The present invention relates to encoding and decoding data in communications systems, and more specifically to communication systems that encode and decode data to account for errors and gaps in communications.
Transmission of files and streams between a sender and a recipient over a communications channel has been the subject of much literature. Preferably, a recipient desires to receive an exact copy of data transmitted over a channel by a sender with some level of certainty. Where the channel does not have perfect fidelity, which characterizes most physically realizable systems, one concern is how to deal with data that is lost or corrupted in transmission. Lost data (erasures) are often easier to deal with than corrupted data (errors) because the recipient cannot always recognize when the transmitted data has been corrupted.
Many error-correcting codes have been developed to correct erasures and/or errors. Typically, the particular code used is chosen based on some information about the infidelities of the channel through which the data is being transmitted, and the nature of the data being transmitted. For example, where the channel is known to have long periods of infidelity, a burst error code might be best suited for that application. Where only short, infrequent errors are expected, a simple parity code might be best.
Another commonly used technique for providing reliable data delivery is the use of data retransmission. For example, the well-known TCP/IP protocol uses packet retransmission of lost or missing packets to ensure reliable delivery of data. Another example is the HTTP protocol, which is built on top of TCP/IP and uses the reliability of the TCP/IP protocol to provide reliable data delivery. Enhancements of other protocols to use retransmission, such as the RTP protocol, have also been suggested as a way of coping with lost or missing packets at receivers.
Another technique that has been suggested for the improvement of streaming applications is to send initial data for a stream in one channel to a receiver and then to transition over to sending the main data stream in a second channel to a receiver. For example, Rasmussen suggests such a method. As another example, initial data may be sent to a receiver via a unicast connection to ensure that the receiver has enough data quickly to start the play-out of a video or multi-media stream, and then the receiver may switch over to a multicast connection to receive further data for the stream.
“Communication”, as used herein, refers to data transmission, through space and/or time, such as data transmitted from one location to another or data stored at one time and used at another. The channel is that which separates the sender and receiver. Channels in space can be wires, networks, fibers, wireless media, etc. between a sender and receiver. Channels in time can be data storage devices. In realizable channels, there is often a nonzero chance that the data sent or stored by the sender is different when it is received or read by the recipient and those differences might be due to errors introduced in the channel.
Data transmission is straightforward when a transmitter and a receiver have all of the computing power and electrical power needed for communications, and the channel between the transmitter and receiver is reliable enough to allow for relatively error-free communications. Data transmission becomes more difficult when the channel is in an adverse environment, or the transmitter and/or receiver has limited capability. In certain applications, uninterrupted error-free communication is required over long periods of time. For example, in digital television systems it is expected that transmissions will be received error-free for periods of many hours at a time. In these cases, the problem of data transmission is difficult even in conditions of relatively low levels of errors.
Another scenario in which data communication is difficult is where a single transmission is directed to multiple receivers that may experience widely different data loss conditions. Furthermore, the conditions experienced by one given receiver may vary widely or may be relatively constant over time.
One solution to dealing with data loss (errors and/or erasures) is the use of forward error correcting (FEC) techniques, wherein data is coded at the transmitter in such a way that a receiver can correct transmission erasures and errors. Where feasible, a reverse channel from the receiver to the transmitter enables the receiver to relay information about these errors to the transmitter, which can then adjust its transmission process accordingly. Often, however, a reverse channel is not available or feasible, or is available only with limited capacity. For example, in cases in which the transmitter is transmitting to a large number of receivers, the transmitter might not be able to maintain reverse channels from all the receivers. In another example, the communication channel may be a storage medium.
For example, data may be transmitted chronologically forward through time, and causality precludes a reverse channel that can fix errors before they happen. As a result, communication protocols often need to be designed without a reverse channel or with a limited capacity reverse channel and, as such, the transmitter may have to deal with widely varying channel conditions without prior knowledge of those channel conditions. One example is a broadcast or multicast channel, where reverse communication is not provided, or if provided is very limited or expensive. Another example where such a situation is relevant is a storage application, where the data is stored encoded using FEC, and then at a later point of time the data is recovered, possibly using FEC decoding.
Another solution is based on retransmission that is based on a receiver understanding which packets are not received and then sending requests to the sender to retransmit those missing packets. The identification of which packets are missing is often based on sequence numbers carried within the packets. Examples of such protocols include TCP/IP, NORM, RTP with retransmission, etc.
Another solution is based on the combination of FEC and retransmission. In this case, FEC may be proactively sent and then for example only if the receiver loses more than can be recovered by the FEC decoder does the receiver request retransmission of packets, or transmission of additional FEC packets in order to provide enough packets to the FEC decoder for recovering the original source packets. As another example, no FEC may be sent initially, and only if there are missing packets would the receiver request additional packets that may be FEC packets that can be used to recover the original source packets. For example, this may be a solution of interest in the case of sending the original source stream via multicast and then the requested packets are also sent in either in the same stream or in a different multicast stream. For example, different receivers may lose different numbers of packets, and then a sender sending the requested packets may send for example the maximum number of FEC packets requested by all receivers that will allow all receivers to recover the original source independent of their individual packet loss patterns.
In the case of a packet protocol used for data transport over a channel that can lose packets, a file, stream, or other block of data to be transmitted over a packet network is partitioned into source symbols (that may all be of equal size or that may vary in size depending on the block size or on other factors). Encoding symbols are generated from the source symbols using an FEC code, and the encoding symbols are placed and sent in packets. The “size” of a symbol can be measured in bits, whether or not the symbol is actually broken into a bit stream, where a symbol has a size of M bits when the symbol is selected from an alphabet of 2M symbols. In such a packet-based communication system, a packet-oriented erasure FEC coding scheme might be suitable.
A file transmission is called reliable if it enables the intended recipient to recover an exact copy of the original file despite erasures and/or other corruption of the data transmitted over a network. A stream transmission is called reliable if it enables the intended recipient to recover an exact copy of each part of the stream in a timely manner despite erasures and/or corruption within the network. Both file transmission and stream transmission can instead be not entirely reliable, but somewhat reliable, in the sense that some parts of the file or stream are not recoverable or, for streaming, some parts of the stream might be recoverable but not in a timely fashion. It is often the goal to provide as high reliability as possible depending on some constraining conditions, where examples of constraints might be timely delivery for streaming applications, or the type of network conditions over which a solution is expected to operate.
Packet loss often occurs because sporadic congestion causes the buffering mechanism in a router to reach its capacity, forcing it to drop incoming packets. Other causes of packet loss include weak signal, intermittent signal, and noise interference wherein corrupted packets are discarded. Protection against erasures during transport has been the subject of much study.
In a system in which a single transmission is directed to more than one receiver, and in which different receivers experience widely different conditions, transmissions are often configured for the some set of conditions between the transmitter and any receiver, and any receivers that are in worse conditions may not receive the transmission reliably.
Erasure codes are known which provide excellent recovery of lost packets in such scenarios. For example, Reed-Solomon codes are well known and can be adapted to this purpose. However, a known disadvantage of Reed-Solomon codes is their relatively high computational complexity. Chain reaction codes, including LT™ chain reaction codes and Raptor™ multi-stage chain reaction (“MSCR”) codes, provide excellent recovery of lost packets, and are highly adaptable to varying channel conditions. See, for example, Luby I, which describes aspects of chain reaction codes, and Shokrollahi I, which describes aspects of multi-stage chain reaction codes. Herein, the term “chain reaction code” should be understood to include chain reaction codes or multi-stage chain reaction codes, unless otherwise indicated.
Retransmission protocols are also known to be a good way to recover lost packets. TCP/IP, NORM, UDP and RTP based retransmission protocols are all examples of such retransmission protocols. In addition, using a combination of erasure code protocols and retransmission protocols can be quite useful for recovering lost packets. Retransmission protocols include any protocol where a receiver request specific packets or numbers of packets to be sent to the receiver, and where a sender may send specific packets or numbers of packets to that receiver, or to groups of receivers, in response.
Some communication systems use transport protocols, such as RTP, that include information usable to identify the position or sequence of a source packet relative to other source packets in the same stream. By providing sequence information for each packet, a receiver may detect and correct packets that are received out of network order. A receiver can also detect when packets have been lost, and when combined with application layer FEC techniques, such as those of DVB-IPI (see, for example, the descriptions in Watson), the receiver may be able to recover the lost packets and effectively mask network reliability imperfections. DVB details are known from the reference for the DVB-IPI standard: “DVB BlueBook A086r4 (03/07)/ETSI Technical Specification 102 034 v1.3.1”, which is available at the URL: http://www.dvb.org/technology/standards/a086r4.dTS102034.V1.3.1.pdf.
Many deployed communication systems use transport level protocols that do not include any form of timing or sequence information. For example, it is common practice in IPTV networks to deliver MPEG2 Transport Stream packets over “raw UDP”. The only sequence information available to a receiver is embedded in the audio and video elementary stream, which may be hard to access, or unreliable, and not generally available at the transport level. Consequently, there is no inherent mechanism at the transport level with raw UDP streams that allow a receiver to recognize when a packet is received out of network order or to identify missing packets. While well-known mechanisms, such as application layer FEC (“AL-FEC”), may be used to efficiently recover lost packets, the absence of transport level sequence information on source stream packets limits the direct applicability of such recovery techniques. These same issues apply to retransmission solutions and to combinations of retransmission and AL-FEC solutions. Thus, this is a general problem with some existing approaches.
Another problem with some communications systems is that the parts are interrelated. In some cases, it may be necessary or desirable to increase the reliability of a communications system after deployment. However, while an improvement in network reliability may be needed, it is typically not feasible to replace or upgrade all receiving devices in the network at once or at all. For example, it might turn out that actual network packet loss is higher than initially planned, due to degradations in network reliability, increased traffic load, expansions and/or changes in the network, etc., or the quality of service requirements may need to increase to match competitive services, but it might be impractical to get new receivers out to all nodes of the communications system at once or to distribute them over time and have some receiving stations out of commission until the new receivers arrive.
In order to ensure that legacy devices are unaffected by protocol enhancements, such as AL-FEC or retransmission or combinations of AL-FEC and retransmission, used by upgraded or new receivers, it is necessary to continue to deliver source packets using the same transport level protocol. Furthermore, to ensure that source packets delivered to a legacy device do not become more susceptible to burst loss, it is necessary to maintain the same source packet timing distribution or inter-packet timing. In some communication systems, source packets within a source block may be transmitted with a smaller inter-packet gap to allow repair packets to be delivered immediately after the associated source packets; such techniques would increase the exposure of the source stream to burst loss and therefore degrade the transport effectiveness for a legacy device.
In order to deliver the best possible service at the lowest cost, communications systems must simultaneously balance conflicting resource constraints. Network bandwidth is a critical resource constraint. Transmitting and receiving devices need to enable efficient use of network bandwidth in supporting a reliable service. The available CPU processing on receiving devices is typically a severe limitation, meaning that any transport reliability enhancement method must require only a modest amount of computing effort. In addition, it is also often necessary, particularly with streaming media, to limit the incremental latency associated with reliable transport methods so that the end-user does not perceive a reduction in system responsiveness.
According to one embodiment of the invention, a method of generating Source Identification information or data, referred to as Source Identification data or information, from a source stream is described. The method can operate on an original source stream and generate relatively compact Source Identification information or data that may be used by a receiving device to identify the position of source packets relative to other source packets, and to identify lost or corrupted source packets. Source Identification information or data generation methods can result in a compact representation of the source packet identification, which enables the Source Identification information for a block of source packets to be delivered using a relatively small amount of network bandwidth. The computational load of deriving the Source Identification information is small.
The Source Identification data may be combined with forward error correction (“FEC”) techniques to enable recovery of lost or corrupted source packets. The Source Identification data may also be combined with retransmission techniques, and combinations of FEC techniques and retransmission techniques to enable recover of lost or corrupted source packets. The Source Identification data may also be used with techniques that identify at a receiver in which order a sequence of source packets are sent from a sender to that receiver, even when some sent packets are lost, corrupted or re-ordered.
In another embodiment of the invention, method and apparatus might be provided that enable reliable delivery of Source Identification data so that the identity or relative position of source packets can be determined at a receiving device and by extension, the absence of a received source packet can be derived. To provide reliable delivery of the Source Identification, packets that carry the Source Identification can be transmitted in a manner than minimizes exposure to burst loss or periodic loss patterns. Since the Source Identification data is derived from the source packet content, two or more source packets may share the same the Source Identification data and variations of these methods can protect against such Source Identification collisions at the receiver.
According to another embodiment of the invention, a method of transmitting data over a communications channel is provided, the method comprising the step of transmitting an original unmodified source stream, and transmitting FEC repair data and Source Identification data as additional streams that can be used to efficiently recover lost or corrupted packets in the original unmodified source stream.
According to another embodiment of the invention, a method of transmitting data over a communication channel is provided, the method comprising the step of transmitting an original unmodified source stream, and transmitting Source Identification data as additional streams that can be used to identify which data is missing or corrupted from the received data and request retransmission. In a further enhancement of this embodiment, retransmitted data is also identified using Source Identification information. In a further enhancement of this embodiment, out of order data reception is identified and re-ordered using Source Identification information. In a further enhancement, Source Identification information is used to both recover lost or corrupted data in the original unmodified source stream using FEC and used to identify which data is missing or corrupted from the original source stream and to request retransmission of missing or corrupted data, or transmission of additional repair data that can be used to recover the data in the unmodified source stream. In a further enhancement of this embodiment, a first repair stream is transmitted along with the original unmodified source stream. In a further enhancement of this embodiment, a second repair stream is transmitted in response to any requests for retransmission. In a further enhancement of this embodiment, one or more of the various streams are cached.
According to another embodiment of the invention, the Source Identification information identifies which block of data within an unmodified source stream of data that source packets are associated with. In this case, a unique identifier for each unmodified source packet may not be able to be generated, i.e., the Source Identification information may be used to identify the block of data a source packet is associated with, but may not be able to differentiate the source packets within a block from one another.
According to another embodiment of the invention, a method of receiving data transmitted over a communications channel is provided, the method comprising the steps of: (1) for a non-FEC enabled receiver or for zero or more of the FEC enabled receivers, receiving the original unmodified source stream; (2) for one or more of the FEC enabled receivers, receiving an original unmodified source stream and some or all of the additional streams of FEC repair data and Source Identification data and using this to efficiently recover lost packets from the original source stream.
According to another embodiment of the invention, a method of receiving data transmitted over a communications channel is provided, the method comprising the steps of: (1) for a non-retransmission enabled receiver or for zero or more of the retransmission enabled receivers, receiving the original unmodified source stream; (2) for one or more of the retransmission enabled receivers, receiving an original unmodified source stream and some or all of the additional streams of retransmission repair data and Source Identification data and using this to efficiently recover lost packets from the original source stream.
According to another embodiment of the invention, a method of receiving data transmitted over a communications channel is provided, the method comprising the steps of: (1) for a non-FEC and non-retransmission enabled receiver or for zero or more of the FEC and retransmission enabled receivers, receiving the original unmodified source stream; (2) for one or more of the FEC and retransmission enabled receivers, receiving an original unmodified source stream and some or all of the additional streams of FEC and retransmission repair data and Source Identification data and using this to efficiently recover lost packets from the original source stream.
According to another embodiments of the invention, a method of receiving data transmitted over a communications channel is provided, the method comprising the steps of: (1) for an FEC enabled or retransmission enabled receiver, determining if a particular stream that is being received has associated FEC repair data or retransmission data available; (2) if FEC repair data or retransmission data is available, receiving some or all of the additional streams of FEC and retransmission repair data as needed and Source Identification data and using this to efficiently recover lost packets from the original source stream.
According to another embodiment of the invention, a method of transmitting data over a communications channel is provided, the method comprising the step of transmitting an original unmodified source stream, and transmitting additional streams of related data that can be used to efficiently recover lost packets in the original unmodified source stream.
As will be clear to those of skill in the art upon review of this disclosure, the methods described herein can be naturally extended to many variations of the above, including sending multiple layers of FEC repair data, sending the source stream to one IP address and the additional streams to other IP addresses, sending retransmission data individually to receivers, sending the same retransmission data via broadcast or multicast to multiple receivers, sending a combination of FEC repair data and retransmission data to receivers, sending FEC repair data to one set of receivers and sending retransmission to a second set of receivers, sending all streams to the same IP address but distinguished by using different port numbers within the packets, sending some of the streams to only certain portions of the receivers and not others, etc.
A better understanding of the nature and the advantages of the embodiments disclosed herein may be realized by reference to the remaining portions of the specification.
A further understanding of the nature and the advantages of the inventions disclosed herein may be realized by reference to the remaining portions of the specification and the attached drawings.
It is to be understood that the various functional blocks described herein may be implemented by a combination of hardware and/or software, and that in specific implementations some or all of the functionality of some of the blocks may be combined. Similarly, it is also to be understood that the various methods described herein may be implemented by a combination of hardware and/or software. Thus, where a computational step is performed, which might be described as “we then do step X”, it should be understood that such descriptions include electronic hardware and/or software, or the like, performing those steps, typically as part of a communications process and not involving human or manual interaction.
In some embodiments described herein, data to be encoded is segmented into “source blocks,” each block comprising a number of packets of data, known as “source packets,” with the number of source packets in a block possibly varying between blocks. For each source block, a number of “FEC repair” packets are generated by the encoder, the number also possibly varying between blocks. “Source packets” and “FEC repair”, (or “repair”) packets have the characteristic that a receiver receiving a combination of source and repair packets greater than or equal in number to the number of source packets has some non-zero probability of recovering all the source packets.
Source Identification Data Types and Uses
In some embodiments herein, Source Identification data can refer to data from which the positions of source symbols (which can be sent in packets or other units of transport, hereafter referred to more generally as source data units) relative to other source symbols, as well as the positions of lost source symbols, can be identified at a receiving device. As used herein, a Source Symbol Map or Source System Map (both can be referenced as an “SSM”) is one form of Source Identification data or information. For the purposes of this disclosure, a Source Symbol Map and Source System Map are used interchangeably with Source Identification data. In some embodiments herein, Source Identification data can refer to data from which the positions of sent packets in a stream of packets relative to other packets, comprising the positions of both received and lost packets, can be identified at a receiving device. In some embodiments herein, Source Identification data can refer to data that is used at a sender to identify packets or symbols or other units of data that are requested for retransmission from a receiver. Source Identification data can be used at a receiver to recover lost symbols or packets or other units of data from a combination of source and repair symbols or packets. Source Identification data can be used to identify which symbols or packets or other units of data is lost in order to request their retransmission. Source Identification data can also be used to determine the original sending order of packets or symbols relative to other packets or symbols at a receiver. Source Identification data may be considered as a single part, may be partitioned into sub-parts, or may be thought of as a stream, whereas the single part, sub-parts or stream of Source Identification data may be used to identify all or parts of the source data units, for example a part of Source Identification data may be used to identify those source data units within a source block. As one skilled in the art will recognize, there are many other possible uses of Source Identification data that are not enumerated herein, but which can be easily surmised using the methods and processes disclosed herein. Possible different types and uses of Source Identification data include, but are not limited to, the following:
When the determining positioning method is used in conjunction with an FEC method, the ordering of the source symbols within a source block can be according to the positions from the determining positioning method, and in this case the Source Identification method may interact with how the FEC encoding and decoding methods operate. On the other hand, when the determining sequencing method is used in conjunction with an FEC method, the ordering of the source symbols within a source block can be according to the sequencing, and since the sequencing is generally not dictated by the determining sequencing method, in this case the Source Identification method may be largely independent of how the FEC encoding and decoding methods operate. In some cases, a Source Identification method may be used which is a combination of a determining positioning method and a determining sequencing method, e.g., there may be some initial Source Identification data which is used to determine positions of source symbols within a source block, then FEC decoding is performed to recover source symbols according to their positions, and then there may be some additional Source Identification data that is part of the source block that is used to determine the sequencing of the recovered source symbols for delivery to an application.
When the determining positioning method is used in conjunction with a Retransmission method, source packets that are requested for retransmission by a receiver can be identified by their positions, e.g., the receiver can send the position of a source packet requested for retransmission to a sender. In these cases, since the sequencing order may be different than the position order, the sender may send the retransmitted packets according to their sequence order, and the receiver may determine the sequencing based on the original order of reception of source packets not lost and the order of reception of retransmitted source packets. When the determining sequencing method is used in conjunction with a retransmission method, source packets that are requested for retransmission by a receiver can be identified by their sequencing, e.g., the receiver can send the sequence number of a source packet requested for retransmission to a sender. In some cases, a Source Identification method may be used which is a combination of a determining positioning method and a determining sequencing method, e.g., there may be some initial Source Identification data which is used to determine positions within a source block that is sent during the original transmission of source packets, and then there may be some additional Source Identification data that is sent during retransmission that is used to determine the sequencing of the source packets for delivery to an application, for example the sequence numbers of the retransmitted source packets.
As one skilled in the art will recognize, there are many variants of the above. For example, the Source Identification methods can be used in conjunction with combinations of FEC methods and Retransmission methods, in which case the requests for retransmission may be for particular source packets, for particular repair packets, or for a specified number of repair packets instead of for particular repair packets.
Example of Using a Source Identification Method in Conjunction with an FEC Method
In communications system 100, input stream or file 110 is provided to a Source Identification generator 120. Source Identification generator 120 generates Source Identification data that contains information about the relative positions of source packets or symbols within the stream of packets or symbols. All source symbols or packets may have the same size, which is typically determined by the use of communications system 100, or the symbol size or packet size can vary from use to use or can be varied within a stream. The generations of Source Identification data may be independent of source symbol size or packet size.
The input stream or file 110 may be provided to the FEC encoder 130. In some embodiments, the FEC encoder 130 performs systematic FEC encoding, which generates FEC repair symbols based on one or more of the input source symbols and their positions, and often places these FEC repair symbols in repair packets for transmission.
It is worth noting that there may be source packets constructed from input stream or file 110 that are used for transmission over communication channels, the construction of these source packets may be independent of the source symbol size. There may or may not be a one-to-one mapping between source packets and source symbols. The source packets may or may not be of variable length.
The source packets from input stream or file 110, the Source Identification data from Source Identification generator 120, and the FEC repair symbols from FEC encoder 130, are provided to a transmit module 140. The transmit module 140 may send Source Identification data and FEC repair symbols in packets to a channel 145; the Source Identification data and FEC repair symbols may or may not be combined in packets during this process. These packets, along with the source packets, are transmitted over a channel 145.
The channel 145 may be an erasure channel, but that is not a requirement for proper operations of communications system 100. Typically the original source packets are sent as a logically separate data stream from other packets. Examples of logically separate data streams include, but not limit to, streams sent over different multicast groups, or streams sent to different ports. The data streams sent to channel 145 may be received by receive modules 150 and 155. Receive module 150 is intended to work with FEC decoder, whereas receive module 155 is a legacy device that may not include FEC decoding. It should be noted that the communications system 100 may be designed such that the legacy receive module 155 only receives source packets, or receives a combination of packets but filters out packets other than source packets.
The legacy receive module 155 can be enabled to recognize and handle the source packets from channel 145. If any repair packets or Source Identification data arrive, they can be on a logically separate stream and can be ignored (silently dropped) by the legacy receive module 155. The received stream 185 is produced from legacy receive module 155.
The receive module 150 can logically differentiate Source Identification data, repair symbols from source packets. The source packets and Source Identification data are provided to Source Identification interpreter 160, from which source symbol IDs identifying source symbols carried in source packets can be identified. The Source Identification data, which provides relationship between received source symbol values and their positions, are sent to the FEC decoder 170.
In addition, the FEC decoder 170 also takes as input the FEC repair symbols and the source packets, both are provided from receive module 150. The FEC decoder 170 tries to recover missing source packets, if any. The received source packets, along with any recovered missing source packets from FEC decoder 170, are reassembled if necessary, to produce recovered stream or file 180. The source packets sent as the recovered input stream or file 180, may be sent in exactly or approximately the original order in which they were sent from input stream 110.
There are many variants of the communication system 100. For example, an FEC encoder 130 may not be used, or the FEC encoder 130 may be replaced with a Retransmitter sender module that receives request for retransmission of lost or missing packets and retransmits those packets based on Source Identification data. As another example, an FEC decoder 170 may not be used, or the FEC decoder 170 may be replaced with a Retransmitter receiver module that determines which packets or symbols are lost or missing based on Source Identification data and sends requests for those missing packets or symbols, and upon receipt of resent packets or symbols places them into their proper order and passes them on as a Recovered stream 180. As another example, FEC encoder 130 and FEC decoder 170 may not be used, and instead a Packet re-orderer may be used in place of an FEC decoder 170 to reorder mis-ordered received source packets based on Source Identification information. As another example, FEC encoder 130 and FEC decoder 170 may be enhanced to comprise handling of both FEC repair and retransmission logic and methods. As another example, some parts of Source Identification data may be sent directly to a receiver, whereas other parts of Source Identification data may be recovered as part of the FEC recovery process.
The communication system 100 can be used for delivery of streams, files, or other types of data.
Seamless Upgrade Paths
There are a variety of reasons why a full upgrade of a communications system may take a prolonged period of time. For example, it could be the case that older devices may not have the capability to support the upgraded system due to limitations in computational resources or memory. As another example, some devices are designed with the characteristic that they cannot be upgraded, and thus the upgrade can only occur when the device is replaced with a new device in which the upgrade is already installed. In other cases, even if in theory an upgrade is possible, it may in practice be too expensive or risky to upgrade a large number of devices because of the expense of installing upgrade software remotely on millions of devices and making sure that the upgrade is working correctly, as well as troubleshooting problems during installation, etc. Furthermore, if there are a large number of devices installed and they all need to be upgraded before the system is operational again, then it could be practically impossible to shut down the system during the upgrade, as would be the case with a large operational deployment of an IPTV service with thousands, tens of thousands, or even millions of receivers, which could take days or months to fully upgrade.
In such cases, a seamless upgrade path is highly desirable but is often difficult to accomplish.
With respect to deployment of FEC protection of streaming data within a system that did not previously use FEC, there is a well-known potential seamless upgrade path. The way this is done is to design the application of the FEC in such a way that the original source stream is sent, and then additional FEC repair data is sent in a logically separate stream that can be used by upgraded receivers to support a much higher quality stream playout, while at the same time older receivers that have not been upgraded can simply ignore the FEC repair data and still operate as before using the original source stream of data. The possibility of this seamless upgrade path is one of the primary reasons that systematic FEC codes are preferable for streaming applications. A systematic FEC code has the property that the original source data is included and sent as part of the FEC encoded data, and in this context the additional FEC data that is generated and sent is called the FEC repair data.
An obstacle to this seamless upgrade path is that the association between the FEC repair data and the original source data stream from which the FEC repair data is generated needs to be determined at receivers. In particular, for many FEC schemes, source symbols or packets that comprise an original source data stream can be identified and/or sequenced by source symbol identifiers or packet identifiers, and source symbol identifiers or packet identifiers can be used by an FEC decoder to recover missing or lost source data from received FEC repair data. However, in many streaming systems, such source symbol or packet identifiers are not included, are only partially included, are not completely reliable, or are difficult to access in the original source stream. While there are transport protocols, such as RTP, that natively include sequence information at each source packet which can be used as a source packet identifier and/or sequencer, many deployed communication systems do not make use of these protocols, as a result no timing or sequence information is included in the original source packets or accessible at the transport layer. As an example, IPTV deployments often use UDP packets that carry MPEG2 TS units, and in these deployments identifiers are often not readily accessible or available at the transport level. Furthermore, adding identification data to symbols or packets in the original source stream is not possible for a variety of reasons. Among these reasons are that existing deployed devices would not work if the original source stream is modified in any way, or that the existing communication protocols are desired not to be changed or impossible to change for a variety of other reasons. In these situations the simple seamless upgrade path described above is not possible, and other methods and processes are needed.
To maintain compatibility with legacy devices in these systems, and to allow usage of communication systems that do not natively include packet or symbol or data sequencing or identification information, the methods introduced herein disclose methods to send the source packet sequence or identifier information in a logically separate stream, so that a capable receiver can gather this information together with FEC repair data and recover erased or lost or missing or corrupted source packets or symbols. The Source Identification data, as outlined in one embodiment, can capture and represent this information. In some embodiments, this identifier or sequence information is sent in one of the channels that FEC repair data are sent, although this is not absolutely required.
It is desirable that a communication systems that supports Source Identification methods and associated recovery methods (such as FEC methods and retransmission methods) has as few differences as possible in terms of signaling and data delivery compared to a communication system that does not support such methods. For example, it is desirable if no special pre-signaling is required to indicate whether a particular stream supports Source Identification methods and associated methods, where pre-signaling might include for example an electronic program guide or its equivalent. For example, for a variety of reasons, some streams of data may support Source Identification methods and associated recovery methods and other streams may not, either at the same time or at different points in time. For example, it might be the case that initially no streams support Source Identification methods, and then over time more and more streams support Source Identification methods and eventually all streams might support Source Identification methods. It can be highly desirable to not have to signal whether streams do or do not support Source Identification methods, for example not having to include in an electronic programming guide whether or not each stream listed in the guide supports Source Identification methods.
There are many variants of state diagram 300. For example, retransmission methods may be used in place of FEC methods or in conjunction with FEC methods. As another example, re-ordering methods may be used in place of FEC methods. As another example, other data may be carried in addition to Source Identification data, for example to indicate whether FEC repair or retransmission methods are in use, or what type of FEC code is being used, or what type of retransmission methods are in use for the stream.
Many of the details are not shown in
Relationship Between Packets and Symbols
Forward erasure correction codes often operate on symbols chosen from a fixed alphabet. For example, the symbols may be chosen from an alphabet of size 2M in which case there is an obvious mapping between symbols and strings of M binary digits. Such symbols are hereinafter referred to as having a size of M bits. Data is often sent over a communications channel in the form of packets. In some cases, there is a one-to-one mapping between symbols and packets. In other cases, including for example those described in Luby II, packets may be larger than symbols, with a packet comprising several symbols. Additionally, symbols and packets may comprise the same data but the bit order and placement may differ, or additional information may be placed into the FEC symbols which is not contained explicitly within the packet, for example a binary representation of the packet length. Equally, data may be present in packets that are not present in the FEC symbols, for example data that does not need to be protected by the FEC code because it comprises fields that are not used or have the same value in every packet or because it could be recovered in other ways.
Retransmission methods may also be based on symbols, wherein a symbol may be a byte or some large unit of data. For example, a receiver may request a certain byte range from a file or from a stream of data to be resent.
Relationship Between Source Blocks and Symbols
Many forward error correction codes operate on discrete collections of source symbols, known as source blocks. For example, a source block may comprise all the source symbols of a file, or all the source symbols of a particular fragment in time of a streaming service.
Each source symbol is given a unique identification within the source block where it belongs. This identification is often not part of the source packet data, but it is often a piece of information used for the FEC decode process.
Retransmission methods may also be based on source blocks, and re-ordering methods may also be based on source blocks. For example, a source block may be of a size that conveniently fits into a receiver memory, and for example it may be convenient to identify a block of data that is brought into memory or written from memory to disk. As another example, a source block may be of a size that corresponds to an amount of data sent over a particular period of time, and for example it may be convenient to distinguish data that is sent during one period of time versus another period of time based on to which source block the data belongs.
In many of the embodiments of methods described herein source blocks are used. For one skilled in the art it should be recognized that source blocks are not an essential ingredient of the methods, and that there are variants of the methods that do not use source blocks.
Receivers
In order for a receiver to utilize the FEC repair data, the receiver often needs to be able to obtain Source Identification data, which may or may not be delivered to the same channel as the FEC repair data. It is usually necessary for the senders and receivers to use a same protocol in representing Source Identification data. An example of such a protocol is given in specific embodiments. The receiver uses Source Identification data to identify positions of received source packets within their source blocks, as well as positions of missing packets. The FEC repair data are then used to recover these missing packets if possible.
During the upgrade process, a legacy receiver can ignore both Source Identification information and FEC repair data, if received. It receives source packets as before the upgrade, and it will continue to perform at pre-upgrade level until being upgraded.
Source Identification Methods
There are many ways to represent and convey Source Identification data. In general there is a trade-off among bandwidth overhead, CPU load, and Quality of Service (QoS).
Uses of the Source Identification method include the ability to distinguish, identify or order among all source symbols or source packets or other source data units to be sent, for example among all source data that is to be sent for a file or stream. There are other cases where the Source Identification methods can be applied so that source data units that are in close proximity to other source data units (for example in the sending order, or sent within a small window of time) are to be distinguished, identified, or ordered, for example for a stream of data where the amount of reordering, distinguishing, or identifying needs to be only over the maximum amount of source data that is in flight between a sender and a receiver. In these cases, Source Identification methods that partition source data units into multiple source blocks or there equivalent might be appropriate, as methods for doing this are described later within this disclosure. The source block structure used by the Source Identification methods may or may not coincide with the source block structure used by FEC or retransmission methods, if used.
Many of the Source Identification methods described below use hash functions in their descriptions. One of the functions of hash functions is to map long strings to much shorter strings in such a way that distinct long strings are mapped to distinct shorter strings. Equivalently, the hash functions may map values to values. There are many possible hash functions that could be used for the purposes of the methods described herein, for example the hash functions described in the publication entitled “Pairwise Independence and Derandomization”, Mike Luby and Avi Wigderson, Foundations and Trends in Theoretical Computer Science, Volume 1, Issue 4, 2005, Print ISSN 1551-305X, Online ISSN 1551-3068 (hereinafter “Hash Functions”) could be used. There are many ways to represent a list of hash functions, some of which are described in “Hash Functions”, for example by representing the bit sequences that determine how the hash functions are computed on a particular input, or by selecting a small list of hash functions from a family of hash functions and representing the hash function by an index into this list. One example of a possible hash function family can be described by the positive integers (a,b), where a and b range in value between 0 and a positive integer value P, where the hash function determined by the pair (a,b) maps an input X to (a*X+b) modulo P. In this example, a pair of values (a,b) can be used to indicate the selection of the hash function determined by (a,b) if P is fixed or determined by (a,b), or alternatively by the triple (a,b,P) if P is not determined by (a,b). The number of values in the range of a hash function is not restricted to be a prime number, there are well-known methods for hashing similar to those described here that allow the number of values to be any positive number. Another way to indicate a selected hash function from this same family of hash functions (or any family of hash functions) is with respect to a pre-determined list of triples of values (a1,b1,P1), (a2,b2,P2), . . . , (ai,bi,Pi), where an index j can be used to indicate the selection of the hash function determined by (aj,bj,Pj).
The description of a first Source Identification method follows. Suppose there are K different source data units (for example source packets or symbols) comprising the source data to be sent. Suppose all K source data units have distinct values. Let H be a hash function that maps the K source data units to K L-bit-vectors, v(0), v(1), . . . , v(k−1). If H is a random hash function then the probability that two of the K L-bit-vectors map to the same value is approximately K^2/(2^(L+1)), where “^” is the exponentiation function. Thus, to ensure that the K L-bit-vectors are distinct with probability at least 1-eps, the value of L should be approximately 2*log(K)+log(1/eps), where log is the logarithm base 2 operator. As a first example, if K=1000=1e3 and eps=1e−6, then L should be approximately 40 bits or 5 bytes, where “1e3” is the scientific exponential representation of 10^3 =1000. As a second example, if K=1e6 and eps=1e−12 then L should be approximately 80 bits or 10 bytes. The Source Identification data can be simply the concatenation of the K L-bit vectors, concatenated in the order of the source data units, assuming that a sender and receiver can compute the same hash function H. A sender can compute the Source Identification data from the K source data units by applying the hash function H to each of the source data units to generate the K L-bit vectors. Upon receiving a source data unit, a receiver can apply H to the source data unit to compute the corresponding L-bit vector value, and then from the Source Identification data the receiver can distinguish, identity, and order the received source data unit among,the K source data units, i.e., this is an example of a determining sequencing method. In the first example above the Source Identification data is 5,000 bytes in size, and in the second example above the Source Identification data is 10,000,000 bytes in size. Both of these might be prohibitive in size for certain applications. For some uses of Source Identification data, for example some retransmission methods, a much shorter Source Identification data may be sufficient at the receiver to identify and request a source data unit. For example, in a NACK based retransmission method, the Source Identification data communicated to a receiver may be the description of the hash function H, and a receiver may compute the hash function H on each received source data unit and send to a sender the L-bit vectors to which the received source data units mapped. In this case, the sender can determine which source data units have not been received by the receiver based on which L-bit vectors are received, i.e., this is an example of a determining identification labels for known source data units method. Thus, the amount of Source Identification data communicated to the receiver explicitly may even be zero, assuming that the sender and receiver have pre-established which hash function H to be used. However, in this case a substantial amount of data in the form of source data unit labels may be communicated from a receiver to a sender in order to request retransmission of missing source data units.
A variant of the above Source Identification method is for the sender to repeatedly choose a new hash function H from a family of hash functions and apply H to the K source data units until hash function H maps the K source data units to distinct vectors. Note that L=2*log(K) is sufficient for H to map the K source data units to distinct vectors with probability at least ½. Thus, from a list of log(1/eps) random hash functions, there is at least one hash function that will map the K source data units to distinct vectors with probability at least 1−eps. In this case, the Source Identification data can be the concatenation of the index of the hash function H selected by the sender, the value of K and the K L-bit vectors. A receiver can use the Source Identification data to determine the index of the hash function H to use and the value of K, and then upon receiving a source data unit can apply H to that source data unit to determine the L-bit vector that distinguishes, identifies or orders the source data unit among the K source data units, i.e., this is an example of a determining sequencing method. If K=1,000 then the Source Identification data is 20 bits to identify the hash function, the value of K, and 1,000 20-bit vectors, or approximately 2500 bytes, and if K=1,000,000 then the Source Identification data is 40 bits to identify the hash function, the value of K, and 1,000,000 40-bit vectors, or approximately 5,000,000 bytes.
A third variant of a Source Identification data method follows. A sender can compute the Source Identification data as follows. A first hash function H is chosen to map the K source data units into K distinct L-bit vectors u(1), u(2), . . . ,u(K), for example using the first or second Source Identification data method described above. Let set S1={0, 1, . . . ,K−1}. Note that in different variants, the size of S1 may be larger or smaller than K, but in certain embodiments K can be a good choice for the size of S1. Choose a hash function H1 that maps L-bit vectors to S1. Use H1 to map u(1), u(2), . . . ,u(K) to S1. A vector u(i) is said to map uniquely with respect to H1 if there is no j such that u(j) maps to the same value as u(i) with respect to H1, and otherwise u(i) is said to experience a collision with respect to H1. If less than a threshold number of u(1), u(2), . . . ,u(K) map uniquely with respect to H1 then choose a new hash function H1 and repeat the above process until the number of u(1), u(2), . . . ,u(K) that maps uniquely with respect to H1 is at least the threshold number. Note that for any i the probability that u(i) maps uniquely with respect to a hash function H1 that is chosen uniformly at random is approximately 1/e, where e=2.718281828459045, and thus K/e is a reasonable choice of a threshold number, although other threshold numbers can be appropriate depending on the value of K, e.g., as K approaches zero the threshold number might approach or reach K. Once an appropriate H1 is determined, initialize a K-bit vector V1 to K zero bits. For every position j where there is an i such that u(i) maps uniquely to position j with respect to H1, set the jth bit of V1 to one.
Let u1(1), . . . ,u1(K1) be the K1 vectors out of the K vectors that experience collisions with respect to H1. Let set S2={0, . . . ,K1−1}and choose a hash function H2 that maps L-bit vectors to S2. Use H2 to map u1(1), . . . ,u1(K1) to S2. If less than a threshold number of u1(1), . . . ,u1(K1) map uniquely with respect to H2 then choose a new hash function H2 and repeat the above process until the number of u1(1), . . . ,u1(K1) that map uniquely with respect to H2 is at least the threshold number, where the threshold value can depend on K1. Initialize a K-bit vector V2 to K zero bits. For every position j where there is an i such that u(i) maps uniquely to position j with respect to H2, set the jth bit of V2 to one.
The above process can be repeated with additional hash functions H3, . . . ,Hh until all of u(1), u(2), . . . ,u(K) map uniquely with respect to a hash function. In particular, Hh uniquely maps uh−1(1), uh−1(2), . . . , uh−1(Kh), where uh−1(1), uh−1(2), . . . ,uh−1(Kh) are the Kh vectors out of the K vectors that experience collisions with respect to H1, . . . ,Hh−1.
The steps of the third variant of a Source Identification data method are outlined in
The Source Identification data or equivalently the Source Symbol Map can be the concatenation of the index of the hash function H, the value of K, the number h of additional hash functions, the indices of the hash functions H1, . . . ,Hh, the values of K1, . . . ,Kh−1, and the bit-vectors V1, . . . ,Vh. The position of a source data unit can be determined as follows. Apply hash function H to the source data unit to generate an L-bit label u. Apply H1, . . . ,Hh consecutively to u until there is a first i such that u is uniquely mapped with respect to Hi, and let j be the position to which Hi maps u. The position of the source data unit is the total number of bits in V1, . . . ,Vi-1 that are set to 1, plus the number of bits in Vi that are set to 1 within the first j bits. This method for determining the ordering of source data units and their positions is an example of a Source Identification method that enables a determining positioning method, i.e., the positions of the source data units are determined based on the Source Identification data, but the positions are not necessarily the sending positions of the source data units. If K=1000 and the threshold number K/e is used then the Source Identification data is the bits needed to identify the hash functions and the values of K, K1, K2, . . . ,Kh−1, followed by 2700 bits, or approximately 350 bytes. If K=1,000,000 then the Source Identification data is approximately 340,000 bytes. There are many alternatives and optimizations of this variant possible, as one skilled in the art will recognize, for example the sequence of values K1, . . . ,Kh−1 could be chosen differently, the threshold numbers can be chosen differently, the bit-vectors V1, . . . ,Vh could be multiple bits per entry or a variable number of bits per entry, the last vector Vh can be omitted if it is always the case that all of its bits are set to 1, etc.
Referring to
In the example shown in
As a fourth variant, the Source Identification data of the third variant can be augmented to include mappings between the sequencing of the K source data units (where for example their sequencing corresponds to the original source data order or as another example to the source data sending order) and their corresponding positions described above for the third variant. For example, the additional sequencing data can comprise an ordered list SEQ=<seq0, seq1, . . . , seqK−1> of K sequence numbers, where seqj is the sequence number of the data unit that has position j. This additional sequencing data can thus comprise a position to sequence mapping.
An example of the Source Identification data for this fourth variant is shown in
For this fourth variant, Source Identification data is sufficient to distinguish, identify and determine the order of the K source data units, i.e., this is an example of a Source Identification method that enables a determining sequencing method. The additional size of the Source Identification data for this fourth variant is K*log(K) beyond the size of the Source Identification data in the third variant. For example, if K=1,000 then the additional Source Identification data size beyond that of the third variant is 1250 bytes, and if K=1,000,000 then the additional size is 2,500,000 bytes. In some implementations of this fourth variant, the portion of the Source Identification data that corresponds to the third variant can be sent to a receiver that enables determining positions of source data units, this can be used to FEC decode the source block (where the ordering of the source data units within the source block are according to their positions), and the additional portion of the Source Identification data that enables determining sequencing of source data units is included within the source block that can be recovered using FEC decoding methods. For example, referring to
As another variant, the Source Identification data can be further augmented to include the size of each source data unit. This variant is generally not used if all source data unit are the same or approximately the same size. This variant enables the positions of variable size source data units to be more precisely determined.
In the data structure (810) embodiment illustrated in
How a Receiver Uses the Source Identification Data.
The protocol communicates between senders and receivers the number of hashed packets {K, K1, . . . , Kn}, collision vectors {V, V1, . . . , Vn}, and hash functions {H, H1, . . . , Hn}, where Hn results in no collision, i.e., Vn is all 0's. In addition, we also communicate the mapping between the positions of all K source packets and their corresponding hashed position within vectors {V, V1, . . . , Vn}, as well as the number of symbols in each source packet.
As an example of how receiver can determine the sequence number for a received source data, suppose a receiver receives the fifth source data unit (510(5)) according to the example shown in
One potential difficulty is the identification of a particular source block when the Source Identification data is used to identify a portion instead of the entire source data, as the source packets themselves may not contain that information, and there may not be an existing synchronization protocol for determination and communication of source block boundary. One possible solution is to use the above Source Identification communication protocol over a wider range of source packets than the source block of interest, i.e., the generated Source Identification data may overlap with previous and next source block. An example of this solution is illustrated in
Another potential problem is that two or more source packets within a single source block may be identical. These identical packets will always have hash collision regardless of the hash function applied to the packets. In the hash position map, both packet sequences will map to the same hash position. This is illustrated in
A method can be devised that indicates which source packets are identical and communicates this piece of information to the receiving device. This method thus reduces the problem for the receiver to just dealing with source packets that are all different from each other, in which case the aforementioned protocol can be applied. For our communications purpose, a collision resulting from identical packets is NOT marked in the collision bit vectors assuming that the two packets are identical and that they don't collide with any other different packets in a hash function. The same output value implies the existence of identical source packets. An example of such a method is the following. Instead of using a position-to-sequence mapping, for example (650) as shown in
Another potential problem is that there may be rare cases that different packets will still collide after every available hash function has been applied to the packets. This can happen due to limited hash function selection pool, or due to insufficient amount of time allocated to resolve the collision. In these cases, the last collision bit vector will have one or more bits marked for “final collision”. The receiver will simply discard the packets whose hash collision cannot be resolved. This potential solution is illustrated in
The use of Source System Maps to identify source data offers many advantages. For example, Source System Maps are reasonably efficient in size since they only require about an additional 4 to 12 bits of data for each source packet for some of the embodiments described for some values of K ranging up to a couple of hundred. Also, multiple hash function help to reduce CPU load. Low complexity hash functions are operated first; higher complexity hash functions then operate later on many fewer packets. Another advantage is that no additional method is needed to resolve hash collision. Also, Source System Maps are flexible to hash function design or replacement.
Reliable Transmission of Source Identification Data
Depending on network configuration, the Source Identification data may be either combined with FEC repair data in a single channel, or independently transmitted. Since this piece of information can be crucial in packet recovery and/or reordering process, it is preferred to apply forward erasure correction techniques on the Source Identification data. Note that the FEC applied on the Source Identification data does not have to bear any relationship with the FEC code on the original source stream. It may or may not be the same FEC code, it may or may not be systematic. In addition, spreading the transmission of these Source Identification data packets (and their FEC repair part) can be beneficial because the transmission is then more resilient to burst erasure. Another technique is to combine all or parts of the Source Identification data with the FEC repair data generated from the original source stream, if possible, in order to further reduce bandwidth overhead. In cases where the Source Identification data is not used with FEC repair data of the original data, it can still be preferable to FEC protect the Source Identification data.
In one embodiment, the source symbol map can be transmitted along with FEC data (such as data generated using a chain reaction code). The result is that a receiver can receive two streams—one stream with unmodified source data, and a second stream with FEC data for the original stream (chain reaction repair data) and Source Symbol map data. The source symbol map data can in turn also have its own FEC data.
Transmission Error Handling
In many embodiments, the data streams transmitted from an encoder to a decoder are transmitted over a network in a series of packets. In many such networks, there are many potential errors that can occur in the transmission of the packets. Packets can be lost, packets delivery can be delays, and packets may be duplicated during transmission and the decoder may receive identical packets at different times. In some embodiments, a decoder is subject to time-constraints and may time-out the decoding of a given source block after a period of time. However, the nature of the network may result in packets being delivered to a receiver after the relevant source block has already timed-out. Below are some examples of how a receiver can treat various packet errors. None of the examples below are meant to give an exhaustive list of how various errors can be handled by a receiver.
FIG. 23A/23B illustrate a duplicated packet received within extended block. In both situations, the duplicated packets can be correctly identified within block N. Receiving and decoding operations can easily proceed as normal.
Case Studies
Below are a number of case studies showing characteristics of the described methods on a variety of different systems. These are case studies of streaming applications where an FEC code is used to add FEC repair packets to protect the original stream, and where each SSM covers a small portion of the entire data stream. In all of these case studies,
In each case, two values are derived: PSSM and PFEC. PSSM is the probability that not enough packets arrive for the source block to recover the SSM data, whereas PFEC is the probability that not enough packets arrive for the source block to recover the source block assuming an ideal FEC code. These probabilities are calculated assuming random and independent packet loss under the loss conditions stated for each case.
Case Study 1
Case Study 2
Case Study 3
Multiple Stream/Retransmission Embodiment
DVB-T/DVB-H Embodiment
Source Identification data transmitted in a data stream separate from a data stream containing the source data can be applied to a variety of systems. For example, Appendix A discloses a system wherein FEC protection and Source Identification data can be transmitted on a first data stream carried on a network such as a DVB-T broadcast network while the original source data can be transmitted on a second data stream that is transmitted on the same network. Appendix A is incorporated into this disclosure for all purposes. In other embodiments, the FEC protection and Source Identification data can be transmitted first data stream carried on a network such as a DVB-H broadcast network while the original source data can be transmitted on a second data stream that is transmitted across another network such as a DVB-T network
Note that DVB-T networks and settings have been designed to transmit to fixed position receivers, whereas there are great advantages to extending the usage of DVB-T networks to other types of receivers, e.g., mobile receivers or fixed position receivers in worse positions. For these types of new receivers, the error-conditions present on existing DVB-T networks are often too challenging to support relevant applications such as high quality streaming video. Using the methods described in this disclosure, the usage of these networks can be extended to these new receivers to support applications that are too challenging to otherwise support. No network upgrade is required for these methods to apply, nor is there a requirement to upgrade existing receivers to support these new receivers. Using the methods described in this disclosure, new receivers will be able to receive the original unmodified data streams, and in addition to receive Source Identification data and FEC repair data associated with these original data streams in order to recover and play-out video streams at the same quality as existing receivers, even though the network conditions are much worse for the new receivers than they are for existing receivers.
As will be clear to those of skill in the art upon review of this disclosure, the methods described herein can be naturally extended to support different FEC codes, maintaining the property that, at the receiver, data from more than one transmitted code can be combined in a way that provides for greater error correction than if the data were processed independently according to the procedures associated with the respective codes.
The foregoing description has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the above teaching. The described embodiments were chosen in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.
This application claims the benefit under 35 U.S.C. 119(e) of and is a non-provisional of U.S. Application Ser. No. 60/971,884 filed Sep. 12, 2007 and U.S. Application Ser. No. 61/093,277 filed Aug. 29, 2008. All of these applications are incorporated by reference in their entirety for all purposes. The following references are included here and are incorporated by reference for all purposes: U.S. Pat. No. 6,307,487 entitled “Information Additive Code Generator and Decoder for Communication Systems” issued to Luby (hereinafter “Luby I”); U.S. Pat. No. 7,418,651 entitled “File Download and Streaming System” to Luby, et al. (hereinafter “Luby II”); U.S. Pat. No. 7,068,729 entitled “Multi-Stage Code Generator and Decoder for Communication Systems” issued to Shokrollahi, et al. (hereinafter “Shokrollahi I”); U.S. Published Patent Application No. 2006/0036930 published Feb. 16, 2006 and entitled “Method and Apparatus for Fast Encoding of Data Symbols According to Half-Weight Codes” to Luby, et al. (hereinafter “Luby III”); and U.S. Pat. No. 6,856,263 entitled “Systems and Processes for Decoding Chain Reaction Codes Through Inactivation” issued to Shokrollahi, et al. (hereinafter “Shokrollahi II”). U.S. Published Patent Application No. 2007/0300127 published Dec. 27, 2007 entitled “Code Generator and Decoder for Communications Systems Operating Using Hybrid Codes to Allow for Multiple Efficient Users of the Communications Systems” to Watson et al. (hereinafter “Watson”). U.S. Patent U.S. Pat. No. 7,249,291, issued Jul. 24, 2007 entitled “System and Method for Reliably Communicating the Content of a Live Data Stream” issued to Jens Rasmussen, et al. (hereinafter “Rasmussen”).
Number | Name | Date | Kind |
---|---|---|---|
3909721 | Bussgang et al. | Sep 1975 | A |
4365338 | McRae et al. | Dec 1982 | A |
4589112 | Karim | May 1986 | A |
4901319 | Ross | Feb 1990 | A |
5136592 | Weng | Aug 1992 | A |
5153591 | Clark | Oct 1992 | A |
5329369 | Willis et al. | Jul 1994 | A |
5331320 | Cideciyan et al. | Jul 1994 | A |
5371532 | Gelman et al. | Dec 1994 | A |
5372532 | Robertson, Jr. | Dec 1994 | A |
5379297 | Glover et al. | Jan 1995 | A |
5421031 | De Bey | May 1995 | A |
5425050 | Schreiber et al. | Jun 1995 | A |
5432787 | Chethik | Jul 1995 | A |
5455823 | Noreen et al. | Oct 1995 | A |
5465318 | Sejnoha | Nov 1995 | A |
5517508 | Scott | May 1996 | A |
5524025 | Lawrence et al. | Jun 1996 | A |
5566208 | Balakrishnan | Oct 1996 | A |
5568614 | Mendelson et al. | Oct 1996 | A |
5583784 | Kapust et al. | Dec 1996 | A |
5608738 | Matsushita | Mar 1997 | A |
5617541 | Albanese et al. | Apr 1997 | A |
5642365 | Murakami et al. | Jun 1997 | A |
5659614 | Bailey, III | Aug 1997 | A |
5699473 | Kim | Dec 1997 | A |
5701582 | DeBey | Dec 1997 | A |
5751336 | Aggarwal et al. | May 1998 | A |
5754563 | White | May 1998 | A |
5757415 | Asamizuya et al. | May 1998 | A |
5802394 | Baird et al. | Sep 1998 | A |
5805825 | Danneels et al. | Sep 1998 | A |
5835165 | Keate et al. | Nov 1998 | A |
5844636 | Joseph et al. | Dec 1998 | A |
5852565 | Demos | Dec 1998 | A |
5870412 | Schuster et al. | Feb 1999 | A |
5903775 | Murray | May 1999 | A |
5917852 | Butterfield et al. | Jun 1999 | A |
5926205 | Krause et al. | Jul 1999 | A |
5933056 | Rothenberg | Aug 1999 | A |
5936659 | Viswanathan | Aug 1999 | A |
5936949 | Pasternak et al. | Aug 1999 | A |
5953537 | Balicki et al. | Sep 1999 | A |
5970098 | Herzberg | Oct 1999 | A |
5983383 | Wolf | Nov 1999 | A |
5993056 | Vaman et al. | Nov 1999 | A |
6005477 | Deck et al. | Dec 1999 | A |
6011590 | Saukkonen | Jan 2000 | A |
6012159 | Fischer et al. | Jan 2000 | A |
6014706 | Cannon et al. | Jan 2000 | A |
6018359 | Kermode et al. | Jan 2000 | A |
6041001 | Estakhri | Mar 2000 | A |
6044485 | Dent et al. | Mar 2000 | A |
6061820 | Nakakita et al. | May 2000 | A |
6073250 | Luby et al. | Jun 2000 | A |
6079041 | Kunisa et al. | Jun 2000 | A |
6079042 | Vaman et al. | Jun 2000 | A |
6081907 | Witty et al. | Jun 2000 | A |
6081909 | Luby et al. | Jun 2000 | A |
6081918 | Spielman | Jun 2000 | A |
6088330 | Bruck et al. | Jul 2000 | A |
6097320 | Kuki et al. | Aug 2000 | A |
6134596 | Bolosky et al. | Oct 2000 | A |
6141053 | Saukkonen | Oct 2000 | A |
6141787 | Kunisa et al. | Oct 2000 | A |
6141788 | Rosenberg et al. | Oct 2000 | A |
6154452 | Marko et al. | Nov 2000 | A |
6163870 | Luby et al. | Dec 2000 | A |
6166544 | Debbins et al. | Dec 2000 | A |
6175944 | Urbanke et al. | Jan 2001 | B1 |
6178536 | Sorkin | Jan 2001 | B1 |
6185265 | Campanella | Feb 2001 | B1 |
6195777 | Luby et al. | Feb 2001 | B1 |
6223324 | Sinha et al. | Apr 2001 | B1 |
6226259 | Piret | May 2001 | B1 |
6226301 | Cheng et al. | May 2001 | B1 |
6229824 | Marko | May 2001 | B1 |
6243846 | Schuster et al. | Jun 2001 | B1 |
6272658 | Steele et al. | Aug 2001 | B1 |
6278716 | Rubenstein et al. | Aug 2001 | B1 |
6298462 | Yi | Oct 2001 | B1 |
6314289 | Eberlein et al. | Nov 2001 | B1 |
6320520 | Luby | Nov 2001 | B1 |
6332163 | Bowman-Amuah | Dec 2001 | B1 |
6333926 | Van Heeswyk et al. | Dec 2001 | B1 |
6373406 | Luby | Apr 2002 | B2 |
6393065 | Piret et al. | May 2002 | B1 |
6411223 | Haken et al. | Jun 2002 | B1 |
6415326 | Gupta et al. | Jul 2002 | B1 |
6420982 | Brown | Jul 2002 | B1 |
6421387 | Rhee | Jul 2002 | B1 |
6430233 | Dillon et al. | Aug 2002 | B1 |
6445717 | Gibson et al. | Sep 2002 | B1 |
6459811 | Hurst, Jr. | Oct 2002 | B1 |
6466698 | Creusere | Oct 2002 | B1 |
6473010 | Vityaev et al. | Oct 2002 | B1 |
6486803 | Luby et al. | Nov 2002 | B1 |
6487692 | Morelos-Zaragoza | Nov 2002 | B1 |
6496980 | Tillman et al. | Dec 2002 | B1 |
6510177 | De Bonet et al. | Jan 2003 | B1 |
6523147 | Kroeger et al. | Feb 2003 | B1 |
6535920 | Parry et al. | Mar 2003 | B1 |
6584543 | Williams et al. | Jun 2003 | B2 |
6609223 | Wolfgang | Aug 2003 | B1 |
6614366 | Luby | Sep 2003 | B2 |
6618451 | Gonikberg | Sep 2003 | B1 |
6631172 | Shokrollahi et al. | Oct 2003 | B1 |
6633856 | Richardson et al. | Oct 2003 | B2 |
6641366 | Nordhoff | Nov 2003 | B2 |
6643332 | Morelos-Zaragoza et al. | Nov 2003 | B1 |
6677864 | Khayrallah | Jan 2004 | B2 |
6678855 | Gemmell | Jan 2004 | B1 |
6694476 | Sridharan et al. | Feb 2004 | B1 |
6704370 | Chheda et al. | Mar 2004 | B1 |
6732325 | Tash et al. | May 2004 | B1 |
6742154 | Barnard | May 2004 | B1 |
6748441 | Gemmell | Jun 2004 | B1 |
6751772 | Kim et al. | Jun 2004 | B1 |
6765866 | Wyatt | Jul 2004 | B1 |
6804202 | Hwang | Oct 2004 | B1 |
6810499 | Sridharan et al. | Oct 2004 | B2 |
6820221 | Fleming | Nov 2004 | B2 |
6831172 | Barbucci et al. | Dec 2004 | B1 |
6849803 | Gretz | Feb 2005 | B1 |
6850736 | McCune, Jr. | Feb 2005 | B2 |
6868083 | Apostolopoulos et al. | Mar 2005 | B2 |
6876623 | Lou et al. | Apr 2005 | B1 |
6882618 | Sakoda et al. | Apr 2005 | B1 |
6895547 | Eleftheriou et al. | May 2005 | B2 |
6909383 | Shokrollahi et al. | Jun 2005 | B2 |
6928603 | Castagna et al. | Aug 2005 | B1 |
6937618 | Noda et al. | Aug 2005 | B1 |
6956875 | Kapadia et al. | Oct 2005 | B2 |
6965636 | DesJardins et al. | Nov 2005 | B1 |
6985459 | Dickson | Jan 2006 | B2 |
6995692 | Yokota et al. | Feb 2006 | B2 |
7010052 | Dill et al. | Mar 2006 | B2 |
7030785 | Shokrollahi et al. | Apr 2006 | B2 |
7031257 | Lu et al. | Apr 2006 | B1 |
7057534 | Luby | Jun 2006 | B2 |
7068681 | Chang et al. | Jun 2006 | B2 |
7072971 | Lassen et al. | Jul 2006 | B2 |
7073191 | Srikantan et al. | Jul 2006 | B2 |
7100188 | Hejna, Jr. | Aug 2006 | B2 |
7110412 | Costa et al. | Sep 2006 | B2 |
7139660 | Sarkar et al. | Nov 2006 | B2 |
7139960 | Shokrollahi | Nov 2006 | B2 |
7143433 | Duan et al. | Nov 2006 | B1 |
7151754 | Boyce et al. | Dec 2006 | B1 |
7154951 | Wang | Dec 2006 | B2 |
7164370 | Mishra | Jan 2007 | B1 |
7164882 | Poltorak | Jan 2007 | B2 |
7168030 | Ariyoshi | Jan 2007 | B2 |
7219289 | Dickson | May 2007 | B2 |
7233264 | Luby | Jun 2007 | B2 |
7240236 | Cutts et al. | Jul 2007 | B2 |
7240358 | Horn et al. | Jul 2007 | B2 |
7243285 | Foisy et al. | Jul 2007 | B2 |
7249291 | Rasmussen et al. | Jul 2007 | B2 |
7254754 | Hetzler et al. | Aug 2007 | B2 |
7257764 | Suzuki et al. | Aug 2007 | B2 |
7265688 | Shokrollahi et al. | Sep 2007 | B2 |
7293222 | Shokrollahi | Nov 2007 | B2 |
7295573 | Yi et al. | Nov 2007 | B2 |
7304990 | Rajwan | Dec 2007 | B2 |
7318180 | Starr | Jan 2008 | B2 |
7320099 | Miura et al. | Jan 2008 | B2 |
7363048 | Cheng et al. | Apr 2008 | B2 |
7391717 | Klemets et al. | Jun 2008 | B2 |
7394407 | Shokrollahi et al. | Jul 2008 | B2 |
7398454 | Cai et al. | Jul 2008 | B2 |
7409626 | Schelstraete | Aug 2008 | B1 |
7412641 | Shokrollahi | Aug 2008 | B2 |
7451377 | Shokrollahi | Nov 2008 | B2 |
7483447 | Chang et al. | Jan 2009 | B2 |
7483489 | Gentric et al. | Jan 2009 | B2 |
7512697 | Lassen et al. | Mar 2009 | B2 |
7529806 | Shteyn | May 2009 | B1 |
7532132 | Shokrollahi et al. | May 2009 | B2 |
7555006 | Wolfe et al. | Jun 2009 | B2 |
7559004 | Chang et al. | Jul 2009 | B1 |
7570665 | Ertel et al. | Aug 2009 | B2 |
7574706 | Meulemans et al. | Aug 2009 | B2 |
7597423 | Silverbrook | Oct 2009 | B2 |
7613183 | Brewer et al. | Nov 2009 | B1 |
7633413 | Shokrollahi et al. | Dec 2009 | B2 |
7644335 | Luby et al. | Jan 2010 | B2 |
7650036 | Lei et al. | Jan 2010 | B2 |
7668198 | Yi et al. | Feb 2010 | B2 |
7720096 | Klemets | May 2010 | B2 |
7720174 | Shokrollahi et al. | May 2010 | B2 |
7812743 | Luby | Oct 2010 | B2 |
7831896 | Amram et al. | Nov 2010 | B2 |
7924913 | Sullivan et al. | Apr 2011 | B2 |
7956772 | Shokrollahi et al. | Jun 2011 | B2 |
7961700 | Malladi et al. | Jun 2011 | B2 |
7971129 | Watson et al. | Jun 2011 | B2 |
7979769 | Lee et al. | Jul 2011 | B2 |
8027328 | Yang et al. | Sep 2011 | B2 |
8028322 | Riedl et al. | Sep 2011 | B2 |
8081716 | Kang et al. | Dec 2011 | B2 |
8135073 | Shen | Mar 2012 | B2 |
8185794 | Lohmar et al. | May 2012 | B2 |
8185809 | Luby et al. | May 2012 | B2 |
RE43741 | Shokrollahi et al. | Oct 2012 | E |
8301725 | Biderman et al. | Oct 2012 | B2 |
8327403 | Chilvers et al. | Dec 2012 | B1 |
8340133 | Kim et al. | Dec 2012 | B2 |
8422474 | Park et al. | Apr 2013 | B2 |
8462643 | Walton et al. | Jun 2013 | B2 |
8544043 | Parekh et al. | Sep 2013 | B2 |
8572646 | Haberman et al. | Oct 2013 | B2 |
8615023 | Oh et al. | Dec 2013 | B2 |
8638796 | Dan et al. | Jan 2014 | B2 |
8713624 | Harvey et al. | Apr 2014 | B1 |
8737421 | Zhang et al. | May 2014 | B2 |
8812735 | Igarashi | Aug 2014 | B2 |
20010015944 | Takahashi et al. | Aug 2001 | A1 |
20010033586 | Takashimizu et al. | Oct 2001 | A1 |
20020009137 | Nelson et al. | Jan 2002 | A1 |
20020053062 | Szymanski | May 2002 | A1 |
20020083345 | Halliday et al. | Jun 2002 | A1 |
20020085013 | Lippincott | Jul 2002 | A1 |
20020133247 | Smith et al. | Sep 2002 | A1 |
20020141433 | Kwon et al. | Oct 2002 | A1 |
20020143953 | Aiken | Oct 2002 | A1 |
20020191116 | Kessler et al. | Dec 2002 | A1 |
20030005386 | Bhatt et al. | Jan 2003 | A1 |
20030037299 | Smith | Feb 2003 | A1 |
20030086515 | Trans et al. | May 2003 | A1 |
20030101408 | Martinian et al. | May 2003 | A1 |
20030106014 | Dohmen et al. | Jun 2003 | A1 |
20030138043 | Hannuksela | Jul 2003 | A1 |
20030194211 | Abecassis | Oct 2003 | A1 |
20030207696 | Willenegger et al. | Nov 2003 | A1 |
20030224773 | Deeds | Dec 2003 | A1 |
20040015768 | Bordes et al. | Jan 2004 | A1 |
20040031054 | Dankworth et al. | Feb 2004 | A1 |
20040049793 | Chou | Mar 2004 | A1 |
20040066854 | Hannuksela | Apr 2004 | A1 |
20040081106 | Bruhn | Apr 2004 | A1 |
20040096110 | Yogeshwar et al. | May 2004 | A1 |
20040117716 | Shen | Jun 2004 | A1 |
20040151109 | Batra et al. | Aug 2004 | A1 |
20040151206 | Scholte | Aug 2004 | A1 |
20040162071 | Grilli et al. | Aug 2004 | A1 |
20040207548 | Kilbank | Oct 2004 | A1 |
20040231004 | Seo | Nov 2004 | A1 |
20040240382 | Ido et al. | Dec 2004 | A1 |
20040255328 | Baldwin et al. | Dec 2004 | A1 |
20050018635 | Proctor | Jan 2005 | A1 |
20050028067 | Weirauch | Feb 2005 | A1 |
20050041736 | Butler-Smith et al. | Feb 2005 | A1 |
20050071491 | Seo | Mar 2005 | A1 |
20050084006 | Lei et al. | Apr 2005 | A1 |
20050091697 | Tanaka et al. | Apr 2005 | A1 |
20050097213 | Barrett et al. | May 2005 | A1 |
20050102371 | Aksu | May 2005 | A1 |
20050105371 | Johnson et al. | May 2005 | A1 |
20050123058 | Greenbaum et al. | Jun 2005 | A1 |
20050138286 | Franklin et al. | Jun 2005 | A1 |
20050152359 | Giesberts et al. | Jul 2005 | A1 |
20050160272 | Teppler | Jul 2005 | A1 |
20050163468 | Takahashi et al. | Jul 2005 | A1 |
20050169379 | Shin et al. | Aug 2005 | A1 |
20050180415 | Cheung et al. | Aug 2005 | A1 |
20050193309 | Grilli et al. | Sep 2005 | A1 |
20050195752 | Amin et al. | Sep 2005 | A1 |
20050195899 | Han | Sep 2005 | A1 |
20050195900 | Han | Sep 2005 | A1 |
20050207392 | Sivalingham et al. | Sep 2005 | A1 |
20050216472 | Leon et al. | Sep 2005 | A1 |
20050216951 | MacInnis | Sep 2005 | A1 |
20050249222 | van Kampen et al. | Nov 2005 | A1 |
20050254575 | Hannuksela et al. | Nov 2005 | A1 |
20060015568 | Walsh et al. | Jan 2006 | A1 |
20060031738 | Fay et al. | Feb 2006 | A1 |
20060037057 | Xu | Feb 2006 | A1 |
20060093634 | Lutz et al. | May 2006 | A1 |
20060107174 | Heise | May 2006 | A1 |
20060109805 | Malamal Vadakital et al. | May 2006 | A1 |
20060120464 | Hannuksela | Jun 2006 | A1 |
20060193524 | Tarumoto et al. | Aug 2006 | A1 |
20060212444 | Handman et al. | Sep 2006 | A1 |
20060212782 | Li | Sep 2006 | A1 |
20060229075 | Kim et al. | Oct 2006 | A1 |
20060244824 | Debey | Nov 2006 | A1 |
20060244865 | Simon | Nov 2006 | A1 |
20060248195 | Toumura et al. | Nov 2006 | A1 |
20060256851 | Wang et al. | Nov 2006 | A1 |
20060262856 | Wu et al. | Nov 2006 | A1 |
20060279437 | Luby et al. | Dec 2006 | A1 |
20070002953 | Kusunoki | Jan 2007 | A1 |
20070006274 | Paila et al. | Jan 2007 | A1 |
20070016594 | Visharam et al. | Jan 2007 | A1 |
20070022215 | Singer et al. | Jan 2007 | A1 |
20070028099 | Entin et al. | Feb 2007 | A1 |
20070078876 | Hayashi et al. | Apr 2007 | A1 |
20070081562 | Ma | Apr 2007 | A1 |
20070081586 | Raveendran et al. | Apr 2007 | A1 |
20070110074 | Bradley et al. | May 2007 | A1 |
20070127576 | Henocq et al. | Jun 2007 | A1 |
20070134005 | Myong, II et al. | Jun 2007 | A1 |
20070140369 | Limberg et al. | Jun 2007 | A1 |
20070157267 | Lopez-Estrada | Jul 2007 | A1 |
20070162568 | Gupta et al. | Jul 2007 | A1 |
20070162611 | Yu et al. | Jul 2007 | A1 |
20070176800 | Rijavec | Aug 2007 | A1 |
20070177811 | Yang et al. | Aug 2007 | A1 |
20070185973 | Wayda et al. | Aug 2007 | A1 |
20070195894 | Shokrollahi et al. | Aug 2007 | A1 |
20070200949 | Walker et al. | Aug 2007 | A1 |
20070201549 | Hannuksela et al. | Aug 2007 | A1 |
20070204196 | Watson et al. | Aug 2007 | A1 |
20070230568 | Eleftheriadis et al. | Oct 2007 | A1 |
20070233784 | O'Rourke et al. | Oct 2007 | A1 |
20070255844 | Shen et al. | Nov 2007 | A1 |
20070277209 | Yousef | Nov 2007 | A1 |
20080010153 | Pugh-O'Connor et al. | Jan 2008 | A1 |
20080034273 | Luby | Feb 2008 | A1 |
20080052753 | Huang et al. | Feb 2008 | A1 |
20080058958 | Cheng | Mar 2008 | A1 |
20080059532 | Kazmi et al. | Mar 2008 | A1 |
20080066136 | Dorai et al. | Mar 2008 | A1 |
20080075172 | Koto | Mar 2008 | A1 |
20080086751 | Horn et al. | Apr 2008 | A1 |
20080101478 | Kusunoki | May 2008 | A1 |
20080134005 | Izzat et al. | Jun 2008 | A1 |
20080152241 | Itoi et al. | Jun 2008 | A1 |
20080168133 | Osborne | Jul 2008 | A1 |
20080168516 | Flick et al. | Jul 2008 | A1 |
20080170564 | Shi et al. | Jul 2008 | A1 |
20080170806 | Kim | Jul 2008 | A1 |
20080172430 | Thorstensen | Jul 2008 | A1 |
20080172712 | Munetsugu | Jul 2008 | A1 |
20080181296 | Tian et al. | Jul 2008 | A1 |
20080189419 | Girle et al. | Aug 2008 | A1 |
20080192818 | DiPietro et al. | Aug 2008 | A1 |
20080215317 | Fejzo | Sep 2008 | A1 |
20080232357 | Chen | Sep 2008 | A1 |
20080243918 | Holtman | Oct 2008 | A1 |
20080256418 | Luby et al. | Oct 2008 | A1 |
20080281943 | Shapiro | Nov 2008 | A1 |
20080285556 | Park et al. | Nov 2008 | A1 |
20080303893 | Kim et al. | Dec 2008 | A1 |
20080303896 | Lipton et al. | Dec 2008 | A1 |
20080309525 | Shokrollahi et al. | Dec 2008 | A1 |
20080313191 | Bouazizi | Dec 2008 | A1 |
20090003439 | Wang et al. | Jan 2009 | A1 |
20090019229 | Morrow et al. | Jan 2009 | A1 |
20090031199 | Luby et al. | Jan 2009 | A1 |
20090043906 | Hurst et al. | Feb 2009 | A1 |
20090055705 | Gao | Feb 2009 | A1 |
20090083806 | Barrett et al. | Mar 2009 | A1 |
20090089445 | Deshpande | Apr 2009 | A1 |
20090092138 | Joo et al. | Apr 2009 | A1 |
20090100496 | Bechtolsheim et al. | Apr 2009 | A1 |
20090103523 | Katis et al. | Apr 2009 | A1 |
20090106356 | Brase et al. | Apr 2009 | A1 |
20090125636 | Li et al. | May 2009 | A1 |
20090150557 | Wormley et al. | Jun 2009 | A1 |
20090158114 | Shokrollahi | Jun 2009 | A1 |
20090164653 | Mandyam et al. | Jun 2009 | A1 |
20090189792 | Shokrollahi et al. | Jul 2009 | A1 |
20090195640 | Kim et al. | Aug 2009 | A1 |
20090201990 | Leprovost et al. | Aug 2009 | A1 |
20090204877 | Betts | Aug 2009 | A1 |
20090210547 | Lassen et al. | Aug 2009 | A1 |
20090222873 | Einarsson | Sep 2009 | A1 |
20090248697 | Richardson et al. | Oct 2009 | A1 |
20090257508 | Aggarwal et al. | Oct 2009 | A1 |
20090287841 | Chapweske et al. | Nov 2009 | A1 |
20090297123 | Virdi et al. | Dec 2009 | A1 |
20090300203 | Virdi et al. | Dec 2009 | A1 |
20090300204 | Zhang et al. | Dec 2009 | A1 |
20090307565 | Luby et al. | Dec 2009 | A1 |
20090319563 | Schnell | Dec 2009 | A1 |
20090328228 | Schnell | Dec 2009 | A1 |
20100011061 | Hudson et al. | Jan 2010 | A1 |
20100011117 | Hristodorescu et al. | Jan 2010 | A1 |
20100011274 | Stockhammer et al. | Jan 2010 | A1 |
20100020871 | Hannuksela et al. | Jan 2010 | A1 |
20100023525 | Westerlund et al. | Jan 2010 | A1 |
20100046906 | Kanamori et al. | Feb 2010 | A1 |
20100049865 | Hannuksela et al. | Feb 2010 | A1 |
20100061444 | Wilkins et al. | Mar 2010 | A1 |
20100067495 | Lee et al. | Mar 2010 | A1 |
20100131671 | Kohli et al. | May 2010 | A1 |
20100153578 | Van Gassel et al. | Jun 2010 | A1 |
20100165077 | Yin et al. | Jul 2010 | A1 |
20100174823 | Huang | Jul 2010 | A1 |
20100189131 | Branam et al. | Jul 2010 | A1 |
20100198982 | Fernandez | Aug 2010 | A1 |
20100211690 | Pakzad et al. | Aug 2010 | A1 |
20100223533 | Stockhammer et al. | Sep 2010 | A1 |
20100235472 | Sood et al. | Sep 2010 | A1 |
20100235528 | Bocharov et al. | Sep 2010 | A1 |
20100257051 | Fernandez | Oct 2010 | A1 |
20100318632 | Yoo et al. | Dec 2010 | A1 |
20110019769 | Shokrollahi et al. | Jan 2011 | A1 |
20110055881 | Yu et al. | Mar 2011 | A1 |
20110083144 | Bocharov et al. | Apr 2011 | A1 |
20110096828 | Chen et al. | Apr 2011 | A1 |
20110103519 | Shokrollahi et al. | May 2011 | A1 |
20110119394 | Wang et al. | May 2011 | A1 |
20110119396 | Kwon et al. | May 2011 | A1 |
20110216541 | Inoue et al. | Sep 2011 | A1 |
20110231519 | Luby et al. | Sep 2011 | A1 |
20110231569 | Luby et al. | Sep 2011 | A1 |
20110238789 | Luby et al. | Sep 2011 | A1 |
20110239078 | Luby et al. | Sep 2011 | A1 |
20110258510 | Watson et al. | Oct 2011 | A1 |
20110268178 | Park et al. | Nov 2011 | A1 |
20110280311 | Chen et al. | Nov 2011 | A1 |
20110280316 | Chen et al. | Nov 2011 | A1 |
20110299629 | Luby et al. | Dec 2011 | A1 |
20110307545 | Bouazizi | Dec 2011 | A1 |
20110307581 | Furbeck et al. | Dec 2011 | A1 |
20120013746 | Chen et al. | Jan 2012 | A1 |
20120016965 | Chen et al. | Jan 2012 | A1 |
20120020413 | Chen et al. | Jan 2012 | A1 |
20120023249 | Chen et al. | Jan 2012 | A1 |
20120023254 | Park et al. | Jan 2012 | A1 |
20120033730 | Lee | Feb 2012 | A1 |
20120042050 | Chen et al. | Feb 2012 | A1 |
20120042089 | Chen et al. | Feb 2012 | A1 |
20120042090 | Chen et al. | Feb 2012 | A1 |
20120047280 | Park et al. | Feb 2012 | A1 |
20120099593 | Luby | Apr 2012 | A1 |
20120151302 | Luby et al. | Jun 2012 | A1 |
20120185530 | Reza | Jul 2012 | A1 |
20120202535 | Chaddha et al. | Aug 2012 | A1 |
20120207068 | Watson et al. | Aug 2012 | A1 |
20120208580 | Luby et al. | Aug 2012 | A1 |
20120210190 | Luby et al. | Aug 2012 | A1 |
20120317305 | Einarsson et al. | Dec 2012 | A1 |
20130002483 | Rowitch et al. | Jan 2013 | A1 |
20130007223 | Luby et al. | Jan 2013 | A1 |
20130067295 | Luby et al. | Mar 2013 | A1 |
20130091251 | Walker et al. | Apr 2013 | A1 |
20130246643 | Luby et al. | Sep 2013 | A1 |
20130254634 | Luby | Sep 2013 | A1 |
20130287023 | Bims | Oct 2013 | A1 |
20140009578 | Chen et al. | Jan 2014 | A1 |
20140380113 | Luby | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
1338839 | Mar 2002 | CN |
1425228 | Jun 2003 | CN |
1481643 | Mar 2004 | CN |
1708934 | Dec 2005 | CN |
1714577 | Dec 2005 | CN |
1792056 | Jun 2006 | CN |
1806392 | Jul 2006 | CN |
1819661 | Aug 2006 | CN |
1868157 | Nov 2006 | CN |
101390399 | Mar 2009 | CN |
101729857 | Jun 2010 | CN |
0669587 | Aug 1995 | EP |
0701371 | Mar 1996 | EP |
0784401 | Jul 1997 | EP |
0853433 | Jul 1998 | EP |
0854650 | Jul 1998 | EP |
0903955 | Mar 1999 | EP |
0986908 | Mar 2000 | EP |
1024672 | Aug 2000 | EP |
1051027 | Nov 2000 | EP |
1124344 | Aug 2001 | EP |
1241795 | Sep 2002 | EP |
1298931 | Apr 2003 | EP |
1406452 | Apr 2004 | EP |
1455504 | Sep 2004 | EP |
1468497 | Oct 2004 | EP |
1501318 | Jan 2005 | EP |
1670256 | Jun 2006 | EP |
1755248 | Feb 2007 | EP |
2046044 | Apr 2009 | EP |
2071827 | Jun 2009 | EP |
2096870 | Sep 2009 | EP |
1700410 | Apr 2010 | EP |
2323390 | May 2011 | EP |
H07183873 | Jul 1995 | JP |
08186570 | Jul 1996 | JP |
8289255 | Nov 1996 | JP |
9252253 | Sep 1997 | JP |
11041211 | Feb 1999 | JP |
11112479 | Apr 1999 | JP |
11164270 | Jun 1999 | JP |
2000151426 | May 2000 | JP |
2000216835 | Aug 2000 | JP |
2000513164 | Oct 2000 | JP |
2000307435 | Nov 2000 | JP |
2000353969 | Dec 2000 | JP |
2001036417 | Feb 2001 | JP |
2001094625 | Apr 2001 | JP |
2001189665 | Jul 2001 | JP |
2001223655 | Aug 2001 | JP |
2001251287 | Sep 2001 | JP |
2001274776 | Oct 2001 | JP |
2001274855 | Oct 2001 | JP |
2002073625 | Mar 2002 | JP |
2002204219 | Jul 2002 | JP |
2002543705 | Dec 2002 | JP |
2003018568 | Jan 2003 | JP |
2003507985 | Feb 2003 | JP |
2003092564 | Mar 2003 | JP |
2003510734 | Mar 2003 | JP |
2003174489 | Jun 2003 | JP |
2003256321 | Sep 2003 | JP |
2003318975 | Nov 2003 | JP |
2003319012 | Nov 2003 | JP |
2003333577 | Nov 2003 | JP |
2004048704 | Feb 2004 | JP |
2004070712 | Mar 2004 | JP |
2004135013 | Apr 2004 | JP |
2004165922 | Jun 2004 | JP |
2004516717 | Jun 2004 | JP |
2004192140 | Jul 2004 | JP |
2004193992 | Jul 2004 | JP |
2004529533 | Sep 2004 | JP |
2004289621 | Oct 2004 | JP |
2004343701 | Dec 2004 | JP |
2004348824 | Dec 2004 | JP |
2004362099 | Dec 2004 | JP |
2005094140 | Apr 2005 | JP |
2005136546 | May 2005 | JP |
2005514828 | May 2005 | JP |
2005204170 | Jul 2005 | JP |
2005223433 | Aug 2005 | JP |
2005277950 | Oct 2005 | JP |
2006503463 | Jan 2006 | JP |
2006505177 | Feb 2006 | JP |
2006506926 | Feb 2006 | JP |
2006074335 | Mar 2006 | JP |
2006074421 | Mar 2006 | JP |
2006115104 | Apr 2006 | JP |
3809957 | Jun 2006 | JP |
2006174032 | Jun 2006 | JP |
2006174045 | Jun 2006 | JP |
2006186419 | Jul 2006 | JP |
2006519517 | Aug 2006 | JP |
2006287422 | Oct 2006 | JP |
2006319743 | Nov 2006 | JP |
2007013675 | Jan 2007 | JP |
2007089137 | Apr 2007 | JP |
3976163 | Jun 2007 | JP |
2007158592 | Jun 2007 | JP |
2007174170 | Jul 2007 | JP |
2007520961 | Jul 2007 | JP |
2007228205 | Sep 2007 | JP |
2008011404 | Jan 2008 | JP |
2008016907 | Jan 2008 | JP |
2008502212 | Jan 2008 | JP |
2008508761 | Mar 2008 | JP |
2008508762 | Mar 2008 | JP |
2008283232 | Nov 2008 | JP |
2008283571 | Nov 2008 | JP |
2008543142 | Nov 2008 | JP |
2008546361 | Dec 2008 | JP |
2009027598 | Feb 2009 | JP |
2009522921 | Jun 2009 | JP |
2009522922 | Jun 2009 | JP |
2009171558 | Jul 2009 | JP |
2009527949 | Jul 2009 | JP |
2009277182 | Nov 2009 | JP |
2009544991 | Dec 2009 | JP |
2010539816 | Dec 2010 | JP |
2010539832 | Dec 2010 | JP |
2011087103 | Apr 2011 | JP |
4971144 | Jul 2012 | JP |
1020030071815 | Sep 2003 | KR |
1020030074386 | Sep 2003 | KR |
20040107152 | Dec 2004 | KR |
20040107401 | Dec 2004 | KR |
20050009376 | Jan 2005 | KR |
100809086 | Mar 2008 | KR |
20080083299 | Sep 2008 | KR |
20090098919 | Sep 2009 | KR |
20100028156 | Mar 2010 | KR |
99117925 | Jul 2001 | RU |
2189629 | Sep 2002 | RU |
2265960 | Dec 2005 | RU |
2290768 | Dec 2006 | RU |
2297663 | Apr 2007 | RU |
2312390 | Dec 2007 | RU |
2357279 | May 2009 | RU |
I246841 | Jan 2006 | TW |
I354908 | Dec 2011 | TW |
I355168 | Dec 2011 | TW |
WO9634463 | Oct 1996 | WO |
WO-9750183 | Dec 1997 | WO |
WO9804973 | Feb 1998 | WO |
WO9832231 | Jul 1998 | WO |
WO-9832256 | Jul 1998 | WO |
WO0014921 | Mar 2000 | WO |
WO0018017 | Mar 2000 | WO |
WO0052600 | Sep 2000 | WO |
WO0120786 | Mar 2001 | WO |
WO0157667 | Aug 2001 | WO |
WO0158130 | Aug 2001 | WO |
WO0158131 | Aug 2001 | WO |
WO0227988 | Apr 2002 | WO |
WO0247391 | Jun 2002 | WO |
02063461 | Aug 2002 | WO |
WO-03046742 | Jun 2003 | WO |
WO03056703 | Jul 2003 | WO |
WO03105350 | Dec 2003 | WO |
WO-03105484 | Dec 2003 | WO |
WO2004008735 | Jan 2004 | WO |
WO2004015948 | Feb 2004 | WO |
WO2004019521 | Mar 2004 | WO |
WO2004030273 | Apr 2004 | WO |
WO2004034589 | Apr 2004 | WO |
WO-2004036824 | Apr 2004 | WO |
WO2004040831 | May 2004 | WO |
WO-2004047019 | Jun 2004 | WO |
WO2004047455 | Jun 2004 | WO |
WO-2004088988 | Oct 2004 | WO |
WO-2004109538 | Dec 2004 | WO |
WO2005036753 | Apr 2005 | WO |
WO2005041421 | May 2005 | WO |
WO2005078982 | Aug 2005 | WO |
WO-2005107123 | Nov 2005 | WO |
WO2005112250 | Nov 2005 | WO |
WO-2006013459 | Feb 2006 | WO |
WO2006020826 | Feb 2006 | WO |
WO-2006036276 | Apr 2006 | WO |
2006060036 | Jun 2006 | WO |
WO-2006057938 | Jun 2006 | WO |
WO2006084503 | Aug 2006 | WO |
WO-2006116102 | Nov 2006 | WO |
WO-2006135878 | Dec 2006 | WO |
WO2007042916 | Apr 2007 | WO |
2007078253 | Jul 2007 | WO |
WO2007090834 | Aug 2007 | WO |
WO-2007098397 | Aug 2007 | WO |
WO-2007098480 | Aug 2007 | WO |
2008011549 | Jan 2008 | WO |
WO-2008023328 | Apr 2008 | WO |
WO2008054100 | May 2008 | WO |
2008086313 | Jul 2008 | WO |
WO2008085013 | Jul 2008 | WO |
WO-2008131023 | Oct 2008 | WO |
2008144004 | Nov 2008 | WO |
WO2008148708 | Dec 2008 | WO |
WO2008156390 | Dec 2008 | WO |
WO-2009036378 | Mar 2009 | WO |
WO-2009065526 | May 2009 | WO |
WO-2009137705 | Nov 2009 | WO |
2009143741 | Dec 2009 | WO |
WO2010085361 | Jul 2010 | WO |
WO2010088420 | Aug 2010 | WO |
WO2010120804 | Oct 2010 | WO |
WO-2011038013 | Mar 2011 | WO |
WO-2011038034 | Mar 2011 | WO |
2011059286 | May 2011 | WO |
2011070552 | Jun 2011 | WO |
2011102792 | Aug 2011 | WO |
WO-2012021540 | Feb 2012 | WO |
WO-2012109614 | Aug 2012 | WO |
Entry |
---|
DVB-IPI Standard: DVB BlueBook A086r4 (Mar. 2007) Transport of MPEG 2 Transport Streatm (TS) Based DVB Services over IP Based Networks, ETSI Technical Specification 102 034 v1.3.1. |
3GPP TS 26.234 V9.1.0, “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs (Release 9)”, Dec. 2009, p. 179. |
3GPP TS 26.244, V9.1.0, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Transparent end-to-end packet switched streaming service (PSS); 3GPP file format (3GP), (Release 9), Mar. 2010, 55 pp. |
3GPP TS 26.247, v1.5.0, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects Transparent end-to-end Packet-switched Streaming Service (PSS); Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH) (Release 10), 2010. |
3rd Generation Partnership Project, Technical Specification Group Services and System Aspects Transparent end-to-end packet switched streaming service (PSS), 3GPP file format (3GP) (Release 8), 3GPP Standard, 3GPP TS 26.244, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route des Lucioles, F-06921 Sophia-Antipolis Cedex, France, No. V8.1.0, Jun. 1, 2009, pp. 1-52, XP050370199. |
3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Transparent end-to-end packet switched streaming service (PSS); 3GPP file format (3GP), (Release 9), 3GPP Standard; 3GPP TS 26.244, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650 Route des Lucioles; F-06921 Sophia-Antipolis Cedex; France No. V9.2.0, Jun. 9, 2010, pp. 1-55, XP050441544, retrieved Jun. 9, 2010. |
A. Mimnaugh et al. “Enabling Mobile Coverage for DVB-T” Digital Fountain Whitepaper Feb. 29, 2008, pp. 1-9, XP002581808 Retrieved from the Internet: URL:http://www.digitalfountain.com/ufiles/library/DVB-T-whitepaper.pdf> [retrieved on May 10, 2010]. |
Afzal, et al., “Video Streaming over MBMS: A System Design Approach”, Journal of Multimedia, vol. 1, No. 5, Aug. 2006, pp. 25-35. |
Aggarwal, C. et al.: “A Permutation-Based Pyramid Broadcasting Scheme for Video-on-Demand Systems,” Proc. IEEE Int'l Conf. on Multimedia Systems, Hiroshima, Japan Jun. 1996. |
Aggarwal, C. et al.: “On Optimal Batching Policies for Video-on-Demand Storage Servers,” Multimedia Systems, vol. 4, No. 4, pp. 253-258 (1996). |
Albanese, A., et al., “Priority Encoding Transmission”, IEEE Transactions on Information Theory, vol. 42, No. 6, pp. 1-22, Nov. 1996. |
Alex Zambelli,“IIS Smooth Streaming Technical Overview”, Microsoft Mar. 25, 2009, XP002620446, Retrieved from the Internet: URL:http://www.microsoft.com/downloads/en/details.aspx?FamilyID=03d22583-3ed6-44da-8464-blb4b5ca7520, [retrieved on Jan. 21, 2011]. |
Aljoscha Smolic; et al., “Development of a New MPEG Standard for Advanced 3D Video Applications”, IEEE International Symposium on Image and Signal Processing and Analysis, Sep. 16, 2009, pp. 400-407, XP031552049, ISBN: 978-953-184-135-1. |
Almeroth, at al., “The use of multicast delivery to provide a scalable and interactive video-on-demand service”, IEEE Journal on Selected Areas in Communication, 14(6): 1110- 1122. (1996). |
Alon, et al.: “Linear Time Erasure Codes with Nearly Optimal Recovery,” Proceedings of the Annual Symposium on Foundations of Computer Science, US, Los Alamitos, IEEE Comp. Soc. Press, vol. Symp. 36, pp. 512-516 (Oct. 23, 1995) XP000557871. |
Amin Shokrollahi: “LDPC Codes: An Introduction” Internet Citation 2 Apr. 1, 2003, XP002360065 Retrieved from the Internet: URL: http://www.ipm.ac.ir/homepage/Amin 2. pdf [retrieved on Dec. 19, 2005]. |
Amon P et al., “File Format for Scalable Video Coding”, IEEE Transactions on Circuits and Systems for Video Technology, IEEE Service Center, Piscataway, NJ, US, vol. 17, No. 9, Sep. 1, 2007, pp. 1174-1185, XP011193013, ISSN: 1051-8215, DOI:10.1109/TCSVT.2007.905521. |
Anonymous: [Gruneberg, K., Narasimhan, S. and Chen, Y., editors] “Text of ISO/IEC 13818-1:2007/PDAM 6 MVC operation point descriptor”, 90 MPEG Meeting; Oct. 26-30, 2009; XIAN; (Motion Picture Expertgroup or ISO/IEC JTC1/SC29/WG111), No. N10942, Nov. 19, 2009, XP030017441. |
Anonymous: “Text of ISO/IEC 14496-12 3rd Edition”, 83 MPEG Meeting; Jan. 14-18, 2008; Antalya; (Motion Pictureexpert Group or ISO/IEC JTC1/SC29/WG11), No. N9678, Apr. 22, 2008, XP030016172. |
Anonymous: “Text of ISO/IEC 14496-15 2nd edition”, 91 MPEG Meeting; Jan. 18-22, 2010; Kyoto; (Motion Picture ExpertGroup or ISO/IEC JTC1/SC29/WG11, No. N11139, Jan. 22, 2010, XP030017636. |
Anthony Vetro, et al., “Joint Draft 8.0 on Multiview Video Coding”, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC 1/SC29/WG11 and ITU-T SG16 Q.6) 28th Meeting: Hannover, DE, 20-25, Document: JVT-AB204, Jul. 2008, pp. 1-63. |
Apple Inc., “On the time-stamps in the segment-inbox for httpstreaming (26.244, R9)”, TSG-SA4#58 meeting, Vancouver, Canada, Apr. 2010, p. 5. |
Bar-Noy, et al., “Competitive on-line stream merging algorithms for media-on-demand”, Draft (Jul. 2000), pp. 1-34. |
Bar-Noy et al. “Efficient algorithms for optimal stream merging for media-on-demand,” Draft (Aug. 2000), pp. 1-43. |
Bigloo, A. et al.: “A Robust Rate-Adaptive Hybrid ARQ Scheme and Frequency Hopping for Multiple-Access Communication Systems,” IEEE Journal on Selected Areas in Communications, US, IEEE Inc, New York (Jun. 1, 1994) pp. 917-924, XP000464977. |
Bitner, Jr., et al.: “Efficient Generation of the Binary Reflected Gray code and Its Applications,” Communications of the ACM, pp. 517-521, vol. 19 (9), 1976. |
Blorner, et al., “An XOR-Based Erasure-Resilient Coding Scheme,” ICSI Technical Report No. TR-95-048 (1995) [avail. At. ftp://ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-048.pdf]. |
Byers et al., “Accessing Multiple Mirror Sites in Parallel: Using Tornado Codes to Speed Up Downloads,” International Computer Science Institute Technical Report TR-98-021 (1998); pp. 275-283. |
Byers, J.W. et al.: “A Digital Fountain Approach to Reliable Distribution of Bulk Data,” Computer Communication Review, Association for Computing Machinery. New York, US, vol. 28, No. 4 (Oct. 1998) pp. 56-67 XP000914424 ISSN:0146-4833. |
Charles Lee L.H, “Error-Control Block Codes for Communications Engineers”, 2000, Artech House, XP002642221 pp. 39-45. |
Chen, et al,, U.S. Appl. No. titled “Frame Packing for Asymmetric Stereo Video”. |
Chen, et al., U.S. Patent Application titled “One-Stream Coding for Asymmetric Stereo Video”. |
Chen Ying et al., “Coding techniques in Multiview Video Coding and Joint Multiview Video Model”, Picture Coding Symposium, 2009, PCS 2009, IEEE, Piscataway, NJ, USA, May 6, 2009, pp. 1-4, XP031491747, ISBN: 978-1-4244-4593-6. |
Clark G.C., et al., “Error Correction Coding for Digital Communications, System Applications,” Error Correction Coding for Digital Communications, New York, Plenum Press, US, Jan. 1, 1981, pp. 339-341. |
D. Gozalvez et,al. “AL-FEC for Improved Mobile Reception of MPEG-2 DVB-Transport Streams” Hindawi Publishing Corporation, International Journal of Digital Multimedia Broadcasting vol. 2009, Dec. 31, 2009 , pp. 1-10, XP002582035 Retrieved from the Internet: URL:http://www.hindawi.com/journals/ijdrnb/2009/614178.html> [retrieved on May 12, 2010]. |
Dan, A. et al.: “Scheduling Policies for an On-Demand Video Server with Batching,” Proc. ACM Multimedia, pp. 391-398 (Oct. 1998). |
Davey, M.C. et al., “ISO/IEC 14496-15/FDIS, International Organization for Standardization Organization Internationale De Normalization ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and Audio”, ISO/IEC 2003, Aug. 11, 2003, pp. 1-34. |
David Singer, et al., “ISO/IEC 14496-15/FDIS, International Organization for Standardization Organization Internationale de Normalization ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and Audio”, ISO/IEC 2003, Aug. 11, 2003, pp. 1-34. |
Digital Fountain: “Raptor code specification for MBMS file download,” 3GPP SA4 PSM AD-HOC #31 (May 21, 2004) XP002355055 pp. 1-6. |
Digital Fountain: “Specification Text for Raptor Forward Error Correction,” TDOC S4-050249 of 3GPP TSG SA WG 4 Meeting #34 [Online](Feb. 25, 2005) pp. 1-23, XP002425167, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg—sa/WG4—CODEC/TSGS4—34/Docs. |
“Digital Video Broadcasting (DVB); Guidelines for the implementation of DVB-IP Phase 1 specifications; ETSI TS 102 542” ETSI Standards, LIS, Sophia Antipoliscedex, France, vol. BC, No. V1.2.1, Apr. 1, 2008, XP014041619 ISSN: 0000-0001 p. 43 p. 66 pp. 70, 71. |
Eager, et al. “Minimizing bandwidth requirements for on-demand data delivery,” Proceedings of the International Workshop on Advances in Multimedia Information Systems, pp. 80-87 (Indian Wells, CA Oct. 1999). |
Eager, et al., “Optimal and efficient merging schedules for video-on-demand servers”, Proc. ACM Multimedia, vol. 7, pp. 199-203 (1999). |
Esaki, et al.: “Reliable IP Multicast Communication Over ATM Networks Using Forward Error Correction Policy,” IEICE Transactions on Communications, JP, Institute of Electronics Information and Comm. ENG. Tokyo, vol. E78-V, No. 12, (Dec. 1995), pp. 1622-1637, XP000556183. |
Feng, G., Error Correcting Codes over Z2m for Algorithm-Based Fault-Tolerance, IEEE Transactions on Computers, vol. 43, No. 3, Mar. 1994, pp. 370-374. |
Fernando, et al., “httpstrearning of MPEG Media-Response to CfP”, 93 MPEG Meeting; Jul. 26-30, 2010; Geneva; (Motion Picture Expert Group or ISO/IEC JTC1/SC3E29/WG11), No. M17756, Jul. 22, 2010, XP030046346. |
Fielding, et al., “Hypertext Transfer Protocol-HTTP/1.1,” Network Working Group, RFC 2616, Jun. 1999, 165 pp. |
Frojdh, et al., “File format sub-track selection and switching,” ISO/IEC JTC1/SC29/WG11 MPEG2009 M16665, London UK., Jul. 2009, 14 pp. |
Gao, L. et al.: “Efficient Schemes for Broadcasting Popular Videos,” Proc. Inter. Workshop on Network and Operating System Support for Digital Audio and Video, pp. 1-13 (1998). |
Gemmell, et al., “A Scalable Multicast Architecture for One-To-Many Telepresentations”, Multimedia Computing and Systems, 1998/ Proceedings. IEEE International Conference on Austin, TX, USA Jun. 28-Jul. 1, 1998, Los Alamitos, CA USA, IEEE Comput, Soc, US, Jun. 28, 1998, pp. 128-139, XP010291559. |
Goyal: “Multiple Description Coding: Compression Meets the Network,” In Signal Processing Magazine, IEEE, vol. 18., Issue 5 (Sep. 2001) pp. 74-93 URL:http://www.rle.mit.edu/stir/documents/Goyal—SigProcMag2001—MD.pdf [Nov. 4, 2007]. |
Gozalvez D et, al: “Mobile reception of DVB-T services by means of AL-FEC protection” Proc. IEEE Intern. Symposium on Broadband Multimedia Systems and Broadcasting (BMSB '09), IEEE Piscataway, NJ, USA, May 13, 2009, pp. 1-5, XP031480155 ISBN: 978-1-4244-2590-7. |
Grineberg, et al., “Deliverable D3.2 MVC/SVC storage format” Jan. 29, 2009, XP002599508 Retrieved from the Internet: URL:http://www.ist-sea.eu/Public/SEA—D3.2—HHI FF—20090129.pdf [retrieved on Sep. 1, 2010] paragraph [02.3]. |
Hagenauer, J.: “Soft is better than hard” Communications, Coding and Cryptology, Kluwer Publication May 1994, XP002606615 Retrieved from the Internet: URL: http://www.Int.ei.turn.de/veroeffentlichungen/1994/ccc94h.pdf [retrieved on Oct. 25, 2010]. |
He Wenge et al., “Asymmetric Stereoscopic Video Encoding Algorithm Based on Joint Compensation Prediction”, IEEE International Conference on Communications and Mobile Computing, Jan. 6, 2009, pp. 191-194, XP031434775, ISBN: 978-0/7695-3501-2. |
Hershey, et al,, “Random Parity Coding (RPC)”, 1996 IEEE International Conference on Communications (ICC). Converging Technologies for Tomorrow's Applications. Dallas, Jun. 23-27, 1996, IEEE International Conference on Communications (ICC, New York, IEEE, US, vol. 1, Jun. 23, 1996, pp. 122-126, XP000625654. |
Hitachi Ltd, et al., “High-Definition Multimedia Interface,” Specification Version 1.4, Jun. 5, 2009; 425 pp. |
Hua, et al., “Skyscraper broadcasting: A new broadcsting system for metropolitan video-on-demand systems”, Proc. ACM SIGCOMM, pp. 89-100 (Cannes, France, 1997). |
Ian Trow, “Is 3D Event Coverage Using Existing Broadcast Infrastructure Technically Possible?”, International Broadcasting Conference, Sep. 9-13, 2009, XP030081671, pp. 4-5, “3D transmission over broadcast infrastructure” pp. 7-8, “Screen signaling” —Conclusions on 3D systems. |
IETF RFC 2733: Rosenberg, J. et al. An RTP Payload Format for Generic Forward Error Correction, Network Working Group, RFC 2733 (Dec. 1999). |
Information Technology-Generic Coding of Moving Pictures and Audio: Systems, Amendment 4: Transport of Multiview Video over ITU-T Rec H.222.0 | ISO/IEC 13818-1 “Text of ISO/IEC 13818-1:2007/FPDAM 4—Transport of Multiview Video over ITU-T Rec H.222.0 | ISO/IEC 13818-1,” Lausanne, Switzerland, 2009, 21 pp. |
International Standard ISO/IEC 14496-12, Information Technology—Coding of audio-visual objects—Part 12: ISO base media file format, Third Edition, Oct. 15, 2008, 120 pp. |
International Telecommunication Union, “ITU-T H.264, Series H: Audiovisual and Multimedia Systems, Infrastructure of audiovisual services—Coding of moving video, Advanced video coding for generic audiovisual services,” Mar. 2010, 669 pp. |
ISO/IEC 13818-1, “Information technology-Generic coding of moving pictures and associated audio information: Systems,” Second edition, Dec. 1, 2000, 174 pp. |
ISO/IEC JTC 1/SC 29, ISO/IEC FCD 23001-6, Information technology—MPEG systems technologies—Part 6: Dynamic adaptive streaming over HTTP (DASH), Jan. 28, 2011. |
“Joint Draft 8.0 on Multiview Video Coding”, 28th JVT meeting, Hannover, Germany, Document: JVT-AB204 (rev.1), Jul. 2008. available from http://wftp3.itu.int/av-arch/jvt-site/2008—07—Hannover/JVT-AB204. |
Juhn, L. et al.: “Adaptive Fast Data Broadcasting Scheme for Video-on-Demand Service,” IEEE Transactions on Broadcasting, vol. 44, No. 2, pp. 182-185 (Jun. 1998). |
Juhn, L. et al.: “Harmonic Broadcasting for Video-on-Demand Service,” IEEE Transactions on Broadcasting, vol. 43, No. 3, pp. 268-271 (Sep. 1997). |
Kallel, “Complementary Punctured Convolutional (CPC) Codes and Their Applications”, IEEE Transactions on Communications, IEEE Inc., New York, US, Vol. 43, No. 6, Jun. 1, 1995, pp. 2005-2009. |
Kimata H et al., “Inter-View Prediction With Downsampled Reference Pictures”, ITU Study Group 16—Video Coding Experts Group—ISO/IEC, MPEG & ITU-T VCEG(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q6), No. JVT-W079, Apr. 19, 2007, XP030007039. |
Kozamernik F: “Media streaming over the Internet”, Internet Citation, Oct. 2002, XP002266291, Retrieved from the Internet: URL: http://www.ebu.ch/trev—292-kozarnerni k.pdf [retrieved on Jan. 8, 2004] “section Video codecs for scalable streaming”. |
Lin, S. et al.: “Error Control Coding-Fundamentals and Applications,” 1983, Englewood Cliffs, pp. 288, XP002305226. |
Luby Digital Fountain A Shokrollahi Epfl M Watson Digital Fountain T Stockhammer Nomor Research M: “Raptor Forward Error Correction Scheme for Object Delivery; rfc5053.txt”, IETF Standard, Internet Engineering Task Force, IETF, CH, Oct. 1, 2007, XP015055125, ISSN: 0000-0003. |
Luby, et al., “Analysis of Low Density Codes and Improved Designs Using Irregular Graphs”, 1998, Proceedings of the 30th Annual ACM Symposium on Theory of Computing, May 23, 1998, pp. 249-258, XP000970907. |
Luby, et al., “Flute-File Delivery over Unidirectional Transport”, IETF RFC 3926, pp. 1-29, (Oct. 2004). |
Luby et al,, “Improved Low-Density Parity-Check Codes Using Irregular Graphs and Belief Propogation”, Information Theory, 1998, Proceedings. 1998 IEEE International Symposium on Cambridge, MA, USA Aug. 16-21, 1998; New York, NY, USA; IEEE; US Aug. 16, 199. |
Luby et, al. “Layered Coding Transport (LCT) Building Block”, IETF RFC 5651, pp. 1-42, (Oct. 2009). |
Luby, et al.: “Analysis of Low Density Codes and Improved Designs Using Irregular Graphs,” International Computer Science Institute Technical Report TR-97-045 (Nov. 1997) [available at ftp://ftp.icsi.berkeley.edu/pub/techreports/1997/tr-97-045.pdf]. |
Luby, M., et, al. “Forward Error Correction (FEC) Building Block”, IETF RFC 5052, pp. 1-31, (Aug. 2007). |
Luby, M., et al., “Raptor Forward Error Correction Scheme for Object Delivery”, IETF RFC5053, pp. 1-46 (Sep. 2007). |
Luby. M., et al., “RaptorQ Forward Error Correction Scheme for Object Delivery”, IETF draft ietf-rmt-bb-fec-raptorq-04, Reliable Multicast Transport, pp. 1-68, (Aug. 24, 2010). |
Luby, M., et al., “Request for Comments: 3453: The Use of Forward Error Correction (FEC) in Reliable Multicast,” Internet Article, [Online]Dec. 2002, pp. 1-19. |
Luby, M. et al.: “Efficient Erasure Correction Codes,” 2001, IEEE Transactions on Information Theory, vol. 47, No. 2, pp. 569-584, XP002305225. |
Luby M et al: “IPTV Systems, Standards and Architectures: Part II-Application Layer FEC In IPTV Services”IEEE Communications Magazine, IEEE Service Center, Piscataway, US LNKDDOI: 10.1109/MCOM.2088.4511656, vol. 46, No. 5, May 1, 2008, pp. 94-101, XP011226858 ISSN: 0163-6804. |
Luby, M, et al.: “Practical Loss-Resilient Codes: Tornado Codes,” 29th Annual ACM Symposium on Theory of Computing, vol. SYMP. 29, May 4, 1997, pp. 1-10, XP002271229. |
Luby, Michael G. “Analysis of Random Processes via And-Or Tree Evaluation,” Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms,TR-97-0, 1998, pp. 364-373, (search date: Jan. 25, 2010) URL: <http://portal.acm.prg.citation.cfm?id=314722>. |
Mandelbaum D.M., “An Adaptive-Feedback Coding Scheme Using Incremental Redundancy”, IEEE Trans on Information Theory, vol. May 1974, May 1974, pp. 388-389, XP002628271, the whole document. |
Marpe, et al., “The H.264/MPEG4 Advanced Video Coding Standard and its Applications,” Standards Report, IEEE Communications Magazine, Aug. 2006, pp. 134-143. |
Matsuoka H., et al:, “Low-Density Parity-Check Code Extensions Applied for Broadcast-Communication Integrated Content Delivery”, Research Laboratories, NTT DOCOMO, Inc., 3-6, Hikari-No-Oka, Yokosuka, Kanagawa, 239-8536, Japan. |
Min-Goo Kim: “On systematic punctured convolutional codes”, IEEE Trans on Communications, vol. 45, No. 2, Feb. 1997, XP002628272, the whole document, pp. 133-139. |
Huller, et al., “A test-bed for the dynamic adaptive streaming over HTTP featuring session mobility” MMSys '11 Proceedings of the second annual ACM conference on Multimedia systems, Feb. 23-25, 2011, San Jose, CA, pp. 271-276. |
Naguib, Ayman, et al., “Applications of Space-Time Block Codes and Interference.Suppression for High Capacity and High Data Rate Wireless Systems,” IEEE, 1998, pp. 1803-1810. |
Narayanan, et al., “Physical Layer Design for Packet Data Over IS-136”, Vehicular Technology Conference, 1997, IEEE 47th Phoenix, AZ, USA May 4-7, 1997, New York, NY, USA, IEEE, US May 4, 1997, pp. 1029-1033. |
Nokia Corp., “Usage of ‘mfra’ box for Random Access and Seeking,” S4-AHI127, 3GPP TSG-SA4 Ad-Hoc Meeting, Dec. 14-16, 2009, Paris, FR, 2 pp. |
Nonnenmacher, et al., “Parity-Based Loss Recovery for Reliable Multicast Transmission”, IEEE/ACM Transactions on Networking, IEEE Inc. New York, US, vol. 6, No. 4, Aug. 1, 1998, pp. 349-361. |
Ozden, B. et al.: “A Low-Cost Storage Service for Movie on Demand Databases,” Proceedings of the 20th Very Large DataBases (VLDB) Conference, Santiago, Chile (1994). |
PA. Chou, A. Mohr, A. Wang, S. Mehrotra, “FEC and Pseudo-ARQ for Receiver-Driven Layered Multicast of Audio and Video,” pp. 440-449, IEEE Computer Society, Data Compression Conference (2000). |
Pantos R et al., “HTTP Live Streaming; draft-pantos-http-live-streaming-OT.txt ”, HTTP Live Streaming; Draft-Pantos-HTTP-Live-Streaming-01;Txt, Internet Engineering Task Force, IETF; Standardworkingdraft, Internet Society (ISOC) 4, Rue des Falaises CH-1205 Geneva, Switzerland, No. 1, Jun. 8, 2009, XP015062692. |
Paris, et al., “A low bandwidth broadcasting protocol for video on demand”, Proc. International Conference on Computer Communications and Networks, vol. 7, pp. 690-697 (Oct. 1998). |
Paris, et al., “Efficient broadcasting protocols for video on demand”, International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication systems (MASCOTS), vol. 6, pp. 127-132 (Jul. 1998). |
Perkins, et al.: “Survey of Packet Loss Recovery Techniques for Streaming Audio,”, IEEE Network; Sep./Oct. 1998, pp. 40-48. |
Petition decision for Petition Under 37 C.F.R. § 1.78 to Accept an Unintentionally Delayed Priority Claim under 35 U.S.C. § 120 in U.S. Pat. No. 7,532,132, dated Jul. 21, 2011, 2 pages. |
Petition under 37 C.F.R. § 1.78 to Accept an Unintentionally Delayed Priority Claim under 35 U.S.C. § 120 in U.S. Pat. No. 7,532,132, dated May 27, 2011, 2 pages. |
Plank J. S., “A Tutorial on Reed-Solomon Coding for Fault-Tolerance I N Raid-Like Systems”, Software Practice & Experience, Wiley & Sons, Bognor Regis, GB, vol. 27, No. 9, Sep. 1, 1997, pp. 995-1012, XP00069594. |
Pless and WC Huffman EDS V S: Algebraic geometry codes, Handbook of Coding Theory, 1998, pp. 871-961, XP002300927. |
Pursley, et al.: “Variable-Rate Coding for Meteor-Burst Communications,” IEEE Transactions on Communications, US IEEE Inc. New York (1989) vol. 37, No. 11, pp. 1105-1112 XP000074533. |
Pursley, M. et al.: “A Correction and an Addendum for Variable-Rate Coding for Meteor-Burst Communications,” IEEE Transactions on Communications, vol. 43, No. 12 pp. 2866-2867 (Dec. 1995). |
Pyle, et al., “Microsoft httpsmooth Streaming: Microsoft response to the Call for Proposal on httpstreaming”, 93 MPEG Meeting; Jul. 26, 2010-Jul. 30, 2010; Geneva; (Motion Picture Expert Group or ISO/IEC JTC1/SCE29/WG11), No. M17902, Jul. 26-30, 2010, XP030046492. |
Qualcomm Europe S A R L: “Baseline Architecture and Definitions for HTTP Streaming”, 3GPP Draft; S4-090603—HTTP—Streaming—Architecture, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route des Lucioles; F-06921 Sophia-Antipolis Cedex; France, No. Kista; 20090812, Aug. 12, 2009, XP050356889. |
Qualcomm Incorporated: “Use Cases and Examples for Adaptive httpstrearning”, 3GPP Draft; S4-100408-Usecases-HSD, 3rd Generation Partnership Project (JGPP); Mobile Competence Centre; 650, Route des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. SA WG4, No. Prague, Czech Republic; 20100621, Jun. 17, 2010, XP050438085, [retrieved on Jun. 17, 2010]. |
Rangan, et al., “Designing an On-Demand Multimedia Service,” IEEE Communication Magazine, vol. 30, pp. 56-64, (Jul. 1992). |
RealNetworks Inc, et al., “Format for httpstreaming Media Presentation Description”, 3GPP Draft; S4-100020, 3RD Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. SA WG4, No. S t Julians, Malta; 20100125, Jan. 20, 2010, XP050437753, [retrieved on Jan. 20, 2010]. |
Research in Motion UK Limited; “An MPD delta file for httpstreaming”, 3GPP Draft; S4-100453, 3rd Generation Partnership Project (SGPP), Mobile Competence Centre; 650, Route des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. SA WG4, No. Prague, Czech Republic; 20100621, Jun. 16, 2010, XP050438066, [retrieved on Jun. 16, 2010]. |
Rhyu, et al., “Response to Call for Proposals on httpstrearning of MPEG Media”, 93 MPEG Meeting; Jul 26-30, 2010; Geneva; (Motion Picture Expert Group or ISO/IEC JTC1/SCE29/WG11) No. M17779, Jul. 26, 2010, XP030046369. |
Rizzo, L. “Effective Erasure Codes for Reliable Computer Communication Protocols,” Computer Communication Review, 27 (2) pp. 24-36 (Apr. 1, 1997), XP000696916. |
Roca, V., et, al. “Low Density Parity Check (LDPC) Staircase and Triangle Forward Error Correction (FEC) Schemes”, IETF RFC 5170 (Jun. 2008), pp. 1-34. |
Roca, V. et al.: “Design, Evaluation and Comparison of Four Large Block FEC Codecs, LDPC, LDGM, LDGM Staircase and LDGM Triangle, plus a Reed-Solomon Small Block Fec Codec,” INRIA Research Report RR-5225 (2004). |
Rost, S. et al.: “The Cyclone Server Architecture: streamlining delivery of popular content,” 2002, Computer Communications, vol. 25, No. 4, pp. 403-412. |
Roth, R., et al., “A Construction of Non-Reed-Solomon Type MDS Codes”, IEEE Transactions of Information Theory, vol. 35, No. 3, May 1989, pp. 655-657. |
Roth, R., “On MDS Codes via Cauchy Matrices”, IEEE Transactions on Information Theory, vol. 35, No, 6, Nov. 1989, pp. 1314-1319. |
Schwarz, Heiko et al., “Overview of the Scalable Video Coding Extension of the H.264/AVC Standard”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 17, No. 9, Sep. 2007, pp. 1103-1120. |
Seshan, S. et al.: “Handoffs in Cellular Wireless Networks: The Daedalus Implementation.And Experience,” Wireless Personal Communications, NL; Kluwer Academic Publishers, vol. 4, No. 2 (Mar. 1, 1997) pp. 141-162, XP000728589. |
Shacham: “Packet Recovery and Error Correction in High-Speed Wide-Area Networks,” Proceedings of the Military Communications Conference. (Milcom), US, New York, IEEE, vol. 1, pp. 551-557 (1989) XP000131876. |
Shierl T; Gruneberg K; Narasimhan S; Vetro A: “ISO/IEC 13818-1:20071FPDAM 4-Information Technology Generic Coding of Moving Pictures and Audio Systems amendment 4: Transport of Multiview Video over ITU-T Rec H.222.0 ISO/IEC 13818-1” ITU-T Rec.H.222.0(May 2006)FPDAM 4, vol. MPEG2009, No. 10572, May 11, 2009, pp. 1-20, XP002605067 p. 11, last two paragraphs sections 2.6.78 and 2.6.79 table T-1. |
Shokrollahi, A.: “Raptor Codes,” Internet Citation [Online] (Jan. 13, 2004) XP002367883, Retrieved from the Internet: URL:http://www.cs.huji.ac.il/labs/danss/p2p/resources/raptor.pdf. |
Shokrollahi, Amin. “Raptor Codes,” IEEE Transactions on Information Theory, Jun. 2006, vol. 52, No. 6, pp. 2551-2567, (search date: Feb. 1, 2010) URL: <http://portal.acm.org/citation.cfm?id=1148681>. |
Shokrollahi et al., “Design of Efficient Easure Codes with Differential Evolution”, IEEE International Symposium on Information Theory, Jun. 25, 2000, pp. 5-5. |
Sincoskie, W. D., “System Architecture for Large Scale Video on Demand Service,” Computer Network and ISDN Systems, pp. 155-162, (1991). |
Stockhammer, “WD 0.1 of 23001-6 Dynamic Adaptive Streaming over HTTP (DASH)”, MPEG-4 Systems, International Organisation for Standardisation, ISO/IEC JTC1/SC29/WG11, Coding of Moving Pictures and Audio, MPEG 2010 Geneva/m11398, Jan. 6, 2011, 16 pp. |
Sullivan et al., Document: JVT-AA007, “Editors' Draft Revision to ITU-T Rec. H.264|ISO/IEC 14496-10 Advanced Video Coding-In Preparation for ITU-T SG 16 AAP Consent (in integrated form),” Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6), 30th Meeting: Geneva, CH, Jan. 29-Feb. 3, 2009, pp. 1-683, http://wftp3.itu.int/av-arch/jvt-site/2009—01—Geneva/JVT-AD007.zip. |
Sun, et al., “Seamless Switching of Scalable Video Bitstreams for Efficient Streaming,” IEEE Transactions on Multimedia, vol. 6, No. 2, Apr. 2004, pp. 291-303. |
Telefon AB LM Ericsson, et al., “Media Presentation Description in httpstreaming”, 3GPP Draft; S4-10080-MPD, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. SA WG4, No. St Julians, Malta; 20100125, Jan. 20, 2010, XP050437773, [retrieved on Jan. 20, 2010]. |
Thomas Wiegand, et al., “Joint Draft ITU-T Rec. H.264 | ISO/IEC 14496-10 / Amd.3 Scalable video coding”, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6) 24th Meeting: Geneva, Switzerland, Jun. 29-Jul. 5, 2007, pp. 1-559. |
Tiago Gasiba et, al. “System Design and Advanced Receiver Techniques for MBMS Broadcast Services” PROC. 2006 International Conference on Communications (ICC 2006), Jun. 1, 2006, pp. 5444-5450, XP031025781 ISBN; 978-1-4244-0354-7. |
U.S. Appl. No. 12/840,146, by Ying Chen et al., filed Jul. 20, 2010. |
U.S. Appl. No. 12/908,537, by Ying Chen et al., filed Oct. 20, 2010. |
U.S. Appl. No. 12/908,593, by Ying Chen et al., filed Oct. 20, 2010. |
U.S. Appl. No. 13/082,051, by Ying Chen et al., filed Apr. 7, 2011. |
U.S. Appl. No. 13/205,559, by Ying Chen et al., filed Aug. 8 2011. |
U.S. Appl. No. 13/205,565, by Ying Chen et al., filed Aug. 8, 2011. |
U.S. Appl. No. 13/205,574, by Ying Chen et al., filed Aug. 8, 2011. |
Universal Mobile Telecommunications System (UMTS); LTE; Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs (3GPP TS 26.234 version 9.3.0 Release 9), Technical Specification, European Telecommunications Standards Institute (ETSI), 650, Route des Lucioles; F-06921 Sophia-Antipolis; France, vol. 3GPP SA, No. V9.3.0, Jun. 1, 2010, XP014047290, paragraphs [5.5.4.2], [5.5.4.3], [5.5.4.4], [5.4.5], [5.5.4.6]paragraphs [10.2.3], [11.2.7], [12.2.3], [12.4.2]paragraphs [12.6.3], [12.6.3.1], [12.6.4], [12.6.6]. |
Viswanathan, et al., “Metropolitan area video-on-demand services using pyramid broadcasting”, Multimedia Systems, 4(4): 197-208 (1996). |
Viswanathan, et al., “Pyramid Broadcasting for Video-on-Demand Service”, Proceedings of the SPIE Multimedia Computing and Networking Conference, vol. 2417, pp. 66-77 (San Jose, CA, Feb. 1995). |
Viswanathan,Suhramaniyam R., “Publishing in Wireless and Wireline Environments,” Ph. D Thesis, Rutgers, The State University of New Jersey (Nov. 1994), 180 pages. |
Wang,“On Random Access”, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC/SC29/WG11 and ITU-T SG16 Q.6), 4th Meeting: Klagenfurt, Austria, Jul. 22-26, 2002, p. 13. |
Watson, M., et, al. “Asynchronous Layered Coding (ALC) Protocol Instantiation”, IETF RFC 5775, pp. 1-23, (Apr. 2010). |
Wenger, et al., RFC 3984, “RTP Payload Format for H.264 Video,” Feb. 2005, 84 pp. |
Wong, J.W., “Broadcast delivery”, Proceedings of the IEEE, 76(12): 1566-1577, (1988). |
Yamauchi, Nagamasa. “Application of Lost Packet Recovery by Front Error Correction to Internet Multimedia Transfer” Proceedings of Workshop for Multimedia Communication and Distributed Processing, Japan, Information Processing Society of Japan (IPS), Dec. 6, 2000, vol. 2000, No. 15, pp. 145-150. |
Yin et al., “Modified Belief-Propogation algorithm for Decoding of Irregular Low-Density Parity-Check Codes”, Electronics Letters, IEE Stevenage, GB, vol. 38, No. 24, Nov. 21, 2002, pp. 1551-1553. |
Ying Chen et al: “Response to the CfP on HTTP Streaming: Adaptive Video Streaming based on AVC”, 93 MPEG Meeting; Jul. 26-30, 2010; Geneva; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11), No. M17909, Jul. 26, 2010, XP030046499. |
Zorzi, et al.: “On the Statistics of Block Errors in Bursty Channels,” IEEE Transactions on Communications, vol. 45, No. 6, Jun. 1997, pp. 660-667. |
Bross, et al., “High efficiency video coding (HEVC) text specification draft 6,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 JCTVC-H1003, 7th Meeting: Geneva, CH, Nov. 21-30, 2011, pp. 259. |
Bross, et al., “High efficiency video coding (HEVC) text specification draft 7,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 9th Meeting: Geneva, CH, Apr. 27-May 7, 2012, JCTVC-I1003—d21, pp. 290. |
Bross, et al., “High efficiency video coding (HEVC) text specification draft 8,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 10th Meeting: Stockholm, SE, Jul. 11-20, 2012, JCTVC-J1003—d7, pp. 261. |
Bross et al., “WD4: Working Draft 4 of High-Efficiency Video Coding,” JCTVC-F803—d2, (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 Joint Collaborative Team on Video Coding, 6th Meeting, Torino, IT, Jul. 14-22, 2011, 226 pages. |
Bross et al., “WD5: Working Draft 5 of High-Efficiency Video Coding,” JCTVC-G1103—d2, (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 Joint Collaborative Team on Video Coding, 7th Meeting, Geneva, Switzerland (Nov. 2011), 214 pages. |
Cataldi et al., “Sliding-Window Raptor Codes for Efficient Scalable Wireless Video Broadcasting With Unequal Loss Protection”, IEEE Transactions on Image Processing, Jun. 1, 2010, pp. 1491-1503, vol. 19, No. 6, IEEE Service Center, XP011328559, ISSN: 1057-7149, DOI: 10.1109/TIP.2010.2042985. |
Choi S: “Temporally enhanced erasure codes for reliable communication protocols” Computer Networks, Elsevier Science Publishers B.V., Amsterdam, NL, vol . 38, No. 6, Apr. 22, 2002, pp. 713-730, XP004345778, ISSN: 1389-1286, DOI:10.1016/S1389-1286(01)00280-8. |
European Search Report—EP10013235—Search Authority—The Hague—Aug. 20, 2012. |
Gracie et al., “ Turbo and Turbo-Like Codes: Principles and Applications in Telecommunications”, Proceedings of the IEEE, Jun. 1, 2007, pp. 1228-1254, vol. 95, No. 6, IEEE, XP011189323, ISSN: 0018-9219, DOI: 10.1109/JPROC.2007.895197. |
Huawei et al., “Implict mapping between CCE and PUCCH for ACK/NACK TDD”, 3GPP Draft; R1-082359, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Warsaw, Poland, Jun. 24, 2008, XP050110650, [retrieved on Jun. 24, 2008]. |
ITU-T H.264, Series H: Audiovisual and Multimedia Systems, Infrastructure of audiovisual services—Coding of moving video, Advanced video coding for generic audiovisual services, The International Telecommunication Union. Jun. 2011, 674 pp. |
Jiang., File Format for Scalable Video Coding, PowerPoint Presentation for CMPT 820, Summer 2008. |
Jin Li, “The Efficient Implementation of Reed-Solomon High Rate Erasure Resilient Codes” Proc. 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, USA, IEEE, Piscataway, NJ, vol . 3, Mar. 18, 2005, pp. 1097-1100, XP010792442, DOI: 10.1109/ICASSP.2005.1415905 ISBN: 978-0-7803-8874-1. |
Kimura et al., “A Highly Mobile SDM-OFDM System Using Reduced-Complexity-and-Latency Processing”, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Sep. 1, 2007, pp. 1-5, IEEE, XP031168836, ISBN: 978-1-4244-1143-6, DOI: 10.1109/PIMRC.2007.4394758. |
Lee L., et al.,“VLSI implementation for low density parity check decoder”, Proceedings of the 8th IEEE International Conference on Elecctronics, Circuits and Systems, 2001. ICECS 2001, Sep. 2, 2001, vol. 3, pp. 1223-1226. |
Luby Qualcomm Incorporated, “Universal Object Delivery using RaptorQ; draft-luby-uod-raptorq-OO.txt”, Internet Engineering Task Force (IETF), Standardworkingdraft, Internet Society (ISOC), Mar. 7, 2011, pp. 1-10, XP015074424, [retrieved on Mar. 7, 2011] . |
MacKay, “Fountain codes Capacity approaching codes design and implementation”, IEE Proceedings: Communications, Dec. 9, 2005, pp. 1062-1068, vol. 152, No. 6, Institution of Electrical Engineers, XP006025749, ISSN: 1350-2425, DOI: 10.1049/IP-C0M:20050237. |
Nokia: “Reed-Solomon Code Specification for. MBMS Download and Streaming Services”, 3GPP Draft; 54-050265—RS—SPEC, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. SA WG4, No. San Diego, USA; 20050415, Apr. 15, 2005, XP050287675, [retrieved on Apr. 15, 2005]. |
Pantos, “HTTP Live Streaming draft-pantos-http-live-streaming-02”, Informational, Internet-Draft, Intended status: Informational, Expires: Apr. 8, 2010, http://tools.ietf.org/html/draft-pantos-http-live-streaming-02, pp. 1-20, Oct. 5, 2009. |
Thomas Wiegand et al.,“WD1: Working Draft 1 of High-Efficiency Video Coding”, JCTVC-C403, Joint Collaborative Team on Video Coding (JCT-VC), of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 3rd Meeting: Guangzhou, CN, Oct. 7-15, 2010. |
Todd, “Error Correction Coding: Mathematical Methods and Algorithms”, Mathematical Methods and Algorithms, Jan. 1, 2005, pp. 451-534, Wiley, XP002618913. |
Tsunoda T., et al., “Reliable Streaming Contents Delivery by Using Multiple Paths,” Technical Report of The Institute of Electronics, Information and Communication Engineers, Japan, Mar. 2004, vol. 103, No. 692, pp. 187-190, NS2003-331, IN2003-286. |
Wiegand et al., “WD3: Working Draft 3 of High-Efficiency Video Coding,” Document JCTVC-E603, 5th Meeting: Geneva, CH, Mar. 16-23, 2011,193 pp. |
Wiegand T. et al., “WD2: Working Draft 2 of High-Efficiency Video Coding”, 20110128, No. JCTVC-D503, Jan. 28, 2011, XP002679642, Retrieved from the Internet: URL: http://wftp3.itu.int/av-archictvc-site/2011—01—D—Daegu/ [retrieved on Jul 11, 2012]. |
Yamanouchi N., et al., “Internet Multimedia Transmission with Packet by Using Forward Error Correction,” Proceedings of DPS Workshop, The Information Processing Society of Japan, Dec. 6, 2000, vol. 2000, No. 15, pp. 145-150. |
Anonymous: “Technologies under Consideration”, 100. MPEG Meeting;Apr. 30-May 4, 2012; Geneva; (Motion Picture Expert Group or ISO/IEC JTC1 /SC29/WG11) No. N12682, Jun. 7, 2012, XP030019156. |
Gil A., et al., “Personalized Multimedia Touristic Services for Hybrid Broadcast/Broadband Mobile Receivers,” IEEE Transactions on Consumer Electronics, 2010, vol. 56 (1), pp. 211-219. |
Hannuksela M.M., et al., “DASH: Indication of Subsegments Starting with SAP, 97. MPEG Meeting; Jul. 18-22, 2011; Torino; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11)” No. m21096, Jul. 21, 2011, XP030049659. |
Hannuksela M.M., et al., “ISOBMFf: SAP definitions and ‘sidx’ box”, 97. MPEG Meeting; Jul. 18-22, 2011; Torino; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11) No. m21435, Jul. 22, 2011, XP030049998. |
Li, M., et al., “Playout Buffer and Rate Optimization for Streaming over IEEE 802.11 Wireless Networks”, Aug. 2009, Worcester Polytechnic Institute, USA. |
Michael G et al., “Improved low-density parity-check codes using irregular graphs”, Information Theory, IEEE Transactions on,Feb. 2001,vol. 47, No. 2, pp. 585-598. |
Ohashi A et al., “Low-Density Parity-Check (LDPC) Decoding of Quantized Data,” Technical Report of the Institute of Electronics, Information and Communication Engineers, Aug. 23, 2002, vol. 102, No. 282, pp. 47-52, RCS2002-154. |
Roumy A., et al., “Unequal Erasure Protection and Object Bundle Protection with the Generalized Object Encoding Approach”, Inria-00612583, Version 1, Jul. 29, 2011, 25 pages. |
Schulzrinne, et al., “Real Time Streaming Protocol (RTSP)” Network Working Group, Request for Comments: 2326, Apr. 1998, pp. 1-92. |
Stockhammer T., et al., “DASH: Improvements on Representation Access Points and related flags”, 97. MPEG Meeting; Jul. 18-22, 2011; Torino; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11) No. m20339, Jul. 24, 2011, XP030048903. |
Wadayama T, “Introduction to Low Density Parity Check Codes and Sum-Product Algorithm,” Technical Report of The Institute of Electronics, Information and Communication Engineers, Dec. 6, 2001, vol. 101, No. 498, pp. 39-46, MR2001-83. |
Yamazaki M., et al., “Multilevel Block Modulation Codes Construction of Generalized DFT,” Technical Report of the Institute of Electronics, Information and Communication Engineers, Jan. 24, 1997, vol. 96, No. 494, pp. 19-24, IT96-50. |
3GPP: “3rd Generation Partnership Project; Technical Specification Group Services and system Aspects; Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs (Release 6)”, Sophia Antipolis, France, Jun. 1, 2005, XP002695256, Retrieved from the Internet: URL:http://www.etsi.org/deliver/etsits/126300—126399/126346/06.01.00—60/ts—126346v060100p.pdf. |
3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Transparent end-to-end Packet-switched Streaming Service (PSS); Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-Dash) (Release 10), 3GPP Standard; 3GPP TS 26.247, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. SA WG4, No. V10.0.0, Jun. 17, 2011, pp. 1-94, XP050553206, [retrieved on Jun. 17, 2011]. |
Anonymous: “Technologies under Consideration”, 98. MPEG Meeting; Nov. 28, 2011-Feb. 12, 2011; Geneva; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11) No. N12330, Dec. 3, 2011, XP030018825. |
Anonymous: “Text of ISO/IEC IS 23009-1 Media Presentation Description and Segment Formats”, 98. MPEG Meeting; Nov. 28, 2011-Feb. 12, 2012; Geneva; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11) No. N12329, Jan. 6, 2012, XP030018824. |
Atis: “PTV Content on Demand Service”, IIF-WT-063R44, Nov. 11, 2010, pp. 1-124, XP055045168, Retrieved from the Internet: URL:ftp://vqeg.its.bldrdoc.gov/DocumentsNQEG—Atlanta—Nov.10/MeetingFiles/Liaison/IIFWT-063R44—Content—on—Demand.pdf [retrieved on Nov. 22, 2012]. |
Bouazizi I., et al., “Proposals for ALC/Flute server file format (14496-12Amd.2)”, 77. MPEG Meeting; Jul. 17-21, 2006; Klagenfurt; (Motion Pictureexpert Group or ISO/IEC JTC1/SC29/WG11), No. M13675, Jul. 12, 2006, XP030042344, ISSN: 0000-0236. |
“Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television; ETSI EN 300 744” ETSI Standards, LIS, Sophia Antipolis Cedex, France, V1.6.1, pp. 9, Jan. 10, 2009. |
Frojdh P., et al., “Study on 14496-12:2005/PDAM2 ALU/ FLUTE Server File Format”, 78.MPEG Meeting; Oct. 23-27, 2006; Hangzhou: (Motion Picturexpert Group or ISO/IEC JTC1/SC29/WG11) No. M13855, Oct. 13, 2006, XP030042523, ISSN: 0000-0233. |
Kim J., et al., “Enhanced Adaptive Modulation and Coding Schemes Based on Multiple Channel Reportings for Wireless Multicast Systems”, 62nd IEEE Vehicular Technology Conference, VTC-2005-Fall, Sep. 25-28, 2005, vol. 2, pp. 725-729, XP010878578, DOI: 1 0.11 09/VETECF.2005.1558019, ISBN: 978-0-7803-9152-9. |
Luby et al., RaptorQ Forward Error Correction Scheme for Object Delivery draft-ietf-rmt-bb-fec-raptorq-00, Qualcomm, Inc. Jan. 28, 2010. |
Moriyama, S., “5. Present Situation of Terrestrial Digital Broadcasting in Europe and USA”, Journal of the Institute of Image Information and Television Engineers, Nov. 20, 1999, Vol. 53, No. 11, pp. 1476-1478. |
Motorola et al: “An Analysis of DCD Channel Mapping to BCAST File Delivery Sessions; OMA-CD-DCD-2007-0112-INP—DCD—Channel—Mapping—to—BCAST—Fi1e—Delivery”, OMA-CD-DCD-2007-0112-INP—DCD—Channel—Mapping—BCAST—File—Delivery, Open Mobile Alliance (OMA), 4330 La Jolla Village Dr., Suite 110 San Diego, CA 92122; USA Oct. 2, 2007, pp. 1-13, XP064036903. |
Bross, et al., “High efficiency video coding (HEVC) text specification draft 6,” JCTVC-H1003, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 8th Meeting: San Jose, CA, USA, Feb. 1-10, 2012, 259 pp. |
Makoto N., et al., “On Tuning of Blocking LU decomposition for VP2000 series” The 42th Information Processing Society of Japan Conference (1st term in 1991), Feb. 25, 1991, pp. 71-72, 4B-8. |
Miller G., et al., “Bounds on the maximum likelihood decoding error probability of low density parity check codes”, Information Theory, 2000. Proceedings. IEEE International Symposium on, 2000, p. 290. |
Muramatsu J., et al., “Low density parity check matrices for coding of multiple access networks”, Information Theory Workshop, 2003. Proceedings. 2003 IEEE , Apr. 4, 2003, pp. 304-307. |
Qualcomm Incorporated: “RaptorQ Technical Overview”, pp. 1-12, Oct. 1, 2010. |
Samukawa, H. “Blocked Algorithm for LU Decomposition” Journal of the Information Processing Society of Japan, Mar. 15, 1993, vol. 34, No. 3, pp. 398-408. |
3GPP TSG-SA4 #57 S4-100015, IMS based PSS and MBMS User Service extensions, Jan. 19, 2010, URL: http://www.3gpp.org/ftp/tsg—sa/WG4—CODEC/TSGS4—57/docs/S4-100015.zip. |
3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Transparent end-to-end Packet-switched Streaming Service (PSS);Protocols and codecs(Release 9) 3GPP TS 26.234 V9.3.0, Jun. 23, 2010 pp. 85-102, URL, http://www.3gpp.org/ftp/TSG—SA/WG4—CODEC/TSGS4—59/Docs/S4-100511.zip, 26234-930.zip. |
Lee, J.Y., “Description of Evaluation Experiments on ISO/IEC 23001-6, Dynamic Adaptive Streaming over HTTP”, ISO/IEC JTC1/SC29/WG11MPEG2010/N11450, Jul. 31, 2010, 16 pp. |
Luby M., “Simple Forward Error Correction (FEC) Schemes,” draft-luby-rmt-bb-fec-supp-simple-00.txt, pp. 1-14, Jun. 2004. |
Luby M., “LT Codes”, Foundations of Computer Science, 2002, Proceedings, The 43rd Annual IEEE Symposium on, 2002. |
Morioka S., “A Verification Methodology for Error Correction Circuits over Galois Fields”, Tokyo Research Laboratory, IBM Japan Ltd, pp. 275-280, Apr. 22-23, 2002. |
Qualcomm Incorporated: “Adaptive HTTP Streaming: Complete Proposal”, 3GPP TSG-SA4 AHI Meeting S4-AHI170, Mar. 2, 2010, URL, http://www.3gpp.org/FTP/tsg—sa/WG4—CODEC/Ad-hoc—MBS/Docs—AHI/S4-AH170—CR—AdaptiveHTTPStreaming-Full.doc. |
Qualcomm Incorporated: “Corrections to 3GPP Adaptive HTTP Streaming”, 3GPP TSG-SA4 #59 Change Request 26.234 CR0172 S4-100403, Jun. 16, 2010, URL, http://www.3gpp.org/FTP/tSG—sa/WG4 Codec/TSGS4—59/Docs/S4-100403.zip, S4-100403—CR—26234-0172-AdaptiveHTTPStreaming-Rel-9.doc. |
Chikara S., et al., “Add-on Download Scheme for Multicast Content Distribution Using LT Codes”, IEICE. B, Communications, Aug. 1, 2006, J89-B (8), pp. 1379-1389. |
Hasan M a., et al., “Architecture for a Low Complexity Rate-Adaptive Reed-Solomon Encoder”, IEEE Transactions on Computers, IEEE Service Center, Los Alamitos, CA, US, vol. 44, No. 7, Jul. 1, 1995, pp. 938-942, XP000525729, ISSN: 0018-9340, DOI: 10.1109/12.392853. |
Tetsuo M., et al., “Comparison of Loss Resilient Ability between Multi-Stage and Reed-Solomon Coding”, Technical report of IEICE. CQ, Communications Quality, vol. 103 (178), Jul. 4, 2003, pp. 19-24. |
Gerard F., et al., “HTTP Streaming MPEG media—Response to CFP”, 93. MPEG Meeting, Geneva Jul. 26-30, 2010. |
Supplementary European Search Report—EP08831086—Search Authority—Munich—Oct. 6, 2014. |
Watson M., et al., “Forward Error Correction (FEC) Framework draft-ietf-fecframe-framework-11,” 2011, pp. 1-38, URL,http://tools.ietf.org/pdf/draft-ietf-fecframe-framework-11.pdf. |
Watson M., et al., “Raptor FEC Schemes for FEC FRAME draft-ietf-fecframe-raptor-04,” 2010, pp. 1-21, URL,http://tools.ietf.org/pdf/draft-ietf-fecframe-raptor-04.pdf. |
Qualcomm Incorporated: “RatorQ Forward Error Correction Scheme for Object Delivery draft-ietf-rmt-bb-fec-raptorq-04”, Internet Engineering Task Force, IETF, pp. 1-68, Aug. 24, 2010. |
Ramsey B, “HTTP Status: 206 Partial Content and Range Requests,” May 5, 2008 obtained at http://benramsey.com/blog/2008/05/206-partial-content-and-range-requests/. |
Number | Date | Country | |
---|---|---|---|
20090067551 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
61093277 | Aug 2008 | US | |
60971884 | Sep 2007 | US |