1. Field
This application relates generally to simulating a fluid flow over a computer-generated surface and, more specifically, to estimating a viscous fluid property distribution over a computer-generated surface using an anisotropic diffusion technique.
2. Description of the Related Art
Aerodynamic analysis of an aircraft moving through a fluid typically requires an accurate prediction of the properties of the fluid surrounding the aircraft. Accurate aerodynamic analysis is particularly important when designing aircraft surfaces, such as the surface of a wing or control surface. Typically, the outer surface of a portion of the aircraft, such as the surface of a wing, is modeled, either physically or by computer model, so that a simulation of the fluid flow can be performed and properties of the simulated fluid flow can be measured. Fluid-flow properties are used to predict the characteristics of the wing including lift, drag, boundary-layer velocity profiles, and pressure distribution. The flow properties may also be used to map laminar and turbulent flow regions near the surface of the wing and to predict the formation of shock waves in transonic and supersonic flow.
A computer-generated simulation can be performed on a computer-generated aircraft surface to simulate the fluid dynamics of a surrounding fluid flow. The geometry of the computer-generated aircraft surface is relatively easy to change and allows for optimization through design iteration or analysis of multiple design alternatives. A computer-generated simulation can also be used to study situations that may be difficult to reproduce using a physical model, such as supersonic flight conditions. A computer-generated simulation also allows a designer to measure or predict fluid-flow properties at virtually any point in the model by direct query, without the difficulties associated with physical instrumentation or data acquisition techniques.
In some cases, a computer-generated simulation includes a computational fluid dynamics (CFD) simulation module used to predict the properties of the fluid flow. A CFD simulation module estimates the properties of a simulated fluid flow by applying an algorithm or field equation that estimates the interaction between small simulated fluid volumes, also referred to as fluid cells. Because a single CFD simulation module may include millions of individual fluid cells, the complexity of the relationship between fluid cells can have a large effect on the computational efficiency of the simulation. Complex CFD simulation modules can be computationally expensive and require hours or even days to execute using high-performance computer processing hardware.
To reduce the computational burden, in some instances it is desirable to use a CFD simulation module that simplifies the fluid dynamics and produces a fluid simulation that can be solved more rapidly. For example, for fluid flows that are relatively uniform or are located away from an aircraft surface, a simplified simulation that minimizes or ignores certain fluid dynamic phenomena can be used. In the examples discussed below, a simplified simulation may ignore fluid dynamic contributions due to fluid viscosity, which, in some cases, have little effect on the overall behavior of the fluid. By using a simplified simulation, processing time may be improved.
In other situations, where the fluid flow is not as uniform, it may be necessary to use a CFD simulation module that is more sophisticated and capable of accurately predicting the fluid properties, using more complex fluid dynamics. In the examples discussed below, a more sophisticated simulation may account for dynamic contributions due to fluid viscosity. Under certain conditions, the more sophisticated simulation may be more accurate, particularly for portions of the fluid flow where fluid viscosity affects the results. However, more sophisticated simulation modules are also likely to require more computing resources, and therefore may require more time to solve.
One exemplary embodiment includes a computer-implemented method of generating a fluid-flow simulation over a computer-generated surface. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh of polygons. The subset represents a portion of the computer-generated surface. A pressure-gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh of polygons but not one of the subset of polygons for which a boundary-layer fluid property has been obtained. A minimum diffusion rate is defined along the direction of the pressure gradient vector of the selected polygon. A maximum diffusion rate is also defined in a direction perpendicular to the direction of the pressure gradient vector of the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon, the neighboring polygon belonging to the subset of polygons for which a boundary-layer fluid property has been obtained. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and angular difference between the diffusion-path vector and the pressure gradient vector.
The figures depict one embodiment of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein can be employed without departing from the principles of the invention described herein.
As discussed above, a computer-generated simulation can be used to analyze the aerodynamic performance of a proposed aircraft surface, such as a wing or control surface. Using known geometry modeling techniques, a computer-generated aircraft surface that represents the outside surface of the proposed aircraft can be constructed.
As shown in
In
The simulation allows the designer or engineer to evaluate the performance of the aircraft geometry for various flow conditions. If necessary, changes can be made to the aircraft geometry to optimize performance or eliminate an unwanted aerodynamic characteristic. Another simulation can be performed using the modified geometry, and the results can be compared. To allow for multiple design iterations, it is advantageous to perform multiple simulations in a short amount of time. However, as described above, there is a trade-off between speed and accuracy of the simulation depending on the type of CFD simulation module used.
As mentioned above, a computer-generated simulation typically represents a fluid flow as a three-dimensional fluid-flow mesh of small volumes of fluid called fluid cells. The shape of the fluid cells can vary depending on the type of fluid-flow mesh used. A CFD simulation module predicts the fluidic interactions between the fluid cells in the fluid-flow mesh, using a fundamental algorithm or field equation.
The speed and accuracy of a CFD simulation module depends, in part, on the field equation used to predict the interaction between the fluid cells. In some instances, the field equation simplifies the relationship between fluid cells by ignoring or minimizing certain dynamic contributions. These field equations are typically less complex, and therefore are more computationally efficient. For instance, a simplified algorithm called the Euler method may be used to simulate a fluid flow when viscous effects can be minimized or ignored. Viscous effects of a fluid can be ignored when, for example, there is not a significant velocity difference between adjacent fluid cells, and therefore shear forces due to internal friction or viscosity are minimal. A CFD simulation module that ignores or minimizes effects of fluid viscosity can also be referred to as an inviscid simulation.
In other instances, a more complex field equation is used to more accurately predict the interaction between the fluid cells. For example, a Navier-Stokes method can be used to simulate the pressure and shear forces on the fluid cells. Unlike the Euler method mentioned above, the Navier-Stokes method accounts for the effects of viscosity and offers a more accurate simulation of a fluid flow. A simulated fluid flow that accounts for effects due to fluid viscosity can also be referred to as a viscous simulation.
However, the improved accuracy of the Navier-Stokes method comes at the cost of increased computational load, and therefore the Navier-Stokes method is generally slower to compute than an Euler-based algorithm. In addition, a Navier-Stokes method may require more (smaller) fluid cells to generate acceptable results, further increasing the computational load. Thus, selecting the field equation for a CFD module often involves a trade-off between speed and accuracy. In practice, designers may use faster Euler-based CFD models to evaluate multiple design iterations and then validate the final design iteration with a more accurate Navier-Stokes-based CFD model. However, if the Navier-Stokes CFD simulation reveals a design problem, the entire process must be repeated, wasting valuable time and computing resources.
The techniques described below are computer-generated simulations that use both viscous and inviscid field equations to achieve acceptable accuracy without requiring the computational burden of a full viscous CFD simulation (e.g., a Navier-Stokes-based CFD simulation). In many simulations, there is a region of the fluid flow that can be accurately predicted without taking viscous contributions into account. For example, regions of the fluid flow that are located away from an aircraft or wing surface have a relatively uniform velocity profile. Therefore, an inviscid simulation using, for example, an Euler-based analysis, can be used to accurately predict the behavior of the fluid-flow region. In other fluid-flow regions where there is a less uniform velocity profile, a more complex, viscous simulation can be used.
In fluid-flow regions where a viscous simulation is desired, further computational gains can be realized by performing the viscous simulation for only a portion of the fluid-flow region. For example, a portion of a boundary-layer fluid-flow region (near a wing surface) may be represented by one or more strip areas. See, for example
Using the techniques described below, the predicted boundary-layer fluid properties for a portion of a boundary-layer region (represented by, for example, strip areas 404) can be extended to the other portions of the boundary-layer region. Specifically, a diffusion technique can be used to propagate a predicted boundary-layer fluid property for the strip areas 404 to other areas of the computer-generated aircraft surface, between the strip areas 404. In this way, the techniques described herein may provide an accurate prediction of the fluid properties of an entire fluid-flow region without having to perform a CFD simulation for the entire boundary-layer fluid-flow region.
1. Exemplary Process for Propagating a Fluid Property Using Diffusion Techniques
The exemplary process 200 uses a diffusion technique to propagate a fluid property over the computer-generated aircraft surface. The term diffusion, as it is used below, relates to a technique for estimating fluid property values over a computer-generated surface using fluid property values that are (initially) known for only a portion of the computer-generated surface. The estimation is based, in part, on a modified version of the heat equation, which is also referred to herein as a diffusion equation. Traditionally, a diffusion equation can be used to predict heat diffusion or conduction through a mass or body of material. However, rather than predict the physical diffusion of heat energy, the exemplary process 200 uses a diffusion equation to propagate or distribute fluid property values from one portion of a computer-generated surface (where the fluid properties are known) to other portions of the computer-generated surface (where the fluid properties are not known).
An exemplary two-dimensional, isotropic diffusion equation that can be used to diffuse a fluid property u over a distance x and y can be expressed as:
where α is a positive constant representing the diffusion rate and t is time. The diffusion rate α (also called a conduction constant) determines the rate of diffusion over a given distance, also called a diffusion path. As applied in the exemplary process 200 below, a diffusion path is typically defined between two points on a computer-generated aircraft surface: a first point having an unknown fluid property value and a second point with a known fluid property value. In general, a large diffusion rate tends to produce a more uniform fluid-property distribution between the two points along a diffusion path. That is, the unknown fluid property value at the first point will be closer to the known fluid property value at the second point. Conversely, a small diffusion rate tends to produce a less uniform fluid-property distribution between two points along a diffusion path.
Typically, process 200 is performed as part of a computer-generated simulation for a computer-generated aircraft surface. As mentioned above and discussed in more detail below with respect to
As shown in
The boundary-layer fluid-flow region is discretized using a two-dimensional array of points within the surface mesh of polygons 304. As shown in
Discussed in more detail below with respect to equation 2,
The following operations can be performed as an exemplary process 200 for diffusing a boundary-layer property over a computer-generated surface. In operation 202, a boundary-layer fluid property for a subset of polygons is obtained. As shown in
In this example, a strip area 404 is used to define the subset of polygons 420. However, other shapes or techniques can be used to select the subset of polygons 420, as long as the number of polygons in the subset of polygons 420 is fewer than the number of polygons in the surface mesh of polygons 304. For example, the subset of polygons 420 may be defined as those polygons located within a radial distance of a point on the computer-generated aircraft surface. In another example, the subset of polygons 420 may be one polygon.
To reduce the number of simulation calculations, the boundary-layer simulation is only performed for boundary-layer prediction points 306 associated with the subset of polygons 420. Using the example shown in
As explained in more detail below with respect to
In operation 204, a pressure gradient vector {right arrow over (∇p)} is determined for a selected polygon. In the examples shown in
The pressure gradient {right arrow over (∇p)} can be determined using the inviscid fluid-properties of the fluid-flow mesh 302. As explained above, an inviscid CFD simulation module can be used to predict the inviscid fluid properties of fluid cells in the fluid-flow mesh 302. Typically, the inviscid fluid properties are known for at least the fluid cells (of the fluid-flow mesh 302) that are close in proximity to the computer-generated aircraft surface used for the simulation (e.g., the computer-generated wing surface). In contrast, as mentioned above, the boundary-layer fluid properties are (initially) only known for the subset of polygons 420 within strip area 404.
Changes in the inviscid fluid pressure can be indicative of changes in the boundary-layer fluid properties. Therefore, an inviscid pressure gradient vector can be used as a suitable proxy for the gradient of the boundary-layer property being diffused.
In one example, the pressure gradient vector {right arrow over (∇p)} is determined by identifying a set of fluid cells 320 of the fluid-flow mesh 302 that are close in proximity to the selected polygon 630. (See
where p is the pressure of the inviscid fluid flow near the surface of the wing (represented by the identified set of fluid cells 320 close in proximity to the selected polygon 630). Because the wing is a three-dimensional shape, the proximate inviscid fluid flow represented by the identified set of fluid cells 320 will also be three-dimensional. However, for the sake of simplicity, an inviscid fluid pressure distribution corresponding to the identified set of fluid cells 320 can be treated as a two-dimensional distribution mapped to the computer-generated aircraft surface. Because, in many cases, the inviscid fluid pressure distribution is different for different areas of the computer-generated aircraft surface, a pressure gradient should be determined for each selected polygon within the surface mesh of polygons.
As explained in more detail below with respect to operations 206 and 212, the pressure gradient vector {right arrow over (∇p)} is used to determine the primary and secondary diffusion directions. For example, the direction of the pressure gradient vector {right arrow over (∇p)} may be used as the first primary direction d1. The direction perpendicular to the pressure gradient vector {right arrow over (∇p)} may be used as the second primary direction d2.
In operation 206, maximum and minimum diffusion rates are defined (αmax, αmin, respectively). As discussed above, the diffusion rate determines, in part, the amount of diffusion along a diffusion path. In this example, a minimum diffusion rate αmin is selected for diffusion paths along the first primary direction d1 (the direction of the pressure gradient vector {right arrow over (∇p)}). A maximum diffusion rate αmax is selected for diffusion paths along the second primary direction d2 (the direction perpendicular to the direction of the pressure gradient vector {right arrow over (∇p)}). In some cases, the maximum diffusion rate αmax is 1,000 to 1,000,000 times the minimum diffusion rate αmin.
In some cases, when the pressure gradient vector {right arrow over (∇p)} is small or nearly zero, a single diffusion rate can be used. If the diffusion rate is equal or nearly equal in all directions, the maximum and minimum diffusion rates (αmax, αmin) may be treated as equal, or one of the diffusion rates (αmax) can be used as the sole diffusion rate. For example, as discussed in more detail below with respect to equation 9, when the pressure gradient vector {right arrow over (∇p)} is small or nearly zero, the diffusion rate does not depend on direction, and isotropic diffusion can be applied using the maximum diffusion rate (αmax).
In operation 208, a diffusion path vector {right arrow over (d)} is defined between the selected polygon and a neighboring polygon. The neighboring polygon may or may not be immediately adjacent to the selected polygon.
In
Other diffusion paths are also possible. For example,
In operation 210, a variable diffusion rate αv is determined. The variable diffusion rate αv depends on the direction ddiffuse of the diffusion path vector {right arrow over (d)}, the maximum diffusion rate αmax, minimum diffusion rate αmin, and first primary direction d1. As explained above, the minimum diffusion rate αmin applies to diffusion along the first primary direction d1 (the direction of the pressure gradient vector {right arrow over (∇p)}). The maximum diffusion rate αmax applies to diffusion along a second primary direction d2 (the direction perpendicular to the direction of the pressure gradient vector {right arrow over (∇p)}). For diffusion in directions other than the first or second primary directions (d1, d2), an elliptical relationship can be used to determine the diffusion rate associated with a specified diffusion direction ddiffuse. An elliptical relationship for the variable diffusion rate αv can be expressed as:
αv=√{square root over (αmin2 cos2(θ)+αmax2 sin2(θ))}. Equation 3
Therefore, the diffusion rate αv is equal to the square root of the sum of the square of the minimum diffusion rate αmax times cosine theta θ and the square of the maximum diffusion rate αmin times sine theta θ (where theta θ is the angle between the specified diffusion direction ddiffuse and the first primary direction d1). While equation 3 depicts one exemplary technique for determining the variable diffusion rate αv, other techniques can be used to determine the variable diffusion rate αv using the diffusion path vector ddiffuse, the maximum diffusion rate αmax, minimum diffusion rate αmin, and first primary direction d1.
In operation 212, a boundary-layer fluid property is determined for the selected polygon. A diffusion equation can be used to determine the boundary-layer fluid property u for the selected polygon. An anisotropic diffusion equation can be used to account for the changes in diffusion rate due to changes in the diffusion direction. An anisotropic diffusion equation for fluid property u over a time increment t can be expressed as:
where, as shown above in equation 3, αv is a function of the maximum diffusion rate αmax, the minimum diffusion rate αmin, the first primary direction d1, and the diffusion direction ddiffuse. Because the first primary direction d1 varies depending on the direction of the gradient vector {right arrow over (∇p)}, the value of αv may also vary for different locations on the computer-generated wing surface. The diffusion angle ddiffuse and the diffusion distance d may be the direction and magnitude components, respectively, of a diffusion path vector {right arrow over (d)}.
As explained in more detail below with respect to discretized modeling techniques (Section 2, below), anisotropic diffusion may be implemented over a computer-generated aircraft surface using two-dimensional coordinates x and y. Anisotropic diffusion for a fluid property u over a time increment t can also be expressed in terms of two-dimensional coordinates x and y:
where αxx, αxy, αyx, and αyy are components of a two-dimensional diffusion coefficient tensor. The values of αxx, αxy, αyx, and αyy can be determined using the following exemplary relationships:
αxx=αmin sin2(φ)+αmax cos2(φ); Equation 6
αxy=αyx=αmin cos(φ) sin(φ)−αmax cos(φ)sin(φ); Equation 7
αyy=αmin cos2(φ)+αmax sin2(φ); Equation 8
where phi φ is the angle between the second primary direction d2 and the x-axis. Thus, similar to αv as shown above in equation 3, αxx, αxy, αyx, and αyy are also a function of maximum diffusion rate αmax, the minimum diffusion rate αmin, the first primary direction d1, and the diffusion direction ddiffuse.
In some cases, as mentioned above with respect to equation 2, a pressure gradient vector {right arrow over (∇p)} that is small or near zero may indicate that the diffusion rate does not vary significantly with respect to diffusion direction. Thus, when the pressure gradient vector {right arrow over (∇p)} is small or near zero, either the maximum or minimum diffusion rates (αmax or αmin, respectively) may be used as the diffusion rate αv to predict the fluid property using an isotropic diffusion equation. For example, below is an exemplary two-dimensional isotropic equation that can be used to diffuse a fluid property u over time t along directions x and y:
In this special case, the variable diffusion rate αv can be set to either the maximum diffusion rate αmax, the minimum diffusion rate αmin, or an average of the maximum and minimum diffusion rates.
Using either equations 4, 5, or 9, a boundary-layer fluid property u for the selected polygon can be determined. The operations of process 200 can be repeated for multiple selected polygons of the surface mesh of polygons. In some cases, the operations of process 200 are repeated for each polygon (of the surface mesh of polygons 304) that is not one of the subset of polygons 420 for which a boundary-layer property was obtained using the boundary-layer CFD module. For example, with regard to the examples depicted in
Equations 4, 5, and 9 are each expressed with respect to a small time step dt and are capable of determining a transient or time-dependent fluid property value. However, the transient or time-dependent results are not necessary to estimate the fluid property distribution over the computer-generated aircraft surface. In most cases, the steady-state solution is used as the estimation of the boundary-layer fluid property u. For example, if the differential equations 4, 5, or 9 are solved using an explicit method, the explicit method is iterated over multiple time steps until a steady-state solution is determined. If, instead, the differential equations 4, 5, or 9 are solved using an implicit method, a steady-state condition is assumed and the boundary-layer fluid property u is solved simultaneously for multiple polygons in the surface mesh of polygons. An example of explicit and implicit solution techniques is described in more detail below in Section 2.
2. Discretized Modeling Techniques
The diffusion differential equations 4, 5, and 9 may be implemented over a surface mesh of polygons 304 by using a numerical approximation technique. As shown in
where n is the current time step and n−1 is the previous time step, i is the index along the x-direction, j is the index along the y-direction, and E is the error. Equation 10 can be used for a surface mesh of rectangular polygons. A variant of equation 10 may be used for surface meshes having polygons that are not rectangular (e.g., triangular).
Equation 10 describes an explicit solving method that can be used to diffuse a fluid property u among surface-mesh points associated with polygons not belonging to the subset of polygons 420 (e.g., outside of the strip areas 404). The explicit method of equation 10 is typically iterated over multiple increments of time t until the results converge to a steady-state solution. The error term E is included in equation 10 to account for error due to the discretization of the diffusion equation. To minimize the error E, the time step increment should be sufficiently small. Too large of a time step increment will produce inaccurate results and the explicit method may become unstable. To maintain stability, the time-step increment may be directly proportional to the square of the longest dimension of the surface-mesh polygon.
Because smaller time-step increments require more iterations before reaching a steady state, the explicit solving method using equation 10 may require significant computing resources. Although the solution at each time step may be relatively easy to calculate, it may take tens of thousands of iterations to produce reliable results.
Alternatively, an implicit method can be used by assuming a steady-state condition. For example, at steady-state, the sum of the spatial derivatives and the error are zero, allowing:
Equation 11 can be used for a surface mesh of rectangular polygons. A variant of equation 11 may be used for surface meshes having polygons that are not rectangular (e.g., triangular). Instead of stepping through time, as with the explicit method shown in equation 10, a set of linear equations can be constructed. Each linear equation of the set corresponds to a boundary-layer prediction point for a polygon of the surface mesh of polygons. Mathematically, this can be represented as:
[A][u]=0, Equation 12
where [A] is the matrix of coefficients computed using equation 11 and [u] is the solution vector that represents the value of the diffused fluid property at each boundary-layer prediction point. For large surface meshes having a large number of boundary-layer prediction points, the matrix [A] can become very large. However, matrix [A] is typically sparse (i.e., populated mostly with zeros), and therefore even a large matrix [A] may be relatively easy to solve. Using an efficient sparse-matrix solver, the implicit method of equation 12 may be solved orders of magnitude faster than iterating through the explicit method shown in equation 10, above.
While the finite difference techniques exemplified in equations 10 and 12 are relatively straightforward to calculate, the results may vary depending on the geometry of the surface-mesh polygons. In particular, a surface mesh of polygons that is less orthogonal than others may not diffuse a fluid property equally in all directions. A mesh is said to be more orthogonal when there are more lines that can be drawn between the centroids of adjoining polygons that intersect the common edge between the polygons perpendicularly.
As an alternative, a finite-volume method can be used to discretize the diffusion differential equations 4, 5, and 9. In one example, a volume cell is defined for polygon of the surface mesh. The volume cell may be defined, for example, as the geometry of the polygon extruded a nominal thickness. Finite-volume methods typically provide a more uniform diffusion because a finite-volume method requires that the energy related to the fluid property u be conserved between volumes associated with polygons of the surface mesh. Therefore, it may be advantageous to use a finite-volume method instead of finite-difference when discretizing either of the diffusion differential equations 4, 5, or 9.
3. Field Equations for Simulating Fluid Flow Over a Computer-Generated Wing Surface
As discussed above, a fluid flow can be simulated using both inviscid and viscous CFD simulation modules to improve computing efficiency. The explanation below describes how the CFD simulation modules can be applied to different regions of fluid flow and provides exemplary field equations for simulating the dynamics of the fluid flow.
As shown in
As mentioned previously, a CFD simulation module that ignores viscous effects may also be called an inviscid CFD simulation module. Equation 13, below, provides an exemplary field equation for an inviscid CFD simulation module. Equation 13, also called the Euler method, represents the conservation of mass, conservation of three components of momentum, and conservation of energy:
where u, v, and w are components of the velocity vector, p is the pressure, ρ is the density, and E is the total energy per unit volume. Combining equation 13 with an equation of state (e.g., the ideal gas law), an inviscid CFD simulation module can predict the fluid properties for the free stream fluid region 704.
As mentioned previously, a CFD simulation module that accounts for viscosity may also be called a viscous CFD simulation module or a boundary-layer CFD simulation module. Below, exemplary field equations for a boundary-layer CFD simulation module are provided according to a Drela boundary-layer technique. Drela, M. “XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils,” pp. 1-12, Proceedings of the Conference on Low Reynolds Number Aerodynamics (T. J. Mueller ed., Univ. of Notre Dame, Notre Dame, Ind., 1989).
Equation 14, below, represents a boundary-layer integral momentum equation for compressible flow:
where θ is the momentum thickness, H is the shape factor, Me is the boundary-layer edge Mach number, ue is the boundary-layer edge velocity, and Cf is the skin friction coefficient.
Equation 15, below, represents a boundary-layer kinetic energy integral equation:
As used in equations 14 and 15, above, shape factors H, H*, and H** are defined as:
displacement thickness δ* is defined as:
momentum thickness θ is defined as:
kinetic energy thickness θ* is defined as:
density thickness δ** is defined as:
skin friction coefficient Cf is defined as:
and dissipation coefficient CD is defined as:
Solving equations 14 and 15 for local velocity u and density ρ, the boundary-layer CFD simulation module can predict the fluid properties for portions of the fluid flow within the boundary-layer region 706. Additionally, characteristics of the boundary layer, including boundary-layer thickness, can also be determined once the fluid properties are known.
In some cases, the boundary-layer CFD simulation module returns a transpiration flux value representative of a boundary-layer region having a predicted thickness δ*. A transpiration flux is a fictitious fluid flow into or out of the computer-generated aircraft surface. The transpiration flux displaces a portion of the free-flow region 704 in the same way as would the presence of a boundary layer having a predicted thickness δ*. This allows the boundary-layer region to be discretized using a set of boundary-layer prediction points instead of using small volumes or fluid cells. In general, as the magnitude of the transpiration flux increases, the fictitious fluid flow increases, simulating a thicker boundary layer. In some cases, the transpiration flux can be used to create a fictitious flow of air into the aircraft surface (negative flux), thereby simulating a boundary layer having a reduced thickness.
The transpiration flux can be determined using the output of the Drela boundary-layer technique described in equations 14 and 15, above. For example, the transpiration flow velocity Wiw of the transpiration flux can be determined using:
where ρiw is the density of the fluid flow at the aircraft surface, Uiw is the velocity of the fluid flow at the aircraft surface, δ* is the computed boundary-layer displacement thickness, and s is an arc length along the computer-generated aircraft surface. In some cases, the arc length s is the average distance between boundary-layer prediction points on the computer-generated aircraft surface. Equation 16 is taken from Lock, R. C., and Williams, B. R., “Viscous-Inviscid Interactions in External Aerodynamics,” Prog. Aerospace Sci., Vol. 24, 1987, pp. 51-171. Thus, the transpiration mass flux (density ρiw times the transpiration flow velocity Wiw) is equal to the rate of change of the product of the local density ρiw, local velocity Uiw, and boundary-layer displacement thickness δ* along the solution strip. A finite difference method can be used to compute the derivative in equation 16. For example, neighboring boundary-layer prediction points along the surface of the computer-generated aircraft surface can be used with a second order, backward Lagrange polynomial formulation to compute the derivative values.
The results of the inviscid CFD simulation module (using, for example, equation 13) are used by a viscous or boundary layer CFD module (using, for example, equations 14, 15, and 16) to predict the boundary-layer fluid properties for each boundary-layer prediction point. The boundary-layer fluid properties (e.g., boundary-layer thickness or transpiration flux) can then be used by the inviscid CFD simulation module to predict an updated or refined set of inviscid fluid property values. In this way, the inviscid and viscous CFD simulation modules can be used to iterate or refine the results of the computer-generated simulation.
4. Exemplary Results
In general, isotropic diffusion may be adequate for an aircraft surface in flow conditions producing relatively homogeneous boundary-layer fluid properties. As discussed above, this condition may be indicated by regions where the pressure gradient vector {right arrow over (∇p)} is small or nearly zero.
However, in situations where the fluid properties change rapidly over an aircraft surface (e.g., the surface of a wing), isotropic diffusion may blend or distort regions of the surface having different fluid properties. For example, a wing surface having a rapidly changing pressure distribution due to the formation of a shock wave, the shape of the pressure distribution may become distorted or blurred when using an isotropic diffusion technique.
As shown in
Anisotropic diffusion provides a variable diffusion rate (or conduction coefficient) that depends on the direction of diffusion (see, for example, equations 4 and 5, above). Using an anisotropic diffusion technique, the diffusion rate can be tailored to allow more diffusion in directions where propagation is desired and less diffusion in other directions to minimize distortion of the fluid property distribution. In particular, it is desirable to limit diffusion in directions where the fluid properties are changing most rapidly. In directions where the fluid properties are more homogenous, diffusion can be accelerated, allowing a more evenly-distributed propagation of the fluid property.
5. Computer and Computer Network System
The embodiments described herein are typically implemented as computer software (computer-executable instructions) executed on a processor of a computer system.
Processor 1102 is a computer processor capable of receiving and executing computer-executable instructions for performing any of the processes described above. Computer system 1100 may include more than one processor for performing the processes. The computer-executable instructions may be stored on one or more types of non-transitory storage media including RAM 1110, hard drive storage 1112, or other computer-readable storage media 1114. Other computer-readable storage media 1114 include, for example, CD-ROM, DVD, magnetic tape storage, magnetic disk storage, solid-state storage, and the like.
One or more client computer systems 1240 provide an interface to one or more system users. The client computer systems 1240 are capable of communicating with the one or more servers 1210 over the computer network 1220. In some embodiments, the client computer systems 1240 are capable of running a web browser that interfaces with a Web-enabled system running on one or more server machines 1210. The Web browser is used for accepting input data from the user and presenting a display to the user in accordance with the exemplary diffusion techniques described above. The client computer 1240 includes a computer monitor or other display device for presenting information to the user. Typically, the client computer 1240 is a computer system in accordance with the computer system 1100 depicted in
Although the invention has been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible, as will be understood by those skilled in the art.
The present application is a continuation of U.S. application Ser. No. 13/046,469, filed Mar. 11, 2011, which is incorporated herein by reference in its entirety.
This invention was made with Government support under contract NN08AA08C awarded by NASA. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
5544524 | Huyer et al. | Aug 1996 | A |
5901928 | Raskob, Jr. | May 1999 | A |
6516652 | May et al. | Feb 2003 | B1 |
7054768 | Anderson | May 2006 | B2 |
7251592 | Praisner et al. | Jul 2007 | B1 |
8457939 | Rodriguez et al. | Jun 2013 | B2 |
20050098685 | Segota et al. | May 2005 | A1 |
20060025973 | Kim | Feb 2006 | A1 |
20070034746 | Shmilovich et al. | Feb 2007 | A1 |
20080061192 | Sullivan | Mar 2008 | A1 |
20080163949 | Duggleby et al. | Jul 2008 | A1 |
20080177511 | Kamatsuchi | Jul 2008 | A1 |
20080300835 | Hixon | Dec 2008 | A1 |
20090065631 | Zha | Mar 2009 | A1 |
20090171596 | Houston | Jul 2009 | A1 |
20090171633 | Aparicio Duran et al. | Jul 2009 | A1 |
20090234595 | Okcay et al. | Sep 2009 | A1 |
20090312990 | Fouce et al. | Dec 2009 | A1 |
20100036648 | Mangalam et al. | Feb 2010 | A1 |
20100250205 | Velazquez Lopez et al. | Sep 2010 | A1 |
20100268517 | Calmels | Oct 2010 | A1 |
20100276940 | Khavari et al. | Nov 2010 | A1 |
20100280802 | Calmels | Nov 2010 | A1 |
20100305925 | Sendhoff et al. | Dec 2010 | A1 |
20120173219 | Rodriguez et al. | Jul 2012 | A1 |
20120245903 | Sturdza et al. | Sep 2012 | A1 |
Entry |
---|
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/067917, mailed on May 1, 2012, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/030189, mailed on Jun. 20, 2012, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/030427, mailed on Jun. 20, 2012, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/028606, mailed on Jun. 1, 2012, 11 pages. |
Non Final Office Action received for U.S. Appl. No. 12/982,744, mailed on Oct. 2, 2012, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 13/046,469, mailed on Jan. 10, 2013, 19 pages. |
Aftosmis et al., “Applications of a Cartesian Mesh Boundary-Layer Approach for Complex Configurations”, 44th AIAA Aerospace Sciences Meeting, Reno NV, Jan. 9-12, 2006, pp. 1-19. |
Allison et al., “Static Aeroelastic Predictions for a Transonic Transport Model Using an Unstructured-Grid Flow Solver Coupled with a Structural Plate Technique”, NASA/TP-2003-2012156, Mar. 2003, 49 pages. |
Balay et al., “PETSc Users Manual”, ANL-95/11, Revision 3.1, Mar. 2010, pp. 1-189. |
Bartels et al., “CFL3D Version 6.4—General Usage and Aeroelastic Analysis”, NASA/TM-2006-214301, Apr. 2006, 269 pages. |
Carter, James E., “A New Boundary-Layer Inviscid Iteration Technique for Separated Flow”, AIAA 79-1450, 1979, pp. 45-55. |
Cebeci et al., “VISCID/INVISCID Separated Flows”, AFWAL-TR-86-3048, Jul. 1986, 95 pages. |
Coenen et al., “Quasi-Simultaneous Viscous-Inviscid Interaction for Three-Dimensional Turbulent Wing Flow”, ICAS 2000 Congress, 2000, pp. 731.1-731.10. |
Crouch et al., “Transition Prediction for Three-Dimensional Boundary Layers in Computational Fluid Dynamics Applications”, AIAA Journal, vol. 40, No. 8, Aug. 2002, pp. 1536-1541. |
Dagenhart, J. Ray, “Amplified Crossflow Disturbances in the Laminar Boundary Layer on Swept Wings with Suction”, NASA Technical Paper 1902, Nov. 1981, 91 pages. |
Drela, Mark, “Two-Dimensional Transonic Aerodynamic Design and Analysis Using the Euler Equations”, Ph.D. thesis, Massachusetts Institute of Technology, Dec. 1985, pp. 1-159. |
Drela et al., “Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils”, AIAA Journal, vol. 25, No. 10, Oct. 1987, pp. 1347-1355. |
Drela, Mark, “XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils”, Proceedings of the Conference on Low Reynolds Number Aerodynamics, 1989, pp. 1-12. |
Drela, Mark, “Implicit Implementation of the Full en Transition Criterion”, 21st Applied Aerodynamics Conference, AIAA Paper 2003-4066, Jun. 23-26, 2003, pp. 1-8. |
Eymard et al., “Discretization Schemes for Heterogeneous and Anisotropic Diffusion Problems on General Nonconforming Meshes”, Available online as HAL report 00203269, Jan. 22, 2008, pp. 1-28. |
Frink et al., “An Unstructured-Grid Software System for Solving Complex Aerodynamic Problems”, NASA/95-28743, 1995, pp. 289-308. |
Fuller et al., “Neural Network Estimation of Disturbance Growth Using a Linear Stability Numerical Model”, American Institute of Aeronautics and Astronautics, Inc., Jan. 6-9, 1997, pp. 1-9. |
Gaster, M., “Rapid Estimation of N-Factors for Transition Prediction”, 13th Australasian Fluid Mechanics Conference, Dec. 13-18, 1998, pp. 841-844. |
Gleyzes et al., “A Calculation Method of Leading-Edge Separation Bubbles”, Chapter 8, Numerical and Physical Aspects of Aerodynamic Flows II, 1984, pp. 173-192. |
Hess et al., “Calculation of Potential Flow About Arbitrary Bodies”, Progress in Aerospace Sciences, 1967, pp. 1-138. |
Jespersen et al., “Recent Enhancements to OVERFLOW”, AIAA 97-0644, 1997, pp. 1-17. |
Krumbein, Andreas, “Automatic Transition Prediction and Application to Three-Dimensional Wing Configurations”, Journal of Aircraft, vol. 44, No. 1, Jan.-Feb. 2007, pp. 119-133. |
Langlois et al., “Automated Method for Transition Prediction on Wings in Transonic Flows”, Journal of Aircraft, vol. 39, No. 3, May-Jun. 2002, pp. 460-468. |
Lewis, R. I., “Vortex Element Methods for Fluid Dynamic Analysis of Engineering Systems”, Cambridge University Press, 2005, 12 pages. |
Lock et al., “Viscous-Inviscid Interactions in External Aerodynamics”, Progress in Aerospace Sciences, vol. 24, 1987, pp. 51-171. |
Mavriplis, Dimitri J., “Aerodynamic Drag Prediction Using Unstructured Mesh Solvers”, National Institute of Aerospace, 2003, pp. 1-83. |
Perraud et al., “Automatic Transition Predictions Using Simplified Methods”, AIAA Journal, vol. 47, No. 11, Nov. 2009, pp. 2676-2684. |
Potsdam, Mark A., “An Unstructured Mesh Euler and Interactive Boundary Layer Method for Complex Configurations”, AIAA-94-1844, 12th Applied Aerodynamics Conference, Jun. 20-23, 1994, pp. 1-8. |
Rasmussen et al., “Gaussian Processes for Machine Learning”, MIT Press, 2006, 266 pages. |
Rodriguez et al., “A Rapid, Robust, and Accurate Coupled Boundary-Layer Method for Cart3d”, American Institute of Aeronautics and Astronautics, 2012, pp. 1-19. |
Rodriguez et al., “Improving the Accuracy of Euler/Boundary-Layer Solvers with Anisotropic Diffusion Methods”, American Institute of Aeronautics and Astronautics, 2012, pp. 1-15. |
Smith et al., “Interpolation and Gridding of Aliased Geophysical Data Using Constrained Anisotropic Diffusion to Enhance Trends”, SEG International Exposition and 74th Annual Meeting, Oct. 10-15, 2004, 4 pages. |
Spreiter et al., “Thin Airfoil Theory Based on Approximate Solution of the Transonic Flow Equation”, Report 1359—National Advisory Committee for Aeronautics, 1957, pp. 509-545. |
Stock et al., “A Simplified en Method for Transition Prediction in Two-Dimensional, Incompressible Boundary Layers”, Journal of Flight Sciences and Space Research, vol. 13, 1989, pp. 16-30. |
Sturdza, Peter, “An Aerodynamic Design Method for Supersonic Natural Laminar Flow Aircraft”, Stanford University, Dec. 2003, 198 pages. |
Veldman, A. E. P., “New, Quasi-Simultaneous Method to Calculate Interacting Boundary Layers”, AIAA Journal, vol. 19, No. 1, Jan. 1981, pp. 79-85. |
Veldman et al., “The Inclusion of Streamline Curvature in a Quasi-Simultaneous Viscous-Inviscid Interaction Method for Transonic Airfoil Flow”, Department of Mathematics, University of Groningen, Nov. 10, 1998, pp. 1-18. |
Veldman, Arthur E. P:, “A Simple Interaction Law for Viscous-Inviscid Interaction”, Journal of Engineering Mathematics, vol. 65, Aug. 14, 2009, pp. 367-383. |
Veldman, Arthur E. P., “Quasi-Simultaneous Viscous-Inviscid Interaction for Transonic Airfoil Flow”, American Institute of Aeronautics and Astronautics Paper 2005-4801, 4th Theoretical Fluid Mechanics Meeting, Jun. 6-9, 2005, pp. 1-13. |
Veldman, Arthur E. P., “Strong Viscous-Inviscid Interaction and the Effects of Streamline Curvature”, CWI Quarterly, vol. 10, No. 3&4, 1997, pp. 353-359. |
Washburn, Anthony, “Drag Reduction Status and Plans—Laminar Flow and AFC”, AIAA-Aero Sciences Meeting, Jan. 4-7, 2011, pp. 1-25. |
Weickert et al., “Tensor Field Interpolation with PDEs”, Universitat des Saarlandes, 2005, 17 pages. |
Notice of Allowance received for U.S. Appl. No. 13/069,374, mailed on May 15, 2013, 23 pages. |
Davis et al., “Control of Aerodynamic Flow”, AFRL-VA-WP-TR-2005-3130, Delivery Order 0051: Transition Prediction Method Review Summary for the Rapid Assessment Tool for Transition Prediction (RATTraP), Jun. 2005, 95 pages. |
Herbert, Thorwald, “Parabolized Stability Equations”, Annual Review of Fluid Mechanics, vol. 29, 1997, pp. 245-283. |
Jones et al., “Direct Numerical Simulations of Forced and Unforced Separation Bubbles on an Airfoil at Incidence”, Journal of Fluid Mechanics, vol. 602, 2008, pp. 175-207. |
Khorrami et al., “Linear and Nonlinear Evolution of Disturbances in Supersonic Streamwise Vortices”, High Technology Corporation, 1997, 87 pages. |
Matsumura, Shin, “Streamwise Vortex Instability and Hypersonic Boundary Layer Transition on the Hyper 2000”, Purdue University, Aug. 2003, 173 pages. |
Tsao et al., “Application of Triple Deck Theory to the Prediction of Glaze Ice Roughness Formation on an Airfoil Leading Edge”, Computers & Fluids, vol. 31, 2002, pp. 977-1014. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/067917, mailed on Jul. 11, 2013, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/028606, mailed on Sep. 26, 2013, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/030427, mailed on Apr. 3, 2014, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/030189, mailed on Mar. 27, 2014, 6 pages. |
Final Office Action Received for U.S. Appl. No. 13/070,384, mailed on Apr. 11, 2014, 6 pages. |
Non Final Office Action received for U.S. Appl. No. 13/070,384, mailed on Jan. 6, 2014, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/887,189, mailed on Apr. 10, 2014, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 13/070,384, mailed on Jul. 18, 2014, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 13/887,189, mailed on Sep. 4, 2014, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20130246024 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13046469 | Mar 2011 | US |
Child | 13887199 | US |