1. Field of the Invention
The specification relates to a system and method for generating a conversation in a social network based on visual search results. In particular, the specification relates to indexing MMR objects, receiving an image from a user, matching the image to an MMR object and generating a conversation based on the MMR object.
2. Description of the Background Art
There currently exists a gap between different types of media. People still use print media for things such as textbooks and class notes. However, much of the discussion of educational materials takes place electronically over email, texting, posting or on electronic blackboard systems.
One attempt by the prior art to solve this problem is to associate paper media with an electronic version. If the user wants to collaborate with other users regarding an activity related to the paper media, the user can email the electronic document to other students or post something on a social network. This method, however, is cumbersome and can be both over-inclusive because most of the user's friends will find the post irrelevant and under-inclusive because the user is not friends with all the students for a particular class.
The present invention overcomes the deficiencies of the prior art with a system for generating a conversation in a social network that corresponds to a mixed media reality (MMR) object based on visual search results. A conversation includes multiple discussion threads about the same source material.
The user devices include an access module for capturing images, transmitting the images to an MMR server and receiving a user interface from a social network server. An MMR server includes an MMR database for storing MMR objects and an MMR engine for receiving images from user devices and retrieving MMR objects that correspond to the received image. The MMR object corresponds to source material, such as a textbook. The content management server includes a content management engine for generating metadata that is indexed in the metadata database. In one embodiment, the content management engine generates metadata based on information received from a social network server, such as comments relating to a conversation that corresponds to an MMR object. In another embodiment, the content management engine generates clusters that include MMR objects with similar source material, which is determined based on the metadata.
The social network server includes a social network application and storage. Once the MMR engine identifies the MMR object that corresponds to an image, the MMR engine transmits the MMR object to the social network application. The social network application includes a conversation engine that determines whether a conversation corresponding to the MMR object already exists. If yes, then the conversation engine provides the user with access to the conversation. If not, the conversation engine generates a conversation. A user interface engine generates a user interface that includes an option for the user to join the conversation. In one embodiment, a statistics manager generates statistics about the conversation that is displayed as part of the user interface.
In another embodiment, the conversation engine generates a discussion group based on the cluster or proximity information. The conversation engine receives the MMR object and proximity information about at least one of a time and a location that the image was captured. The conversation engine determines whether a discussion group relating to the cluster or proximity information already exists. If not, the conversation engine generates a discussion group. If the discussion group does exist, the conversation engine grants the user access to the discussion group.
The invention is illustrated by way of example, and not by way of limitation in the figures of the accompanying drawings in which like reference numerals are used to refer to similar elements.
A system and method for generating a conversation in a social network based on visual search results are described below. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that the embodiments can be practiced without these specific details. In other instances, structures and devices are shown in block diagram form in order to avoid obscuring the invention. For example, the invention is described in one embodiment below with reference to user devices such as a smart phone and particular software and hardware. However, the description applies to any type of computing device that can receive data and commands, and any peripheral devices providing services.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
Some portions of the detailed descriptions that follow are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
The invention also relates to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, flash memories including USB keys with non-volatile memory or any type of media suitable for storing electronic instructions, each coupled to a computer system bus.
Some embodiments can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment containing both hardware and software elements. A preferred embodiment is implemented in software, which includes but is not limited to firmware, resident software, microcode, etc.
Furthermore, some embodiments can take the form of a computer program product accessible from a computer-usable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this invention, a computer-usable or computer readable medium can be any apparatus that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
A data processing system suitable for storing and/or executing program code will include at least one processor coupled directly or indirectly to memory elements through a system bus. The memory elements can include local memory employed during actual execution of the program code, bulk storage, and cache memories which provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution. Input/output or I/O devices (including but not limited to keyboards, displays, pointing devices, etc.) can be coupled to the system either directly or through intervening I/O controllers.
Network adapters may also be coupled to the system to enable the data processing system to become coupled to other data processing systems or remote printers or storage devices through intervening private or public networks. Modems, cable modem and Ethernet cards are just a few of the currently available types of network adapters.
Finally, the algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below. In addition, the specification is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the various embodiments as described herein.
System Overview
The network 107 is a conventional type, wired or wireless, and may have any number of configurations such as a star configuration, token ring configuration or other configurations known to those skilled in the art. Furthermore, the network 107 may comprise a local area network (LAN), a wide area network (WAN) (e.g., the Internet), and/or any other interconnected data path across which multiple devices may communicate. In yet another embodiment, the network 107 may be a peer-to-peer network. The network 107 may also be coupled to or includes portions of a telecommunications network for sending data in a variety of different communication protocols. In yet another embodiment, the network 107 includes Bluetooth communication networks or a cellular communications network for sending and receiving data such as via short messaging service (SMS), multimedia messaging service (MMS), hypertext transfer protocol (HTTP), direct data connection, WAP, email, etc. While only one network 107 is coupled to the user devices 115a, 115n, the MMR server 104, the content management server 150 and the social network server 101, in practice any number of networks 107 can be connected to the entities.
The user device 115a is any computing device that includes an access module 113, a memory and a processor, such as a personal computer, a laptop, a smartphone, a cellular phone, a personal digital assistant (PDA), etc. The user device 115a is adapted to send and receive information such as images, time, location, etc. The user device 115a is connected to the network 107 via signal line 132. The user 125a interacts with the user device 115a via signal line 110. Although only two user devices 115a, 115n are illustrated, persons of ordinary skill in the art will recognize that any number of user devices 115n are available to any number of users 125n.
The access module 113, which includes software for capturing an image and transmitting the image to the MMR server 104 for performing a visual search. Once the MMR server 104 transmits the MMR object to the social network server 101 and the social network server 101 generates a user interface, the user interface is transmitted to the access module 113 for display on the user device 115a. In one embodiment, the access module 113 is a self-contained application for performing the capturing and displaying. In another embodiment, the access module 113 works in conjunction with a browser to capture the image and display the user interface.
The MMR server 104 includes an MMR engine 103 and an MMR database 105. The MMR engine 103 includes software for performing a visual search with information (for e.g., an image) received from the user device 115 to identify an MMR object from the MMR database 105. MMR objects are electronic versions of source material, such as a book, an educational supplement, a poster, a class, a professor, an educational institution and a study group. The MMR server 104 is coupled to the network 107 via signal line 134. Although only one MMR server 104 is shown, persons of ordinary skill in the art will recognize that multiple MMR servers 104 may be present.
The social network server 101 includes a social network application 109 and storage 141. A social network is any type of social structure where the users are connected by a common feature. The common feature includes, work, school, friendship, family, an interest, etc. The social network application 109 receives information from the MMR server 104 and the content management server 150, generates a discussion thread, identifies conversations related to the received information, generates user interfaces and transmits the user interfaces to the user devices 115 for display. The storage 141 stores data associated with the social network such as user information, relationships between users as a social graph, discussion threads, conversations between users, etc. The social network server 101 is coupled to the network 107 via signal line 138. Although only one social network server 101 is shown, persons of ordinary skill in the art will recognize that multiple social network servers 101 may be present.
The content management server 150 includes a content management engine 155 and a metadata database 160. The content management server 150 is coupled with the network 107 via signal line 136. Although only one content management server 150 is shown, persons of ordinary skill in the art will recognize that multiple content management servers 150 may be present.
The metadata database 160 stores and indexes metadata associated with the MMR objects stored in the MMR database 105. The metadata is any data that provides information about one or more aspects of an MMR object. For example, the metadata of an MMR object that represents a mathematics book: “Probability and Statistics for Engineers” are tags such as “probability,” “bayesian,” “belief networks,” “statistics,” author, title, publisher, links to additional material associated with the book, number of pages in the book, price, book stores from where the book can be purchased, comments and discussions about the book (such as a discussion thread on a social network, a book review website, etc.), users who posted the comments and discussions, etc. In one embodiment, the metadata database 160 is automatically populates in an offline process. In another embodiment, the metadata database 160 is updated after receiving metadata from the social network server 101 about user interactions with the MMR object (such as comments, links, PDFs, chats, user connections, etc.).
In one embodiment, the content management engine 155 includes software for generating a cluster group of MMR objects based on the relatedness of the MMR objects, i.e. MMR objects with similar source material such as a text book, a poster and class notes that relate to the same class. In one embodiment, the content management engine 155 is a set of instructions executable by a processor to provide the functionality described below for generating clusters of MMR objects. In another embodiment, the content management engine 155 is stored in a memory and is accessible and executable by the processor.
The content management engine 155 generates clusters of MMR objects by applying a similarity vector and based on the relatedness of the metadata and the users that are associated with the MMR object (including whether they are actively using the MMR objects). In one embodiment, the similarity vector is based on k-means, agglomerative clustering, fuzzy clustering or formal concept analysis. In one embodiment, the content management engine 155 generates the clusters as part of the process of indexing metadata for the metadata database 160. In another embodiment, the content management engine 155 generates clusters responsive to receiving an image from a user device 115.
For example, the content management engine 155 determines that the following items are related source materials: a textbook on “Probability and Statistics for Engineers”; a handout provided by a professor with specific problems on Bayesian nets; and a similar book “Fifty Challenging Problems in Probability with Solutions.” As a result, three different users could become part of a group based on each one capturing an image of one of those items.
The content management engine 155 also includes software for updating the metadata database 160. In one embodiment, the content management engine 155 receives and indexes content from the social network server 101 to determine whether they are related to an MMR object. Content from the social network server 101 includes, for example, a status of the MMR objects so that the MMR engine 103 generates active clusters and discussion content such as comments, links, PDFs, chats and user connections. The content management engine 155 then indexes the content along with other metadata.
In another embodiment, the content management engine 155 dynamically updates the metadata by retrieving information relevant to an MMR object from a third-party server (not shown). For example, the content management engine 155 uses existing tags of an MMR object from the metadata database 160 to query a search server and retrieve additional information relevant to the MMR object. In another example, the content management engine 155 receives metadata from a user via the social network server 101, such as keywords associated with an MMR object that are submitted by a user. The content management engine 155 then updates the metadata database 160 with the additional information. The content management engine 155 updates the metadata database 160 periodically, for example, automatically every day, every hour or responsive to receiving a request for metadata from the MMR engine 103.
MMR Object 200
The representation 202 of a portion of the source material 218 is an image, vectors, pixels, text, codes or any other format known to a person with ordinary skill in the art that is usable for pattern matching. The representation 202 also identifies at least one location within the source material 218. In one embodiment, the representation 202 is a text fingerprint as shown in
The action or second media 204 is a digital file or a data structure of any type. In one embodiment, the action or second media 204 is one more commands to be executed or text to be presented. In another embodiment, the action or second media type 204 is a text file, an image file, an audio file, a video file, an application file (for example, a spreadsheet or word processing document), a PDF file, metadata, etc., associated with the representation 202. In yet another embodiment, the action or second media type 204 is a data structure or file referencing or including multiple different media types and multiple files of the same media type.
The MMR object 200 also includes an electronic representation 208 of the source material 218. In one embodiment, the electronic representation 208 is used for displaying on the user device 115. In another embodiment, the electronic representation 208 is used to determine the position of the hotspot 206 within the document. In this illustrated example, the electronic representation 208 is an electronic version of the entire book, a page within the book, the cover page of the book, an image of the source material such as an thumbnail image, etc.
The index or hotspot 206 is a link between the representation 202, the action or second media 204 and the electronic representation 208. The hotspot 206 associates the representation 202 and the second media 204. In one embodiment, the index or hotspot 206 includes position information such as the x-y coordinates within the source material 218. The hotspot 206 is a point, an area or even the entire source material 218. In one embodiment, the hotspot 206 is a data structure with a pointer to the representation 202, a pointer to the second media 204 and a location within the source material 218. In one embodiment, the MMR object 200 has multiple hotspots, and in this embodiment, the data structure creates links between multiple representations, multiple second media files and multiple locations within the source material 218.
An example use of the MMR object 200 as illustrated in
MMR Engine 103
The processor 335 comprises an arithmetic logic unit, a microprocessor, a general purpose controller or some other processor array to perform computations and provide electronic display signals to a display device. The processor 335 is coupled to the bus 320 for communication with the other components via signal line 356. Processor 335 processes data signals and may comprise various computing architectures including a complex instruction set computer (CISC) architecture, a reduced instruction set computer (RISC) architecture, or an architecture implementing a combination of instruction sets. Although only a single processor is shown in
The memory 337 stores instructions and/or data that may be executed by processor 335. The memory 337 is coupled to the bus 320 for communication with the other components via signal line 354. The instructions and/or data may comprise code for performing any and/or all of the techniques described herein. The memory 337 may be a dynamic random access memory (DRAM) device, a static random access memory (SRAM) device, flash memory or some other memory device known in the art. In one embodiment, the memory 337 also includes a non-volatile memory or similar permanent storage device and media such as a hard disk drive, a floppy disk drive, a CD-ROM device, a DVD-ROM device, a DVD-RAM device, a DVD-RW device, a flash memory device, or some other mass storage device known in the art for storing information on a more permanent basis.
The communication unit 340 receives data such as images from the user device 115 and transmits requests to the social network server 101, for example a request for discussions related to an MMR object identified by the MMR engine 103 corresponding to a received image. The communication unit 340 also receives information from the social network server 101. The communication unit 340 also transmits feedback to the user device 115, for example, feedback that the received image is not of good quality. The communication unit 340 is coupled to the bus 320 via signal line 358. In one embodiment, the communication unit 340 includes a port for direct physical connection to the user device 115, the social network server 101 or to another communication channel. For example, the communication unit 340 includes a USB, SD, CAT-5 or similar port for wired communication with the user device 115. In another embodiment, the communication unit 340 includes a wireless transceiver for exchanging data with the user device 115, the social network server 101 or any other communication channel using one or more wireless communication methods, such as IEEE 802.11, IEEE 802.16, BLUETOOTH® or another suitable wireless communication method.
In yet another embodiment, the communication unit 340 includes a cellular communications transceiver for sending and receiving data over a cellular communications network such as via short messaging service (SMS), multimedia messaging service (MMS), hypertext transfer protocol (HTTP), direct data connection, WAP, e-mail or another suitable type of electronic communication. In still another embodiment, the communication unit 340 includes a wired port and a wireless transceiver. The communication unit 340 also provides other conventional connections to the network for distribution of files and/or media objects using standard network protocols such as TCP/IP, HTTP, HTTPS and SMTP as will be understood to those skilled in the art.
The MMR database 105 includes the MMR objects. In one embodiment, the MMR objects are indexed by the MMR database 105 according to the source material, the electronic representation of the source document and an action or second media, such as a link. The MMR database 105 indexes the MMR objects using, for example, a unique object ID, a page ID, an x-y location of a patch of text, a hotspot or an image within a document, the width and height of a rectangular region within a document, features such as two-dimensional arrangements of text and images within the document, actions, clusters generated by the MMR engine 103, etc. In one embodiment, the MMR database 105 also stores relevant information about each MMR object, for example, font styles and sizes of a document, print resolution etc. The MMR database 105 is described in further detail in U.S. patent application Ser. No. 11/461,017, titled “System And Methods For Creation And Use Of A Mixed Media Environment,” filed Jul. 31, 2006; U.S. patent application Ser. No. 11/461,279, titled “Method And System For Image Matching In A Mixed Media Environment,” filed Jul. 31, 2006; U.S. patent application Ser. No. 11/461,286, titled “Method And System For Document Fingerprinting Matching In A Mixed Media Environment,” filed Jul. 31, 2006; U.S. patent application Ser. No. 11/461,294, titled “Method And System For Position-Based Image Matching In A Mixed Media Environment,” filed Jul. 31, 2006; U.S. patent application Ser. No. 11/461,300, titled “Method And System For Multi-Tier Image Matching In A Mixed Media Environment,” filed Jul. 31, 2006; U.S. patent application Ser. No. 11/461,147, titled “Data Organization and Access for Mixed Media Document System,” filed Jul. 31, 2006; U.S. patent application Ser. No. 11/461,164, titled “Database for Mixed Media Document System,” filed Jul. 31, 2006; U.S. patent application Ser. No. 11/461,109, titled “Searching Media Content For Objects Specified Using Identifiers,” filed Jul. 31, 2006; U.S. patent application Ser. No. 12/059,583, titled “Invisible Junction Feature Recognition For Document Security Or Annotation,” filed Mar. 31, 2008; U.S. patent application Ser. No. 12/121,275, titled “Web-Based Content Detection In Images, Extraction And Recognition,” filed May 15, 2008; U.S. patent application Ser. No. 11/776,510, titled “Invisible Junction Features For Patch Recognition,” filed Jul. 11, 2007; U.S. patent application Ser. No. 11/776,520, titled “Information Retrieval Using Invisible Junctions and Geometric Constraints,” filed Jul. 11, 2007; U.S. patent application Ser. No. 11/776,530, titled “Recognition And Tracking Using Invisible Junctions,” filed Jul. 11, 2007; and U.S. patent application Ser. No. 11/777,142, titled “Retrieving Documents By Converting Them to Synthetic Text,” filed Jul. 12, 2007; and U.S. patent application Ser. No. 11/624,466, titled “Synthetic Image and Video Generation From Ground Truth Data,” filed Jan. 18, 2007; which are incorporated by reference in their entirety.
Still referring to
The quality assessment module 302 is software and routines for receiving an image and assessing the quality of the image. In one embodiment, the quality assessment module 302 is a set of instructions executable by the processor 335 to provide the functionality described below for receiving an image and assessing the quality of the image. In another embodiment, the quality assessment module 302 is stored in the memory 337 and is accessible and executable by the processor 335. In either embodiment, the quality assessment module 302 is adapted for cooperation and communication with the processor 335, the communication unit 340, the image processing module 304, the feature extraction module 306 and other components of the MMR server 104 via signal line 342.
The quality assessment module 302 receives an image from a user device 115 via the communication unit 340. The received image contains any matchable portion of a source document, such as a patch of text, a single word, non-text patch (for example, a barcode, a photo, etc.), an entire source document, etc. In one embodiment, the received image is captured by a user 125 using the user device 115. The quality assessment module 302 makes a preliminary judgment about the content of the captured image based on the needs and capabilities of the MMR engine 103 and transmits a notification to the image processing module 304. In one embodiment, if the captured image is of such quality that it cannot be processed downstream by the image processing module 304 or the feature extraction module 306, the quality assessment module 302 transmits feedback to the user device 115 via the communication unit 340. The feedback, for example, includes an indication in the form of a sound or vibration that indicates that the image contains something that looks like text but is blurry and that the user should recapture the image. In another embodiment, the feedback includes commands that change parameters of the optics (for example, focal length, exposure, etc.) of the user device 115 to improve the quality of the image. In yet another embodiment, the feedback is specialized by the needs of a particular feature extraction algorithm used by the MMR engine 103.
In one embodiment, the quality assessment module 302 performs textual discrimination so as to, for example, pass through only images that are likely to contain recognizable text. Further, the quality assessment module 302 determines whether the image contains something that could be a part of a document. For example, an image patch that contains a non-document image (such as a desk or an outdoor view) indicates that a user is transitioning the view of the user device 115 to a new document.
The image processing module 304 is software and routines for modifying an image based on the needs of the MMR engine 103. In one embodiment, the image processing module 304 is a set of instructions executable by the processor 335 to provide the functionality described below for modifying an image. In another embodiment, the image processing module 304 is stored in the memory 337 and is accessible and executable by the processor 335. In either embodiment, the image processing module 304 is adapted for cooperation and communication with the processor 335, the quality assessment module 302, the feature extraction module 306 and other components of the MMR server 104 via signal line 344.
In one embodiment, the image processing module 304 receives a notification from the quality assessment module 302 and dynamically modifies the quality of the received image. Examples of types of image modification include sharpening, deskewing, binarization, blurring, etc. Such algorithms include many tunable parameters such as mask sizes, expected rotations, thresholds, etc. In another embodiment, the image processing module 304 dynamically modifies the image based on feedback received from the feature extraction module 306. For example, a user will point the user device 115 at the same location of a source document 118 for several seconds continuously. Given that, for example, the user device 115 processes 30 frames per second, the results of processing the first few frames in any sequence will be used to affect how the frames capture are later processed.
The feature extraction module 306 is software and routines for extracting features from an image. In one embodiment, the feature extraction module 306 is a set of instructions executable by the processor 335 to provide the functionality described below for extracting features. In another embodiment, the feature extraction module 306 is stored in the memory 337 and is accessible and executable by the processor 335. In either embodiment, the feature extraction module 306 is adapted for cooperation and communication with the processor 335, the quality assessment module 302, the image processing module 304, the retrieval module 308 and other components of the MMR server 104 via signal line 346.
The feature extraction module 306 converts the received image into a symbolic representation, extracts features and transmits them to the retrieval module 308. In one embodiment, the feature extraction module 306 locates characters, words, patches of text, images etc. and computes their bounding boxes. In another embodiment, the feature extraction module 306, determines two-dimensional relationships between different objects within the received image. In another embodiment, the feature extraction module 306 locates connected components and calculates descriptors for their shape. In another embodiment, the feature extraction module 306 extracts the font type and size of text in the image. In yet another embodiment, the feature extraction module 306 shares data about the results of feature extraction by providing feedback to other components of the MMR engine 103. Those skilled in the art will note that this significantly reduces computational requirements and improves accuracy by inhibiting the recognition of poor quality data. For example, a feature extraction module 306 that identifies word bounding boxes provides feedback to the image processing module 304 about the number of lines and words it found. If the number of words is too high (indicating, for example, that the received image is fragmented), the image processing module 304 produces blurrier images by applying a smoothing filter.
In one embodiment, various features, such as Scale Invariant Feature Transform (SIFT) features, corner features, salient points, ascenders, descenders, word boundaries and spaces are extracted. In a further embodiment, groups are formed with the detected word boundaries as shown in
In another embodiment, the feature extraction module 306 determines horizontal and vertical features of the received image. This is performed in view of the observation that an image of text contains two independent sources of information as to its identity—in addition to the horizontal sequence of words, the vertical layout of the words can also be used to identify an MMR object. For example, as shown in
For example, a horizontal trigram specifies the number of characters in each word of a horizontal sequence of three words. For example, the received image, (2) shows horizontal trigrams: 5-8-7 (for the number of characters in each of the horizontally sequenced words “upper”, “division”, and “courses” in the first line of the received image 430); 7-3-5 (for the number of characters in each of the horizontally sequenced words “Project,” “has,” and “begun” in the second line of the received image 430); 3-5-3 (for the number of characters in each of the horizontally sequenced words “has,” “begun,” and “The” in the second line of the received image 430); and 3-3-6 (for the number of characters in each of the horizontally sequenced words “461,” “and,” and “permit” in the third line of the received image 430). Similarly, a vertical trigram specifies the number of characters in each word of a vertical sequence of words above and below a given word. For example, for the received image 430, (3) shows vertical trigrams: 5-7-3 (for the number of characters in each of the vertically sequenced words “upper”, “Project”, and “461”); and 8-7-3 (for the number of characters in each of the vertically sequenced words “division”, “Project”, and “461”).
In another embodiment, angles from each feature point to other feature points are computed. Alternatively, angles between groups of feature points are calculated. In yet another embodiment, features are extracted such that spaces are represented with 0s and word regions are represented with 1s. In yet another embodiment, the extracted features are based on the lengths of words. Each word is divided into estimated letters based on the word height and width. As the word line above and below a given word are scanned, a binary value is assigned to each of the estimated letters according to the space information in the lines above and below. The binary code is then represented with an integer number. For example, referring to
Turning back to
The retrieval module 308, according to one embodiment, receives the features from the feature extraction module 306 and performs pattern matching to retrieve one or more MMR objects from the MMR database 105 that contain the received image. In a further embodiment, the retrieval module identifies and retrieves one or more pages of the MMR object and the x-y positions within those pages where the image occurs.
The retrieval module 308 uses one or more techniques for retrieving MMR objects such as a feed-forward technique, an interactive image analysis technique, a generate and test technique, a multiple classifier technique, a database-driven feedback technique, a database-driven classifier technique, a database-driven multiple classifier technique, a video sequence image accumulation technique, a video sequence feature accumulation technique, a video sequence decision combination technique, a multi-tier recognition technique, etc. The above mentioned retrieval techniques are disclosed in U.S. patent application Ser. No. 11/461,017, titled “System And Methods For Creation And Use Of A Mixed Media Environment,” filed Jul. 31, 2006; U.S. patent application Ser. No. 11/461,279, titled “Method And System For Image Matching In A Mixed Media Environment,” filed Jul. 31, 2006; U.S. patent application Ser. No. 11/461,286, titled “Method And System For Document Fingerprinting Matching In A Mixed Media Environment,” filed Jul. 31, 2006; U.S. patent application Ser. No. 11/461,294, titled “Method And System For Position-Based Image Matching In A Mixed Media Environment,” filed Jul. 31, 2006; U.S. patent application Ser. No. 11/461,300, titled “Method And System For Multi-Tier Image Matching In A Mixed Media Environment,” filed Jul. 31, 2006; U.S. patent application Ser. No. 11/461,147, titled “Data Organization and Access for Mixed Media Document System,” filed Jul. 31, 2006; U.S. patent application Ser. No. 11/461,164, titled “Database for Mixed Media Document System,” filed Jul. 31, 2006; U.S. patent application Ser. No. 11/461,109, titled “Searching Media Content For Objects Specified Using Identifiers,” filed Jul. 31, 2006; U.S. patent application Ser. No. 12/059,583, titled “Invisible Junction Feature Recognition For Document Security Or Annotation,” filed Mar. 31, 2008; U.S. patent application Ser. No. 12/121,275, titled “Web-Based Content Detection In Images, Extraction And Recognition,” filed May 15, 2008; U.S. patent application Ser. No. 11/776,510, titled “Invisible Junction Features For Patch Recognition,” filed Jul. 11, 2007; U.S. patent application Ser. No. 11/776,520, titled “Information Retrieval Using Invisible Junctions and Geometric Constraints,” filed Jul. 11, 2007; U.S. patent application Ser. No. 11/776,530, titled “Recognition And Tracking Using Invisible Junctions,” filed Jul. 11, 2007; and U.S. patent application Ser. No. 11/777,142, titled “Retrieving Documents By Converting Them to Synthetic Text,” filed Jul. 12, 2007; and U.S. patent application Ser. No. 11/624,466, titled “Synthetic Image and Video Generation From Ground Truth Data,” filed Jan. 18, 2007; which are each incorporated by reference in their entirety.
The action module 310 is software and routines for performing an action associated with the retrieved MMR object. In one embodiment, the action module 310 is a set of instructions executable by the processor 335 to provide the functionality described below for performing an action. In another embodiment, the action module 310 is stored in the memory 337 and is accessible and executable by the processor 335. In either embodiment, the action module 310 is adapted for cooperation and communication with the processor 335, the communication unit 340, the MMR database 105, the retrieval module 308 and other components of the MMR server 104 via signal line 350.
Once the retrieval module 308 identifies the MMR object, the page and the x-y location within the MMR object, the action module 310 performs one or more actions associated with it. The action is any action performable by the processor 335, such as retrieving data associated with the MMR object and/or data that is specifically linked to the x-y location (such as a video clip, a menu to be displayed on the user device, a product specification, metadata from the content management server 150, other MMR objects that are related to the MMR object identified by the retrieval module 308, etc.), retrieving information (such as text, images, etc.) around the identified x-y location, inserting data at the x-y location, accessing or transmitting a request to an external server or database (such as the social network server 101 to retrieve a conversation associated with the identified MMR object or the content management server 150 to retrieve metadata associated with the MMR object), etc. In one embodiment, the action module 310 transmits the retrieved MMR object to the social network server 101. The action module 310 communicates with the user device 115 and the external servers or databases via the communication unit 340.
Social Network Application 109
Referring now to
Those skilled in the art will recognize that some of the components of the social network server 101 have the same or similar functionality to the components of the MMR server 104 so descriptions of these components will not be repeated here. For example, the processor 535, the memory 537 and the communication unit 540 have a similar functionality to the processor 335, the memory 337 and the communication unit 340 of
The storage device 141, a non-transitory memory comprises discussion information 568 and user information 569. The discussion information 568 includes all information relating to conversations and discussion groups. For example, the discussion information 568 includes a list of conversations and discussion groups, discussion threads associated with the conversations and discussion groups, cluster groups, a list of users that have access to the conversations and discussion groups, comments and replies associated with the discussion threads, a time of the last activity within a discussion thread (which is later used to determine whether the group is still active), a list of MMR objects associated with a conversation thread or discussion group, proximity information, etc. The user information 569 includes the registered username, and password of all the users that registered with the social network application 109. In another embodiment, the user information 569 also includes social data about the user such as actions on one or more social networks and/or other information about the user (e.g., the user's gender, age, email address, education, past and present employers, geographic location, friends and the actions of the user's friends on one or more social networks). In another embodiment, the social data can be stored as a social graph in the user information 569.
In one embodiment, the social network application 109 comprises a conversation engine 502, a statistics manager 504, a registration module 506 and a user interface engine 508 that are coupled to the bus 520.
The conversation engine 502 is software including routines for managing a conversation or a discussion group. A conversation includes one or more discussion threads that are all associated with the same MMR object (i.e. the same source material). A discussion group includes discussion threads that are based on related source material or proximity. In one embodiment, the discussion group is based on a cluster, which identifies related source materials. In another embodiment, the discussion group is based on proximity metadata, namely proximity of location and proximity of the time of capturing an image. For ease of understanding, references to discussion threads include discussion threads that are part of a conversation or a discussion group. A discussion thread comprises an electronic image of the source material that corresponds to the MMR object that is captured by the user, a comment by the user on the matching MMR object and replies received from others users based on the comment.
In one embodiment, the conversation engine 502 is a set of instructions executable by the processor 535 to provide the functionality described below for initiating and/or retrieving conversations or discussion groups. In another embodiment, the conversation engine 502 is stored in the memory 537 and is accessible and executable by the processor 535. In either embodiment, the conversation engine 502 is adapted for cooperation and communication with the processor 535, the communication unit 540, storage 141, user interface engine 508 and other components of the social network server 101 via signal line 542.
According to one embodiment, the conversation engine 502 receives an MMR object and an identification of the user that captured an image corresponding to the MMR object from the MMR engine 103. In this embodiment, the MMR engine 103 identifies the MMR object by performing a visual search using an image received from the user device 115. Responsive to receiving the MMR object, the conversation engine 502 retrieves existing conversations or discussion groups associated with the MMR object from the discussion information 568 and/or initiates a new discussion thread for the MMR object. In another embodiment, the conversation engine 502 retrieves metadata associated with the MMR object 200 from the content management server 150. The conversation engine 502 provides the user with access to a conversation or discussion group by sending a notification including the retrieved discussion threads, conversations, newly created discussion thread, metadata, etc. to the user interface engine 508 for generating a user interface. The conversation engine 502 further receives comments, replies or indications of approval posted by a user 125 from the user device 115 and indexes them to their corresponding discussion threads or conversations in the discussion information 568. In one embodiment, the conversation engine 502 transmits the indexed information to the content management server 150, which stores the information as metadata that is associated with the MMR object.
In one embodiment, the conversation engine 502 also receives cluster group information from the content management server 150 and, if the discussion group already exists, provides the user with access to the discussion group. If the discussion group does not exist, the conversation engine 502 generates a discussion thread. In yet another embodiment, the conversation engine 502 compares user comments to the cluster groups and provides users with access to the corresponding discussion groups if the comments are similar to the cluster groups.
In another embodiment, the MMR object received by the conversation engine 502 includes proximity information for the user device 115a. The proximity information comprises at least one of a location and a time at which the user device 115a sends a request to the MMR server 104 to identify an MMR object. The conversation engine 502 retrieves existing discussion threads or discussion groups that are associated with the MMR object, based on the proximity information. For example, the conversation engine 502 retrieves discussion threads from the discussion information 568 that were initiated by other user devices 115n within a certain time or located within a certain distance from the received proximity information. In another example, the conversation engine 502 retrieves discussion threads that are currently active and were initiated by other user devices 115n located within a certain distance. If a discussion group does not already exist, the conversation engine 502 applies a comparison algorithm to determine similarity of discussion threads that are within a window of time or a radius of allowance for newly established discussion threads. The window of time is fixed, for example, three hours or 24 hours or the window adjusts dynamically according to the user activity, for example, an active community of users is clustered in a larger time window to avoid a fragmentation of the discussion group.
In one embodiment, the conversation engine 502 dynamically generates a discussion group that includes discussion threads based on the same or similar source material that share the same proximity information and stores them in the discussion information 568 to make their retrieval faster and efficient. In a further embodiment, the conversation engine 502 generates the discussion group based on user information and the social graph stored in the user information 569. For example, the conversation engine 502 groups the discussion threads that were initiated by users who are classmates.
In yet another embodiment, the conversation engine 502 controls access to certain discussion threads based on permissions. For example, a teacher is designated as an administrator and sets up permissions for the teaching assistants to view problem sets and answer keys, but limits student access to only discussion threads regarding problem sets and study groups. The permissions information is a subset of the access information that is stored as discussion information 568 in the storage 141.
The conversation engine 502 also monitors the discussion threads to remove inactive threads from a conversation or discussion group. In one embodiment, the conversation engine 502 removes or deactivates a discussion thread from a group after a certain amount of time (for example 2 hours, one day, etc.). In another embodiment, the conversation engine 502 removes a discussion thread from the group if there is no activity in the discussion thread for a certain amount of time.
The statistics manager 504 is software including routines for analyzing the popularity of source material and individual discussion threads based on the source material. In one embodiment, the statistics manager 504 is a set of instructions executable by the processor 535 to provide the functionality described below for tracking the popularity of discussion groups, conversations and source materials. In another embodiment, the statistics manager 504 is stored in the memory 537 and is accessible and executable by the processor 535. In either embodiment, the statistics manager 504 is adapted for cooperation and communication with the processor 535 and other components of the social network server 101 via signal line 544.
The discussion threads are formatted to receive likes and replies from users on the social network via the user interface. The statistics manager 504 stores the number of likes and replies received for each discussion thread as discussion information 568. In addition, the number of electronic images of the same source material, each used by different users to start a discussion thread is also stored as discussion information 568. In one embodiment, the statistics manager 504 tracks the statistics (number of likes and comments) for each conversation and discussion group. In another embodiment, the statistics manager 504 transmits the statistics corresponding to conversations and discussion groups in the form of spreadsheets to the user interface engine 508 for authors of the source materials to use for their own purposes.
The registration module 506 is software including routines for registering users on the social network server 101. In one embodiment, the registration module 506 is a set of instructions executable by the processor 535 to provide the functionality described below for registering users on the social network server 101. In another embodiment, the registration module 506 is stored in the memory 537 and is accessible and executable by the processor 535. In either embodiment, the registration module 506 is adapted for cooperation and communication with the processor 535 and other components of the social network server 101 via signal line 546.
The registration module 506 registers users on the social network server 101 with their chosen username and password and stores such information as user information 569 in the storage 141. In one embodiment, the users' email addresses serve as their usernames. The registration module 506 also places restrictions on the type of characters chosen for creating the password to protect the user information 569 on the social network server 101. When a registered user tries to login to the social network, the registration module 506 authenticates the entered username and password with the registered username and password. When the entered password fails to match the registered password in the user information 569, the registration module 506 requests the user's email address for sending an automated email for resetting the password. Persons of ordinary skill in the art will understand that there are other ways to establish a username, password and authentication steps.
The user interface engine 508 is software including routines for generating a user interface that displays a user profile, a conversation including discussion threads, a discussion group including discussion threads and an overview of all the social network application 109 features. In one embodiment, the user interface engine 508 is a set of instructions executable by the processor 535 to generate the user interface. In another embodiment, the user interface engine 508 is stored in the memory 537 of the social network server 101 and is accessible and executable by the processor 535. In either embodiment, the user interface engine 508 is adapted for cooperation and communication with the processor 535 and other components of the social network server 101 via signal line 548.
In one embodiment, responsive to a user requesting the user interface, the user interface engine 508 receives from the conversation engine 502 or retrieves from storage 141 the conversations and discussion groups that are associated with a user. The user interface engine 508 transmits the user interface to the access module 113 via the communication unit 540. The conversation includes all discussion threads related to the same source material. The discussion groups are grouped according to related source materials or proximity in time or location. In one embodiment, the discussion groups are further modified according to the permissions associated with the user. For example, a teacher has permission to see everything relating to the teacher's class, including problem sets, homework and test questions. A student, on the other hand, only has permission to view problem sets and study group information. In another example, the students create permissions for discussion threads relating to a study group and the students limit access to those discussion threads so that only active members of the study group obtain the material.
Creating Conversations and Discussion Threads
Selecting any button under the links 606 section causes the user interface 600 to display online information associated with the source 602. The links 606 are manually authored or dynamically authored by the content management engine 155. Selecting the make comment button 608 causes the user interface 600 to display a new section (not shown) for entering a statement or a question about the source 602. Selecting the view conversation button 610 causes the user interface 600 to display a conversation consolidating all existing discussion threads that refer to the same source 602. Persons of ordinary skill in the art will recognize that the user interface 600 can be modified to display a view discussion group icon for displaying all existing discussion threads that refer to a similar source and/or are within a threshold proximity. The small circle with a number 2 in it indicates that there are two discussions currently available about the source 602, in this example. Selecting the share content button 612 causes the user interface 600 to link other social networking systems to share user's discussion about the source 602.
Methods
Referring now to
The MMR server 104 receives 706 an image of a source document from an access module 113 that is stored on a user device 115. The image can be taken from a printed source document or an electronic image. The quality assessment module 302 determines whether the quality of the image is sufficient for identifying the corresponding MMR object. The image processing module 304 dynamically modifies the quality of the received image. The feature extraction module 306 performs 708 a visual search using the image to identify a matching MMR object from the MMR database 105 by performing feature extraction. The retrieval module 308 determines 710 whether the recognition is successful. If the recognition is successful the retrieval module 308 retrieves the MMR object. If the recognition is unsuccessful the retrieval module 308 receives 712 another image from the user device 115 and moves to step 708. The retrieval is unsuccessful if, for example, the quality of the image is too poor to properly extract features from the image. [0101] Responsive to a successful recognition, the action module 310 transmits the MMR object to the social network application 109 via the communication unit 340. The social network application 109 includes a conversation engine 502 that determines 714 whether a conversation exists that corresponds to the MMR object. If not, the conversation engine 502 creates 716 a discussion thread corresponding to the matching MMR object, the discussion thread including a related link. As a result, the conversation includes a single discussion thread. If the conversation does exist, the conversation engine 502 grants 718 the user device 115a access to the discussion group. In one embodiment, the conversation engine 502 instructs the user interface engine 508 to generate a user interface that includes an option for the user to join the conversation. The user interface engine 508 transmits the user interface to the access module 113 on the user device 115a via the communication unit 540.
In one embodiment, the clustering algorithm generates a cluster with at least one of the following characteristics: a similarity vector that defines the uniqueness in the cluster pool (e.g. a cluster centroid in k-means), MMR objects, a state of the discussion group (active or non-active), metadata (comments, links, PDFs, chats and user connections) and a list of the users that have access to the resulting discussion group.
The foregoing description of the embodiments has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the specification to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the embodiments be limited not by this detailed description, but rather by the claims of this application. As will be understood by those familiar with the art, the examples may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Likewise, the particular naming and division of the modules, routines, features, attributes, methodologies and other aspects are not mandatory or significant, and the mechanisms that implement the description or its features may have different names, divisions and/or formats. Furthermore, as will be apparent to one of ordinary skill in the relevant art, the modules, routines, features, attributes, methodologies and other aspects of the specification can be implemented as software, hardware, firmware or any combination of the three. Also, wherever a component, an example of which is a module, of the specification is implemented as software, the component can be implemented as a standalone program, as part of a larger program, as a plurality of separate programs, as a statically or dynamically linked library, as a kernel loadable module, as a device driver, and/or in every and any other way known now or in the future to those of ordinary skill in the art of computer programming. Additionally, the specification is in no way limited to implementation in any specific programming language, or for any specific operating system or environment. Accordingly, the disclosure is intended to be illustrative, but not limiting, of the scope of the specification, which is set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1915993 | Handel | Jun 1933 | A |
4759075 | Lipkie et al. | Jul 1988 | A |
5010581 | Kanno | Apr 1991 | A |
5027421 | Kanno | Jun 1991 | A |
5077805 | Tan | Dec 1991 | A |
5109439 | Froessl | Apr 1992 | A |
5263100 | Kim et al. | Nov 1993 | A |
5392447 | Schlack et al. | Feb 1995 | A |
5416892 | Loken-Kim | May 1995 | A |
5432864 | Lu et al. | Jul 1995 | A |
5465353 | Hull et al. | Nov 1995 | A |
5546502 | Hart et al. | Aug 1996 | A |
5553217 | Hart et al. | Sep 1996 | A |
5555556 | Ozaki | Sep 1996 | A |
5579471 | Barber et al. | Nov 1996 | A |
5706097 | Schelling et al. | Jan 1998 | A |
5752055 | Repath | May 1998 | A |
5754772 | Leaf | May 1998 | A |
5757953 | Jang | May 1998 | A |
5761344 | Al-Hussein | Jun 1998 | A |
5764277 | Loui et al. | Jun 1998 | A |
5806005 | Hull et al. | Sep 1998 | A |
5832474 | Lopresti et al. | Nov 1998 | A |
5832530 | Paknad et al. | Nov 1998 | A |
5842194 | Arbuckle | Nov 1998 | A |
5848184 | Taylor et al. | Dec 1998 | A |
5867597 | Peairs et al. | Feb 1999 | A |
5873077 | Kanoh et al. | Feb 1999 | A |
5889886 | Mahoney | Mar 1999 | A |
5892843 | Zhou et al. | Apr 1999 | A |
5905502 | Deering | May 1999 | A |
5907835 | Yokomizo et al. | May 1999 | A |
5918012 | Astiz et al. | Jun 1999 | A |
5933525 | Makhoul et al. | Aug 1999 | A |
5933823 | Cullen | Aug 1999 | A |
5956468 | Ancin | Sep 1999 | A |
5968175 | Morishita et al. | Oct 1999 | A |
5999664 | Mahoney et al. | Dec 1999 | A |
5999915 | Nahan et al. | Dec 1999 | A |
6006240 | Handley | Dec 1999 | A |
6026411 | Delp | Feb 2000 | A |
6035055 | Wang et al. | Mar 2000 | A |
6104834 | Hull | Aug 2000 | A |
6121969 | Jain et al. | Sep 2000 | A |
6138129 | Combs | Oct 2000 | A |
6192157 | Prebble | Feb 2001 | B1 |
6208771 | Jared et al. | Mar 2001 | B1 |
6223171 | Chaudhuri et al. | Apr 2001 | B1 |
6253201 | Abdel-Mottaleb | Jun 2001 | B1 |
6301386 | Zhu et al. | Oct 2001 | B1 |
6332039 | Bando et al. | Dec 2001 | B1 |
6345274 | Zhu et al. | Feb 2002 | B1 |
6353822 | Lieberman | Mar 2002 | B1 |
6363381 | Lee et al. | Mar 2002 | B1 |
6393142 | Swain et al. | May 2002 | B1 |
6397213 | Cullen et al. | May 2002 | B1 |
6404925 | Foote et al. | Jun 2002 | B1 |
6405172 | Baker et al. | Jun 2002 | B1 |
6408257 | Harrington et al. | Jun 2002 | B1 |
6411953 | Ganapathy et al. | Jun 2002 | B1 |
6430312 | Huang et al. | Aug 2002 | B1 |
6445834 | Rising, III | Sep 2002 | B1 |
6448979 | Schena et al. | Sep 2002 | B1 |
6457026 | Graham et al. | Sep 2002 | B1 |
6460036 | Herz | Oct 2002 | B1 |
6470264 | Bide | Oct 2002 | B2 |
6504571 | Narayanaswami et al. | Jan 2003 | B1 |
6537324 | Tabata et al. | Mar 2003 | B1 |
6567799 | Sweet et al. | May 2003 | B2 |
6574375 | Cullen et al. | Jun 2003 | B1 |
6574644 | Hsu et al. | Jun 2003 | B2 |
6584223 | Shiiyama | Jun 2003 | B1 |
6611862 | Riesman | Aug 2003 | B2 |
6686970 | Windle | Feb 2004 | B1 |
6693649 | Lipscomb et al. | Feb 2004 | B1 |
6732915 | Nelson et al. | May 2004 | B1 |
6751343 | Ferrell et al. | Jun 2004 | B1 |
6753883 | Schena et al. | Jun 2004 | B2 |
6766363 | Rothschild | Jul 2004 | B1 |
6791605 | Reele et al. | Sep 2004 | B1 |
6799201 | Lee et al. | Sep 2004 | B1 |
6804332 | Miner et al. | Oct 2004 | B1 |
6804659 | Graham et al. | Oct 2004 | B1 |
6813381 | Ohnishi et al. | Nov 2004 | B2 |
6824057 | Rathus et al. | Nov 2004 | B2 |
6827267 | Rathus et al. | Dec 2004 | B2 |
6830187 | Rathus et al. | Dec 2004 | B2 |
6834804 | Rathus et al. | Dec 2004 | B2 |
6842755 | Maslov | Jan 2005 | B2 |
6843411 | Rathus et al. | Jan 2005 | B2 |
6859909 | Lerner et al. | Feb 2005 | B1 |
6865302 | Chang | Mar 2005 | B2 |
6866196 | Rathus et al. | Mar 2005 | B1 |
6874131 | Blumberg | Mar 2005 | B2 |
6922699 | Schuetze et al. | Jul 2005 | B2 |
6929182 | Rathus et al. | Aug 2005 | B2 |
6940491 | Incertis Carro | Sep 2005 | B2 |
6958821 | McIntyre | Oct 2005 | B1 |
6963358 | Cohen et al. | Nov 2005 | B2 |
6964374 | Djuknic et al. | Nov 2005 | B1 |
6980962 | Arganbright et al. | Dec 2005 | B1 |
6981224 | Gardner et al. | Dec 2005 | B1 |
6993573 | Hunter | Jan 2006 | B2 |
6999204 | Mortenson et al. | Feb 2006 | B2 |
7013309 | Chakraborty et al. | Mar 2006 | B2 |
7031965 | Moriya et al. | Apr 2006 | B1 |
7035467 | Nicponski | Apr 2006 | B2 |
7051086 | Rhoads et al. | May 2006 | B2 |
7054489 | Yamaoka et al. | May 2006 | B2 |
7062722 | Carlin et al. | Jun 2006 | B1 |
7089487 | Tsai | Aug 2006 | B2 |
7092953 | Haynes | Aug 2006 | B1 |
7134095 | Smith et al. | Nov 2006 | B1 |
7136093 | Itoh et al. | Nov 2006 | B1 |
7150021 | Vajjhala et al. | Dec 2006 | B1 |
7150399 | Barrus et al. | Dec 2006 | B2 |
7167574 | Kim et al. | Jan 2007 | B2 |
7174031 | Rhoads et al. | Feb 2007 | B2 |
7185274 | Rubin et al. | Feb 2007 | B1 |
7206820 | Rhoads et al. | Apr 2007 | B1 |
7213101 | Srinivasan et al. | May 2007 | B1 |
7232057 | Rathus et al. | Jun 2007 | B2 |
7236632 | Erol et al. | Jun 2007 | B2 |
7239402 | Soler et al. | Jul 2007 | B2 |
7240279 | Chartier et al. | Jul 2007 | B1 |
7249123 | Elder et al. | Jul 2007 | B2 |
7251689 | Wesley | Jul 2007 | B2 |
7263205 | Lev | Aug 2007 | B2 |
7281199 | Nicol et al. | Oct 2007 | B1 |
7305435 | Hamynen | Dec 2007 | B2 |
7310769 | Dash | Dec 2007 | B1 |
7310779 | Carro | Dec 2007 | B2 |
7359094 | Sayuda | Apr 2008 | B1 |
7363580 | Tabata et al. | Apr 2008 | B2 |
7366979 | Spielberg et al. | Apr 2008 | B2 |
7379627 | Li et al. | May 2008 | B2 |
7386789 | Chao et al. | Jun 2008 | B2 |
7392287 | Ratcliff, III | Jun 2008 | B2 |
7403642 | Zhang et al. | Jul 2008 | B2 |
7406214 | Rhoads et al. | Jul 2008 | B2 |
7421153 | Ronca et al. | Sep 2008 | B1 |
7421155 | King et al. | Sep 2008 | B2 |
7424541 | Bourne | Sep 2008 | B2 |
7437023 | King et al. | Oct 2008 | B2 |
7450760 | Molnar et al. | Nov 2008 | B2 |
7457825 | Li et al. | Nov 2008 | B2 |
7458014 | Rubin et al. | Nov 2008 | B1 |
7463270 | Vale et al. | Dec 2008 | B2 |
7489415 | Furuta | Feb 2009 | B2 |
7509386 | Miyashita | Mar 2009 | B2 |
7546524 | Bryar et al. | Jun 2009 | B1 |
7551780 | Nudd et al. | Jun 2009 | B2 |
7567262 | Clemens et al. | Jul 2009 | B1 |
7585224 | Dyke-Wells | Sep 2009 | B2 |
7587681 | Kake et al. | Sep 2009 | B2 |
7593605 | King et al. | Sep 2009 | B2 |
7593961 | Eguchi et al. | Sep 2009 | B2 |
7613686 | Rui | Nov 2009 | B2 |
7623259 | Tojo | Nov 2009 | B2 |
7643705 | Erol | Jan 2010 | B1 |
7647331 | Li et al. | Jan 2010 | B2 |
7653238 | Stentiford | Jan 2010 | B2 |
7668405 | Gallagher | Feb 2010 | B2 |
7676767 | Hofmeister et al. | Mar 2010 | B2 |
7683933 | Tanaka | Mar 2010 | B2 |
7684622 | Fisher et al. | Mar 2010 | B2 |
7702673 | Hull | Apr 2010 | B2 |
7702681 | Brewer | Apr 2010 | B2 |
7707039 | King et al. | Apr 2010 | B2 |
7725508 | Lawarence et al. | May 2010 | B2 |
7742953 | King et al. | Jun 2010 | B2 |
7746376 | Mendoza et al. | Jun 2010 | B2 |
7752534 | Blanchard et al. | Jul 2010 | B2 |
7761436 | Norton et al. | Jul 2010 | B2 |
7765231 | Rathus et al. | Jul 2010 | B2 |
7779355 | Erol et al. | Aug 2010 | B1 |
7801845 | King et al. | Sep 2010 | B1 |
7809192 | Gokurk et al. | Oct 2010 | B2 |
7812986 | Graham et al. | Oct 2010 | B2 |
7872669 | Darrell et al. | Jan 2011 | B2 |
7882177 | Wei et al. | Feb 2011 | B2 |
7885955 | Hull | Feb 2011 | B2 |
7894684 | Monobe et al. | Feb 2011 | B2 |
7917554 | Hull | Mar 2011 | B2 |
7920759 | Hull | Apr 2011 | B2 |
7930292 | Nakajima | Apr 2011 | B2 |
7946491 | Burlan et al. | May 2011 | B2 |
7991778 | Hull | Aug 2011 | B2 |
8005831 | Hull | Aug 2011 | B2 |
8073263 | Hull | Dec 2011 | B2 |
8086038 | Ke | Dec 2011 | B2 |
8144921 | Ke | Mar 2012 | B2 |
8156115 | Erol | Apr 2012 | B1 |
8156116 | Graham | Apr 2012 | B2 |
8156427 | Graham | Apr 2012 | B2 |
8176054 | Moraleda | May 2012 | B2 |
8184155 | Ke | May 2012 | B2 |
8195659 | Hull | Jun 2012 | B2 |
8276088 | Ke et al. | Sep 2012 | B2 |
8326037 | Abitz et al. | Dec 2012 | B1 |
8332401 | Hull et al. | Dec 2012 | B2 |
8335789 | Hull et al. | Dec 2012 | B2 |
8369655 | Moraleda et al. | Feb 2013 | B2 |
8385589 | Erol et al. | Feb 2013 | B2 |
8385660 | Moraleda et al. | Feb 2013 | B2 |
8386336 | Fox et al. | Feb 2013 | B1 |
8600989 | Hull et al. | Dec 2013 | B2 |
8612475 | Graham et al. | Dec 2013 | B2 |
8676810 | Moraleda | Mar 2014 | B2 |
8825682 | Kishi et al. | Sep 2014 | B2 |
8838591 | Hull et al. | Sep 2014 | B2 |
8856108 | Erol et al. | Oct 2014 | B2 |
8868555 | Erol et al. | Oct 2014 | B2 |
8892595 | Graham et al. | Nov 2014 | B2 |
8965145 | Moraleda et al. | Feb 2015 | B2 |
8989431 | Erol et al. | Mar 2015 | B1 |
20010011276 | Durst, Jr. et al. | Aug 2001 | A1 |
20010013546 | Ross | Aug 2001 | A1 |
20010024514 | Matsunaga | Sep 2001 | A1 |
20010042030 | Ito et al. | Nov 2001 | A1 |
20010042085 | Peairs et al. | Nov 2001 | A1 |
20010043741 | Mahoney et al. | Nov 2001 | A1 |
20010047373 | Jones | Nov 2001 | A1 |
20010049700 | Ichikura | Dec 2001 | A1 |
20020008697 | Deering | Jan 2002 | A1 |
20020029232 | Bobrow et al. | Mar 2002 | A1 |
20020038430 | Edwards et al. | Mar 2002 | A1 |
20020052872 | Yada | May 2002 | A1 |
20020054059 | Schneiderman | May 2002 | A1 |
20020063709 | Gilbert et al. | May 2002 | A1 |
20020069418 | Philips | Jun 2002 | A1 |
20020073236 | Helgeson et al. | Jun 2002 | A1 |
20020093538 | Carlin | Jul 2002 | A1 |
20020102966 | Lev et al. | Aug 2002 | A1 |
20020118379 | Chakraborty | Aug 2002 | A1 |
20020126905 | Suzuki et al. | Sep 2002 | A1 |
20020129057 | Spielberg | Sep 2002 | A1 |
20020131641 | Luo et al. | Sep 2002 | A1 |
20020146176 | Meyers | Oct 2002 | A1 |
20020154148 | Inoue et al. | Oct 2002 | A1 |
20020157028 | Koue et al. | Oct 2002 | A1 |
20020159640 | Vaithillingam et al. | Oct 2002 | A1 |
20020161747 | Li et al. | Oct 2002 | A1 |
20020191003 | Hobgood et al. | Dec 2002 | A1 |
20020191848 | Boose et al. | Dec 2002 | A1 |
20020194264 | Uchiyama et al. | Dec 2002 | A1 |
20020198789 | Waldman | Dec 2002 | A1 |
20030012428 | Syeda-Mahmood | Jan 2003 | A1 |
20030025714 | Ebersole et al. | Feb 2003 | A1 |
20030030828 | Soler et al. | Feb 2003 | A1 |
20030030835 | Yoshida et al. | Feb 2003 | A1 |
20030063319 | Umeda et al. | Apr 2003 | A1 |
20030069932 | Hall et al. | Apr 2003 | A1 |
20030098877 | Boegelund | May 2003 | A1 |
20030110216 | Althin et al. | Jun 2003 | A1 |
20030112930 | Bosik et al. | Jun 2003 | A1 |
20030121006 | Tabata et al. | Jun 2003 | A1 |
20030122922 | Saffer et al. | Jul 2003 | A1 |
20030126147 | Essafi et al. | Jul 2003 | A1 |
20030128375 | Ruhl et al. | Jul 2003 | A1 |
20030142106 | Saund et al. | Jul 2003 | A1 |
20030151674 | Lin | Aug 2003 | A1 |
20030152293 | Bresler et al. | Aug 2003 | A1 |
20030169910 | Reisman et al. | Sep 2003 | A1 |
20030179230 | Seidman | Sep 2003 | A1 |
20030187886 | Hull et al. | Oct 2003 | A1 |
20030190094 | Yokota | Oct 2003 | A1 |
20030193530 | Blackman et al. | Oct 2003 | A1 |
20030195883 | Mojsilovic et al. | Oct 2003 | A1 |
20030212585 | Kyoya et al. | Nov 2003 | A1 |
20040012569 | Hara | Jan 2004 | A1 |
20040015495 | Kim et al. | Jan 2004 | A1 |
20040017482 | Weitman | Jan 2004 | A1 |
20040027604 | Jeran et al. | Feb 2004 | A1 |
20040036679 | Emerson | Feb 2004 | A1 |
20040042667 | Lee et al. | Mar 2004 | A1 |
20040102898 | Yokota | May 2004 | A1 |
20040122811 | Page | Jun 2004 | A1 |
20040133582 | Howard et al. | Jul 2004 | A1 |
20040139391 | Stumbo et al. | Jul 2004 | A1 |
20040143644 | Berton et al. | Jul 2004 | A1 |
20040198396 | Fransioli | Oct 2004 | A1 |
20040199531 | Kim et al. | Oct 2004 | A1 |
20040201706 | Shimizu et al. | Oct 2004 | A1 |
20040205347 | Erol et al. | Oct 2004 | A1 |
20040205466 | Kuppinger et al. | Oct 2004 | A1 |
20040215689 | Dooley et al. | Oct 2004 | A1 |
20040220898 | Eguchi et al. | Nov 2004 | A1 |
20040221244 | Baldino | Nov 2004 | A1 |
20040233235 | Rubin et al. | Nov 2004 | A1 |
20040238621 | Beenau et al. | Dec 2004 | A1 |
20040243514 | Wankmueller | Dec 2004 | A1 |
20040260625 | Usami et al. | Dec 2004 | A1 |
20040260680 | Best et al. | Dec 2004 | A1 |
20040264780 | Zhang | Dec 2004 | A1 |
20050012960 | Eden et al. | Jan 2005 | A1 |
20050021478 | Gautier et al. | Jan 2005 | A1 |
20050080627 | Hennebert et al. | Apr 2005 | A1 |
20050080693 | Foss et al. | Apr 2005 | A1 |
20050080871 | Dinh et al. | Apr 2005 | A1 |
20050084154 | Li et al. | Apr 2005 | A1 |
20050086188 | Hilis et al. | Apr 2005 | A1 |
20050086224 | Franciosa et al. | Apr 2005 | A1 |
20050088684 | Naito et al. | Apr 2005 | A1 |
20050089246 | Luo | Apr 2005 | A1 |
20050097435 | Prakash et al. | May 2005 | A1 |
20050100219 | Berkner et al. | May 2005 | A1 |
20050108406 | Lee et al. | May 2005 | A1 |
20050114325 | Liu et al. | May 2005 | A1 |
20050125390 | Hurst-Hiller et al. | Jun 2005 | A1 |
20050129293 | Acharya et al. | Jun 2005 | A1 |
20050135483 | Nair | Jun 2005 | A1 |
20050160115 | Starkweather | Jul 2005 | A1 |
20050160258 | O'Shea et al. | Jul 2005 | A1 |
20050165747 | Bargeron et al. | Jul 2005 | A1 |
20050165784 | Gomez et al. | Jul 2005 | A1 |
20050169520 | Chen et al. | Aug 2005 | A1 |
20050182773 | Feinsmith | Aug 2005 | A1 |
20050185060 | Neven | Aug 2005 | A1 |
20050185225 | Brawn et al. | Aug 2005 | A1 |
20050187768 | Godden | Aug 2005 | A1 |
20050190273 | Toyama et al. | Sep 2005 | A1 |
20050190972 | Thomas et al. | Sep 2005 | A1 |
20050216257 | Tanabe et al. | Sep 2005 | A1 |
20050234851 | King et al. | Oct 2005 | A1 |
20050240381 | Seiler et al. | Oct 2005 | A1 |
20050256866 | Lu et al. | Nov 2005 | A1 |
20050261990 | Gocht et al. | Nov 2005 | A1 |
20050273812 | Sakai | Dec 2005 | A1 |
20050288859 | Golding et al. | Dec 2005 | A1 |
20050288911 | Porikli | Dec 2005 | A1 |
20050289182 | Pandian et al. | Dec 2005 | A1 |
20050289447 | Hadley et al. | Dec 2005 | A1 |
20060002607 | Boncyk | Jan 2006 | A1 |
20060012677 | Neven et al. | Jan 2006 | A1 |
20060014317 | Farnworth | Jan 2006 | A1 |
20060020630 | Stager et al. | Jan 2006 | A1 |
20060023945 | King et al. | Feb 2006 | A1 |
20060041605 | King et al. | Feb 2006 | A1 |
20060043188 | Kricorissian | Mar 2006 | A1 |
20060047639 | King et al. | Mar 2006 | A1 |
20060048059 | Etkin | Mar 2006 | A1 |
20060053097 | King et al. | Mar 2006 | A1 |
20060053101 | Stuart et al. | Mar 2006 | A1 |
20060056696 | Jun et al. | Mar 2006 | A1 |
20060056697 | Jun et al. | Mar 2006 | A1 |
20060061806 | King et al. | Mar 2006 | A1 |
20060070120 | Aoki et al. | Mar 2006 | A1 |
20060080286 | Svendsen | Apr 2006 | A1 |
20060082438 | Bazakos et al. | Apr 2006 | A1 |
20060085477 | Phillips et al. | Apr 2006 | A1 |
20060085735 | Shimizu | Apr 2006 | A1 |
20060104515 | King et al. | May 2006 | A1 |
20060112092 | Ziou et al. | May 2006 | A1 |
20060114485 | Sato | Jun 2006 | A1 |
20060116555 | Pavlidis et al. | Jun 2006 | A1 |
20060119880 | Dandekar et al. | Jun 2006 | A1 |
20060122884 | Graham et al. | Jun 2006 | A1 |
20060122983 | King et al. | Jun 2006 | A1 |
20060123347 | Hewitt et al. | Jun 2006 | A1 |
20060140475 | Chin et al. | Jun 2006 | A1 |
20060140614 | Kim et al. | Jun 2006 | A1 |
20060143176 | Mojsilovic et al. | Jun 2006 | A1 |
20060147107 | Zhang et al. | Jul 2006 | A1 |
20060150079 | Albornoz et al. | Jul 2006 | A1 |
20060190812 | Elienby et al. | Aug 2006 | A1 |
20060192997 | Matsumoto et al. | Aug 2006 | A1 |
20060200347 | Kim et al. | Sep 2006 | A1 |
20060200480 | Harris et al. | Sep 2006 | A1 |
20060206335 | Thelen et al. | Sep 2006 | A1 |
20060218225 | Hee Voon et al. | Sep 2006 | A1 |
20060227992 | Rathus et al. | Oct 2006 | A1 |
20060240862 | Neven et al. | Oct 2006 | A1 |
20060251292 | Gokturk et al. | Nov 2006 | A1 |
20060251339 | Gokturk et al. | Nov 2006 | A1 |
20060253439 | Ren et al. | Nov 2006 | A1 |
20060253491 | Gokturk et al. | Nov 2006 | A1 |
20060262352 | Hull et al. | Nov 2006 | A1 |
20060262962 | Hull et al. | Nov 2006 | A1 |
20060262976 | Hart et al. | Nov 2006 | A1 |
20060264209 | Atkinson et al. | Nov 2006 | A1 |
20060285172 | Hull et al. | Dec 2006 | A1 |
20060285755 | Hager et al. | Dec 2006 | A1 |
20060285772 | Hull et al. | Dec 2006 | A1 |
20060286951 | Nagamoto et al. | Dec 2006 | A1 |
20060294049 | Sechrest et al. | Dec 2006 | A1 |
20060294094 | King | Dec 2006 | A1 |
20070003147 | Viola et al. | Jan 2007 | A1 |
20070003166 | Berkner | Jan 2007 | A1 |
20070006129 | Cieslak et al. | Jan 2007 | A1 |
20070019261 | Chu | Jan 2007 | A1 |
20070036469 | Kim et al. | Feb 2007 | A1 |
20070041642 | Romanoff et al. | Feb 2007 | A1 |
20070041668 | Todaka | Feb 2007 | A1 |
20070047819 | Hull et al. | Mar 2007 | A1 |
20070052997 | Hull et al. | Mar 2007 | A1 |
20070053513 | Hoffberg | Mar 2007 | A1 |
20070063050 | Attia et al. | Mar 2007 | A1 |
20070076922 | Living et al. | Apr 2007 | A1 |
20070078846 | Gulli et al. | Apr 2007 | A1 |
20070106721 | Scholter | May 2007 | A1 |
20070115373 | Gallagher et al. | May 2007 | A1 |
20070118794 | Hollander et al. | May 2007 | A1 |
20070150466 | Brave et al. | Jun 2007 | A1 |
20070165904 | Nudd et al. | Jul 2007 | A1 |
20070174269 | Jing et al. | Jul 2007 | A1 |
20070175998 | Lev | Aug 2007 | A1 |
20070233613 | Barrus et al. | Oct 2007 | A1 |
20070236712 | Li | Oct 2007 | A1 |
20070237426 | Xie et al. | Oct 2007 | A1 |
20070242626 | Altberg | Oct 2007 | A1 |
20070271247 | Best et al. | Nov 2007 | A1 |
20070276845 | Geilich | Nov 2007 | A1 |
20070300142 | King | Dec 2007 | A1 |
20080004944 | Calabria | Jan 2008 | A1 |
20080009268 | Ramer et al. | Jan 2008 | A1 |
20080010605 | Frank | Jan 2008 | A1 |
20080037043 | Hull et al. | Feb 2008 | A1 |
20080059419 | Auerbach et al. | Mar 2008 | A1 |
20080071767 | Grieselhuber et al. | Mar 2008 | A1 |
20080071929 | Motte et al. | Mar 2008 | A1 |
20080078836 | Tomita | Apr 2008 | A1 |
20080106594 | Thurn | May 2008 | A1 |
20080141117 | King | Jun 2008 | A1 |
20080177541 | Satomura | Jul 2008 | A1 |
20080229192 | Gear et al. | Sep 2008 | A1 |
20080267504 | Schloter et al. | Oct 2008 | A1 |
20080275881 | Conn et al. | Nov 2008 | A1 |
20080288476 | Kim et al. | Nov 2008 | A1 |
20080296362 | Lubow | Dec 2008 | A1 |
20080310717 | Saathoff et al. | Dec 2008 | A1 |
20080317383 | Franz et al. | Dec 2008 | A1 |
20090016564 | Ke et al. | Jan 2009 | A1 |
20090016604 | Ket et al. | Jan 2009 | A1 |
20090016615 | Hull et al. | Jan 2009 | A1 |
20090019402 | Ke et al. | Jan 2009 | A1 |
20090059922 | Appelman | Mar 2009 | A1 |
20090063431 | Erol et al. | Mar 2009 | A1 |
20090067726 | Erol et al. | Mar 2009 | A1 |
20090070110 | Erol et al. | Mar 2009 | A1 |
20090070302 | Moraleda et al. | Mar 2009 | A1 |
20090070415 | Kishi et al. | Mar 2009 | A1 |
20090074300 | Hull et al. | Mar 2009 | A1 |
20090076996 | Hull et al. | Mar 2009 | A1 |
20090080800 | Moraleda et al. | Mar 2009 | A1 |
20090092287 | Moraleda et al. | Apr 2009 | A1 |
20090100048 | Hull et al. | Apr 2009 | A1 |
20090100334 | Hull et al. | Apr 2009 | A1 |
20090152357 | Lei et al. | Jun 2009 | A1 |
20090228126 | Spielberg et al. | Sep 2009 | A1 |
20090235187 | Kim et al. | Sep 2009 | A1 |
20090248665 | Garg et al. | Oct 2009 | A1 |
20090254643 | Terheggen et al. | Oct 2009 | A1 |
20090265761 | Evanitsky | Oct 2009 | A1 |
20090285444 | Erol et al. | Nov 2009 | A1 |
20100013615 | Hebert et al. | Jan 2010 | A1 |
20100040296 | Ma et al. | Feb 2010 | A1 |
20100042511 | Sundaresan et al. | Feb 2010 | A1 |
20100046842 | Conwell | Feb 2010 | A1 |
20100057556 | Rousso et al. | Mar 2010 | A1 |
20100063961 | Guiheneuf et al. | Mar 2010 | A1 |
20100174783 | Zarom | Jul 2010 | A1 |
20100211567 | Abir | Aug 2010 | A1 |
20100306273 | Branigan et al. | Dec 2010 | A1 |
20110035384 | Qiu | Feb 2011 | A1 |
20110121069 | Lindahl et al. | May 2011 | A1 |
20110167064 | Achtermann et al. | Jul 2011 | A1 |
20110173521 | Horton et al. | Jul 2011 | A1 |
20110314031 | Chittar et al. | Dec 2011 | A1 |
20120166435 | Graham | Jun 2012 | A1 |
20120173504 | Moraleda | Jul 2012 | A1 |
20130027428 | Graham et al. | Jan 2013 | A1 |
20130031100 | Graham et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
1245935 | Mar 2000 | CN |
0706283 | Apr 1996 | EP |
1229496 | Aug 2002 | EP |
1555626 | Jul 2005 | EP |
1662064 | May 2006 | EP |
1783681 | May 2007 | EP |
09-006961 | Jan 1997 | JP |
9134372 | May 1997 | JP |
10-228468 | Aug 1998 | JP |
10-0240765 | Sep 1998 | JP |
11-234560 | Aug 1999 | JP |
2000-165645 | Jun 2000 | JP |
2000-268179 | Sep 2000 | JP |
2001-211359 | Aug 2001 | JP |
2001-230916 | Aug 2001 | JP |
2001-265811 | Sep 2001 | JP |
2002-513480 | May 2002 | JP |
2002521752 | Jul 2002 | JP |
2003-178081 | Jun 2003 | JP |
2004-055658 | Feb 2004 | JP |
2004234656 | Aug 2004 | JP |
2005-011005 | Jan 2005 | JP |
2005100274 | Apr 2005 | JP |
2005157931 | Jun 2005 | JP |
2005-242579 | Sep 2005 | JP |
2005-286395 | Oct 2005 | JP |
2006-053568 | Feb 2006 | JP |
2006-059351 | Mar 2006 | JP |
2006-229465 | Aug 2006 | JP |
2006-6215756 | Aug 2006 | JP |
2007-072573 | Mar 2007 | JP |
2007-140613 | Jun 2007 | JP |
2007-174270 | Jul 2007 | JP |
2007264992 | Oct 2007 | JP |
2008-158823 | Jul 2008 | JP |
WO9905658 | Feb 1999 | WO |
WO0005663 | Feb 2000 | WO |
WO2004072897 | Aug 2004 | WO |
WO2005043270 | May 2005 | WO |
WO2006092957 | Sep 2006 | WO |
2007023994 | Mar 2007 | WO |
WO2007073347 | Jun 2007 | WO |
WO2008129373 | Oct 2008 | WO |
Entry |
---|
Hirokazu Kate et al., A Registration Method for Augmented Reality based on Matching Templates Generated from Texture Image, Transaction for the Virtual Reality Society of Japan, The Virtual Reality Society of Japan, 2002, vol. 7, No. 2, pp. 119-128. |
Japanese Office Action, JP2008-180790, dated May 22, 2012, 3 pages. |
Japanese Office Action, JP2008-180791, dated May 22, 2012, 4 pages. |
Japanese Office Action, JP2008-180792, dated May 22, 2012, 3 pages. |
Japanese Office Action, JP2008-180793, dated May 29, 2012, 3 pages. |
Japanese Office Action, JP2008-180794, dated May 22, 2012, 3 pages. |
United States Final Office Action, U.S. Appl. No. 12/247,205, dated May 23, 2012, 50 pages. |
United States Final Office Action, U.S. Appl. No. 12/210,532, dated Jun. 5, 2012, 48 pages. |
United States Non-Final Office Action, U.S. Appl. No. 11/461,037, dated Jun. 13, 2012, 46 pages. |
United States Final Office Action, U.S. Appl. No. 12/240,596, dated Jun. 14, 2012, 28 pages. |
United States Non-Final Office Action, U.S. Appl. No. 12/340,124, dated Jun. 27, 2012, 31 pages. |
United States Final Office Action, U.S. Appl. No. 12/210,519, dated Jun. 28, 2012, 33 pages. |
United States Final Office Action, U.S. Appl. No. 12/491,018, dated Jun. 28, 2012, 64 pages. |
United States Final Office Action, U.S. Appl. No. 11/461,300, dated Jul. 13, 2012, 33 pages. |
United States Notice of Allowance, U.S. Appl. No. 11/461,294, dated Aug. 9, 2012, 33 pages. |
United States Final Office Action, U.S. Appl. No. 11/461,279, dated Aug. 10, 2012, 50 pages. |
United States Notice of Allowance, U.S. Appl. No. 11/461,286, dated Aug. 14, 2012, 42 pages. |
Yanagisawa Kiyoshi, “Access Control Management System using Face Recognition Technology” Nippon Signal Technical Journal, Japan, The Nippon Signal Co., Ltd., Mar. 1, 2002, vol. 26, No. 1, 9 pages (pp. 21-26). |
United States Final Office Action, U.S. Appl. No. 12/719,437, Mar. 1, 2012, 518 pages. |
United States Notice of Allowance, U.S. Appl. No. 11/461,126, Mar. 5, 2012, 19 pages. |
United States Notice of Allowance, U.S. Appl. No. 11/461,143, Mar. 8, 2012, 9 pages. |
Japan Patent Office, Office Action for Japanese Patent Application JP2007-199984, Mar. 13, 2012, 3 pages. |
United States Notice of Allowance, U.S. Appl. No. 11/776,530, Mar. 26, 2012, 5 pages. |
United States Non-Final Office Action, U.S. Appl. No. 12/240,590, Apr. 4, 2012, 73 pages. |
United States Notice of Allowance, U.S. Appl. No. 13/168,638, Apr. 4, 2012, 30 pages. |
United States Final Office Action, U.S. Appl. No. 12/265,502, Apr. 5, 2012, 49 pages. |
United States Final Office Action, U.S. Appl. No. 12/060,198, Apr. 12, 2012, 74 pages. |
United States Final Office Action, U.S. Appl. No. 12/060,200, Apr. 12, 2012, 65 pages. |
United States Final Office Action, U.S. Appl. No. 11/461,294, Apr. 13, 2012, 23 pages. |
United States Final Office Action, U.S. Appl. No. 11/461,286, Apr. 16, 2012, 47 pages. |
United States Non-Final Office Action, U.S. Appl. No. 11/461,279, Apr. 19, 2012, 59 pages. |
United States Notice of Allowance, U.S. Appl. No. 11/827,530, Apr. 24, 2012, 21 pages. |
China Patent Office, Office Action for Chinese Patent Application CN200680039376.7, Apr. 28, 2012, 11 pages. |
United States Non-Final Office Action, U.S. Appl. No. 12/121,275, May 18, 2012, 41 pages. |
JP Office Action for JP Application No. 2009212242 dated Jul. 16, 2013, 2 pages. |
US Non-Final Office Action for U.S. Appl. No. 11/461,085, dated Jul. 9, 2013, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 13/330,492, dated Aug. 27, 2013, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 11/461,164, dated Aug. 30, 2013, 19 pages. |
Non-Final Office Action for U.S. Appl. No. 12/240,596, dated Sep. 5, 2013, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 11/461,109, dated Sep. 9, 2013, 14 pages. |
Notice of Allowance for U.S. Appl. No. 13/273,189, dated Sep. 13, 2013, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 11/461,147, dated Sep. 27, 2013, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 12/210,532, dated Oct. 7, 2013, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 12/247,205, dated Oct. 7, 2013, 19 pages. |
Final Office Action for U.S. Appl. No. 11/461,037, dated Oct. 24, 2013, 24 pages. |
Chi-Hung Chi et al. , Context Query in Information Retrieval, dated 2002, Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'02) 6 pages (http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1180793). |
European Office Action for Application No. 08 252 377.0, dated Aug. 9, 2013, 5 pages. |
European Search Report for Application No. 12159375.0 dated Sep. 12, 2013, 9 pages. |
Constantini, R. et al., Virtual Sensor Design, Proceedings of the SPIE, vol. 5301, 2004, pp. 408-419, Retrieved from the Internet <URL:http://ivrgwww.epfl.ch/publications/cs04.pdf>. |
Cover, T.M. et al., Nearest Neighbor Pattern Classification, IEEE Transactions on Information Theory, Jan. 1967, pp. 21-27, vol. IT-13, No. 1. |
Davis, M. et al., Towards Context-Aware Face Recognition, Proceedings of the13th Annual ACM International Conference on Multimedia, Nov. 6-11, 2005, 4 pages. |
Di Stefano, L. et al., A Simple and Efficient Connected Components Labeling Algorithm, International Conference on Image Analysis and Processing, 1999, 6 pages. |
Doermann, D. et al., Progress in Camera-Based Document Image Analysis, Proceedings of the Seventh International Conference on Document Analysis and Recognition, ICDAR 2003, 11 pages, [online] Retrieved from the Internet <URL:http://www.cse.salford.ac.uk/prima/ICDAR2003/Papers/0111—keynote—III—doermann—d.pdf>. |
Duda, R. O. et al., Use of the Hough Transformation to Detect Lines and Curves in Pictures, Communications of the ACM, Jan. 1972, pp. 11-15, vol. 15, No. 1.http://portal.acm.org/citation.cfm?id=361237.361242. |
Erol, B. et al., Linking Multimedia Presentations with Their Symbolic Source Documents: Algorithm and Applications, Nov. 2-8, 2003, pp. 498-507, [Online] [Retreived on Oct. 15, 2008] Retrieved from the Internet <URL:http://rii.ricoh.com/{hull/pubs/p225—erol.pdf>. |
Erol, B. et al., Linking Presentation Documents Using Image Analysis, IEEE, Nov. 9-12, 2003, pp. 97-101, vol. 1. |
Erol, B. et al., Prescient Paper: Multimedia Document Creation with Document Image Matching, 17th International Conference on Pattern Recognition, Aug. 23-26, 2004, Cambridge, UK. |
Erol, B. et al., Retrieval of Presentation Recordings with Digital Camera Images, IEEE Conference on Computer Vision and Pattern Recognition, Jun. 27-Jul. 2, 2004. |
Esposito, F. et al., Machine Learning Methods for Automatically Processing Historical Documents: from Paper Acquisition to XML Transformation, Proceedings of the First International Workshop on Document Image Analysis for Libraries (DIAL '04), IEEE, 2004, pp. 1-8. |
European Partial Search Report, European Application No. EP07015093.3, Dec. 17, 2007, 7 pages. |
European Search Report, European Application No. 06796844.6, Oct. 30, 2008, 12 pages. |
European Search Report, European Application No. 06796845.3, Oct. 30, 2008, 12 pages. |
European Search Report, European Application No. 06796846.1, Nov. 5, 2008, 11 pages. |
European Search Report, European Application No. 06796848.7, Oct. 31, 2008, 12 pages. |
European Search Report, European Application No. 07252397.0, Oct. 15, 2007, 7 pages. |
European Search Report, European Application No. 08159971.4, Nov. 14, 2008, 6 pages. |
European Search Report, European Application No. 08160112.2, Nov. 10, 2008, 7 pages. |
European Search Report, European Application No. 08160115.5, Nov. 12, 2008, 6 pages. |
European Search Report, European Application No. 08160125.4, Oct. 13, 2008, 5 pages. |
European Search Report, European Application No. 08160130.4, Nov. 12, 2008, 7 pages. |
European Search Report, European Application No. 09156089.6, Jun. 19, 2009, 8 pages. |
European Search Report, European Application No. 09170045.0, Nov. 24, 2009, 4 pages. |
European Summons for Oral Proceedings, European Application No. 07015093.3, Sep. 16, 2011, 4 pages. |
Extended European Search Report, Application No. 09178280.5, Aug. 31, 2010, 6 pages. |
Extended European Search Report, European Patent Application No. 082523770, May 2, 2011, 6 pages. |
Ezaki, N. et al., Text Detection from Natural Scene Images: Towards a System for Visually Impaired Persons, Proc. of 17th Int. Conf. on Pattern Recognition (ICPR 2004), IEEE Computer Society, Aug. 23-26, 2004, Cambridge, UK, 5 pages. |
Fadoua, D. et al., Restoring Ink Bleed-Through Degraded Document Images Using a Recursive Unsupervised Classification Technique, http://www.springerlink.com/content/y83u357034044117/Lecture Notes in Computer Science 3872, Document Analysis Systems VII, 7th International Workshop, DAS 2006, Feb. 13-15, 2006, Nelson, New Zealand, Bunke, H. et al. (eds.), pp. 38-49. |
Freund, Y. et al., A Short Introduction to Boosting, Journal of Japanese Society for Artificial Intelligence, Sep. 1999, pp. 771-780, vol. 14, No. 5. |
Adobe Acrobat Advanced Elements (for both PC and Mac Computers), 2002, pp. 1-19. |
Aggarwal, M et al., On Cosine-fourth and Vignetting Effects in Real Lenses, ICCV Proceedings, IEEE, 2001, vol. 1, pp. 472-479, [online] Retrieved from the internet <URL: http://www.metaverselab.org/classis/635/reading/aggarwal-iccv.pdf>. |
Akenini-Moller, T., Real-Time Rendering, A.K. Peters, Natick, MA, 2nd Edition, 2002, pp. 70-84. |
A. Antonacopoulos et al., Flexible Page Segmentation Using the Background, Proceedings of the IAPR International Conference on Pattern Recognition, Jerusalem, Oct. 9-12, 1994; pp. 339-344. |
Archive of Barcodepedia.com—The Online Barcode Database, [online] [Archived by http://archive.org on Jul. 9, 2006; , 2 pages; Retrieved from the Internet: <http://web.archive.org/web/20060709101455/http://en.barcodepedia.com/>. |
Archive of Scanbuy Solutions—Optical Intelligence for your Mobile Devices, Scanbuy® Inc., www.scanbuy.com/website/solutions—summary.htm, [online] [Archived by http://archive.org on Jun. 19, 2006; 1 page; Retrieved on Mar. 3, 2009] Retrieved from the Internet <URL:http://web.archive.org/web/20060619172549/>. |
Baba, M. et al., Shadow Removal from a Real Image Based on Shadow Density, Poster at SIGGRAPH2004, updated Aug. 16, 2004, 4 pages, [online] Retrieved from the Internet <URL:http://www.cv.its.hiroshimacu.ac.jp/baba/Shadow/poster04-02.pdf>. |
Baird, H. et al., Structured Document Image Analysis;1992; pp. 546-556, Springer-Verlag Berlin Heidelberg. |
Baird, H., The State of the Art of Document Image Degradation Modeling; 2000; pp. 1-16, [online] Retrieved from the Internet <URL:http://www2.parc.xerox.com/istl/members/baird/das00.pas.gz>. |
Baird, H.S.; Document Image Defect Models and Their Uses, Proc.; IAPR 2nd International Conference on Document Analysis and Recognition; Oct. 20-22, 1993; 7 pages; Tsukuba Science City, Japan. |
Barney Smith, E.H. et al.; Text Degradations and OCR Training; International Conference on Document Analysis and Recognition; Aug. 2005; 5 pages; Seoul, Korea; [online] Retrieved from the Internet <URL:http://coen.boisestate.edu/EBarneySmith/Papers/ICDAR05—submit.pdf>. |
Bouget, J., Camera Calibration Toolbox for Matlab, Online Source, Updated Jul. 24, 2006, 6 pages, [online] Retrieved from the Internet <URL:http:www.vision.caltech.edu/bougetj/calib—doc/index.html#ref>. |
Boukraa, M. et al., Tag-Based Vision: Assisting 3D Scene Analysis with Radio-Frequency Tags, Proceedings of the Fifth International Conference on Information Fusion, Piscataway, N.J., IEEE, Jul. 8-11, 2002, pp. 412-418. |
Boyd, S., EE263: Introduction to Linear Dynamical Systems, Online Lecture Notes, Stanford University, Spring Quarter, 2006-2007, Accessed on Jun. 22, 2007, 4 pages, [online] Retrieved from the Internet <URL:http://www.standford/edu/class/ee263/#lectures>. |
Brassil et al., Hiding Information in Document Images, Proc. Conf. Information Sciences and Systems (CISS-95), Mar. 1995, 8 pages, Johns Hopkins University, AT&T Bell Laboratories, Murray Hill, NJ. |
Call for Papers: ICAT 2007, 17th International Conference on Artificial Reality and Telexistence, Nov. 28-30, 2007, 2 pages, [Online] [Retrieved on Nov. 4, 2008] Retrieved from the Internet <URL:http://www.idemployee.id.tue.nl/g.w.m.rauterberg/conferences/ICAT2007-CfP.pdf>. |
Canny, J., A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Nov. 1986, pp. 679-714, vol. PAMI-8, No. 6. |
Chinese Office Action, Chinese Application No. 200910138044, Jan. 26, 2011, 6 pages. |
Hjelmas, E. et al., Face Detection: A Survey, Computer Vision and Image Understanding, dated Oct. 23, 2000, pp. 236-274. |
Ho, T.K. et al., Decision Combination in Multiple Classifier Systems, IEEE Transactions on Pattern Analysis and Machine Intelligence, Jan. 1994, pp. 66-75. |
Ho, T.K. et al., Evaluation of OCT Accuracy Using Synthetic Data, Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval, Apr. 24-26, 1995, pp. 413-422. [online] Retrieved from the Internet <URL:http://citeseer.ist.psu.edu/cache/papers/cs/2303/http:zSzzSzcm.bell-labs.comzSzcmzSzcszSzwhozSzhsbzSzeoasd.pdf/ho95evaluation.pdf>. |
Hull, J. J., Document Image Similarity and Equivalence Detection, International Journal on Document Analysis and Recognition, 1998, pp. 37-42, Springer-Verlag. |
Hull, J., Document Image Skew Detection: Survey and Annotated Bibliography, Document Analysis Systems II, World Scientific, 1998, pp. 40-64. |
Hull, J.J. et al., Document Image Matching Techniques, Apr. 30, 1997, pp. 31-35, [Online] [Retrieved on May 2, 1997] Retrieved from the Internet <URL:http://rii.ricoch.com/hull/pubs/hull—sdiut97.pdf>. |
Hull, J.J. et al., Paper-Based Augmented Reality, 17th International Conference on Artificial Reality and Telexistence, Nov. 1, 2007, pp. 205-209. |
Hull, J.J. et al., Visualizing Multimedia Content on Paper Documents: Components of Key Frame Selection for Video Paper, Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR'03), IEEE, 2003, 4 pages. |
Hull, J.J., Document Image Matching and Retrieval with Multiple Distortion-Invariant Descriptors, International Association for Pattern Recognition Workshop on Document Analysis Systems, Jan. 1, 1995, pp. 375-396. |
Hull, J.J., Document Image Matching on CCITT Group 4 Compressed Images, SPIE Conference on Document Recognition IV, Feb. 12, 1997, pp. 82-87. |
Jagannathan, L. et al., Perspective Correction Methods for Camera Based Document Analysis, Proc. First Int. Workshop on Camera-based Document Analysis and Recognition, 2005http://www.iiit.net/techreports/2007—107.pdf, pp. 148-154. |
Jain, A.K. et al., An Introduction to Biometric Recognition, IEEE Transactions on Circuits and Systems for Video Technology, Jan. 2004, pp. 4-20, vol. 14, No. 1. |
Japanese Office Action, Japanese Application No. 2004-293962, Aug. 24, 2010, 3 pages. |
Japanese Office Action, Japanese Application No. 2008-008112, Oct. 17, 2011, 3 pages. |
Kanungo, T. et al., Global and Local Document Degradation Models, Document Analysis and Recognition, 1993, Proceedings of the Second International Conference on Volume, Oct. 20-22, 1993, pp. 730-734. |
Khoubyari, S. et al., Font and Funct on Word Identification in Document Recognition, Computer Vision and Image Understanding, Jan. 1996, pp. 66-74, vol. 63, No. 1. |
Khoubyari, S. et al., Keyword Location and Noisy Document Images, Second Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, NV, Apr. 26-28, 1993, pp. 217-231. |
Kopec, G.E. et al., Document Image Decoding Using Markov Source Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, Jun. 1994, pp. 602-617, vol. 16, No. 6. |
Li, Y. et al., Validation of Image Defect Models for Optical Character Recognition, IEEE Trans. Pattern Anal. Mach. Intell. 18, 2, Feb. 1996, pp. 99-108, [online] Retrieved from the Internet <URL:http://www.cs.cmu.edu/afs/cs/usr/andrewt/papers/Validate/journal.ps.gz>. |
Liang, J. et al., Flattening Curved Documents in Images, In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2005, 8 pages, [online] Retrieved from the Internet <URL:http://www.cfar.umd.edu/˜daniel/daniel—papersfordownload/liang-j—cpvr2005.pdf>. |
Liu, T. et al., A Fast Image Segmentation Algorithm for Interactive Video Hotspot Retrieval, IEEE, 2001, pp. 3-8. |
Liu, Y. et al., Automatic Texture Segmentation for Texture-Based Image Retrieval, Proceedings of the 10th International Multimedia Modelling Conference (MMM'04), IEEE, Jan. 5-7, 2004, pp. 285-288. |
Lu, Y. et al., Document Retrieval from Compressed Images, Pattern Recognition, 2003, pp. 987-996, vol. 36. |
Mae et al., Object Recognition Using Appearance Models Accumulated into Environment, Proc. 15-th Intl. Conf. on Pattern Recognition, 2000, vol. 4, pp. 845-848. |
Marques, O. et al., Content-Based Image and Video Retrieval, Video Content Representation, Indexing, and Retrieval, a Survey of Content-Based Image Retrieval Systems, CBVQ (Content-Based Visual Query), Content-Based Image and Video Retrieval [Multimedia Systems and Applications Series], Apr. 1, 2002, pp. 15-117, vol. 21, Kluwer Academic Publishers Group, Boston, USA. (from EP 09156089.6 search report). |
McDonald, G., Third Voice: Invisible Web Graffiti, PC World, May 18, 1999, [online] [Retrieved on Nov. 14, 2006] Retrieved from the Internet <URL:http://www.pcworld.com/news/article/0,aid,11016,00.asp>. |
Microsoft Computer Dictionary, 5th ed., Hyperlink Definition, 2002, pp. 260-261. |
Mobile Search Engines, Sonera MediaLab, Nov. 15, 2002, pp. 1-12. |
Mobile Video Managed Service, Vidiator, 2008, [online] [Retrieved on Aug. 29, 2008] Retrieved from the Internet <URL:http://www.vidiator.com/services/managed—mobile—video.aspx>. |
Mukherjea, S. et al., AMORE: A World Wide Web Image Retrieval Engine, C&C Research Laboratories, NEC USA Inc., Baltzer Science Publishers BV, World Wide Web 2, 1999, pp. 115-132. |
U.S. Office Action, U.S. Appl. No. 12/240,596, Jan. 21, 2011, 21 pages. |
U.S. Office Action, U.S. Appl. No. 12/247,205, Oct. 6, 2011, 56 pages. |
U.S. Office Action, U.S. Appl. No. 12/253,715, Aug. 31, 2011, 20 pages. |
U.S. Office Action, U.S. Appl. No. 12/265,502, Oct. 14, 2011, 61 pages. |
U.S. Office Action, U.S. Appl. No. 12/340,124, Oct. 24, 2011, 31 pages. |
U.S. Office Action, U.S. Appl. No. 12/719,437, Dec. 9, 2010, 38 pages. |
U.S. Office Action, U.S. Appl. No. 12/879,933, Mar. 2, 2011, 7 pages. |
U.S. Office Action, U.S. Appl. No. 12/879,933, Oct. 28, 2011, 36 pages. |
Veltkamp, R. et al., Content-Based Image Retrieval Systems: A Survey, Department of Computing Science, Utrecht University, Oct. 28, 2002, pp. 1-62. |
Wikipedia Online Definition, Optical Character Recognition, Sep. 14, 2008, pp. 1-7, [Online] [Retrieved on Sep. 14, 2008] Retrieved from the Internet <URL:http://en.wikipedia.org/wiki/Optical—character—recognition>. |
Wikipedia Online Encyclopedia, Image Scanner, Last Modified Feb. 9, 2010, pp. 1-9, [Online] [Retrieved on Feb. 13, 2010] Retrieved from the Internet <URL:http://en.wikipedia.org/wiki/Image—scanner>. |
Wikipedia Online Encyclopedia, Waypoint, Last Modified Feb. 13, 2010, pp. 1-4, [Online] Retrieved on Feb. 13, 2010] Retrieved from the Internet <URL:http://en.wikipedia.org/wiki/Waypoint>. |
Wikipedia Online Encyclopedia, Automatic Identification and Data Capture, Jul. 21, 2008, pp. 1-2, [Online] [Retrieved on Sep. 27, 2008] Retrieved from the Internet <URL:http://en.wikipedia.org/wiki/Automatic—identification—and—data—capture>. |
Zanibbi, R. et al. A Survey of Table Recognition: Models, Observations, Transformations, and Inferences—International Journal on Document Analysis and Recognition, dated Oct. 24, 2003, pp. 1-33. |
Zhang, Z., A Flexible New Technique for Camera Calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, Nov. 2000, pp. 1330-1334, vol. 22, No. 11. |
Zhao, W. et al., Face Recognition: A Literature Survey, ACM Computing Surveys (CSUR), 2003, pp. 399-458, vol. 35, No. 4. |
Zheng, Q.-F. et al., Effective and Efficient Object-Based Image Retrieval Using Visual Phases, Proceedings of the 14th Annual ACM International Conference on Multimedia, MM'06, Oct. 23-27, 2006, Santa Barbara, CA, pp. 77-80. |
Zi, G., Groundtruth Generation and Document Image Degradation, University of Maryland Language and Media Processing Laboratory Technical report (LAMP-TR-121), May 2005, 72 pages, [online] Retrieved from the Internet <URL:http://lampsrv01.umiacs.umd.edu/pubs/TechReports/LAMP—121/LAMP—121.pdf>. |
Pavlidis, T., Effects of Distortions on the Recognition Rate of a Structural OCR System, In Pro. Conf. on Comp. Vision and Pattern Recog., IEEE, Washington, DC, 1983, pp. 303-309. |
PCT International Search Report and Written Opinion, PCT/JP2006/316810, Oct. 10, 2006, 9 pages. |
PCT International Search Report and Written Opinion, PCT/JP2006/316811, Oct. 10, 2006, 9 pages. |
PCT International Search Report and Written Opinion, PCT/JP2006/316812, Oct. 10, 2006, 9 pages. |
PCT International Search Report and Written Opinion, PCT/JP2006/316814, Oct. 10, 2006, 11 pages. |
Po, L-M. et al., A Novel Four-Step Search Algorithm for Fast Block Motion Estimation, IEEE Transactions on Circuits and Systems for Video Technology, Jun. 1996, pp. 313-317, vol. 6, Issue 3. |
Rademacher, View-Dependent Gemoetry, Computer Graphics Proceedings, Annual Conference Series, SIGGRAPH 99, Los Angeles, California Aug. 8-13, 1999, pp. 439-446. |
Rangarajan, K. et al. Optimal Corner Detector, 1988, IEEE, pp. 90-94.http://ieeexplore.ieee.org/xpl/freeabs—all.jsp?arnumber=589975. |
Reniers et al., Skeleton-based Hierarchical Shape Segmentation, IEEE International Conference on Shape Modeling an Applications, SMI'07, Jun. 1, 2007, Computer Society, pp. 179-188. |
Rosin, P.L. et al., Image Difference Threshold Strategies and Shadow Detection, Proceedings of the 6th British Machine Vision Conference, 1995,10 pages. |
Roth, M.T. et al., The Garlic Project, Proc. of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada, Jun. 4, 1996, pp. 557. |
Sato, T. et al., High Resolution Video Mosaicing for Documents and Photos by Estimating Camera Motion, Proceedings of the SPIE 5299, 246, 2004, 8 pages, [online] Retrieved from the Internet <URL:http://yokoya.naist.jp/paper/datas/711/spie2004.pdf>. |
Schalkoff, R.J., Syntactic Pattern Recognition (SYNTPR) Overview, Pattern Recognition: Statistical, Structural and Neural Approaces, Jan. 1, 1992, pp. 127-150, vol. 3, Wiley. |
Sezgin, M. et al., Survey Over Image Thresholding Techniques and Quantitative Performance Evaluation, http://citeseer.comp.nus.edu.sg/675166.htmlJournal of Electronic Imaging, Jan. 2004, pp. 146-165, vol. 13, No. 1. |
Sivic, J. et al., Video Google: A Text Retrieval Approach to Object Matching in Videos, Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003), 2-Volume Set, 2003, IEEE, pp. 1-8. |
Stoyanov, D., Camera Calibration Tools, Online Source, Updated Aug. 24, 2006, Accessed Aug. 31, 2006, 12 pages, [online] Retrieved from the Internet <URL:http://ubimon.doc.ic.ac.uk/dvs/index.php?m=581>. |
Triantafyllidis, G.A. et al., Detection of Blocking Artifacts of Compressed Still Images, Proceedings of the 11th International Conference on Image Analysis and Processing (ICIAP '01), IEEE, 2001, pp. 1-5. |
U.S. Office Action, U.S. Appl. No. 12/059,583, dated Sep. 10, 2012, 41 pages. |
U.S. Notice of Allowance, U.S. Appl. No. 12/240,590, dated Oct. 1, 2012, 19 pages. |
U.S. Notice of Allowance, U.S. Appl. No. 12/491,018, dated Oct. 11, 2012, 13 pages. |
U.S. Office Action, U.S. Appl. No. 13/415,756, dated Oct. 26, 2012, 40 pages. |
U.S. Office Action, U.S. Appl. No. 12/253,715, dated Nov. 14, 2012, 76 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,300, dated Nov. 28, 2012, 37 pages. |
U.S. Notice of Allowance, U.S. Appl. No. 12/121,275, dated Nov. 28, 2012, 31 pages. |
U.S. Office Action, U.S. Appl. No. 13/415,228, dated Dec. 3, 2012, 38 pages. |
JP Office Action, JP Application No. 2008-180789, dated Sep. 25, 2012, 3 pages. |
Tomohiro Nakai; Document Image Retrieval Based on Cross-Ration and Hashing IEICE Technical Report; The Institute of Electronics, Information and Communication Engineers; dated Mar. 11, 2005; vol. 104 No. 742; pp. 103-108. |
U.S. Office Action, U.S. Appl. No. 13/273,189, dated Nov. 28, 2012, 26 pages. |
U.S. Office Action, U.S. Appl. No. 13/273,186, dated Dec. 17, 2012, 28 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,279, dated Dec. 19, 2012, 31 pages. |
U.S. Notice of Allowability, U.S. Appl. No. 12/240,590, dated Dec. 20, 2012, 4 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,037, dated Jan. 7, 2013, 21 pages. |
U.S. Appeal Decision, U.S. Appl. No. 11/461,085, dated Jan. 23, 2013, 8 pages. |
U.S. Office Action, U.S. Appl. No. 12/340,124, dated Jan. 23, 2013, 23 pages. |
U.S. Notice of Allowance, U.S. Appl. No. 13/415,756, dated Feb. 4, 2013, 7 pages. |
U.S. Office Action, U.S. Appl. No. 12/060,206, dated Feb. 8, 2013, 16 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,037, Mar. 30, 2011, 29 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,037, Mar. 4, 2010, 16 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,037, Nov. 23, 2011, 33 pages. |
U.S. Supplemental Final Office Action, U.S. Appl. No. 11/461,109, Oct. 23, 2009, 22 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,279, Aug. 5, 2010, 37 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,279, Feb. 19, 2010, 33 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,279, Jan. 7, 2011, 44 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,279, Jul. 8, 2011, 46 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,279, Sep. 17, 2009, 25 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,286, Aug. 5, 2010, 28 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,286, Feb. 19, 2010, 23 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,286, Jan. 20, 2012, 27 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,286, Jan. 21, 2011, 34 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,286, Jul. 15, 2011, 37 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,286, Sep. 17, 2009, 22 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,300, Feb. 23, 2012, 38 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,300, Jun. 11, 2010, 20 pages. |
U.S. Office Action, U.S. Appl. No. 11/461,300, Oct. 6, 2010, 20 pages. |
U.S. Office Action, U.S. Appl. No. 12/060,206, Dec. 15, 2011, 55 pages. |
U.S. Office Action, U.S. Appl. No. 12/059,583, Jan. 26, 2012, 78 pages. |
U.S. Office Action, U.S. Appl. No. 12/060,198, Sep. 1, 2011, 87 pages. |
U.S. Office Action, U.S. Appl. No. 12/060,200, Sep. 2, 2011, 65 pages. |
U.S. Office Action, U.S. Appl. No. 12/121,275, Apr. 20, 2011, 44 pages. |
U.S. Office Action, U.S. Appl. No. 12/121,275, Oct. 19, 2011, 24 pages. |
U.S. Office Action, U.S. Appl. No. 12/210,511, Apr. 4, 2011, 49 pages. |
U.S. Office Action, U.S. Appl. No. 12/210,511, Sep. 28, 2011, 25 pages. |
U.S. Office Action, U.S. Appl. No. 12/210,519, Jan. 5, 2012, 29 pages. |
U.S. Office Action, U.S. Appl. No. 12/210,519, Jun. 16, 2011, 22 pages. |
U.S. Office Action, U.S. Appl. No. 12/210,519, Mar. 14, 2011, 38 pages. |
U.S. Office Action, U.S. Appl. No. 12/210,532, Oct. 31, 2011, 61 pages. |
U.S. Office Action, U.S. Appl. No. 12/210,540, Oct. 14, 2011, 22 pages. |
U.S. Office Action, U.S. Appl. No. 12/240,596, Aug. 6, 2010, 32 pages. |
U.S. Office Action, U.S. Appl. No. 12/240,596, Feb. 2, 2012, 44 pages. |
US Notice of Allowance for U.S. Appl. No. 11/461,300 dated May 15, 2013, 13 pages. |
US Final Office Action for U.S. Appl. No. 13/273,186, dated Jun. 12, 2013, 24 pages. |
US Non-Final Office Action for U.S. Appl. No. 11/461,037, dated Jun. 24, 2013, 25 pages. |
US Non-Final Office Action for U.S. Appl. No. 12/719,437, dated Jun. 25, 2013, 22 pages. |
US Notice of Allowance for U.S. Appl. No. 11/461,279, dated Jul. 31, 2013, 14 pages. |
JP Office Action for JP Patent Application No. 2009-119205 dated Feb. 19, 2013, 2 pages. |
U.S. Appeal Decision, U.S. Appl. No. 11/461,164, dated Feb. 27, 2013, 10 pages. |
U.S. Appeal Decision, U.S. Appl. No. 11/461,147, dated Mar. 4, 2013, 11 pages. |
U.S. Appeal Decision, U.S. Appl. No. 11/461,109, dated Mar. 13, 2013, 23 pages. |
US Non-Final Office Action for U.S. Appl. No. 12/060,200, dated Mar. 22, 2013, 47 pages. |
US Final Office Action for U.S. Appl. No. 11/461,279 dated Mar. 25, 2013, 36 pages. |
US Non-Final Office Action for U.S. Appl. No. 12/060,198 dated Apr. 2, 2013, 56 pages. |
US Notice of Allowance for U.S. Appl. No. 13/415,228 dated Apr. 30, 2013, 10 pages. |
US Notice of Allowance for U.S. Appl. No. 12/210,519 dated May 1, 2013, 24 pages. |
US Notice of Allowance for U.S. Appl. No. 13/273,189 dated May 9, 2013, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 12/060,198, dated Nov. 7, 2013, 55 pages. |
Final Office Action for U.S. Appl. No. 12/060,200, dated Nov. 8, 2013, 58 pages. |
Non-Final Office Action for U.S. Appl. No. 13/273,186, dated Dec. 5, 2013, 25 pages. |
Final Office Action for U.S. Appl. No. 11/461,085, dated Dec. 10, 2013, 16 pages. |
Non-Final Office Action for U.S. Appl. No. 13/729,458, dated Dec. 17, 2013, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 12/253,715, dated Dec. 19, 2013, 38 pages. |
Notice of Allowance for U.S. Appl. No. 12/240,596, dated Dec. 23, 2013, 10 pages. |
Final Office Action for U.S. Appl. No. 11/461,164, dated Dec. 26, 2013, 17 pages. |
Final Office Action for U.S. Appl. No. 13/330,492, dated Jan. 2, 2014, 15 pages. |
Final Office Action for U.S. Appl. No. 12/719,437, dated Jan. 16, 2014, 22 pages. |
Non-Final Office Action for U.S. Appl. No. 13/789,669, dated Jan. 17, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 12/340,124, dated Jan. 29, 2014, 24 pages. |
Non-Final Office Action for U.S. Appl. No. 13/933,078, dated Mar. 17, 2014, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/273,186, dated Mar. 26, 2014, 9 pages. |
Notice of Allowance for U.S. Appl. No. 11/461,037, dated Apr. 3, 2014, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 12/060,200, dated Apr. 8, 2014, 65 pages. |
Non-Final Office Action for U.S. Appl. No. 11/461,085, dated Apr. 9, 2014, 16 pages. |
Final Office Action for U.S. Appl. No. 11/461,147, dated Apr. 24, 2014, 11 pages. |
Notice of Allowance for U.S. Appl. No. 12/210,511, dated Apr. 30, 2014, 11 pages. |
Final Office Action for U.S. Appl. No. 12/247,205, dated May 13, 2014, 17 pages. |
Notice of Allowance for U.S. Appl. No. 12/210,540, dated May 22, 2014, 20 pages. |
Final Office Action for U.S. Appl. No. 13/729,458, dated Jun. 2, 2014, 8 pages. |
Final Office Action for U.S. Appl. No. 12/060,198, dated Jun. 5, 2014, 63 pages. |
Josef Sivic, “Video Google: A Text Retrieval Approach to Object Matching in Videos,” IEEE, Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003), 8 pages, vol. 2. |
Japanese Office Action for JP Application No. 2013222652, dated May 20, 2014, 5 pages. |
Japanese Office Action for JP Application No. 2013222655, dated May 20, 2014, 4 pages. |
Notice of Allowance for U.S. Appl. No. 13/729,458, dated Sep. 29, 2014, 8 pages. |
Final Office Action for U.S. Appl. No. 13/933,078, dated Oct. 6, 2014, 14 pages. |
Notice of Allowance for U.S. Appl. No. 12/060,200, dated Nov. 5, 2014, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/789,669, dated Nov. 19, 2014, 13 pages. |
Final Office Action for U.S. Appl. No. 13/330,492, dated Nov. 26, 2014, 18 pages. |
Notice of Allowance for U.S. Appl. No. 12/340,124, dated Dec. 19, 2014, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 11/461,109 dated Jun. 26, 2014, 18 pages. |
Notice of Allowance for U.S. Appl. No. 13/273,186 dated Jul. 10, 2014, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/330,492 dated Jul. 17, 2014, 16 pages. |
Final Office Action for U.S. Appl. No. 12/253,715, dated Jul. 25, 2014, 40 pages. |
Final Office Action for U.S. Appl. No. 12/340,124, dated Aug. 21, 2014, 26 pages. |
Final Office Action for U.S. Appl. No. 13/789,669 dated Aug. 29, 2014, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/494,008 dated Sep. 10, 2014, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 11/461,164, dated Sep. 15, 2014, 18 pages. |
Notice of Allowance for U.S. Appl. No. 11/461,085, dated Sep. 17, 2014, 5 pages. |
Moghaddam et al., Visualization and User-Modeling for Browsing Personal Photo Libraries, Mitsubishi Electric Research Laboratories, dated Feb. 2004, 34 pages. |
Japanese Application Office Action for JP Publication No. 2013-192033, dated Jun. 24, 2014, 7 pages. |
Japanese Application Office Action for JP Publication No. 2013-222655, dated Aug. 26, 2014, 5 pages. |
Jonathan Hull, Mixed Media Reality (MMR) A New Method of eP-Fusion, Ricoh Technical Report, Ricoh Company, Ltd., dated Dec. 1, 2007, No. 33, p. 119-125; online search dated Aug. 22, 2013 <URL: http://www.ricoh.com/ja/technology/techreport/33/pdf/A3314.pdf >. |
Non-Final Office Action for U.S. Appl. No. 12/253,715, dated Jan. 7, 2015, 35 pages. |
Final Office Action for U.S. Appl. No. 11/461,109, dated Jan. 15, 2015, 20 pages. |
Final Office Action for U.S. Appl. No. 13/494,008, dated Feb. 10, 2015, 20 pages. |
Non-Final Office Action for U.S. Appl. No. 13/933,078, dated Feb. 26, 2015, 7 pages. |
Final Office Action for U.S. Appl. No. 11/461,164, dated Mar. 12, 2015, 19 pages. |
Non-Final Office Action for U.S. Appl. No. 12/060,198, dated Mar. 13, 2015, 22 pages. |
Notice of Allowance for U.S. Appl. No. 13/789,669, dated Mar. 16, 2015, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 11/461,147, dated Mar. 20, 2015, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20130031125 A1 | Jan 2013 | US |