Miller FASEB J., vol. 9, pp. 190-199, 1995.* |
Deonarain Expert Opin. Ther. Pat., vol. 8, pp. 53-69, 1998.* |
Verma Nature, vol. 389, pp. 239-242, Sep. 1997.* |
Crystal Science, vol. 270, p. 404-410, 1995.* |
Ping et al. Circulation, vol. 92, p. 570, abstract 2727, Oct. 1995.* |
Katsushika et al., PNAS, vol. 89, pp. 8774-8778, 1992.* |
Tang et al., Biochemistry, vol. 34, p. 14563-14572, 1995.* |
Alousi et al., “Stoichiometry of receptor-GS-adenylate cyclase interactions” FASEB J. (1991) 5:2300-2304. |
Brigham et al., “Cationic liposomes and DNA delivery” J. Liposome Res. (1993) 3:31-49. |
Bristow et al., “β1 and β2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium” Mol. Pharm. (1989) 35:295-303. |
Bristow et al., “Reduced β1 receptor messenger RNA abundance in the failing human heart” J. Clin. Invest. (1993) 92:2737-2745. |
Burns et al., “Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells” Proc. Natl. Acad. Sci. (USA) (1993) 90:8033-8037. |
Carter, “Adeno-associated virus vectors” Curr. Opin. Biotechnol. (1992) 3:533-539. |
Darfler et al., “Stimulation by forskolin of intact S49 lymphoma cells involves the nucleotide regulatory protein of adenylate cyclase” J. Biol. Chem. (1982) 257:11901-11907. |
Flotte et al., “Adeno-associated virus vectors for gene therapy” Gene Therapy (1995) 2:357-362. |
Frielle et al., “Cloning of the cDNA for the human β1-adrenergic receptor” Proc. Natl. Acad. Sci. (USA) (1987) 84:7920-7924. |
Gao et al., “Increased adrenergic signaling after adenylylcyclase type VI gene transfer in rat cardiac myocytes” Circulation(1997) 6:I-294, XP-002056511. |
Hammond et al., “Regional myocardial downregulation of the inhibitory guanosine triphosphate-binding protein ((Giα2)and β-adrenergic receptors in a porcine model of chronic episodic myocardial ischemia” J. Clin. Invest. (1993) 92:2644-2652. |
Inglese et al., “Structure and mechanism of the G protein-coupled receptor kinases” J. Biol. Chem. (1993) 268:23735-23738. |
Ishikawa et al., “Isolation and characterization of a novel cardiac adenylylcyclase cDNA” J. Biol. Chem. (1992) 267:13553-13557. |
Ishikawa et al., “Downregulation of adenylylcyclase types V and VI mRNA levels in pacing-induced heart failure in dogs” J. Clin. Invest. (1994) 93:2224-2229. |
Iyengar, “Molecular and functional diversity of mammalian GS-stimulated adenylyl cyclases” FASEB J. (1993) 7:768-775. |
Katsushika et al., “Cloning and characterization of a sixth adenylyl cyclase isoform: Types V and VI constitute a subgroup within the mammalian adenylyl cyclase family” Proc. Natl. Acad. Sci. (USA) (1992) 89:8774-8778. |
Koch et al., “Cardiac function in mice overexpressing the β-adrenergic receptor kinase or a βARK inhibitor” Science (1995) 268:1350-1353. |
Krupinski et al., “Molecular diversity in the adenylylclase family: Evidence for eight forms of the enzyme and cloning of type VI” J. Biol. Chem. (1992) 267:24858-24862. |
Lee et al., “Myosin light chain-2 luciferase transgenic mice reveal distinct regulatory programs for cardiac and skeletal muscle-specific expression of a single contractile protein gene” J. Biol. Chem. (1992) 267:15875-15885. |
McGrory et al., “Short communications. A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5” Virology (1988) 163:614-617. |
Miller et al., “Targeted vectors for gene therapy” FASEB J. (1995) 9:190-199. |
Nabel E., “Gene therapy for cardiovascular disease” Circulation (1995) 91:541-548. |
Ping et al., “Over-expression of adenylylclase VI (ACVI) increases β-adrenergic receptor-stimulated cAMP in neonatal rat cardiac myocytes” Circulation (1995) 92:2727. |
Ping et al., “Reduced β-adrenergic receptor activation decreases G-protein expression and β-adrenergic receptor kinase activity in porcine heart” J. Clin. Invest. (1995) 95:1271-1280. |
Roth et al., “Downregulation of cardiac guanosine 5'-triphosphate-binding proteins in right atrium and left ventricle in pacing-induced congestive heart failure” J. Clin. Invest. (1993) 91:939-949. |
Salomon et al., “A highly sensitive adenylate cyclase assay” Anal. Biochem. (1974) 58:541-548. |
Spinale et al., “Relation between ventricular and myocyte remodeling with the development and regression of supraventricular tachycardia-induced cardiomyopathy” Circ. Res. (1991) 69:1058-1067. |
Summers et al., “Signalling pathways in cardiac failure” Clin. Exper. Pharm. Phys. (1995) 22:874-876. |
Ungerer et al., “Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in the failing human heart” Circulation (1993) 87:454-463. |
Ungerer et al., “Expression of β-arrestins and β-adrenergic receptor kinases in the failing human heart” Circ Res (1994) 74:206-213. |
Yoshimura et al., “Cloning and expression of a Ca2+-inhibitable adenylyl cyclase from NCB-20 cells” Proc. Natl. Acad. Sci.(USA) (1992) 89:6716-6720. |
Avidor-Reiss, et al., “Opiate-induced adenylyl cyclase superactivation is isozyme-specific,” J. Biol. Chem. 272(8):5040-7 (1997). |
Premont et al., “Two members of a widely expressed subfamily of hormone-stimulated adenylyl cyclases,” Proc. Natl. Acad. Sci. U.S.A. 89(20):9809-13 (1992). |
Thomas, J.M., “Isoform-specific sensitization of adenylyl cyclase activity by prior activation of inhibitory receptors:role of beta gamma subunits in transducing enhanced activity of the type VI isoform,” Mol. Pharmacol. 49(5):907-14 (1996). |