
4
23
2
92.0%
92.0%
0.0004
4.1E−09
50
25


E2F1
THBS1
0.74
47
3
23
2
94.0%
92.0%
2.5E−07
0.0068
50
25


E2F1
NFKB1
0.74
47
3
23
2
94.0%
92.0%
7.4E−13
0.0072
50
25


MMP9
TIMP1
0.74
47
3
23
2
94.0%
92.0%
1.4E−09
0.0005
50
25


BRAF
NRAS
0.74
44
6
23
2
88.0%
92.0%
2.0E−13
0.0030
50
25


E2F1
NME1
0.74
47
3
24
1
94.0%
96.0%
2.6E−14
0.0076
50
25


CDK2
MMP9
0.74
47
3
23
2
94.0%
92.0%
0.0005
4.0E−14
50
25


MMP9
RB1
0.74
47
3
23
2
94.0%
92.0%
1.2E−08
0.0005
50
25


BRCA1
HRAS
0.74
46
4
23
2
92.0%
92.0%
1.8E−12
1.9E−08
50
25


BRAF
SERPINE1
0.73
48
2
23
2
96.0%
92.0%
0.0001
0.0037
50
25


EGR1
TP53
0.73
47
3
24
1
94.0%
96.0%
1.1E−16
0.0007
50
25


BRAF
CCNE1
0.73
44
6
23
2
88.0%
92.0%
1.1E−15
0.0041
50
25


BAX
EGR1
0.73
49
1
23
2
98.0%
92.0%
0.0007
1.1E−16
50
25


BRAF
PCNA
0.73
44
6
23
2
88.0%
92.0%
0.0E+00
0.0042
50
25


E2F1
TGFBI
0.73
47
3
23
2
94.0%
92.0%
2.2E−10
0.0105
50
25


E2F1
IL1B
0.73
47
3
24
1
94.0%
96.0%
4.4E−14
0.0113
50
25


BRAF
WNT1
0.73
48
2
23
2
96.0%
92.0%
1.1E−16
0.0047
50
25


BAX
TGFBI
0.73
44
6
23
2
88.0%
92.0%
2.5E−10
1.1E−16
50
25


E2F1
HRAS
0.73
47
3
23
2
94.0%
92.0%
2.7E−12
0.0121
50
25


E2F1
SEMA4D
0.73
47
3
23
2
94.0%
92.0%
5.3E−12
0.0123
50
25


E2F1
RHOA
0.73
47
3
23
2
94.0%
92.0%
2.7E−10
0.0132
50
25


E2F1
ICAM1
0.73
47
3
23
2
94.0%
92.0%
4.2E−13
0.0134
50
25


BRAF
CDK2
0.73
46
4
23
2
92.0%
92.0%
6.8E−14
0.0056
50
25


JUN
RB1
0.73
45
5
23
2
90.0%
92.0%
2.1E−08
1.1E−16
50
25


ABL2
E2F1
0.73
47
3
23
2
94.0%
92.0%
0.0140
2.4E−15
50
25


BAD
PTEN
0.72
47
3
23
2
94.0%
92.0%
4.4E−07
3.3E−16
50
25


ABL1
HRAS
0.72
46
4
23
2
92.0%
92.0%
3.2E−12
1.1E−16
50
25


BAD
BRCA1
0.72
47
3
23
2
94.0%
92.0%
3.4E−08
4.4E−16
50
25


MYCL1
TIMP1
0.72
45
5
23
2
90.0%
92.0%
2.9E−09
6.7E−16
50
25


BAD
E2F1
0.72
46
4
23
2
92.0%
92.0%
0.0165
4.4E−16
50
25


EGR1
MYC
0.72
44
6
23
2
88.0%
92.0%
2.2E−16
0.0012
50
25


ABL1
EGR1
0.72
45
5
23
2
90.0%
92.0%
0.0012
2.2E−16
50
25


CASP8
PTEN
0.72
46
4
23
2
92.0%
92.0%
6.0E−07
2.2E−16
50
25


CASP8
CFLAR
0.72
45
5
23
2
90.0%
92.0%
1.7E−11
2.2E−16
50
25


E2F1
TNFRSF6
0.72
47
3
23
2
94.0%
92.0%
1.0E−11
0.0234
50
25


ABL2
BRAF
0.72
47
3
23
2
94.0%
92.0%
0.0093
3.8E−15
50
25


E2F1
TNFRSF1A
0.71
48
2
24
1
96.0%
96.0%
2.7E−13
0.0247
50
25


E2F1
IL18
0.71
47
3
23
2
94.0%
92.0%
3.6E−13
0.0246
50
25


E2F1
TIMP1
0.71
48
2
23
2
96.0%
92.0%
4.2E−09
0.0248
50
25


APAF1
E2F1
0.71
47
3
23
2
94.0%
92.0%
0.0249
4.6E−13
50
25


BRAF
SKIL
0.71
47
3
23
2
94.0%
92.0%
3.6E−15
0.0106
50
25


BRAF
TNFRSF1A
0.71
48
2
23
2
96.0%
92.0%
3.0E−13
0.0112
50
25


BRAF
NFKB1
0.71
46
4
23
2
92.0%
92.0%
2.6E−12
0.0116
50
25


BAD
EGR1
0.71
45
5
23
2
90.0%
92.0%
0.0020
6.7E−16
50
25


ATM
RB1
0.71
49
1
23
2
98.0%
92.0%
4.2E−08
2.2E−16
50
25


HRAS
NOTCH2
0.71
47
3
23
2
94.0%
92.0%
1.1E−09
6.4E−12
50
25


BRAF
CDC25A
0.71
47
3
23
2
94.0%
92.0%
1.8E−10
0.0128
50
25


ITGB1
NME1
0.71
46
4
23
2
92.0%
92.0%
9.7E−14
4.3E−12
50
25


BAD
SOCS1
0.71
47
3
23
2
94.0%
92.0%
1.2E−05
7.8E−16
50
25


HRAS
SOCS1
0.71
45
5
23
2
90.0%
92.0%
1.3E−05
7.1E−12
50
25


EGR1
VHL
0.71
46
4
23
2
92.0%
92.0%
4.9E−15
0.0024
50
25


EGR1
S100A4
0.71
48
2
23
2
96.0%
92.0%
4.4E−16
0.0025
50
25


E2F1
RAF1
0.71
48
2
24
1
96.0%
96.0%
2.3E−14
0.0385
50
25


MYCL1
NOTCH2
0.71
45
5
22
3
90.0%
88.0%
1.3E−09
1.3E−15
50
25


CDC25A
E2F1
0.71
47
3
23
2
94.0%
92.0%
0.0399
2.1E−10
50
25


IFITM1
TNFRSF1A
0.71
45
5
23
2
90.0%
92.0%
4.2E−13
0.0002
50
25


PTEN
S100A4
0.71
48
2
23
2
96.0%
92.0%
4.4E−16
1.2E−06
50
25


IFITM1
SKI
0.70
44
6
22
3
88.0%
88.0%
2.2E−16
0.0002
50
25


MMP9
TGFBI
0.70
45
5
23
2
90.0%
92.0%
8.8E−10
0.0029
50
25


BRAF
PTCH1
0.70
49
1
23
2
98.0%
92.0%
1.4E−15
0.0197
50
25


HRAS
VHL
0.70
46
4
23
2
92.0%
92.0%
6.4E−15
9.6E−12
50
25


EGR1
TNF
0.70
49
1
23
2
98.0%
92.0%
6.7E−16
0.0033
50
25


MMP9
THBS1
0.70
48
2
23
2
96.0%
92.0%
1.6E−06
0.0030
50
25


MMP9
RHOC
0.70
47
3
23
2
94.0%
92.0%
2.0E−15
0.0031
50
25


HRAS
TP53
0.70
46
4
24
1
92.0%
96.0%
4.4E−16
9.9E−12
50
25


MMP9
NRAS
0.70
46
4
23
2
92.0%
92.0%
1.3E−12
0.0035
50
25


RB1
VHL
0.70
46
4
23
2
92.0%
92.0%
7.8E−15
8.1E−08
50
25


BRCA1
JUN
0.70
45
5
23
2
90.0%
92.0%
4.4E−16
1.2E−07
50
25


MMP9
TNFRSF6
0.70
46
4
23
2
92.0%
92.0%
2.7E−11
0.0039
50
25


BRAF
IGFBP3
0.70
47
3
23
2
94.0%
92.0%
7.8E−16
0.0274
50
25


BRAF
SRC
0.70
44
6
22
2
88.0%
91.7%
3.7E−15
0.0221
50
24


BRAF
VEGF
0.69
46
4
23
2
92.0%
92.0%
1.8E−13
0.0315
50
25


ERBB2
MMP9
0.69
46
4
23
2
92.0%
92.0%
0.0047
1.1E−15
50
25


EGR1
MSH2
0.69
47
3
23
2
94.0%
92.0%
2.3E−15
0.0052
50
25


CDK5
EGR1
0.69
46
4
23
2
92.0%
92.0%
0.0053
1.2E−14
50
25


BRCA1
SERPINE1
0.69
45
5
23
2
90.0%
92.0%
0.0009
1.6E−07
50
25


MSH2
RB1
0.69
47
3
23
2
94.0%
92.0%
1.2E−07
2.7E−15
50
25


ITGB1
TNFRSF10A
0.69
44
6
23
2
88.0%
92.0%
4.2E−15
1.3E−11
50
25


MMP9
SMAD4
0.69
45
5
23
2
90.0%
92.0%
1.2E−11
0.0065
50
25


RB1
SERPINE1
0.69
45
5
23
2
90.0%
92.0%
0.0012
1.4E−07
50
25


RB1
TP53
0.69
47
3
23
2
94.0%
92.0%
8.9E−16
1.4E−07
50
25


BRAF
THBS1
0.69
45
5
22
3
90.0%
88.0%
3.3E−06
0.0459
50
25


BRAF
NOTCH2
0.69
45
5
23
2
90.0%
92.0%
3.3E−09
0.0459
50
25


NME4
SERPINE1
0.69
46
4
23
2
92.0%
92.0%
0.0012
3.5E−06
50
25


AKT1
RB1
0.69
47
3
22
2
94.0%
91.7%
2.8E−07
2.6E−15
50
24


MMP9
SRC
0.69
47
3
22
2
94.0%
91.7%
5.8E−15
0.0048
50
24


BRAF
IFITM1
0.69
46
4
23
2
92.0%
92.0%
0.0005
0.0483
50
25


MMP9
NFKB1
0.69
46
4
23
2
92.0%
92.0%
9.5E−12
0.0072
50
25


EGR1
SOCS1
0.68
47
3
23
2
94.0%
92.0%
4.1E−05
0.0081
50
25


SOCS1
THBS1
0.68
45
5
23
2
90.0%
92.0%
3.7E−06
4.1E−05
50
25


IFITM1
MMP9
0.68
45
5
23
2
90.0%
92.0%
0.0078
0.0006
50
25


BRCA1
MMP9
0.68
45
5
22
3
90.0%
88.0%
0.0086
2.7E−07
50
25


HRAS
RHOA
0.68
42
8
23
2
84.0%
92.0%
2.4E−09
2.6E−11
50
25


CDC25A
SERPINE1
0.68
44
6
23
2
88.0%
92.0%
0.0016
7.2E−10
50
25


EGR1
PCNA
0.68
47
3
23
2
94.0%
92.0%
8.9E−16
0.0099
50
25


IFITM1
THBS1
0.68
46
4
22
3
92.0%
88.0%
4.9E−06
0.0007
50
25


MMP9
PTCH1
0.68
44
6
23
2
88.0%
92.0%
4.4E−15
0.0100
50
25


MMP9
NOTCH2
0.68
47
3
23
2
94.0%
92.0%
5.0E−09
0.0102
50
25


NME1
NRAS
0.68
46
4
22
3
92.0%
88.0%
3.5E−12
4.5E−13
50
25


CDK5
MMP9
0.68
46
4
23
2
92.0%
92.0%
0.0111
2.6E−14
50
25


CDKN1A
HRAS
0.68
47
3
23
2
94.0%
92.0%
3.3E−11
9.0E−08
50
25


MYCL1
NRAS
0.68
45
5
22
3
90.0%
88.0%
3.8E−12
6.1E−15
50
25


CDK4
ITGB1
0.68
48
2
23
2
96.0%
92.0%
2.2E−11
3.3E−15
50
25


ABL1
MMP9
0.68
47
3
23
2
94.0%
92.0%
0.0117
1.3E−15
50
25


BRCA1
CDK4
0.68
45
5
23
2
90.0%
92.0%
3.4E−15
3.6E−07
50
25


FGFR2
IFITM1
0.68
46
4
23
2
92.0%
92.0%
0.0008
1.6E−14
50
25


EGR1
JUN
0.67
45
5
23
2
90.0%
92.0%
1.1E−15
0.0142
50
25


CASP8
EGR1
0.67
46
4
22
3
92.0%
88.0%
0.0146
1.6E−15
50
25


BAD
TNFRSF6
0.67
46
4
23
2
92.0%
92.0%
8.3E−11
4.2E−15
50
25


NFKB1
TNFRSF10A
0.67
48
2
24
1
96.0%
96.0%
8.9E−15
1.8E−11
50
25


ITGA3
MMP9
0.67
46
4
22
3
92.0%
88.0%
0.0151
1.8E−15
50
25


BCL2
EGR1
0.67
44
6
23
2
88.0%
92.0%
0.0172
2.2E−15
50
25


EGR1
WNT1
0.67
49
1
23
2
98.0%
92.0%
1.8E−15
0.0182
50
25


BCL2
MMP9
0.67
46
4
23
2
92.0%
92.0%
0.0170
2.4E−15
50
25


IL18
MMP9
0.67
46
4
23
2
92.0%
92.0%
0.0183
3.5E−12
50
25


CDC25A
MMP9
0.67
41
9
23
2
82.0%
92.0%
0.0188
1.4E−09
50
25


BAD
ITGB1
0.67
44
6
22
3
88.0%
88.0%
3.4E−11
5.7E−15
50
25


SERPINE1
TNFRSF6
0.67
48
2
22
3
96.0%
88.0%
1.2E−10
0.0033
50
25


CDK2
TNFRSF10A
0.67
45
5
23
2
90.0%
92.0%
1.2E−14
1.2E−12
50
25


MMP9
PCNA
0.67
46
4
22
3
92.0%
88.0%
1.8E−15
0.0209
50
25


AKT1
TGFBI
0.67
48
2
22
2
96.0%
91.7%
1.6E−08
6.9E−15
50
24


BRCA1
TNFRSF10A
0.67
44
6
22
3
88.0%
88.0%
1.2E−14
6.2E−07
50
25


MMP9
PTEN
0.67
46
4
23
2
92.0%
92.0%
8.6E−06
0.0213
50
25


BRCA1
MYCL1
0.66
44
6
22
3
88.0%
88.0%
1.1E−14
6.3E−07
50
25


HRAS
IL18
0.66
44
6
23
2
88.0%
92.0%
4.2E−12
5.9E−11
50
25


PTEN
SKI
0.66
47
3
22
3
94.0%
88.0%
1.8E−15
9.2E−06
50
25


EGR1
SKI
0.66
46
4
23
2
92.0%
92.0%
1.8E−15
0.0256
50
25


IFITM1
SERPINE1
0.66
45
5
23
2
90.0%
92.0%
0.0040
0.0016
50
25


EGR1
SRC
0.66
44
6
22
2
88.0%
91.7%
1.8E−14
0.0183
50
24


HRAS
PTEN
0.66
43
7
22
3
86.0%
88.0%
9.7E−06
6.5E−11
50
25


MMP9
SKIL
0.66
45
5
22
3
90.0%
88.0%
4.2E−14
0.0247
50
25


MYC
RB1
0.66
44
6
23
2
88.0%
92.0%
4.7E−07
3.4E−15
50
25


HRAS
SKIL
0.66
48
2
22
3
96.0%
88.0%
4.3E−14
6.7E−11
50
25


E2F1

0.66
45
5
23
2
90.0%
92.0%
1.9E−15

50
25


EGR1
FOS
0.66
45
5
23
2
90.0%
92.0%
1.5E−08
0.0292
50
25


BAD
IFITM1
0.66
46
4
22
3
92.0%
88.0%
0.0018
7.8E−15
50
25


ICAM1
MMP9
0.66
46
4
23
2
92.0%
92.0%
0.0271
1.0E−11
50
25


AKT1
EGR1
0.66
46
4
22
2
92.0%
91.7%
0.0203
8.5E−15
50
24


ATM
EGR1
0.66
42
8
23
2
84.0%
92.0%
0.0298
2.2E−15
50
25


CDK4
NRAS
0.66
44
6
22
3
88.0%
88.0%
8.6E−12
7.6E−15
50
25


BRCA1
NME1
0.66
44
6
23
2
88.0%
92.0%
1.2E−12
9.0E−07
50
25


HRAS
IFITM1
0.66
43
7
22
3
86.0%
88.0%
0.0022
8.5E−11
50
25


CFLAR
HRAS
0.66
45
5
22
3
90.0%
88.0%
8.6E−11
3.1E−10
50
25


CASP8
IFITM1
0.66
47
3
22
3
94.0%
88.0%
0.0024
3.8E−15
50
25


CCNE1
MMP9
0.66
45
5
22
3
90.0%
88.0%
0.0364
4.4E−14
50
25


MMP9
VHL
0.66
45
5
22
3
90.0%
88.0%
6.1E−14
0.0365
50
25


ATM
MMP9
0.66
44
6
22
3
88.0%
88.0%
0.0365
2.9E−15
50
25


ABL1
RB1
0.66
43
7
23
2
86.0%
92.0%
6.8E−07
3.8E−15
50
25


IFNG
MMP9
0.65
46
4
22
3
92.0%
88.0%
0.0387
4.4E−15
50
25


EGR1
PTEN
0.65
46
4
23
2
92.0%
92.0%
1.5E−05
0.0448
50
25


BAD
SMAD4
0.65
44
6
23
2
88.0%
92.0%
6.0E−11
1.1E−14
50
25


CDC25A
EGR1
0.65
49
1
23
2
98.0%
92.0%
0.0451
2.8E−09
50
25


S100A4
TIMP1
0.65
45
5
22
3
90.0%
88.0%
9.0E−08
5.2E−15
50
25


IGFBP3
MMP9
0.65
46
4
22
3
92.0%
88.0%
0.0424
6.2E−15
50
25


BCL2
RB1
0.65
46
4
23
2
92.0%
92.0%
7.7E−07
5.3E−15
50
25


MMP9
SEMA4D
0.65
46
4
22
3
92.0%
88.0%
2.1E−10
0.0433
50
25


MMP9
RHOA
0.65
46
4
23
2
92.0%
92.0%
1.0E−08
0.0442
50
25


CDKN2A
MMP9
0.65
47
3
23
2
94.0%
92.0%
0.0444
4.9E−15
50
25


MYCL1
TGFBI
0.65
47
3
23
2
94.0%
92.0%
1.1E−08
2.1E−14
50
25


PTEN
SERPINE1
0.65
45
5
23
2
90.0%
92.0%
0.0075
1.7E−05
50
25


HRAS
PLAUR
0.65
47
3
23
2
94.0%
92.0%
3.7E−10
1.2E−10
50
25


IFITM1
NME4
0.65
46
4
23
2
92.0%
92.0%
2.4E−05
0.0035
50
25


MYCL1
RHOA
0.65
47
3
22
3
94.0%
88.0%
1.3E−08
2.6E−14
50
25


NME1
TNFRSF6
0.65
44
6
22
3
88.0%
88.0%
3.2E−10
2.2E−12
50
25


HRAS
SEMA4D
0.65
46
4
22
3
92.0%
88.0%
2.9E−10
1.5E−10
50
25


SKI
TGFBI
0.65
47
3
23
2
94.0%
92.0%
1.5E−08
4.2E−15
50
25


BRAF

0.65
44
6
22
3
88.0%
88.0%
4.2E−15

50
25


NME1
SOCS1
0.64
45
5
23
2
90.0%
92.0%
0.0003
2.3E−12
50
25


AKT1
RHOA
0.64
44
6
22
2
88.0%
91.7%
3.3E−08
2.2E−14
50
24


BRCA1
TNFRSF10B
0.64
44
6
22
3
88.0%
88.0%
6.4E−15
2.1E−06
50
25


NME4
SOCS1
0.64
46
4
22
3
92.0%
88.0%
0.0004
3.9E−05
50
25


HRAS
SERPINE1
0.64
45
5
23
2
90.0%
92.0%
0.0151
2.1E−10
50
25


MYCL1
SERPINE1
0.64
45
5
23
2
90.0%
92.0%
0.0153
4.0E−14
50
25


ATM
HRAS
0.64
46
4
23
2
92.0%
92.0%
2.3E−10
7.3E−15
50
25


HRAS
NME4
0.64
46
4
22
3
92.0%
88.0%
4.3E−05
2.3E−10
50
25


IFITM1
SOCS1
0.64
44
6
23
2
88.0%
92.0%
0.0005
0.0066
50
25


BAX
TIMP1
0.64
44
6
22
3
88.0%
88.0%
2.1E−07
1.1E−14
50
25


BCL2
HRAS
0.64
44
6
23
2
88.0%
92.0%
2.4E−10
1.2E−14
50
25


BAD
RHOA
0.64
45
5
22
3
90.0%
88.0%
2.4E−08
2.7E−14
50
25


CASP8
PLAUR
0.63
47
3
23
2
94.0%
92.0%
8.4E−10
1.1E−14
50
25


IL18
SERPINE1
0.63
48
2
22
3
96.0%
88.0%
0.0207
2.0E−11
50
25


IFITM1
S100A4
0.63
45
5
23
2
90.0%
92.0%
1.4E−14
0.0083
50
25


CASP8
RHOA
0.63
45
5
22
3
90.0%
88.0%
2.9E−08
1.2E−14
50
25


PCNA
RB1
0.63
45
5
22
3
90.0%
88.0%
2.3E−06
9.2E−15
50
25


NME4
THBS1
0.63
44
6
22
3
88.0%
88.0%
5.6E−05
5.8E−05
50
25


PLAUR
SERPINE1
0.63
45
5
22
3
90.0%
88.0%
0.0248
1.1E−09
50
25


FGFR2
SERPINE1
0.63
44
6
23
2
88.0%
92.0%
0.0294
1.8E−13
50
25


BAX
BRCA1
0.63
44
6
22
3
88.0%
88.0%
4.4E−06
1.8E−14
50
25


NME1
TIMP1
0.63
46
4
22
3
92.0%
88.0%
3.5E−07
6.0E−12
50
25


CDK4
SMAD4
0.62
47
3
22
3
94.0%
88.0%
2.6E−10
4.5E−14
50
25


IFITM1
MYCL1
0.62
43
7
22
3
86.0%
88.0%
8.8E−14
0.0143
50
25


CDK2
NME1
0.62
47
3
22
3
94.0%
88.0%
7.8E−12
1.2E−11
50
25


HRAS
PCNA
0.62
45
5
22
3
90.0%
88.0%
1.6E−14
5.4E−10
50
25


ITGB1
MYCL1
0.62
46
4
23
2
92.0%
92.0%
1.0E−13
3.6E−10
50
25


AKT1
IFITM1
0.62
44
6
20
4
88.0%
83.3%
0.0105
6.2E−14
50
24


S100A4
TGFBI
0.62
40
10
22
3
80.0%
88.0%
5.7E−08
2.9E−14
50
25


BRCA1
S100A4
0.62
43
7
22
3
86.0%
88.0%
3.1E−14
7.3E−06
50
25


BAD
TIMP1
0.62
46
4
22
3
92.0%
88.0%
5.7E−07
7.1E−14
50
25


NME1
NME4
0.61
43
7
22
3
86.0%
88.0%
0.0001
9.9E−12
50
25


BRCA1
MSH2
0.61
45
5
22
3
90.0%
88.0%
1.0E−13
7.8E−06
50
25


BAX
NOTCH2
0.61
44
6
22
3
88.0%
88.0%
1.2E−07
3.2E−14
50
25


FGFR2
PTEN
0.61
44
6
22
3
88.0%
88.0%
0.0001
3.2E−13
50
25


CDKN1A
MYCL1
0.61
43
7
22
3
86.0%
88.0%
1.3E−13
2.1E−06
50
25


MYCL1
SMAD4
0.61
47
3
22
3
94.0%
88.0%
4.2E−10
1.3E−13
50
25


BAX
RHOA
0.61
44
6
23
2
88.0%
92.0%
7.2E−08
3.4E−14
50
25


TGFBI
TNFRSF10A
0.61
43
7
21
4
86.0%
84.0%
1.6E−13
7.5E−08
50
25


MYCL1
PLAUR
0.61
43
7
21
4
86.0%
84.0%
2.5E−09
1.4E−13
50
25


EGR1

0.61
46
4
23
2
92.0%
92.0%
2.2E−14

50
25


PTEN
THBS1
0.61
45
5
22
3
90.0%
88.0%
0.0001
0.0001
50
25


MMP9

0.61
43
7
22
3
86.0%
88.0%
2.4E−14

50
25


RHOA
S100A4
0.61
44
6
22
3
88.0%
88.0%
4.3E−14
8.4E−08
50
25


BAX
IFITM1
0.61
44
6
22
3
88.0%
88.0%
0.0284
4.0E−14
50
25


CASP8
TNFRSF6
0.61
44
6
22
3
88.0%
88.0%
2.0E−09
3.8E−14
50
25


FGFR2
RB1
0.61
46
4
23
2
92.0%
92.0%
7.7E−06
4.6E−13
50
25


IFITM1
RAF1
0.61
44
6
21
4
88.0%
84.0%
3.2E−12
0.0344
50
25


NME1
SMAD4
0.61
44
6
21
4
88.0%
84.0%
6.3E−10
1.6E−11
50
25


CDC25A
SOCS1
0.60
41
9
22
3
82.0%
88.0%
0.0024
3.1E−08
50
25


MYCL1
PTEN
0.60
43
7
21
4
86.0%
84.0%
0.0002
2.1E−13
50
25


AKT1
TIMP1
0.60
44
6
21
3
88.0%
87.5%
4.4E−06
1.3E−13
50
24


CDK2
CDK4
0.60
45
5
22
3
90.0%
88.0%
1.2E−13
2.6E−11
50
25


TIMP1
TNFRSF10B
0.60
45
5
22
3
90.0%
88.0%
3.9E−14
1.0E−06
50
25


APAF1
IFITM1
0.60
43
7
22
3
86.0%
88.0%
0.0399
1.1E−10
50
25


ABL2
HRAS
0.60
44
6
23
2
88.0%
92.0%
1.2E−09
9.4E−13
50
25


CDKN1A
IFITM1
0.60
47
3
22
3
94.0%
88.0%
0.0420
3.6E−06
50
25


IFITM1
NME1
0.60
43
7
22
3
86.0%
88.0%
1.9E−11
0.0428
50
25


CASP8
NOTCH2
0.60
46
4
22
3
92.0%
88.0%
2.2E−07
5.2E−14
50
25


IFITM1
IL1B
0.60
46
4
22
3
92.0%
88.0%
2.2E−11
0.0434
50
25


NME4
PTEN
0.60
46
4
22
3
92.0%
88.0%
0.0002
0.0003
50
25


ATM
BRCA1
0.60
46
4
23
2
92.0%
92.0%
1.5E−05
4.2E−14
50
25


HRAS
RHOC
0.60
47
3
22
3
94.0%
88.0%
2.8E−13
1.4E−09
50
25


IFITM1
TNFRSF10B
0.60
44
6
22
3
88.0%
88.0%
4.7E−14
0.0491
50
25


NOTCH2
TNFRSF10A
0.60
43
7
22
3
86.0%
88.0%
3.0E−13
2.5E−07
50
25


IL18
NME1
0.60
43
7
23
2
86.0%
92.0%
2.2E−11
1.0E−10
50
25


CDKN1A
SOCS1
0.60
43
7
21
4
86.0%
84.0%
0.0033
4.3E−06
50
25


PTEN
RAF1
0.60
44
6
22
3
88.0%
88.0%
4.6E−12
0.0003
50
25


SOCS1
TIMP1
0.60
43
7
21
4
86.0%
84.0%
1.4E−06
0.0036
50
25


BRCA1
THBS1
0.60
46
4
22
3
92.0%
88.0%
0.0003
1.9E−05
50
25


NME1
PTEN
0.60
41
9
21
4
82.0%
84.0%
0.0003
2.4E−11
50
25


CDK4
SOCS1
0.59
45
5
22
3
90.0%
88.0%
0.0041
1.8E−13
50
25


CDK4
NFKB1
0.59
45
5
22
3
90.0%
88.0%
8.5E−10
1.9E−13
50
25


CASP8
TGFBI
0.59
43
7
22
3
86.0%
88.0%
1.9E−07
7.9E−14
50
25


RB1
SKI
0.59
46
4
23
2
92.0%
92.0%
6.2E−14
1.7E−05
50
25


PTEN
SOCS1
0.59
47
3
22
3
94.0%
88.0%
0.0053
0.0004
50
25


BAD
PLAUR
0.59
47
3
22
3
94.0%
88.0%
7.6E−09
2.6E−13
50
25


NME1
TGFBI
0.59
49
1
22
3
98.0%
88.0%
2.3E−07
3.5E−11
50
25


MYC
SOCS1
0.59
41
9
21
4
82.0%
84.0%
0.0058
1.3E−13
50
25


CASP8
TIMP1
0.59
43
7
22
3
86.0%
88.0%
2.2E−06
1.0E−13
50
25


CDK4
TGFBI
0.59
42
8
21
4
84.0%
84.0%
2.7E−07
2.7E−13
50
25


BAD
TGFBI
0.58
43
7
21
4
86.0%
84.0%
2.9E−07
3.1E−13
50
25


NOTCH2
SKI
0.58
45
5
23
2
90.0%
92.0%
8.0E−14
5.2E−07
50
25


APAF1
PTEN
0.58
43
7
21
4
86.0%
84.0%
0.0005
2.7E−10
50
25


CDK4
NOTCH2
0.58
45
5
22
3
90.0%
88.0%
5.5E−07
3.1E−13
50
25


MYCL1
NME4
0.58
47
3
22
3
94.0%
88.0%
0.0007
5.8E−13
50
25


HRAS
THBS1
0.58
44
6
22
3
88.0%
88.0%
0.0007
3.5E−09
50
25


BRCA1
SKI
0.58
45
5
22
3
90.0%
88.0%
9.7E−14
4.2E−05
50
25


TGFBI
TNFRSF10B
0.58
43
7
22
3
86.0%
88.0%
1.2E−13
3.6E−07
50
25


NME1
NOTCH2
0.58
46
4
23
2
92.0%
92.0%
6.7E−07
5.6E−11
50
25


NFKB1
NME1
0.58
44
6
22
3
88.0%
88.0%
5.8E−11
1.7E−09
50
25


FGFR2
SOCS1
0.58
44
6
21
4
88.0%
84.0%
0.0100
1.8E−12
50
25


NOTCH2
TNFRSF10B
0.58
46
4
23
2
92.0%
92.0%
1.4E−13
7.5E−07
50
25


CDC25A
THBS1
0.58
42
8
22
3
84.0%
88.0%
0.0009
1.2E−07
50
25


CASP8
SOCS1
0.58
44
6
21
4
88.0%
84.0%
0.0107
1.8E−13
50
25


SERPINE1

0.58
44
6
22
3
88.0%
88.0%
1.2E−13

50
25


BRCA1
SOCS1
0.58
42
8
22
3
84.0%
88.0%
0.0111
5.4E−05
50
25


SOCS1
TNFRSF10A
0.58
43
7
22
3
86.0%
88.0%
9.4E−13
0.0112
50
25


RB1
THBS1
0.58
42
8
22
3
84.0%
88.0%
0.0009
3.6E−05
50
25


BAX
ITGB1
0.57
43
7
22
3
86.0%
88.0%
3.1E−09
2.1E−13
50
25


CDK4
TIMP1
0.57
44
6
22
3
88.0%
88.0%
4.5E−06
4.9E−13
50
25


CDK5
RB1
0.57
44
6
22
3
88.0%
88.0%
4.2E−05
4.2E−12
50
25


ITGB1
MSH2
0.57
45
5
21
4
90.0%
84.0%
8.1E−13
3.5E−09
50
25


BAX
PTEN
0.57
40
10
21
4
80.0%
84.0%
0.0010
2.6E−13
50
25


CDK4
NME4
0.57
43
7
22
3
86.0%
88.0%
0.0012
5.7E−13
50
25


TNFRSF10A
TNFRSF6
0.57
45
5
21
4
90.0%
84.0%
1.3E−08
1.2E−12
50
25


RB1
SKIL
0.57
45
5
22
3
90.0%
88.0%
3.7E−12
4.7E−05
50
25


PTEN
TNFRSF10A
0.57
42
8
21
4
84.0%
84.0%
1.3E−12
0.0011
50
25


JUN
SOCS1
0.57
45
5
22
3
90.0%
88.0%
0.0161
1.9E−13
50
25


RB1
SOCS1
0.57
42
8
22
3
84.0%
88.0%
0.0167
5.2E−05
50
25


NOTCH2
SOCS1
0.57
46
4
22
3
92.0%
88.0%
0.0169
1.2E−06
50
25


JUN
NOTCH2
0.57
42
8
21
4
84.0%
84.0%
1.2E−06
2.0E−13
50
25


AKT1
PTEN
0.57
40
10
19
5
80.0%
79.2%
0.0008
7.1E−13
50
24


AKT1
NOTCH2
0.57
45
5
22
2
90.0%
91.7%
1.0E−06
7.3E−13
50
24


NOTCH2
S100A4
0.57
41
9
22
3
82.0%
88.0%
3.4E−13
1.3E−06
50
25


RHOA
TNFRSF10B
0.57
41
9
22
3
82.0%
88.0%
2.3E−13
7.1E−07
50
25


CDC25A
PTEN
0.57
43
7
22
3
86.0%
88.0%
0.0013
2.1E−07
50
25


SMAD4
TNFRSF10A
0.57
43
7
22
3
86.0%
88.0%
1.5E−12
4.3E−09
50
25


JUN
PTEN
0.57
44
6
21
4
88.0%
84.0%
0.0013
2.3E−13
50
25


FOS
THBS1
0.57
46
4
22
3
92.0%
88.0%
0.0015
1.7E−06
50
25


NME1
RHOA
0.56
44
6
22
3
88.0%
88.0%
7.6E−07
1.1E−10
50
25


MYCL1
SOCS1
0.56
45
5
22
3
90.0%
88.0%
0.0218
1.5E−12
50
25


BAD
NOTCH2
0.56
44
6
22
3
88.0%
88.0%
1.5E−06
8.8E−13
50
25


TIMP1
TNFRSF10A
0.56
43
7
22
3
86.0%
88.0%
1.8E−12
7.7E−06
50
25


CCNE1
HRAS
0.56
44
6
22
3
88.0%
88.0%
8.6E−09
3.9E−12
50
25


MSH2
SOCS1
0.56
44
6
22
3
88.0%
88.0%
0.0228
1.3E−12
50
25


BAX
NFKB1
0.56
45
5
22
3
90.0%
88.0%
3.8E−09
3.9E−13
50
25


HRAS
TNF
0.56
44
6
22
3
88.0%
88.0%
5.3E−13
8.7E−09
50
25


BAD
CFLAR
0.56
44
6
22
3
88.0%
88.0%
3.3E−08
9.6E−13
50
25


CDKN1A
NME4
0.56
43
7
22
3
86.0%
88.0%
0.0022
3.0E−05
50
25


RB1
TNF
0.56
41
9
22
3
82.0%
88.0%
6.3E−13
8.2E−05
50
25


SKI
SOCS1
0.56
43
7
21
4
86.0%
84.0%
0.0282
2.8E−13
50
25


IFITM1

0.56
44
6
22
3
88.0%
88.0%
2.8E−13

50
25


S100A4
TNFRSF6
0.56
41
9
22
3
82.0%
88.0%
2.3E−08
5.1E−13
50
25


TIMP1
WNT1
0.56
43
7
21
4
86.0%
84.0%
4.3E−13
1.0E−05
50
25


CDK4
RHOA
0.56
46
4
22
3
92.0%
88.0%
1.1E−06
1.1E−12
50
25


CDK4
PTEN
0.56
39
11
21
4
78.0%
84.0%
0.0022
1.2E−12
50
25


CDC25A
RB1
0.55
48
2
22
3
96.0%
88.0%
0.0001
3.8E−07
50
25


FOS
NME4
0.55
44
6
22
3
88.0%
88.0%
0.0029
3.1E−06
50
25


MSH2
NFKB1
0.55
43
7
21
4
86.0%
84.0%
6.1E−09
2.1E−12
50
25


FGFR2
THBS1
0.55
45
5
22
3
90.0%
88.0%
0.0030
6.3E−12
50
25


AKT1
BRCA1
0.55
44
6
21
3
88.0%
87.5%
0.0001
1.5E−12
50
24


MYCL1
THBS1
0.55
43
7
22
3
86.0%
88.0%
0.0031
2.6E−12
50
25


BAX
SOCS1
0.55
41
9
22
3
82.0%
88.0%
0.0411
6.5E−13
50
25


RHOA
SKI
0.55
48
2
22
3
96.0%
88.0%
4.0E−13
1.5E−06
50
25


PTEN
TNFRSF10B
0.55
38
12
20
5
76.0%
80.0%
4.9E−13
0.0028
50
25


NME4
TNFRSF10A
0.55
43
7
21
4
86.0%
84.0%
3.2E−12
0.0034
50
25


BRCA1
FGFR2
0.55
43
7
21
4
86.0%
84.0%
7.0E−12
0.0002
50
25


CDK5
NME1
0.55
44
6
22
3
88.0%
88.0%
2.4E−10
1.3E−11
50
25


SOCS1
TGFBI
0.55
43
7
22
3
86.0%
88.0%
1.7E−06
0.0486
50
25


PLAUR
S100A4
0.55
42
8
22
3
84.0%
88.0%
8.3E−13
5.7E−08
50
25


TGFBI
WNT1
0.55
40
10
22
3
80.0%
88.0%
7.3E−13
1.9E−06
50
25


TGFBI
TP53
0.55
42
8
21
4
84.0%
84.0%
8.4E−13
2.0E−06
50
25


BRCA1
TP53
0.55
43
7
21
4
86.0%
84.0%
8.4E−13
0.0002
50
25


IL8
PTEN
0.54
42
8
21
4
84.0%
84.0%
0.0041
1.3E−12
50
25


CDKN1A
PTEN
0.54
46
4
21
4
92.0%
84.0%
0.0042
6.8E−05
50
25


RB1
WNT1
0.54
47
3
23
2
94.0%
92.0%
9.0E−13
0.0002
50
25


BAX
ICAM1
0.54
42
8
21
4
84.0%
84.0%
3.4E−09
1.1E−12
50
25


HRAS
PTCH1
0.54
42
8
21
4
84.0%
84.0%
3.5E−12
2.4E−08
50
25


BAX
PLAUR
0.54
47
3
22
3
94.0%
88.0%
8.3E−08
1.1E−12
50
25


BAD
NRAS
0.54
44
6
21
4
88.0%
84.0%
3.1E−09
2.8E−12
50
25


BRCA1
IL8
0.54
43
7
22
3
86.0%
88.0%
1.7E−12
0.0003
50
25


HRAS
SRC
0.54
44
6
21
3
88.0%
87.5%
6.5E−12
8.8E−08
50
24


BRCA1
PCNA
0.54
44
6
22
3
88.0%
88.0%
8.6E−13
0.0004
50
25


MSH2
TGFBI
0.54
41
9
21
4
82.0%
84.0%
3.1E−06
4.6E−12
50
25


NME4
RB1
0.54
45
5
22
3
90.0%
88.0%
0.0003
0.0074
50
25


CDK5
MYCL1
0.54
40
10
21
4
80.0%
84.0%
5.7E−12
2.5E−11
50
25


PTEN
TNFRSF1A
0.53
43
7
21
4
86.0%
84.0%
1.8E−09
0.0070
50
25


NME4
TIMP1
0.53
45
5
22
3
90.0%
88.0%
3.3E−05
0.0084
50
25


BRCA1
MYC
0.53
45
5
22
3
90.0%
88.0%
1.9E−12
0.0005
50
25


IL8
RB1
0.53
42
8
22
3
84.0%
88.0%
0.0003
2.3E−12
50
25


NOTCH2
TP53
0.53
42
8
21
4
84.0%
84.0%
1.6E−12
6.8E−06
50
25


MSH2
NOTCH2
0.53
42
8
21
4
84.0%
84.0%
7.0E−06
5.8E−12
50
25


BAX
SMAD4
0.53
46
4
22
3
92.0%
88.0%
2.3E−08
1.8E−12
50
25


NME1
PLAUR
0.53
41
9
21
4
82.0%
84.0%
1.3E−07
5.9E−10
50
25


RHOA
TNFRSF10A
0.53
42
8
21
4
84.0%
84.0%
9.0E−12
4.4E−06
50
25


ABL1
BRCA1
0.53
43
7
22
3
86.0%
88.0%
0.0006
1.7E−12
50
25


TIMP1
TP53
0.53
45
5
22
3
90.0%
88.0%
1.9E−12
4.2E−05
50
25


HRAS
RAF1
0.53
43
7
21
4
86.0%
84.0%
1.4E−10
4.6E−08
50
25


BAD
NME4
0.53
39
11
22
3
78.0%
88.0%
0.0112
4.9E−12
50
25


THBS1
TNFRSF6
0.53
45
5
22
3
90.0%
88.0%
1.0E−07
0.0111
50
25


CASP8
SMAD4
0.53
47
3
22
3
94.0%
88.0%
2.8E−08
1.9E−12
50
25


BRCA1
NME4
0.53
44
6
22
3
88.0%
88.0%
0.0117
0.0006
50
25


RAF1
RB1
0.53
43
7
21
4
86.0%
84.0%
0.0004
1.5E−10
50
25


MSH2
NME4
0.53
43
7
21
4
86.0%
84.0%
0.0129
7.8E−12
50
25


PTEN
WNT1
0.53
44
6
22
3
88.0%
88.0%
2.0E−12
0.0110
50
25


MSH2
TIMP1
0.53
43
7
22
3
86.0%
88.0%
5.0E−05
7.9E−12
50
25


CDKN1A
NME1
0.52
44
6
21
4
88.0%
84.0%
8.1E−10
0.0002
50
25


BAD
IL18
0.52
40
10
20
5
80.0%
80.0%
3.9E−09
5.9E−12
50
25


THBS1
WNT1
0.52
45
5
22
3
90.0%
88.0%
2.2E−12
0.0136
50
25


CDC25A
NME4
0.52
45
5
23
2
90.0%
92.0%
0.0142
1.7E−06
50
25


MSH2
PTEN
0.52
43
7
20
5
86.0%
80.0%
0.0121
8.6E−12
50
25


APAF1
HRAS
0.52
42
8
21
4
84.0%
84.0%
7.9E−08
6.9E−09
50
25


ITGA3
RB1
0.52
47
3
22
3
94.0%
88.0%
0.0007
3.2E−12
50
25


CFLAR
NME4
0.52
43
7
22
3
86.0%
88.0%
0.0204
3.0E−07
50
25


CDC25A
CDKN1A
0.52
44
6
22
3
88.0%
88.0%
0.0003
2.3E−06
50
25


CFLAR
S100A4
0.52
45
5
22
3
90.0%
88.0%
3.8E−12
3.0E−07
50
25


CFLAR
SKI
0.52
43
7
21
4
86.0%
84.0%
2.2E−12
3.1E−07
50
25


SRC
THBS1
0.52
43
7
21
3
86.0%
87.5%
0.0329
1.9E−11
50
24


BAX
CDKN1A
0.52
42
8
21
4
84.0%
84.0%
0.0003
3.7E−12
50
25


CDK4
TNFRSF6
0.52
44
6
22
3
88.0%
88.0%
1.9E−07
8.4E−12
50
25


ATM
PTEN
0.51
38
12
20
5
76.0%
80.0%
0.0199
2.7E−12
50
25


NRAS
TNFRSF10A
0.51
43
7
20
5
86.0%
80.0%
2.0E−11
1.1E−08
50
25


ICAM1
TNFRSF10A
0.51
41
9
21
4
82.0%
84.0%
2.0E−11
1.4E−08
50
25


PLAUR
THBS1
0.51
43
7
21
4
86.0%
84.0%
0.0244
3.2E−07
50
25


BAD
THBS1
0.51
42
8
22
3
84.0%
88.0%
0.0254
1.0E−11
50
25


CDK2
RB1
0.51
44
6
21
4
88.0%
84.0%
0.0009
2.2E−09
50
25


BAX
NME4
0.51
48
2
21
4
96.0%
84.0%
0.0270
4.5E−12
50
25


CDKN1A
FOS
0.51
43
7
22
3
86.0%
88.0%
2.5E−05
0.0003
50
25


BAX
TNFRSF6
0.51
44
6
21
4
88.0%
84.0%
2.3E−07
4.6E−12
50
25


CDKN1A
S100A4
0.51
42
8
21
4
84.0%
84.0%
5.0E−12
0.0004
50
25


THBS1
TIMP1
0.51
46
4
21
4
92.0%
84.0%
0.0001
0.0276
50
25


NME1
THBS1
0.51
43
7
22
3
86.0%
88.0%
0.0276
1.6E−09
50
25


PLAUR
TNFRSF10B
0.51
44
6
22
3
88.0%
88.0%
3.6E−12
3.7E−07
50
25


NME4
TGFBI
0.51
41
9
22
3
82.0%
88.0%
1.3E−05
0.0333
50
25


BRCA1
SKIL
0.51
44
6
21
4
88.0%
84.0%
7.6E−11
0.0017
50
25


NME4
RHOA
0.51
46
4
22
3
92.0%
88.0%
1.3E−05
0.0336
50
25


BRCA1
CDKN1A
0.51
42
8
22
3
84.0%
88.0%
0.0004
0.0017
50
25


SOCS1

0.51
43
7
21
4
86.0%
84.0%
3.2E−12

50
25


NOTCH2
THBS1
0.51
44
6
22
3
88.0%
88.0%
0.0338
2.4E−05
50
25


RB1
SMAD4
0.51
43
7
21
4
86.0%
84.0%
7.7E−08
0.0012
50
25


SEMA4D
SKI
0.51
45
5
22
3
90.0%
88.0%
3.5E−12
2.6E−07
50
25


GZMA
RB1
0.51
43
7
22
3
86.0%
88.0%
0.0012
1.2E−11
50
25


ITGB1
NME4
0.51
45
5
22
3
90.0%
88.0%
0.0378
9.1E−08
50
25


CASP8
THBS1
0.51
44
6
22
3
88.0%
88.0%
0.0383
5.7E−12
50
25


PTEN
SKIL
0.51
43
7
20
5
86.0%
80.0%
8.8E−11
0.0334
50
25


NME4
NOTCH2
0.51
45
5
22
3
90.0%
88.0%
2.7E−05
0.0400
50
25


ABL1
NOTCH2
0.51
46
4
21
4
92.0%
84.0%
2.7E−05
5.6E−12
50
25


ITGB1
S100A4
0.50
44
6
22
3
88.0%
88.0%
7.0E−12
9.9E−08
50
25


IL18
NME4
0.50
45
5
22
3
90.0%
88.0%
0.0415
1.0E−08
50
25


CFLAR
PTEN
0.50
42
8
21
4
84.0%
84.0%
0.0354
5.7E−07
50
25


CFLAR
THBS1
0.50
44
6
22
3
88.0%
88.0%
0.0425
5.9E−07
50
25


MYC
NME4
0.50
40
10
22
3
80.0%
88.0%
0.0449
7.9E−12
50
25


SMAD4
TNFRSF10B
0.50
42
8
21
4
84.0%
84.0%
5.1E−12
9.5E−08
50
25


BRCA1
RAF1
0.50
43
7
22
3
86.0%
88.0%
4.9E−10
0.0023
50
25


PLAUR
TNFRSF10A
0.50
45
5
22
3
90.0%
88.0%
3.5E−11
5.6E−07
50
25


S100A4
THBS1
0.50
44
6
21
4
88.0%
84.0%
0.0462
7.9E−12
50
25


CDKN1A
TNFRSF10A
0.50
43
7
22
3
86.0%
88.0%
3.7E−11
0.0006
50
25


BAD
CDKN1A
0.50
43
7
21
4
86.0%
84.0%
0.0006
1.9E−11
50
25


BRCA1
VHL
0.50
42
8
21
4
84.0%
84.0%
1.1E−10
0.0025
50
25


CDK4
CDKN1A
0.50
41
9
21
4
82.0%
84.0%
0.0006
1.8E−11
50
25


SKI
TIMP1
0.50
45
5
21
4
90.0%
84.0%
0.0002
5.0E−12
50
25


FGFR2
TIMP1
0.50
42
8
22
3
84.0%
88.0%
0.0002
8.4E−11
50
25


NME1
VHL
0.50
41
9
21
4
82.0%
84.0%
1.2E−10
2.8E−09
50
25


MYCL1
NFKB1
0.50
39
11
21
4
78.0%
84.0%
8.7E−08
3.4E−11
50
25


ABL2
RB1
0.50
48
2
21
4
96.0%
84.0%
0.0019
1.6E−10
50
25


CDKN2A
RB1
0.50
45
5
22
3
90.0%
88.0%
0.0019
8.9E−12
50
25


ICAM1
NME1
0.50
43
7
21
4
86.0%
84.0%
3.2E−09
3.1E−08
50
25


ABL1
TGFBI
0.49
43
7
21
4
86.0%
84.0%
2.5E−05
9.2E−12
50
25


NME1
PCNA
0.49
43
7
22
3
86.0%
88.0%
6.8E−12
3.5E−09
50
25


ICAM1
MYCL1
0.49
44
6
21
4
88.0%
84.0%
4.5E−11
3.7E−08
50
25


CDKN1A
WNT1
0.49
41
9
21
4
82.0%
84.0%
9.9E−12
0.0009
50
25


CDK2
MSH2
0.49
42
8
21
4
84.0%
84.0%
3.9E−11
5.8E−09
50
25


FGFR2
RHOA
0.49
41
9
21
4
82.0%
84.0%
2.8E−05
1.2E−10
50
25


BRCA1
CDC25A
0.49
43
7
21
4
86.0%
84.0%
8.1E−06
0.0039
50
25


CDKN1A
FGFR2
0.49
44
6
21
4
88.0%
84.0%
1.3E−10
0.0010
50
25


BAD
NFKB1
0.49
44
6
21
4
88.0%
84.0%
1.4E−07
3.2E−11
50
25


FGFR2
TGFBI
0.49
44
6
22
3
88.0%
88.0%
3.3E−05
1.4E−10
50
25


ATM
NOTCH2
0.49
43
7
21
4
86.0%
84.0%
6.0E−05
9.4E−12
50
25


MSH2
TNFRSF6
0.49
43
7
21
4
86.0%
84.0%
7.2E−07
4.7E−11
50
25


CDC25A
TIMP1
0.49
41
9
22
3
82.0%
88.0%
0.0004
1.1E−05
50
25


RAF1
RHOA
0.49
46
4
23
2
92.0%
92.0%
3.9E−05
1.1E−09
50
25


BRCA1
WNT1
0.49
43
7
22
3
86.0%
88.0%
1.4E−11
0.0057
50
25


BAX
HRAS
0.48
43
7
22
3
86.0%
88.0%
4.0E−07
1.7E−11
50
25


BCL2
BRCA1
0.48
42
8
21
4
84.0%
84.0%
0.0058
1.9E−11
50
25


RHOA
TP53
0.48
41
9
20
5
82.0%
80.0%
1.9E−11
4.7E−05
50
25


CFLAR
NME1
0.48
41
9
21
4
82.0%
84.0%
6.6E−09
1.7E−06
50
25


CDC25A
TGFBI
0.48
45
5
21
4
90.0%
84.0%
4.9E−05
1.4E−05
50
25


MYCL1
TNFRSF6
0.48
44
6
21
4
88.0%
84.0%
1.1E−06
8.6E−11
50
25


CDC25A
FOS
0.48
41
9
21
4
82.0%
84.0%
0.0001
1.5E−05
50
25


S100A4
SMAD4
0.48
44
6
22
3
88.0%
88.0%
3.1E−07
2.4E−11
50
25


FGFR2
NOTCH2
0.48
43
7
21
4
86.0%
84.0%
9.9E−05
2.3E−10
50
25


ITGA1
RB1
0.48
42
8
21
4
84.0%
84.0%
0.0054
1.1E−10
50
25


HRAS
IL1B
0.48
41
9
21
4
82.0%
84.0%
9.6E−09
5.9E−07
50
25


JUN
RHOA
0.48
41
9
21
4
82.0%
84.0%
6.1E−05
1.7E−11
50
25


RB1
SRC
0.48
43
7
20
4
86.0%
83.3%
1.3E−10
0.0037
50
24


BAD
CDK2
0.48
44
6
21
4
88.0%
84.0%
1.4E−08
6.5E−11
50
25


CDK4
HRAS
0.47
40
10
21
4
80.0%
84.0%
6.6E−07
6.1E−11
50
25


IGFBP3
RB1
0.47
47
3
21
4
94.0%
84.0%
0.0067
3.8E−11
50
25


MSH2
SMAD4
0.47
40
10
21
4
80.0%
84.0%
4.2E−07
1.0E−10
50
25


CASP8
ICAM1
0.47
44
6
22
3
88.0%
88.0%
1.0E−07
2.8E−11
50
25


CDKN1A
RB1
0.47
41
9
21
4
82.0%
84.0%
0.0078
0.0028
50
25


NME1
SKIL
0.47
38
12
20
5
76.0%
80.0%
4.9E−10
1.2E−08
50
25


NRAS
RB1
0.47
40
10
21
4
80.0%
84.0%
0.0086
1.0E−07
50
25


MYCL1
SEMA4D
0.47
44
6
21
4
88.0%
84.0%
1.7E−06
1.5E−10
50
25


BRCA1
TNF
0.47
43
7
21
4
86.0%
84.0%
5.2E−11
0.0139
50
25


MSH2
RHOA
0.47
41
9
21
4
82.0%
84.0%
9.4E−05
1.3E−10
50
25


TIMP1
TNF
0.47
43
7
22
3
86.0%
88.0%
5.3E−11
0.0009
50
25


PTCH1
RB1
0.47
42
8
22
3
84.0%
88.0%
0.0098
1.4E−10
50
25


CDK4
PLAUR
0.47
43
7
22
3
86.0%
88.0%
3.4E−06
9.7E−11
50
25


BRCA1
GZMA
0.46
42
8
21
4
84.0%
84.0%
8.9E−11
0.0167
50
25


HRAS
TNFRSF10B
0.46
42
8
20
5
84.0%
80.0%
3.5E−11
1.2E−06
50
25


CDC25A
NOTCH2
0.46
43
7
21
4
86.0%
84.0%
0.0002
3.5E−05
50
25


HRAS
IGFBP3
0.46
42
8
20
5
84.0%
80.0%
6.5E−11
1.2E−06
50
25


BAX
CFLAR
0.46
45
5
22
3
90.0%
88.0%
4.5E−06
5.0E−11
50
25


ABL1
TIMP1
0.46
43
7
21
4
86.0%
84.0%
0.0013
4.6E−11
50
25


NOTCH2
WNT1
0.46
45
5
21
4
90.0%
84.0%
4.5E−11
0.0002
50
25


JUN
TGFBI
0.46
39
11
20
5
78.0%
80.0%
0.0001
3.6E−11
50
25


CDKN1A
TNFRSF10B
0.46
41
9
21
4
82.0%
84.0%
3.9E−11
0.0047
50
25


NME4

0.46
41
9
22
3
82.0%
88.0%
3.3E−11

50
25


CCNE1
RB1
0.46
41
9
21
4
82.0%
84.0%
0.0134
5.7E−10
50
25


JUN
TIMP1
0.46
44
6
21
4
88.0%
84.0%
0.0014
3.7E−11
50
25


THBS1

0.46
43
7
21
4
86.0%
84.0%
3.4E−11

50
25


APAF1
BRCA1
0.46
42
8
21
4
84.0%
84.0%
0.0221
1.2E−07
50
25


BRCA1
ITGA1
0.46
42
8
21
4
84.0%
84.0%
2.7E−10
0.0224
50
25


CFLAR
MYCL1
0.46
45
5
22
3
90.0%
88.0%
2.5E−10
5.4E−06
50
25


AKT1
HRAS
0.46
44
6
20
4
88.0%
83.3%
8.2E−07
1.3E−10
50
24


PTEN

0.46
40
10
20
5
80.0%
80.0%
3.8E−11

50
25


ABL2
BRCA1
0.46
42
8
21
4
84.0%
84.0%
0.0250
1.1E−09
50
25


IL8
TIMP1
0.46
43
7
21
4
86.0%
84.0%
0.0017
9.6E−11
50
25


SRC
TIMP1
0.46
40
10
20
4
80.0%
83.3%
0.0016
3.2E−10
50
24


CDKN1A
MSH2
0.46
43
7
22
3
86.0%
88.0%
2.4E−10
0.0062
50
25


FOS
RB1
0.46
40
10
20
5
80.0%
80.0%
0.0175
0.0004
50
25


AKT1
CDKN1A
0.46
40
10
20
4
80.0%
83.3%
0.0253
1.5E−10
50
24


ATM
TGFBI
0.45
42
8
20
5
84.0%
80.0%
0.0002
5.2E−11
50
25


HRAS
MYC
0.45
42
8
20
5
84.0%
80.0%
8.7E−11
1.8E−06
50
25


CASP8
CDKN1A
0.45
40
10
21
4
80.0%
84.0%
0.0069
6.9E−11
50
25


NFKB1
RB1
0.45
44
6
21
4
88.0%
84.0%
0.0198
8.2E−07
50
25


BRCA1
CDK5
0.45
42
8
21
4
84.0%
84.0%
1.4E−09
0.0311
50
25


MYCL1
VHL
0.45
41
9
21
4
82.0%
84.0%
1.2E−09
3.2E−10
50
25


ATM
NFKB1
0.45
44
6
21
4
88.0%
84.0%
8.8E−07
5.8E−11
50
25


CDKN1A
TP53
0.45
42
8
21
4
84.0%
84.0%
8.3E−11
0.0078
50
25


HRAS
TNFRSF1A
0.45
39
11
20
5
78.0%
80.0%
1.1E−07
2.1E−06
50
25


CFLAR
TNFRSF10A
0.45
40
10
20
5
80.0%
80.0%
4.4E−10
8.5E−06
50
25


BAX
NRAS
0.45
38
12
21
4
76.0%
84.0%
2.6E−07
9.4E−11
50
25


CDK2
MYCL1
0.45
40
10
20
5
80.0%
80.0%
4.0E−10
5.0E−08
50
25


CDC25A
RHOA
0.45
40
10
20
5
80.0%
80.0%
0.0003
7.3E−05
50
25


FOS
HRAS
0.45
42
8
21
4
84.0%
84.0%
2.4E−06
0.0006
50
25


NME1
SEMA4D
0.45
41
9
21
4
82.0%
84.0%
5.0E−06
3.6E−08
50
25


ITGAE
RB1
0.45
40
10
20
5
80.0%
80.0%
0.0284
1.3E−10
50
25


ATM
TIMP1
0.45
40
10
21
4
80.0%
84.0%
0.0029
7.6E−11
50
25


PCNA
TIMP1
0.45
43
7
22
3
86.0%
88.0%
0.0029
7.2E−11
50
25


AKT1
PLAUR
0.45
46
4
21
3
92.0%
87.5%
1.4E−05
2.3E−10
50
24


BRCA1
CDKN2A
0.45
44
6
21
4
88.0%
84.0%
1.1E−10
0.0478
50
25


RHOA
VHL
0.45
39
11
20
5
78.0%
80.0%
1.7E−09
0.0003
50
25


RHOA
WNT1
0.44
44
6
22
3
88.0%
88.0%
1.1E−10
0.0003
50
25


CDK4
CDK5
0.44
40
10
20
5
80.0%
80.0%
2.3E−09
2.9E−10
50
25


CDKN1A
SRC
0.44
40
10
20
4
80.0%
83.3%
6.6E−10
0.0080
50
24


CDKN2A
HRAS
0.44
42
8
21
4
84.0%
84.0%
3.8E−06
1.5E−10
50
25


CDC25A
CFLAR
0.44
40
10
20
5
80.0%
80.0%
1.4E−05
0.0001
50
25


ITGB1
WNT1
0.44
45
5
22
3
90.0%
88.0%
1.4E−10
2.6E−06
50
25


CDK4
VHL
0.44
43
7
21
4
86.0%
84.0%
2.4E−09
3.6E−10
50
25


IL8
TNFRSF6
0.44
42
8
21
4
84.0%
84.0%
9.1E−06
2.4E−10
50
25


BAD
ICAM1
0.44
45
5
22
3
90.0%
88.0%
6.5E−07
4.6E−10
50
25


HRAS
MSH2
0.44
43
7
21
4
86.0%
84.0%
6.6E−10
4.8E−06
50
25


CASP8
SEMA4D
0.43
40
10
20
5
80.0%
80.0%
9.6E−06
1.8E−10
50
25


NFKB1
TNFRSF10B
0.43
44
6
20
5
88.0%
80.0%
1.5E−10
2.2E−06
50
25


CDKN1A
SKI
0.43
39
11
21
4
78.0%
84.0%
1.3E−10
0.0213
50
25


ABL1
NFKB1
0.43
39
11
19
6
78.0%
76.0%
2.3E−06
1.9E−10
50
25


TNFRSF10B
TNFRSF6
0.43
40
10
20
5
80.0%
80.0%
1.2E−05
1.6E−10
50
25


NFKB1
SKI
0.43
46
4
22
3
92.0%
88.0%
1.3E−10
2.4E−06
50
25


CASP8
NFKB1
0.43
42
8
21
4
84.0%
84.0%
2.4E−06
2.0E−10
50
25


FOS
TIMP1
0.43
42
8
21
4
84.0%
84.0%
0.0062
0.0015
50
25


SEMA4D
TNFRSF10A
0.43
40
10
20
5
80.0%
80.0%
1.1E−09
1.1E−05
50
25


APAF1
CASP8
0.43
44
6
21
4
88.0%
84.0%
2.1E−10
4.9E−07
50
25


MYC
NOTCH2
0.43
43
7
21
4
86.0%
84.0%
0.0012
2.7E−10
50
25


CASP8
FOS
0.43
42
8
21
4
84.0%
84.0%
0.0015
2.1E−10
50
25


APAF1
BAD
0.43
43
7
20
5
86.0%
80.0%
5.6E−10
5.0E−07
50
25


TIMP1
VHL
0.43
43
7
22
3
86.0%
88.0%
3.6E−09
0.0068
50
25


CDK5
TIMP1
0.43
42
8
21
4
84.0%
84.0%
0.0069
4.5E−09
50
25


ITGA3
TGFBI
0.43
42
8
21
4
84.0%
84.0%
0.0007
2.3E−10
50
25


CDKN1A
RHOC
0.43
41
9
21
4
82.0%
84.0%
1.2E−09
0.0263
50
25


BAD
FOS
0.43
42
8
21
4
84.0%
84.0%
0.0018
6.5E−10
50
25


FOS
SKI
0.43
43
7
21
4
86.0%
84.0%
1.7E−10
0.0018
50
25


TGFBI
TNF
0.43
40
10
21
4
80.0%
84.0%
3.8E−10
0.0008
50
25


HRAS
ITGA1
0.43
42
8
20
5
84.0%
80.0%
1.3E−09
7.0E−06
50
25


ICAM1
TNFRSF10B
0.43
44
6
21
4
88.0%
84.0%
2.1E−10
9.8E−07
50
25


CDK4
ICAM1
0.43
39
11
20
5
78.0%
80.0%
9.8E−07
6.4E−10
50
25


BAD
SEMA4D
0.43
40
10
20
5
80.0%
80.0%
1.4E−05
7.0E−10
50
25


CDKN1A
NOTCH2
0.43
43
7
21
4
86.0%
84.0%
0.0015
0.0309
50
25


CFLAR
RAF1
0.43
41
9
20
5
82.0%
80.0%
2.2E−08
2.9E−05
50
25


CASP8
RAF1
0.42
42
8
20
5
84.0%
80.0%
2.2E−08
2.9E−10
50
25


ITGB1
TNFRSF10B
0.42
40
10
19
6
80.0%
76.0%
2.4E−10
5.3E−06
50
25


SMAD4
TP53
0.42
41
9
20
5
82.0%
80.0%
3.3E−10
4.9E−06
50
25


CDC25A
HRAS
0.42
43
7
21
4
86.0%
84.0%
8.8E−06
0.0003
50
25


MYC
TIMP1
0.42
43
7
21
4
86.0%
84.0%
0.0102
4.0E−10
50
25


MSH2
PLAUR
0.42
43
7
21
4
86.0%
84.0%
2.9E−05
1.2E−09
50
25


ITGA3
TIMP1
0.42
45
5
21
4
90.0%
84.0%
0.0104
3.3E−10
50
25


CDC25A
TNFRSF6
0.42
42
8
21
4
84.0%
84.0%
2.0E−05
0.0003
50
25


IL18
TNFRSF10A
0.42
40
10
20
5
80.0%
80.0%
1.8E−09
6.2E−07
50
25


BAX
IL18
0.42
41
9
20
5
82.0%
80.0%
6.3E−07
3.8E−10
50
25


HRAS
VEGF
0.42
38
12
20
5
76.0%
80.0%
1.1E−07
9.5E−06
50
25


GZMA
TIMP1
0.42
43
7
20
5
86.0%
80.0%
0.0115
7.9E−10
50
25


CDKN1A
ITGA3
0.42
44
6
21
4
88.0%
84.0%
3.7E−10
0.0434
50
25


CDKN1A
CFLAR
0.42
41
9
21
4
82.0%
84.0%
3.8E−05
0.0439
50
25


NFKB1
S100A4
0.42
41
9
21
4
82.0%
84.0%
4.3E−10
4.4E−06
50
25


ATM
RHOA
0.42
39
11
20
5
78.0%
80.0%
0.0012
2.9E−10
50
25


ABL1
CDKN1A
0.42
43
7
21
4
86.0%
84.0%
0.0486
3.9E−10
50
25


CFLAR
TNFRSF10B
0.42
42
8
20
5
84.0%
80.0%
3.2E−10
4.2E−05
50
25


JUN
SMAD4
0.42
40
10
20
5
80.0%
80.0%
6.6E−06
3.1E−10
50
25


CDC25A
G1P3
0.42
43
7
22
3
86.0%
88.0%
1.8E−08
0.0004
50
25


JUN
TNFRSF6
0.42
41
9
21
4
82.0%
84.0%
2.6E−05
3.2E−10
50
25


NOTCH2
TNF
0.42
43
7
21
4
86.0%
84.0%
6.7E−10
0.0025
50
25


CDK4
SEMA4D
0.42
41
9
20
5
82.0%
80.0%
2.4E−05
1.1E−09
50
25


BAX
SEMA4D
0.42
40
10
21
4
80.0%
84.0%
2.4E−05
4.9E−10
50
25


SRC
TGFBI
0.42
41
9
20
4
82.0%
83.3%
0.0008
2.2E−09
50
24


ICAM1
S100A4
0.42
44
6
21
4
88.0%
84.0%
5.4E−10
1.7E−06
50
25


RHOC
TIMP1
0.41
42
8
21
4
84.0%
84.0%
0.0157
2.4E−09
50
25


ICAM1
MSH2
0.41
43
7
20
5
86.0%
80.0%
1.8E−09
1.8E−06
50
25


BAX
CDK2
0.41
42
8
20
5
84.0%
80.0%
2.9E−07
5.5E−10
50
25


BAD
VHL
0.41
41
9
20
5
82.0%
80.0%
8.2E−09
1.3E−09
50
25


ITGA3
NOTCH2
0.41
41
9
20
5
82.0%
80.0%
0.0029
5.1E−10
50
25


CASP8
ITGB1
0.41
43
7
21
4
86.0%
84.0%
9.7E−06
5.3E−10
50
25


SKI
SMAD4
0.41
44
6
21
4
88.0%
84.0%
8.7E−06
3.6E−10
50
25


MYC
RHOA
0.41
41
9
19
6
82.0%
76.0%
0.0017
7.0E−10
50
25


CASP8
IL18
0.41
40
10
20
5
80.0%
80.0%
1.1E−06
5.7E−10
50
25


AKT1
CFLAR
0.41
42
8
20
4
84.0%
83.3%
5.5E−05
1.3E−09
50
24


ATM
SMAD4
0.41
39
11
21
4
78.0%
84.0%
9.9E−06
4.6E−10
50
25


NME1
TP53
0.41
43
7
22
3
86.0%
88.0%
6.8E−10
2.4E−07
50
25


JUN
PLAUR
0.41
40
10
20
5
80.0%
80.0%
5.8E−05
4.7E−10
50
25


FOS
ITGB1
0.41
43
7
21
4
86.0%
84.0%
1.2E−05
0.0049
50
25


NOTCH2
RAF1
0.41
41
9
21
4
82.0%
84.0%
4.9E−08
0.0038
50
25


ATM
TNFRSF6
0.41
44
6
20
5
88.0%
80.0%
4.0E−05
4.9E−10
50
25


CDC25A
SEMA4D
0.41
41
9
21
4
82.0%
84.0%
3.7E−05
0.0006
50
25


MYC
TGFBI
0.41
40
10
21
4
80.0%
84.0%
0.0023
8.8E−10
50
25


CDC25A
PLAUR
0.41
41
9
21
4
82.0%
84.0%
6.6E−05
0.0006
50
25


GZMA
ITGB1
0.41
39
11
19
6
78.0%
76.0%
1.3E−05
1.6E−09
50
25


CDKN2A
TIMP1
0.41
41
9
21
4
82.0%
84.0%
0.0263
8.1E−10
50
25


CDK4
CFLAR
0.41
40
10
19
6
80.0%
76.0%
8.0E−05
1.8E−09
50
25


BRCA1

0.41
38
12
20
5
76.0%
80.0%
5.0E−10

50
25


BCL2
TIMP1
0.40
42
8
21
4
84.0%
84.0%
0.0278
9.6E−10
50
25


FOS
NME1
0.40
42
8
21
4
84.0%
84.0%
3.1E−07
0.0063
50
25


CDC25A
NME1
0.40
43
7
21
4
86.0%
84.0%
3.2E−07
0.0007
50
25


ABL1
SMAD4
0.40
42
8
20
5
84.0%
80.0%
1.4E−05
8.3E−10
50
25


CDC25A
ITGB1
0.40
43
7
21
4
86.0%
84.0%
1.6E−05
0.0008
50
25


NFKB1
TP53
0.40
42
8
20
5
84.0%
80.0%
9.3E−10
1.1E−05
50
25


ITGB1
PCNA
0.40
43
7
21
4
86.0%
84.0%
6.3E−10
1.6E−05
50
25


PLAUR
SKI
0.40
46
4
21
4
92.0%
84.0%
6.0E−10
8.4E−05
50
25


CDK5
TNFRSF10A
0.40
42
8
20
5
84.0%
80.0%
4.7E−09
1.8E−08
50
25


PCNA
TNFRSF6
0.40
41
9
21
4
82.0%
84.0%
5.7E−05
6.6E−10
50
25


FOS
TGFBI
0.40
41
9
20
5
82.0%
80.0%
0.0030
0.0074
50
25


CDC25A
TNFRSF1A
0.40
42
8
20
5
84.0%
80.0%
1.3E−06
0.0008
50
25


NRAS
TNFRSF10B
0.40
39
11
21
4
78.0%
84.0%
7.8E−10
3.1E−06
50
25


IGFBP3
TIMP1
0.40
42
8
21
4
84.0%
84.0%
0.0354
1.4E−09
50
25


BCL2
NOTCH2
0.40
43
7
20
5
86.0%
80.0%
0.0060
1.2E−09
50
25


APAF1
NME1
0.40
41
9
21
4
82.0%
84.0%
3.9E−07
2.4E−06
50
25


CFLAR
JUN
0.40
43
7
20
5
86.0%
80.0%
7.6E−10
0.0001
50
25


CDK4
IL18
0.40
42
8
21
4
84.0%
84.0%
1.9E−06
2.5E−09
50
25


PCNA
TGFBI
0.40
39
11
21
4
78.0%
84.0%
0.0036
7.9E−10
50
25


ABL2
NOTCH2
0.40
40
10
20
5
80.0%
80.0%
0.0068
2.1E−08
50
25


RB1

0.40
41
9
21
4
82.0%
84.0%
7.6E−10

50
25


NOTCH2
PCNA
0.40
42
8
21
4
84.0%
84.0%
8.3E−10
0.0071
50
25


NRAS
PCNA
0.40
43
7
20
5
86.0%
80.0%
8.3E−10
3.7E−06
50
25


IL8
NOTCH2
0.40
40
10
20
5
80.0%
80.0%
0.0074
1.9E−09
50
25


FGFR2
FOS
0.40
40
10
20
5
80.0%
80.0%
0.0101
1.4E−08
50
25


JUN
NFKB1
0.39
41
9
21
4
82.0%
84.0%
1.5E−05
9.3E−10
50
25


TGFBI
VHL
0.39
42
8
20
5
84.0%
80.0%
2.1E−08
0.0043
50
25


FOS
NOTCH2
0.39
41
9
21
4
82.0%
84.0%
0.0081
0.0108
50
25


TNFRSF10A
VHL
0.39
41
9
20
5
82.0%
80.0%
2.2E−08
6.9E−09
50
25


PCNA
RHOA
0.39
45
5
20
5
90.0%
80.0%
0.0046
9.8E−10
50
25


CFLAR
FGFR2
0.39
42
8
20
5
84.0%
80.0%
1.7E−08
0.0002
50
25


CDC25A
SMAD4
0.39
41
9
21
4
82.0%
84.0%
2.5E−05
0.0014
50
25


FOS
G1P3
0.39
41
9
20
5
82.0%
80.0%
7.1E−08
0.0134
50
25


CDC25A
IL18
0.39
43
7
21
4
86.0%
84.0%
3.1E−06
0.0015
50
25


NRAS
TP53
0.39
41
9
21
4
82.0%
84.0%
1.7E−09
5.2E−06
50
25


NOTCH2
VHL
0.39
42
8
20
5
84.0%
80.0%
2.8E−08
0.0110
50
25


CDK2
TNFRSF10B
0.39
41
9
21
4
82.0%
84.0%
1.4E−09
1.0E−06
50
25


FGFR2
SEMA4D
0.39
41
9
21
4
82.0%
84.0%
9.8E−05
2.0E−08
50
25


ITGB1
TP53
0.39
42
8
20
5
84.0%
80.0%
1.9E−09
3.3E−05
50
25


CDK4
TP53
0.39
41
9
21
4
82.0%
84.0%
2.0E−09
4.5E−09
50
25


FOS
S100A4
0.39
40
10
20
5
80.0%
80.0%
2.2E−09
0.0163
50
25


IL8
PLAUR
0.39
41
9
20
5
82.0%
80.0%
0.0002
3.1E−09
50
25


NRAS
S100A4
0.38
42
8
20
5
84.0%
80.0%
2.4E−09
6.6E−06
50
25


NME1
RHOC
0.38
42
8
20
5
84.0%
80.0%
1.1E−08
8.1E−07
50
25


BAD
CDK5
0.38
40
10
20
5
80.0%
80.0%
4.4E−08
5.8E−09
50
25


MSH2
SEMA4D
0.38
40
10
20
5
80.0%
80.0%
0.0001
9.2E−09
50
25


FOS
JUN
0.38
42
8
21
4
84.0%
84.0%
1.8E−09
0.0214
50
25


BCL2
TGFBI
0.38
38
12
20
5
76.0%
80.0%
0.0086
2.9E−09
50
25


FOS
MYCL1
0.38
39
11
19
6
78.0%
76.0%
1.1E−08
0.0217
50
25


CDK5
TGFBI
0.38
40
10
20
5
80.0%
80.0%
0.0089
5.1E−08
50
25


ATM
ITGB1
0.38
44
6
21
4
88.0%
84.0%
4.9E−05
2.0E−09
50
25


ANGPT1
HRAS
0.38
40
10
19
6
80.0%
76.0%
7.7E−05
6.8E−07
50
25


ABL1
NME1
0.38
42
8
21
4
84.0%
84.0%
1.0E−06
2.6E−09
50
25


RAF1
TGFBI
0.38
39
11
19
6
78.0%
76.0%
0.0097
2.1E−07
50
25


ABL2
TNFRSF10A
0.38
42
8
20
5
84.0%
80.0%
1.5E−08
5.4E−08
50
25


ABL2
NME1
0.38
42
8
20
5
84.0%
80.0%
1.1E−06
5.4E−08
50
25


PCNA
SMAD4
0.38
40
10
20
5
80.0%
80.0%
4.7E−05
2.0E−09
50
25


FGFR2
PLAUR
0.38
39
11
20
5
78.0%
80.0%
0.0003
3.2E−08
50
25


NOTCH2
SKIL
0.38
43
7
21
4
86.0%
84.0%
4.6E−08
0.0196
50
25


CDKN1A

0.38
48
2
20
5
96.0%
80.0%
1.9E−09

50
25


FGFR2
SMAD4
0.38
41
9
21
4
82.0%
84.0%
5.1E−05
3.4E−08
50
25


SEMA4D
TNFRSF10B
0.38
40
10
20
5
80.0%
80.0%
2.4E−09
0.0002
50
25


APAF1
SKI
0.38
40
10
20
5
80.0%
80.0%
2.1E−09
7.5E−06
50
25


IL8
TGFBI
0.37
43
7
20
5
86.0%
80.0%
0.0124
5.3E−09
50
25


ICAM1
NOTCH2
0.37
40
10
20
5
80.0%
80.0%
0.0234
1.3E−05
50
25


FOS
NRAS
0.37
42
8
21
4
84.0%
84.0%
1.1E−05
0.0321
50
25


CDC25A
NRAS
0.37
43
7
21
4
86.0%
84.0%
1.2E−05
0.0035
50
25


ITGA3
RHOA
0.37
40
10
20
5
80.0%
80.0%
0.0135
3.7E−09
50
25


CDC25A
IL1B
0.37
41
9
20
5
82.0%
80.0%
1.7E−06
0.0036
50
25


BCL2
RHOA
0.37
39
11
19
6
78.0%
76.0%
0.0136
4.5E−09
50
25


RHOA
TNF
0.37
45
5
20
5
90.0%
80.0%
5.7E−09
0.0138
50
25


FOS
RHOA
0.37
43
7
20
5
86.0%
80.0%
0.0141
0.0360
50
25


ATM
CDK2
0.37
38
12
19
6
76.0%
76.0%
2.4E−06
3.0E−09
50
25


APAF1
MYCL1
0.37
40
10
20
5
80.0%
80.0%
1.9E−08
1.0E−05
50
25


CDC25A
CDK2
0.37
43
7
21
4
86.0%
84.0%
2.5E−06
0.0042
50
25


ICAM1
SKI
0.37
45
5
22
3
90.0%
88.0%
2.9E−09
1.7E−05
50
25


ABL1
CDK2
0.37
41
9
21
4
82.0%
84.0%
2.6E−06
4.3E−09
50
25


CDC25A
NFKB1
0.37
41
9
21
4
82.0%
84.0%
5.8E−05
0.0045
50
25


FGFR2
ITGB1
0.37
42
8
20
5
84.0%
80.0%
9.0E−05
5.3E−08
50
25


IL18
S100A4
0.37
40
10
20
5
80.0%
80.0%
5.6E−09
9.1E−06
50
25


FGFR2
TNFRSF6
0.37
39
11
20
5
78.0%
80.0%
0.0003
5.5E−08
50
25


ANGPT1
CDC25A
0.37
45
5
21
4
90.0%
84.0%
0.0049
1.3E−06
50
25


ABL2
TGFBI
0.37
38
12
20
5
76.0%
80.0%
0.0189
9.7E−08
50
25


IGFBP3
TGFBI
0.37
39
11
20
5
78.0%
80.0%
0.0191
7.2E−09
50
25


AKT1
SMAD4
0.37
38
12
20
4
76.0%
83.3%
0.0002
1.0E−08
50
24


AKT1
ITGB1
0.36
42
8
20
4
84.0%
83.3%
0.0016
1.2E−08
50
24


GZMA
TNFRSF6
0.36
41
9
20
5
82.0%
80.0%
0.0004
1.3E−08
50
25


CDC25A
ICAM1
0.36
41
9
21
4
82.0%
84.0%
2.3E−05
0.0058
50
25


JUN
SEMA4D
0.36
41
9
21
4
82.0%
84.0%
0.0004
4.5E−09
50
25


ITGA1
NOTCH2
0.36
38
12
19
6
76.0%
76.0%
0.0451
3.1E−08
50
25


CDK5
NOTCH2
0.36
38
12
20
5
76.0%
80.0%
0.0459
1.2E−07
50
25


AKT1
NFKB1
0.36
42
8
19
5
84.0%
79.2%
7.7E−05
1.3E−08
50
24


S100A4
SEMA4D
0.36
42
8
20
5
84.0%
80.0%
0.0004
8.0E−09
50
25


MYCL1
SKIL
0.36
41
9
20
5
82.0%
80.0%
1.1E−07
3.1E−08
50
25


PTCH1
TGFBI
0.36
40
10
19
6
80.0%
76.0%
0.0273
2.6E−08
50
25


MYC
NFKB1
0.36
42
8
21
4
84.0%
84.0%
9.0E−05
8.9E−09
50
25


APAF1
S100A4
0.36
41
9
20
5
82.0%
80.0%
8.7E−09
1.8E−05
50
25


AKT1
SEMA4D
0.36
39
11
19
5
78.0%
79.2%
0.0004
1.6E−08
50
24


ICAM1
JUN
0.36
39
11
20
5
78.0%
80.0%
5.8E−09
3.1E−05
50
25


APAF1
CDC25A
0.36
40
10
20
5
80.0%
80.0%
0.0080
1.9E−05
50
25


BCL2
NME1
0.36
38
12
19
6
76.0%
76.0%
3.2E−06
9.9E−09
50
25


CCNE1
NME1
0.36
39
11
20
5
78.0%
80.0%
3.3E−06
9.7E−08
50
25


GZMA
RHOA
0.36
42
8
19
6
84.0%
76.0%
0.0339
1.9E−08
50
25


IL18
MSH2
0.36
44
6
20
5
88.0%
80.0%
3.3E−08
1.7E−05
50
25


GZMA
TGFBI
0.35
42
8
19
6
84.0%
76.0%
0.0372
2.0E−08
50
25


TIMP1

0.35
42
8
20
5
84.0%
80.0%
6.3E−09

50
25


SKIL
TNFRSF10A
0.35
40
10
20
5
80.0%
80.0%
5.1E−08
1.6E−07
50
25


NME1
VEGF
0.35
41
9
20
5
82.0%
80.0%
3.2E−06
3.9E−06
50
25


ITGB1
JUN
0.35
43
7
21
4
86.0%
84.0%
7.6E−09
0.0002
50
25


IL8
ITGB1
0.35
42
8
21
4
84.0%
84.0%
0.0002
1.7E−08
50
25


IL1B
NME1
0.35
42
8
20
5
84.0%
80.0%
4.4E−06
5.0E−06
50
25


APAF1
BAX
0.35
42
8
20
5
84.0%
80.0%
1.4E−08
3.2E−05
50
25


NME1
RAF1
0.35
42
8
20
5
84.0%
80.0%
1.1E−06
5.4E−06
50
25


NFKB1
WNT1
0.35
42
8
20
5
84.0%
80.0%
1.3E−08
0.0002
50
25


BAX
VHL
0.34
41
9
20
5
82.0%
80.0%
2.4E−07
1.6E−08
50
25


APAF1
TNFRSF10A
0.34
40
10
20
5
80.0%
80.0%
7.7E−08
3.7E−05
50
25


MYCL1
SRC
0.34
40
10
20
4
80.0%
83.3%
7.5E−08
1.4E−07
50
24


SMAD4
WNT1
0.34
44
6
21
4
88.0%
84.0%
1.6E−08
0.0003
50
25


HRAS
S100A4
0.34
44
6
19
6
88.0%
76.0%
2.0E−08
0.0005
50
25


NME1
TNFRSF1A
0.34
38
12
19
6
76.0%
76.0%
2.5E−05
7.0E−06
50
25


ATM
NME1
0.34
39
11
20
5
78.0%
80.0%
7.0E−06
1.3E−08
50
25


MYC
SMAD4
0.34
38
12
20
5
76.0%
80.0%
0.0003
2.3E−08
50
25


ABL1
ITGB1
0.34
41
9
20
5
82.0%
80.0%
0.0004
1.9E−08
50
25


BAX
CDK5
0.34
40
10
21
4
80.0%
84.0%
4.0E−07
2.2E−08
50
25


IL8
SMAD4
0.34
41
9
21
4
82.0%
84.0%
0.0004
3.2E−08
50
25


PLAUR
TP53
0.34
42
8
20
5
84.0%
80.0%
2.2E−08
0.0022
50
25


SEMA4D
WNT1
0.34
43
7
20
5
86.0%
80.0%
2.1E−08
0.0014
50
25


CDC25A
RAF1
0.34
40
10
20
5
80.0%
80.0%
1.8E−06
0.0251
50
25


CFLAR
WNT1
0.34
40
10
20
5
80.0%
80.0%
2.2E−08
0.0028
50
25


BAD
RAF1
0.34
39
11
20
5
78.0%
80.0%
1.9E−06
6.2E−08
50
25


HRAS
SKI
0.33
40
10
20
5
80.0%
80.0%
1.6E−08
0.0008
50
25


FGFR2
NRAS
0.33
38
12
20
5
76.0%
80.0%
9.4E−05
3.2E−07
50
25


ABL1
PLAUR
0.33
40
10
20
5
80.0%
80.0%
0.0032
2.8E−08
50
25


ATM
PLAUR
0.33
42
8
21
4
84.0%
84.0%
0.0032
2.2E−08
50
25


BAD
TNFRSF1A
0.33
39
11
20
5
78.0%
80.0%
4.5E−05
8.3E−08
50
25


NME1
PTCH1
0.33
40
10
21
4
80.0%
84.0%
1.2E−07
1.3E−05
50
25


CASP8
NRAS
0.33
42
8
21
4
84.0%
84.0%
0.0001
3.3E−08
50
25


CASP8
TNFRSF1A
0.33
40
10
20
5
80.0%
80.0%
5.0E−05
3.4E−08
50
25


ATM
CFLAR
0.33
40
10
19
6
80.0%
76.0%
0.0044
2.6E−08
50
25


CASP8
IL1B
0.33
40
10
20
5
80.0%
80.0%
1.6E−05
3.5E−08
50
25


FOS

0.33
40
10
19
6
80.0%
76.0%
2.4E−08

50
25


CASP8
CDK2
0.32
40
10
19
6
80.0%
76.0%
2.4E−05
3.9E−08
50
25


G1P3
NME1
0.32
39
11
20
5
78.0%
80.0%
1.6E−05
1.9E−06
50
25


TNFRSF6
WNT1
0.32
40
10
20
5
80.0%
80.0%
4.0E−08
0.0030
50
25


ITGA3
ITGB1
0.32
38
12
20
5
76.0%
80.0%
0.0009
4.3E−08
50
25


PCNA
PLAUR
0.32
40
10
20
5
80.0%
80.0%
0.0049
3.1E−08
50
25


HRAS
JUN
0.32
38
12
19
6
76.0%
76.0%
3.3E−08
0.0014
50
25


ITGA3
NFKB1
0.32
38
12
20
5
76.0%
80.0%
0.0006
4.6E−08
50
25


NOTCH2

0.32
38
12
20
5
76.0%
80.0%
3.2E−08

50
25


AKT1
ICAM1
0.32
45
5
20
4
90.0%
83.3%
0.0003
9.5E−08
50
24


CDK5
MSH2
0.32
38
12
19
6
76.0%
76.0%
1.9E−07
1.0E−06
50
25


SKI
TNFRSF6
0.32
38
12
19
6
76.0%
76.0%
0.0040
3.6E−08
50
25


SEMA4D
TP53
0.32
42
8
20
5
84.0%
80.0%
5.9E−08
0.0036
50
25


ABL1
SEMA4D
0.32
41
9
20
5
82.0%
80.0%
0.0036
5.3E−08
50
25


ATM
SEMA4D
0.32
39
11
19
6
78.0%
76.0%
0.0037
4.2E−08
50
25


BCL2
NFKB1
0.32
39
11
19
6
78.0%
76.0%
0.0008
6.8E−08
50
25


PLAUR
WNT1
0.32
39
11
19
6
78.0%
76.0%
5.4E−08
0.0065
50
25


CDK4
SKIL
0.32
41
9
20
5
82.0%
80.0%
9.3E−07
1.4E−07
50
25


MSH2
VHL
0.32
40
10
20
5
80.0%
80.0%
1.0E−06
2.4E−07
50
25


APAF1
FGFR2
0.31
39
11
19
6
78.0%
76.0%
7.7E−07
0.0002
50
25


SMAD4
VHL
0.31
40
10
20
5
80.0%
80.0%
1.2E−06
0.0013
50
25


FGFR2
NFKB1
0.31
38
12
19
6
76.0%
76.0%
0.0010
8.0E−07
50
25


APAF1
CDK4
0.31
41
9
19
6
82.0%
76.0%
1.7E−07
0.0002
50
25


MYCL1
TNFRSF1A
0.31
39
11
20
5
78.0%
80.0%
0.0001
3.3E−07
50
25


MYCL1
RAF1
0.31
40
10
20
5
80.0%
80.0%
5.9E−06
3.3E−07
50
25


MYC
NRAS
0.31
41
9
20
5
82.0%
80.0%
0.0003
9.2E−08
50
25


MYC
NME1
0.31
39
11
19
6
78.0%
76.0%
3.0E−05
9.3E−08
50
25


ITGA3
SMAD4
0.31
43
7
20
5
86.0%
80.0%
0.0014
7.7E−08
50
25


SKI
TNFRSF1A
0.31
38
12
19
6
76.0%
76.0%
0.0001
5.1E−08
50
25


MYCL1
TP53
0.31
38
12
19
6
76.0%
76.0%
8.8E−08
3.8E−07
50
25


ABL1
NRAS
0.31
40
10
20
5
80.0%
80.0%
0.0003
8.1E−08
50
25


TGFBI

0.31
40
10
19
6
80.0%
76.0%
5.6E−08

50
25


RHOA

0.31
40
10
19
6
80.0%
76.0%
5.7E−08

50
25


FGFR2
ICAM1
0.31
42
8
21
4
84.0%
84.0%
0.0004
1.0E−06
50
25


TNFRSF10A
TP53
0.31
38
12
19
6
76.0%
76.0%
9.6E−08
4.7E−07
50
25


MYC
SEMA4D
0.31
41
9
20
5
82.0%
80.0%
0.0068
1.2E−07
50
25


CDKN2A
NME1
0.31
40
10
20
5
80.0%
80.0%
4.0E−05
1.1E−07
50
25


APAF1
JUN
0.31
41
9
20
5
82.0%
80.0%
7.5E−08
0.0003
50
25


ITGA1
NME1
0.30
39
11
19
6
78.0%
76.0%
4.2E−05
5.4E−07
50
25


IL1B
TNFRSF10A
0.30
38
12
19
6
76.0%
76.0%
5.6E−07
5.1E−05
50
25


PLAUR
TNF
0.30
40
10
20
5
80.0%
80.0%
1.7E−07
0.0133
50
25


ATM
NRAS
0.30
47
3
19
6
94.0%
76.0%
0.0004
8.5E−08
50
25


CDKN2A
TNFRSF6
0.30
39
11
20
5
78.0%
80.0%
0.0107
1.4E−07
50
25


PLAUR
RAF1
0.30
43
7
20
5
86.0%
80.0%
1.2E−05
0.0182
50
25


APAF1
MSH2
0.30
39
11
20
5
78.0%
80.0%
5.6E−07
0.0004
50
25


BCL2
CDK2
0.30
38
12
19
6
76.0%
76.0%
9.4E−05
1.8E−07
50
25


IL1B
MYCL1
0.30
40
10
21
4
80.0%
84.0%
6.8E−07
7.2E−05
50
25


BCL2
ITGB1
0.30
39
11
21
4
78.0%
84.0%
0.0034
1.8E−07
50
25


ABL2
MSH2
0.30
40
10
19
6
80.0%
76.0%
5.9E−07
3.1E−06
50
25


CASP8
SKIL
0.30
39
11
20
5
78.0%
80.0%
2.6E−06
1.6E−07
50
25


BCL2
TNFRSF10A
0.30
39
11
20
5
78.0%
80.0%
8.6E−07
2.0E−07
50
25


ITGB1
SKI
0.30
41
9
21
4
82.0%
84.0%
1.1E−07
0.0037
50
25


CDK2
TP53
0.29
38
12
19
6
76.0%
76.0%
2.0E−07
0.0001
50
25


ITGA3
SEMA4D
0.29
42
8
19
6
84.0%
76.0%
0.0151
2.1E−07
50
25


CFLAR
TP53
0.29
40
10
20
5
80.0%
80.0%
2.2E−07
0.0311
50
25


RAF1
SKI
0.29
39
11
19
6
78.0%
76.0%
1.4E−07
1.8E−05
50
25


GZMA
IL18
0.29
41
9
19
6
82.0%
76.0%
0.0005
4.8E−07
50
25


CFLAR
GZMA
0.29
42
8
20
5
84.0%
80.0%
4.9E−07
0.0329
50
25


IL18
IL8
0.29
39
11
19
6
78.0%
76.0%
3.5E−07
0.0005
50
25


BCL2
TNFRSF6
0.29
38
12
19
6
76.0%
76.0%
0.0193
2.8E−07
50
25


ITGA3
PLAUR
0.29
41
9
19
6
82.0%
76.0%
0.0307
2.4E−07
50
25


ABL1
CFLAR
0.29
40
10
20
5
80.0%
80.0%
0.0370
2.4E−07
50
25


CFLAR
ITGA3
0.29
39
11
20
5
78.0%
80.0%
2.5E−07
0.0378
50
25


GZMA
NRAS
0.29
45
5
20
5
90.0%
80.0%
0.0009
5.6E−07
50
25


JUN
NRAS
0.29
40
10
20
5
80.0%
80.0%
0.0009
1.9E−07
50
25


ABL2
NFKB1
0.29
38
12
20
5
76.0%
80.0%
0.0038
5.0E−06
50
25


ITGB1
TNF
0.28
38
12
19
6
76.0%
76.0%
4.4E−07
0.0067
50
25


CDC25A

0.28
41
9
20
5
82.0%
80.0%
1.9E−07

50
25


CDK5
S100A4
0.28
41
9
21
4
82.0%
84.0%
3.7E−07
6.5E−06
50
25


SMAD4
TNF
0.28
39
11
19
6
78.0%
76.0%
5.2E−07
0.0071
50
25


ABL1
TNFRSF10A
0.28
40
10
19
6
80.0%
76.0%
1.8E−06
3.3E−07
50
25


ITGB1
MYC
0.28
43
7
21
4
86.0%
84.0%
4.3E−07
0.0081
50
25


BAX
RAF1
0.28
40
10
19
6
80.0%
76.0%
2.9E−05
3.9E−07
50
25


NRAS
WNT1
0.28
42
8
20
5
84.0%
80.0%
3.4E−07
0.0013
50
25


ICAM1
WNT1
0.28
40
10
20
5
80.0%
80.0%
3.5E−07
0.0017
50
25


AKT1
NME1
0.28
39
11
19
5
78.0%
79.2%
8.5E−05
7.1E−07
50
24


ABL1
ICAM1
0.28
42
8
20
5
84.0%
80.0%
0.0018
3.7E−07
50
25


ATM
ICAM1
0.28
41
9
19
6
82.0%
76.0%
0.0019
3.1E−07
50
25


IL8
NRAS
0.28
40
10
19
6
80.0%
76.0%
0.0016
6.7E−07
50
25


ABL2
CDK4
0.28
39
11
21
4
78.0%
84.0%
1.0E−06
8.5E−06
50
25


CDK2
ITGA3
0.28
38
12
19
6
76.0%
76.0%
4.4E−07
0.0003
50
25


NFKB1
TNF
0.28
40
10
19
6
80.0%
76.0%
6.8E−07
0.0069
50
25


MSH2
SKIL
0.27
40
10
19
6
80.0%
76.0%
7.5E−06
1.8E−06
50
25


BCL2
SEMA4D
0.27
40
10
20
5
80.0%
80.0%
0.0371
5.5E−07
50
25


S100A4
TNFRSF1A
0.27
38
12
19
6
76.0%
76.0%
0.0007
5.6E−07
50
25


ITGA3
NRAS
0.27
42
8
20
5
84.0%
80.0%
0.0018
4.9E−07
50
25


BAX
TNFRSF1A
0.27
39
11
19
6
78.0%
76.0%
0.0008
5.5E−07
50
25


TNFRSF10A
TNFRSF1A
0.27
39
11
19
6
78.0%
76.0%
0.0008
2.7E−06
50
25


BCL2
NRAS
0.27
38
12
19
6
76.0%
76.0%
0.0020
6.4E−07
50
25


CDKN2A
ITGB1
0.27
39
11
19
6
78.0%
76.0%
0.0136
5.9E−07
50
25


IGFBP3
ITGB1
0.27
40
10
20
5
80.0%
80.0%
0.0148
8.6E−07
50
25


CDK2
FGFR2
0.27
38
12
19
6
76.0%
76.0%
7.2E−06
0.0004
50
25


S100A4
SKIL
0.27
40
10
19
6
80.0%
76.0%
1.0E−05
7.4E−07
50
25


ICAM1
TP53
0.27
39
11
19
6
78.0%
76.0%
7.1E−07
0.0031
50
25


ERBB2
NME1
0.27
38
12
19
6
76.0%
76.0%
0.0003
1.3E−06
50
25


AKT1
APAF1
0.27
41
9
19
5
82.0%
79.2%
0.0017
1.3E−06
50
24


CDK4
TNFRSF1A
0.27
38
12
19
6
76.0%
76.0%
0.0012
1.8E−06
50
25


IL8
NFKB1
0.27
38
12
19
6
76.0%
76.0%
0.0119
1.2E−06
50
25


NRAS
TNF
0.26
38
12
19
6
76.0%
76.0%
1.2E−06
0.0029
50
25


BAX
SKIL
0.26
38
12
19
6
76.0%
76.0%
1.3E−05
8.9E−07
50
25


IL18
PCNA
0.26
38
12
19
6
76.0%
76.0%
5.9E−07
0.0019
50
25


BAX
IL1B
0.26
38
12
19
6
76.0%
76.0%
0.0004
9.9E−07
50
25


ICAM1
IL8
0.26
40
10
19
6
80.0%
76.0%
1.7E−06
0.0051
50
25


SKIL
SMAD4
0.25
41
9
20
5
82.0%
80.0%
0.0289
2.0E−05
50
25


ITGB1
VHL
0.25
43
7
20
5
86.0%
80.0%
2.2E−05
0.0349
50
25


CDK5
SMAD4
0.25
39
11
19
6
78.0%
76.0%
0.0315
2.8E−05
50
25


BAD
VEGF
0.25
38
12
19
6
76.0%
76.0%
0.0005
4.1E−06
50
25


FGFR2
RAF1
0.25
38
12
19
6
76.0%
76.0%
0.0001
2.0E−05
50
25


IL1B
TNFRSF10B
0.25
42
8
21
4
84.0%
84.0%
1.3E−06
0.0009
50
25


MYCL1
RHOC
0.25
39
11
19
6
78.0%
76.0%
9.0E−06
7.9E−06
50
25


IGFBP3
SMAD4
0.25
40
10
20
5
80.0%
80.0%
0.0437
2.6E−06
50
25


ANGPT1
FGFR2
0.25
38
12
19
6
76.0%
76.0%
2.2E−05
0.0005
50
25


FGFR2
IL1B
0.24
41
9
20
5
82.0%
80.0%
0.0011
2.6E−05
50
25


IL1B
IL8
0.24
39
11
19
6
78.0%
76.0%
3.6E−06
0.0012
50
25


CFLAR

0.24
38
12
20
5
76.0%
80.0%
1.5E−06

50
25


APAF1
IL8
0.24
38
12
19
6
76.0%
76.0%
3.8E−06
0.0074
50
25


PLAUR

0.24
39
11
19
6
78.0%
76.0%
1.7E−06

50
25


BCL2
CDK4
0.24
40
10
20
5
80.0%
80.0%
7.0E−06
3.4E−06
50
25


MYCL1
TNF
0.24
40
10
19
6
80.0%
76.0%
4.5E−06
1.4E−05
50
25


ICAM1
PCNA
0.24
39
11
19
6
78.0%
76.0%
2.2E−06
0.0161
50
25


CDK2
SKI
0.24
41
9
19
6
82.0%
76.0%
2.1E−06
0.0022
50
25


TNFRSF6

0.23
39
11
19
6
78.0%
76.0%
2.6E−06

50
25


APAF1
WNT1
0.23
38
12
19
6
76.0%
76.0%
3.8E−06
0.0128
50
25


ANGPT1
BAD
0.23
38
12
19
6
76.0%
76.0%
1.1E−05
0.0012
50
25


SEMA4D

0.23
38
12
19
6
76.0%
76.0%
2.9E−06

50
25


CDK2
WNT1
0.23
38
12
19
6
76.0%
76.0%
4.3E−06
0.0032
50
25


CDK2
IL8
0.23
38
12
19
6
76.0%
76.0%
7.4E−06
0.0034
50
25


JUN
TNFRSF1A
0.22
39
11
19
6
78.0%
76.0%
0.0104
4.3E−06
50
25


ABL1
CDK4
0.22
38
12
19
6
76.0%
76.0%
1.5E−05
5.7E−06
50
25


APAF1
PCNA
0.21
40
10
19
6
80.0%
76.0%
7.9E−06
0.0394
50
25


CDK4
TNF
0.21
39
11
19
6
78.0%
76.0%
1.8E−05
3.0E−05
50
25


TNFRSF1A
WNT1
0.21
42
8
19
6
84.0%
76.0%
1.3E−05
0.0274
50
25


IL18
TNFRSF1A
0.21
42
8
19
6
84.0%
76.0%
0.0284
0.0403
50
25


AKT1
RAF1
0.20
38
12
18
6
76.0%
75.0%
0.0023
3.6E−05
50
24


SRC
TNFRSF10A
0.19
38
12
18
6
76.0%
75.0%
0.0002
0.0001
50
24


MSH2
RHOC
0.19
38
12
19
6
76.0%
76.0%
0.0001
0.0001
50
25


BAD
SRC
0.19
41
9
18
6
82.0%
75.0%
0.0001
0.0002
50
24


RHOC
S100A4
0.18
39
11
19
6
78.0%
76.0%
5.4E−05
0.0002
50
25


CASP8
CDK5
0.18
41
9
20
5
82.0%
80.0%
0.0011
4.8E−05
50
25


BAD
G1P3
0.18
40
10
19
6
80.0%
76.0%
0.0030
0.0002
50
25


GZMA
VEGF
0.18
41
9
19
6
82.0%
76.0%
0.0277
0.0001
50
25


NRAS

0.17
38
12
19
6
76.0%
76.0%
5.1E−05

50
25


AKT1
CDK5
0.16
39
11
19
5
78.0%
79.2%
0.0188
0.0002
50
24


CDK5
WNT1
0.16
39
11
19
6
78.0%
76.0%
0.0001
0.0028
50
25


G1P3
GZMA
0.13
39
11
20
5
78.0%
80.0%
0.0012
0.0319
50
25


G1P3
ITGA3
0.13
38
12
19
6
76.0%
76.0%
0.0007
0.0401
50
25


CDK5
SKI
0.12
39
11
20
5
78.0%
80.0%
0.0007
0.0292
50
25





















TABLE 3E








Prostate
Normals
Sum



Group Size
33.3%
66.7%
100%



N =
25
50
75



Gene
Mean
Mean
p-val





















E2F1
19.8
21.1
1.9E−15



BRAF
16.4
17.6
4.2E−15



EGR1
19.3
21.0
2.2E−14



MMP9
13.3
16.1
2.4E−14



SERPINE1
20.7
22.6
1.2E−13



IFITM1
8.3
9.9
2.8E−13



SOCS1
16.4
17.6
3.2E−12



NME4
17.0
18.0
3.3E−11



THBS1
17.7
19.4
3.4E−11



PTEN
13.4
14.5
3.8E−11



BRCA1
20.9
22.2
5.0E−10



RB1
17.1
18.0
7.6E−10



CDKN1A
16.2
17.4
1.9E−09



TIMP1
14.2
15.2
6.3E−09



FOS
15.3
16.4
2.4E−08



NOTCH2
16.0
17.1
3.2E−08



TGFBI
12.7
13.5
5.6E−08



RHOA
11.5
12.3
5.7E−08



CDC25A
22.6
24.3
1.9E−07



CFLAR
14.4
15.3
1.5E−06



PLAUR
15.0
15.9
1.7E−06



TNFRSF6
16.1
16.8
2.6E−06



SEMA4D
14.4
15.1
2.9E−06



HRAS
21.1
20.1
5.7E−06



ITGB1
14.6
15.3
8.7E−06



SMAD4
17.1
17.6
9.8E−06



NFKB1
16.8
17.6
1.3E−05



ICAM1
17.2
18.0
4.2E−05



NRAS
16.7
17.3
5.1E−05



APAF1
16.9
17.6
6.8E−05



IL18
21.2
21.8
8.7E−05



TNFRSF1A
15.3
16.0
0.0001



CDK2
19.4
20.0
0.0003



IL1B
16.0
16.7
0.0004



NME1
20.0
19.2
0.0004



VEGF
22.3
23.1
0.0005



ANGPT1
20.2
20.9
0.0007



RAF1
14.4
14.9
0.0023



G1P3
15.4
16.1
0.0042



CDK5
18.6
19.0
0.0100



ABL2
20.3
20.7
0.0104



VHL
17.4
17.7
0.0125



SKIL
17.8
18.1
0.0130



CCNE1
23.0
23.6
0.0182



FGFR2
24.3
23.5
0.0188



TNFRSF10A
21.4
21.0
0.0450



ITGA1
21.2
21.6
0.0454



RHOC
16.5
16.8
0.0465



MYCL1
19.4
18.9
0.0534



MSH2
18.5
18.2
0.0657



PTCH1
20.6
21.0
0.0676



SRC
18.8
19.1
0.0829



BAD
18.4
18.3
0.1000



CDK4
18.2
17.9
0.1103



GZMA
18.0
17.7
0.1252



ERBB2
22.8
23.1
0.1481



IL8
22.0
21.6
0.1952



TNF
18.6
18.8
0.2041



IGFBP3
22.4
22.7
0.2210



ITGAE
23.9
24.3
0.2333



AKT1
15.5
15.6
0.2340



MYC
18.1
18.3
0.2641



BCL2
17.5
17.7
0.2801



S100A4
13.6
13.5
0.2880



BAX
16.1
15.9
0.3157



IFNG
23.2
23.5
0.3315



TP53
16.8
17.0
0.3335



CDKN2A
21.3
21.5
0.3339



ITGA3
22.6
22.4
0.3642



CASP8
15.3
15.1
0.3728



ABL1
18.8
18.9
0.3851



WNT1
22.2
22.0
0.3974



TNFRSF10B
17.6
17.5
0.5456



ATM
16.8
16.9
0.6087



JUN
21.6
21.6
0.6280



PCNA
18.2
18.3
0.6925



SKI
17.9
17.9
0.9431























TABLE 3F











Predicted








probability








of prostate


Patient ID
Group
BAD
RB1
logit
odds
cancer





















DF099
Cancer
19.49
17.54
25.24
9.1E+10
1.0000


DF078
Cancer
17.76
15.89
23.91
2.4E+10
1.0000


DF063
Cancer
19.37
17.59
21.66
2.6E+09
1.0000


DF250157
Cancer
18.75
16.98
21.51
2.2E+09
1.0000


DF056
Cancer
19.73
18.01
20.23
6.1E+08
1.0000


DF155
Cancer
18.47
16.90
17.41
3.6E+07
1.0000


DF057
Cancer
18.45
16.95
15.73
6.8E+06
1.0000


DF103398
Cancer
17.75
16.27
15.55
5.6E+06
1.0000


DF072
Cancer
18.13
16.68
14.74
2.5E+06
1.0000


DF113
Cancer
19.72
18.29
14.09
1.3E+06
1.0000


DF059
Cancer
18.52
17.22
11.58
1.1E+05
1.0000


DF046
Cancer
18.33
17.04
11.38
8.7E+04
1.0000


DF031
Cancer
18.20
16.93
10.97
5.8E+04
1.0000


DF279014
Cancer
18.29
17.04
10.38
3.2E+04
1.0000


DF044
Cancer
18.81
17.56
10.35
3.1E+04
1.0000


DF290701
Cancer
17.96
16.82
8.27
3.9E+03
0.9997


DF50796156
Cancer
18.12
16.98
8.21
3.7E+03
0.9997


DF032
Cancer
19.16
18.03
7.57
1.9E+03
0.9995


DF088
Cancer
17.90
16.80
7.35
1.6E+03
0.9994


DF187129
Cancer
17.88
16.88
5.14
1.7E+02
0.9942


DF026
Cancer
18.59
17.61
4.51
9.1E+01
0.9891


DF001
Cancer
17.94
17.00
3.97
5.3E+01
0.9815


167-HCG
Normals
17.89
17.06
1.60
4.9E+00
0.8316


DF137633
Cancer
17.33
16.53
0.90
2.5E+00
0.7109


DF006
Cancer
18.86
18.07
0.35
1.4E+00
0.5862


DF009
Cancer
17.67
16.92
−0.33
7.2E−01
0.4194


236-HCG
Normals
18.03
17.31
−0.86
4.2E−01
0.2973


110-HCG
Normals
18.10
17.48
−2.99
5.0E−02
0.0478


154-HCG
Normals
18.81
18.18
−3.10
4.5E−02
0.0429


243-HCG
Normals
18.18
17.57
−3.21
4.0E−02
0.0387


265-HCG
Normals
17.97
17.39
−3.83
2.2E−02
0.0213


157-HCG
Normals
18.19
17.63
−4.35
1.3E−02
0.0127


161-HCG
Normals
18.17
17.63
−4.74
8.8E−03
0.0087


133-HCG
Normals
18.21
17.68
−4.92
7.3E−03
0.0073


062-HCG
Normals
17.84
17.33
−5.45
4.3E−03
0.0043


152-HCG
Normals
18.43
17.93
−5.67
3.4E−03
0.0034


074-HCG
Normals
18.81
18.33
−6.20
2.0E−03
0.0020


269-HCG
Normals
18.45
18.00
−6.87
1.0E−03
0.0010


220-HCG
Normals
18.33
17.91
−7.48
5.6E−04
0.0006


083-HCG
Normals
18.49
18.08
−7.68
4.6E−04
0.0005


239-HCG
Normals
17.63
17.29
−8.98
1.3E−04
0.0001


145-HCG
Normals
18.73
18.39
−9.08
1.1E−04
0.0001


267-HCG
Normals
18.10
17.76
−9.14
1.1E−04
0.0001


085-HCG
Normals
18.48
18.16
−9.74
5.9E−05
0.0001


257-HCG
Normals
18.08
17.78
−9.91
5.0E−05
0.0000


057-HCG
Normals
17.45
17.17
−10.27
3.5E−05
0.0000


150-HCG
Normals
18.57
18.30
−10.64
2.4E−05
0.0000


142-HCG
Normals
18.43
18.17
−10.71
2.2E−05
0.0000


151-HCG
Normals
18.52
18.27
−11.15
1.4E−05
0.0000


086-HCG
Normals
18.05
17.81
−11.30
1.2E−05
0.0000


033-HCG
Normals
18.23
18.02
−11.72
8.1E−06
0.0000


056-HCG
Normals
18.69
18.48
−11.99
6.2E−06
0.0000


136-HCG
Normals
17.79
17.61
−12.37
4.3E−06
0.0000


158-HCG
Normals
18.40
18.22
−12.51
3.7E−06
0.0000


155-HCG
Normals
17.90
17.72
−12.53
3.6E−06
0.0000


078-HCG
Normals
18.12
17.95
−12.71
3.0E−06
0.0000


061-HCG
Normals
18.05
17.89
−12.96
2.4E−06
0.0000


176-HCG
Normals
18.38
18.25
−13.49
1.4E−06
0.0000


248-HCG
Normals
19.26
19.12
−13.59
1.2E−06
0.0000


156-HCG
Normals
18.23
18.11
−13.85
9.7E−07
0.0000


100-HCG
Normals
18.15
18.05
−14.24
6.5E−07
0.0000


147-HCG
Normals
18.19
18.15
−15.63
1.6E−07
0.0000


031-HCG
Normals
17.69
17.69
−16.21
9.1E−08
0.0000


138-HCG
Normals
18.24
18.27
−17.09
3.8E−08
0.0000


180-HCG
Normals
18.32
18.37
−17.55
2.4E−08
0.0000


029-HCG
Normals
18.47
18.57
−18.57
8.6E−09
0.0000


245-HCG
Normals
18.23
18.36
−19.16
4.8E−09
0.0000


109-HCG
Normals
18.77
18.91
−19.38
3.8E−09
0.0000


119-HCG
Normals
18.27
18.43
−19.81
2.5E−09
0.0000


253-HCG
Normals
18.46
18.65
−20.34
1.5E−09
0.0000


045-HCG
Normals
18.00
18.22
−21.01
7.5E−10
0.0000


030-HCG
Normals
17.94
18.20
−21.81
3.4E−10
0.0000


252-HCG
Normals
17.89
18.18
−22.64
1.5E−10
0.0000


246-HCG
Normals
18.83
19.16
−23.53
6.0E−11
0.0000


249-HCG
Normals
18.33
18.70
−24.29
2.8E−11
0.0000





















TABLE 3G












total used






(excludes



Normal
Prostate

missing)




















#
#

N =
50
57



#


2-gene models and
Entropy
normal
normal
# pc
# pc
Correct
Correct


#
dis-


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
normals
ease






















BAD
RB1
0.92
49
1
56
1
98.0%
98.3%
1.8E−14
0
50
57


CDK4
RB1
0.84
47
3
54
3
94.0%
94.7%
4.0E−12
0
50
57


HRAS
RB1
0.83
48
2
55
2
96.0%
96.5%
1.0E−11
0
50
57


RB1
TNFRSF10A
0.82
49
1
55
2
98.0%
96.5%
0
2.9E−11
50
57


NME1
RB1
0.81
47
3
53
4
94.0%
93.0%
6.1E−11
0
50
57


EGR1
IFITM1
0.79
47
3
54
3
94.0%
94.7%
2.8E−11
1.2E−05
50
57


E2F1
EGR1
0.79
48
2
54
3
96.0%
94.7%
1.3E−05
3.9E−11
50
57


CASP8
RB1
0.78
47
3
52
4
94.0%
92.9%
4.2E−10
0
50
56


EGR1
HRAS
0.78
46
4
54
3
92.0%
94.7%
0
2.4E−05
50
57


EGR1
MMP9
0.78
47
3
54
3
94.0%
94.7%
8.2E−13
3.2E−05
50
57


EGR1
MYCL1
0.77
46
4
53
4
92.0%
93.0%
0
6.5E−05
50
57


ATM
RB1
0.77
48
2
55
2
96.0%
96.5%
1.3E−09
0
50
57


RB1
TNFRSF10B
0.77
45
5
52
5
90.0%
91.2%
0
1.3E−09
50
57


CDK5
HRAS
0.76
47
3
53
4
94.0%
93.0%
0
0
50
57


EGR1
SERPINE1
0.75
47
3
53
4
94.0%
93.0%
1.5E−12
0.0002
50
57


BRAF
CDK4
0.75
47
3
53
4
94.0%
93.0%
0
3.4E−05
50
57


BAD
BRAF
0.75
46
4
53
4
92.0%
93.0%
3.5E−05
0
50
57


MYCL1
RB1
0.75
46
4
53
4
92.0%
93.0%
5.3E−09
0
50
57


EGR1
SOCS1
0.75
47
3
54
3
94.0%
94.7%
3.2E−10
0.0003
50
57


JUN
RB1
0.75
47
3
52
5
94.0%
91.2%
5.7E−09
0
50
57


BRAF
E2F1
0.75
47
3
52
5
94.0%
91.2%
1.0E−09
5.6E−05
50
57


E2F1
RB1
0.74
48
2
53
4
96.0%
93.0%
7.0E−09
1.0E−09
50
57


RB1
S100A4
0.74
46
4
52
5
92.0%
91.2%
0
7.9E−09
50
57


BRAF
TNFRSF10A
0.74
47
3
53
4
94.0%
93.0%
0
8.7E−05
50
57


EGR1
NME1
0.74
47
3
53
4
94.0%
93.0%
0
0.0006
50
57


CDK2
HRAS
0.74
48
2
53
4
96.0%
93.0%
0
0
50
57


BAX
RB1
0.74
47
3
53
4
94.0%
93.0%
1.2E−08
0
50
57


MSH2
RB1
0.73
46
4
54
3
92.0%
94.7%
1.5E−08
0
50
57


BRAF
HRAS
0.73
47
3
54
3
94.0%
94.7%
0
0.0002
50
57


HRAS
ITGB1
0.73
45
5
52
5
90.0%
91.2%
4.4E−16
0
50
57


E2F1
PTEN
0.73
45
5
51
6
90.0%
89.5%
4.8E−11
4.5E−09
50
57


BRAF
EGR1
0.72
46
4
52
5
92.0%
91.2%
0.0021
0.0003
50
57


MYC
RB1
0.72
46
4
53
4
92.0%
93.0%
4.0E−08
0
50
57


BRAF
RAF1
0.72
46
4
52
5
92.0%
91.2%
0
0.0005
50
57


BAX
EGR1
0.72
46
4
53
4
92.0%
93.0%
0.0033
0
50
57


BRAF
CASP8
0.72
46
4
51
5
92.0%
91.1%
0
0.0005
50
56


CDK4
EGR1
0.72
46
4
53
4
92.0%
93.0%
0.0038
0
50
57


EGR1
TNFRSF10B
0.72
47
3
53
4
94.0%
93.0%
0
0.0040
50
57


EGR1
TNFRSF10A
0.71
46
4
52
5
92.0%
91.2%
0
0.0044
50
57


BRCA1
E2F1
0.71
44
6
51
6
88.0%
89.5%
1.3E−08
1.6E−09
50
57


BRAF
NME1
0.71
46
4
52
5
92.0%
91.2%
0
0.0009
50
57


RB1
SERPINE1
0.71
46
4
52
5
92.0%
91.2%
4.0E−11
1.0E−07
50
57


BRAF
MYC
0.71
44
6
51
6
88.0%
89.5%
0
0.0011
50
57


BRAF
TNFRSF10B
0.71
46
4
52
5
92.0%
91.2%
0
0.0011
50
57


ATM
BRAF
0.70
45
5
52
5
90.0%
91.2%
0.0014
0
50
57


EGR1
PTEN
0.70
46
4
52
5
92.0%
91.2%
2.4E−10
0.0100
50
57


BRAF
SEMA4D
0.70
45
5
52
5
90.0%
91.2%
3.8E−15
0.0015
50
57


RB1
VHL
0.70
45
5
51
6
90.0%
89.5%
0
1.7E−07
50
57


BAD
EGR1
0.70
46
4
52
5
92.0%
91.2%
0.0124
0
50
57


EGR1
NME4
0.70
46
4
52
5
92.0%
91.2%
6.1E−10
0.0129
50
57


BRAF
S100A4
0.70
47
3
52
5
94.0%
91.2%
0
0.0019
50
57


BAX
BRAF
0.70
46
4
52
5
92.0%
91.2%
0.0019
0
50
57


HRAS
SMAD4
0.70
44
6
51
6
88.0%
89.5%
1.2E−13
0
50
57


BRAF
SKI
0.70
46
4
52
5
92.0%
91.2%
0
0.0023
50
57


EGR1
FOS
0.70
46
4
52
5
92.0%
91.2%
5.8E−15
0.0174
50
57


BRAF
MSH2
0.70
46
4
52
5
92.0%
91.2%
0
0.0027
50
57


AKT1
BRAF
0.70
46
4
52
4
92.0%
92.9%
0.0030
0
50
56


EGR1
RB1
0.69
46
4
53
4
92.0%
93.0%
3.2E−07
0.0225
50
57


E2F1
NOTCH2
0.69
44
6
51
6
88.0%
89.5%
4.3E−10
5.2E−08
50
57


EGR1
MYC
0.69
43
7
51
6
86.0%
89.5%
0
0.0251
50
57


EGR1
S100A4
0.69
47
3
52
5
94.0%
91.2%
0
0.0251
50
57


BRAF
JUN
0.69
46
4
52
5
92.0%
91.2%
0
0.0040
50
57


BRAF
CDC25A
0.69
46
4
53
4
92.0%
93.0%
2.2E−16
0.0048
50
57


BRAF
SERPINE1
0.69
45
5
51
6
90.0%
89.5%
1.9E−10
0.0048
50
57


ABL1
EGR1
0.69
47
3
52
5
94.0%
91.2%
0.0391
0
50
57


BRCA1
EGR1
0.69
46
4
52
5
92.0%
91.2%
0.0403
9.7E−09
50
57


CASP8
EGR1
0.69
44
6
51
5
88.0%
91.1%
0.0390
0
50
56


E2F1
SOCS1
0.69
45
5
51
6
90.0%
89.5%
3.2E−08
8.1E−08
50
57


BRAF
VHL
0.69
46
4
52
5
92.0%
91.2%
0
0.0054
50
57


EGR1
MSH2
0.69
46
4
53
4
92.0%
93.0%
0
0.0414
50
57


EGR1
VHL
0.69
45
5
52
5
90.0%
91.2%
0
0.0415
50
57


EGR1
FGFR2
0.69
47
3
52
5
94.0%
91.2%
0
0.0492
50
57


BRAF
MYCL1
0.69
45
5
52
5
90.0%
91.2%
0
0.0067
50
57


EGR1
SRC
0.68
45
5
51
5
90.0%
91.1%
0
0.0429
50
56


AKT1
RB1
0.68
46
4
50
6
92.0%
89.3%
1.3E−06
0
50
56


MMP9
RB1
0.68
45
5
52
5
90.0%
91.2%
7.7E−07
9.3E−10
50
57


BRCA1
CASP8
0.68
47
3
52
4
94.0%
92.9%
0
1.4E−08
50
56


ABL1
BRAF
0.68
45
5
51
6
90.0%
89.5%
0.0105
0
50
57


BRAF
SOCS1
0.68
45
5
51
6
90.0%
89.5%
7.1E−08
0.0128
50
57


E2F1
IFITM1
0.68
44
6
50
7
88.0%
87.7%
1.5E−07
2.1E−07
50
57


BRAF
MMP9
0.67
46
4
52
5
92.0%
91.2%
1.8E−09
0.0164
50
57


PCNA
RB1
0.67
46
4
52
5
92.0%
91.2%
1.8E−06
0
50
57


BRAF
TP53
0.67
45
5
52
5
90.0%
91.2%
0
0.0199
50
57


BRAF
CDKN1A
0.67
44
6
50
7
88.0%
87.7%
1.0E−08
0.0242
50
57


MMP9
SOCS1
0.67
45
5
52
5
90.0%
91.2%
1.3E−07
2.7E−09
50
57


RB1
TP53
0.67
45
5
51
6
90.0%
89.5%
0
2.3E−06
50
57


SERPINE1
SOCS1
0.67
43
7
50
7
86.0%
87.7%
1.4E−07
9.2E−10
50
57


BRAF
NRAS
0.67
44
6
51
6
88.0%
89.5%
4.4E−16
0.0286
50
57


HRAS
TGFB1
0.67
45
5
52
5
90.0%
91.2%
4.5E−10
0
50
57


BRAF
RHOA
0.67
46
4
52
5
92.0%
91.2%
1.2E−10
0.0317
50
57


HRAS
NOTCH2
0.67
46
4
51
6
92.0%
89.5%
3.7E−09
0
50
57


BRAF
IFITM1
0.66
46
4
52
5
92.0%
91.2%
3.6E−07
0.0403
50
57


BRAF
CFLAR
0.66
45
5
52
5
90.0%
91.2%
1.8E−15
0.0412
50
57


BRAF
TNFRSF1A
0.66
45
5
51
6
90.0%
89.5%
2.2E−16
0.0445
50
57


APAF1
BRAF
0.66
43
7
49
8
86.0%
86.0%
0.0461
2.7E−15
50
57


EGR1

0.66
46
4
52
5
92.0%
91.2%
0

50
57


HRAS
NFKB1
0.66
45
5
51
6
90.0%
89.5%
9.1E−13
0
50
57


MMP9
NME4
0.65
45
5
51
6
90.0%
89.5%
2.4E−08
9.5E−09
50
57


E2F1
PLAUR
0.65
44
6
51
6
88.0%
89.5%
3.6E−14
1.2E−06
50
57


E2F1
RHOA
0.65
44
6
50
7
88.0%
87.7%
3.6E−10
1.2E−06
50
57


BAX
TGFB1
0.65
44
6
51
6
88.0%
89.5%
1.5E−09
0
50
57


ABL1
RB1
0.65
43
7
50
7
86.0%
87.7%
9.6E−06
0
50
57


BCL2
RB1
0.65
46
4
51
6
92.0%
89.5%
9.7E−06
0
50
57


BAD
SMAD4
0.65
44
6
51
6
88.0%
89.5%
5.1E−12
0
50
57


CDKN1A
MMP9
0.65
44
6
50
7
88.0%
87.7%
1.2E−08
4.8E−08
50
57


HRAS
TP53
0.65
47
3
51
6
94.0%
89.5%
0
0
50
57


HRAS
TIMP1
0.65
45
5
52
5
90.0%
91.2%
2.1E−09
0
50
57


E2F1
TGFB1
0.64
43
7
49
8
86.0%
86.0%
3.0E−09
2.7E−06
50
57


E2F1
NFKB1
0.64
46
4
51
6
92.0%
89.5%
2.6E−12
2.9E−06
50
57


BRCA1
SERPINE1
0.64
45
5
51
6
90.0%
89.5%
7.7E−09
3.6E−07
50
57


CDKN1A
SOCS1
0.64
45
5
52
5
90.0%
91.2%
1.3E−06
1.0E−07
50
57


HRAS
VHL
0.64
44
6
51
6
88.0%
89.5%
0
0
50
57


E2F1
TIMP1
0.64
45
5
50
7
90.0%
87.7%
3.5E−09
3.5E−06
50
57


CDK2
NME1
0.64
44
6
50
7
88.0%
87.7%
0
2.2E−14
50
57


BAD
BRCA1
0.64
47
3
54
3
94.0%
94.7%
5.0E−07
0
50
57


RB1
SOCS1
0.64
45
5
51
6
90.0%
89.5%
1.7E−06
3.0E−05
50
57


CDK2
TNFRSF10A
0.64
45
5
51
6
90.0%
89.5%
0
2.8E−14
50
57


BRAF

0.64
44
6
50
7
88.0%
87.7%
0

50
57


E2F1
SMAD4
0.64
45
5
50
7
90.0%
87.7%
1.5E−11
4.5E−06
50
57


E2F1
MMP9
0.63
45
5
52
5
90.0%
91.2%
3.7E−08
4.6E−06
50
57


IFITM1
NME4
0.63
44
6
51
6
88.0%
89.5%
9.7E−08
3.5E−06
50
57


HRAS
PCNA
0.63
44
6
51
6
88.0%
89.5%
0
0
50
57


BRCA1
HRAS
0.63
46
4
51
6
92.0%
89.5%
0
6.4E−07
50
57


E2F1
FOS
0.63
46
4
51
6
92.0%
89.5%
7.6E−13
5.5E−06
50
57


ITGB1
NME1
0.63
46
4
51
6
92.0%
89.5%
0
6.7E−13
50
57


SKI
TGFB1
0.63
46
4
53
4
92.0%
93.0%
7.1E−09
0
50
57


HRAS
NRAS
0.63
45
5
51
6
90.0%
89.5%
6.2E−15
0
50
57


SOCS1
THBS1
0.63
45
5
51
6
90.0%
89.5%
2.9E−08
2.8E−06
50
57


RB1
SKIL
0.63
45
5
51
6
90.0%
89.5%
0
5.4E−05
50
57


BAX
NOTCH2
0.63
44
6
51
6
88.0%
89.5%
6.8E−08
0
50
57


RB1
SKI
0.63
44
6
51
6
88.0%
89.5%
0
6.1E−05
50
57


RB1
THBS1
0.63
45
5
51
6
90.0%
89.5%
3.7E−08
6.4E−05
50
57


APAF1
E2F1
0.63
44
6
50
7
88.0%
87.7%
9.5E−06
4.1E−14
50
57


CASP8
NOTCH2
0.63
45
5
50
6
90.0%
89.3%
6.7E−08
0
50
56


E2F1
TNFRSF6
0.62
46
4
52
5
92.0%
91.2%
2.9E−13
1.0E−05
50
57


CDK5
RB1
0.62
44
6
50
7
88.0%
87.7%
7.5E−05
0
50
57


RAF1
RB1
0.62
43
7
50
7
86.0%
87.7%
7.6E−05
0
50
57


CFLAR
E2F1
0.62
43
7
49
8
86.0%
86.0%
1.2E−05
3.9E−14
50
57


CDC25A
RB1
0.62
45
5
52
5
90.0%
91.2%
8.5E−05
2.7E−14
50
57


IFITM1
RB1
0.62
44
6
50
7
88.0%
87.7%
8.6E−05
8.8E−06
50
57


ANGPT1
E2F1
0.62
44
6
51
6
88.0%
89.5%
1.3E−05
1.3E−15
50
57


CDKN1A
IFITM1
0.62
46
4
51
6
92.0%
89.5%
1.0E−05
4.4E−07
50
57


NFKB1
TNFRSF10A
0.62
44
6
51
6
88.0%
89.5%
0
1.2E−11
50
57


NOTCH2
SOCS1
0.62
44
6
50
7
88.0%
87.7%
6.3E−06
1.3E−07
50
57


NME4
SOCS1
0.62
44
6
50
7
88.0%
87.7%
6.5E−06
3.3E−07
50
57


E2F1
IL18
0.62
43
7
49
8
86.0%
86.0%
2.0E−15
2.0E−05
50
57


IFITM1
SOCS1
0.62
44
6
50
7
88.0%
87.7%
8.3E−06
1.5E−05
50
57


HRAS
SOCS1
0.61
45
5
51
6
90.0%
89.5%
1.0E−05
0
50
57


NME1
SMAD4
0.61
43
7
50
7
86.0%
87.7%
8.4E−11
0
50
57


ITGB1
MMP9
0.61
45
5
51
6
90.0%
89.5%
2.1E−07
3.0E−12
50
57


IL8
RB1
0.61
46
4
51
6
92.0%
89.5%
0.0002
0
50
57


NME4
PTEN
0.61
44
6
51
6
88.0%
89.5%
2.9E−07
5.7E−07
50
57


RB1
WNT1
0.61
47
3
52
5
94.0%
91.2%
0
0.0002
50
57


ITGB1
TNFRSF10A
0.61
42
8
49
8
84.0%
86.0%
0
3.6E−12
50
57


NOTCH2
SKI
0.61
45
5
52
5
90.0%
91.2%
0
2.5E−07
50
57


E2F1
NME4
0.61
42
8
50
7
84.0%
87.7%
7.4E−07
3.7E−05
50
57


NOTCH2
TNFRSF10A
0.61
44
6
51
6
88.0%
89.5%
0
3.1E−07
50
57


CDK4
SMAD4
0.61
45
5
50
7
90.0%
87.7%
1.3E−10
0
50
57


BAD
NOTCH2
0.61
43
7
49
8
86.0%
86.0%
3.3E−07
0
50
57


IFITM1
THBS1
0.61
44
6
51
6
88.0%
89.5%
1.8E−07
3.3E−05
50
57


E2F1
SKIL
0.61
43
7
50
7
86.0%
87.7%
0
4.5E−05
50
57


CDKN1A
E2F1
0.60
43
7
49
8
86.0%
86.0%
4.8E−05
1.4E−06
50
57


AKT1
NOTCH2
0.60
45
5
50
6
90.0%
89.3%
3.3E−07
0
50
56


CDK2
MMP9
0.60
47
3
52
5
94.0%
91.2%
4.2E−07
3.2E−13
50
57


MYCL1
NOTCH2
0.60
43
7
50
7
86.0%
87.7%
4.5E−07
0
50
57


HRAS
RHOA
0.60
42
8
50
7
84.0%
87.7%
1.7E−08
0
50
57


NME4
RB1
0.60
45
5
51
6
90.0%
89.5%
0.0005
1.3E−06
50
57


ABL1
HRAS
0.60
43
7
51
6
86.0%
89.5%
0
0
50
57


CDK4
ITGB1
0.60
44
6
49
8
88.0%
86.0%
7.7E−12
0
50
57


BRCA1
SOCS1
0.60
43
7
49
8
86.0%
86.0%
2.8E−05
8.3E−06
50
57


NME4
SERPINE1
0.60
47
3
51
6
94.0%
89.5%
1.8E−07
1.4E−06
50
57


E2F1
THBS1
0.60
46
4
51
6
92.0%
89.5%
2.9E−07
7.6E−05
50
57


E2F1
VEGF
0.60
44
6
50
7
88.0%
87.7%
2.1E−14
8.0E−05
50
57


BRCA1
NME1
0.60
45
5
50
7
90.0%
87.7%
0
9.3E−06
50
57


CDK2
CDK4
0.60
45
5
51
6
90.0%
89.5%
0
4.8E−13
50
57


RB1
TNF
0.60
42
8
50
7
84.0%
87.7%
0
0.0006
50
57


CDC25A
IFITM1
0.60
46
4
52
5
92.0%
91.2%
6.1E−05
1.7E−13
50
57


SOCS1
TIMP1
0.60
44
6
50
7
88.0%
87.7%
8.1E−08
3.3E−05
50
57


CDKN1A
HRAS
0.60
46
4
52
5
92.0%
91.2%
0
2.6E−06
50
57


CDKN1A
PTEN
0.60
44
6
50
7
88.0%
87.7%
8.5E−07
2.6E−06
50
57


NME1
NOTCH2
0.60
44
6
50
7
88.0%
87.7%
6.7E−07
0
50
57


E2F1
ICAM1
0.60
45
5
51
6
90.0%
89.5%
7.0E−13
8.9E−05
50
57


E2F1
TNFRSF1A
0.60
44
6
51
6
88.0%
89.5%
4.0E−14
9.2E−05
50
57


TGFB1
TNFRSF10A
0.60
44
6
50
7
88.0%
87.7%
0
9.8E−08
50
57


SOCS1
TGFB1
0.59
45
5
50
7
90.0%
87.7%
1.1E−07
4.0E−05
50
57


E2F1
IL1B
0.59
45
5
51
6
90.0%
89.5%
2.5E−14
0.0001
50
57


SERPINE1
TNFRSF6
0.59
44
6
50
7
88.0%
87.7%
3.0E−12
2.7E−07
50
57


AKT1
TGFB1
0.59
44
6
50
6
88.0%
89.3%
2.6E−07
0
50
56


CASP8
PTEN
0.59
42
8
49
7
84.0%
87.5%
9.2E−07
0
50
56


CDKN1A
NME4
0.59
43
7
50
7
86.0%
87.7%
2.3E−06
3.5E−06
50
57


CASP8
TGFB1
0.59
43
7
49
7
86.0%
87.5%
1.3E−07
0
50
56


ABL2
E2F1
0.59
43
7
49
8
86.0%
86.0%
0.0001
6.7E−16
50
57


E2F1
SEMA4D
0.59
43
7
50
7
86.0%
87.7%
2.0E−11
0.0002
50
57


PTEN
SOCS1
0.59
43
7
49
8
86.0%
86.0%
6.0E−05
1.5E−06
50
57


BRCA1
CDKN1A
0.59
45
5
51
6
90.0%
89.5%
4.8E−06
1.8E−05
50
57


CDK4
NOTCH2
0.59
45
5
50
7
90.0%
87.7%
1.3E−06
0
50
57


CDC25A
SOCS1
0.59
42
8
48
9
84.0%
84.2%
6.5E−05
3.4E−13
50
57


GZMA
RB1
0.59
44
6
50
7
88.0%
87.7%
0.0013
0
50
57


NME4
THBS1
0.59
44
6
50
7
88.0%
87.7%
7.0E−07
3.6E−06
50
57


NME1
TGFB1
0.59
44
6
49
8
88.0%
86.0%
1.9E−07
0
50
57


CDKN1A
RB1
0.59
43
7
51
6
86.0%
89.5%
0.0014
5.8E−06
50
57


CDK2
RB1
0.59
42
8
49
8
84.0%
86.0%
0.0014
1.1E−12
50
57


E2F1
SERPINE1
0.59
44
6
50
7
88.0%
87.7%
4.8E−07
0.0002
50
57


BAD
ITGB1
0.59
43
7
50
7
86.0%
87.7%
2.2E−11
0
50
57


ITGA3
RB1
0.59
45
5
51
6
90.0%
89.5%
0.0016
0
50
57


FGFR2
RB1
0.58
45
5
50
7
90.0%
87.7%
0.0017
0
50
57


CDK2
E2F1
0.58
41
9
50
7
82.0%
87.7%
0.0002
1.3E−12
50
57


E2F1
RAF1
0.58
44
6
50
7
88.0%
87.7%
2.2E−16
0.0002
50
57


HRAS
SKIL
0.58
43
7
49
8
86.0%
86.0%
2.2E−16
0
50
57


BRCA1
THBS1
0.58
45
5
51
6
90.0%
89.5%
8.9E−07
2.7E−05
50
57


NOTCH2
TNFRSF10B
0.58
46
4
51
6
92.0%
89.5%
0
2.0E−06
50
57


CDKN2A
RB1
0.58
45
5
51
6
90.0%
89.5%
0.0020
0
50
57


ITGA1
RB1
0.58
44
6
50
7
88.0%
87.7%
0.0021
0
50
57


MMP9
TIMP1
0.58
44
6
50
7
88.0%
87.7%
2.7E−07
2.2E−06
50
57


BRCA1
TNFRSF10A
0.58
43
7
50
7
86.0%
87.7%
0
3.6E−05
50
57


BAD
RHOA
0.58
44
6
50
7
88.0%
87.7%
8.2E−08
0
50
57


ABL2
RB1
0.58
45
5
51
6
90.0%
89.5%
0.0024
1.4E−15
50
57


MMP9
RHOC
0.58
44
6
50
7
88.0%
87.7%
0
2.4E−06
50
57


NOTCH2
S100A4
0.58
44
6
49
8
88.0%
86.0%
0
2.6E−06
50
57


MMP9
TGFB1
0.58
43
7
50
7
86.0%
87.7%
4.0E−07
3.0E−06
50
57


BRCA1
NME4
0.58
44
6
50
7
88.0%
87.7%
7.7E−06
4.6E−05
50
57


MMP9
NOTCH2
0.58
45
5
51
6
90.0%
89.5%
3.1E−06
3.1E−06
50
57


MMP9
SMAD4
0.58
44
6
51
6
88.0%
89.5%
1.2E−09
3.1E−06
50
57


NRAS
RB1
0.58
44
6
49
8
88.0%
86.0%
0.0032
3.4E−13
50
57


IFITM1
ITGB1
0.58
44
6
50
7
88.0%
87.7%
4.3E−11
0.0003
50
57


NOTCH2
SERPINE1
0.58
44
6
51
6
88.0%
89.5%
1.0E−06
3.3E−06
50
57


BAD
TGFB1
0.58
43
7
49
8
86.0%
86.0%
4.6E−07
0
50
57


CDK5
NME1
0.58
43
7
49
8
86.0%
86.0%
0
1.4E−15
50
57


BRCA1
IL8
0.58
46
4
50
7
92.0%
87.7%
0
5.4E−05
50
57


CASP8
RHOA
0.58
44
6
49
7
88.0%
87.5%
1.1E−07
0
50
56


SMAD4
TNFRSF10A
0.57
43
7
49
8
86.0%
86.0%
0
1.5E−09
50
57


NME1
TIMP1
0.57
43
7
49
8
86.0%
86.0%
5.1E−07
0
50
57


NFKB1
NME1
0.57
42
8
47
10
84.0%
82.5%
0
4.7E−10
50
57


SERPINE1
SMAD4
0.57
44
6
50
7
88.0%
87.7%
1.8E−09
1.5E−06
50
57


BRCA1
CDK4
0.57
45
5
50
7
90.0%
87.7%
0
7.3E−05
50
57


IGFBP3
RB1
0.57
44
6
51
6
88.0%
89.5%
0.0052
0
50
57


E2F1
ITGB1
0.57
44
6
50
7
88.0%
87.7%
6.9E−11
0.0007
50
57


NME1
SOCS1
0.57
44
6
50
7
88.0%
87.7%
0.0003
0
50
57


PTEN
THBS1
0.57
43
7
50
7
86.0%
87.7%
2.6E−06
6.7E−06
50
57


S100A4
TIMP1
0.57
44
6
50
7
88.0%
87.7%
6.7E−07
0
50
57


HRAS
NME4
0.57
43
7
50
7
86.0%
87.7%
1.6E−05
1.1E−16
50
57


BAX
BRCA1
0.57
43
7
49
8
86.0%
86.0%
0.0001
0
50
57


IFITM1
SERPINE1
0.57
45
5
51
6
90.0%
89.5%
2.0E−06
0.0006
50
57


NME4
TIMP1
0.57
45
5
50
7
90.0%
87.7%
8.3E−07
1.7E−05
50
57


AKT1
E2F1
0.57
44
6
48
8
88.0%
85.7%
0.0015
1.1E−16
50
56


ERBB2
MMP9
0.57
42
8
50
7
84.0%
87.7%
7.0E−06
0
50
57


NME1
NME4
0.57
44
6
48
9
88.0%
84.2%
1.8E−05
0
50
57


BAD
CDK2
0.57
45
5
51
6
90.0%
89.5%
5.6E−12
0
50
57


MMP9
NRAS
0.56
44
6
50
7
88.0%
87.7%
8.8E−13
8.4E−06
50
57


HRAS
TNFRSF6
0.56
44
6
50
7
88.0%
87.7%
3.1E−11
2.2E−16
50
57


S100A4
TGFB1
0.56
41
9
46
11
82.0%
80.7%
1.3E−06
0
50
57


TGFB1
TNFRSF10B
0.56
43
7
50
7
86.0%
87.7%
0
1.3E−06
50
57


CDK5
MMP9
0.56
44
6
51
6
88.0%
89.5%
1.0E−05
4.2E−15
50
57


IFITM1
TIMP1
0.56
42
8
49
8
84.0%
86.0%
1.3E−06
0.0011
50
57


NME1
NRAS
0.56
43
7
50
7
86.0%
87.7%
1.1E−12
0
50
57


BRCA1
S100A4
0.56
44
6
49
8
88.0%
86.0%
0
0.0002
50
57


CDK4
TGFB1
0.56
44
6
50
7
88.0%
87.7%
1.6E−06
0
50
57


NME4
NOTCH2
0.56
44
6
50
7
88.0%
87.7%
1.3E−05
3.4E−05
50
57


PTCH1
RB1
0.56
43
7
50
7
86.0%
87.7%
0.0154
8.9E−16
50
57


MMP9
SRC
0.56
43
7
49
7
86.0%
87.5%
7.8E−16
1.1E−05
50
56


BRCA1
TNFRSF10B
0.56
43
7
50
7
86.0%
87.7%
0
0.0002
50
57


MMP9
NFKB1
0.56
44
6
50
7
88.0%
87.7%
1.5E−09
1.5E−05
50
57


IFITM1
NOTCH2
0.56
44
6
50
7
88.0%
87.7%
1.5E−05
0.0015
50
57


MYCL1
TGFB1
0.56
43
7
49
8
86.0%
86.0%
2.0E−06
0
50
57


CDC25A
E2F1
0.56
44
6
48
9
88.0%
84.2%
0.0022
3.9E−12
50
57


PTEN
SERPINE1
0.56
43
7
49
8
86.0%
86.0%
4.9E−06
2.0E−05
50
57


BRCA1
MMP9
0.56
45
5
51
6
90.0%
89.5%
1.6E−05
0.0002
50
57


RB1
SMAD4
0.56
43
7
49
8
86.0%
86.0%
6.0E−09
0.0177
50
57


ITGAE
RB1
0.55
42
8
49
8
84.0%
86.0%
0.0200
0
50
57


BAD
TIMP1
0.55
43
7
48
9
86.0%
84.2%
2.2E−06
0
50
57


BRCA1
JUN
0.55
44
6
50
7
88.0%
87.7%
0
0.0003
50
57


FOS
NME4
0.55
44
6
50
7
88.0%
87.7%
5.4E−05
3.2E−10
50
57


PTEN
RB1
0.55
46
4
49
8
92.0%
86.0%
0.0241
2.7E−05
50
57


BAD
PTEN
0.55
45
5
49
8
90.0%
86.0%
2.7E−05
0
50
57


IL18
SOCS1
0.55
43
7
50
7
86.0%
87.7%
0.0012
2.6E−13
50
57


CCNE1
RB1
0.55
43
7
50
7
86.0%
87.7%
0.0291
0
50
57


MSH2
NOTCH2
0.55
43
7
48
9
86.0%
84.2%
2.5E−05
0
50
57


E2F1
NRAS
0.55
42
8
49
8
84.0%
86.0%
2.5E−12
0.0036
50
57


NFKB1
RB1
0.55
44
6
49
8
88.0%
86.0%
0.0330
2.8E−09
50
57


BRCA1
MSH2
0.55
44
6
50
7
88.0%
87.7%
0
0.0004
50
57


BAD
SOCS1
0.55
44
6
49
8
88.0%
86.0%
0.0015
0
50
57


NME4
RHOA
0.55
45
5
51
6
90.0%
89.5%
9.4E−07
7.2E−05
50
57


CDKN1A
FOS
0.55
42
8
49
8
84.0%
86.0%
4.5E−10
0.0001
50
57


ICAM1
SOCS1
0.55
44
6
50
7
88.0%
87.7%
0.0017
3.0E−11
50
57


RB1
SRC
0.55
42
8
48
8
84.0%
85.7%
1.7E−15
0.0297
50
56


E2F1
ITGA1
0.55
43
7
48
9
86.0%
84.2%
6.7E−16
0.0048
50
57


BCL2
HRAS
0.55
43
7
50
7
86.0%
87.7%
4.4E−16
2.2E−16
50
57


CDK2
IFITM1
0.55
43
7
49
8
86.0%
86.0%
0.0036
2.4E−11
50
57


IFITM1
TGFB1
0.55
43
7
50
7
86.0%
87.7%
4.8E−06
0.0038
50
57


NME4
TGFB1
0.55
46
4
50
7
92.0%
87.7%
4.8E−06
9.4E−05
50
57


FOS
RB1
0.54
45
5
49
8
90.0%
86.0%
0.0468
5.8E−10
50
57


NME1
RHOA
0.54
42
8
48
9
84.0%
84.2%
1.4E−06
0
50
57


IFITM1
IFNG
0.54
44
6
49
8
88.0%
86.0%
0
0.0048
50
57


CDK2
SERPINE1
0.54
44
6
49
8
88.0%
86.0%
1.4E−05
3.1E−11
50
57


BAX
RHOA
0.54
43
7
50
7
86.0%
87.7%
1.5E−06
0
50
57


MYCL1
TIMP1
0.54
43
7
49
8
86.0%
86.0%
5.6E−06
0
50
57


CASP8
SMAD4
0.54
44
6
49
7
88.0%
87.5%
1.3E−08
0
50
56


PLAUR
SOCS1
0.54
44
6
50
7
88.0%
87.7%
0.0026
1.5E−10
50
57


CDC25A
CDKN1A
0.54
43
7
51
6
86.0%
89.5%
0.0002
1.2E−11
50
57


MMP9
THBS1
0.54
46
4
51
6
92.0%
89.5%
2.4E−05
4.8E−05
50
57


ITGB1
SOCS1
0.54
42
8
49
8
84.0%
86.0%
0.0028
6.3E−10
50
57


NFKB1
SOCS1
0.54
44
6
50
7
88.0%
87.7%
0.0028
5.0E−09
50
57


SERPINE1
TIMP1
0.54
43
7
50
7
86.0%
87.7%
6.1E−06
1.6E−05
50
57


BRCA1
IFITM1
0.54
43
7
49
8
86.0%
86.0%
0.0055
0.0008
50
57


E2F1
PTCH1
0.54
42
8
48
9
84.0%
84.2%
2.9E−15
0.0079
50
57


HRAS
ICAM1
0.54
42
8
50
7
84.0%
87.7%
4.9E−11
7.8E−16
50
57


SERPINE1
TGFB1
0.54
42
8
49
8
84.0%
86.0%
7.1E−06
1.7E−05
50
57


MMP9
PTCH1
0.54
44
6
51
6
88.0%
89.5%
3.1E−15
5.5E−05
50
57


ITGB1
SERPINE1
0.54
43
7
49
8
86.0%
86.0%
1.7E−05
7.1E−10
50
57


RHOA
SOCS1
0.54
44
6
50
7
88.0%
87.7%
0.0031
1.8E−06
50
57


MMP9
SERPINE1
0.54
45
5
50
7
90.0%
87.7%
1.8E−05
5.7E−05
50
57


BRCA1
RAF1
0.54
45
5
51
6
90.0%
89.5%
5.9E−15
0.0009
50
57


SMAD4
TNFRSF10B
0.54
43
7
49
8
86.0%
86.0%
0
2.1E−08
50
57


IFITM1
NRAS
0.54
44
6
50
7
88.0%
87.7%
5.8E−12
0.0063
50
57


ATM
BRCA1
0.54
43
7
50
7
86.0%
87.7%
0.0010
0
50
57


MMP9
TP53
0.54
43
7
50
7
86.0%
87.7%
8.9E−16
6.2E−05
50
57


IL18
SERPINE1
0.54
40
10
49
8
80.0%
86.0%
2.0E−05
7.3E−13
50
57


AKT1
BRCA1
0.54
44
6
49
7
88.0%
87.5%
0.0008
1.1E−15
50
56


NFKB1
SERPINE1
0.54
43
7
49
8
86.0%
86.0%
2.1E−05
6.7E−09
50
57


SOCS1
TNFRSF6
0.54
43
7
49
8
86.0%
86.0%
2.3E−10
0.0041
50
57


MMP9
RHOA
0.54
43
7
49
8
86.0%
86.0%
2.5E−06
7.4E−05
50
57


PTEN
RAF1
0.54
45
5
49
8
90.0%
86.0%
7.6E−15
9.6E−05
50
57


ERBB2
IFITM1
0.54
44
6
50
7
88.0%
87.7%
0.0085
2.2E−16
50
57


IL1B
SOCS1
0.54
44
6
50
7
88.0%
87.7%
0.0044
2.2E−12
50
57


CDKN1A
NME1
0.54
43
7
50
7
86.0%
87.7%
0
0.0003
50
57


ATM
HRAS
0.54
42
8
48
9
84.0%
84.2%
1.1E−15
0
50
57


BAX
NFKB1
0.54
42
8
48
9
84.0%
84.2%
8.0E−09
0
50
57


CDKN1A
MYCL1
0.53
43
7
48
9
86.0%
84.2%
0
0.0004
50
57


BCL2
MMP9
0.53
45
5
50
7
90.0%
87.7%
9.1E−05
5.6E−16
50
57


THBS1
TNFRSF6
0.53
45
5
52
5
90.0%
91.2%
3.0E−10
4.7E−05
50
57


HRAS
TNF
0.53
44
6
48
9
88.0%
84.2%
2.0E−15
1.6E−15
50
57


JUN
NOTCH2
0.53
43
7
49
8
86.0%
86.0%
0.0001
0
50
57


HRAS
PTEN
0.53
42
8
47
10
84.0%
82.5%
0.0001
1.6E−15
50
57


BRCA1
MYCL1
0.53
42
8
48
9
84.0%
84.2%
0
0.0017
50
57


E2F1
IGFBP3
0.53
44
6
50
7
88.0%
87.7%
2.2E−16
0.0174
50
57


FOS
SOCS1
0.53
42
8
49
8
84.0%
86.0%
0.0064
1.6E−09
50
57


IFITM1
SMAD4
0.53
42
8
49
8
84.0%
86.0%
4.0E−08
0.0125
50
57


CASP8
TIMP1
0.53
43
7
49
7
86.0%
87.5%
1.2E−05
0
50
56


BAX
TIMP1
0.53
43
7
50
7
86.0%
87.7%
1.4E−05
0
50
57


IFITM1
RHOC
0.53
44
6
50
7
88.0%
87.7%
8.9E−16
0.0129
50
57


CASP8
IFITM1
0.53
41
9
48
8
82.0%
85.7%
0.0102
0
50
56


E2F1
VHL
0.53
45
5
48
9
90.0%
84.2%
8.4E−14
0.0186
50
57


RHOA
SERPINE1
0.53
44
6
49
8
88.0%
86.0%
3.7E−05
3.9E−06
50
57


MSH2
TGFB1
0.53
43
7
49
8
86.0%
86.0%
1.6E−05
0
50
57


RHOA
S100A4
0.53
42
8
48
9
84.0%
84.2%
0
4.2E−06
50
57


CDC25A
THBS1
0.53
42
8
48
9
84.0%
84.2%
6.5E−05
3.1E−11
50
57


E2F1
ITGAE
0.53
42
8
47
10
84.0%
82.5%
2.2E−16
0.0216
50
57


PLAUR
SERPINE1
0.53
42
8
48
9
84.0%
84.2%
4.3E−05
4.1E−10
50
57


ATM
NOTCH2
0.53
43
7
48
9
86.0%
84.2%
0.0001
0
50
57


NOTCH2
THBS1
0.53
44
6
50
7
88.0%
87.7%
6.9E−05
0.0001
50
57


ABL1
NOTCH2
0.53
43
7
50
7
86.0%
87.7%
0.0001
3.3E−16
50
57


CDK5
IFITM1
0.53
43
7
50
7
86.0%
87.7%
0.0163
5.3E−14
50
57


CDKN1A
NOTCH2
0.53
44
6
50
7
88.0%
87.7%
0.0002
0.0006
50
57


IFITM1
PTCH1
0.53
44
6
48
9
88.0%
84.2%
8.9E−15
0.0187
50
57


IFITM1
VEGF
0.53
43
7
49
8
86.0%
86.0%
4.9E−12
0.0189
50
57


SERPINE1
VEGF
0.53
42
8
48
9
84.0%
84.2%
5.2E−12
5.3E−05
50
57


E2F1
NME1
0.53
45
5
50
7
90.0%
87.7%
2.2E−16
0.0291
50
57


MMP9
VHL
0.53
43
7
48
9
86.0%
84.2%
1.3E−13
0.0002
50
57


IFITM1
NFKB1
0.53
43
7
49
8
86.0%
86.0%
1.7E−08
0.0206
50
57


IFITM1
ITGAE
0.52
43
7
49
8
86.0%
86.0%
2.2E−16
0.0210
50
57


E2F1
SKI
0.52
43
7
49
8
86.0%
86.0%
0
0.0303
50
57


NRAS
SERPINE1
0.52
42
8
48
9
84.0%
84.2%
5.6E−05
1.7E−11
50
57


TGFB1
WNT1
0.52
42
8
48
9
84.0%
84.2%
0
2.4E−05
50
57


NME1
PCNA
0.52
42
8
48
9
84.0%
84.2%
0
2.2E−16
50
57


CASP8
CFLAR
0.52
41
9
47
9
82.0%
83.9%
6.3E−11
0
50
56


IFNG
MMP9
0.52
43
7
49
8
86.0%
86.0%
0.0002
0
50
57


AKT1
RHOA
0.52
41
9
46
10
82.0%
82.1%
8.9E−06
3.3E−15
50
56


E2F1
IFNG
0.52
43
7
49
8
86.0%
86.0%
0
0.0341
50
57


ATM
E2F1
0.52
41
9
48
9
82.0%
84.2%
0.0347
0
50
57


CDC25A
PTEN
0.52
43
7
49
8
86.0%
86.0%
0.0003
5.0E−11
50
57


IFITM1
MMP9
0.52
42
8
48
9
84.0%
84.2%
0.0002
0.0263
50
57


IFNG
SERPINE1
0.52
42
8
45
12
84.0%
79.0%
6.9E−05
0
50
57


IL8
PTEN
0.52
43
7
49
8
86.0%
86.0%
0.0003
0
50
57


BRCA1
CDC25A
0.52
43
7
50
7
86.0%
87.7%
5.2E−11
0.0038
50
57


CDK4
SOCS1
0.52
42
8
49
8
84.0%
86.0%
0.0141
0
50
57


BRCA1
SKI
0.52
43
7
49
8
86.0%
86.0%
0
0.0040
50
57


E2F1
ERBB2
0.52
42
8
48
9
84.0%
84.2%
6.7E−16
0.0411
50
57


CDK2
MSH2
0.52
46
4
49
8
92.0%
86.0%
0
1.6E−10
50
57


CDKN1A
SERPINE1
0.52
42
8
48
9
84.0%
84.2%
7.5E−05
0.0010
50
57


IFITM1
TNFRSF1A
0.52
44
6
50
7
88.0%
87.7%
1.2E−11
0.0293
50
57


MYCL1
RHOA
0.52
42
8
48
9
84.0%
84.2%
8.1E−06
0
50
57


E2F1
SRC
0.52
42
8
47
9
84.0%
83.9%
1.3E−14
0.0336
50
56


ABL1
MMP9
0.52
45
5
50
7
90.0%
87.7%
0.0003
6.7E−16
50
57


HRAS
IFITM1
0.52
43
7
48
9
86.0%
84.2%
0.0332
3.8E−15
50
57


RHOA
TNFRSF10B
0.52
41
9
47
10
82.0%
82.5%
0
9.1E−06
50
57


MYCL1
SMAD4
0.52
42
8
47
10
84.0%
82.5%
1.0E−07
0
50
57


SOCS1
VEGF
0.52
44
6
50
7
88.0%
87.7%
8.6E−12
0.0183
50
57


PTEN
S100A4
0.52
41
9
47
10
82.0%
82.5%
0
0.0004
50
57


ANGPT1
SOCS1
0.52
44
6
48
9
88.0%
84.2%
0.0190
3.0E−12
50
57


RB1

0.52
43
7
48
9
86.0%
84.2%
0

50
57


BCL2
IFITM1
0.52
43
7
48
9
86.0%
84.2%
0.0380
1.8E−15
50
57


NME4
SMAD4
0.52
42
8
49
8
84.0%
86.0%
1.1E−07
0.0008
50
57


CDK4
NFKB1
0.52
43
7
48
9
86.0%
84.2%
3.1E−08
0
50
57


ITGB1
MSH2
0.52
42
8
48
9
84.0%
84.2%
0
3.9E−09
50
57


SMAD4
SOCS1
0.52
42
8
49
8
84.0%
86.0%
0.0208
1.2E−07
50
57


TIMP1
TNFRSF10A
0.52
44
6
50
7
88.0%
87.7%
0
4.1E−05
50
57


IEITM1
IL8
0.52
43
7
48
9
86.0%
84.2%
0
0.0433
50
57


APAF1
SOCS1
0.52
43
7
48
9
86.0%
84.2%
0.0221
1.5E−10
50
57


CDK2
SOCS1
0.52
43
7
49
8
86.0%
86.0%
0.0221
2.2E−10
50
57


IFITM1
SRC
0.52
44
6
49
7
88.0%
87.5%
1.7E−14
0.0328
50
56


CDC25A
SERPINE1
0.52
42
8
48
9
84.0%
84.2%
0.0001
8.5E−11
50
57


IFITM1
RHOA
0.52
43
7
50
7
86.0%
87.7%
1.2E−05
0.0471
50
57


IFITM1
IL18
0.52
42
8
49
8
84.0%
86.0%
4.0E−12
0.0474
50
57


CDC25A
NOTCH2
0.52
43
7
49
8
86.0%
86.0%
0.0004
8.7E−11
50
57


MSH2
NFKB1
0.51
43
7
49
8
86.0%
86.0%
3.7E−08
0
50
57


NME4
PLAUR
0.51
44
6
50
7
88.0%
87.7%
1.2E−09
0.0011
50
57


NME1
TNFRSF6
0.51
41
9
47
10
82.0%
82.5%
1.3E−09
4.4E−16
50
57


CFLAR
NME4
0.51
41
9
47
10
82.0%
82.5%
0.0012
1.4E−10
50
57


RAF1
RHOA
0.51
44
6
50
7
88.0%
87.7%
1.4E−05
4.2E−14
50
57


CDK4
TIMP1
0.51
43
7
50
7
86.0%
87.7%
5.3E−05
0
50
57


CASP8
TNFRSF6
0.51
43
7
48
8
86.0%
85.7%
1.1E−09
0
50
56


ABL2
HRAS
0.51
44
6
50
7
88.0%
87.7%
7.0E−15
2.6E−13
50
57


RHOA
TNFRSF10A
0.51
43
7
48
9
86.0%
84.2%
0
1.7E−05
50
57


ANGPT1
NME4
0.51
42
8
48
9
84.0%
84.2%
0.0014
5.1E−12
50
57


ITGAE
SOCS1
0.51
45
5
49
8
90.0%
86.0%
0.0352
6.7E−16
50
57


SOCS1
TNF
0.51
43
7
49
8
86.0%
86.0%
1.1E−14
0.0366
50
57


NOTCH2
RAF1
0.51
43
7
49
8
86.0%
86.0%
5.3E−14
0.0006
50
57


CDC25A
TGFB1
0.51
42
8
48
9
84.0%
84.2%
7.6E−05
1.3E−10
50
57


MMP9
TNF
0.51
42
8
48
9
84.0%
84.2%
1.1E−14
0.0006
50
57


G1P3
MMP9
0.51
42
8
48
9
84.0%
84.2%
0.0006
6.2E−15
50
57


BAX
SMAD4
0.51
44
6
48
9
88.0%
84.2%
2.1E−07
0
50
57


CDK4
RHOA
0.51
40
10
47
10
80.0%
82.5%
1.9E−05
0
50
57


NOTCH2
TP53
0.51
40
10
47
10
80.0%
82.5%
8.0E−15
0.0006
50
57


MMP9
TNFRSF6
0.51
44
6
49
8
88.0%
86.0%
1.8E−09
0.0006
50
57


MSH2
SOCS1
0.51
42
8
48
9
84.0%
84.2%
0.0413
0
50
57


ERBB2
SERPINE1
0.51
42
8
49
8
84.0%
86.0%
0.0002
1.6E−15
50
57


MMP9
PCNA
0.51
43
7
49
8
86.0%
86.0%
0
0.0007
50
57


ITGA3
MMP9
0.51
42
8
48
9
84.0%
84.2%
0.0007
0
50
57


PTEN
TIMP1
0.51
41
9
47
10
82.0%
82.5%
8.6E−05
0.0010
50
57


CDKN2A
MMP9
0.51
41
9
48
9
82.0%
84.2%
0.0008
6.7E−16
50
57


BAD
TNFRSF6
0.51
44
6
49
8
88.0%
86.0%
2.3E−09
0
50
57


SERPINE1
SKIL
0.51
40
10
46
11
80.0%
80.7%
7.6E−14
0.0002
50
57


CDC25A
TIMP1
0.51
43
7
50
7
86.0%
87.7%
9.4E−05
1.7E−10
50
57


BAD
CDKN1A
0.51
42
8
48
9
84.0%
84.2%
0.0036
0
50
57


IL8
NOTCH2
0.50
41
9
49
8
82.0%
86.0%
0.0009
0
50
57


ICAM1
MMP9
0.50
43
7
48
9
86.0%
84.2%
0.0009
7.2E−10
50
57


BAD
NFKB1
0.50
43
7
49
8
86.0%
86.0%
8.4E−08
0
50
57


NME1
PTEN
0.50
40
10
46
11
80.0%
80.7%
0.0012
7.8E−16
50
57


NOTCH2
WNT1
0.50
41
9
47
10
82.0%
82.5%
0
0.0010
50
57


BRCA1
SKIL
0.50
43
7
49
8
86.0%
86.0%
9.4E−14
0.0181
50
57


BAX
CDKN1A
0.50
43
7
49
8
86.0%
86.0%
0.0043
0
50
57


MMP9
SKIL
0.50
43
7
48
9
86.0%
84.2%
9.5E−14
0.0010
50
57


ICAM1
SERPINE1
0.50
43
7
49
8
86.0%
86.0%
0.0003
8.5E−10
50
57


CDK4
NME4
0.50
45
5
48
9
90.0%
84.2%
0.0028
0
50
57


CDKN1A
S100A4
0.50
43
7
49
8
86.0%
86.0%
0
0.0045
50
57


ITGB1
NME4
0.50
43
7
50
7
86.0%
87.7%
0.0029
1.2E−08
50
57


CDC25A
NME4
0.50
44
6
50
7
88.0%
87.7%
0.0029
2.3E−10
50
57


BRCA1
FGFR2
0.50
42
8
47
10
84.0%
82.5%
0
0.0194
50
57


BRCA1
PCNA
0.50
43
7
49
8
86.0%
86.0%
1.1E−16
0.0194
50
57


IL18
NME4
0.50
43
7
49
8
86.0%
86.0%
0.0029
1.1E−11
50
57


NME1
VHL
0.50
43
7
48
9
86.0%
84.2%
7.2E−13
8.9E−16
50
57


IGFBP3
MMP9
0.50
42
8
48
9
84.0%
84.2%
0.0011
1.8E−15
50
57


NME4
TNFRSF10A
0.50
43
7
49
8
86.0%
86.0%
0
0.0030
50
57


MMP9
PTEN
0.50
39
11
47
10
78.0%
82.5%
0.0016
0.0013
50
57


BRCA1
MYC
0.50
41
9
47
10
82.0%
82.5%
1.1E−15
0.0239
50
57


APAF1
NME4
0.50
43
7
49
8
86.0%
86.0%
0.0037
5.6E−10
50
57


SMAD4
THBS1
0.50
43
7
50
7
86.0%
87.7%
0.0007
4.6E−07
50
57


CDC25A
MMP9
0.50
41
9
47
10
82.0%
82.5%
0.0014
3.0E−10
50
57


CDKN1A
TNFRSF10A
0.50
43
7
49
8
86.0%
86.0%
0
0.0061
50
57


ANGPT1
SERPINE1
0.50
38
12
47
10
76.0%
82.5%
0.0004
1.3E−11
50
57


BRCA1
TIMP1
0.50
42
8
48
9
84.0%
84.2%
0.0002
0.0269
50
57


CDKN1A
PLAUR
0.50
44
6
49
8
88.0%
86.0%
4.1E−09
0.0064
50
57


CDKN1A
TNFRSF6
0.50
46
4
51
6
92.0%
89.5%
4.3E−09
0.0066
50
57


CDK4
CDKN1A
0.50
43
7
49
8
86.0%
86.0%
0.0068
0
50
57


S100A4
SMAD4
0.50
44
6
50
7
88.0%
87.7%
5.3E−07
0
50
57


MYC
NOTCH2
0.50
43
7
49
8
86.0%
86.0%
0.0017
1.6E−15
50
57


BAD
NME4
0.50
44
6
48
9
88.0%
84.2%
0.0046
0
50
57


TIMP1
TNFRSF10B
0.50
43
7
49
8
86.0%
86.0%
0
0.0002
50
57


PLAUR
THBS1
0.50
43
7
49
8
86.0%
86.0%
0.0009
4.7E−09
50
57


MSH2
SMAD4
0.50
42
8
48
9
84.0%
84.2%
5.9E−07
0
50
57


HRAS
IL18
0.50
43
7
50
7
86.0%
87.7%
1.7E−11
2.3E−14
50
57


ICAM1
NME4
0.50
45
5
50
7
90.0%
87.7%
0.0049
1.4E−09
50
57


CDKN1A
TIMP1
0.50
45
5
50
7
90.0%
87.7%
0.0002
0.0080
50
57


NME4
SEMA4D
0.50
43
7
48
9
86.0%
84.2%
2.6E−08
0.0050
50
57


MMP9
VEGF
0.50
42
8
48
9
84.0%
84.2%
5.1E−11
0.0019
50
57


CDKN1A
RHOA
0.50
43
7
49
8
86.0%
86.0%
6.0E−05
0.0083
50
57


ITGB1
MYCL1
0.49
42
8
48
9
84.0%
84.2%
0
2.2E−08
50
57


FOS
THBS1
0.49
43
7
50
7
86.0%
87.7%
0.0010
2.6E−08
50
57


THBS1
TIMP1
0.49
43
7
49
8
86.0%
86.0%
0.0002
0.0010
50
57


TGFB1
THBS1
0.49
43
7
49
8
86.0%
86.0%
0.0010
0.0003
50
57


HRAS
PTCH1
0.49
43
7
49
8
86.0%
86.0%
1.0E−13
2.6E−14
50
57


NME1
TP53
0.49
40
10
49
8
80.0%
86.0%
2.6E−14
1.7E−15
50
57


E2F1

0.49
43
7
48
9
86.0%
84.2%
0

50
57


RHOA
SKI
0.49
43
7
49
8
86.0%
86.0%
6.7E−16
7.4E−05
50
57


IL18
THBS1
0.49
42
8
49
8
84.0%
86.0%
0.0012
2.4E−11
50
57


NME4
TNFRSF6
0.49
43
7
49
8
86.0%
86.0%
7.0E−09
0.0070
50
57


CDKN1A
SMAD4
0.49
45
5
51
6
90.0%
89.5%
8.4E−07
0.0113
50
57


CDKN1A
CFLAR
0.49
44
6
49
8
88.0%
86.0%
7.9E−10
0.0116
50
57


NFKB1
THBS1
0.49
44
6
50
7
88.0%
87.7%
0.0014
2.5E−07
50
57


NME4
TNFRSF1A
0.49
43
7
48
9
86.0%
84.2%
1.2E−10
0.0078
50
57


IL18
MMP9
0.49
42
8
47
10
84.0%
82.5%
0.0029
2.7E−11
50
57


IFITM1

0.49
44
6
50
7
88.0%
87.7%
0

50
57


NFKB1
NME4
0.49
43
7
50
7
86.0%
87.7%
0.0099
3.1E−07
50
57


ABL1
TGFB1
0.49
44
6
48
9
88.0%
84.2%
0.0005
7.6E−15
50
57


RHOA
THBS1
0.49
44
6
49
8
88.0%
86.0%
0.0018
0.0001
50
57


FGFR2
NOTCH2
0.49
41
9
47
10
82.0%
82.5%
0.0037
0
50
57


CFLAR
SERPINE1
0.49
42
8
47
10
84.0%
82.5%
0.0011
1.1E−09
50
57


NOTCH2
PTEN
0.49
42
8
47
10
84.0%
82.5%
0.0049
0.0037
50
57


PTEN
TGFB1
0.49
41
9
47
10
82.0%
82.5%
0.0005
0.0049
50
57


CDKN1A
THBS1
0.49
43
7
49
8
86.0%
86.0%
0.0018
0.0166
50
57


ANGPT1
CDKN1A
0.49
45
5
50
7
90.0%
87.7%
0.0168
3.2E−11
50
57


NME4
VEGF
0.49
44
6
49
8
88.0%
86.0%
1.0E−10
0.0111
50
57


ITGAE
MMP9
0.49
43
7
48
9
86.0%
84.2%
0.0043
4.7E−15
50
57


CDK2
THBS1
0.48
43
7
49
8
86.0%
86.0%
0.0021
2.4E−09
50
57


MMP9
MYC
0.48
43
7
48
9
86.0%
84.2%
3.6E−15
0.0044
50
57


ITGB1
PTEN
0.48
45
5
47
10
90.0%
82.5%
0.0059
4.7E−08
50
57


ATM
MMP9
0.48
42
8
48
9
84.0%
84.2%
0.0045
1.0E−15
50
57


CDC25A
RHOA
0.48
43
7
49
8
86.0%
86.0%
0.0001
8.9E−10
50
57


MSH2
NME4
0.48
43
7
48
9
86.0%
84.2%
0.0125
0
50
57


CDKN1A
VEGF
0.48
46
4
51
6
92.0%
89.5%
1.1E−10
0.0203
50
57


CDKN1A
TGFB1
0.48
43
7
49
8
86.0%
86.0%
0.0006
0.0203
50
57


MSH2
TIMP1
0.48
43
7
50
7
86.0%
87.7%
0.0005
0
50
57


IL1B
SERPINE1
0.48
42
8
47
10
84.0%
82.5%
0.0015
1.2E−10
50
57


CCNE1
MMP9
0.48
43
7
48
9
86.0%
84.2%
0.0053
1.1E−14
50
57


SERPINE1
THBS1
0.48
44
6
50
7
88.0%
87.7%
0.0027
0.0017
50
57


IL1B
NME4
0.48
43
7
50
7
86.0%
87.7%
0.0161
1.3E−10
50
57


CDKN1A
IL18
0.48
43
7
49
8
86.0%
86.0%
5.3E−11
0.0264
50
57


SOCS1

0.48
41
9
48
9
82.0%
84.2%
0

50
57


ATM
TGFB1
0.48
42
8
47
10
84.0%
82.5%
0.0007
1.3E−15
50
57


ANGPT1
THBS1
0.48
44
6
49
8
88.0%
86.0%
0.0030
5.1E−11
50
57


CDKN1A
WNT1
0.48
42
8
48
9
84.0%
84.2%
0
0.0277
50
57


PTEN
SKI
0.48
39
11
45
12
78.0%
79.0%
1.6E−15
0.0085
50
57


TGFB1
TP53
0.48
41
9
48
9
82.0%
84.2%
7.7E−14
0.0008
50
57


APAF1
CDKN1A
0.48
43
7
49
8
86.0%
86.0%
0.0329
2.7E−09
50
57


CDKN1A
NFKB1
0.48
43
7
48
9
86.0%
84.2%
6.1E−07
0.0340
50
57


TIMP1
WNT1
0.48
40
10
47
10
80.0%
82.5%
0
0.0009
50
57


CDKN1A
TNFRSF10B
0.48
42
8
48
9
84.0%
84.2%
2.2E−16
0.0350
50
57


NOTCH2
TNF
0.48
42
8
47
10
84.0%
82.5%
1.2E−13
0.0077
50
57


APAF1
SERPINE1
0.48
42
8
48
9
84.0%
84.2%
0.0023
2.9E−09
50
57


ITGA3
NOTCH2
0.48
41
9
47
10
82.0%
82.5%
0.0081
1.1E−16
50
57


G1P3
NME4
0.48
43
7
49
8
86.0%
86.0%
0.0247
7.7E−14
50
57


PTCH1
SERPINE1
0.48
41
9
47
10
82.0%
82.5%
0.0026
3.8E−13
50
57


APAF1
PTEN
0.48
39
11
46
11
78.0%
80.7%
0.0119
3.3E−09
50
57


IL1B
THBS1
0.48
44
6
51
6
88.0%
89.5%
0.0046
2.1E−10
50
57


CDKN1A
FGFR2
0.48
44
6
48
9
88.0%
84.2%
0
0.0447
50
57


ERBB2
PTEN
0.47
43
7
48
9
86.0%
84.2%
0.0133
2.2E−14
50
57


CASP8
NFKB1
0.47
43
7
48
8
86.0%
85.7%
7.8E−07
0
50
56


CASP8
PLAUR
0.47
43
7
48
8
86.0%
85.7%
2.3E−08
0
50
56


CDKN2A
SERPINE1
0.47
44
6
48
9
88.0%
84.2%
0.0034
8.8E−15
50
57


FOS
SERPINE1
0.47
41
9
47
10
82.0%
82.5%
0.0034
1.4E−07
50
57


MMP9
MSH2
0.47
42
8
48
9
84.0%
84.2%
0
0.0117
50
57


ITGA1
SERPINE1
0.47
42
8
48
9
84.0%
84.2%
0.0036
1.6E−13
50
57


CDK4
NRAS
0.47
42
8
48
9
84.0%
84.2%
9.4E−10
0
50
57


ABL2
MMP9
0.47
42
8
47
10
84.0%
82.5%
0.0129
5.2E−12
50
57


SERPINE1
VHL
0.47
42
8
48
9
84.0%
84.2%
7.1E−12
0.0038
50
57


CDK5
SERPINE1
0.47
41
9
47
10
82.0%
82.5%
0.0039
3.7E−12
50
57


JUN
TGFB1
0.47
41
9
47
10
82.0%
82.5%
0.0016
3.3E−16
50
57


CASP8
CDKN1A
0.47
44
6
49
7
88.0%
87.5%
0.0495
1.1E−16
50
56


MMP9
SEMA4D
0.47
43
7
50
7
86.0%
87.7%
1.7E−07
0.0138
50
57


ANGPT1
MMP9
0.47
43
7
49
8
86.0%
86.0%
0.0140
1.1E−10
50
57


NOTCH2
PCNA
0.47
42
8
48
9
84.0%
84.2%
1.1E−15
0.0141
50
57


ICAM1
NOTCH2
0.47
42
8
47
10
84.0%
82.5%
0.0143
9.9E−09
50
57


CFLAR
THBS1
0.47
43
7
49
8
86.0%
86.0%
0.0071
3.9E−09
50
57


APAF1
THBS1
0.47
43
7
49
8
86.0%
86.0%
0.0071
5.2E−09
50
57


SERPINE1
TNF
0.47
43
7
48
9
86.0%
84.2%
2.3E−13
0.0045
50
57


CCNE1
SERPINE1
0.47
41
9
47
10
82.0%
82.5%
0.0045
2.8E−14
50
57


BAX
NME4
0.47
42
8
48
9
84.0%
84.2%
0.0451
1.1E−16
50
57


CDK4
TP53
0.47
41
9
47
10
82.0%
82.5%
1.7E−13
1.1E−16
50
57


ABL2
NOTCH2
0.47
43
7
48
9
86.0%
84.2%
0.0169
6.6E−12
50
57


NME4
SKIL
0.47
43
7
49
8
86.0%
86.0%
1.3E−12
0.0489
50
57


MYCL1
NME4
0.47
42
8
48
9
84.0%
84.2%
0.0495
1.1E−16
50
57


ABL2
SERPINE1
0.47
42
8
47
10
84.0%
82.5%
0.0049
6.7E−12
50
57


ICAM1
THBS1
0.47
43
7
50
7
86.0%
87.7%
0.0081
1.2E−08
50
57


HRAS
THBS1
0.47
44
6
50
7
88.0%
87.7%
0.0083
1.8E−13
50
57


GZMA
MMP9
0.47
41
9
47
10
82.0%
82.5%
0.0180
1.1E−16
50
57


SEMA4D
SERPINE1
0.47
42
8
48
9
84.0%
84.2%
0.0052
2.1E−07
50
57


SKIL
THBS1
0.47
44
6
49
8
88.0%
86.0%
0.0089
1.4E−12
50
57


RAF1
TGFB1
0.47
41
9
47
10
82.0%
82.5%
0.0023
1.4E−12
50
57


THBS1
VEGF
0.47
42
8
48
9
84.0%
84.2%
4.4E−10
0.0093
50
57


MYC
TGFB1
0.47
42
8
48
9
84.0%
84.2%
0.0024
1.4E−14
50
57


HRAS
SEMA4D
0.47
44
6
48
9
88.0%
84.2%
2.4E−07
2.1E−13
50
57


BRCA1

0.47
42
8
48
9
84.0%
84.2%
1.1E−16

50
57


PCNA
SERPINE1
0.47
44
6
46
11
88.0%
80.7%
0.0064
1.7E−15
50
57


BCL2
NOTCH2
0.47
41
9
47
10
82.0%
82.5%
0.0224
9.0E−14
50
57


NOTCH2
TIMP1
0.46
42
8
48
9
84.0%
84.2%
0.0025
0.0231
50
57


ITGB1
THBS1
0.46
43
7
49
8
86.0%
86.0%
0.0111
2.2E−07
50
57


NOTCH2
VHL
0.46
41
9
47
10
82.0%
82.5%
1.2E−11
0.0237
50
57


HRAS
RHOC
0.46
41
9
48
9
82.0%
84.2%
1.2E−13
2.5E−13
50
57


CDC25A
SMAD4
0.46
43
7
50
7
86.0%
87.7%
6.8E−06
4.2E−09
50
57


NRAS
THBS1
0.46
45
5
49
8
90.0%
86.0%
0.0118
1.7E−09
50
57


BAX
CDK2
0.46
42
8
48
9
84.0%
84.2%
1.3E−08
2.2E−16
50
57


AKT1
TIMP1
0.46
42
8
47
9
84.0%
83.9%
0.0090
3.2E−13
50
56


PTEN
RHOC
0.46
41
9
47
10
82.0%
82.5%
1.4E−13
0.0380
50
57


RHOC
SERPINE1
0.46
42
8
47
10
84.0%
82.5%
0.0083
1.4E−13
50
57


ERBB2
THBS1
0.46
43
7
49
8
86.0%
86.0%
0.0142
5.8E−14
50
57


G1P3
THBS1
0.46
43
7
49
8
86.0%
86.0%
0.0143
2.3E−13
50
57


ATM
SERPINE1
0.46
41
9
47
10
82.0%
82.5%
0.0090
5.8E−15
50
57


ITGAE
SERPINE1
0.46
41
9
47
10
82.0%
82.5%
0.0090
2.9E−14
50
57


BAX
ITGB1
0.46
42
8
48
9
84.0%
84.2%
2.9E−07
2.2E−16
50
57


PTEN
TNFRSF10A
0.46
40
10
46
11
80.0%
80.7%
2.2E−16
0.0463
50
57


CDK4
MMP9
0.46
43
7
48
9
86.0%
84.2%
0.0359
2.2E−16
50
57


CDK2
PTEN
0.46
41
9
46
11
82.0%
80.7%
0.0493
1.7E−08
50
57


PTEN
TNFRSF1A
0.46
40
10
44
13
80.0%
77.2%
1.3E−09
0.0494
50
57


IL8
TIMP1
0.46
42
8
48
9
84.0%
84.2%
0.0039
2.2E−16
50
57


ATM
SMAD4
0.46
39
11
45
12
78.0%
79.0%
1.0E−05
7.0E−15
50
57


MMP9
TNFRSF10B
0.46
43
7
48
9
86.0%
84.2%
6.7E−16
0.0406
50
57


AKT1
PTEN
0.46
38
12
44
12
76.0%
78.6%
0.0402
4.6E−13
50
56


NOTCH2
SKIL
0.46
42
8
48
9
84.0%
84.2%
3.0E−12
0.0448
50
57


MSH2
RHOA
0.46
39
11
46
11
78.0%
80.7%
0.0012
2.2E−16
50
57


FOS
NOTCH2
0.46
40
10
47
10
80.0%
82.5%
0.0464
4.7E−07
50
57


THBS1
TNFRSF1A
0.46
44
6
50
7
88.0%
87.7%
1.5E−09
0.0216
50
57


BCL2
SERPINE1
0.46
41
9
47
10
82.0%
82.5%
0.0136
1.8E−13
50
57


IL8
TGFB1
0.46
44
6
48
9
88.0%
84.2%
0.0059
2.2E−16
50
57


CCNE1
THBS1
0.46
44
6
49
8
88.0%
86.0%
0.0241
8.1E−14
50
57


NOTCH2
SRC
0.46
42
8
46
10
84.0%
82.1%
1.6E−12
0.0435
50
56


G1P3
SERPINE1
0.45
40
10
46
11
80.0%
80.7%
0.0150
3.8E−13
50
57


APAF1
HRAS
0.45
42
8
47
10
84.0%
82.5%
5.3E−13
1.7E−08
50
57


ITGA3
TGFB1
0.45
40
10
47
10
80.0%
82.5%
0.0066
6.7E−16
50
57


FOS
TIMP1
0.45
42
8
47
10
84.0%
82.5%
0.0062
6.0E−07
50
57


FGFR2
TGFB1
0.45
41
9
47
10
82.0%
82.5%
0.0073
2.2E−16
50
57


IL8
TNFRSF6
0.45
41
9
46
11
82.0%
80.7%
1.5E−07
4.4E−16
50
57


SERPINE1
TNFRSF1A
0.45
41
9
47
10
82.0%
82.5%
2.5E−09
0.0223
50
57


SEMA4D
THBS1
0.45
44
6
50
7
88.0%
87.7%
0.0388
8.4E−07
50
57


SERPINE1
TP53
0.45
41
9
47
10
82.0%
82.5%
7.1E−13
0.0234
50
57


IGFBP3
SERPINE1
0.45
39
11
47
10
78.0%
82.5%
0.0254
9.9E−14
50
57


IENG
THBS1
0.45
41
9
48
9
82.0%
84.2%
0.0433
5.3E−15
50
57


ABL1
SERPINE1
0.45
42
8
48
9
84.0%
84.2%
0.0258
1.4E−13
50
57


IL18
NME1
0.45
43
7
49
8
86.0%
86.0%
5.0E−14
6.3E−10
50
57


CDKN1A

0.45
43
7
49
8
86.0%
86.0%
4.4E−16

50
57


TGFB1
TNF
0.45
42
8
48
9
84.0%
84.2%
1.2E−12
0.0114
50
57


FOS
TGFB1
0.45
43
7
47
10
86.0%
82.5%
0.0117
1.0E−06
50
57


ICAM1
NME1
0.45
41
9
47
10
82.0%
82.5%
5.8E−14
6.2E−08
50
57


JUN
RHOA
0.45
41
9
47
10
82.0%
82.5%
0.0029
2.2E−15
50
57


RAF1
SERPINE1
0.44
40
10
45
12
80.0%
79.0%
0.0359
7.4E−12
50
57


HRAS
SRC
0.44
44
6
47
9
88.0%
83.9%
3.4E−12
1.7E−12
50
56


FOS
ITGB1
0.44
42
8
48
9
84.0%
84.2%
1.1E−06
1.3E−06
50
57


HRAS
PLAUR
0.44
44
6
47
10
88.0%
82.5%
2.7E−07
1.2E−12
50
57


JUN
SMAD4
0.44
42
8
48
9
84.0%
84.2%
3.5E−05
2.7E−15
50
57


ANGPT1
TIMP1
0.44
40
10
46
11
80.0%
80.7%
0.0152
9.0E−10
50
57


NME4

0.44
42
8
47
10
84.0%
82.5%
6.7E−16

50
57


SKI
TIMP1
0.44
42
8
47
10
84.0%
82.5%
0.0157
2.7E−14
50
57


TGFB1
VHL
0.44
41
9
47
10
82.0%
82.5%
6.6E−11
0.0176
50
57


PCNA
TGFB1
0.44
43
7
49
8
86.0%
86.0%
0.0184
9.8E−15
50
57


ITGB1
S100A4
0.44
43
7
49
8
86.0%
86.0%
7.8E−16
1.3E−06
50
57


IL8
RHOA
0.44
41
9
47
10
82.0%
82.5%
0.0043
8.9E−16
50
57


JUN
TIMP1
0.44
41
9
47
10
82.0%
82.5%
0.0173
3.1E−15
50
57


NFKB1
TNFRSF10B
0.44
42
8
47
10
84.0%
82.5%
2.7E−15
1.2E−05
50
57


ATM
TIMP1
0.44
42
8
48
9
84.0%
84.2%
0.0209
3.1E−14
50
57


CFLAR
HRAS
0.44
42
8
47
10
84.0%
82.5%
1.7E−12
4.3E−08
50
57


CASP8
ICAM1
0.44
42
8
47
9
84.0%
83.9%
1.0E−07
1.2E−15
50
56


IL8
SMAD4
0.44
43
7
49
8
86.0%
86.0%
5.7E−05
1.1E−15
50
57


MYCL1
NFKB1
0.44
41
9
47
10
82.0%
82.5%
1.5E−05
1.1E−15
50
57


RHOA
WNT1
0.44
43
7
49
8
86.0%
86.0%
1.8E−15
0.0066
50
57


TGFB1
TIMP1
0.44
43
7
49
8
86.0%
86.0%
0.0280
0.0310
50
57


RHOA
VHL
0.43
43
7
47
10
86.0%
82.5%
1.1E−10
0.0073
50
57


ATM
NFKB1
0.43
42
8
48
9
84.0%
84.2%
1.8E−05
4.2E−14
50
57


ABL2
TGFB1
0.43
43
7
48
9
86.0%
84.2%
0.0355
9.0E−11
50
57


CDC25A
ITGB1
0.43
43
7
49
8
86.0%
86.0%
2.4E−06
4.3E−08
50
57


PTEN

0.43
40
10
45
12
80.0%
79.0%
1.2E−15

50
57


APAF1
CASP8
0.43
43
7
47
9
86.0%
83.9%
1.7E−15
7.2E−08
50
56


MYC
RHOA
0.43
39
11
44
13
78.0%
77.2%
0.0087
1.8E−13
50
57


CDK5
TGFB1
0.43
42
8
48
9
84.0%
84.2%
0.0400
7.0E−11
50
57


SRC
TGFB1
0.43
40
10
45
11
80.0%
80.4%
0.0277
8.6E−12
50
56


ATM
RHOA
0.43
41
9
45
12
82.0%
79.0%
0.0090
5.1E−14
50
57


BCL2
TGFB1
0.43
40
10
46
11
80.0%
80.7%
0.0413
1.1E−12
50
57


AKT1
HRAS
0.43
41
9
46
10
82.0%
82.1%
2.0E−12
3.1E−12
50
56


NME1
SKIL
0.43
40
10
46
11
80.0%
80.7%
2.2E−11
1.9E−13
50
57


TIMP1
TP53
0.43
42
8
48
9
84.0%
84.2%
3.1E−12
0.0443
50
57


MMP9

0.43
41
9
47
10
82.0%
82.5%
1.6E−15

50
57


NOTCH2

0.43
42
8
48
9
84.0%
84.2%
1.6E−15

50
57


TIMP1
TNFRSF6
0.43
41
9
47
10
82.0%
82.5%
8.1E−07
0.0479
50
57


FGFR2
TIMP1
0.43
39
11
47
10
78.0%
82.5%
0.0484
1.7E−15
50
57


ABL1
NME1
0.43
41
9
47
10
82.0%
82.5%
2.4E−13
6.6E−13
50
57


NFKB1
S100A4
0.43
41
9
47
10
82.0%
82.5%
2.2E−15
3.1E−05
50
57


BAX
HRAS
0.42
43
7
50
7
86.0%
87.7%
5.3E−12
3.3E−15
50
57


BAD
NRAS
0.42
41
9
47
10
82.0%
82.5%
4.0E−08
2.9E−15
50
57


CDC25A
NFKB1
0.42
42
8
47
10
84.0%
82.5%
4.7E−05
1.0E−07
50
57


NFKB1
SKI
0.42
42
8
47
10
84.0%
82.5%
1.2E−13
4.7E−05
50
57


CDC25A
SEMA4D
0.42
41
9
47
10
82.0%
82.5%
7.6E−06
1.1E−07
50
57


THBS1

0.42
43
7
49
8
86.0%
86.0%
3.1E−15

50
57


CDK4
CDK5
0.42
40
10
46
11
80.0%
80.7%
1.8E−10
3.3E−15
50
57


RHOA
TP53
0.42
40
10
46
11
80.0%
80.7%
6.8E−12
0.0257
50
57


FGFR2
RHOA
0.42
40
10
46
11
80.0%
80.7%
0.0276
3.6E−15
50
57


ABL1
RHOA
0.42
41
9
46
11
82.0%
80.7%
0.0311
1.4E−12
50
57


BAX
ICAM1
0.42
40
10
46
11
80.0%
80.7%
5.7E−07
5.3E−15
50
57


CDC25A
CDK2
0.42
43
7
48
9
86.0%
84.2%
4.4E−07
1.5E−07
50
57


SERPINE1

0.41
43
7
46
11
86.0%
80.7%
4.8E−15

50
57


CDC25A
FOS
0.41
40
10
46
11
80.0%
80.7%
1.2E−05
1.8E−07
50
57


BAD
VHL
0.41
39
11
45
12
78.0%
79.0%
5.3E−10
5.3E−15
50
57


CDK4
VHL
0.41
40
10
46
11
80.0%
80.7%
5.4E−10
5.1E−15
50
57


MYC
NFKB1
0.41
40
10
47
10
80.0%
82.5%
0.0001
8.6E−13
50
57


S100A4
TNFRSF6
0.41
43
7
47
10
86.0%
82.5%
3.2E−06
7.6E−15
50
57


GZMA
ITGB1
0.41
41
9
47
10
82.0%
82.5%
1.3E−05
7.2E−15
50
57


SMAD4
VHL
0.41
41
9
46
11
82.0%
80.7%
8.8E−10
0.0006
50
57


AKT1
SMAD4
0.41
43
7
48
8
86.0%
85.7%
0.0013
2.2E−11
50
56


CDC25A
TNFRSF6
0.40
41
9
47
10
82.0%
82.5%
5.4E−06
3.9E−07
50
57


TGFB1

0.40
40
10
47
10
80.0%
82.5%
1.1E−14

50
57


SKI
SMAD4
0.40
42
8
48
9
84.0%
84.2%
0.0008
4.8E−13
50
57


BCL2
NME1
0.40
40
10
46
11
80.0%
80.7%
1.4E−12
9.3E−12
50
57


NRAS
TNFRSF10A
0.40
39
11
45
12
78.0%
79.0%
1.1E−14
1.7E−07
50
57


APAF1
BAD
0.40
41
9
46
11
82.0%
80.7%
1.2E−14
8.2E−07
50
57


PCNA
SMAD4
0.40
42
8
47
10
84.0%
82.5%
0.0008
1.7E−13
50
57


ABL1
SMAD4
0.40
41
9
47
10
82.0%
82.5%
0.0008
4.1E−12
50
57


CASP8
ITGB1
0.40
43
7
48
8
86.0%
85.7%
1.8E−05
1.5E−14
50
56


TIMP1

0.40
42
8
47
10
84.0%
82.5%
1.2E−14

50
57


NME1
PLAUR
0.40
41
9
46
11
82.0%
80.7%
6.2E−06
1.6E−12
50
57


ITGB1
TNFRSF10B
0.40
39
11
45
12
78.0%
79.0%
4.7E−14
2.9E−05
50
57


BAD
PLAUR
0.40
39
11
47
10
78.0%
82.5%
7.7E−06
1.6E−14
50
57


TNFRSF10A
TNFRSF6
0.40
40
10
46
11
80.0%
80.7%
8.1E−06
1.6E−14
50
57


BAD
CDK5
0.40
42
8
48
9
84.0%
84.2%
8.7E−10
1.7E−14
50
57


CDC25A
CFLAR
0.40
40
10
46
11
80.0%
80.7%
9.0E−07
6.1E−07
50
57


CDK2
MYCL1
0.40
39
11
45
12
78.0%
79.0%
2.0E−14
1.9E−06
50
57


IL8
PLAUR
0.40
41
9
47
10
82.0%
82.5%
9.0E−06
2.3E−14
50
57


BAD
ICAM1
0.40
41
9
46
11
82.0%
80.7%
3.0E−06
2.2E−14
50
57


ICAM1
TNFRSF10A
0.40
39
11
43
14
78.0%
75.4%
2.1E−14
3.1E−06
50
57


FOS
SMAD4
0.40
41
9
47
10
82.0%
82.5%
0.0015
5.5E−05
50
57


ITGB1
WNT1
0.39
41
9
47
10
82.0%
82.5%
4.0E−14
4.8E−05
50
57


ATM
CDK2
0.39
43
7
46
11
86.0%
80.7%
2.4E−06
8.8E−13
50
57


JUN
NFKB1
0.39
41
9
46
11
82.0%
80.7%
0.0004
1.1E−13
50
57


MYC
SMAD4
0.39
39
11
44
13
78.0%
77.2%
0.0017
3.4E−12
50
57


TNFRSF10A
TP53
0.39
40
10
46
11
80.0%
80.7%
5.0E−11
2.4E−14
50
57


SMAD4
WNT1
0.39
42
8
48
9
84.0%
84.2%
4.7E−14
0.0019
50
57


CDK2
FOS
0.39
41
9
46
11
82.0%
80.7%
6.8E−05
2.8E−06
50
57


FOS
NFKB1
0.39
40
10
46
11
80.0%
80.7%
0.0005
7.1E−05
50
57


CDK4
HRAS
0.39
39
11
45
12
78.0%
79.0%
6.1E−11
2.9E−14
50
57


CASP8
CDK2
0.39
42
8
46
10
84.0%
82.1%
2.4E−06
3.8E−14
50
56


AKT1
NFKB1
0.39
41
9
45
11
82.0%
80.4%
0.0005
6.9E−11
50
56


SMAD4
TP53
0.39
41
9
47
10
82.0%
82.5%
6.6E−11
0.0024
50
57


CDK2
PCNA
0.39
40
10
47
10
80.0%
82.5%
4.9E−13
3.5E−06
50
57


CDK2
TNFRSF10B
0.39
41
9
47
10
82.0%
82.5%
1.2E−13
3.8E−06
50
57


HRAS
VEGF
0.39
41
9
47
10
82.0%
82.5%
1.7E−07
7.5E−11
50
57


ABL1
NFKB1
0.39
40
10
46
11
80.0%
80.7%
0.0007
1.3E−11
50
57


CASP8
SEMA4D
0.39
39
11
44
12
78.0%
78.6%
8.5E−05
5.0E−14
50
56


NME1
SEMA4D
0.39
38
12
44
13
76.0%
77.2%
0.0001
5.0E−12
50
57


RHOA

0.39
42
8
47
10
84.0%
82.5%
4.2E−14

50
57


IL8
ITGB1
0.39
43
7
48
9
86.0%
84.2%
0.0001
5.8E−14
50
57


FGFR2
SMAD4
0.38
40
10
47
10
80.0%
82.5%
0.0036
4.8E−14
50
57


CDC25A
NRAS
0.38
42
8
47
10
84.0%
82.5%
7.8E−07
1.9E−06
50
57


APAF1
NME1
0.38
38
12
46
11
76.0%
80.7%
6.9E−12
4.0E−06
50
57


CDC25A
TNFRSF1A
0.38
38
12
45
12
76.0%
79.0%
4.3E−07
2.1E−06
50
57


CDK4
TNFRSF6
0.38
39
11
46
11
78.0%
80.7%
3.6E−05
6.8E−14
50
57


NME1
TNF
0.38
38
12
44
13
76.0%
77.2%
2.0E−10
8.8E−12
50
57


TNFRSF10A
VHL
0.38
40
10
46
11
80.0%
80.7%
7.6E−09
7.0E−14
50
57


GZMA
SMAD4
0.38
43
7
49
8
86.0%
86.0%
0.0059
8.4E−14
50
57


HRAS
MYC
0.38
41
9
46
11
82.0%
80.7%
1.1E−11
1.6E−10
50
57


NFKB1
WNT1
0.38
43
7
47
10
86.0%
82.5%
1.4E−13
0.0015
50
57


BAX
TNFRSF6
0.38
40
10
45
12
80.0%
79.0%
4.4E−05
1.1E−13
50
57


CDK5
MYCL1
0.38
38
12
43
14
76.0%
75.4%
9.5E−14
4.7E−09
50
57


CDC25A
IL1B
0.38
39
11
45
12
78.0%
79.0%
3.8E−07
3.3E−06
50
57


FOS
NRAS
0.38
40
10
47
10
80.0%
82.5%
1.4E−06
0.0003
50
57


ABL2
NME1
0.37
41
9
45
12
82.0%
79.0%
1.4E−11
9.0E−09
50
57


APAF1
CDC25A
0.37
39
11
45
12
78.0%
79.0%
4.8E−06
9.4E−06
50
57


ANGPT1
CDC25A
0.37
41
9
47
10
82.0%
82.5%
4.9E−06
2.0E−07
50
57


BAD
SEMA4D
0.37
40
10
44
13
80.0%
77.2%
0.0004
1.3E−13
50
57


CDKN2A
HRAS
0.37
42
8
46
11
84.0%
80.7%
2.8E−10
1.9E−11
50
57


ERBB2
HRAS
0.37
39
11
44
13
78.0%
77.2%
2.9E−10
5.5E−11
50
57


PLAUR
S100A4
0.37
41
9
47
10
82.0%
82.5%
1.6E−13
7.5E−05
50
57


FOS
RHOC
0.37
40
10
46
11
80.0%
80.7%
1.5E−10
0.0004
50
57


BAD
CFLAR
0.37
41
9
47
10
82.0%
82.5%
8.8E−06
1.6E−13
50
57


HRAS
IL1B
0.37
40
10
46
11
80.0%
80.7%
6.8E−07
3.3E−10
50
57


CDC25A
PLAUR
0.37
41
9
46
11
82.0%
80.7%
8.3E−05
6.1E−06
50
57


SKIL
SMAD4
0.37
42
8
48
9
84.0%
84.2%
0.0132
2.4E−09
50
57


ICAM1
S100A4
0.37
41
9
46
11
82.0%
80.7%
1.8E−13
2.4E−05
50
57


HRAS
TNFRSF10B
0.37
42
8
46
11
84.0%
80.7%
5.5E−13
3.3E−10
50
57


IL8
NFKB1
0.37
40
10
46
11
80.0%
80.7%
0.0035
2.1E−13
50
57


HRAS
TNFRSF1A
0.37
39
11
44
13
78.0%
77.2%
1.4E−06
3.6E−10
50
57


ATM
NME1
0.37
38
12
43
14
76.0%
75.4%
2.5E−11
7.4E−12
50
57


ATM
ITGB1
0.37
42
8
49
8
84.0%
86.0%
0.0005
7.5E−12
50
57


HRAS
IGFBP3
0.37
40
10
45
12
80.0%
79.0%
5.4E−11
4.3E−10
50
57


HRAS
RAF1
0.37
41
9
46
11
82.0%
80.7%
3.0E−09
4.3E−10
50
57


ITGA3
SMAD4
0.36
41
9
46
11
82.0%
80.7%
0.0185
4.9E−13
50
57


ITGA3
NFKB1
0.36
40
10
45
12
80.0%
79.0%
0.0047
5.2E−13
50
57


ITGB1
PCNA
0.36
40
10
47
10
80.0%
82.5%
3.7E−12
0.0006
50
57


BCL2
SMAD4
0.36
41
9
46
11
82.0%
80.7%
0.0225
2.1E−10
50
57


RAF1
SMAD4
0.36
41
9
47
10
82.0%
82.5%
0.0225
3.8E−09
50
57


CFLAR
NME1
0.36
39
11
44
13
78.0%
77.2%
3.3E−11
1.5E−05
50
57


ABL1
CDK2
0.36
40
10
46
11
80.0%
80.7%
3.0E−05
9.6E−11
50
57


NFKB1
TP53
0.36
39
11
46
11
78.0%
80.7%
5.8E−10
0.0060
50
57


CDK2
S100A4
0.36
38
12
43
14
76.0%
75.4%
3.4E−13
3.3E−05
50
57


CDC25A
ICAM1
0.36
41
9
47
10
82.0%
82.5%
5.1E−05
1.3E−05
50
57


ERBB2
FOS
0.36
40
10
46
11
80.0%
80.7%
0.0010
1.4E−10
50
57


FOS
PTCH1
0.36
38
12
46
11
76.0%
80.7%
3.0E−09
0.0011
50
57


SEMA4D
SKI
0.36
40
10
46
11
80.0%
80.7%
1.6E−11
0.0012
50
57


SEMA4D
TNFRSF10A
0.36
40
10
46
11
80.0%
80.7%
3.9E−13
0.0012
50
57


MSH2
TNFRSF6
0.36
40
10
44
13
80.0%
77.2%
0.0002
4.1E−13
50
57


CDC25A
IL18
0.36
40
10
46
11
80.0%
80.7%
7.6E−07
1.7E−05
50
57


CDK5
TNFRSF10A
0.35
39
11
44
13
78.0%
77.2%
4.5E−13
2.6E−08
50
57


NFKB1
PCNA
0.35
41
9
47
10
82.0%
82.5%
7.9E−12
0.0122
50
57


MSH2
NRAS
0.35
40
10
45
12
80.0%
79.0%
9.0E−06
5.5E−13
50
57


CDK5
FOS
0.35
41
9
46
11
82.0%
80.7%
0.0018
3.4E−08
50
57


ABL2
NFKB1
0.35
39
11
47
10
78.0%
82.5%
0.0140
4.9E−08
50
57


ICAM1
TNFRSF10B
0.35
38
12
45
12
76.0%
79.0%
2.1E−12
9.9E−05
50
57


NME1
PTCH1
0.35
38
12
44
13
76.0%
77.2%
5.0E−09
7.9E−11
50
57


BAX
PLAUR
0.35
40
10
46
11
80.0%
80.7%
0.0004
8.1E−13
50
57


MYCL1
NRAS
0.35
40
10
45
12
80.0%
79.0%
1.0E−05
7.2E−13
50
57


CASP8
FOS
0.35
40
10
45
11
80.0%
80.4%
0.0017
8.0E−13
50
56


NME1
RHOC
0.35
40
10
46
11
80.0%
80.7%
6.8E−10
8.4E−11
50
57


BCL2
NFKB1
0.35
40
10
46
11
80.0%
80.7%
0.0155
5.5E−10
50
57


FOS
HRAS
0.35
40
10
46
11
80.0%
80.7%
1.6E−09
0.0023
50
57


APAF1
S100A4
0.35
40
10
45
12
80.0%
79.0%
9.2E−13
6.3E−05
50
57


ANGPT1
NFKB1
0.35
40
10
47
10
80.0%
82.5%
0.0192
1.3E−06
50
57


FOS
TNFRSF6
0.35
40
10
44
13
80.0%
77.2%
0.0005
0.0025
50
57


CDK4
ICAM1
0.35
39
11
44
13
78.0%
77.2%
0.0001
8.5E−13
50
57


HRAS
MSH2
0.35
39
11
46
11
78.0%
80.7%
8.6E−13
1.8E−09
50
57


ICAM1
MYCL1
0.35
41
9
44
13
82.0%
77.2%
1.1E−12
0.0002
50
57


ITGB1
SEMA4D
0.34
39
11
45
12
78.0%
79.0%
0.0032
0.0026
50
57


FOS
TNF
0.34
38
12
43
14
76.0%
75.4%
3.3E−09
0.0035
50
57


TNFRSF10B
TNFRSF6
0.34
39
11
44
13
78.0%
77.2%
0.0007
3.9E−12
50
57


ABL1
ITGB1
0.34
41
9
47
10
82.0%
82.5%
0.0030
4.2E−10
50
57


FOS
SRC
0.34
40
10
45
11
80.0%
80.4%
7.3E−09
0.0037
50
56


BAX
SEMA4D
0.34
38
12
44
13
76.0%
77.2%
0.0040
1.6E−12
50
57


ITGB1
PLAUR
0.34
40
10
46
11
80.0%
80.7%
0.0008
0.0035
50
57


NFKB1
VEGF
0.34
42
8
47
10
84.0%
82.5%
6.7E−06
0.0338
50
57


FGFR2
NFKB1
0.34
40
10
46
11
80.0%
80.7%
0.0349
1.4E−12
50
57


BAD
IL18
0.34
38
12
43
14
76.0%
75.4%
2.5E−06
1.4E−12
50
57


FOS
G1P3
0.34
40
10
46
11
80.0%
80.7%
2.3E−09
0.0044
50
57


BCL2
FOS
0.34
38
12
45
12
76.0%
79.0%
0.0048
1.2E−09
50
57


FOS
ICAM1
0.34
40
10
45
12
80.0%
79.0%
0.0003
0.0051
50
57


CDK4
SEMA4D
0.34
41
9
46
11
82.0%
80.7%
0.0055
1.6E−12
50
57


MYCL1
TNFRSF6
0.34
41
9
47
10
82.0%
82.5%
0.0010
1.9E−12
50
57


ITGB1
NFKB1
0.34
42
8
47
10
84.0%
82.5%
0.0447
0.0046
50
57


FOS
VEGF
0.34
39
11
45
12
78.0%
79.0%
8.6E−06
0.0055
50
57


NME1
VEGF
0.34
39
11
44
13
78.0%
77.2%
9.0E−06
2.3E−10
50
57


CDC25A
VEGF
0.34
42
8
48
9
84.0%
84.2%
9.3E−06
7.7E−05
50
57


ICAM1
MSH2
0.34
39
11
43
14
78.0%
75.4%
1.9E−12
0.0003
50
57


CDC25A
PTCH1
0.34
39
11
45
12
78.0%
79.0%
1.6E−08
8.1E−05
50
57


CDK2
JUN
0.34
41
9
47
10
82.0%
82.5%
8.9E−12
0.0002
50
57


FGFR2
ITGB1
0.33
41
9
46
11
82.0%
80.7%
0.0058
2.1E−12
50
57


ANGPT1
ITGB1
0.33
41
9
44
13
82.0%
77.2%
0.0059
3.5E−06
50
57


FOS
IL18
0.33
39
11
44
13
78.0%
77.2%
3.9E−06
0.0072
50
57


SEMA4D
VEGF
0.33
41
9
46
11
82.0%
80.7%
1.1E−05
0.0077
50
57


PLAUR
TNFRSF10A
0.33
38
12
46
11
76.0%
80.7%
2.2E−12
0.0013
50
57


CCNE1
FOS
0.33
39
11
44
13
78.0%
77.2%
0.0076
8.1E−10
50
57


MSH2
TP53
0.33
39
11
44
13
78.0%
77.2%
5.0E−09
2.4E−12
50
57


BCL2
TNFRSF10A
0.33
39
11
44
13
78.0%
77.2%
2.5E−12
2.1E−09
50
57


FOS
TP53
0.33
39
11
45
12
78.0%
79.0%
5.4E−09
0.0088
50
57


ITGB1
JUN
0.33
41
9
47
10
82.0%
82.5%
1.2E−11
0.0074
50
57


NME1
SRC
0.33
40
10
44
12
80.0%
78.6%
1.7E−08
4.4E−10
50
56


FOS
IFNG
0.33
39
11
44
13
78.0%
77.2%
3.8E−11
0.0091
50
57


AKT1
NME1
0.33
38
12
43
13
76.0%
76.8%
2.7E−10
6.3E−09
50
56


FOS
SEMA4D
0.33
39
11
45
12
78.0%
79.0%
0.0102
0.0096
50
57


CDK2
MYC
0.33
42
8
45
12
84.0%
79.0%
4.2E−10
0.0004
50
57


ITGB1
TP53
0.33
39
11
46
11
78.0%
80.7%
6.5E−09
0.0089
50
57


MSH2
SEMA4D
0.33
38
12
44
13
76.0%
77.2%
0.0113
3.1E−12
50
57


FOS
IL8
0.33
39
11
44
13
78.0%
77.2%
3.9E−12
0.0107
50
57


BAD
FOS
0.33
40
10
46
11
80.0%
80.7%
0.0108
3.3E−12
50
57


FOS
IGFBP3
0.33
38
12
43
14
76.0%
75.4%
8.3E−10
0.0108
50
57


ICAM1
IL8
0.33
41
9
46
11
82.0%
80.7%
4.1E−12
0.0006
50
57


SEMA4D
TNFRSF6
0.33
40
10
46
11
80.0%
80.7%
0.0022
0.0122
50
57


MYCL1
PLAUR
0.33
40
10
44
13
80.0%
77.2%
0.0022
3.9E−12
50
57


S100A4
SEMA4D
0.33
40
10
44
13
80.0%
77.2%
0.0132
4.2E−12
50
57


MYCL1
VHL
0.33
38
12
44
13
76.0%
77.2%
4.1E−07
4.0E−12
50
57


CASP8
TNFRSF1A
0.33
39
11
44
12
78.0%
78.6%
2.3E−05
4.4E−12
50
56


SMAD4

0.33
40
10
44
13
80.0%
77.2%
3.5E−12

50
57


FOS
NME1
0.33
40
10
46
11
80.0%
80.7%
5.0E−10
0.0135
50
57


SEMA4D
TNFRSF10B
0.33
40
10
46
11
80.0%
80.7%
1.3E−11
0.0143
50
57


CDC25A
G1P3
0.33
41
9
46
11
82.0%
80.7%
6.7E−09
0.0002
50
57


CFLAR
ITGB1
0.33
40
10
44
13
80.0%
77.2%
0.0120
0.0003
50
57


ITGB1
TNFRSF1A
0.33
41
9
46
11
82.0%
80.7%
3.5E−05
0.0119
50
57


HRAS
SKI
0.33
38
12
43
14
76.0%
75.4%
1.8E−10
8.8E−09
50
57


FOS
VHL
0.33
40
10
46
11
80.0%
80.7%
4.8E−07
0.0149
50
57


IL8
SEMA4D
0.32
38
12
44
13
76.0%
77.2%
0.0165
5.5E−12
50
57


ABL2
CDC25A
0.32
40
10
45
12
80.0%
79.0%
0.0002
3.8E−07
50
57


CDKN2A
FOS
0.32
40
10
44
13
80.0%
77.2%
0.0172
6.8E−10
50
57


ITGA3
ITGB1
0.32
43
7
46
11
86.0%
80.7%
0.0146
1.1E−11
50
57


ITGB1
VEGF
0.32
40
10
45
12
80.0%
79.0%
2.6E−05
0.0148
50
57


CASP8
IL18
0.32
40
10
44
12
80.0%
78.6%
6.6E−06
6.1E−12
50
56


APAF1
ITGB1
0.32
39
11
45
12
78.0%
79.0%
0.0155
0.0004
50
57


APAF1
BAX
0.32
39
11
44
13
78.0%
77.2%
6.7E−12
0.0005
50
57


CDC25A
VHL
0.32
40
10
46
11
80.0%
80.7%
6.2E−07
0.0002
50
57


IL18
SEMA4D
0.32
39
11
45
12
78.0%
79.0%
0.0219
1.1E−05
50
57


BAX
VHL
0.32
40
10
46
11
80.0%
80.7%
7.0E−07
7.9E−12
50
57


PLAUR
TNFRSF10B
0.32
39
11
44
13
78.0%
77.2%
2.1E−11
0.0040
50
57


BAX
CDK5
0.32
41
9
47
10
82.0%
82.5%
3.7E−07
8.2E−12
50
57


ITGB1
TNFRSF6
0.32
42
8
46
11
84.0%
80.7%
0.0044
0.0198
50
57


FOS
ITGAE
0.32
38
12
43
14
76.0%
75.4%
1.3E−09
0.0243
50
57


ABL1
FOS
0.32
40
10
45
12
80.0%
79.0%
0.0270
2.6E−09
50
57


CDK2
IL8
0.32
39
11
45
12
78.0%
79.0%
9.4E−12
0.0010
50
57


ITGB1
MYC
0.32
43
7
47
10
86.0%
82.5%
1.1E−09
0.0239
50
57


BAX
NRAS
0.32
40
10
45
12
80.0%
79.0%
0.0001
9.8E−12
50
57


CASP8
RAF1
0.32
39
11
44
12
78.0%
78.6%
9.6E−08
9.6E−12
50
56


CDC25A
SRC
0.32
40
10
45
11
80.0%
80.4%
5.3E−08
0.0004
50
56


IL1B
ITGB1
0.32
40
10
47
10
80.0%
82.5%
0.0265
4.0E−05
50
57


NRAS
S100A4
0.32
39
11
45
12
78.0%
79.0%
9.9E−12
0.0001
50
57


CDK2
PLAUR
0.32
40
10
46
11
80.0%
80.7%
0.0059
0.0012
50
57


RAF1
SEMA4D
0.32
38
12
44
13
76.0%
77.2%
0.0373
1.4E−07
50
57


MSH2
VHL
0.31
42
8
44
13
84.0%
77.2%
1.1E−06
9.3E−12
50
57


CDK2
SEMA4D
0.31
39
11
44
13
78.0%
77.2%
0.0403
0.0013
50
57


ABL2
TNFRSF10A
0.31
40
10
45
12
80.0%
79.0%
9.6E−12
8.3E−07
50
57


PCNA
TNFRSF6
0.31
38
12
43
14
76.0%
75.4%
0.0070
1.5E−10
50
57


G1P3
SEMA4D
0.31
39
11
43
14
78.0%
75.4%
0.0413
1.7E−08
50
57


APAF1
TNFRSF10A
0.31
39
11
45
12
78.0%
79.0%
9.7E−12
0.0009
50
57


MYCL1
TP53
0.31
39
11
45
12
78.0%
79.0%
2.1E−08
1.1E−11
50
57


CFLAR
S100A4
0.31
38
12
44
13
76.0%
77.2%
1.2E−11
0.0007
50
57


JUN
SEMA4D
0.31
39
11
44
13
78.0%
77.2%
0.0440
4.8E−11
50
57


IGFBP3
ITGB1
0.31
43
7
47
10
86.0%
82.5%
0.0347
2.8E−09
50
57


FOS
PLAUR
0.31
39
11
45
12
78.0%
79.0%
0.0072
0.0422
50
57


CDK4
PLAUR
0.31
39
11
44
13
78.0%
77.2%
0.0074
1.1E−11
50
57


APAF1
IL8
0.31
38
12
43
14
76.0%
75.4%
1.3E−11
0.0010
50
57


BCL2
CDK2
0.31
38
12
44
13
76.0%
77.2%
0.0015
9.2E−09
50
57


CDC25A
IGFBP3
0.31
39
11
45
12
78.0%
79.0%
2.9E−09
0.0005
50
57


ICAM1
ITGB1
0.31
41
9
47
10
82.0%
82.5%
0.0371
0.0021
50
57


CDK2
ITGA3
0.31
38
12
44
13
76.0%
77.2%
2.7E−11
0.0016
50
57


BCL2
ITGB1
0.31
42
8
47
10
84.0%
82.5%
0.0435
1.1E−08
50
57


ABL1
TNFRSF10A
0.31
38
12
43
14
76.0%
75.4%
1.3E−11
4.8E−09
50
57


BCL2
CDC25A
0.31
40
10
46
11
80.0%
80.7%
0.0006
1.1E−08
50
57


CDC25A
RAF1
0.31
38
12
43
14
76.0%
75.4%
2.0E−07
0.0006
50
57


NFKB1

0.31
40
10
46
11
80.0%
80.7%
1.3E−11

50
57


CDC25A
CDK5
0.31
41
9
47
10
82.0%
82.5%
7.8E−07
0.0006
50
57


CDC25A
ITGA1
0.31
39
11
43
14
78.0%
75.4%
3.7E−08
0.0006
50
57


CASP8
IL1B
0.31
39
11
44
12
78.0%
78.6%
5.8E−05
1.8E−11
50
56


CDKN2A
NME1
0.31
40
10
46
11
80.0%
80.7%
2.0E−09
2.2E−09
50
57


APAF1
SKI
0.31
38
12
43
14
76.0%
75.4%
7.1E−10
0.0015
50
57


HRAS
JUN
0.31
38
12
43
14
76.0%
75.4%
8.8E−11
4.1E−08
50
57


ICAM1
SKI
0.30
44
6
47
10
88.0%
82.5%
8.9E−10
0.0040
50
57


ATM
TNFRSF6
0.30
38
12
43
14
76.0%
75.4%
0.0160
8.2E−10
50
57


CDC25A
ERBB2
0.30
41
9
46
11
82.0%
80.7%
9.2E−09
0.0010
50
57


CCNE1
HRAS
0.30
40
10
46
11
80.0%
80.7%
5.3E−08
8.7E−09
50
57


ANGPT1
CDK2
0.30
39
11
45
12
78.0%
79.0%
0.0036
4.4E−05
50
57


NRAS
PLAUR
0.30
41
9
46
11
82.0%
80.7%
0.0205
0.0005
50
57


MSH2
PLAUR
0.30
38
12
45
12
76.0%
79.0%
0.0216
2.8E−11
50
57


BAD
SKIL
0.30
38
12
43
14
76.0%
75.4%
5.0E−07
3.2E−11
50
57


CDC25A
RHOC
0.30
41
9
47
10
82.0%
82.5%
3.4E−08
0.0015
50
57


ANGPT1
TNFRSF6
0.30
38
12
43
14
76.0%
75.4%
0.0258
5.8E−05
50
57


CDK2
VEGF
0.30
41
9
46
11
82.0%
80.7%
0.0002
0.0048
50
57


BAD
TNFRSF1A
0.30
39
11
44
13
78.0%
77.2%
0.0003
3.4E−11
50
57


CASP8
NRAS
0.30
41
9
45
11
82.0%
80.4%
0.0004
4.0E−11
50
56


ANGPT1
ICAM1
0.30
39
11
46
11
78.0%
80.7%
0.0069
6.0E−05
50
57


PLAUR
VEGF
0.30
39
11
46
11
78.0%
80.7%
0.0002
0.0282
50
57


CDK2
TP53
0.30
39
11
44
13
78.0%
77.2%
8.8E−08
0.0061
50
57


BAX
CFLAR
0.29
40
10
44
13
80.0%
77.2%
0.0033
5.7E−11
50
57


CDK2
TNFRSF6
0.29
39
11
45
12
78.0%
79.0%
0.0381
0.0068
50
57


CDK2
WNT1
0.29
39
11
44
13
78.0%
77.2%
8.2E−11
0.0069
50
57


APAF1
MYCL1
0.29
38
12
43
14
76.0%
75.4%
5.2E−11
0.0046
50
57


APAF1
CDK4
0.29
39
11
43
14
78.0%
75.4%
4.9E−11
0.0049
50
57


CDK2
FGFR2
0.29
38
12
43
14
76.0%
75.4%
5.0E−11
0.0076
50
57


TNFRSF6
VEGF
0.29
38
12
43
14
76.0%
754%
0.0003
0.0433
50
57


ANGPT1
PLAUR
0.29
38
12
45
12
76.0%
79.0%
0.0455
1.0E−04
50
57


GZMA
NRAS
0.29
38
12
44
13
76.0%
77.2%
0.0011
6.1E−11
50
57


ANGPT1
NRAS
0.29
38
12
45
12
76.0%
79.0%
0.0011
0.0001
50
57


PLAUR
TNFRSF6
0.29
39
11
43
14
78.0%
75.4%
0.0493
0.0472
50
57


CFLAR
TNFRSF10A
0.29
38
12
43
14
76.0%
75.4%
5.8E−11
0.0045
50
57


ICAM1
VEGF
0.29
40
10
45
12
80.0%
79.0%
0.0003
0.0130
50
57


ICAM1
JUN
0.29
39
11
44
13
78.0%
77.2%
2.9E−10
0.0134
50
57


ERBB2
NME1
0.29
38
12
43
14
76.0%
75.4%
9.2E−09
2.9E−08
50
57


IL1B
IL8
0.29
39
11
44
13
78.0%
77.2%
8.8E−11
0.0004
50
57


CDC25A
NME1
0.29
39
11
45
12
78.0%
79.0%
9.3E−09
0.0036
50
57


CFLAR
VEGF
0.29
40
10
46
11
80.0%
80.7%
0.0004
0.0055
50
57


CDC25A
TP53
0.29
41
9
47
10
82.0%
82.5%
1.5E−07
0.0037
50
57


CDC25A
TNF
0.29
40
10
46
11
80.0%
80.7%
2.3E−07
0.0038
50
57


CDK5
S100A4
0.29
39
11
45
12
78.0%
79.0%
8.9E−11
4.6E−06
50
57


AKT1
ICAM1
0.29
39
11
45
11
78.0%
80.4%
0.0237
1.8E−07
50
56


SEMA4D

0.29
39
11
44
13
78.0%
77.2%
8.0E−11

50
57


HRAS
ITGA3
0.29
39
11
44
13
78.0%
77.2%
2.0E−10
1.9E−07
50
57


CDK2
TNFRSF1A
0.28
39
11
44
13
78.0%
77.2%
0.0010
0.0160
50
57


FGFR2
ICAM1
0.28
41
9
46
11
82.0%
80.7%
0.0232
1.0E−10
50
57


ICAM1
WNT1
0.28
40
10
46
11
80.0%
80.7%
1.8E−10
0.0232
50
57


APAF1
MSH2
0.28
38
12
43
14
76.0%
75.4%
1.0E−10
0.0109
50
57


ITGB1

0.28
41
9
47
10
82.0%
82.5%
1.0E−10

50
57


AKT1
CDC25A
0.28
40
10
44
12
80.0%
78.6%
0.0039
2.4E−07
50
56


HRAS
MYCL1
0.28
39
11
44
13
78.0%
77.2%
1.2E−10
2.4E−07
50
57


ABL1
CDC25A
0.28
41
9
47
10
82.0%
82.5%
0.0061
4.3E−08
50
57


CDK2
ICAM1
0.28
42
8
46
11
84.0%
80.7%
0.0274
0.0193
50
57


CDC25A
ITGAE
0.28
38
12
45
12
76.0%
79.0%
2.4E−08
0.0064
50
57


CFLAR
NRAS
0.28
39
11
44
13
78.0%
77.2%
0.0025
0.0100
50
57


APAF1
NRAS
0.28
38
12
44
13
76.0%
77.2%
0.0028
0.0150
50
57


CDK2
SKI
0.28
38
12
43
14
76.0%
75.4%
6.0E−09
0.0229
50
57


TNFRSF10B
VHL
0.28
38
12
44
13
76.0%
77.2%
1.7E−05
4.8E−10
50
57


ICAM1
NRAS
0.28
41
9
46
11
82.0%
80.7%
0.0029
0.0345
50
57


CDK2
IL1B
0.28
40
10
44
13
80.0%
77.2%
0.0009
0.0282
50
57


NME1
RAF1
0.28
39
11
43
14
78.0%
75.4%
2.7E−06
2.2E−08
50
57


IL18
S100A4
0.28
38
12
43
14
76.0%
75.4%
2.0E−10
0.0004
50
57


CDC25A
MYC
0.28
41
9
47
10
82.0%
82.5%
2.5E−08
0.0094
50
57


BCL2
CDK4
0.28
38
12
43
14
76.0%
75.4%
1.8E−10
1.6E−07
50
57


CDC25A
CDKN2A
0.28
39
11
45
12
78.0%
79.0%
2.7E−08
0.0101
50
57


ANGPT1
VEGF
0.27
39
11
44
13
78.0%
77.2%
0.0011
0.0004
50
57


BAX
IL18
0.27
39
11
44
13
78.0%
77.2%
0.0004
2.6E−10
50
57


APAF1
VEGF
0.27
39
11
43
14
78.0%
75.4%
0.0015
0.0285
50
57


CCNE1
CDC25A
0.27
40
10
46
11
80.0%
80.7%
0.0143
9.2E−08
50
57


S100A4
VHL
0.27
38
12
43
14
76.0%
75.4%
3.2E−05
3.0E−10
50
57


NRAS
PCNA
0.27
38
12
43
14
76.0%
75.4%
4.0E−09
0.0057
50
57


CFLAR
G1P3
0.27
38
12
43
14
76.0%
75.4%
4.9E−07
0.0248
50
57


NRAS
TNFRSF1A
0.27
38
12
44
13
76.0%
77.2%
0.0033
0.0068
50
57


IL1B
NRAS
0.27
40
10
46
11
80.0%
80.7%
0.0070
0.0018
50
57


IL1B
VEGF
0.27
40
10
44
13
80.0%
77.2%
0.0020
0.0018
50
57


NRAS
VEGF
0.27
39
11
44
13
78.0%
77.2%
0.0021
0.0074
50
57


ATM
CDC25A
0.27
38
12
44
13
76.0%
77.2%
0.0203
1.4E−08
50
57


CDK4
CFLAR
0.27
39
11
44
13
78.0%
77.2%
0.0319
3.5E−10
50
57


IL18
TNFRSF10A
0.27
39
11
44
13
78.0%
77.2%
3.5E−10
0.0008
50
57


TNFRSF1A
VEGF
0.27
41
9
44
13
82.0%
77.2%
0.0023
0.0039
50
57


ANGPT1
IL18
0.27
38
12
43
14
76.0%
75.4%
0.0008
0.0007
50
57


CFLAR
TNFRSF10B
0.26
39
11
44
13
78.0%
77.2%
1.4E−09
0.0378
50
57


CASP8
VHL
0.26
39
11
44
12
78.0%
78.6%
3.8E−05
4.8E−10
50
56


TNFRSF6

0.26
39
11
45
12
78.0%
79.0%
4.0E−10

50
57


CFLAR
MSH2
0.26
39
11
44
13
78.0%
77.2%
4.1E−10
0.0384
50
57


PLAUR

0.26
39
11
45
12
78.0%
79.0%
4.1E−10

50
57


ANGPT1
CFLAR
0.26
38
12
43
14
76.0%
75.4%
0.0421
0.0009
50
57


BAD
TP53
0.26
39
11
45
12
78.0%
79.0%
1.0E−06
4.8E−10
50
57


CDC25A
SKI
0.26
39
11
44
13
78.0%
77.2%
2.0E−08
0.0284
50
57


CDK4
TNF
0.26
38
12
45
12
76.0%
79.0%
1.6E−06
5.1E−10
50
57


ATM
NRAS
0.26
41
9
44
13
82.0%
77.2%
0.0135
2.3E−08
50
57


IL8
TNFRSF1A
0.26
39
11
43
14
78.0%
75.4%
0.0076
8.4E−10
50
57


S100A4
TNFRSF1A
0.26
40
10
46
11
80.0%
80.7%
0.0079
8.0E−10
50
57


AKT1
BAD
0.26
41
9
43
13
82.0%
76.8%
8.8E−10
1.7E−06
50
56


IL18
TNFRSF1A
0.26
42
8
46
11
84.0%
80.7%
0.0088
0.0017
50
57


CDK4
IL18
0.25
39
11
44
13
78.0%
77.2%
0.0021
9.4E−10
50
57


IL18
NRAS
0.25
38
12
43
14
76.0%
75.4%
0.0236
0.0022
50
57


ATM
TNFRSF10A
0.25
38
12
43
14
76.0%
75.4%
1.0E−09
4.2E−08
50
57


FGFR2
NRAS
0.25
38
12
43
14
76.0%
75.4%
0.0312
1.2E−09
50
57


IL18
IL1B
0.25
39
11
43
14
78.0%
75.4%
0.0080
0.0030
50
57


BAX
TNFRSF1A
0.25
39
11
44
13
78.0%
77.2%
0.0157
1.7E−09
50
57


ANGPT1
PTCH1
0.25
39
11
43
14
78.0%
75.4%
1.2E−05
0.0029
50
57


ICAM1

0.25
39
11
46
11
78.0%
80.7%
1.4E−09

50
57


ANGPT1
TNFRSF1A
0.25
38
12
43
14
76.0%
75.4%
0.0177
0.0031
50
57


IL8
VEGF
0.25
40
10
45
12
80.0%
79.0%
0.0119
2.1E−09
50
57


ANGPT1
G1P3
0.25
38
12
44
13
76.0%
77.2%
3.2E−06
0.0039
50
57


IL18
MSH2
0.24
38
12
43
14
76.0%
75.4%
1.8E−09
0.0044
50
57


CDK2

0.24
38
12
43
14
76.0%
75.4%
1.9E−09

50
57


IL18
MYCL1
0.24
39
11
44
13
78.0%
77.2%
2.2E−09
0.0047
50
57


ABL2
ANGPT1
0.24
38
12
43
14
76.0%
75.4%
0.0045
0.0002
50
57


ANGPT1
RHOC
0.24
41
9
45
12
82.0%
79.0%
2.4E−06
0.0048
50
57


TNFRSF10A
TNFRSF1A
0.24
39
11
43
14
78.0%
75.4%
0.0349
2.6E−09
50
57


BAX
IL1B
0.24
38
12
43
14
76.0%
75.4%
0.0194
3.7E−09
50
57


RHOC
TNFRSF1A
0.24
39
11
44
13
78.0%
77.2%
0.0441
3.7E−06
50
57


CDK5
TNFRSF1A
0.24
39
11
44
13
78.0%
77.2%
0.0490
0.0002
50
57


IL1B
PTCH1
0.24
39
11
44
13
78.0%
77.2%
3.3E−05
0.0252
50
57


CFLAR

0.24
38
12
44
13
76.0%
77.2%
3.6E−09

50
57


ANGPT1
TNF
0.23
39
11
44
13
78.0%
77.2%
1.5E−05
0.0107
50
57


ANGPT1
ERBB2
0.23
40
10
44
13
80.0%
77.2%
2.0E−06
0.0110
50
57


CDK5
IL1B
0.23
39
11
44
13
78.0%
77.2%
0.0360
0.0003
50
57


VEGF
VHL
0.23
38
12
43
14
76.0%
75.4%
0.0007
0.0402
50
57


CDK5
VEGF
0.23
38
12
44
13
76.0%
77.2%
0.0428
0.0004
50
57


CDC25A

0.23
40
10
45
12
80.0%
79.0%
5.3E−09

50
57


ANGPT1
SRC
0.23
39
11
43
13
78.0%
76.8%
3.8E−05
0.0099
50
56


IL1B
TNFRSF10B
0.23
39
11
43
14
78.0%
75.4%
2.2E−08
0.0467
50
57


CASP8
CDK5
0.23
40
10
45
11
80.0%
80.4%
0.0003
7.2E−09
50
56


ABL1
BAD
0.23
39
11
43
14
78.0%
75.4%
8.2E−09
3.1E−06
50
57


ANGPT1
SKIL
0.22
38
12
43
14
76.0%
75.4%
0.0002
0.0287
50
57


ANGPT1
BCL2
0.22
38
12
43
14
76.0%
75.4%
1.1E−05
0.0316
50
57


IL18
PTCH1
0.22
39
11
44
13
78.0%
77.2%
0.0001
0.0394
50
57


G1P3
IL18
0.22
39
11
44
13
78.0%
77.2%
0.0473
2.9E−05
50
57


IL8
VHL
0.21
38
12
43
14
76.0%
75.4%
0.0037
3.1E−08
50
57


TNFRSF1A

0.21
39
11
44
13
78.0%
77.2%
2.5E−08

50
57


AKT1
TNFRSF10A
0.19
39
11
43
13
78.0%
76.8%
1.1E−07
0.0002
50
56


IL18

0.19
38
12
44
13
76.0%
77.2%
1.2E−07

50
57


PCNA
VHL
0.19
38
12
43
14
76.0%
75.4%
0.0251
2.2E−06
50
57


BAX
SRC
0.19
38
12
43
13
76.0%
76.8%
0.0012
2.2E−07
50
56


ATM
VHL
0.18
39
11
44
13
78.0%
77.2%
0.0460
1.0E−05
50
57


IL8
TNF
0.15
38
12
44
13
76.0%
77.2%
0.0077
2.3E−06
50
57


ITGA1
SRC
0.15
38
12
43
13
76.0%
76.8%
0.0288
0.0093
50
56


CDK5

0.14
38
12
44
13
76.0%
77.2%
3.7E−06

50
57


CASP8
TNF
0.14
38
12
43
13
76.0%
76.8%
0.0149
4.9E−06
50
56


CCNE1
SRC
0.14
39
11
43
13
78.0%
76.8%
0.0440
0.0017
50
56


ITGA1
RHOC
0.14
39
11
43
14
78.0%
75.4%
0.0089
0.0239
50
57


G1P3
TP53
0.14
39
11
45
12
78.0%
79.0%
0.0242
0.0187
50
57


BCL2
G1P3
0.14
38
12
43
14
76.0%
75.4%
0.0195
0.0091
50
57





















TABLE 3H








Prostate Cancer
Normals
Sum



Group Size
53.3%
46.7%
100%



N =
57
50
107



Gene
Mean
Mean
p-val





















BRAF
16.4
17.6
0



E2F1
20.1
21.1
0



EGR1
19.3
21.0
0



IFITM1
8.4
9.9
0



RB1
17.0
18.0
0



SOCS1
16.7
17.6
0



BRCA1
20.8
22.2
1.1E−16



CDKN1A
16.2
17.4
4.4E−16



NME4
17.0
18.0
6.7E−16



PTEN
13.5
14.5
1.2E−15



MMP9
13.9
16.1
1.6E−15



NOTCH2
15.8
17.1
1.6E−15



THBS1
17.7
19.4
3.1E−15



SERPINE1
21.0
22.6
4.8E−15



TGFB1
12.6
13.5
1.1E−14



TIMP1
14.2
15.2
1.2E−14



RHOA
11.5
12.3
4.2E−14



SMAD4
16.9
17.6
3.5E−12



NFKB1
16.6
17.6
1.3E−11



SEMA4D
14.3
15.1
8.0E−11



FOS
15.4
16.4
8.4E−11



ITGB1
14.5
15.3
1.0E−10



TNFRSF6
16.1
16.8
4.0E−10



PLAUR
14.9
15.9
4.1E−10



ICAM1
17.1
18.0
1.4E−09



CDK2
19.2
20.0
1.9E−09



APAF1
16.8
17.6
2.7E−09



CFLAR
14.5
15.3
3.6E−09



CDC25A
22.9
24.3
5.3E−09



NRAS
16.7
17.3
1.3E−08



TNFRSF1A
15.2
16.0
2.5E−08



VEGF
22.1
23.1
4.2E−08



IL1B
15.8
16.7
4.6E−08



IL18
21.1
21.8
1.2E−07



ANGPT1
20.0
20.9
1.3E−07



VHL
17.2
17.7
1.9E−06



ABL2
20.1
20.7
2.6E−06



CDK5
18.4
19.0
3.7E−06



SKIL
17.6
18.1
1.4E−05



RAF1
14.3
14.9
1.4E−05



PTCH1
20.2
21.0
2.6E−05



SRC
18.5
19.1
4.2E−05



NOTCH2
15.8
17.1
1.6E−15



THBS1
17.7
19.4
3.1E−15



SERPINE1
21.0
22.6
4.8E−15



TNF
18.2
18.8
7.5E−05



ITGA1
20.9
21.6
8.7E−05



HRAS
20.7
20.1
0.0001



TP53
16.4
17.0
0.0001



AKT1
15.2
15.6
0.0001



G1P3
15.4
16.1
0.0001



RHOC
16.3
16.8
0.0002



BCL2
17.2
17.7
0.0003



ERBB2
22.5
23.1
0.0006



ABL1
18.4
18.9
0.0007



CCNE1
23.0
23.6
0.0007



IGFBP3
21.9
22.7
0.0009



ITGAE
23.5
24.3
0.0013



MYC
17.8
18.3
0.0018



CDKN2A
21.0
21.5
0.0018



NME1
19.7
19.2
0.0020



SKI
17.6
17.9
0.0064



ATM
16.5
16.9
0.0072



PCNA
18.0
18.3
0.0210



IFNG
22.9
23.5
0.0223



JUN
21.3
21.6
0.0809



TNFRSF10B
17.3
17.5
0.1155



ITGA3
22.2
22.4
0.1934



WNT1
21.8
22.0
0.2734



BAX
15.8
15.9
0.4555



IL8
21.8
21.6
0.4854



S100A4
13.4
13.5
0.5549



MYCL1
18.8
18.9
0.5957



GZMA
17.8
17.7
0.6188



BAD
18.3
18.3
0.7254



CDK4
17.9
17.9
0.8231



FGFR2
23.6
23.5
0.8353



CASP8
15.1
15.1
0.8627



MSH2
18.2
18.2
0.8759



TNFRSF10A
21.0
21.0
0.8930























TABLE 3I











Predicted








probability








of prostate


Patient ID
Group
BAD
RB1
logit
odds
cancer





















DF065
Cancer
18.92
16.89
27.08
5.8E+11
1.0000


DF288517
Cancer
19.61
17.61
26.14
2.3E+11
1.0000


DF099
Cancer
19.49
17.54
24.98
7.0E+10
1.0000


DF126
Cancer
18.02
16.13
24.73
5.5E+10
1.0000


DF078
Cancer
17.76
15.89
24.44
4.1E+10
1.0000


DF105
Cancer
18.02
16.24
22.33
5.0E+09
1.0000


DF250157
Cancer
18.75
16.98
21.64
2.5E+09
1.0000


DF063
Cancer
19.37
17.59
21.53
2.2E+09
1.0000


DF060
Cancer
18.66
16.93
20.88
1.2E+09
1.0000


DF017
Cancer
18.80
17.09
20.43
7.5E+08
1.0000


DF056
Cancer
19.73
18.01
19.96
4.7E+08
1.0000


DF007
Cancer
18.48
16.83
19.30
2.4E+08
1.0000


DF155
Cancer
18.47
16.90
17.75
5.1E+07
1.0000


DF128
Cancer
18.33
16.76
17.66
4.7E+07
1.0000


DF030
Cancer
17.81
16.26
17.40
3.6E+07
1.0000


DF283908
Cancer
18.05
16.53
16.85
2.1E+07
1.0000


DF103398
Cancer
17.75
16.27
16.24
1.1E+07
1.0000


DF057
Cancer
18.45
16.95
16.11
1.0E+07
1.0000


DF145
Cancer
17.67
16.20
15.97
8.6E+06
1.0000


DF047
Cancer
18.11
16.64
15.80
7.3E+06
1.0000


DF072
Cancer
18.13
16.68
15.28
4.3E+06
1.0000


DF062
Cancer
18.60
17.15
14.87
2.9E+06
1.0000


DF113
Cancer
19.72
18.29
13.94
1.1E+06
1.0000


DF015
Cancer
18.52
17.16
13.24
5.6E+05
1.0000


DF119
Cancer
18.16
16.82
13.05
4.7E+05
1.0000


DF085
Cancer
17.96
16.66
12.23
2.1E+05
1.0000


DF059
Cancer
18.52
17.22
12.00
1.6E+05
1.0000


DF046
Cancer
18.33
17.04
11.89
1.5E+05
1.0000


DF031
Cancer
18.20
16.93
11.55
1.0E+05
1.0000


DF279014
Cancer
18.29
17.04
10.93
5.6E+04
1.0000


DF118
Cancer
17.84
16.61
10.73
4.6E+04
1.0000


DF044
Cancer
18.81
17.56
10.68
4.3E+04
1.0000


DF074
Cancer
17.58
16.37
10.54
3.8E+04
1.0000


DF069
Cancer
18.27
17.08
9.81
1.8E+04
0.9999


DF125
Cancer
18.10
16.93
9.40
1.2E+04
0.9999


DF290701
Cancer
17.96
16.82
9.01
8.2E+03
0.9999


DF50796156
Cancer
18.12
16.98
8.88
7.2E+03
0.9999


DF088
Cancer
17.90
16.80
8.13
3.4E+03
0.9997


DF032
Cancer
19.16
18.03
7.80
2.4E+03
0.9996


DF137
Cancer
17.78
16.70
7.56
1.9E+03
0.9995


DF129
Cancer
17.50
16.44
7.33
1.5E+03
0.9993


DF130
Cancer
17.60
16.60
6.27
5.3E+02
0.9981


DF187129
Cancer
17.88
16.88
5.98
3.9E+02
0.9975


DF070
Cancer
18.27
17.27
5.80
3.3E+02
0.9970


DF066
Cancer
18.10
17.12
5.45
2.3E+02
0.9957


DF026
Cancer
18.59
17.61
5.04
1.6E+02
0.9936


DF001
Cancer
17.94
17.00
4.80
1.2E+02
0.9918


DF187888
Cancer
17.92
17.00
4.34
7.6E+01
0.9871


DF297549
Cancer
18.56
17.67
3.27
2.6E+01
0.9633


DF010
Cancer
18.57
17.69
3.03
2.1E+01
0.9539


DF029
Cancer
17.54
16.70
2.84
1.7E+01
0.9449


167-HCG
Normals
17.89
17.06
2.50
1.2E+01
0.9238


DF174435
Cancer
18.13
17.30
2.18
8.8E+00
0.8985


DF238564
Cancer
17.80
16.99
2.09
8.1E+00
0.8898


DF137633
Cancer
17.33
16.53
2.06
7.8E+00
0.8869


DF006
Cancer
18.86
18.07
0.85
2.3E+00
0.6996


DF009
Cancer
17.67
16.92
0.71
2.0E+00
0.6702


236-HCG
Normals
18.03
17.31
0.03
1.0E+00
0.5064


DF068
Cancer
17.90
17.23
−0.94
3.9E−01
0.2811


110-HCG
Normals
18.10
17.48
−2.10
1.2E−01
0.1096


243-HCG
Normals
18.18
17.57
−2.35
9.6E−02
0.0872


154-HCG
Normals
18.81
18.18
−2.52
8.1E−02
0.0747


265-HCG
Normals
17.97
17.39
−2.86
5.7E−02
0.0543


157-HCG
Normals
18.19
17.63
−3.47
3.1E−02
0.0301


161-HCG
Normals
18.17
17.63
−3.84
2.2E−02
0.0211


133-HCG
Normals
18.21
17.68
−4.03
1.8E−02
0.0174


062-HCG
Normals
17.84
17.33
−4.39
1.2E−02
0.0123


152-HCG
Normals
18.43
17.93
−4.87
7.7E−03
0.0076


074-HCG
Normals
18.81
18.33
−5.56
3.9E−03
0.0038


269-HCG
Normals
18.45
18.00
−6.05
2.4E−03
0.0024


220-HCG
Normals
18.33
17.91
−6.60
1.4E−03
0.0014


083-HCG
Normals
18.49
18.08
−6.87
1.0E−03
0.0010


239-HCG
Normals
17.63
17.29
−7.77
4.2E−04
0.0004


267-HCG
Normals
18.10
17.76
−8.12
3.0E−04
0.0003


145-HCG
Normals
18.73
18.39
−8.35
2.4E−04
0.0002


257-HCG
Normals
18.08
17.78
−8.87
1.4E−04
0.0001


085-HCG
Normals
18.48
18.16
−8.88
1.4E−04
0.0001


057-HCG
Normals
17.45
17.17
−8.95
1.3E−04
0.0001


150-HCG
Normals
18.57
18.30
−9.80
5.5E−05
0.0001


142-HCG
Normals
18.43
18.17
−9.81
5.5E−05
0.0001


086-HCG
Normals
18.05
17.81
−10.22
3.6E−05
0.0000


151-HCG
Normals
18.52
18.27
−10.28
3.4E−05
0.0000


033-HCG
Normals
18.23
18.02
−10.72
2.2E−05
0.0000


136-HCG
Normals
17.79
17.61
−11.16
1.4E−05
0.0000


056-HCG
Normals
18.69
18.48
−11.18
1.4E−05
0.0000


155-HCG
Normals
17.90
17.72
−11.36
1.2E−05
0.0000


158-HCG
Normals
18.40
18.22
−11.56
9.5E−06
0.0000


078-HCG
Normals
18.12
17.95
−11.64
8.8E−06
0.0000


061-HCG
Normals
18.05
17.89
−11.85
7.1E−06
0.0000


176-HCG
Normals
18.38
18.25
−12.52
3.7E−06
0.0000


156-HCG
Normals
18.23
18.11
−12.80
2.8E−06
0.0000


248-HCG
Normals
19.26
19.12
−13.00
2.3E−06
0.0000


100-HCG
Normals
18.15
18.05
−13.15
1.9E−06
0.0000


147-HCG
Normals
18.19
18.15
−14.53
4.9E−07
0.0000


031-HCG
Normals
17.69
17.69
−14.88
3.4E−07
0.0000


138-HCG
Normals
18.24
18.27
−15.99
1.1E−07
0.0000


180-HCG
Normals
18.32
18.37
−16.47
7.0E−08
0.0000


029-HCG
Normals
18.47
18.57
−17.54
2.4E−08
0.0000


245-HCG
Normals
18.23
18.36
−18.01
1.5E−08
0.0000


109-HCG
Normals
18.77
18.91
−18.46
9.6E−09
0.0000


119-HCG
Normals
18.27
18.43
−18.67
7.8E−09
0.0000


253-HCG
Normals
18.46
18.65
−19.28
4.3E−09
0.0000


045-HCG
Normals
18.00
18.22
−19.73
2.7E−09
0.0000


030-HCG
Normals
17.94
18.20
−20.48
1.3E−09
0.0000


252-HCG
Normals
17.89
18.18
−21.27
5.8E−10
0.0000


246-HCG
Normals
18.83
19.16
−22.56
1.6E−10
0.0000


249-HCG
Normals
18.33
18.70
−23.09
9.4E−11
0.0000


























TABLE 4A

















total used












(excludes








Normal
Prostate


missing)























N =
50
15



#


2-gene models and
Entropy
#normal
#normal
#pc
#pc
Correct
Correct


#
dis-


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
normals
ease






















ALOX5
RAF1
0.87
48
2
15
0
96.0%
100.0%
1.6E−12
0.0004
50
15


EP300
RAF1
0.85
49
1
14
1
98.0%
93.3%
2.8E−12
0.0005
50
15


ALOX5
EGR1
0.85
50
0
14
1
100.0%
93.3%
0.0082
0.0010
50
15


ALOX5
CEBPB
0.84
50
0
14
1
100.0%
93.3%
5.5E−11
0.0011
50
15


EGR1
TNFRSF6
0.84
48
2
14
1
96.0%
93.3%
1.0E−07
0.0121
50
15


ALOX5
EGR2
0.83
48
2
14
1
96.0%
93.3%
1.7E−06
0.0016
50
15


CREBBP
EP300
0.82
50
0
14
1
100.0%
93.3%
0.0017
9.2E−06
50
15


EP300
NR4A2
0.81
49
1
14
1
98.0%
93.3%
2.9E−12
0.0023
50
15


EGR2
EP300
0.78
48
2
14
1
96.0%
93.3%
0.0065
1.0E−05
50
15


ALOX5
S100A6
0.78
47
3
14
1
94.0%
93.3%
1.5E−13
0.0113
50
15


EP300
S100A6
0.78
50
0
14
1
100.0%
93.3%
1.5E−13
0.0069
50
15


EP300
MAP2K1
0.78
47
3
14
1
94.0%
93.3%
1.2E−09
0.0078
50
15


EP300
NAB2
0.78
49
1
14
1
98.0%
93.3%
4.3E−13
0.0084
50
15


EP300
JUN
0.77
46
4
14
1
92.0%
93.3%
2.7E−12
0.0099
50
15


ALOX5
NR4A2
0.77
48
2
14
1
96.0%
93.3%
1.2E−11
0.0183
50
15


ALOX5
CDKN2D
0.77
48
2
14
1
96.0%
93.3%
1.3E−12
0.0197
50
15


ALOX5
FOS
0.76
47
3
14
1
94.0%
93.3%
1.6E−08
0.0290
50
15


NFATC2
SMAD3
0.76
50
0
14
1
100.0%
93.3%
0.0003
6.5E−10
50
15


ALOX5
SMAD3
0.76
49
1
14
1
98.0%
93.3%
0.0003
0.0352
50
15


CEBPB
EP300
0.75
50
0
14
1
100.0%
93.3%
0.0208
1.4E−09
50
15


ALOX5
CREBBP
0.75
47
3
14
1
94.0%
93.3%
0.0001
0.0433
50
15


EGR1

0.75
46
4
14
1
92.0%
93.3%
4.6E−13

50
15


EGR2
SMAD3
0.72
45
5
14
1
90.0%
93.3%
0.0011
9.4E−05
50
15


EGR2
THBS1
0.71
45
5
13
2
90.0%
86.7%
2.2E−05
0.0001
50
15


EGR2
NFKB1
0.71
48
2
15
0
96.0%
100.0%
0.0004
0.0002
50
15


CREBBP
EGR2
0.70
45
5
14
1
90.0%
93.3%
0.0002
0.0006
50
15


CREBBP
RAF1
0.70
45
5
14
1
90.0%
93.3%
6.1E−10
0.0007
50
15


EGR2
PLAU
0.70
44
6
14
1
88.0%
93.3%
3.6E−07
0.0003
50
15


EGR2
TGFB1
0.70
48
2
14
1
96.0%
93.3%
0.0009
0.0003
50
15


ALOX5

0.69
42
8
14
1
84.0%
93.3%
3.1E−12

50
15


EGR2
MAPK1
0.69
47
3
14
1
94.0%
93.3%
0.0014
0.0003
50
15


JUN
TOPBP1
0.68
47
3
13
2
94.0%
86.7%
0.0006
7.2E−11
50
15


EGR2
TNFRSF6
0.68
47
3
14
1
94.0%
93.3%
3.1E−05
0.0005
50
15


EP300

0.68
44
6
14
1
88.0%
93.3%
5.2E−12

50
15


PTEN
S100A6
0.68
47
3
14
1
94.0%
93.3%
7.0E−12
3.0E−05
50
15


JUN
SMAD3
0.68
47
3
14
1
94.0%
93.3%
0.0071
9.0E−11
50
15


EGR2
TOPBP1
0.67
45
5
14
1
90.0%
93.3%
0.0009
0.0007
50
15


SMAD3
TNFRSF6
0.67
46
4
14
1
92.0%
93.3%
4.5E−05
0.0092
50
15


EGR2
SERPINE1
0.67
46
4
14
1
92.0%
93.3%
9.8E−07
0.0008
50
15


EGR2
ICAM1
0.66
45
5
14
1
90.0%
93.3%
0.0002
0.0009
50
15


CREBBP
S100A6
0.66
47
3
14
1
94.0%
93.3%
1.0E−11
0.0029
50
15


EGR2
PDGFA
0.66
47
3
14
1
94.0%
93.3%
2.7E−05
0.0009
50
15


MAPK1
SMAD3
0.66
48
2
14
1
96.0%
93.3%
0.0142
0.0051
50
15


MAP2K1
TOPBP1
0.66
46
4
14
1
92.0%
93.3%
0.0015
9.6E−08
50
15


S100A6
TOPBP1
0.66
45
5
14
1
90.0%
93.3%
0.0016
1.4E−11
50
15


EGR2
PTEN
0.66
46
4
14
1
92.0%
93.3%
6.0E−05
0.0012
50
15


MAPK1
RAF1
0.65
45
5
14
1
90.0%
93.3%
3.5E−09
0.0058
50
15


PLAU
SMAD3
0.65
48
2
14
1
96.0%
93.3%
0.0177
1.8E−06
50
15


FOS
SMAD3
0.65
48
2
14
1
96.0%
93.3%
0.0187
8.6E−07
50
15


PTEN
SMAD3
0.65
46
4
14
1
92.0%
93.3%
0.0200
7.8E−05
50
15


NAB2
SMAD3
0.64
45
5
14
1
90.0%
93.3%
0.0251
5.2E−11
50
15


CREBBP
SMAD3
0.64
46
4
14
1
92.0%
93.3%
0.0260
0.0066
50
15


MAPK1
S100A6
0.64
46
4
14
1
92.0%
93.3%
2.5E−11
0.0101
50
15


EGR2
EGR3
0.64
47
3
14
1
94.0%
93.3%
8.3E−07
0.0023
50
15


THBS1
TNFRSF6
0.64
45
5
14
1
90.0%
93.3%
0.0001
0.0004
50
15


PDGFA
TNFRSF6
0.64
45
5
13
2
90.0%
86.7%
0.0002
7.4E−05
50
15


ICAM1
SMAD3
0.63
47
3
14
1
94.0%
93.3%
0.0374
0.0007
50
15


EGR2
TP53
0.63
46
4
14
1
92.0%
93.3%
0.0002
0.0029
50
15


RAF1
TOPBP1
0.63
44
6
13
2
88.0%
86.7%
0.0043
8.3E−09
50
15


SERPINE1
SMAD3
0.63
46
4
14
1
92.0%
93.3%
0.0448
4.0E−06
50
15


JUN
NFKB1
0.62
47
3
14
1
94.0%
93.3%
0.0138
6.3E−10
50
15


RAF1
TGFB1
0.62
46
4
13
2
92.0%
86.7%
0.0167
1.2E−08
50
15


CREBBP
THBS1
0.62
46
4
14
1
92.0%
93.3%
0.0007
0.0163
50
15


PTEN
THBS1
0.62
45
5
13
2
90.0%
86.7%
0.0008
0.0003
50
15


EGR3
PDGFA
0.62
43
7
14
1
86.0%
93.3%
0.0001
1.9E−06
50
15


NAB2
TOPBP1
0.62
44
6
14
1
88.0%
93.3%
0.0075
1.4E−10
50
15


CREBBP
PDGFA
0.62
46
4
13
2
92.0%
86.7%
0.0002
0.0192
50
15


EGR3
NFKB1
0.62
47
3
13
2
94.0%
86.7%
0.0174
2.0E−06
50
15


SERPINE1
TOPBP1
0.61
45
5
14
1
90.0%
93.3%
0.0080
7.1E−06
50
15


MAPK1
THBS1
0.61
44
6
14
1
88.0%
93.3%
0.0009
0.0288
50
15


PDGFA
TOPBP1
0.61
45
5
14
1
90.0%
93.3%
0.0086
0.0002
50
15


S100A6
TNFRSF6
0.61
45
5
13
2
90.0%
86.7%
0.0004
8.0E−11
50
15


CEBPB
CREBBP
0.61
43
7
14
1
86.0%
93.3%
0.0276
2.8E−07
50
15


MAPK1
NR4A2
0.60
48
2
13
2
96.0%
86.7%
4.7E−09
0.0423
50
15


CREBBP
NAB2
0.60
45
5
13
2
90.0%
86.7%
2.1E−10
0.0307
50
15


S100A6
TGFB1
0.60
47
3
13
2
94.0%
86.7%
0.0322
9.0E−11
50
15


MAPK1
PDGFA
0.60
45
5
13
2
90.0%
86.7%
0.0002
0.0439
50
15


EGR3
TGFB1
0.60
47
3
13
2
94.0%
86.7%
0.0368
3.4E−06
50
15


JUN
TGFB1
0.60
44
6
13
2
88.0%
86.7%
0.0408
1.4E−09
50
15


PDGFA
PTEN
0.60
46
4
13
2
92.0%
86.7%
0.0005
0.0003
50
15


EGR2
FOS
0.60
45
5
13
2
90.0%
86.7%
6.4E−06
0.0123
50
15


NFKB1
S100A6
0.60
47
3
13
2
94.0%
86.7%
1.2E−10
0.0387
50
15


NAB2
NFKB1
0.60
46
4
13
2
92.0%
86.7%
0.0396
2.9E−10
50
15


CREBBP
NR4A2
0.59
47
3
13
2
94.0%
86.7%
6.8E−09
0.0468
50
15


NFKB1
THBS1
0.59
47
3
13
2
94.0%
86.7%
0.0020
0.0422
50
15


PTEN
RAF1
0.59
46
4
13
2
92.0%
86.7%
3.9E−08
0.0008
50
15


THBS1
TOPBP1
0.59
43
7
14
1
86.0%
93.3%
0.0240
0.0026
50
15


NR4A2
TOPBP1
0.58
43
7
13
2
86.0%
86.7%
0.0317
1.1E−08
50
15


ICAM1
S100A6
0.58
47
3
14
1
94.0%
93.3%
2.2E−10
0.0052
50
15


FOS
THBS1
0.58
47
3
13
2
94.0%
86.7%
0.0036
1.2E−05
50
15


FOS
PDGFA
0.58
44
6
13
2
88.0%
86.7%
0.0006
1.2E−05
50
15


EGR3
THBS1
0.58
48
2
14
1
96.0%
93.3%
0.0037
8.0E−06
50
15


SERPINE1
TNFRSF6
0.58
44
6
13
2
88.0%
86.7%
0.0014
2.8E−05
50
15


SMAD3

0.57
45
5
13
2
90.0%
86.7%
2.3E−10

50
15


EGR2
NAB1
0.57
44
6
13
2
88.0%
86.7%
8.1E−06
0.0356
50
15


ICAM1
PDGFA
0.57
45
5
13
2
90.0%
86.7%
0.0010
0.0090
50
15


PDGFA
PLAU
0.56
43
7
13
2
86.0%
86.7%
4.7E−05
0.0011
50
15


NAB2
TP53
0.56
46
4
13
2
92.0%
86.7%
0.0030
1.0E−09
50
15


SRC
TNFRSF6
0.56
46
4
13
2
92.0%
86.7%
0.0026
0.0002
50
15


ICAM1
THBS1
0.56
45
5
13
2
90.0%
86.7%
0.0077
0.0119
50
15


NAB1
PDGFA
0.56
44
6
13
2
88.0%
86.7%
0.0014
1.2E−05
50
15


PLAU
SRC
0.56
41
9
12
3
82.0%
80.0%
0.0002
6.3E−05
50
15


PLAU
TP53
0.55
44
6
13
2
88.0%
86.7%
0.0041
7.1E−05
50
15


TNFRSF6
TP53
0.55
45
5
13
2
90.0%
86.7%
0.0049
0.0043
50
15


MAPK1

0.55
43
7
13
2
86.0%
86.7%
6.0E−10

50
15


NAB1
THBS1
0.55
45
5
13
2
90.0%
86.7%
0.0131
2.0E−05
50
15


EGR3
SRC
0.54
39
11
13
2
78.0%
86.7%
0.0004
3.0E−05
50
15


EGR3
ICAM1
0.54
46
4
13
2
92.0%
86.7%
0.0246
3.2E−05
50
15


ICAM1
RAF1
0.54
48
2
13
2
96.0%
86.7%
2.3E−07
0.0261
50
15


TGFB1

0.54
44
6
13
2
88.0%
86.7%
7.7E−10

50
15


ICAM1
SERPINE1
0.54
43
7
13
2
86.0%
86.7%
0.0001
0.0265
50
15


CREBBP

0.54
45
5
13
2
90.0%
86.7%
8.0E−10

50
15


PTEN
SRC
0.54
46
4
13
2
92.0%
86.7%
0.0005
0.0057
50
15


NFKB1

0.53
44
6
13
2
88.0%
86.7%
8.9E−10

50
15


PLAU
THBS1
0.53
43
7
13
2
86.0%
86.7%
0.0263
0.0002
50
15


THBS1
TP53
0.53
45
5
13
2
90.0%
86.7%
0.0111
0.0272
50
15


EGR3
TP53
0.53
46
4
14
1
92.0%
93.3%
0.0114
5.3E−05
50
15


FOS
S100A6
0.52
40
10
13
2
80.0%
86.7%
1.6E−09
9.0E−05
50
15


PDGFA
TP53
0.52
45
5
13
2
90.0%
86.7%
0.0157
0.0064
50
15


TOPBP1

0.51
44
6
13
2
88.0%
86.7%
1.9E−09

50
15


PTEN
TP53
0.51
45
5
13
2
90.0%
86.7%
0.0194
0.0140
50
15


NAB1
S100A6
0.51
44
6
13
2
88.0%
86.7%
3.0E−09
8.2E−05
50
15


EGR2

0.51
45
5
13
2
90.0%
86.7%
2.4E−09

50
15


FOS
TP53
0.50
45
5
13
2
90.0%
86.7%
0.0284
0.0002
50
15


EGR3
SERPINE1
0.50
45
5
13
2
90.0%
86.7%
0.0005
0.0001
50
15


FOS
SRC
0.50
40
10
13
2
80.0%
86.7%
0.0021
0.0002
50
15


PLAU
SERPINE1
0.50
41
9
13
2
82.0%
86.7%
0.0006
0.0006
50
15


PTEN
SERPINE1
0.50
42
8
13
2
84.0%
86.7%
0.0006
0.0271
50
15


JUN
TP53
0.50
46
4
14
1
92.0%
93.3%
0.0397
5.9E−08
50
15


EGR3
PTEN
0.49
40
10
13
2
80.0%
86.7%
0.0290
0.0002
50
15


SERPINE1
TP53
0.49
46
4
13
2
92.0%
86.7%
0.0428
0.0006
50
15


CEBPB
PDGFA
0.49
45
5
13
2
90.0%
86.7%
0.0195
2.0E−05
50
15


EGR3
TNFRSF6
0.49
43
7
13
2
86.0%
86.7%
0.0449
0.0002
50
15


NAB1
SERPINE1
0.48
42
8
13
2
84.0%
86.7%
0.0009
0.0002
50
15


MAP2K1
PDGFA
0.47
44
6
13
2
88.0%
86.7%
0.0424
8.9E−05
50
15


ICAM1

0.47
44
6
13
2
88.0%
86.7%
9.8E−09

50
15


THBS1

0.46
46
4
13
2
92.0%
86.7%
1.4E−08

50
15


CCND2
PLAU
0.45
48
2
12
3
96.0%
80.0%
0.0028
3.5E−05
50
15


FOS
SERPINE1
0.44
43
7
12
3
86.0%
80.0%
0.0051
0.0023
50
15


NAB1
SRC
0.44
43
7
13
2
86.0%
86.7%
0.0225
0.0012
50
15


MAP2K1
SERPINE1
0.44
42
8
13
2
84.0%
86.7%
0.0056
0.0003
50
15


NFATC2
PLAU
0.44
42
8
12
3
84.0%
80.0%
0.0060
8.6E−05
50
15


TP53

0.44
46
4
13
2
92.0%
86.7%
3.2E−08

50
15


SERPINE1
SRC
0.43
41
9
12
3
82.0%
80.0%
0.0250
0.0061
50
15


TNFRSF6

0.43
42
8
13
2
84.0%
86.7%
3.7E−08

50
15


PTEN

0.43
47
3
12
3
94.0%
80.0%
4.4E−08

50
15


PLAU
S100A6
0.41
44
6
13
2
88.0%
86.7%
8.6E−08
0.0140
50
15


PDGFA

0.41
42
8
12
3
84.0%
80.0%
7.5E−08

50
15


EGR3
PLAU
0.41
43
7
12
3
86.0%
80.0%
0.0155
0.0041
50
15


NFATC2
SERPINE1
0.41
38
12
12
3
76.0%
80.0%
0.0179
0.0003
50
15


CEBPB
SERPINE1
0.40
42
8
12
3
84.0%
80.0%
0.0216
0.0005
50
15


FOS
NFATC2
0.39
44
6
13
2
88.0%
86.7%
0.0004
0.0125
50
15


MAP2K1
S100A6
0.39
41
9
12
3
82.0%
80.0%
1.8E−07
0.0017
50
15


MAP2K1
PLAU
0.39
42
8
12
3
84.0%
80.0%
0.0339
0.0017
50
15


EGR3
FOS
0.39
44
6
13
2
88.0%
86.7%
0.0174
0.0108
50
15


EGR3
NAB1
0.38
44
6
12
3
88.0%
80.0%
0.0095
0.0130
50
15


CCND2
FOS
0.37
47
3
12
3
94.0%
80.0%
0.0291
0.0007
50
15


CEBPB
S100A6
0.37
42
8
12
3
84.0%
80.0%
4.0E−07
0.0017
50
15


EGR3
MAP2K1
0.37
44
6
12
3
88.0%
80.0%
0.0040
0.0208
50
15


CCND2
EGR3
0.37
42
8
13
2
84.0%
86.7%
0.0224
0.0009
50
15


SRC

0.36
43
7
13
2
86.0%
86.7%
4.6E−07

50
15


EGR3
NFATC2
0.36
44
6
12
3
88.0%
80.0%
0.0015
0.0326
50
15


CEBPB
EGR3
0.35
42
8
12
3
84.0%
80.0%
0.0432
0.0036
50
15


PLAU

0.33
42
8
12
3
84.0%
80.0%
1.6E−06

50
15


CCND2
CEBPB
0.33
46
4
12
3
92.0%
80.0%
0.0094
0.0042
50
15


CEBPB
NFATC2
0.32
42
8
12
3
84.0%
80.0%
0.0070
0.0129
50
15


FOS

0.31
45
5
12
3
90.0%
80.0%
3.6E−06

50
15


EGR3

0.29
40
10
12
3
80.0%
80.0%
5.5E−06

50
15


NAB1

0.29
39
11
12
3
78.0%
80.0%
7.4E−06

50
15


CEBPB

0.23
42
8
12
3
84.0%
80.0%
5.6E−05

50
15


CCND2

0.21
39
11
12
3
78.0%
80.0%
0.0001

50
15





















TABLE 4B








Prostate
Normals
Sum



Group Size
23.1%
76.9%
100%



N =
15
50
65



Gene
Mean
Mean
p-val









EGR1
19.2
21.1
4.6E−13



ALOX5
14.8
16.9
3.1E−12



EP300
16.0
17.6
5.2E−12



SMAD3
17.6
18.9
2.3E−10



MAPK1
14.4
15.4
6.0E−10



TGFB1
12.6
13.5
7.7E−10



CREBBP
14.9
16.2
8.0E−10



NFKB1
16.3
17.6
8.9E−10



TOPBP1
17.6
18.7
1.9E−09



EGR2
22.9
24.5
2.4E−09



ICAM1
16.8
18.0
9.8E−09



THBS1
17.6
19.4
1.4E−08



TP53
15.9
17.0
3.2E−08



TNFRSF6
15.9
16.8
3.7E−08



PTEN
13.6
14.5
4.4E−08



PDGFA
19.7
21.2
7.5E−08



SRC
18.2
19.1
4.6E−07



PLAU
23.5
24.8
1.6E−06



SERPINE1
21.2
22.6
1.7E−06



FOS
15.3
16.4
3.6E−06



EGR3
22.5
23.8
5.5E−06



NAB1
16.8
17.6
7.4E−06



MAP2K1
15.8
16.5
2.6E−05



CEBPB
14.6
15.3
5.6E−05



NFATC2
16.2
17.0
9.9E−05



CCND2
16.1
17.2
0.0001



RAF1
14.3
14.9
0.0009



NR4A2
21.6
22.3
0.0044



JUN
21.1
21.6
0.0204



CDKN2D
15.1
15.3
0.0532



NAB2
20.1
20.3
0.1494



S100A6
14.5
14.4
0.5363























TABLE 4C











Predicted








probability


Patient ID
Group
ALOX5
RAF1
logit
odds
of prostate cancer





















DF126
Cancer
14.03
14.24
11.56
1.0E+05
1.0000


DF060
Cancer
14.14
14.24
10.76
4.7E+04
1.0000


DF125
Cancer
14.37
14.37
9.74
1.7E+04
0.9999


DF069
Cancer
14.85
14.67
7.72
2.2E+03
0.9996


DF128
Cancer
14.33
13.81
6.61
7.5E+02
0.9987


DF017
Cancer
16.24
16.22
6.28
5.3E+02
0.9981


DF062
Cancer
14.88
14.45
6.21
5.0E+02
0.9980


DF129
Cancer
14.09
13.39
6.00
4.0E+02
0.9975


DF085
Cancer
14.54
13.76
4.69
1.1E+02
0.9909


DF070
Cancer
15.40
14.78
4.13
6.2E+01
0.9842


DF130
Cancer
14.45
13.50
3.83
4.6E+01
0.9787


DF105
Cancer
14.81
13.77
2.60
1.3E+01
0.9307


DF030
Cancer
14.72
13.55
1.98
7.3E+00
0.8788


057 EGR
Normals
15.20
14.05
1.26
3.5E+00
0.7788


DF010
Cancer
16.23
15.22
0.29
1.3E+00
0.5726


257-EGR
Normals
15.89
14.65
−0.45
6.4E−01
0.3892


DF029
Cancer
15.44
13.93
−1.30
2.7E−01
0.2146


078 EGR
Normals
16.02
14.52
−2.37
9.4E−02
0.0856


236-EGR
Normals
15.61
13.88
−2.94
5.3E−02
0.0503


154-EGR
Normals
16.26
14.67
−3.25
3.9E−02
0.0372


167-EGR
Normals
15.54
13.72
−3.41
3.3E−02
0.0320


083-EGR
Normals
16.47
14.77
−4.29
1.4E−02
0.0135


155-EGR
Normals
15.96
14.10
−4.38
1.2E−02
0.0123


061-EGR
Normals
16.25
14.42
−4.71
9.0E−03
0.0089


239-EGR
Normals
15.93
13.95
−5.06
6.3E−03
0.0063


136-EGR
Normals
15.99
13.99
−5.26
5.2E−03
0.0052


085 EGR
Normals
17.12
15.44
−5.32
4.9E−03
0.0048


133-EGR
Normals
16.75
14.95
−5.44
4.3E−03
0.0043


150-EGR
Normals
16.74
14.90
−5.64
3.5E−03
0.0035


152-EGR
Normals
16.87
15.07
−5.68
3.4E−03
0.0034


138-EGR
Normals
16.91
15.05
−6.04
2.4E−03
0.0024


220-EGR
Normals
16.35
14.32
−6.09
2.3E−03
0.0023


110-EGR
Normals
16.58
14.62
−6.10
2.2E−03
0.0022


245-EGR
Normals
16.92
15.05
−6.17
2.1E−03
0.0021


161-EGR
Normals
16.68
14.72
−6.19
2.0E−03
0.0020


269-EGR
Normals
16.69
14.72
−6.30
1.8E−03
0.0018


100 EGR
Normals
16.66
14.68
−6.39
1.7E−03
0.0017


157-EGR
Normals
16.82
14.85
−6.51
1.5E−03
0.0015


033-EGR
Normals
16.66
14.63
−6.60
1.4E−03
0.0014


156-EGR
Normals
16.63
14.55
−6.94
9.7E−04
0.0010


062 EGR
Normals
16.78
14.71
−7.15
7.8E−04
0.0008


086-EGR
Normals
16.41
14.20
−7.29
6.8E−04
0.0007


056 EGR
Normals
17.52
15.59
−7.60
5.0E−04
0.0005


074 EGR
Normals
17.50
15.54
−7.68
4.6E−04
0.0005


265-EGR
Normals
16.45
14.18
−7.71
4.5E−04
0.0004


243-EGR
Normals
16.93
14.80
−7.77
4.2E−04
0.0004


142-EGR
Normals
17.10
14.98
−8.00
3.4E−04
0.0003


180-EGR
Normals
17.13
15.01
−8.04
3.2E−04
0.0003


176-EGR
Normals
17.27
15.14
−8.29
2.5E−04
0.0003


145-EGR
Normals
17.13
14.95
−8.38
2.3E−04
0.0002


249-EGR
Normals
17.07
14.81
−8.79
1.5E−04
0.0002


045-EGR
Normals
17.50
15.28
−9.30
9.2E−05
0.0001


158-EGR
Normals
17.27
14.93
−9.57
7.0E−05
0.0001


246-EGR
Normals
17.98
15.85
−9.58
6.9E−05
0.0001


267-EGR
Normals
16.75
14.27
−9.59
6.9E−05
0.0001


030-EGR
Normals
17.45
15.16
−9.62
6.6E−05
0.0001


031-EGR
Normals
17.16
14.76
−9.79
5.6E−05
0.0001


119-EGR
Normals
17.99
15.68
−10.64
2.4E−05
0.0000


253-EGR
Normals
17.73
15.35
−10.68
2.3E−05
0.0000


252-EGR
Normals
17.53
15.06
−10.83
2.0E−05
0.0000


151-EGR
Normals
17.97
15.41
−12.15
5.3E−06
0.0000


248-EGR
Normals
18.21
15.69
−12.34
4.4E−06
0.0000


029-EGR
Normals
18.28
15.76
−12.46
3.9E−06
0.0000


147-EGR
Normals
18.47
15.93
−12.89
2.5E−06
0.0000


109-EGR
Normals
18.37
15.69
−13.59
1.2E−06
0.0000


























TABLE 4D

















total used












(excludes








Normal
Prostate


missing)























N =
50
24



#


2-gene models and
Entropy
#normal
#normal
#pc
#pc
Correct
Correct


#
dis-


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
normals
ease






















ALOX5
CEBPB
0.85
48
2
23
1
96.0%
95.8%
9.1E−15
3.5E−05
50
24


EP300
NAB2
0.80
47
3
22
1
94.0%
95.7%
1.6E−15
3.3E−06
50
23


EP300
MAP2K1
0.80
44
6
22
1
88.0%
95.7%
3.3E−16
4.0E−06
50
23


ALOX5
S100A6
0.78
47
3
22
2
94.0%
91.7%
6.7E−16
0.0011
50
24


ALOX5
RAF1
0.77
48
2
22
2
96.0%
91.7%
1.3E−15
0.0014
50
24


EP300
JUN
0.77
46
4
21
2
92.0%
91.3%
0   
1.4E−05
50
23


PTEN
S100A6
0.75
47
3
22
2
94.0%
91.7%
2.1E−15
8.6E−08
50
24


EP300
TP53
0.75
46
4
21
2
92.0%
91.3%
2.2E−16
4.0E−05
50
23


EP300
S100A6
0.74
45
5
21
2
90.0%
91.3%
5.7E−15
6.2E−05
50
23


ALOX5
SERPINE1
0.74
48
2
22
2
96.0%
91.7%
6.1E−05
0.0067
50
24


ALOX5
JUN
0.74
45
5
22
2
90.0%
91.7%
1.1E−16
0.0072
50
24


ALOX5
FOS
0.73
47
3
23
1
94.0%
95.8%
5.0E−10
0.0142
50
24


ALOX5
PDGFA
0.72
45
5
22
2
90.0%
91.7%
4.3E−06
0.0172
50
24


ALOX5
THBS1
0.72
46
4
22
2
92.0%
91.7%
1.8E−06
0.0223
50
24


EP300
RAF1
0.71
47
3
21
2
94.0%
91.3%
8.1E−14
0.0002
50
23


EP300
SERPINE1
0.71
49
1
21
2
98.0%
91.3%
0.0006
0.0002
50
23


PLAU
SERPINE1
0.71
49
1
23
1
98.0%
95.8%
0.0003
3.3E−07
50
24


ALOX5
MAP2K1
0.71
43
7
22
2
86.0%
91.7%
8.4E−15
0.0426
50
24


EP300
NFATC2
0.69
48
2
21
2
96.0%
91.3%
3.1E−15
0.0007
50
23


EGR1
SERPINE1
0.67
48
2
22
2
96.0%
91.7%
0.0020
0.0003
50
24


EP300
NFKB1
0.67
45
5
21
2
90.0%
91.3%
4.7E−11
0.0018
50
23


S100A6
TGFBI
0.67
45
5
21
3
90.0%
87.5%
4.4E−09
1.3E−13
50
24


ALOX5

0.66
44
6
22
2
88.0%
91.7%
4.1E−15

50
24


SERPINE1
TNFRSF6
0.66
48
2
21
3
96.0%
87.5%
1.3E−10
0.0036
50
24


EP300
NAB1
0.66
45
5
20
3
90.0%
87.0%
3.1E−13
0.0036
50
23


MAPK1
SERPINE1
0.65
48
2
22
2
96.0%
91.7%
0.0053
0.0002
50
24


EP300
TOPBP1
0.65
44
6
21
2
88.0%
91.3%
3.2E−10
0.0053
50
23


EP300
PDGFA
0.64
45
5
21
2
90.0%
91.3%
0.0004
0.0068
50
23


PTEN
SERPINE1
0.64
45
5
22
2
90.0%
91.7%
0.0080
1.8E−05
50
24


EP300
SMAD3
0.64
45
5
21
2
90.0%
91.3%
6.5E−13
0.0082
50
23


EGR1
PLAU
0.64
48
2
21
3
96.0%
87.5%
9.4E−06
0.0015
50
24


EP300
THBS1
0.64
44
6
20
3
88.0%
87.0%
8.5E−05
0.0085
50
23


CCND2
SERPINE1
0.63
48
2
23
1
96.0%
95.8%
0.0136
3.4E−14
50
24


EP300
ICAM1
0.63
44
6
21
2
88.0%
91.3%
6.2E−11
0.0127
50
23


PDGFA
PLAU
0.63
43
7
22
2
86.0%
91.7%
1.4E−05
0.0004
50
24


EGR1
NAB2
0.63
47
3
21
3
94.0%
87.5%
1.8E−12
0.0027
50
24


EP300
SRC
0.63
45
5
20
2
90.0%
90.9%
2.7E−13
0.0108
50
22


EP300
PLAU
0.63
43
7
20
3
86.0%
87.0%
2.4E−05
0.0167
50
23


EGR1
EP300
0.63
46
4
21
2
92.0%
91.3%
0.0168
0.0081
50
23


MAPK1
PDGFA
0.63
45
5
22
2
90.0%
91.7%
0.0005
0.0005
50
24


MAPK1
S100A6
0.62
42
8
21
3
84.0%
87.5%
9.5E−13
0.0006
50
24


EP300
NR4A2
0.62
47
3
20
3
94.0%
87.0%
8.6E−11
0.0198
50
23


CREBBP
EP300
0.62
44
6
20
3
88.0%
87.0%
0.0208
2.6E−05
50
23


EGR1
PDGFA
0.62
46
4
21
3
92.0%
87.5%
0.0006
0.0038
50
24


CCND2
EP300
0.62
43
7
21
2
86.0%
91.3%
0.0249
1.3E−13
50
23


CREBBP
SERPINE1
0.62
45
5
21
3
90.0%
87.5%
0.0340
4.6E−06
50
24


SERPINE1
TOPBP1
0.61
46
4
21
3
92.0%
87.5%
5.6E−10
0.0421
50
24


EP300
MAPK1
0.61
45
5
21
2
90.0%
91.3%
0.0241
0.0407
50
23


S100A6
TNFRSF6
0.61
44
6
22
2
88.0%
91.7%
1.4E−09
1.9E−12
50
24


MAPK1
THBS1
0.61
44
6
21
3
88.0%
87.5%
0.0004
0.0012
50
24


CREBBP
S100A6
0.61
42
8
20
4
84.0%
83.3%
1.9E−12
6.4E−06
50
24


CREBBP
NAB2
0.61
44
6
22
2
88.0%
91.7%
5.2E−12
7.5E−06
50
24


PTEN
THBS1
0.60
45
5
22
2
90.0%
91.7%
0.0005
0.0001
50
24


EGR1
PTEN
0.60
46
4
21
3
92.0%
87.5%
0.0001
0.0112
50
24


NAB2
TGFBI
0.60
47
3
21
3
94.0%
87.5%
1.0E−07
6.8E−12
50
24


NAB2
PDGFA
0.60
44
6
21
3
88.0%
87.5%
0.0019
7.4E−12
50
24


PDGFA
SRC
0.60
45
5
20
3
90.0%
87.0%
6.0E−13
0.0089
50
23


PDGFA
PTEN
0.60
47
3
21
3
94.0%
87.5%
0.0002
0.0022
50
24


EGR1
MAPK1
0.59
46
4
21
3
92.0%
87.5%
0.0028
0.0167
50
24


EGR1
THBS1
0.59
45
5
22
2
90.0%
91.7%
0.0009
0.0189
50
24


PTEN
RAF1
0.59
44
6
21
3
88.0%
87.5%
7.9E−12
0.0003
50
24


PDGFA
S100A6
0.59
47
3
21
3
94.0%
87.5%
5.6E−12
0.0036
50
24


NAB2
TOPBP1
0.58
46
4
22
2
92.0%
91.7%
2.1E−09
1.4E−11
50
24


S100A6
TOPBP1
0.58
45
5
21
3
90.0%
87.5%
2.3E−09
6.9E−12
50
24


JUN
MAPK1
0.58
41
9
20
4
82.0%
83.3%
0.0055
2.4E−13
50
24


MAPK1
PLAU
0.57
42
8
20
4
84.0%
83.3%
0.0003
0.0084
50
24


SERPINE1

0.57
44
6
21
3
88.0%
87.5%
3.4E−13

50
24


NAB2
PTEN
0.57
39
11
19
5
78.0%
79.2%
0.0008
3.5E−11
50
24


EP300

0.56
44
6
20
3
88.0%
87.0%
7.9E−13

50
23


CREBBP
JUN
0.56
45
5
21
3
90.0%
87.5%
5.9E−13
6.6E−05
50
24


PLAU
THBS1
0.56
44
6
21
3
88.0%
87.5%
0.0042
0.0005
50
24


FOS
PDGFA
0.56
44
6
21
3
88.0%
87.5%
0.0141
1.4E−06
50
24


CREBBP
THBS1
0.56
45
5
21
3
90.0%
87.5%
0.0048
7.8E−05
50
24


FOS
THBS1
0.56
46
4
21
3
92.0%
87.5%
0.0049
1.6E−06
50
24


MAPK1
RAF1
0.56
43
7
21
3
86.0%
87.5%
3.6E−11
0.0188
50
24


JUN
PTEN
0.56
44
6
20
4
88.0%
83.3%
0.0013
7.7E−13
50
24


MAPK1
NAB2
0.56
43
7
20
4
86.0%
83.3%
5.7E−11
0.0200
50
24


CCND2
PDGFA
0.55
47
3
22
2
94.0%
91.7%
0.0196
1.5E−12
50
24


JUN
PDGFA
0.55
45
5
20
4
90.0%
83.3%
0.0203
8.7E−13
50
24


NAB2
THBS1
0.55
43
7
21
3
86.0%
87.5%
0.0092
9.3E−11
50
24


CREBBP
PDGFA
0.54
43
7
21
3
86.0%
87.5%
0.0322
0.0002
50
24


TGFBI
TP53
0.54
41
9
20
4
82.0%
83.3%
1.3E−12
1.5E−06
50
24


SRC
THBS1
0.54
46
4
20
3
92.0%
87.0%
0.0165
7.2E−12
50
23


CREBBP
RAF1
0.54
45
5
20
4
90.0%
83.3%
7.1E−11
0.0002
50
24


CREBBP
PLAU
0.54
43
7
20
4
86.0%
83.3%
0.0014
0.0002
50
24


S100A6
THBS1
0.54
45
5
21
3
90.0%
87.5%
0.0133
5.6E−11
50
24


PLAU
PTEN
0.53
40
10
19
5
80.0%
79.2%
0.0045
0.0020
50
24


EGR1

0.53
46
4
21
3
92.0%
87.5%
1.9E−12

50
24


CREBBP
MAP2K1
0.53
45
5
20
4
90.0%
83.3%
3.4E−11
0.0003
50
24


PLAU
S100A6
0.53
44
6
21
3
88.0%
87.5%
8.9E−11
0.0024
50
24


THBS1
TNFRSF6
0.52
45
5
21
3
90.0%
87.5%
9.3E−08
0.0330
50
24


NAB1
S100A6
0.52
42
8
21
3
84.0%
87.5%
1.4E−10
8.8E−11
50
24


NAB1
PTEN
0.51
43
7
19
5
86.0%
79.2%
0.0138
1.3E−10
50
24


CREBBP
TP53
0.51
40
10
20
4
80.0%
83.3%
7.8E−12
0.0010
50
24


NAB2
NFKB1
0.51
44
6
20
4
88.0%
83.3%
3.8E−08
5.9E−10
50
24


MAPK1

0.50
43
7
20
4
86.0%
83.3%
9.7E−12

50
24


NAB2
SMAD3
0.50
40
10
20
4
80.0%
83.3%
2.4E−10
1.0E−09
50
24


PDGFA

0.50
42
8
20
4
84.0%
83.3%
1.1E−11

50
24


FOS
PLAU
0.49
43
7
20
4
86.0%
83.3%
0.0157
3.9E−05
50
24


CREBBP
NFATC2
0.49
38
12
20
4
76.0%
83.3%
1.5E−11
0.0022
50
24


FOS
S100A6
0.49
43
7
20
4
86.0%
83.3%
5.6E−10
4.3E−05
50
24


PTEN
TP53
0.49
40
10
19
5
80.0%
79.2%
2.0E−11
0.0494
50
24


ICAM1
S100A6
0.48
41
9
20
4
82.0%
83.3%
7.3E−10
4.0E−08
50
24


NAB2
PLAU
0.48
44
6
20
4
88.0%
83.3%
0.0258
1.8E−09
50
24


NAB2
TNFRSF6
0.48
41
9
20
4
82.0%
83.3%
8.0E−07
2.5E−09
50
24


PLAU
TGFBI
0.48
43
7
20
4
86.0%
83.3%
4.3E−05
0.0383
50
24


RAF1
S100A6
0.47
40
10
20
4
80.0%
83.3%
1.3E−09
2.0E−09
50
24


THBS1

0.47
42
8
21
3
84.0%
87.5%
3.2E−11

50
24


NFATC2
TGFBI
0.47
40
10
20
4
80.0%
83.3%
5.3E−05
3.8E−11
50
24


ICAM1
NAB2
0.47
44
6
21
3
88.0%
87.5%
3.5E−09
8.3E−08
50
24


NFKB1
S100A6
0.47
42
8
20
4
84.0%
83.3%
1.6E−09
2.4E−07
50
24


CEBPB
S100A6
0.46
42
8
20
4
84.0%
83.3%
2.0E−09
7.5E−07
50
24


JUN
TGFBI
0.45
39
11
19
5
78.0%
79.2%
0.0001
1.0E−10
50
24


PTEN

0.45
40
10
19
5
80.0%
79.2%
1.1E−10

50
24


CCND2
CREBBP
0.44
42
8
19
5
84.0%
79.2%
0.0293
3.1E−10
50
24


CREBBP
NAB1
0.43
40
10
19
5
80.0%
79.2%
5.4E−09
0.0461
50
24


NAB1
NAB2
0.43
44
6
21
3
88.0%
87.5%
2.0E−08
5.5E−09
50
24


JUN
TOPBP1
0.43
40
10
19
5
80.0%
79.2%
3.2E−06
2.7E−10
50
24


PLAU

0.43
44
6
21
3
88.0%
87.5%
2.5E−10

50
24


TOPBP1
TP53
0.43
38
12
19
5
76.0%
79.2%
3.8E−10
4.5E−06
50
24


MAP2K1
TGFBI
0.41
39
11
19
5
78.0%
79.2%
0.0014
1.3E−08
50
24


JUN
TNFRSF6
0.40
41
9
20
4
82.0%
83.3%
2.8E−05
1.1E−09
50
24


SRC
TGFBI
0.40
41
9
19
4
82.0%
82.6%
0.0009
5.1E−09
50
23


CDKN2D
TGFBI
0.39
41
9
19
5
82.0%
79.2%
0.0025
0.0006
50
24


CREBBP

0.39
39
11
19
5
78.0%
79.2%
1.6E−09

50
24


NFKB1
TP53
0.39
42
8
19
5
84.0%
79.2%
2.2E−09
1.1E−05
50
24


FOS
TGFBI
0.39
41
9
19
5
82.0%
79.2%
0.0036
0.0075
50
24


NFATC2
TOPBP1
0.39
41
9
20
4
82.0%
83.3%
3.1E−05
2.2E−09
50
24


JUN
NFKB1
0.38
41
9
20
4
82.0%
83.3%
1.7E−05
3.2E−09
50
24


FOS
NAB2
0.38
39
11
19
5
78.0%
79.2%
2.8E−07
0.0121
50
24


MAP2K1
TOPBP1
0.37
42
8
20
4
84.0%
83.3%
7.1E−05
7.6E−08
50
24


RAF1
TGFBI
0.37
39
11
19
5
78.0%
79.2%
0.0098
3.1E−07
50
24


FOS
JUN
0.37
42
8
20
4
84.0%
83.3%
6.1E−09
0.0213
50
24


NAB2
TP53
0.35
39
11
20
4
78.0%
83.3%
1.4E−08
1.1E−06
50
24


SMAD3
TGFBI
0.35
41
9
19
5
82.0%
79.2%
0.0282
2.9E−07
50
24


ICAM1
JUN
0.35
39
11
19
5
78.0%
79.2%
1.7E−08
3.3E−05
50
24


NAB2
RAF1
0.34
40
10
19
5
80.0%
79.2%
9.4E−07
1.4E−06
50
24


CCND2
TGFBI
0.34
40
10
19
5
80.0%
79.2%
0.0354
3.4E−08
50
24


NAB1
TGFBI
0.34
39
11
19
5
78.0%
79.2%
0.0424
4.8E−07
50
24


NAB2
SRC
0.34
41
9
19
4
82.0%
82.6%
1.1E−07
4.0E−06
50
23


MAP2K1
NAB2
0.34
42
8
19
5
84.0%
79.2%
2.1E−06
3.5E−07
50
24


CDKN2D
NFKB1
0.33
38
12
19
5
76.0%
79.2%
0.0002
0.0116
50
24


NAB2
NR4A2
0.33
42
8
19
5
84.0%
79.2%
4.2E−05
3.1E−06
50
24


CDKN2D
TNFRSF6
0.33
41
9
19
5
82.0%
79.2%
0.0012
0.0168
50
24


CDKN2D
TOPBP1
0.33
43
7
19
5
86.0%
79.2%
0.0006
0.0192
50
24


EGR2
NAB2
0.32
39
11
19
5
78.0%
79.2%
4.4E−06
1.9E−07
50
24


CEBPB
NAB2
0.32
40
10
19
5
80.0%
79.2%
5.1E−06
0.0009
50
24


CDKN2D
ICAM1
0.32
40
10
19
5
80.0%
79.2%
0.0001
0.0279
50
24


FOS

0.31
40
10
18
6
80.0%
75.0%
7.4E−08

50
24


NR4A2
S100A6
0.31
39
11
18
6
78.0%
75.0%
3.4E−06
0.0001
50
24


NFATC2
NFKB1
0.31
41
9
20
4
82.0%
83.3%
0.0006
1.0E−07
50
24


TGFBI

0.30
40
10
18
6
80.0%
75.0%
1.5E−07

50
24


S100A6
SMAD3
0.29
39
11
19
5
78.0%
79.2%
4.3E−06
7.7E−06
50
24


MAP2K1
S100A6
0.28
38
12
18
6
76.0%
75.0%
1.5E−05
5.9E−06
50
24


NAB1
TOPBP1
0.26
41
9
18
6
82.0%
75.0%
0.0140
1.9E−05
50
24


ICAM1
TP53
0.26
38
12
18
6
76.0%
75.0%
1.2E−06
0.0027
50
24


EGR3
NAB2
0.25
38
12
19
5
76.0%
79.2%
0.0002
6.9E−06
50
24


TNFRSF6

0.22
39
11
18
6
78.0%
75.0%
7.3E−06

50
24





















TABLE 4E








Prostate
Normals
Sum



Group Size
32.4%
67.6%
100%



N =
24
50
74



Gene
Mean
Mean
p-val









ALOX5
15.0
16.9
4.1E−15



SERPINE1
20.7
22.6
3.4E−13



EP300
16.3
17.6
7.9E−13



EGR1
19.6
21.1
1.9E−12



MAPK1
14.4
15.4
9.7E−12



PDGFA
19.4
21.2
1.1E−11



THBS1
17.6
19.4
3.2E−11



PTEN
13.4
14.5
1.1E−10



PLAU
23.2
24.8
2.5E−10



CREBBP
15.2
16.2
1.6E−09



FOS
15.4
16.4
7.4E−08



TGFBI
12.7
13.5
1.5E−07



CDKN2D
14.8
15.3
6.2E−07



TNFRSF6
16.1
16.8
7.3E−06



CEBPB
14.6
15.3
1.5E−05



TOPBP1
18.0
18.7
1.6E−05



NFKB1
16.8
17.6
3.7E−05



ICAM1
17.2
18.0
0.0001



NR4A2
21.5
22.3
0.0002



NAB2
20.9
20.3
0.0029



RAF1
14.4
14.9
0.0044



S100A6
14.9
14.4
0.0071



NAB1
17.2
17.6
0.0116



SMAD3
18.5
18.9
0.0133



MAP2K1
16.2
16.5
0.0189



EGR2
24.1
24.5
0.0915



EGR3
23.4
23.8
0.0970



SRC
18.8
19.1
0.1119



CCND2
17.6
17.2
0.2101



JUN
21.7
21.6
0.4875



TP53
16.8
17.0
0.5030



NFATC2
16.9
17.0
0.6095























TABLE 4F











Predicted








probability


Patient ID
Group
ALOX5
CEBPB
logit
odds
of prostate cancer





















DF057
Cancer
13.86
14.31
18.53
1.1E+08
1.0000


DF056
Cancer
15.33
15.80
15.74
6.8E+06
1.0000


DF099
Cancer
13.92
13.97
14.39
1.8E+06
1.0000


DF072
Cancer
13.75
13.71
13.82
1.0E+06
1.0000


DF046
Cancer
13.95
13.87
13.00
4.4E+05
1.0000


DF250157
Cancer
14.97
14.84
10.36
3.1E+04
1.0000


DF032
Cancer
15.24
15.14
10.16
2.6E+04
1.0000


DF044
Cancer
15.86
15.87
9.97
2.1E+04
1.0000


DF031
Cancer
14.82
14.53
9.17
9.6E+03
0.9999


DF187129
Cancer
14.40
14.02
9.05
8.5E+03
0.9999


DF063
Cancer
14.98
14.67
8.50
4.9E+03
0.9998


DF088
Cancer
14.59
14.13
7.80
2.4E+03
0.9996


DF290701
Cancer
14.68
14.16
7.15
1.3E+03
0.9992


DF026
Cancer
15.98
15.72
7.05
1.2E+03
0.9991


DF279014
Cancer
14.78
14.18
6.13
4.6E+02
0.9978


DF155
Cancer
15.26
14.58
4.23
6.9E+01
0.9857


DF009
Cancer
15.04
14.11
2.25
9.5E+00
0.9046


DF137633
Cancer
15.20
14.30
2.24
9.4E+00
0.9040


DF50796156
Cancer
15.80
15.01
2.01
7.4E+00
0.8816


DF059
Cancer
15.40
14.49
1.72
5.6E+00
0.8481


DF103398
Cancer
15.28
14.30
1.34
3.8E+00
0.7922


DF113
Cancer
15.01
13.97
1.22
3.4E+00
0.7713


061-EGR
Normals
16.25
15.46
1.20
3.3E+00
0.7689


167-EGR
Normals
15.54
14.53
0.34
1.4E+00
0.5847


DF006
Cancer
16.52
15.68
0.10
1.1E+00
0.5242


057EGR
Normals
15.20
14.03
−0.55
5.8E−01
0.3658


257-EGR
Normals
15.89
14.83
−0.79
4.5E−01
0.3116


DF001
Cancer
16.04
14.89
−2.03
1.3E−01
0.1161


236-EGR
Normals
15.61
14.32
−2.55
7.8E−02
0.0726


239-EGR
Normals
15.93
14.69
−2.68
6.8E−02
0.0640


078EGR
Normals
16.02
14.76
−3.13
4.4E−02
0.0418


138-EGR
Normals
16.91
15.71
−4.28
1.4E−02
0.0137


220-EGR
Normals
16.35
15.04
−4.33
1.3E−02
0.0130


136-EGR
Normals
15.99
14.56
−4.70
9.1E−03
0.0090


033-EGR
Normals
16.66
15.32
−5.21
5.4E−03
0.0054


157-EGR
Normals
16.82
15.49
−5.44
4.3E−03
0.0043


056EGR
Normals
17.52
16.33
−5.54
3.9E−03
0.0039


154-EGR
Normals
16.26
14.80
−5.65
3.5E−03
0.0035


150-EGR
Normals
16.74
15.37
−5.76
3.2E−03
0.0031


161-EGR
Normals
16.68
15.27
−5.93
2.7E−03
0.0026


110-EGR
Normals
16.58
15.15
−5.95
2.6E−03
0.0026


156-EGR
Normals
16.63
15.16
−6.47
1.5E−03
0.0015


085EGR
Normals
17.12
15.71
−6.84
1.1E−03
0.0011


269-EGR
Normals
16.69
15.19
−6.87
1.0E−03
0.0010


245-EGR
Normals
16.92
15.44
−7.17
7.7E−04
0.0008


265-EGR
Normals
16.45
14.87
−7.22
7.3E−04
0.0007


155-EGR
Normals
15.96
14.25
−7.50
5.5E−04
0.0006


243-EGR
Normals
16.93
15.42
−7.51
5.5E−04
0.0005


083-EGR
Normals
16.47
14.86
−7.55
5.2E−04
0.0005


062EGR
Normals
16.78
15.21
−7.80
4.1E−04
0.0004


100EGR
Normals
16.66
15.05
−8.00
3.4E−04
0.0003


074EGR
Normals
17.50
15.96
−8.99
1.2E−04
0.0001


267-EGR
Normals
16.75
15.04
−9.15
1.1E−04
0.0001


145-EGR
Normals
17.13
15.43
−9.85
5.3E−05
0.0001


158-EGR
Normals
17.27
15.56
−10.16
3.9E−05
0.0000


152-EGR
Normals
16.87
15.06
−10.39
3.1E−05
0.0000


176-EGR
Normals
17.27
15.51
−10.63
2.4E−05
0.0000


133-EGR
Normals
16.75
14.88
−10.76
2.1E−05
0.0000


249-EGR
Normals
17.07
15.24
−11.00
1.7E−05
0.0000


248-EGR
Normals
18.21
16.56
−11.46
1.1E−05
0.0000


180-EGR
Normals
17.13
15.26
−11.55
9.7E−06
0.0000


142-EGR
Normals
17.10
15.22
−11.59
9.3E−06
0.0000


045-EGR
Normals
17.50
15.68
−11.87
7.0E−06
0.0000


086-EGR
Normals
16.41
14.25
−12.91
2.5E−06
0.0000


119-EGR
Normals
17.99
16.12
−13.17
1.9E−06
0.0000


030-EGR
Normals
17.45
15.36
−14.41
5.5E−07
0.0000


253-EGR
Normals
17.73
15.62
−15.18
2.6E−07
0.0000


031-EGR
Normals
17.16
14.83
−16.29
8.4E−08
0.0000


252-EGR
Normals
17.53
15.23
−16.67
5.8E−08
0.0000


246-EGR
Normals
17.98
15.74
−16.91
4.5E−08
0.0000


147-EGR
Normals
18.47
16.18
−18.43
1.0E−08
0.0000


109-EGR
Normals
18.37
16.03
−18.75
7.2E−09
0.0000


151-EGR
Normals
17.97
15.49
−19.38
3.8E−09
0.0000


029-EGR
Normals
18.28
15.79
−20.10
1.9E−09
0.0000


























TABLE 4G

















total used












(excludes








Normal
Prostate


missing)























N =
50
57



#


2-gene models and
Entropy
#normal
#normal
#pc
#pc
Correct
Correct


#
dis-


1-gene models
R-sq
Correct
FALSE
Correct
FALSE
Classification
Classification
p-val 1
p-val 2
normals
ease






















ALOX5
S100A6
0.76
46
4
52
5
92.0%
91.2%
0
7.5E−05
50
57


ALOX5
FOS
0.76
47
3
54
3
94.0%
94.7%
0
0.0001
50
57


ALOX5
RAF1
0.75
45
5
53
4
90.0%
93.0%
0
0.0002
50
57


EP300
NAB2
0.75
47
3
53
3
94.0%
94.6%
0
2.1E−05
50
56


ALOX5
CEBPB
0.75
46
4
53
4
92.0%
93.0%
0
0.0002
50
57


EP300
S100A6
0.74
45
5
52
4
90.0%
92.9%
0
4.7E−05
50
56


ALOX5
EGR1
0.73
46
4
53
4
92.0%
93.0%
6.4E−06
0.0013
50
57


EP300
MAP2K1
0.73
46
4
52
4
92.0%
92.9%
0
0.0002
50
56


EP300
RAF1
0.72
47
3
52
4
94.0%
92.9%
0
0.0002
50
56


EP300
JUN
0.72
45
5
50
6
90.0%
89.3%
0
0.0004
50
56


ALOX5
PDGFA
0.70
45
5
51
6
90.0%
89.5%
2.3E−10
0.0091
50
57


PTEN
S100A6
0.70
46
4
51
6
92.0%
89.5%
0
2.7E−10
50
57


EGR1
EP300
0.70
46
4
52
4
92.0%
92.9%
0.0016
0.0001
50
56


ALOX5
SERPINE1
0.69
45
5
52
5
90.0%
91.2%
1.3E−10
0.0202
50
57


ALOX5
CDKN2D
0.69
45
5
51
6
90.0%
89.5%
0
0.0213
50
57


ALOX5
EP300
0.69
46
4
51
5
92.0%
91.1%
0.0030
0.0486
50
56


ALOX5
THBS1
0.69
46
4
51
6
92.0%
89.5%
3.2E−10
0.0328
50
57


EP300
SERPINE1
0.69
46
4
51
5
92.0%
91.1%
3.0E−10
0.0034
50
56


ALOX5
NAB2
0.68
44
6
50
7
88.0%
87.7%
0
0.0439
50
57


CREBBP
EP300
0.68
43
7
51
5
86.0%
91.1%
0.0062
1.9E−07
50
56


EP300
TP53
0.68
45
5
51
5
90.0%
91.1%
0
0.0088
50
56


EP300
NR4A2
0.68
45
5
51
5
90.0%
91.1%
1.1E−16
0.0096
50
56


EP300
NAB1
0.67
45
5
50
6
90.0%
89.3%
0
0.0100
50
56


EP300
NFKB1
0.67
46
4
51
5
92.0%
91.1%
7.8E−13
0.0144
50
56


EP300
NFATC2
0.67
45
5
50
6
90.0%
89.3%
0
0.0169
50
56


CEBPB
EP300
0.66
46
4
50
6
92.0%
89.3%
0.0232
1.4E−15
50
56


EP300
PDGFA
0.66
45
5
50
6
90.0%
89.3%
6.3E−09
0.0259
50
56


MAPK1
S100A6
0.66
46
4
52
5
92.0%
91.2%
0
9.7E−06
50
57


EGR1
SERPINE1
0.66
45
5
51
6
90.0%
89.5%
2.1E−09
0.0015
50
57


EGR1
PLAU
0.66
45
5
51
6
90.0%
89.5%
1.2E−10
0.0015
50
57


EP300
TOPBP1
0.66
45
5
50
6
90.0%
89.3%
1.3E−11
0.0425
50
56


EGR1
PTEN
0.66
45
5
52
5
90.0%
91.2%
8.5E−09
0.0015
50
57


ALOX5

0.66
44
6
50
7
88.0%
87.7%
0

50
57


EP300
ICAM1
0.66
46
4
51
5
92.0%
91.1%
1.2E−14
0.0484
50
56


CCND2
EP300
0.66
46
4
50
6
92.0%
89.3%
0.0487
0
50
56


EGR1
MAPK1
0.65
45
5
51
6
90.0%
89.5%
2.8E−05
0.0035
50
57


S100A6
TGFB1
0.65
44
6
50
7
88.0%
87.7%
2.0E−09
0
50
57


EGR1
TNFRSF6
0.64
45
5
52
5
90.0%
91.2%
8.6E−14
0.0058
50
57


EGR1
PDGFA
0.64
45
5
51
6
90.0%
89.5%
2.7E−08
0.0060
50
57


EGR1
NAB2
0.64
47
3
52
5
94.0%
91.2%
0
0.0067
50
57


CREBBP
S100A6
0.64
41
9
50
7
82.0%
87.7%
0
7.8E−07
50
57


S100A6
TOPBP1
0.64
45
5
51
6
90.0%
89.5%
2.0E−11
0
50
57


EP300

0.63
44
6
49
7
88.0%
87.5%
0

50
56


MAPK1
PDGFA
0.63
45
5
51
6
90.0%
89.5%
6.6E−08
0.0001
50
57


CREBBP
EGR1
0.63
44
6
51
6
88.0%
89.5%
0.0167
1.7E−06
50
57


NAB2
TOPBP1
0.62
45
5
51
6
90.0%
89.5%
7.9E−11
0
50
57


EGR1
FOS
0.62
44
6
51
6
88.0%
89.5%
2.4E−12
0.0422
50
57


EGR1
TGFB1
0.62
45
5
51
6
90.0%
89.5%
2.1E−08
0.0478
50
57


MAPK1
RAF1
0.61
44
6
50
7
88.0%
87.7%
0
0.0007
50
57


CREBBP
NAB2
0.60
44
6
50
7
88.0%
87.7%
0
1.1E−05
50
57


MAPK1
SERPINE1
0.60
45
5
51
6
90.0%
89.5%
1.3E−07
0.0009
50
57


CREBBP
RAF1
0.60
41
9
50
7
82.0%
87.7%
0
1.4E−05
50
57


MAPK1
THBS1
0.60
44
6
51
6
88.0%
89.5%
3.5E−07
0.0015
50
57


SERPINE1
TNFRSF6
0.59
44
6
50
7
88.0%
87.7%
3.0E−12
2.7E−07
50
57


SERPINE1
TOPBP1
0.59
44
6
51
6
88.0%
89.5%
5.6E−10
3.0E−07
50
57


NAB2
TGFB1
0.59
44
6
50
7
88.0%
87.7%
1.5E−07
0
50
57


EGR1

0.59
46
4
51
6
92.0%
89.5%
0

50
57


PDGFA
PTEN
0.59
43
7
51
6
86.0%
89.5%
1.8E−06
1.6E−06
50
57


CREBBP
SERPINE1
0.58
43
7
49
8
86.0%
86.0%
6.4E−07
5.8E−05
50
57


MAPK1
NAB2
0.58
43
7
49
8
86.0%
86.0%
0
0.0077
50
57


S100A6
TNFRSF6
0.58
44
6
50
7
88.0%
87.7%
1.2E−11
0
50
57


PTEN
THBS1
0.57
43
7
50
7
86.0%
87.7%
2.6E−06
6.7E−06
50
57


PDGFA
PLAU
0.57
43
7
50
7
86.0%
87.7%
1.3E−07
8.6E−06
50
57


CREBBP
PDGFA
0.56
43
7
50
7
86.0%
87.7%
9.7E−06
0.0003
50
57


MAPK1
PLAU
0.56
42
8
48
9
84.0%
84.2%
2.3E−07
0.0355
50
57


PLAU
SERPINE1
0.56
44
6
50
7
88.0%
87.7%
4.5E−06
2.5E−07
50
57


CREBBP
THBS1
0.56
44
6
50
7
88.0%
87.7%
7.6E−06
0.0005
50
57


PTEN
SERPINE1
0.56
43
7
49
8
86.0%
86.0%
4.9E−06
2.0E−05
50
57


JUN
MAPK1
0.56
42
8
48
9
84.0%
84.2%
0.0458
0
50
57


CREBBP
JUN
0.55
43
7
48
9
86.0%
84.2%
0
0.0009
50
57


NAB2
SMAD3
0.54
42
8
48
9
84.0%
84.2%
1.5E−12
0
50
57


PDGFA
TNFRSF6
0.54
42
8
49
8
84.0%
86.0%
1.5E−10
5.4E−05
50
57


CREBBP
PLAU
0.54
40
10
48
9
80.0%
84.2%
8.3E−07
0.0015
50
57


PDGFA
TOPBP1
0.54
45
5
50
7
90.0%
87.7%
2.9E−08
5.9E−05
50
57


SERPINE1
TGFB1
0.54
42
8
49
8
84.0%
86.0%
7.1E−06
1.7E−05
50
57


NFKB1
SERPINE1
0.54
43
7
49
8
86.0%
86.0%
2.1E−05
6.7E−09
50
57


PTEN
RAF1
0.54
45
5
49
8
90.0%
86.0%
7.6E−15
9.6E−05
50
57


THBS1
TNFRSF6
0.53
45
5
52
5
90.0%
91.2%
3.0E−10
4.7E−05
50
57


MAPK1

0.53
43
7
48
9
86.0%
84.2%
0

50
57


CEBPB
CREBBP
0.53
41
9
47
10
82.0%
82.5%
0.0045
9.2E−12
50
57


SERPINE1
SMAD3
0.52
44
6
49
8
88.0%
86.0%
6.0E−12
5.5E−05
50
57


FOS
PDGFA
0.52
44
6
50
7
88.0%
87.7%
0.0003
3.3E−09
50
57


NFKB1
S100A6
0.52
41
9
47
10
82.0%
82.5%
0
2.4E−08
50
57


CREBBP
MAP2K1
0.52
43
7
49
8
86.0%
86.0%
5.1E−13
0.0106
50
57


NAB2
NFKB1
0.51
43
7
49
8
86.0%
86.0%
4.0E−08
0
50
57


PDGFA
TGFB1
0.51
43
7
49
8
86.0%
86.0%
5.9E−05
0.0005
50
57


PLAU
THBS1
0.51
44
6
49
8
88.0%
86.0%
0.0003
9.1E−06
50
57


THBS1
TOPBP1
0.51
43
7
49
8
86.0%
86.0%
2.9E−07
0.0003
50
57


EGR2
SERPINE1
0.51
42
8
48
9
84.0%
84.2%
0.0002
5.8E−14
50
57


ICAM1
SERPINE1
0.50
43
7
49
8
86.0%
86.0%
0.0003
8.5E−10
50
57


NAB1
SERPINE1
0.50
42
8
47
10
84.0%
82.5%
0.0003
2.2E−13
50
57


CREBBP
PTEN
0.50
43
7
49
8
86.0%
86.0%
0.0015
0.0404
50
57


NFKB1
PDGFA
0.50
44
6
49
8
88.0%
86.0%
0.0014
1.1E−07
50
57


NAB2
PTEN
0.50
39
11
44
13
78.0%
77.2%
0.0016
0
50
57


ICAM1
S100A6
0.50
42
8
47
10
84.0%
82.5%
0
1.0E−09
50
57


FOS
THBS1
0.49
43
7
50
7
86.0%
87.7%
0.0010
2.6E−08
50
57


TGFB1
THBS1
0.49
43
7
49
8
86.0%
86.0%
0.0010
0.0003
50
57


NAB1
S100A6
0.49
42
8
48
9
84.0%
84.2%
1.1E−16
3.9E−13
50
57


EGR2
PDGFA
0.49
43
7
49
8
86.0%
86.0%
0.0029
1.7E−13
50
57


PLAU
TGFB1
0.49
39
11
46
11
78.0%
80.7%
0.0003
4.3E−05
50
57


NFKB1
THBS1
0.49
44
6
50
7
88.0%
87.7%
0.0014
2.5E−07
50
57


PTEN
TGFB1
0.49
41
9
47
10
82.0%
82.5%
0.0005
0.0049
50
57


PDGFA
SMAD3
0.49
40
10
47
10
80.0%
82.5%
1.1E−10
0.0044
50
57


MAP2K1
SERPINE1
0.49
42
8
48
9
84.0%
84.2%
0.0012
5.7E−12
50
57


ICAM1
PDGFA
0.48
45
5
49
8
90.0%
86.0%
0.0062
4.1E−09
50
57


SERPINE1
THBS1
0.48
44
6
50
7
88.0%
87.7%
0.0027
0.0017
50
57


EGR2
THBS1
0.48
46
4
50
7
92.0%
87.7%
0.0029
3.9E−13
50
57


TGFB1
TP53
0.48
41
9
48
9
82.0%
84.2%
7.7E−14
0.0008
50
57


NAB1
PDGFA
0.48
41
9
47
10
82.0%
82.5%
0.0096
1.4E−12
50
57


PLAU
PTEN
0.47
39
11
44
13
78.0%
77.2%
0.0132
0.0001
50
57


CREBBP

0.47
44
6
48
9
88.0%
84.2%
0

50
57


FOS
SERPINE1
0.47
41
9
47
10
82.0%
82.5%
0.0034
1.4E−07
50
57


PDGFA
SERPINE1
0.47
42
8
49
8
84.0%
86.0%
0.0038
0.0151
50
57


JUN
TGFB1
0.47
41
9
47
10
82.0%
82.5%
0.0016
3.3E−16
50
57


SMAD3
THBS1
0.47
43
7
50
7
86.0%
87.7%
0.0072
3.9E−10
50
57


ICAM1
THBS1
0.47
43
7
50
7
86.0%
87.7%
0.0081
1.2E−08
50
57


PLAU
TOPBP1
0.47
43
7
48
9
86.0%
84.2%
7.7E−06
0.0003
50
57


RAF1
TGFB1
0.47
41
9
47
10
82.0%
82.5%
0.0023
1.4E−12
50
57


PLAU
S100A6
0.47
44
6
49
8
88.0%
86.0%
8.9E−16
0.0003
50
57


CEBPB
PDGFA
0.47
42
8
49
8
84.0%
86.0%
0.0233
9.6E−10
50
57


EGR2
PTEN
0.47
40
10
46
11
80.0%
80.7%
0.0279
1.2E−12
50
57


NFKB1
PLAU
0.46
40
10
47
10
80.0%
82.5%
0.0003
1.8E−06
50
57


PTEN
SMAD3
0.46
40
10
47
10
80.0%
82.5%
6.6E−10
0.0361
50
57


PDGFA
THBS1
0.46
43
7
48
9
86.0%
84.2%
0.0149
0.0369
50
57


EGR3
PDGFA
0.46
40
10
48
9
80.0%
84.2%
0.0376
8.5E−14
50
57


MAP2K1
PDGFA
0.46
41
9
48
9
82.0%
84.2%
0.0390
3.8E−11
50
57


NAB1
THBS1
0.46
43
7
50
7
86.0%
87.7%
0.0165
5.2E−12
50
57


NFATC2
TGFB1
0.46
43
7
48
9
86.0%
84.2%
0.0041
6.2E−14
50
57


JUN
TOPBP1
0.46
42
8
47
10
84.0%
82.5%
1.5E−05
8.9E−16
50
57


CEBPB
SERPINE1
0.46
41
9
47
10
82.0%
82.5%
0.0114
1.8E−09
50
57


NR4A2
SERPINE1
0.45
43
7
48
9
86.0%
84.2%
0.0158
8.3E−10
50
57


NFATC2
SERPINE1
0.45
41
9
47
10
82.0%
82.5%
0.0159
9.3E−14
50
57


CEBPB
THBS1
0.45
45
5
50
7
90.0%
87.7%
0.0313
2.8E−09
50
57


MAP2K1
TGFB1
0.45
43
7
48
9
86.0%
84.2%
0.0080
7.5E−11
50
57


MAP2K1
TOPBP1
0.45
41
9
47
10
82.0%
82.5%
3.0E−05
8.1E−11
50
57


SERPINE1
TP53
0.45
41
9
47
10
82.0%
82.5%
7.1E−13
0.0234
50
57


EGR3
SERPINE1
0.45
41
9
47
10
82.0%
82.5%
0.0233
2.0E−13
50
57


PLAU
SMAD3
0.45
40
10
47
10
80.0%
82.5%
2.0E−09
0.0012
50
57


FOS
TGFB1
0.45
43
7
47
10
86.0%
82.5%
0.0117
1.0E−06
50
57


FOS
S100A6
0.45
43
7
47
10
86.0%
82.5%
4.2E−15
1.1E−06
50
57


RAF1
SERPINE1
0.44
40
10
45
12
80.0%
79.0%
0.0359
7.4E−12
50
57


PTEN

0.43
40
10
45
12
80.0%
79.0%
1.2E−15

50
57


SRC
TGFB1
0.43
40
10
45
11
80.0%
80.4%
0.0277
8.6E−12
50
56


PDGFA

0.43
41
9
47
10
82.0%
82.5%
1.3E−15

50
57


EGR2
PLAU
0.43
43
7
46
11
86.0%
80.7%
0.0054
1.8E−11
50
57


THBS1

0.42
43
7
49
8
86.0%
86.0%
3.1E−15

50
57


ICAM1
PLAU
0.42
42
8
46
11
84.0%
80.7%
0.0116
4.4E−07
50
57


NR4A2
PLAU
0.42
41
9
47
10
82.0%
82.5%
0.0141
1.3E−08
50
57


ICAM1
NAB2
0.42
38
12
45
12
76.0%
79.0%
7.8E−15
5.3E−07
50
57


PLAU
TNFRSF6
0.42
41
9
46
11
82.0%
80.7%
2.3E−06
0.0177
50
57


SERPINE1

0.41
43
7
46
11
86.0%
80.7%
4.8E−15

50
57


TOPBP1
TP53
0.41
40
10
46
11
80.0%
80.7%
1.0E−11
0.0005
50
57


PLAU
SRC
0.41
39
11
45
11
78.0%
80.4%
4.7E−11
0.0209
50
56


FOS
PLAU
0.41
43
7
47
10
86.0%
82.5%
0.0293
1.8E−05
50
57


NFATC2
TOPBP1
0.41
40
10
46
11
80.0%
80.7%
0.0008
2.9E−12
50
57


CEBPB
S100A6
0.41
42
8
46
11
84.0%
80.7%
6.6E−14
7.8E−08
50
57


RAF1
S100A6
0.41
40
10
46
11
80.0%
80.7%
7.7E−14
1.3E−10
50
57


NAB2
TP53
0.41
40
10
46
11
80.0%
80.7%
1.9E−11
2.0E−14
50
57


TGFB1

0.40
40
10
47
10
80.0%
82.5%
1.1E−14

50
57


S100A6
SMAD3
0.40
41
9
47
10
82.0%
82.5%
6.3E−08
1.0E−13
50
57


FOS
SMAD3
0.40
42
8
47
10
84.0%
82.5%
6.5E−08
3.1E−05
50
57


FOS
TOPBP1
0.40
39
11
46
11
78.0%
80.7%
0.0014
3.2E−05
50
57


NAB1
TOPBP1
0.40
41
9
47
10
82.0%
82.5%
0.0015
4.6E−10
50
57


NAB2
TNFRSF6
0.40
40
10
47
10
80.0%
82.5%
8.3E−06
3.3E−14
50
57


JUN
NFKB1
0.39
41
9
46
11
82.0%
80.7%
0.0004
1.1E−13
50
57


FOS
NFKB1
0.39
40
10
46
11
80.0%
80.7%
0.0005
7.1E−05
50
57


MAP2K1
NAB2
0.38
41
9
47
10
82.0%
82.5%
1.3E−13
1.6E−08
50
57


MAP2K1
S100A6
0.38
41
9
47
10
82.0%
82.5%
5.6E−13
1.7E−08
50
57


PLAU

0.38
42
8
47
10
84.0%
82.5%
7.9E−14

50
57


RAF1
TOPBP1
0.37
38
12
46
11
76.0%
80.7%
0.0150
1.7E−09
50
57


EGR2
FOS
0.37
42
8
47
10
84.0%
82.5%
0.0004
1.8E−09
50
57


CDKN2D
TOPBP1
0.36
41
9
45
12
82.0%
79.0%
0.0309
7.2E−09
50
57


CCND2
TOPBP1
0.36
38
12
44
13
76.0%
77.2%
0.0384
5.1E−13
50
57


NFKB1
TP53
0.36
39
11
46
11
78.0%
80.7%
5.8E−10
0.0060
50
57


NAB1
NAB2
0.36
42
8
46
11
84.0%
80.7%
7.1E−13
1.1E−08
50
57


CDKN2D
NFKB1
0.35
40
10
46
11
80.0%
80.7%
0.0154
2.1E−08
50
57


FOS
TNFRSF6
0.35
40
10
44
13
80.0%
77.2%
0.0005
0.0025
50
57


FOS
SRC
0.34
40
10
45
11
80.0%
80.4%
7.3E−09
0.0037
50
56


NFATC2
NFKB1
0.34
40
10
46
11
80.0%
80.7%
0.0295
4.4E−10
50
57


FOS
ICAM1
0.34
40
10
45
12
80.0%
79.0%
0.0003
0.0051
50
57


TOPBP1

0.33
40
10
44
13
80.0%
77.2%
2.4E−12

50
57


FOS
TP53
0.33
39
11
45
12
78.0%
79.0%
5.4E−09
0.0088
50
57


FOS
NFATC2
0.33
42
8
46
11
84.0%
80.7%
1.2E−09
0.0109
50
57


EGR2
NAB2
0.33
39
11
45
12
78.0%
79.0%
8.5E−12
5.1E−08
50
57


CDKN2D
SMAD3
0.32
39
11
44
13
78.0%
77.2%
4.6E−05
2.5E−07
50
57


FOS
MAP2K1
0.31
40
10
45
12
80.0%
79.0%
2.7E−06
0.0403
50
57


NFKB1

0.31
40
10
46
11
80.0%
80.7%
1.3E−11

50
57


NR4A2
TNFRSF6
0.31
39
11
44
13
78.0%
77.2%
0.0101
5.6E−05
50
57


CEBPB
SMAD3
0.31
39
11
44
13
78.0%
77.2%
8.6E−05
0.0002
50
57


NFATC2
SMAD3
0.29
41
9
47
10
82.0%
82.5%
0.0003
2.0E−08
50
57


NAB2
NFATC2
0.29
39
11
43
14
78.0%
75.4%
2.1E−08
1.1E−10
50
57


ICAM1
NR4A2
0.29
41
9
47
10
82.0%
82.5%
0.0002
0.0126
50
57


ICAM1
JUN
0.29
39
11
44
13
78.0%
77.2%
2.9E−10
0.0134
50
57


CEBPB
EGR2
0.29
39
11
44
13
78.0%
77.2%
7.9E−07
0.0008
50
57


NR4A2
SMAD3
0.28
39
11
44
13
78.0%
77.2%
0.0011
0.0007
50
57


EGR2
NR4A2
0.27
38
12
44
13
76.0%
77.2%
0.0014
4.0E−06
50
57


S100A6
TP53
0.27
38
12
43
14
76.0%
75.4%
7.0E−07
2.7E−09
50
57


TNFRSF6

0.26
39
11
45
12
78.0%
79.0%
4.0E−10

50
57


NAB2
NR4A2
0.26
40
10
44
13
80.0%
77.2%
0.0028
1.2E−09
50
57


CEBPB
NR4A2
0.25
39
11
44
13
78.0%
77.2%
0.0053
0.0167
50
57


ICAM1

0.25
39
11
46
11
78.0%
80.7%
1.4E−09

50
57


CEBPB
SRC
0.25
39
11
44
12
78.0%
78.6%
1.2E−05
0.0212
50
56


CEBPB
TP53
0.24
39
11
44
13
78.0%
77.2%
5.4E−06
0.0424
50
57


CDKN2D
MAP2K1
0.23
38
12
43
14
76.0%
75.4%
0.0013
0.0001
50
57


JUN
SMAD3
0.23
41
9
45
12
82.0%
79.0%
0.0383
2.0E−08
50
57


SMAD3

0.20
41
9
44
13
82.0%
77.2%
3.7E−08

50
57





















TABLE 4H








Prostate
Normals
Sum



Group Size
53.3%
46.7%
100%



N =
57
50
107



Gene
Mean
Mean
p-val





















ALOX5
15.00
16.91
0



CREBBP
14.98
16.21
0



EGR1
19.49
21.09
0



EP300
16.09
17.59
0



MAPK1
14.34
15.39
0



PTEN
13.47
14.45
1.2E−15



PDGFA
19.63
21.18
1.3E−15



THBS1
17.73
19.43
3.1E−15



SERPINE1
21.02
22.60
4.8E−15



TGFB1
12.64
13.52
1.1E−14



PLAU
23.32
24.82
7.9E−14



TOPBP1
17.83
18.68
2.4E−12



NFKB1
16.57
17.60
1.3E−11



FOS
15.37
16.44
8.4E−11



TNFRSF6
16.06
16.85
4.0E−10



ICAM1
17.06
18.00
1.4E−09



CEBPB
14.57
15.26
1.9E−08



SMAD3
18.02
18.91
3.7E−08



NR4A2
21.39
22.30
5.6E−08



MAP2K1
15.96
16.54
8.0E−07



NAB1
17.02
17.59
6.3E−06



CDKN2D
14.97
15.34
6.5E−06



RAF1
14.29
14.86
1.4E−05



EGR2
23.61
24.47
1.8E−05



SRC
18.49
19.10
4.2E−05



TP53
16.37
16.95
0.0001



EGR3
23.08
23.84
0.0004



NFATC2
16.47
16.96
0.0006



S100A6
14.66
14.38
0.0398



JUN
21.30
21.55
0.0809



NAB2
20.53
20.33
0.2273



CCND2
16.98
17.25
0.2570























TABLE 4I











Predicted








probability


Patient ID
Group
ALOX5
S100A6
logit
odds
of prostate cancer





















DF099
Cancer
13.92
16.13
14.76
2576463.69
1.0000


DF288517
Cancer
13.90
15.77
13.90
1087326.87
1.0000


DF072
Cancer
13.75
15.17
12.92
410144.58
1.0000


DF078
Cancer
13.62
14.51
11.70
120060.20
1.0000


DF056
Cancer
15.33
17.16
10.89
53414.01
1.0000


DF057
Cancer
13.86
14.61
10.84
50948.38
1.0000


DF060
Cancer
14.14
15.09
10.83
50519.72
1.0000


DF145
Cancer
13.49
13.60
9.80
17968.63
0.9999


DF032
Cancer
15.24
16.61
9.75
17146.22
0.9999


DF126
Cancer
14.03
14.45
9.53
13721.71
0.9999


DF063
Cancer
14.98
16.05
9.42
12322.78
0.9999


DF046
Cancer
13.95
14.25
9.37
11767.11
0.9999


DF129
Cancer
14.09
14.13
8.40
4453.79
0.9998


DF113
Cancer
15.01
15.69
8.29
3966.24
0.9997


DF047
Cancer
14.13
14.15
8.27
3897.96
0.9997


DF125
Cancer
14.37
14.43
7.90
2688.15
0.9996


DF118
Cancer
14.14
13.88
7.42
1674.46
0.9994


DF128
Cancer
14.33
14.17
7.34
1536.89
0.9993


DF250157
Cancer
14.97
15.06
6.72
827.64
0.9988


DF088
Cancer
14.59
14.30
6.42
612.78
0.9984


DF130
Cancer
14.45
13.93
6.10
447.31
0.9978


DF187129
Cancer
14.40
13.77
5.88
356.64
0.9972


DF030
Cancer
14.72
14.31
5.85
347.73
0.9971


DF105
Cancer
14.81
14.38
5.60
270.67
0.9963


DF066
Cancer
14.54
13.91
5.60
270.17
0.9963


DF062
Cancer
14.88
14.48
5.57
261.77
0.9962


DF069
Cancer
14.85
14.42
5.49
242.26
0.9959


DF070
Cancer
15.40
15.30
5.32
204.68
0.9951


DF297549
Cancer
15.58
15.60
5.32
203.69
0.9951


DF031
Cancer
14.82
14.28
5.30
200.06
0.9950


DF279014
Cancer
14.78
14.06
4.88
131.26
0.9924


DF290701
Cancer
14.68
13.88
4.85
127.47
0.9922


DF085
Cancer
14.54
13.64
4.85
127.24
0.9922


DF044
Cancer
15.86
15.91
4.82
123.91
0.9920


DF007
Cancer
15.71
15.60
4.68
108.09
0.9908


DF017
Cancer
16.24
16.36
4.24
69.25
0.9858


DF068
Cancer
16.09
15.94
3.77
43.19
0.9774


DF155
Cancer
15.26
14.41
3.49
32.87
0.9705


DF137
Cancer
14.93
13.81
3.45
31.58
0.9693


DF283908
Cancer
15.44
14.67
3.38
29.26
0.9670


DF065
Cancer
15.69
15.08
3.36
28.71
0.9663


DF059
Cancer
15.40
14.54
3.22
24.97
0.9615


DF5079615
Cancer
15.80
15.21
3.14
23.14
0.9586


DF026
Cancer
15.98
15.43
2.91
18.42
0.9485


057 EGR
Normals
15.20
14.08
2.86
17.54
0.9461


DF119
Cancer
15.03
13.62
2.44
11.44
0.9196


DF137633
Cancer
15.20
13.91
2.42
11.25
0.9184


DF009
Cancer
15.04
13.54
2.17
8.73
0.8972


DF174435
Cancer
15.30
13.92
1.97
7.16
0.8774


DF015
Cancer
15.80
14.68
1.66
5.27
0.8404


236-EGR
Normals
15.61
14.23
1.35
3.85
0.7939


257-EGR
Normals
15.89
14.64
1.14
3.13
0.7577


DF029
Cancer
15.44
13.66
0.60
1.81
0.6445


DF006
Cancer
16.52
15.38
0.14
1.15
0.5343


167-EGR
Normals
15.54
13.67
0.10
1.11
0.5255


DF103398
Cancer
15.28
13.11
−0.19
0.83
0.4537


DF187888
Cancer
15.96
14.23
−0.32
0.73
0.4207


155-EGR
Normals
15.96
14.20
−0.44
0.65
0.3928


DF238564
Cancer
16.25
14.69
−0.45
0.64
0.3887


DF001
Cancer
16.04
14.32
−0.46
0.63
0.3874


154-EGR
Normals
16.26
14.71
−0.46
0.63
0.3863


DF074
Cancer
15.97
14.18
−0.53
0.59
0.3710


239-EGR
Normals
15.93
14.06
−0.66
0.52
0.3407


DF010
Cancer
16.23
14.41
−1.16
0.31
0.2378


078 EGR
Normals
16.02
13.91
−1.56
0.21
0.1743


136-EGR
Normals
15.99
13.78
−1.73
0.18
0.1501


150-EGR
Normals
16.74
15.05
−1.82
0.16
0.1389


100 EGR
Normals
16.66
14.90
−1.86
0.16
0.1349


138-EGR
Normals
16.91
15.20
−2.20
0.11
0.0994


083-EGR
Normals
16.47
14.31
−2.55
0.08
0.0721


156-EGR
Normals
16.63
14.57
−2.63
0.07
0.0672


061-EGR
Normals
16.25
13.90
−2.65
0.07
0.0663


157-EGR
Normals
16.82
14.84
−2.76
0.06
0.0596


133-EGR
Normals
16.75
14.73
−2.77
0.06
0.0587


269-EGR
Normals
16.69
14.54
−3.00
0.05
0.0474


145-EGR
Normals
17.13
15.25
−3.14
0.04
0.0416


152-EGR
Normals
16.87
14.72
−3.38
0.03
0.0329


220-EGR
Normals
16.35
13.76
−3.53
0.03
0.0285


086-EGR
Normals
16.41
13.83
−3.65
0.03
0.0255


161-EGR
Normals
16.68
14.20
−3.87
0.02
0.0205


110-EGR
Normals
16.58
13.97
−4.06
0.02
0.0169


033-EGR
Normals
16.66
14.09
−4.08
0.02
0.0167


245-EGR
Normals
16.92
14.49
−4.26
0.01
0.0140


243-EGR
Normals
16.93
14.51
−4.26
0.01
0.0139


158-EGR
Normals
17.27
15.04
−4.38
0.01
0.0123


265-EGR
Normals
16.45
13.60
−4.45
0.01
0.0116


056 EGR
Normals
17.52
15.44
−4.50
0.01
0.0110


085 EGR
Normals
17.12
14.46
−5.28
0.01
0.0051


180-EGR
Normals
17.13
14.46
−5.32
0.00
0.0048


062 EGR
Normals
16.78
13.86
−5.35
0.00
0.0047


142-EGR
Normals
17.10
14.36
−5.48
0.00
0.0041


267-EGR
Normals
16.75
13.69
−5.68
0.00
0.0034


176-EGR
Normals
17.27
14.49
−5.93
0.00
0.0027


249-EGR
Normals
17.07
14.08
−6.12
0.00
0.0022


031-EGR
Normals
17.16
14.08
−6.56
0.00
0.0014


045-EGR
Normals
17.50
14.41
−7.29
0.00
0.0007


074 EGR
Normals
17.50
14.18
−7.89
0.00
0.0004


030-EGR
Normals
17.45
14.02
−8.10
0.00
0.0003


252-EGR
Normals
17.53
13.90
−8.81
0.00
0.0001


248-EGR
Normals
18.21
15.06
−8.84
0.00
0.0001


119-EGR
Normals
17.99
14.63
−8.96
0.00
0.0001


253-EGR
Normals
17.73
14.05
−9.40
0.00
0.0001


151-EGR
Normals
17.97
14.40
−9.53
0.00
0.0001


246-EGR
Normals
17.98
14.35
−9.73
0.00
0.0001


147-EGR
Normals
18.47
15.16
−9.83
0.00
0.0001


029-EGR
Normals
18.28
14.59
−10.49
0.00
0.0000


109-EGR
Normals
18.37
14.71
−10.59
0.00
0.0000








Claims
  • 1. A method for evaluating the presence of prostate cancer in a subject based on a sample from the subject, the sample providing a source of RNAs, comprising: a) determining a quantitative measure of the amount of at least one constituent of any constituent of any one table selected from the group consisting of Tables 1, 2, 3, and 4 as a distinct RNA constituent in the subject sample subject sample, wherein such measure is obtained under measurement conditions that are substantially repeatable and the constituent is selected so that measurement of the constituent distinguishes between a normal subject and a prostate cancer-diagnosed subject in a reference population with at least 75% accuracy; andb) comparing the quantitative measure of the constituent in the subject sample to a reference value.
  • 2. A method for assessing or monitoring the response to therapy in a subject having prostate cancer based on a sample from the subject, the sample providing a source of RNAs, comprising: a) determining a quantitative measure of the amount of at least one constituent of any constituent of Tables 1, 2, 3, and 4 as a distinct RNA constituent, wherein such measure is obtained under measurement conditions that are substantially repeatable to produce subject data set; andb) comparing the subject data set to a baseline data set.
  • 3. A method for monitoring the progression of prostate cancer in a subject, based on a sample from the subject, the sample providing a source of RNAs, comprising: a) determining a quantitative measure of the amount of at least one constituent of any constituent of Tables 1, 2, 3, and 4 as a distinct RNA constituent in a sample obtained at a first period of time, wherein such measure is obtained under measurement conditions that are substantially repeatable to produce a first subject data set;b) determining a quantitative measure of the amount of at least one constituent of any constituent of Tables 1, 2, 3, and 4 as a distinct RNA constituent in a sample obtained at a second period of time, wherein such measure is obtained under measurement conditions that are substantially repeatable to produce a second subject data set; andc) comparing the first subject data set and the second subject data set.
  • 4. A method for determining a prostate cancer profile based on a sample from a subject known to have prostate cancer, the sample providing a source of RNAs, the method comprising: a) using amplification for measuring the amount of RNA in a panel of constituents including at least 1 constituent from Tables 1, 2, 3, and 4 andb) arriving at a measure of each constituent,wherein the profile data set comprises the measure of each constituent of the panel and wherein amplification is performed under measurement conditions that are substantially repeatable.
  • 5. The method of claim 1, wherein said constituent is selected from a) Table 1 and is selected from: i) EGR1, POV1, CTNNA1, NCOA4, HSPA1A, CD44, ACPP, MEIS1, MUC1, STAT3, EPAS1, G6PD, CDH1, SVIL, TP53, PYCARD, or BCAM;ii) EGR1, MEIS1, PLAU, CDH1, SERPINE1, or CTNNA1; oriii) EGR1, CTNNA1, NCOA4, MEIS1, POV1, G6PD, SERPINE1, or CDH1;b) Table 2 and is selected from: i) EGR1, CASP1, SERPINA1, ICAM1, NFKB1, ALOX5, HSPA1A, IFI16, ELA2, PLAUR, TLR2, TNF, PLA2G7, IL1R1, MAPK14, IL1RN, TXNRD1, IRF1, MNDA, TLR4, PTGS2, or TNFRSF1A;ii) MMP9, ELA2, SERPINA1, IFI16, TLR2, MAPK14, ALOX5, EGR1, or SERPINE1; oriii) SERPINA1, EGR1, ELA2, IFI16, ALOX5, IL1R1, MAPK14, ICAM1, or TIMP1.c) Table 3 and is selected from: i) EGR1, RB1, CDKN1A, NOTCH2, BRAF, BRCA1, TNF, TGFBI, IFITM1, RHOA, NFKB1, NME4, THBS1, SMAD4, TIMP1, ITGB1, TP53, CDK2, ICAM1, PTEN, E2F1, CDK5, TNFRSF6, SOCS1, SRC, MMP9, PLAUR, VEGF, NRAS, SERPINE1, IL1B, CDC25A, VHL, SEMA4D, FOS, AKT1, BCL2, ABL1, RHOC, IL18, G1P3, SKI, TNFRSF1A, CFLAR, or PTCH1;ii) E2F1, BRAF, EGR1, MMP9, SERPINE1, IFITM1, SOCS1, NME4, THBS1, PTEN, BRCA1, RB1, CDKN1A, TIMP1, FOS, NOTCH2, TGFBI, RHOA, CDC25A, CFLAR, PLAUR, TNFRSF6, SEMA4D, or NRAS; oriii) EGR1, BRAF, RB1, E2F1, IFITM1, SOCS1, BRCA1, CDKN1A, NME4, PTEN, MMP9, NOTCH2, THBS1, SERPINE1, TGFB1, TIMP1, RHOA, SMAD4, NFKB1, SEMA4D, ITGB1, TNFRSF6, PLAUR, ICAM1, CDK2, CFLAR, CDC25A, TNFRSF1A, IL18, or CDK5; ord) Table 4 and is selected from: i) EGR1, ALOX5, EP300, SMAD3, MAPK1, TGFB1, CREBBP, NFKB1, TOPBP1, EGR2, ICAM1, THBS1, TP53, TNFRSF6, PTEN, PDGFA, SRC, PLAU, FOS, EGR3, NAB1, CEBPB, or CCND2;ii) ALOX5, SERPINE1, EP300, EGR1, MAPK1, PDGFA, THBS1, PTEN, PLAU, CREBBP, FOS, TGFBI, or TNFRSF6; oriii) ALOX5, EP300, EGR1, MAPK1, CREBBP, PTEN, PDGFA, THBS1, SERPINE1, TGFB1, PLAU, TOPBP1, NFKB1, TNFRSF6, ICAM1, or SMAD3.
  • 6. The method of claim 1, comprising measuring at least two constituents from: a) Table 1, wherein the first constituent is selected from the group consisting of: i) ABCC1, ACPP, ADAMTS1, AOC3, AR, BCAM, BCL2, CAV2, CD44, CD48, CD59, CDH1, COL6A2, COVA1, CTNNA1, E2F5, EGR1, EPAS1, G6PD, HSPA1A, IGF1R, KAI1, LGALS8, MEIS1, MUC1, NCOA4, NRP1, PLAU, POV1, PTGS2, PYCARD, SERPINE1, SERPING1, SMARCD3, SORBS1, SOX4, ST14, STAT3, SVIL, and TP53;ii) ABCC1, ACPP, ADAMTS1, AOC3, AR, BCAM, BCL2, BIRC5, CAV2, CD44, CD48, CD59, CDH1, COL6A2, COVA1, CTNNA1, E2F5, EGR1, EPAS1, FGF2, G6PD, GSTT1, HMGA1, HSPA1A, IGF1R, IL8, KRT5, LGALS8, MEIS1, MYC, NCOA4, NRP1, PLAU, POV1, PTGS2, SERPINE1, SERPING1, SORBS1, SOX4, STAT3, SVIL, and TGFB1; andiii) ABCC1, ACPP, ADAMTS1, AOC3, AR, BCAM, BCL2, BIRC5, CAV2, CD44, CD48, CD59, CDH1, COL6A2, COVA1, CTNNA1, E2F5, EGR1, EPAS1, FGF2, G6PD, HMGA1, HSPA1A, IGF1R, IL8, KAI1, KRT5, LGALS8, MEIS1, MUC1, MYC, NCOA4, NRP1, PLAU, POV1, PTGS2, PYCARD, SERPINE1, SERPING1, SMARCD3, SORBS1, SOX4, STAT3, SVIL, TGFB1, and TP53;and the second constituent is any other constituent selected from Table 1, wherein the constituent is selected so that measurement of the constituent distinguishes between a normal subject and a prostate cancer-diagnosed subject in a reference population with at least 75% accuracy;b) Table 2, wherein the first constituent is selected from the group consisting of: i) ADAM17, ALOX5, APAF1, C1QA, CASP1, CASP3, CCL3, CCL5, CCR5, CD19, CD4, CD86, CD8A, CXCL1, DPP4, EGR1, ELA2, HLADRA, HMGB1, HMOX1, HSPA1A, ICAM1, IF16, IL10, IL15, IL18, IL18BP, IL1B, IL1R1, IL1RN, IL23A, IL32, IL5, IRF1, MAPK14, MHC2TA, MIF, MMP9, MNDA, MYC, NFKB1, PLA2G7, PLAUR, PTPRC, SERPINA1, SERPINE1, and TNF;ii) ADAM17, ALOX5, APAF1, C1QA, CASP1, CASP3, CCL3, CCL5, CCR3, CCR5, CD19, CD4, CD86, CD8A, CTLA4, CXCL1, CXCR3, DPP4, EGR1, ELA2, HLADRA, HMGB1, HMOX1, HSPA1A, ICAM1, IFI16, IL10, IL15, IL18BP, IL1B, IL1R1, IL1RN, IL23A, IL32, IL5, IL8, IRF1, LTA, MAPK14, MHC2TA, MIF, MMP12, MNDA, MYC, NFKB1, PLA2G7, PLAUR, PTGS2, PTPRC, SERPINA1, SERPINE1, SSI3, TGFB1, TIMP1, TLR2, TLR4, and TNFSF5; andiii) ADAM17, ALOX5, APAF1, C1QA, CASP1, CCL3, CCL5, CCR3, CCR5, CD19, CD4, CD86, CD8A, CTLA4, CXCL1, CXCR3, DPP4, EGR1, ELA2, HLADRA, HMGB1, HMOX1, HSPA1A, ICAM1, IFI16, IL15, IL18, IL18BP, IL1B, IL1R1, IL1RN, IL23A, IL32, IL5, IL8, IRF1, LTA, MAPK14, MHC2TA, MIF, MMP9, MNDA, MYC, NFKB1, PLA2G7, PLAUR, PTGS2, PTPRC, SERPINA1, SERPINE1, TGFB1, TIMP1, TNFSF5, and TOSO;and the second constituent is any other constituent selected from Table 2, wherein the constituent is selected so that measurement of the constituent distinguishes between a normal subject and a prostate cancer-diagnosed subject in a reference population with at least 75% accuracy;c) Table 3 wherein the first constituent is selected from the group consisting of: i) ABL1, ABL2, AKT1, ANGPT1, APAF1, ATM, BAD, BAX, BCL2, BRAF, BRCA1, CASP8, CCNE1, CDC25A, CDK2, CDK4, CDK5, CDKN1A, CDKN2A, CFLAR, E2F1, EGR1, ERBB2, FOS, G1P3, GZMA, HRAS, ICAM1, IFITM1, IFNG, IGFBP3, IL18, IL1B, IL8, ITGA1, ITGA3, ITGAE, ITGB1, JUN, MMP9, MSH2, MYC, MYCL1, NFKB1, NME1, NME4, NOTCH2, NRAS, PCNA, PLAUR, PTCH1, PTEN, RAF1, RB1, RHOA, RHOC, SEMA4D, SERPINE1, SKI, SKIL, SMAD4, SOCS1, SRC, TGFBI, THBS1, TIMP1, TNF, TNFRSF10A, TNFRSF6, TP53, and VEGF;ii) ABL1, ABL2, AKT1, ANGPT1, APAF1, ATM, BAD, BAX, BCL2, BRAF, BRCA1, CASP8, CCNE1, CDC25A, CDK2, CDK4, CDK5, CDKN1A, CDKN2A, CFLAR, E2F1, EGR1, ERBB2, FGFR2, FOS, G1P3, GZMA, HRAS, ICAM1, IFITM1, IFNG, IGFBP3, IL18, IL1B, IL8, ITGA1, ITGA3, ITGAE, ITGB1, JUN, MMP9, MSH2, MYC, MYCL1, NFKB1, NME1, NME4, NOTCH2, NRAS, PCNA, PLAUR, PTCH1, PTEN, RAF1, RB1, RHOA, RHOC, S100A4, SEMA4D, SERPINE1, SKI, SKIL, SMAD4, SOCS1, SRC, TGFBI, THBS1, TIMP1, TNFRSF10A, TNFRSF10B, TNFRSF1A, and TNFRSF6; andiii) ABL1, ABL2, AKT1, ANGPT1, APAF1, ATM, BAD, BAX, BCL2, BRAF, BRCA1, CASP8, CCNE1, CDC25A, CDK2, CDK4, CDK5, CDKN1A, CDKN2A, CFLAR, E2F1, EGR1, ERBB2, FGFR2, FOS, G1P3, GZMA, HRAS, ICAM1, IFITM1, IFNG, IGFBP3, IL18, IL1B, IL8, ITGA1, ITGA3, ITGAE, ITGB1, JUN, MMP9, MSH2, MYC, MYCL1, NFKB1, NME1, NME4, NOTCH2, NRAS, PCNA, PLAUR, PTCH1, PTEN, RAF1, RB1, RHOA, RHOC, S100A4, SEMA4D, SERPINE1, SKI, SKIL, SMAD4, SOCS1, SRC, TGFB1, THBS1, TIMP1, TNFRSF10A, TNFRSF10B, TNFRSF1A, TNFRSF6, and VEGF;and the second constituent is any other constituent selected from Table 3, wherein the constituent is selected so that measurement of the constituent distinguishes between a normal subject and a prostate cancer-diagnosed subject in a reference population with at least 75% accuracy; ord) Table 4 wherein the first constituent is selected from the group consisting of: i) ALOX5, CCND2, CEBPB, CREBBP, EGR1, EGR2, EGR3, EP300, FOS, ICAM1, JUN, MAP2K1, MAPK1, NAB1, NAB2, NFATC2, NFKB1, NR4A2, PDGFA, PLAU, PTEN, RAF1, S100A6, SERPINE1, SMAD3, SRC, THBS1, and TNFRSF6ii) ALOX5, CCND2, CDKN2D, CEBPB, CREBBP, EGR1, EGR2, EGR3, EP300, FOS, ICAM1, JUN, MAP2K1, MAPK1, NAB1, NAB2, NFATC2, NFKB1, NR4A2, PDGFA, PLAU, PTEN, RAF1, S100A6, SERPINE1, SMAD3, SRC, TGFBI, THBS1, and TOPBP1; andiii) ALOX5, CCND2, CDKN2D, CEBPB, CREBBP, EGR1, EGR2, EGR3, EP300, FOS, ICAM1, JUN, MAP2K1, MAPK1, NAB1, NAB2, NFATC2, NFKB1, NR4A2, PDGFA, PLAU, PTEN, RAFT, S100A6, SERPINE1, SMAD3, SRC, TGFB1, THBS1, and TOPBP1;and the second constituent is any other constituent selected from Table 4, wherein the constituent is selected so that measurement of the constituent distinguishes between a normal subject and a prostate cancer-diagnosed subject in a reference population with at least 75% accuracy; and
  • 7. The method of claim 1, wherein the combination of constituents are selected according to any of the models enumerated in Tables 1A, 2A, 3A, or 4A.
  • 8. The method of claim 1, wherein said reference value is an index value.
  • 9. The method of claim 2, wherein said therapy is immunotherapy.
  • 10. The method of claim 9, wherein said constituent is selected from the group constituent is selected from Table 5.
  • 11. The method of claim 2, wherein when the baseline data set is derived from a normal subject a similarity in the subject data set and the baseline date set indicates that said therapy is efficacious.
  • 12. The method of claim 2, wherein when the baseline data set is derived from a subject known to have prostate cancer a similarity in the subject data set and the baseline date set indicates that said therapy is not efficacious.
  • 13. The method of claim 1, wherein expression of said constituent in said subject is increased compared to expression of said constituent in a normal reference sample.
  • 14. The method of claim 1, wherein expression of said constituent in said subject is decreased compared to expression of said constituent in a normal reference sample.
  • 15. The method of claim 1, wherein the sample is selected from the group consisting of blood, a blood fraction, a body fluid, a cells and a tissue.
  • 16. The method of claim 1, wherein the measurement conditions that are substantially repeatable are within a degree of repeatability of better than ten percent.
  • 17. The method of claim 1, wherein the measurement conditions that are substantially repeatable are within a degree of repeatability of better than five percent.
  • 18. The method of claim 1, wherein the measurement conditions that are substantially repeatable are within a degree of repeatability of better than three percent.
  • 19. The method of claim 1, wherein efficiencies of amplification for all constituents are substantially similar.
  • 20. The method of claim 1, wherein the efficiency of amplification for all constituents is within ten percent.
  • 21. The method of claim 1, wherein the efficiency of amplification for all constituents is within five percent.
  • 22. The method of claim 1, wherein the efficiency of amplification for all constituents is within three percent.
  • 23. A kit for detecting prostate cancer in a subject, comprising at least one reagent for the detection or quantification of any constituent measured according to claim 1 and instructions for using the kit.
REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/920,931 filed Mar. 30, 2007 and U.S. Provisional Application No. 60/965,121 filed Aug. 17, 2007, the contents of which are incorporated by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US07/23425 11/6/2007 WO 00 5/5/2010
Provisional Applications (2)
Number Date Country
60920931 Mar 2007 US
60965121 Aug 2007 US