Claims
- 1. A wireless communication system including a Radio Base Station (RBS), said RBS comprising:
physical layer resources providing one or more wireless communication channels for communicating with a plurality of mobile stations; and medium access control (MAC) logic to control allocation of the physical layer resources; said MAC logic comprising two or more reverse link rate controllers, each rate controller configured to provide a different reverse link rate control mechanism for one or more mobile stations being supported by the RBS.
- 2. The system of claim 1, wherein the two or more rate controllers comprise two or more of the following group of rate controllers: a per-sector rate controller configured to provide per-sector reverse link rate control commands, a per-user rate controller configured to provide per-user reverse link rate control commands, a per-group rate controller configured to provide per-group reverse link rate control commands, and a scheduling rate controller configured to provide scheduled reverse link rates to one or more mobile stations.
- 3. The system of claim 1, wherein the two or more rate controllers comprise a per-sector rate controller configured to generate per-sector reverse link rate control commands, and one or more of a per-group rate controller configured to generate per-group reverse link rate control commands, a per-user rate controller configured to generate per-user reverse link rate control commands, and a scheduling rate controller configured to generate scheduled reverse link rates for one or more mobile stations.
- 4. The system of claim 1, wherein the two or more rate controllers comprise a per-group rate controller configured to generate per-group reverse link rate control commands, and one or more of a per-sector rate controller configured to generate per-sector reverse link rate control commands, a per-user rate controller configured to generate per-mobile reverse link rate control commands, and a scheduling rate controller configured to generate scheduled reverse link rates for one or more mobile stations.
- 5. The system of claim 1, wherein the two or more rate controllers comprise a per-user rate controller configured to generate per-user reverse link rate control commands, and one or more of a per-sector rate controller configured to generate per-sector reverse link rate control commands, a per-group rate controller configured to generate per-group reverse link rate control commands, and a scheduling rate controller configured to generate scheduled reverse link rates for one or more mobile stations.
- 6. The system of claim 1, wherein the two or more rate controllers comprise three rate controllers including a per-sector rate controller, a per-group rate controller, and a per-user rate controller, and wherein the MAC logic is configured to run the three rate controllers simultaneously to provide three different rate control mechanisms for different mobile stations or groups of mobile stations being supported by the RBS.
- 7. The system of claim 1, wherein the MAC logic is configured to multiplex rate control commands from at least one of the two or more rate controllers onto a common power control channel.
- 8. The system of claim 1, wherein the physical layer resources are configured to provide one or more sub-channels on a common power control channel, and wherein the MAC logic is configured to send rate control commands from the two or more rate controllers on the one or more sub-channels.
- 9. The system of claim 1, wherein the system further comprises base station control logic configured to selectively assign each mobile station to one or more of the rate controllers.
- 10. The system of claim 9, wherein the base station control logic is configured to assign a given mobile station to two of the two or more rate controllers, such that the mobile station receives rate control commands from two different rate controllers in the MAC logic.
- 11. The system of claim 10, wherein a first one of the two rate controllers comprises one of a per-sector rate controller, a per-group rate controller, and a per-user rate controller, and wherein a second one of the two rate controllers comprises one of a per-group rate controller, a per-sector rate controller, and a per-user rate controller.
- 12. The system of claim 9, wherein the base station control logic is configured to assign individual mobile stations to one or more of the rate controllers based on an application type of the mobile stations.
- 13. The system of claim 9, wherein the base station control logic is configured to change which rate controllers a given mobile station is assigned to during ongoing service based on changing application types of the mobile station.
- 14. The system of claim 9, wherein the system further comprises a Base Station Controller (BSC) including the base station control logic.
- 15. The system of claim 9, wherein the base station control logic is configured to assign mobile stations to one or more of the rate controllers at call setup times.
- 16. A method of reverse link control at a wireless communication network base station system, the method comprising:
providing two or more reverse link rate controllers, each rate controller configured to generate reverse link rate control commands distinct from the commands generated by the other rate controllers; selectively associating individual mobile stations with at least one of the rate controllers; and generating reverse link rate control commands using one or more of the rate controllers and transmitting the commands to associated mobile stations.
- 17. The method of claim 16, wherein providing two or more rate controllers comprises providing control logic to implement two or more rate controllers in each radio sector of a radio base station included in the base station system.
- 18. The method of claim 17, wherein providing control logic to implement two or more rate controllers in each radio sector of a radio base station included in the base station system comprises providing Medium Access Control (MAC) logic in the radio base station, wherein the MAC logic is configured functionally to implement two or more rate controllers in each radio sector of the radio base station.
- 19. The method of claim 17, wherein providing control logic to implement two or more rate controllers in each radio sector of a radio base station included in the base station system comprises providing base station control logic in a base station controller included in the base station system, wherein the base station control logic is configured functionally to implement two or more rate controllers in each radio sector of the radio base station.
- 20. The method of claim 16, wherein selectively associating individual mobile stations with at least one of the rate controllers comprises determining rate controller associations for individual mobile stations at call admission based on one or more service requirements of the individual mobile stations.
- 21. The method of claim 20, wherein selectively associating individual mobile stations with at least one of the rate controllers further comprises dynamically changing the rate controller associations of individual mobile stations after call admission based on changing service requirements of the individual mobile stations.
- 22. The method of claim 20, wherein selectively associating individual mobile stations with at least one of the rate controllers further comprises controlling reverse link congestion by dynamically changing the rate controller associations of individual mobile stations after call admission based on changing service requirements of the individual mobile stations.
- 23. The method of claim 16, wherein selectively associating individual mobile stations with at least one of the rate controllers comprises associating at least one mobile station with a first one of the rate controllers to act as a fundamental rate controller for the mobile station, and with a second one of the rate controllers to act as a supplemental rate controller for the mobile station, such that reverse link rate control for the mobile station is effected based on a desired combining relationship of the rate control commands transmitted by the fundamental and supplemental rate controllers.
- 24. The method of claim 16, wherein providing two or more reverse link rate controllers comprises, for a given radio sector of the base station system, providing at least two rate controllers selected from the group comprising a per-sector rate controller, a per-group rate controller, a per-user dedicated rate controller, and a scheduling rate controller.
- 25. The method of claim 16, wherein providing two or more reverse link rate controllers comprises, for a given radio sector of the base station system, providing at least one per-group rate controller to generate common rate control commands for a group of associated mobile stations, and providing at least one other rate controller comprising a per-sector rate controller to generate common rate control commands for the radio sector, a per-user rate controller to generate dedicated rate control commands for associated mobile stations, or a scheduling rate controller to generate scheduled rate control commands for associated mobile stations.
- 26. The method of claim 16, wherein providing two or more reverse link rate controllers comprises, for a given radio sector of the base station system, providing at least one per-sector rate controller to generate common rate control commands for associated mobile stations, and providing at least one other rate controller comprising a per-group rate controller to generate common rate control commands for associated mobile stations, a per-user rate controller to generate dedicated rate control commands for associated mobile stations, or a scheduling rate controller to generate scheduled rate control commands for associated mobile stations.
- 27. The method of claim 16, wherein providing two or more reverse link rate controllers comprises, for a given radio sector of the base station system, providing at least one per-user rate controller to generate dedicated rate control commands for associated mobile stations, and providing at least one other rate controller comprising a per-sector rate controller to generate common rate control commands for associated mobile stations, a per-group rate controller to generate common rate control commands for associated mobile stations, or a scheduling rate controller to generate scheduled rate control commands for associated mobile stations.
RELATED APPLICATIONS
[0001] This application claims priority under 35 U.S.C. § 119(e) from the following provisional applications: Application Serial No. 60/439,126 filed on 10 Jan. 2003, Application Serial No. 60/486,938 filed on 14 Jul. 2003, and Application Serial No. 60/494,685 filed on 12 Aug. 2003. These applications are incorporated in their entirety by reference herein.
Provisional Applications (3)
|
Number |
Date |
Country |
|
60439126 |
Jan 2003 |
US |
|
60486938 |
Jul 2003 |
US |
|
60494685 |
Aug 2003 |
US |