Generating data clusters

Information

  • Patent Grant
  • 10216801
  • Patent Number
    10,216,801
  • Date Filed
    Wednesday, August 5, 2015
    9 years ago
  • Date Issued
    Tuesday, February 26, 2019
    5 years ago
Abstract
Techniques are disclosed for for prioritizing a plurality of clusters. Prioritizing clusters may generally include identifying a scoring strategy for prioritizing the plurality of clusters. Each cluster is generated from a seed and stores a collection of data retrieved using the seed. For each cluster, elements of the collection of data stored by the cluster are evaluated according to the scoring strategy and a score is assigned to the cluster based on the evaluation. The clusters may be ranked according to the respective scores assigned to the plurality of clusters. The collection of data stored by each cluster may include financial data evaluated by the scoring strategy for a risk of fraud. The score assigned to each cluster may correspond to an amount at risk.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of the present invention generally relate to data analysis and, more specifically, to generating data clusters of related data entities with customizable analysis strategies.


2. Description of the Related Art


In financial and security investigations an analyst may have to make decisions regarding data entities within a collection of data. For instance, the analyst could have to decide whether an account data entity represents a fraudulent bank account. However, an individual data entity oftentimes includes insufficient information for the analyst to make such decisions. The analyst makes better decisions based upon a collection of related data entities. For instance, two financial transactions may be related by an identical account identifier or two accounts belonging to one customer may be related by an identical customer identifier or other attribute (e.g., a shared phone number or address). Some currently available systems assist the analyst by identifying data entities that are directly related to an initial data entity. For example, the analyst could initiate an investigation with a single suspicious data entity or “seed,” such as a fraudulent credit card account. If the analyst examined this data entity by itself, then the analyst would not observe any suspicious characteristics. However, the analyst could request a list of data entities related to the seed by a shared attribute, such as a customer identifier. In doing so, the analyst could discover an additional data entity, such as an additional credit card account, which relates to the original fraudulent account because of a shared customer identifier. The analyst could then mark the additional credit card account as potentially fraudulent, based upon the relationship of the shared customer identifier.


Although these systems can be very helpful in discovering related data entities, they typically require the analyst to manually repeat the same series of searches for many investigations. Repeating the same investigation process consumes time and resources, such that there are oftentimes more investigations than can be performed. Thus, analysts typically prioritize investigations based upon the characteristics of the seeds. However, there may be insignificant differences between the seeds, so the analyst may not be able to determine the correct priority for investigations. For instance, the analyst could have to choose between two potential investigations based upon separate fraudulent credit card accounts. One investigation could reveal more potentially fraudulent credit card accounts than the other, and therefore could be more important to perform. Yet, the characteristics of the two original credit card accounts could be similar, so the analyst would not be able to choose the more important investigation. Without more information, prioritizing investigations is difficult and error prone.


SUMMARY OF THE INVENTION

One embodiment of the invention includes a method for prioritizing a plurality of clusters. This method may generally include identifying a scoring strategy for prioritizing the plurality of clusters. Each cluster is generated from a seed and stores a collection of data retrieved using the seed. For each cluster, elements of the collection of data stored by the cluster are evaluated according to the scoring strategy and a score is assigned to the cluster based on the evaluation. This method may also include ranking the clusters according to the respective scores assigned to the plurality of clusters. The collection of data stored by each cluster may include financial data evaluated by the scoring strategy for a risk of fraud. The score assigned to each cluster corresponds to an amount at risk.


In a particular embodiment, assigning a respective score to the cluster based on the evaluation may include determining a plurality of base scores and determining, as the score to assign to the cluster, an aggregate score from the plurality of base scores.


Other embodiments include, without limitation, a computer-readable medium that includes instructions that enable a processing unit to implement one or more aspects of the disclosed methods as well as a system having a processor, memory, and application programs configured to implement one or more aspects of the disclosed methods.


Advantageously, the disclosed techniques provide a more effective starting point for an investigation of financial and security data entities. An analyst is able to start the investigation from a cluster of related data entities instead of an individual data entity, which may reduce the amount of time and effort required to perform the investigation. The disclosed techniques also provide a prioritization of multiple clusters. The analyst is also able to start the investigation from a high priority cluster, which may allow the analyst to focus on the most important investigations.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is a block diagram illustrating an example data analysis system, according to one embodiment.



FIG. 2 illustrates the generation of clusters by the data analysis system, according to one embodiment.



FIGS. 3A-3C illustrate the growth of a cluster of related data entities, according to one embodiment.



FIG. 4 illustrates the ranking of clusters by the data analysis system, according to one embodiment of the present invention.



FIG. 5 illustrates an example cluster analysis user interface (UI), according to one embodiment.



FIG. 6 is a flow diagram of method steps for generating clusters, according to one embodiment.



FIG. 7 is a flow diagram of method steps for scoring clusters, according to one embodiment.



FIG. 8 illustrates components of a server computing system, according to one embodiment.





DETAILED DESCRIPTION

Embodiments of the invention provide techniques for building clusters of related data from an initial data entity, called a seed. The seed and related data entities may be available from databases maintained by a financial institution. Such databases may include a variety of information, such as credit card accounts, customer identifiers, customer information, and transactions, as well as the relationships that link those data entities together, stored across different systems controlled by different entities. Embodiments bring together data from multiple datasets such as these to build clusters. To perform financial and security investigations related to the seed, an analyst may have to search several layers of related data entities. For example, the analyst could investigate data entities related to a seed credit card account, by discovering the customer identifiers associated with the credit card account, the phone numbers associated with those customer identifiers, the additional customer identifiers associated with those phone numbers, and finally the additional credit card accounts associated with those additional customer identifiers. If the seed credit card account were fraudulent, then the analyst could determine that the additional credit card accounts could also be fraudulent. In such an investigation, the analyst would discover the relationship between the additional credit card accounts and the seed credit card accounts through several layers of related data entities. This technique is particularly valuable for investigations where the relationship between data entities could include several layers and would be difficult to identify.


In one embodiment, the data analysis system automatically discovers data entities related to a seed and stores the resulting relationships and related data entities together in a “cluster.” A cluster generation strategy specifies what searches to perform at each step of the investigation process. The searches produce layers of related data entities to add to the cluster. Thus, the analyst starts an investigation with the resulting cluster, instead of the seed alone. Starting with the cluster, the analyst may form opinions regarding the related data entities, conduct further analysis of the related data entities, or may query for additional related data entities. Further, for numerous such seeds and associated investigations, the data analysis system may prioritize the clusters based upon an aggregation of characteristics of the related data entities within the clusters. The data analysis system then displays summaries of the clusters. The summaries may be displayed according to the prioritization. The prioritization may assist the analyst in selecting what clusters to investigate.


In the following description, numerous specific details are set forth to provide a more thorough understanding of the present invention. However, it will be apparent to one of skill in the art that the present invention may be practiced without one or more of these specific details.



FIG. 1 is a block diagram illustrating an example data analysis system 100, according to one embodiment of the present invention. As shown, the data analysis system 100 includes an application server 115 running on a server computing system 110, a client 135 running on a client computer system 130, and at least one database 140. Further, the client 135, application server 115, and database 140 may communicate over a network 150, e.g., to access cluster data sources 160.


The application server 115 includes a cluster engine 120 and a workflow engine 125. The cluster engine 120 is configured to build one or more clusters of related data entities, according to a defined analysis strategy. The cluster engine 120 may read data from a variety cluster data sources 160 to generate clusters from seed data. Once created, the resulting clusters may be stored on the server computer 110 or on the database 140. The operations of the cluster engine 120 are discussed in detail below in conjunction with FIGS. 2 and 3.


The cluster engine 120 is configured to score the clusters, according to a defined scoring strategy. The score may indicate the importance of analyzing the cluster. For instance, the cluster engine 120 could execute a scoring strategy that aggregates the account balances of credit card accounts within the cluster. If the cluster included a larger total balance than other clusters, then the cluster could be a greater liability for the financial institution. Thus, the cluster would be more important to analyze and would receive a higher score. In one embodiment, the cluster engine 120 organizes and presents the clusters according to the assigned scores. The cluster engine 120 may present summaries of the clusters and/or interactive representations of the clusters within the cluster analysis UI. For example, the representations may provide visual graphs of the related data entities within the clusters. The cluster engine 120 may generate the cluster analysis UI as a web application or a dynamic web page displayed within the client 135. The cluster engine 120 also allows an analyst to create tasks associated with the clusters. The operations of the cluster engine 120 are discussed in detail below in conjunction with FIGS. 4 and 5. In one embodiment, the cluster engine 120 generates clusters automatically, for subsequent review by analysts. Analysts may also assign tasks to themselves via a workflow UI. The workflow engine 125 consumes scores generated by the cluster engine 120. For example, the workflow engine 125 may present an analyst with clusters generated, scored, and ordered by the cluster engine 120.


The client 135 represents one or more software applications configured to present data and translate input, from the analyst, into requests for data analyses by the application server 115. In one embodiment, the client 135 and the application server 115 are coupled together. However, several clients 135 may execute on the client computer 130 or several clients 135 on several client computers 130 may interact with the application server 115. In one embodiment, the client 135 may be a browser accessing a web service.


While the client 135 and application server 115 are shown running on distinct computing systems, the client 135 and application server 115 may run on the same computing system. Further, the cluster engine 120 and the workflow engine 125 may run on separate applications servers 115, on separate server computing systems, or some combination thereof. Additionally, a history service may store the results generated by an analyst relative to a given cluster


In one embodiment, the cluster data sources 160 provide data available to the cluster engine to create clusters from a set of seeds. Such data sources may include relational data sources, web services data, XML data, etc. For example, the data sources may be related to customer account records stored by a financial institution. In such a case, the data sources may include a credit card account data, bank account data, customer data, and transaction data. The data may include data attributes such as account numbers, account balances, phone numbers, addresses, and transaction amounts, etc. Of course, cluster data sources 160 is included to be representative of a variety of data available to the server computer system 110 over network 150, as well as locally available data sources.


The database 140 may be a Relational Database Management System (RDBMS) that stores the data as rows in relational tables. While the database 140 is shown as a distinct computing system, the database 140 may operate on the same server computing system 110 as the application server 115.



FIG. 2 illustrates the generation of clusters by data analysis system 200, according to one embodiment. As shown, the data analysis system 200 interacts with a seed list 210, a cluster list 250, and a cluster strategy store 230. The seed list 210 includes seeds 212-1, 212-2 . . . 212-S and the cluster list 250 includes clusters 252-1, 252-2 . . . 252-C. The cluster engine 120 is configured as a software application or thread that generates the clusters 252-1, 252-2 . . . 252-C from the seeds 212-1, 212-2 . . . 212-S.


Seeds 212 are the starting point for generating a cluster 252. To generate a cluster, the cluster engine 120 retrieves a given seed 212 from the seed list 210. The seed 212 may be an arbitrary data entity within the database 140, such as a customer name, a customer social security number, an account number, or a customer telephone number.


The cluster engine 120 generates the cluster 252 from the seed 212. In one embodiment, the cluster engine 120 generates the cluster 252 as a collection of data entities and the relationships between the various data entities. As noted above, the cluster strategy executes data bindings in order to add each additional layer of objects to the cluster. For example, the cluster engine 120 could generate the cluster 252 from a seed credit card account. The cluster engine 120 first adds the credit card account to the cluster 252. The cluster engine 120 could then add customers related to the credit card account to the cluster 252. The cluster engine 120 could complete the cluster 252 by adding additional credit card accounts related to those customers. As the cluster engine 120 generates the cluster 252, the cluster engine 120 stores the cluster 252 within the cluster list 250. The cluster 252 may be stored as a graph data structure. The cluster list 250 may be a collection of tables in the database 140. In such a case, there may be a table for the data entities of the cluster 252, a table for the relationships between the various data entities, a table for the attributes of the data entities, and a table for a score of the cluster 252. The cluster list 250 may include clusters 252 from multiple investigations. Note that the cluster engine 120 may store portions of the cluster 252 in the cluster list 250 as the cluster engine 120 generates the cluster 252. Persons skilled in the art will recognize that many technically feasible techniques exist for creating and storing graph data structures.


The cluster strategy store 230 includes cluster strategies 232-1, 232-2 . . . 232-N. Each cluster strategy may include references 235 to one or more data bindings 237. As noted, each data binding may be used to identify data that may grow a cluster (as determined by the given search strategy 232). The cluster engine 120 executes a cluster strategy 232 to generate the cluster 252. Specifically, the cluster engine 120 executes the cluster strategy 232 selected by an analyst. The analyst may submit a selection of the cluster strategy 232 to the cluster engine 120 through the client 135.


Each cluster strategy 232 is configured as to perform an investigation processes for generating the cluster 252. Again, e.g., the cluster strategy 232 may include references 235 to a collection of data bindings executed to add layer after layer of data to a cluster. The investigation process includes searches to retrieve data entities related to the seed 212. For example, the cluster strategy 232 could start with a possibly fraudulent credit card account as the seed 212. The cluster strategy 232 would search for customers related to the credit card account, and then additional credit card accounts related to those customers. A different cluster strategy 232 could search for customers related to the credit card account, phone numbers related to the customers, additional customers related to the phone numbers, and additional credit card accounts related to the additional customers.


In one embodiment, the cluster strategy 232 includes a reference to at least one data binding 237. The cluster engine 120 executes the search protocol of specified by the data binding 237 to retrieve data, and the data returned by a given data binding forms a layer within the cluster 252. For instance, the data binding 237 could retrieve sets of customers related to an account by an account owner attribute. The data binding 237 retrieves the set of related data entities from a data source. For instance, the data binding 237-1 could define specify a database query to perform against a database. Likewise, the data binding 237-2 could define a connection to a remote relational database system and the data binding 237-3 could define a connection and query against a third-party web service. Once retrieved, the cluster strategy 232 may evaluate whether the returned data should be added to a cluster being grown from a given seed 212. Multiple cluster strategies 232 may reference a given data binding 237. The analyst can update the data binding 237, but typically updates the data binding 237 only if the associated data source changes. A cluster strategy 232 may also include a given data binding 237 multiple times. For example, executing a data binding 237 using one seed 212 may generate additional seeds for that data binding 237 (or generate seeds for another data binding 237). More generally, different cluster strategies 232-1, 232-2 . . . 232-N may include different arrangements of various data bindings 237 to generate different types of clusters 252.


The cluster strategy 232 may specify that the cluster engine 120 use an attribute from the related data entities retrieved with one data binding 237, as input to a subsequent data binding 237. The cluster engine 120 uses the subsequent data binding 237 to retrieve a subsequent layer of related date entities for the cluster 252. For instance, the cluster strategy 232 could specify that the cluster engine 120 retrieve a set of credit card account data entities with a first data binding 237-1. The cluster strategy 232 could also specify that the cluster engine 120 then use the account number attribute from credit card account data entities as input to a subsequent data binding 237-2. The cluster strategy 232 may also specify filters for the cluster engine 120 to apply to the attributes before performing the subsequent data binding 237. For instance, if the first data binding 237-1 were to retrieve a set of credit card account data entities that included both personal and business credit card accounts, then the cluster engine 120 could filter out the business credit card accounts before performing the subsequent data binding 237-2.


In operation, the cluster engine 120 generates a cluster 252-1 from a seed 212-1 by first retrieving a cluster strategy 232. Assuming that the analyst selected a cluster strategy 232-2, then the cluster engine 120 would retrieve the cluster strategy 232-2 from the cluster strategy store 230. The cluster engine 120 could then retrieve the seed 212-1 as input to the cluster strategy 232-2. The cluster engine 120 would execute the cluster strategy 232-2 by retrieving sets of data by executing data bindings 237 referenced by the cluster strategy 232-2. For example, the cluster strategy could execute data bindings 237-1, 237-2, and 237-3. The cluster engine 120 evaluates data returned by each data binding 237 to determine whether to use that data to grow the cluster 252-1. The cluster engine 120 may then use elements of the returned data as input to the next data binding 237. Of course, a variety of execution paths are possible for the data bindings 237. For example, assume one data binding 237 returned a set of phone numbers. In such a case, another data binding 237 could evaluate each phone number individually. As another example, one data binding 237 might use input parameters obtained by executing multiple, other data bindings 237. More generally, the cluster engine 120 may retrieves data for each data binding referenced by the cluster strategy 232-2. The cluster engine 120 then stores the complete cluster 252-1 in the cluster list 250.


As the cluster engine 120 generates the clusters 252-1, 252-2 . . . 252-C from seeds 212-1, 212-2 . . . 212-S, the cluster list 250 may include overlapping clusters 252. Two clusters 252-1 and 252-C overlap if both clusters 252-1 and 252-C include a common data entity. Oftentimes, a larger cluster 252 formed by merging two smaller clusters 252-1 and 252-C may be a better investigation starting point than the smaller clusters 252-1 and 252-C individually. The larger cluster 252 may provide additional insight or relationships, which may not be available if the two clusters 252-1 and 252-C remain separate.


In one embodiment, the cluster engine 120 includes a resolver 226 that is configured to detect and merge two overlapping clusters 252 together. The resolver 226 compares the data entities within a cluster 252-1 to the data entities within each one of the other clusters 252-2 through 252-C. If the resolver 226 finds the same data entity within the cluster 252-1 and a second cluster 252-C, then the resolver 226 may merge the two clusters 252-1 and 252-C into a single larger cluster 252. For example, the cluster 252-1 and cluster 252-C could both include the same customer. The resolver 226 would compare the data entities of cluster 252-1 to the data entities of cluster 252-C and detect the same customer in both clusters 252. Upon detecting the same customer in both clusters 252, the resolver 226 could merge the cluster 252-1 with cluster 252-C. The resolver 226 may test each pair of clusters 252 to identify overlapping clusters 252. Although the larger clusters 252 may be better investigation starting points, an analyst may want to understand how the resolver 226 formed the larger clusters 252. The resolver 226, stores a history of each merge.


After the cluster engine generates a group of clusters from a given collection of seeds (and after merging or resolving the cluster), the cluster engine 120 may score, rank, or otherwise order the clusters relative to a scoring strategy 442.


In one embodiment, the analysis system 100, and more specifically, the cluster engine 120 receives a list of seeds to generate a group of clusters, subsequently ranked, ordered, and presented to analysts. That is, the cluster engine 120 consumes seeds generated by other systems. Alternatively, in other embodiments, cluster engine 120 may generate the seeds 212-1, 212-2 . . . 212-S. For instance, the cluster engine 120 may include a lead generation strategy that identifies data entities as potential seeds 212. The lead generation strategy may apply to a particular business type, such as credit cards, stock trading, or insurance claims and may be run against a cluster data source 160 or an external source of information.



FIGS. 3A-3C illustrate the growth of a cluster 252 of related data entities, according to one embodiment. As shown in FIG. 3A, a cluster 252 includes a seed data entity 302, links 303-1 and 303-2, and related data entities 305-1 and 305-2. The cluster 252 is based upon a seed 212. The cluster engine 120 builds the cluster 252 by executing a cluster strategy 232 with the following searches:

    • Find seed owner
    • Find all phone numbers related to the seed owner
    • Find all customers related to the phone numbers
    • Find all accounts related to the customers
    • Find all new customers related to the new accounts


Assuming that the seed 212 were a fraudulent credit card account, then the cluster engine 120 would add the credit card account to the cluster 252 as the seed data entity 302. The cluster engine 120 would then use the account owner attribute of the credit card account as input to a data binding 237. The cluster engine 120 would execute the search protocol of data binding 237 to retrieve the customer data identifying the owner of the fraudulent credit card account. The cluster engine 120 would then add the customer data to the cluster 252 as the related data entity 305-1. The cluster engine 120 would also add the account owner attribute as the link 303-1 that relates the account number to the customer data of the owner. The cluster engine 120 would execute the next search of the cluster strategy 232 by inputting the customer identifier attribute of the customer data into a data binding 237 to retrieve a phone data. The cluster engine 120 would then add the phone data as the related data entity 305-2 and the customer identifier attribute as the link 303-2 between the customer data and the phone data. At this point in the investigation process, the cluster 252 would include the seed data entity 302, two links 303-1 and 303-2, and two related data entities 305-1 and 305-2. That is, the cluster 252 includes the fraudulent credit card account, the customer data of the owner of the credit card, and the phone number of the owner. By carrying the investigation process further, the cluster engine 120 could reveal further related information—e.g., additional customers or potentially fraudulent credit card accounts.


Turning to FIG. 3B, the cluster engine 120 would continue executing the cluster strategy 232 by searching for additional account data entities related to the phone number of the owner of the fraudulent credit card account. As discussed, the phone number would be stored as related data entity 305-2. The cluster engine 120 would input the phone owner attribute of the phone number to a data binding 237. The cluster engine 120 would execute the search protocol of data binding 237 to retrieve the data of two additional customers, which the cluster engine 120 would store as related data entities 305-3 and 305-4. The cluster engine 120 would add the phone owner attribute as the links 303-3 and 304-4 between the additional customers and the phone number.



FIG. 3C shows the cluster 252 after the cluster engine 120 performs the last step of the cluster strategy 232. For example, the cluster engine 120 would use the customer identifier attribute of the related data entity 305-3 and 305-4 to retrieve and add additional account data entities as the related data entities 305-5 and 305-6. The cluster engine 120 would couple the related data entities 305-5 and 305-6 to the related data entities 305-3 and 305-4 with the customer identifier attributes stored as links 303-5 and 303-6. Thus, the cluster 252 would include six related data entities 305 related by six links 303, in addition to the seed data entity 302. The analyst could identify and determine whether the additional data account entities, stored as related data entities 305-3 and 305-4, represent fraudulent credit card accounts more efficiently, than if the analyst started an investigation with only the seed 212. As the foregoing illustrates, with the cluster engine 120 and cluster strategy 232, the analyst is advantageously able to start an investigation from a cluster 252 that already includes several related data entities 305.



FIG. 4 illustrates the ranking of clusters 252 by the data analysis system 100 shown in FIG. 1, according to one embodiment of the present invention. As shown, FIG. 4 illustrates some of the same elements as shown in FIG. 1 and FIG. 2. In addition, FIG. 4 illustrates a scoring strategy store 440, coupled to the workflow engine 125. The cluster engine 120 coupled to the cluster list 250. The scoring strategy store 440 includes scoring strategies 442-1, 442-2 . . . 442-R.


The cluster engine 120 executes a scoring strategy 442 to score a cluster 252. For example, the cluster engine 120 may generate a cluster, via a cluster strategy/data bindings, and attempt to resolve it with existing clusters. Thereafter, the cluster engine 120 may score the resulting cluster with any scoring strategies associated with a given cluster generation strategy. In one embodiment, the score for a cluster may be a meta score generated as an aggregation of scores generated for different aspects, metrics, or data of a cluster. Ordering for a group of clusters, (according to a given scoring strategy) may be performed done on demand when requested by a client. Alternatively, the analyst may select of a scoring strategy 442 to the cluster engine 120 through the client 135 or the analyst may include the selection within a script or configuration file. In other embodiments, the cluster engine 120 may execute several scoring strategies 442 to determine a combined score for the cluster 252.


The scoring strategy 442 specifying an approach for scoring a cluster 252. The score may indicate the relative importance or significance of a given cluster 252. For instance, the cluster engine 120 could execute a scoring strategy 442-1 to determine a score by counting the number of a particular data entity type within the cluster 252. Assume, e.g., a data entity corresponds to a credit account. In such a case, a cluster with a large number of accounts opened by a single individual (possibly within a short time) might correlate with a higher fraud risk. Of course, a cluster score may be related to a high risk of fraud based on the other data in the cluster, as appropriate for a given case. More generally, each scoring strategy 442 may be tailored based on the data in clusters created by a given cluster strategy 230 and the particular type of risk or fraud (or amounts at risk).


In operation, the cluster engine 120 scores a cluster 252-1 by first retrieving a scoring strategy 442. For example, assume a analyst selects scoring strategy 442-1. In response, the cluster engine 120 retrieves the scoring strategy 442-1. The cluster engine 120 also retrieves the cluster 252-1 from the cluster list 250. After determining the score of the cluster 252-1, the cluster engine 120 may store the score with the cluster 252-1 in the cluster list 250.


The cluster engine 120 may score multiple clusters 252-1, 252-2 . . . 252-C in the cluster list 250. The cluster engine 120 may also rank the clusters 252-1, 252-2 . . . 252-C based upon the scores. For instance, the cluster engine 120 could rank the cluster 252-1, 252-2 . . . 252-C from highest score to lowest score.



FIG. 5 illustrates an example cluster analysis UI 500, according to one embodiment. As discussed, the workflow engine 125 is configured to present the cluster analysis UI 500. As shown, the cluster analysis UI 500 includes a lead box 510, a cluster strategy box 530, a cluster summary list 525, a cluster search box 520, and a cluster review window 515. The workflow engine 125 may generate the cluster analysis UI 500 as a web application or a dynamic web page displayed within the client 135.


The lead box 510 allows the analyst to select a seed list 210 or a suitable lead generation strategy. The lead generation strategy generates a seed list 210. The lead generation strategy may generate a seed list 210 from the database 140 or an external source of information (e.g., a cluster data source 160).


The cluster strategy box 530 displays the cluster strategies 232 that the cluster engine 120 ran against the seed list 210. The cluster engine 120 may execute multiple cluster strategies 232 against the seed list 210, so there may be multiple cluster strategies 232 listed in the cluster strategy box 530. The analyst may click on the name of a given cluster strategy 232 in the cluster strategy box 530 to review the clusters 252 that the cluster strategy 232 generated.


The workflow engine 125 displays summaries of the clusters 252 in the cluster summary list 525. For example, the summaries, may include characteristics of the clusters 252, such as identifiers, the scores, or analysts assigned to analyze the clusters 252. The workflow engine 125 can select the clusters 252 for the display in the cluster summary list 525 according to those or other characteristics. For instance, the workflow engine 125 could display the summaries in the order of the scores of the clusters 252, where a summary of the highest scoring cluster 252 is displayed first.


The workflow engine 125 controls the order and selection of the summaries within the cluster summary list 525 based upon the input from the analyst. The cluster search box 520 includes a search text box coupled to a search button and a pull-down control. The analyst may enter a characteristic of a cluster 252 in the search text box and then instruct the workflow engine 125 to search for and display clusters 252 that include the characteristic by pressing the search button. For example, the analyst could search for clusters with a particular score. The pull-down control includes a list of different characteristics of the clusters 252, such as score, size, assigned analyst, or date created. The analyst may select one of the characteristics to instruct the workflow engine 125 to present the summaries of the clusters 252 arranged by that characteristic.


The workflow engine 125 is also configured to present details of a given cluster 252 within the cluster review window 515. The workflow engine 125 displays the details of the cluster 252, e.g., the score, or average account balances within a cluster, when the analyst clicks a mouse pointer on the associated summary within the cluster summary list 525. The workflow engine 125 may present details of the cluster 252, such as the name of the analyst assigned to analyze the cluster 252, the score of the cluster 252, and statistics or graphs generated from the cluster 252. These details allow the analyst to determine whether to investigate the cluster 252 further. The cluster review window 515 also includes a button which may be clicked to investigate a cluster 252 within a graph and an assign button for assigning a cluster to an analyst.


The analyst can click a mouse pointer on the button to investigate the cluster 252 within an interactive graph. The interactive representation is a visual graph of the cluster 252, where icons represent the entities of the cluster 252 and lines between the icons represent the links between entities of the cluster 252. For example, the workflow engine 125 could display the interactive graph of the cluster 252 similar to the representation of the cluster 252 in FIG. 3C. The interactive representation allows the analyst to review the attributes of the related data entities or perform queries for additional related data entities.


An administrative user can click a mouse pointer on the assign button to assign the associated cluster 252 to an analyst. The workflow engine 125 also allows the administrative user to create tasks associated with the clusters 252, while the administrative user assigns the cluster 252. For example, the administrative user could create a task for searching within the three highest scoring clusters 252 for fraudulent credit card accounts. The workflow engine 125 may display the summaries in the cluster summary list 525 according to the names of the analysts assigned to the clusters 252. Likewise, the workflow engine 125 may only display summaries for the subset of the clusters 252 assigned to an analyst.


The interface shown in FIG. 5 is included to illustrate one exemplary interface useful for navigating and reviewing clusters generated using the cluster engine 120 and the workflow engine 125. Of course, one of skill in the art will recognize that a broad variety of user interface constructs could be used to allow the analyst to select cluster strategies 232, scoring strategies 242, or seed generation strategies, initiate an investigation, or review and analyze the clusters 252. For example, the workflow engine 125 may display additional controls within the cluster analysis UI 500 for controlling the cluster generation process and selecting cluster strategies 232 or scoring strategies 242. Also, the workflow engine 125 may not display the lead box 510 or the options to select a lead generation strategy. In addition, although the workflow engine 125 generates the cluster analysis UI 500, in different embodiments, the cluster analysis UI 500 is generated by a software application distinct from the workflow engine 125. Further, in different embodiments, the cluster review window 515 is configured to display a preview of the cluster 252 or additional statistics generated from the cluster 252. As such, an interactive representation of the cluster 252 may be presented in an additional UI or the cluster 252 may be exported to another software application for review by the analyst.



FIG. 6 is a flow diagram of method steps for generating clusters, according to one embodiment. Although the method steps are described in conjunction with the systems of FIGS. 1 and 2, persons skilled in the art will understand that any system configured to perform the method steps, in any order, is within the scope of the present invention. Further, the method 600 may be performed in conjunction with method 700 for scoring a cluster, described below.


As shown, method 600 begins at step 605, where the cluster engine 120 retrieves a cluster strategy 232 and a seed 212. Once a cluster strategy is selected, the cluster engine 120 identifies a list of seeds to build clusters using the selected cluster strategy. At step 610, the cluster engine 120 initializes a cluster 252 with one of the seeds in the list. The cluster 252 is stored as a graph data structure. The cluster engine 120 initializes the graph data structure, and then adds the seed 212-1 to the graph data structure as the first data entity.


At step 615, the cluster engine 120 grows the cluster 252 by executing the search protocol of a data binding 237 from the cluster strategy 232-2. The cluster strategy 232-2 includes a series of data bindings 237 that the cluster engine 120 executes to retrieve related data entities. A given data binding 237 may include queries to execute against a cluster data source 160 using the seed as an input parameters. For example, if the seed 212-1 were an account number, then the data binding 237 might retrieve the data identifying the owner of the account with the account number. After retrieving this information, the cluster engine 120 would add the customer data entity to the cluster as a related data entity and the account owner attribute as the link between the seed 212-1 and the related data entity. After retrieving the related data entities, the cluster engine 120 adds them to the cluster 252.


At step 620, the cluster engine 120 determines if the cluster strategy 232-2 is fully executed. If so the method 600 returns to step 615 to execute additional data bindings for a given seed. Once the cluster strategy is executed for that seed, the cluster engine 120 may determine and assign a score to that cluster (relative to a specified scoring strategy). After generating clusters for a group of seeds, such clusters may be ordered or ranked based on the relative scores. Doing so allows an analyst to rapidly identify and evaluate clusters determined to represent a high risk of fraud (or having high amounts at risk).


At step 625, the cluster engine 120 stores the cluster 252 in cluster list 250. The cluster list 250 is a collection of tables within a relational database, where a table may include the seed and related data entities of the cluster 252 and another table may include links between the related data entities of the cluster 252. At step 630, the cluster engine 120 determines if there are more seeds 212 to analyze in the seed list 210. If so, the method 600 returns to step 605 to generate another cluster from the next seed. Otherwise, the method 600 ends. Note, while method 600 describes a single cluster being generated, one of skill in the art will recognize that the cluster generation process illustrated by method 600 may be performed in parallel.



FIG. 7 is a flow diagram of method steps for scoring clusters, according to one embodiment. Although the method steps are described in conjunction with the systems of FIGS. 1 and 4, persons skilled in the art will understand that any system configured to perform the method steps, in any order, is within the scope of the present invention.


As shown, method 700 begins at step 705, where the cluster engine 120 retrieves a scoring strategy 442 and a cluster 252 (e.g., a cluster just created using the method 600 of FIG. 6). In other cases, he cluster engine 120 may retrieve the scoring strategy 442 associated with a stored cluster. Other alternatives include an analyst selecting a scoring strategy 442 through the client 135, the cluster engine 120 via the cluster analysis UI 500, a script, or a configuration file. The cluster engine 120 retrieves the selected scoring strategy 442 from the scoring strategy store 440. The cluster engine 120 retrieves the cluster 252 from the cluster list 250.


At step 710, the cluster engine 120 executes the scoring strategy 442 against the cluster 252. The scoring strategy 442 specifies characteristics of the related data entities within the cluster 252 to aggregate. The cluster engine 120 executes the scoring strategy 442 by aggregated the specified characteristics together to determine a score. For instance, the cluster engine 120 could aggregate the account balances of related data entities that are account data entities. In such a case, the total amount of dollars included within the balances of the account data entities of the cluster 252 could be the score of the cluster 252.


At step 715, the cluster engine 120 stores the score with the cluster 252 in the cluster list 250. At step 720, the cluster engine 120 determines if there are more clusters 252 to score. For example, in one embodiment, a set of clusters may be re-scored using an updated scoring strategy. In other cases, the cluster engine may score each cluster when it is created from a seed (based on a given cluster generation and corresponding scoring strategy). If more clusters remain to be scored (or re-scored), the method 700 returns to step 705.


At step 725, the cluster engine 125 ranks the clusters 252 according to the scores of the clusters 252. For example, after re-scoring a set of clusters (or after scoring a group of clusters generated from a set of seeds), the cluster engine 125 may rank the clusters 252 from highest score to lowest score. The ranking may be used to order a display of summaries of the clusters 252 presented to the analyst. The analyst may rely upon the ranking and scores to determine which clusters 252 to analyze first. The ranking and sorting may generally be performed on-demand when an analyst is looking for a cluster to investigate. Thus, the ranking need not happen at the same time as scoring. And further, the clusters may be scored (and later ranked) using different raking strategies.



FIG. 8 illustrates components of a server computing system 110, according to one embodiment. As shown, the server computing system 110 includes, a central processing unit (CPU) 860, a network interface 850, a memory 820, and a storage 830, each connected to an interconnect (bus) 840. The server computing system 110 may also include an I/O device interface 870 connecting I/O devices 875 (e.g., keyboard, display and mouse devices) to the computing system 110. Further, in context of this disclosure, the computing elements shown in server computing system 110 may correspond to a physical computing system (e.g., a system in a data center) or may be a virtual computing instance executing within a computing cloud.


The CPU 860 retrieves and executes programming instructions stored in memory 820 as well as stores and retrieves application data residing in memory 820. The bus 840 is used to transmit programming instructions and application data between the CPU 860, I/O device interface 870, storage 830, network interface 850, and memory 820. Note that the CPU 860 is included to be representative of a single CPU, multiple CPUs, a single CPU having multiple processing cores, a CPU with an associate memory management unit, and the like. The memory 820 is generally included to be representative of a random access memory. The storage 830 may be a disk drive storage device. Although shown as a single unit, the storage 830 may be a combination of fixed and/or removable storage devices, such as fixed disc drives, removable memory cards, or optical storage, network attached storage (NAS), or a storage area-network (SAN).


Illustratively, the memory 820 includes a seed list 210, a cluster engine 120, a cluster list 250, and a workflow engine 125. The cluster engine 120 includes a cluster strategy 232-2. The particular cluster strategy 232-2 includes data bindings 237-1, 237-2, and 237-3, with which the cluster engine 120 accesses the cluster data source 160. The workflow engine 125 includes a scoring strategy 442-1.


Illustratively, the storage 830 includes a cluster strategy store 230, data bindings store 835, and a scoring strategy store 440. As discussed the cluster strategy store 230 may include a collection of different cluster strategies 232, such as cluster strategy 232-2. The cluster strategy store 230 may be a directory that includes the cluster strategies 232-1, 232-2 . . . 232-N as distinct modules. The scoring strategy store 440 may include a collection of different scoring strategies 442, such as scoring strategy 442-2 and may also be a directory of distinct modules. The data binding store 835 includes data bindings 237-1, 237-2 . . . 237-M, which may also be stored as distinct modules within a directory.


Although shown in memory 820, the seed list 210, cluster engine 120, cluster list 250, and workflow engine 125, may be stored in memory 820, storage 830, or split between memory 820 and storage 830. Likewise, copies of the cluster strategy 232-2, data binding 237-1, 237-2, and 237-3, and scoring strategy 442-2 may be stored in memory 820, storage 830, or split between memory 820 and storage 830.


Note, while financial fraud using credit card accounts is used as a primary reference example in the discussion above, one of ordinary skill in the art will recognize that the techniques described herein may be adapted for use with a variety of data sets. For example, information from data logs of online systems could be evaluated as seeds to improve cyber security. In such a case, a seed could be a suspicious IP address, a compromised user account, etc. From the seeds, log data, DHCP logs, IP blacklists packet captures, webapp logs, and other server and database logs could be used to create clusters of activity related to the suspicions seeds. Other examples include data quality analysis used to cluster transactions processed through a computer system (whether financial or otherwise).


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof. For example, aspects of the present invention may be implemented in hardware or software or in a combination of hardware and software. One embodiment of the invention may be implemented as a program product for use with a computer system. The program(s) of the program product define functions of the embodiments (including the methods described herein) and can be contained on a variety of computer-readable storage media. Illustrative computer-readable storage media include, but are not limited to: (i) non-writable storage media (e.g., read-only memory devices within a computer such as CD-ROM disks readable by a CD-ROM drive, flash memory, ROM chips or any type of solid-state non-volatile semiconductor memory) on which information is permanently stored; and (ii) writable storage media (e.g., hard-disk drive or any type of solid-state random-access semiconductor memory) on which alterable information is stored.


The invention has been described above with reference to specific embodiments. Persons of ordinary skill in the art, however, will understand that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The foregoing description and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. Therefore, the scope of the present invention is determined by the claims that follow.

Claims
  • 1. A computer-implemented method comprising: by one or more hardware computer processors configured with specific computer executable instructions:accessing one or more electronic data stores, the one or more electronic data stores storing a plurality of data entities and respective data entity attributes;applying a clustering strategy to generate a data entity cluster by at least: designating a seed data entity, from the plurality of data entities, as the data entity cluster;accessing, based on the clustering strategy, one or more search protocols;performing first growth of the data entity cluster by executing at least a first of the one or more search protocols on the one or more electronic data stores to identify one or more data entities related to the seed data entity;adding the one or more data entities to the data entity cluster;performing second growth of the data entity cluster by executing at least a second of the one or more search protocols on the one or more electronic data stores to identify one or more additional data entities related to the one or more added data entities, the second search protocol different than the first search protocol; andadding the one or more additional data entities to the data entity cluster; andstoring the data entity cluster in at least one of the one or more electronic data stores.
  • 2. The computer-implemented method of claim 1, wherein executing at least the first of the one or more search protocols on the one or more electronic data stores to identify one or more data entities related to the seed data entity further comprises: by the one or more hardware computer processors configured with specific computer executable instructions:identifying at least one data entity attribute associated with the seed data entity; andevaluating the plurality of data entities to determine the one or more data entities sharing the at least one data entity attribute with the seed data entity.
  • 3. The computer-implemented method of claim 2, wherein executing at least the first of the one or more search protocols on the one or more electronic data stores to identify one or more data entities related to the seed data entity further comprises: by the one or more hardware computer processors configured with specific computer executable instructions:applying a filter to the at least one data entity attribute associated with the seed data entity, the filter selected based on the clustering strategy.
  • 4. The computer-implemented method of claim 1 further comprising: by the one or more hardware computer processors configured with specific computer executable instructions:comparing data entities associated with the data entity cluster to data entities associated with a second data entity cluster; andin response to determining that at least one data entity associated with the data entity cluster shares an attribute with and/or is related to at least one data entity associated with the second data entity cluster, merging the data entity cluster and the second data entity cluster.
  • 5. The computer-implemented method of claim 1, wherein the first search protocol searches for data entities in a first electronic data store and the second search protocol searches for data entities in a second electronic data store.
  • 6. The computer-implemented method of claim 1, wherein the data entity cluster is iteratively generated by further: by the one or more hardware computer processors configured with specific computer executable instructions:executing at least a third of the one or more search protocols on the one or more electronic data stores to identify yet one or more additional data entities related to the one or more additional data entities; andadding the yet one or more additional data entities to the data entity cluster.
  • 7. The computer-implemented method of claim 1 further comprising: by the one or more hardware computer processors configured with specific computer executable instructions:causing a ranking score to be assigned to the data entity cluster; andordering a listing of the data entity cluster and other data entity clusters relative to a one another.
  • 8. A computer-implemented method of accessing one or more electronic data sources, the method comprising: by one or more hardware computer processors configured with specific computer executable instructions:accessing one or more electronic data stores, the one or more electronic data stores storing: a plurality of data entities and respective data entity attributes, anda plurality of data entity clusters; andcausing access of a data entity cluster of the plurality of data entity clusters, wherein the data entity cluster is related to a clustering strategy, and wherein the data entity cluster has been iteratively generated by: designating a seed data entity, from the plurality of data entities, as the data entity cluster;accessing, based on the clustering strategy, one or more search protocols;performing first growth of the data entity cluster by executing at least a first of the one or more search protocols on the one or more electronic data stores to identify one or more data entities related to the seed data entity;adding the one or more data entities to the data entity cluster;performing second growth of the data entity cluster by executing at least a second of the one or more search protocols on the one or more electronic data stores to identify one or more additional data entities related to the one or more added data entities, the second search protocol different than the first search protocol; andadding the one or more additional data entities to the data entity cluster.
  • 9. The computer-implemented method of claim 8, wherein executing at least the first of the one or more search protocols on the one or more electronic data stores to identify one or more data entities related to the seed data entity further comprises: by the one or more hardware computer processors configured with specific computer executable instructions:identifying at least one data entity attribute associated with the seed data entity; andevaluating the plurality of data entities to determine the one or more data entities sharing the at least one data entity attribute with the seed data entity.
  • 10. The computer-implemented method of claim 9, wherein executing at least the first of the one or more search protocols on the one or more electronic data stores to identify one or more data entities related to the seed data entity further comprises: by the one or more hardware computer processors configured with specific computer executable instructions:applying a filter to the at least one data entity attribute associated with the seed data entity, the filter selected based on the clustering strategy.
  • 11. The computer-implemented method of claim 8 further comprising: by the one or more hardware computer processors configured with specific computer executable instructions:accessing, from the one or more electronic data stores, a scoring strategy for prioritizing the plurality of data entity clusters relative to one another;for each particular data entity cluster of the plurality of data entity clusters: evaluating, based on the scoring strategy, the particular data entity cluster; andassigning, based on the evaluation, a score to the particular data entity cluster; andranking the plurality of data entity clusters according to the respective assigned scores.
  • 12. The computer-implemented method of claim 11, wherein the score assigned to each data entity cluster corresponds to an amount at risk.
  • 13. The computer-implemented method of claim 11, wherein assigning a score to the particular data entity cluster comprises: by the one or more hardware computer processors configured with specific computer executable instructions:determining a plurality of base scores for the particular data entity cluster;determining, based on the plurality of base scores, an overall score for the particular data entity cluster; andassigning the overall score to the particular data entity cluster.
  • 14. The computer-implemented method of claim 11 further comprising: by the one or more hardware computer processors configured with specific computer executable instructions:generating a user interface configured to be rendered on a computing device; andupdating the user interface to include the listing of two or more of the plurality of data entity clusters according to the ranking.
  • 15. The computer-implemented method of claim 8, wherein the clustering strategy is associated with an investigation process.
  • 16. The computer-implemented method of claim 8 further comprising: by the one or more hardware computer processors configured with specific computer executable instructions:generating a user interface configured to be rendered on a computing device.
  • 17. The computer-implemented method of claim 16 further comprising: by the one or more hardware computer processors configured with specific computer executable instructions:receiving, via the user interface, a selection of at least one of: the seed data entity selected from the plurality of data entities, ora seed generation strategy by which the seed data entity is selected from the plurality of data entities.
  • 18. The computer-implemented method of claim 16 further comprising: by the one or more hardware computer processors configured with specific computer executable instructions:receiving, via the user interface, a selection of the clustering strategy.
  • 19. The computer-implemented method of claim 16 further comprising: by the one or more hardware computer processors configured with specific computer executable instructions:updating the user interface to include an indication of the data entity cluster; andreceiving, via the user interface, a selection of the data entity cluster.
  • 20. The computer-implemented method of claim 8 further comprising: by the one or more hardware computer processors configured with specific computer executable instructions:applying the clustering strategy to iteratively generate the data entity cluster.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 14/264,445, which was filed Apr. 29, 2015, which is a continuation of each of U.S. patent application Ser. Nos. 13/968,213 and 13/968,265, each of which was filed Aug. 15, 2013, and each of which application claims benefit of U.S. Provisional Patent Application Ser. No. 61/800,887 filed Mar. 15, 2013. All of the above items are hereby incorporated by reference herein in their entireties.

US Referenced Citations (692)
Number Name Date Kind
5109399 Thompson Apr 1992 A
5329108 Lamoure Jul 1994 A
5632009 Rao et al. May 1997 A
5670987 Doi et al. Sep 1997 A
5781704 Rossmo Jul 1998 A
5790121 Sklar et al. Aug 1998 A
5798769 Chiu et al. Aug 1998 A
5845300 Comer Dec 1998 A
5978475 Schneier et al. Nov 1999 A
6057757 Arrowsmith et al. May 2000 A
6091956 Hollenberg Jul 2000 A
6141659 Barker et al. Oct 2000 A
6161098 Wallman Dec 2000 A
6219053 Tachibana et al. Apr 2001 B1
6232971 Haynes May 2001 B1
6247019 Davies Jun 2001 B1
6279018 Kudrolli et al. Aug 2001 B1
6341310 Leshem et al. Jan 2002 B1
6366933 Ball et al. Apr 2002 B1
6369835 Lin Apr 2002 B1
6374251 Fayyad et al. Apr 2002 B1
6456997 Shukla Sep 2002 B1
6549944 Weinberg et al. Apr 2003 B1
6560620 Ching May 2003 B1
6567936 Yang et al. May 2003 B1
6581068 Bensoussan et al. Jun 2003 B1
6594672 Lampson et al. Jul 2003 B1
6631496 Li et al. Oct 2003 B1
6642945 Sharpe Nov 2003 B1
6674434 Chojnacki et al. Jan 2004 B1
6714936 Nevin, III Mar 2004 B1
6725240 Asad et al. Apr 2004 B1
6775675 Nwabueze et al. Aug 2004 B1
6807569 Bhimani et al. Oct 2004 B1
6820135 Dingman Nov 2004 B1
6828920 Owen et al. Dec 2004 B2
6839745 Dingari et al. Jan 2005 B1
6877137 Rivette et al. Apr 2005 B1
6976210 Silva et al. Dec 2005 B1
6980984 Huffman et al. Dec 2005 B1
6985950 Hanson et al. Jan 2006 B1
7017046 Doyle et al. Mar 2006 B2
7036085 Barros Apr 2006 B2
7043702 Chi et al. May 2006 B2
7055110 Kupka et al. May 2006 B2
7139800 Bellotti et al. Nov 2006 B2
7158878 Rasmussen et al. Jan 2007 B2
7162475 Ackerman Jan 2007 B2
7168039 Bertram Jan 2007 B2
7171427 Witowski et al. Jan 2007 B2
7225468 Waisman et al. May 2007 B2
7269786 Malloy et al. Sep 2007 B1
7278105 Kitts Oct 2007 B1
7290698 Poslinski et al. Nov 2007 B2
7333998 Heckerman et al. Feb 2008 B2
7370047 Gorman May 2008 B2
7373669 Eisen May 2008 B2
7379811 Rasmussen et al. May 2008 B2
7379903 Caballero et al. May 2008 B2
7426654 Adams et al. Sep 2008 B2
7451397 Weber et al. Nov 2008 B2
7454466 Bellotti et al. Nov 2008 B2
7467375 Tondreau et al. Dec 2008 B2
7487139 Fraleigh et al. Feb 2009 B2
7502786 Liu et al. Mar 2009 B2
7525422 Bishop et al. Apr 2009 B2
7529727 Arning et al. May 2009 B2
7529734 Dirisala May 2009 B2
7533008 Mangino et al. May 2009 B2
7546245 Surpin et al. Jun 2009 B2
7558677 Jones Jul 2009 B2
7574409 Patinkin Aug 2009 B2
7574428 Leiserowitz et al. Aug 2009 B2
7579965 Bucholz Aug 2009 B2
7596285 Brown et al. Sep 2009 B2
7614006 Molander Nov 2009 B2
7617232 Gabbert et al. Nov 2009 B2
7620628 Kapur et al. Nov 2009 B2
7627812 Chamberlain et al. Dec 2009 B2
7634717 Chamberlain et al. Dec 2009 B2
7640173 Surpin et al. Dec 2009 B2
7703021 Flam Apr 2010 B1
7706817 Bamrah et al. Apr 2010 B2
7712049 Williams et al. May 2010 B2
7716067 Surpin et al. May 2010 B2
7716077 Mikurak May 2010 B1
7725530 Sah et al. May 2010 B2
7725547 Albertson et al. May 2010 B2
7730082 Sah et al. Jun 2010 B2
7730109 Rohrs et al. Jun 2010 B2
7770032 Nesta et al. Aug 2010 B2
7770100 Chamberlain et al. Aug 2010 B2
7783658 Bayliss Aug 2010 B1
7801871 Gosnell Sep 2010 B2
7805457 Viola et al. Sep 2010 B1
7809703 Balabhadrapatruni et al. Oct 2010 B2
7814102 Miller et al. Oct 2010 B2
7818291 Ferguson et al. Oct 2010 B2
7818658 Chen Oct 2010 B2
7870493 Pall et al. Jan 2011 B2
7894984 Rasmussen et al. Feb 2011 B2
7899611 Downs et al. Mar 2011 B2
7917376 Bellin et al. Mar 2011 B2
7920963 Jouline et al. Apr 2011 B2
7933862 Chamberlain et al. Apr 2011 B2
7962281 Rasmussen et al. Jun 2011 B2
7962495 Jain et al. Jun 2011 B2
7962848 Bertram Jun 2011 B2
7970240 Chao et al. Jun 2011 B1
7971150 Raskutti et al. Jun 2011 B2
7984374 Caro et al. Jul 2011 B2
8001465 Kudrolli et al. Aug 2011 B2
8001482 Bhattiprolu et al. Aug 2011 B2
8010545 Stefik et al. Aug 2011 B2
8010886 Gusmorino et al. Aug 2011 B2
8015487 Roy et al. Sep 2011 B2
8019709 Norton et al. Sep 2011 B2
8024778 Cash et al. Sep 2011 B2
8036632 Cona et al. Oct 2011 B1
8042110 Kawahara et al. Oct 2011 B1
8046362 Bayliss Oct 2011 B2
8082172 Chao et al. Dec 2011 B2
8103543 Zwicky Jan 2012 B1
8134457 Velipasalar et al. Mar 2012 B2
8135679 Bayliss Mar 2012 B2
8135719 Bayliss Mar 2012 B2
8145703 Frishert et al. Mar 2012 B2
8185819 Sah et al. May 2012 B2
8190893 Benson et al. May 2012 B2
8196184 Amirov et al. Jun 2012 B2
8214361 Sandler et al. Jul 2012 B1
8214764 Gemmell et al. Jul 2012 B2
8225201 Michael Jul 2012 B2
8229947 Fujinaga Jul 2012 B2
8230333 Decherd et al. Jul 2012 B2
8239668 Chen et al. Aug 2012 B1
8266168 Bayliss Sep 2012 B2
8271461 Pike et al. Sep 2012 B2
8280880 Aymeloglu et al. Oct 2012 B1
8290926 Ozzie et al. Oct 2012 B2
8290942 Jones et al. Oct 2012 B2
8301464 Cave et al. Oct 2012 B1
8301904 Gryaznov Oct 2012 B1
8312367 Foster Nov 2012 B2
8312546 Alme Nov 2012 B2
8321943 Walters et al. Nov 2012 B1
8347398 Weber Jan 2013 B1
8352881 Champion et al. Jan 2013 B2
8368695 Howell et al. Feb 2013 B2
8397171 Klassen et al. Mar 2013 B2
8411046 Kruzeniski et al. Apr 2013 B2
8412707 Mianji Apr 2013 B1
8447674 Choudhuri et al. May 2013 B2
8447722 Ahuja et al. May 2013 B1
8452790 Mianji May 2013 B1
8463036 Ramesh et al. Jun 2013 B1
8484168 Bayliss Jul 2013 B2
8489331 Kopf et al. Jul 2013 B2
8489623 Jain et al. Jul 2013 B2
8489641 Seefeld et al. Jul 2013 B1
8495077 Bayliss Jul 2013 B2
8498969 Bayliss Jul 2013 B2
8498984 Hwang et al. Jul 2013 B1
8510743 Hackborn et al. Aug 2013 B2
8514082 Cova et al. Aug 2013 B2
8515207 Chau Aug 2013 B2
8515912 Garrod et al. Aug 2013 B2
8527461 Ducott, III et al. Sep 2013 B2
8554579 Tribble et al. Oct 2013 B2
8554653 Falkenborg et al. Oct 2013 B2
8554709 Goodson et al. Oct 2013 B2
8560413 Quarterman Oct 2013 B1
8577911 Stepinski et al. Nov 2013 B1
8589273 Creeden et al. Nov 2013 B2
8595234 Siripuapu et al. Nov 2013 B2
8600872 Yan Dec 2013 B1
8620641 Farnsworth et al. Dec 2013 B2
8639757 Zang et al. Jan 2014 B1
8646080 Williamson et al. Feb 2014 B2
8676597 Buehler et al. Mar 2014 B2
8676857 Adams et al. Mar 2014 B1
8689108 Duffield et al. Apr 2014 B1
8707185 Robinson et al. Apr 2014 B2
8713467 Goldenberg et al. Apr 2014 B1
8726379 Stiansen et al. May 2014 B1
8739278 Varghese May 2014 B2
8742934 Sarpy et al. Jun 2014 B1
8744890 Bernier Jun 2014 B1
8745516 Mason et al. Jun 2014 B2
8756244 Dassa et al. Jun 2014 B2
8781169 Jackson et al. Jul 2014 B2
8787939 Papakipos et al. Jul 2014 B2
8788405 Sprague et al. Jul 2014 B1
8788407 Singh et al. Jul 2014 B1
8799799 Cervelli et al. Aug 2014 B1
8799812 Parker Aug 2014 B2
8812960 Sun et al. Aug 2014 B1
8818892 Sprague et al. Aug 2014 B1
8826438 Perdisci et al. Sep 2014 B2
8830322 Nerayoff et al. Sep 2014 B2
8832594 Thompson et al. Sep 2014 B1
8868486 Tamayo Oct 2014 B2
8868537 Colgrove et al. Oct 2014 B1
8917274 Ma et al. Dec 2014 B2
8924872 Bogomolov et al. Dec 2014 B1
8937619 Sharma et al. Jan 2015 B2
8938686 Erenrich et al. Jan 2015 B1
8972376 Gailis et al. Mar 2015 B1
9009171 Grossman et al. Apr 2015 B1
9009827 Albertson et al. Apr 2015 B1
9021260 Falk et al. Apr 2015 B1
9021384 Beard et al. Apr 2015 B1
9043696 Meiklejohn et al. May 2015 B1
9043894 Dennison et al. May 2015 B1
9069842 Melby Jun 2015 B2
9116975 Shankar et al. Aug 2015 B2
9135658 Sprague et al. Sep 2015 B2
9165299 Stowe et al. Oct 2015 B1
9171334 Visbal et al. Oct 2015 B1
9177344 Singh et al. Nov 2015 B1
9202249 Cohen et al. Dec 2015 B1
9230280 Maag et al. Jan 2016 B1
9256664 Chakerian et al. Feb 2016 B2
9344447 Cohen et al. May 2016 B2
9367872 Visbal et al. Jun 2016 B1
9589299 Visbal et al. Mar 2017 B2
9674662 Freeland et al. Jun 2017 B2
9965937 Cohen et al. May 2018 B2
9998485 Cohen et al. Jun 2018 B2
20010021936 Bertram Sep 2001 A1
20020033848 Sciammarella et al. Mar 2002 A1
20020065708 Senay et al. May 2002 A1
20020091707 Keller Jul 2002 A1
20020095658 Shulman Jul 2002 A1
20020112157 Doyle et al. Aug 2002 A1
20020116120 Ruiz et al. Aug 2002 A1
20020130907 Chi et al. Sep 2002 A1
20020174201 Ramer et al. Nov 2002 A1
20020194119 Wright et al. Dec 2002 A1
20030028560 Kudrolli et al. Feb 2003 A1
20030033228 Bosworth-Davies et al. Feb 2003 A1
20030036848 Sheha et al. Feb 2003 A1
20030039948 Donahue Feb 2003 A1
20030074368 Schuetze et al. Apr 2003 A1
20030097330 Hillmer et al. May 2003 A1
20030140106 Raguseo Jul 2003 A1
20030144868 MacIntyre et al. Jul 2003 A1
20030163352 Surpin et al. Aug 2003 A1
20030200217 Ackerman Oct 2003 A1
20030225755 Iwayama et al. Dec 2003 A1
20030229848 Arend et al. Dec 2003 A1
20040032432 Baynger Feb 2004 A1
20040064256 Barinek et al. Apr 2004 A1
20040085318 Hassler et al. May 2004 A1
20040095349 Bito et al. May 2004 A1
20040111410 Burgoon et al. Jun 2004 A1
20040126840 Cheng et al. Jul 2004 A1
20040143602 Ruiz et al. Jul 2004 A1
20040143796 Lerner et al. Jul 2004 A1
20040153418 Hanweck Aug 2004 A1
20040163039 Gorman Aug 2004 A1
20040181554 Heckerman et al. Sep 2004 A1
20040193600 Kaasten et al. Sep 2004 A1
20040205524 Richter et al. Oct 2004 A1
20040221223 Yu et al. Nov 2004 A1
20040250124 Chesla et al. Dec 2004 A1
20040260702 Cragun et al. Dec 2004 A1
20040267746 Marcjan et al. Dec 2004 A1
20050027705 Sadri et al. Feb 2005 A1
20050028094 Allyn Feb 2005 A1
20050039119 Parks et al. Feb 2005 A1
20050065811 Chu et al. Mar 2005 A1
20050078858 Yao et al. Apr 2005 A1
20050080769 Gemmell Apr 2005 A1
20050086207 Heuer et al. Apr 2005 A1
20050108063 Madill et al. May 2005 A1
20050125715 Di Franco et al. Jun 2005 A1
20050143602 Yada et al. Jun 2005 A1
20050154628 Eckart et al. Jul 2005 A1
20050154769 Eckart et al. Jul 2005 A1
20050162523 Darrell et al. Jul 2005 A1
20050166144 Gross Jul 2005 A1
20050180330 Shapiro Aug 2005 A1
20050182793 Keenan et al. Aug 2005 A1
20050183005 Denoue et al. Aug 2005 A1
20050210409 Jou Sep 2005 A1
20050222928 Steier et al. Oct 2005 A1
20050229256 Banzhof Oct 2005 A2
20050246327 Yeung et al. Nov 2005 A1
20050251786 Citron et al. Nov 2005 A1
20060026120 Carolan et al. Feb 2006 A1
20060026170 Kreitler et al. Feb 2006 A1
20060045470 Poslinski et al. Mar 2006 A1
20060053096 Subramanian et al. Mar 2006 A1
20060059139 Robinson Mar 2006 A1
20060069912 Zheng et al. Mar 2006 A1
20060074866 Chamberlain et al. Apr 2006 A1
20060074881 Vembu et al. Apr 2006 A1
20060080619 Carlson et al. Apr 2006 A1
20060093222 Saffer et al. May 2006 A1
20060095521 Patinkin May 2006 A1
20060129746 Porter Jun 2006 A1
20060139375 Rasmussen et al. Jun 2006 A1
20060142949 Helt Jun 2006 A1
20060143034 Rothermel Jun 2006 A1
20060149596 Surpin et al. Jul 2006 A1
20060161558 Tamma et al. Jul 2006 A1
20060203337 White Sep 2006 A1
20060218637 Thomas et al. Sep 2006 A1
20060241974 Chao et al. Oct 2006 A1
20060242040 Rader Oct 2006 A1
20060242630 Koike et al. Oct 2006 A1
20060265747 Judge Nov 2006 A1
20060271277 Hu et al. Nov 2006 A1
20060279630 Aggarwal et al. Dec 2006 A1
20070011150 Frank Jan 2007 A1
20070016363 Huang et al. Jan 2007 A1
20070038646 Thota Feb 2007 A1
20070038962 Fuchs et al. Feb 2007 A1
20070057966 Ohno et al. Mar 2007 A1
20070078832 Ott et al. Apr 2007 A1
20070083541 Fraleigh et al. Apr 2007 A1
20070088596 Berkelhamer et al. Apr 2007 A1
20070094389 Nussey et al. Apr 2007 A1
20070106582 Baker et al. May 2007 A1
20070150369 Zivin Jun 2007 A1
20070174760 Chamberlain et al. Jul 2007 A1
20070192265 Chopin et al. Aug 2007 A1
20070198571 Ferguson et al. Aug 2007 A1
20070208497 Downs et al. Sep 2007 A1
20070208498 Barker et al. Sep 2007 A1
20070208736 Tanigawa et al. Sep 2007 A1
20070233709 Abnous Oct 2007 A1
20070240062 Christena et al. Oct 2007 A1
20070266336 Nojima et al. Nov 2007 A1
20070294200 Au Dec 2007 A1
20070294643 Kyle Dec 2007 A1
20070294766 Mir et al. Dec 2007 A1
20080016216 Worley et al. Jan 2008 A1
20080040275 Paulsen et al. Feb 2008 A1
20080040684 Crump Feb 2008 A1
20080051989 Welsh Feb 2008 A1
20080052142 Bailey et al. Feb 2008 A1
20080077597 Butler Mar 2008 A1
20080077642 Carbone et al. Mar 2008 A1
20080082486 Lermant et al. Apr 2008 A1
20080104019 Nath May 2008 A1
20080126951 Sood et al. May 2008 A1
20080133567 Ames et al. Jun 2008 A1
20080148398 Mezack et al. Jun 2008 A1
20080155440 Trevor et al. Jun 2008 A1
20080162616 Gross et al. Jul 2008 A1
20080195417 Surpin et al. Aug 2008 A1
20080195608 Clover Aug 2008 A1
20080201580 Savitzky et al. Aug 2008 A1
20080222295 Robinson et al. Sep 2008 A1
20080229422 Hudis et al. Sep 2008 A1
20080249983 Meisels et al. Oct 2008 A1
20080255973 El Wade et al. Oct 2008 A1
20080263468 Cappione et al. Oct 2008 A1
20080267107 Rosenberg Oct 2008 A1
20080270328 Lafferty et al. Oct 2008 A1
20080276167 Michael Nov 2008 A1
20080278311 Grange et al. Nov 2008 A1
20080281819 Tenenbaum et al. Nov 2008 A1
20080288306 MacIntyre et al. Nov 2008 A1
20080288425 Posse et al. Nov 2008 A1
20080288475 Kim et al. Nov 2008 A1
20080301559 Martinsen et al. Dec 2008 A1
20080301643 Appleton et al. Dec 2008 A1
20080313281 Scheidl et al. Dec 2008 A1
20090002492 Velipasalar et al. Jan 2009 A1
20090007272 Huang et al. Jan 2009 A1
20090018940 Wang et al. Jan 2009 A1
20090024505 Patel et al. Jan 2009 A1
20090027418 Maru et al. Jan 2009 A1
20090030915 Winter et al. Jan 2009 A1
20090037912 Stoitsev et al. Feb 2009 A1
20090044279 Crawford et al. Feb 2009 A1
20090055251 Shah et al. Feb 2009 A1
20090070162 Leonelli et al. Mar 2009 A1
20090076845 Bellin et al. Mar 2009 A1
20090082997 Tokman et al. Mar 2009 A1
20090083184 Eisen Mar 2009 A1
20090088964 Schaaf et al. Apr 2009 A1
20090103442 Douville Apr 2009 A1
20090119309 Gibson et al. May 2009 A1
20090125359 Knapic May 2009 A1
20090125369 Kloostra et al. May 2009 A1
20090125459 Norton et al. May 2009 A1
20090132921 Hwangbo et al. May 2009 A1
20090132953 Reed et al. May 2009 A1
20090143052 Bates et al. Jun 2009 A1
20090144262 White et al. Jun 2009 A1
20090144274 Fraleigh et al. Jun 2009 A1
20090164934 Bhattiprolu et al. Jun 2009 A1
20090171939 Athsani et al. Jul 2009 A1
20090172511 Decherd et al. Jul 2009 A1
20090172821 Daira et al. Jul 2009 A1
20090177962 Gusmorino et al. Jul 2009 A1
20090179892 Tsuda et al. Jul 2009 A1
20090187464 Bai et al. Jul 2009 A1
20090192957 Subramanian et al. Jul 2009 A1
20090222400 Kupershmidt et al. Sep 2009 A1
20090222759 Drieschner Sep 2009 A1
20090222760 Halverson et al. Sep 2009 A1
20090228701 Lin Sep 2009 A1
20090234720 George et al. Sep 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090254970 Agarwal et al. Oct 2009 A1
20090254971 Herz Oct 2009 A1
20090271359 Bayliss Oct 2009 A1
20090281839 Lynn et al. Nov 2009 A1
20090287470 Farnsworth et al. Nov 2009 A1
20090292626 Oxford Nov 2009 A1
20090300589 Watters et al. Dec 2009 A1
20090318775 Michelson et al. Dec 2009 A1
20090328222 Helman et al. Dec 2009 A1
20100004857 Pereira et al. Jan 2010 A1
20100011282 Dollard et al. Jan 2010 A1
20100042922 Bradateanu et al. Feb 2010 A1
20100057716 Stefik et al. Mar 2010 A1
20100070523 Delgo et al. Mar 2010 A1
20100070842 Aymeloglu et al. Mar 2010 A1
20100070845 Facemire et al. Mar 2010 A1
20100070897 Aymeloglu et al. Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100077483 Stolfo et al. Mar 2010 A1
20100100963 Mahaffey Apr 2010 A1
20100103124 Kruzeniski et al. Apr 2010 A1
20100106611 Paulsen et al. Apr 2010 A1
20100106752 Eckardt et al. Apr 2010 A1
20100114817 Broeder et al. May 2010 A1
20100114887 Conway et al. May 2010 A1
20100122152 Chamberlain et al. May 2010 A1
20100125546 Barrett et al. May 2010 A1
20100131457 Heimendinger May 2010 A1
20100162176 Dunton Jun 2010 A1
20100169237 Howard et al. Jul 2010 A1
20100185691 Irmak et al. Jul 2010 A1
20100191563 Schlaifer et al. Jul 2010 A1
20100198684 Eraker et al. Aug 2010 A1
20100199225 Coleman et al. Aug 2010 A1
20100228812 Uomini Sep 2010 A1
20100235915 Memon et al. Sep 2010 A1
20100250412 Wagner Sep 2010 A1
20100262688 Hussain et al. Oct 2010 A1
20100280857 Liu et al. Nov 2010 A1
20100293174 Bennett et al. Nov 2010 A1
20100306029 Jolley Dec 2010 A1
20100306713 Geisner et al. Dec 2010 A1
20100313119 Baldwin et al. Dec 2010 A1
20100318924 Frankel et al. Dec 2010 A1
20100321399 Ellren et al. Dec 2010 A1
20100325526 Ellis et al. Dec 2010 A1
20100325581 Finkelstein et al. Dec 2010 A1
20100330801 Rouh Dec 2010 A1
20110004498 Readshaw Jan 2011 A1
20110029526 Knight et al. Feb 2011 A1
20110047159 Baid et al. Feb 2011 A1
20110055140 Roychowdhury Mar 2011 A1
20110060753 Shaked et al. Mar 2011 A1
20110060910 Gormish et al. Mar 2011 A1
20110061013 Bilicki et al. Mar 2011 A1
20110066933 Ludwig Mar 2011 A1
20110074811 Hanson et al. Mar 2011 A1
20110078055 Faribault et al. Mar 2011 A1
20110078173 Seligmann et al. Mar 2011 A1
20110087519 Fordyce, III et al. Apr 2011 A1
20110093327 Fordyce, III et al. Apr 2011 A1
20110117878 Barash et al. May 2011 A1
20110119100 Ruhl et al. May 2011 A1
20110131122 Griffin et al. Jun 2011 A1
20110137766 Rasmussen et al. Jun 2011 A1
20110153384 Horne et al. Jun 2011 A1
20110161096 Buehler et al. Jun 2011 A1
20110167054 Bailey et al. Jul 2011 A1
20110167105 Ramakrishnan et al. Jul 2011 A1
20110167493 Song et al. Jul 2011 A1
20110170799 Carrino et al. Jul 2011 A1
20110173032 Payne et al. Jul 2011 A1
20110173093 Psota et al. Jul 2011 A1
20110178842 Rane et al. Jul 2011 A1
20110185316 Reid et al. Jul 2011 A1
20110208724 Jones et al. Aug 2011 A1
20110213655 Henkin Sep 2011 A1
20110218934 Elser Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225198 Edwards et al. Sep 2011 A1
20110225650 Margolies et al. Sep 2011 A1
20110231223 Winters Sep 2011 A1
20110238495 Kang Sep 2011 A1
20110238510 Rowen et al. Sep 2011 A1
20110238553 Raj et al. Sep 2011 A1
20110238570 Li et al. Sep 2011 A1
20110246229 Pacha Oct 2011 A1
20110251951 Kolkowitz Oct 2011 A1
20110258158 Resende et al. Oct 2011 A1
20110270705 Parker Nov 2011 A1
20110289397 Eastmond et al. Nov 2011 A1
20110289407 Naik et al. Nov 2011 A1
20110289420 Morioka et al. Nov 2011 A1
20110291851 Whisenant Dec 2011 A1
20110307382 Siegel et al. Dec 2011 A1
20110310005 Chen et al. Dec 2011 A1
20110314007 Dassa et al. Dec 2011 A1
20120004904 Shin et al. Jan 2012 A1
20120019559 Siler et al. Jan 2012 A1
20120036013 Neuhaus et al. Feb 2012 A1
20120036434 Oberstein Feb 2012 A1
20120050293 Carlhian et al. Mar 2012 A1
20120066296 Appleton et al. Mar 2012 A1
20120072825 Sherkin et al. Mar 2012 A1
20120079363 Folting et al. Mar 2012 A1
20120084118 Bai et al. Apr 2012 A1
20120084135 Nissan et al. Apr 2012 A1
20120084866 Stolfo Apr 2012 A1
20120106801 Jackson May 2012 A1
20120110633 An et al. May 2012 A1
20120110674 Belani et al. May 2012 A1
20120117082 Koperda et al. May 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120137235 Ts et al. May 2012 A1
20120144335 Abeln et al. Jun 2012 A1
20120159307 Chung et al. Jun 2012 A1
20120159362 Brown et al. Jun 2012 A1
20120159399 Bastide et al. Jun 2012 A1
20120170847 Tsukidate Jul 2012 A1
20120173985 Peppel Jul 2012 A1
20120180002 Campbell et al. Jul 2012 A1
20120196557 Reich et al. Aug 2012 A1
20120196558 Reich et al. Aug 2012 A1
20120197651 Robinson et al. Aug 2012 A1
20120203708 Psota et al. Aug 2012 A1
20120208636 Feige Aug 2012 A1
20120215898 Shah et al. Aug 2012 A1
20120221511 Gibson et al. Aug 2012 A1
20120221553 Wittmer et al. Aug 2012 A1
20120221580 Barney Aug 2012 A1
20120245976 Kumar et al. Sep 2012 A1
20120246148 Dror Sep 2012 A1
20120254129 Wheeler et al. Oct 2012 A1
20120266245 McDougal et al. Oct 2012 A1
20120284345 Costenaro et al. Nov 2012 A1
20120290879 Shibuya et al. Nov 2012 A1
20120296907 Long et al. Nov 2012 A1
20120304244 Xie et al. Nov 2012 A1
20120310831 Harris et al. Dec 2012 A1
20120310838 Harris et al. Dec 2012 A1
20120311684 Paulsen et al. Dec 2012 A1
20120323829 Stokes et al. Dec 2012 A1
20120323888 Osann, Jr. Dec 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20120330973 Ghuneim et al. Dec 2012 A1
20130006426 Healey et al. Jan 2013 A1
20130006655 Van Arkel et al. Jan 2013 A1
20130006668 Van Arkel et al. Jan 2013 A1
20130006725 Simanek et al. Jan 2013 A1
20130006916 McBride et al. Jan 2013 A1
20130018796 Kolhatkar et al. Jan 2013 A1
20130019306 Lagar-Cavilla et al. Jan 2013 A1
20130024268 Manickavelu Jan 2013 A1
20130024307 Fuerstenberg et al. Jan 2013 A1
20130024339 Choudhuri et al. Jan 2013 A1
20130046635 Grigg et al. Feb 2013 A1
20130046842 Muntz et al. Feb 2013 A1
20130060786 Serrano et al. Mar 2013 A1
20130061169 Pearcy et al. Mar 2013 A1
20130073377 Heath Mar 2013 A1
20130073454 Busch Mar 2013 A1
20130078943 Biage et al. Mar 2013 A1
20130086482 Parsons Apr 2013 A1
20130097482 Marantz et al. Apr 2013 A1
20130101159 Chao et al. Apr 2013 A1
20130110822 Ikeda et al. May 2013 A1
20130110877 Bonham et al. May 2013 A1
20130111320 Campbell et al. May 2013 A1
20130117651 Waldman et al. May 2013 A1
20130139268 An et al. May 2013 A1
20130150004 Rosen Jun 2013 A1
20130151148 Parundekar et al. Jun 2013 A1
20130151388 Falkenborg et al. Jun 2013 A1
20130157234 Gulli et al. Jun 2013 A1
20130160120 Malaviya et al. Jun 2013 A1
20130166550 Buchmann et al. Jun 2013 A1
20130176321 Mitchell et al. Jul 2013 A1
20130179420 Park et al. Jul 2013 A1
20130197925 Blue Aug 2013 A1
20130211985 Clark et al. Aug 2013 A1
20130224696 Wolfe et al. Aug 2013 A1
20130225212 Khan Aug 2013 A1
20130226318 Procyk Aug 2013 A1
20130226953 Markovich et al. Aug 2013 A1
20130232045 Tai et al. Sep 2013 A1
20130238616 Rose et al. Sep 2013 A1
20130246170 Gross et al. Sep 2013 A1
20130251233 Yang et al. Sep 2013 A1
20130262527 Hunter et al. Oct 2013 A1
20130262528 Foit Oct 2013 A1
20130263019 Castellanos et al. Oct 2013 A1
20130267207 Hao et al. Oct 2013 A1
20130268520 Fisher et al. Oct 2013 A1
20130276799 Davidson Oct 2013 A1
20130279757 Kephart Oct 2013 A1
20130282696 John et al. Oct 2013 A1
20130288719 Alonzo Oct 2013 A1
20130290011 Lynn et al. Oct 2013 A1
20130290825 Arndt et al. Oct 2013 A1
20130297619 Chandrasekaran et al. Nov 2013 A1
20130311375 Priebatsch Nov 2013 A1
20130318594 Hoy et al. Nov 2013 A1
20130339218 Subramanian et al. Dec 2013 A1
20140006109 Callioni et al. Jan 2014 A1
20140013434 Ranum et al. Jan 2014 A1
20140019936 Cohanoff Jan 2014 A1
20140032506 Hoey et al. Jan 2014 A1
20140033010 Richardt et al. Jan 2014 A1
20140040371 Gurevich et al. Feb 2014 A1
20140047319 Eberlein Feb 2014 A1
20140047357 Alfaro et al. Feb 2014 A1
20140058763 Zizzamia et al. Feb 2014 A1
20140059038 McPherson et al. Feb 2014 A1
20140059683 Ashley Feb 2014 A1
20140067611 Adachi et al. Mar 2014 A1
20140068487 Steiger et al. Mar 2014 A1
20140074855 Zhao et al. Mar 2014 A1
20140081652 Klindworth Mar 2014 A1
20140081685 Thacker et al. Mar 2014 A1
20140095273 Tang et al. Apr 2014 A1
20140095509 Patton Apr 2014 A1
20140101124 Scriffignano et al. Apr 2014 A1
20140108068 Williams Apr 2014 A1
20140108380 Gotz et al. Apr 2014 A1
20140108985 Scott et al. Apr 2014 A1
20140123279 Bishop et al. May 2014 A1
20140129261 Bothwell et al. May 2014 A1
20140143009 Brice et al. May 2014 A1
20140149130 Getchius May 2014 A1
20140149272 Hirani et al. May 2014 A1
20140149436 Bahrami et al. May 2014 A1
20140156484 Chan et al. Jun 2014 A1
20140156527 Grigg et al. Jun 2014 A1
20140157172 Peery et al. Jun 2014 A1
20140164502 Khodorenko et al. Jun 2014 A1
20140189536 Lange et al. Jul 2014 A1
20140195515 Baker et al. Jul 2014 A1
20140195887 Ellis et al. Jul 2014 A1
20140214579 Shen et al. Jul 2014 A1
20140222521 Chait Aug 2014 A1
20140244388 Manouchehri et al. Aug 2014 A1
20140258246 Lo Faro et al. Sep 2014 A1
20140267294 Ma Sep 2014 A1
20140267295 Sharma Sep 2014 A1
20140279824 Tamayo Sep 2014 A1
20140304582 Bills et al. Oct 2014 A1
20140310266 Greenfield Oct 2014 A1
20140310282 Sprague et al. Oct 2014 A1
20140316911 Gross Oct 2014 A1
20140333651 Cervelli et al. Nov 2014 A1
20140337772 Cervelli et al. Nov 2014 A1
20140344230 Krause et al. Nov 2014 A1
20140351070 Christner et al. Nov 2014 A1
20140366132 Stiansen et al. Dec 2014 A1
20150019394 Unser et al. Jan 2015 A1
20150046870 Goldenberg et al. Feb 2015 A1
20150073929 Psota et al. Mar 2015 A1
20150089424 Duffield et al. Mar 2015 A1
20150100897 Sun et al. Apr 2015 A1
20150100907 Erenrich et al. Apr 2015 A1
20150134633 Colgrove et al. May 2015 A1
20150134666 Gattiker et al. May 2015 A1
20150169709 Kara et al. Jun 2015 A1
20150169726 Kara et al. Jun 2015 A1
20150170077 Kara et al. Jun 2015 A1
20150178825 Huerta Jun 2015 A1
20150178877 Bogomolov et al. Jun 2015 A1
20150186821 Wang et al. Jul 2015 A1
20150187036 Wang et al. Jul 2015 A1
20150227295 Meiklejohn et al. Aug 2015 A1
20150235334 Wang et al. Aug 2015 A1
20150242401 Liu Aug 2015 A1
20150309719 Ma et al. Oct 2015 A1
20150317342 Grossman et al. Nov 2015 A1
20150324868 Kaftan et al. Nov 2015 A1
20160004764 Chakerian et al. Jan 2016 A1
20160006749 Cohen et al. Jan 2016 A1
20160034470 Sprague et al. Feb 2016 A1
20160048937 Mathura et al. Feb 2016 A1
20160180451 Visbal et al. Jun 2016 A1
20170132200 Noland et al. May 2017 A1
20170244735 Visbal et al. Aug 2017 A1
20170308402 Bills et al. Oct 2017 A1
Foreign Referenced Citations (52)
Number Date Country
101729531 Jun 2010 CN
103281301 Sep 2013 CN
102014103482 Sep 2014 DE
102014215621 Feb 2015 DE
1 191 463 Mar 2002 EP
1672527 Jun 2006 EP
2551799 Jan 2013 EP
2555153 Feb 2013 EP
2560134 Feb 2013 EP
2 778 983 Sep 2014 EP
2778977 Sep 2014 EP
2779082 Sep 2014 EP
2835745 Feb 2015 EP
2835770 Feb 2015 EP
2838039 Feb 2015 EP
2846241 Mar 2015 EP
2851852 Mar 2015 EP
2858014 Apr 2015 EP
2858018 Apr 2015 EP
2863326 Apr 2015 EP
2863346 Apr 2015 EP
2869211 May 2015 EP
2881868 Jun 2015 EP
2884439 Jun 2015 EP
2884440 Jun 2015 EP
2891992 Jul 2015 EP
2 911 078 Aug 2015 EP
2911100 Aug 2015 EP
2940603 Nov 2015 EP
2940609 Nov 2015 EP
2963577 Jan 2016 EP
2985729 Feb 2016 EP
3037991 Jun 2016 EP
2513247 Oct 2014 GB
2516155 Jan 2015 GB
2518745 Apr 2015 GB
2012778 Nov 2014 NL
2013306 Feb 2015 NL
624557 Dec 2014 NZ
WO 2000009529 Feb 2000 WO
WO 2002065353 Aug 2002 WO
WO 2005104736 Nov 2005 WO
WO 2008011728 Jan 2008 WO
WO 2008064207 May 2008 WO
WO 2008113059 Sep 2008 WO
WO 2009061501 May 2009 WO
WO 2010000014 Jan 2010 WO
WO 2010030913 Mar 2010 WO
WO 2013010157 Jan 2013 WO
WO 2013102892 Jul 2013 WO
WO 2013126281 Aug 2013 WO
WO 2015047803 Apr 2015 WO
Non-Patent Literature Citations (289)
Entry
US 8,712,906, 04/2014, Sprague et al. (withdrawn)
“A First Look: Predicting Market Demand for Food Retail using a Huff Analysis,” TRF Policy Solutions, Jul. 2012, pp. 30.
“A Quick Guide to UniProtKB Swiss-Prot & TrEMBL,” Sep. 2011, pp. 2.
About 80 Minutes, “Palantir in a Number of Parts—Part 6—Graph,” Mar. 21, 2013, pp. 1-6.
Acklen, Laura, “Absolute Beginner's Guide to Microsoft Word 2003,” Dec. 24, 2003, pp. 15-18, 34-41, 308-316.
Alur et al., “Chapter 2: IBM InfoSphere DataStage Stages,” IBM InfoSphere DataStage Data Flow and Job Design, Jul. 1, 2008, pp. 35-137.
Amnet, “5 Great Tools for Visualizing Your Twitter Followers,” posted Aug. 4, 2010, http://www.amnetblog.com/component/content/article/115-5-grate-tools-for-visualizing-your-twitter-followers.html.
Ananiev et al., “The New Modality API,” http://web.archive.org/web/20061211011958/http://java.sun.com/developer/technicalArticles/J2SE/Desktop/javase6/modality/ Jan. 21, 2006, pp. 8.
Bluttman et al., “Excel Formulas and Functions for Dummies,” 2005, Wiley Publishing, Inc., pp. 280, 284-286.
Boyce, Jim, “Microsoft Outlook 2010 Inside Out,” Aug. 1, 2010, retrieved from the internet https://capdtron.files.wordpress.com/2013/01/outlook-2010-inside_out.pdf.
Bugzilla@Mozilla, “Bug 18726—[feature] Long-click means of invoking contextual menus not supported,” http://bugzilla.mozilla.org/show_bug.cgi?id=18726 printed Jun. 13, 2013 in 11 pages.
Canese et al., “Chapter 2: PubMed: The Bibliographic Database,” The NCBI Handbook, Oct. 2002, pp. 1-10.
Celik, Tantek, “CSS Basic User Interface Module Level 3 (CSS3 UI),” Section 8 Resizing and Overflow, Jan. 17, 2012, retrieved from internet http://www.w3.org/TR/2012/WD-css3-ui-20120117/#resizing-amp-overflow retrieved on May 18, 2015.
Chen et al., “Bringing Order to the Web: Automatically Categorizing Search Results,” CHI 2000, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 1-6, 2000, The Hague, The Netherlands, pp. 145-152.
Chung, Chin-Wan, “Dataplex: An Access to Heterogeneous Distributed Databases,” Communications of the ACM, Association for Computing Machinery, Inc., vol. 33, No. 1, Jan. 1, 1990, pp. 70-80.
Conner, Nancy, “Google Apps: The Missing Manual,” May 1, 2008, pp. 15.
Crosby et al., “Efficient Data Structures for Tamper-Evident Logging,” Department of Computer Science, Rice University, 2009, pp. 17.
Definition “Identify”, downloaded Jan. 22, 2015, 1 page.
Definition “Overlay”, downloaded Jan. 22, 2015, 1 page.
Delcher et al., “Identifying Bacterial Genes and Endosymbiont DNA with Glimmer,” BioInformatics, vol. 23, No. 6, 2007, pp. 673-679.
Dramowicz, Ela, “Retail Trade Area Analysis Using the Huff Model,” Directions Magazine, Jul. 2, 2005 in 10 pages, http://www.directionsmag.com/articles/retail-trade-area-analysis-using-the-huff-model/123411.
“The FASTA Program Package,” fasta-36.3.4, Mar. 25, 2011, pp. 29.
Gesher, Ari, “Palantir Screenshots in the Wild: Swing Sightings,” The Palantir Blog, Sep. 11, 2007, pp. 1-12.
GIS-NET 3 Public _ Department of Regional Planning. Planning & Zoning Information for Unincorporated LA County. Retrieved Oct. 2, 2013 from http://gis.planning.lacounty.gov/GIS-NET3_Public/Viewer.html.
Glaab et al., “EnrichNet: Network-Based Gene Set Enrichment Analysis,” Bioinformatics 28.18 (2012): pp. i451-i457.
Goswami, Gautam, “Quite Writly Said!,” One Brick at a Time, Aug. 21, 2005, pp. 7.
Griffith, Daniel A., “A Generalized Huff Model,” Geographical Analysis, Apr. 1982, vol. 14, No. 2, pp. 135-144.
Hansen et al., “Analyzing Social Media Networks with NodeXL: Insights from a Connected World”, Chapter 4, pp. 53-67 and Chapter 10, pp. 143-164, published Sep. 2010.
Hardesty, “Privacy Challenges: Analysis: It's Surprisingly Easy to Identify Individuals from Credit-Card Metadata,” MIT News on Campus and Around the World, MIT News Office, Jan. 29, 2015, 3 pages.
Hibbert et al., “Prediction of Shopping Behavior Using a Huff Model Within a GIS Framework,” Healthy Eating in Context, Mar. 18, 2011, pp. 16.
Hogue et al., “Thresher: Automating the Unwrapping of Semantic Content from the World Wide Web,” 14th International Conference on World Wide Web, WWW 2005: Chiba, Japan, May 10-14, 2005, pp. 86-95.
Huang et al., “Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources,” Nature Protocols, 4.1, 2008, 44-57.
Huff et al., “Calibrating the Huff Model Using ArcGIS Business Analyst,” ESRI, Sep. 2008, pp. 33.
Huff, David L., “Parameter Estimation in the Huff Model,” ESRI, ArcUser, Oct.-Dec. 2003, pp. 34-36.
Hur et al., “SciMiner: web-based literature mining tool for target identification and functional enrichment analysis,” Bioinformatics 25.6 (2009): pp. 838-840.
IBM, “Determining Business Object Structure,” IBM, 2004, 9 pages.
Kahan et al., “Annotea: an Open RDF Infrastructure for Shared Web Annotations”, Computer Networks, Elsevier Science Publishers B.V., vol. 39, No. 5, dated Aug. 5, 2002, pp. 589-608.
Kitts, Paul, “Chapter 14: Genome Assembly and Annotation Process,” The NCBI Handbook, Oct. 2002, pp. 1-21.
Li et al., “Interactive Multimodal Visual Search on Mobile Device,” IEEE Transactions on Multimedia, vol. 15, No. 3, Apr. 1, 2013, pp. 594-607.
Li et al., “Identifying the Signs of Fraudulent Accounts using Data Mining Techniques,” Computers in Human Behavior, vol. 28, No. 3, Jan. 16, 2012.
Liu, Tianshun, “Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA,” Papers in Resource Analysis, 2012, vol. 14, pp. 8.
Ma et al., “A New Approach to Secure Logging,” ACM Transactions on Storage, vol. 5, No. 1, Article 2, Published Mar. 2009, 21 pages.
Madden, Tom, “Chapter 16: The BLAST Sequence Analysis Tool,” The NCBI Handbook, Oct. 2002, pp. 1-15.
Manno et al., “Introducing Collaboration in Single-user Applications through the Centralized Control Architecture,” 2010, pp. 10.
Manske, “File Saving Dialogs,” <http://www.mozilla.org/editor/ui_specs/FileSaveDialogs.html>, Jan. 20, 1999, pp. 7.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.yahoo.com.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.bing.com.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.google.com.
Microsoft—Developer Network, “Getting Started with VBA in Word 2010,” Apr. 2010, <http://msdn.microsoft.com/en-us/library/ff604039%28v=office.14%29.aspx> as printed Apr. 4, 2014 in 17 pages.
Microsoft Office—Visio, “About connecting shapes,” <http://office.microsoft.com/en-us/visio-help/about-connecting-shapes-HP085050369.aspx> printed Aug. 4, 2011 in 6 pages.
Microsoft Office—Visio, “Add and glue connectors with the Connector tool,” <http://office.microsoft.com/en-us/visio-help/add-and-glue-connectors-with-the-connector-tool-HA010048532.aspx?CTT=1> printed Aug. 4, 2011 in 1 page.
Mizrachi, Ilene, “Chapter 1: GenBank: The Nuckeotide Sequence Database,” The NCBI Handbook, Oct. 2002, pp. 1-14.
Ngai et al., “The Application of Data Mining Techniques in Financial Fraud Detection: A Classification Frameworok and an Academic Review of Literature,” Decision Support Systems, Elsevier Science Publishers, Amsterdam, Netherlands, vol. 50, No. 3, Feb. 1, 2011.
Nierman, “Evaluating Structural Similarity in XML Documents”, 6 pages, 2002.
Olanoff, Drew, “Deep Dive with the New Google Maps for Desktop with Google Earth Integration, It's More than Just a Utility,” May 15, 2013, pp. 1-6, retrieved from the internet: http://web.archive.org/web/20130515230641/http://techcrunch.com/2013/05/15/deep-dive-with-the-new-google-maps-for-desktop-with-google-earth-integration-its-more-than-just-a-utility/.
Palantir Technologies, “Palantir Labs—Timeline,” Oct. 1, 2010, retrieved from the internet https://www.youtube.com/watch?v=JCgDW5bru9M.
Palmas et al., “An Edge-Bunding Layout for Interactive Parallel Coordinates” 2014 IEEE Pacific Visualization Symposium, pp. 57-64.
Quest, “Toad for Oracle 11.6—Guide to Using Toad,” Sep. 24, 2012, pp. 1-162.
“Refresh CSS Ellipsis When Resizing Container—Stack Overflow,” Jul. 31, 2013, retrieved from internet http://stackoverflow.com/questions/17964681/refresh-css-ellipsis-when-resizing-container, retrieved on May 18, 2015.
Rouse, Margaret, “OLAP Cube,” <http://searchdatamanagement.techtarget.com/definition/OLAP-cube>, Apr. 28, 2012, pp. 16.
Schneier et al., “Automatic Event Stream Notarization Using Digital Signatures,” Security Protocols, International Workshop Apr. 1996 Proceedings, Springer-Veriag, 1997, pp. 155-169, https://schneier.com/paper-event-stream.pdf.
Schneier et al., “Cryptographic Support for Secure Logs on Untrusted Machines,” The Seventh USENIX Security Symposium Proceedings, USENIX Press, Jan. 1998, pp. 53-62, https://www.schneier.com/paper-secure-logs.pdf.
Sigrist, et al., “PROSITE, a Protein Domain Database for Functional Characterization and Annotation,” Nucleic Acids Research, 2010, vol. 38, pp. D161-D166.
Sirotkin et al., “Chapter 13: The Processing of Biological Sequence Data at NCBI,” The NCBI Handbook, Oct. 2002, pp. 1-11.
Thompson, Mick, “Getting Started with GEO,” Getting Started with GEO, Jul. 26, 2011.
Umagandhi et al., “Search Query Recommendations Using Hybrid User Profile with Query Logs,” International Journal of Computer Applications, vol. 80, No. 10, Oct. 1, 2013, pp. 7-18.
Waters et al., “Building an Encrypted and Searchable Audit Log,” Published Jan. 9, 2004, 11 pages, http://www.parc.com/content/attachments/building_encrypted_searchable_5059_parc.pdf.
Wikipedia, “Federated Database System,” Sep. 7, 2013, retrieved from the internet on Jan. 27, 2015 http://en.wikipedia.org/w/index.php?title=Federated_database_system&oldid=571954221.
Wright et al., “Palantir Technologies VAST 2010 Challenge Text Records _ Investigations into Arms Dealing,”Oct. 29, 2010, pp. 1-10.
Yang et al., “HTML Page Analysis Based on Visual Cues”, A129, pp. 859-864, 2001.
Zheng et al., “GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis,” Nucleic acids research 36.suppl 2 (2008): pp. W385-W363.
International Search Report and Written Opinion in Application No. PCT/US2009/056703 dated Mar. 15, 2010.
Notice of Acceptance for Australian Patent Application No. 2014250678 dated Oct. 7, 2015.
Notice of Allowance for U.S. Appl. No. 12/556,318 dated Nov. 2, 2015.
Notice of Allowance for U.S. Appl. No. 13/247,987 dated Mar. 17, 2016.
Notice of Allowance for U.S. Appl. No. 14/102,394 dated Aug. 25, 2014.
Notice of Allowance for U.S. Appl. No. 14/108,187 dated Aug. 29, 2014.
Notice of Allowance for U.S. Appl. No. 14/135,289 dated Oct. 14, 2014.
Notice of Allowance for U.S. Appl. No. 14/148,568 dated Aug. 26, 2015.
Notice of Allowance for U.S. Appl. No. 14/192,767 dated Dec. 16, 2014.
Notice of Allowance for U.S. Appl. No. 14/192,767 dated Apr. 20, 2015.
Notice of Allowance for U.S. Appl. No. 14/225,084 dated May 4, 2015.
Notice of Allowance for U.S. Appl. No. 14/268,964 dated Dec. 3, 2014.
Notice of Allowance for U.S. Appl. No. 14/294,098 dated Dec. 29, 2014.
Notice of Allowance for U.S. Appl. No. 14/323,935 dated Oct. 1, 2015.
Notice of Allowance for U.S. Appl. No. 14/326,738 dated Nov. 18, 2015.
Notice of Allowance for U.S. Appl. No. 14/473,860 dated Feb. 27, 2015.
Notice of Allowance for U.S. Appl. No. 14/504,103 dated May 18, 2015.
Notice of Allowance for U.S. Appl. No. 14/579,752 dated Apr. 4, 2016.
Notice of Allowance for U.S. Appl. No. 15/151,904 dated Oct. 24, 2016.
Official Communication for Australian Patent Application No. 2014201511 dated Feb. 27, 2015.
Official Communication for Australian Patent Application No. 2014202442 dated Mar. 19, 2015.
Official Communication for Australian Patent Application No. 2014210604 dated Jun. 5, 2015.
Official Communication for Australian Patent Application No. 2014210614 dated Jun. 5, 2015.
Official Communication for Australian Patent Application No. 2014213553 dated May 7, 2015.
Official Communication for Australian Patent Application No. 2014250678 dated Jun. 17, 2015.
Official Communication for European Patent Application No. 14158861.6 dated Jun. 16, 2014.
Official Communication for European Patent Application No. 14159464.8 dated Jul. 31, 2014.
Official Communication for European Patent Application No. 14180142.3 dated Feb. 6, 2015.
Official Communication for European Patent Application No. 14180281.9 dated Jan. 26, 2015.
Official Communication for European Patent Application No. 14180321.3 dated Apr. 17, 2015.
Official Communication for European Patent Application No. 14180432.8 dated Jun. 23, 2015.
Official Communication for European Patent Application No. 14186225.0 dated Feb. 13, 2015.
Official Communication for European Patent Application No. 14187739.9 dated Jul. 6, 2015.
Official Communication for European Patent Application No. 14187996.5 dated Feb. 12, 2015.
Official Communication for European Patent Application No. 14187996.5 dated Feb. 19, 2016.
Official Communication for European Patent Application No. 14189344.6 dated Feb. 20, 2015.
Official Communication for European Patent Application No. 14189344.6 dated Feb. 29, 2016.
Official Communication for European Patent Application No. 14189347.9 dated Mar. 4, 2015.
Official Communication for European Patent Application No. 14189802.3 dated May 11, 2015.
Official Communication for European Patent Application No. 14191540.5 dated May 27, 2015.
Official Communication for European Patent Application No. 14197879.1 dated Apr. 28, 2015.
Official Communication for European Patent Application No. 14197895.7 dated Apr. 28, 2015.
Official Communication for European Patent Application No. 14197938.5 dated Apr. 28, 2015.
Official Communication for European Patent Application No. 14199182.8 dated Mar. 13, 2015.
Official Communication for European Patent Application No. 15155846.7 dated Jul. 8, 2015.
Official Communication for European Patent Application No. 15165244.3 dated Aug. 27, 2015.
Official Communication for European Patent Application No. 15175106.2 dated Nov. 5, 2015.
Official Communication for European Patent Application No. 15180515.7 dated Dec. 14, 2015.
Official Communication for European Patent Application No. 15183721.8 dated Nov. 23, 2015.
Official Communication for European Patent Application No. 15201727.3 dated May 23, 2016.
Official Communication for European Patent Application No. 15201727.3 dated Sep. 27, 2017.
Official Communication for Great Britain Patent Application No. 1404574.4 dated Dec. 18, 2014.
Official Communication for Great Britain Patent Application No. 1408025.3 dated Nov. 6, 2014.
Official Communication for Great Britain Patent Application No. 1411984.6 dated Dec. 22, 2014.
Official Communication for Great Britain Patent Application No. 1413935.6 dated Jan. 27, 2015.
Official Communication for Netherlands Patent Application No. 2012433 dated Mar. 11, 2016.
Official Communication for Netherlands Patent Application No. 2012437 dated Sep. 18, 2015.
Official Communication for Netherlands Patent Application No. 2013306 dated Apr. 24, 2015.
Official Communication for New Zealand Patent Application No. 622513 dated Apr. 3, 2014.
Official Communication for New Zealand Patent Application No. 622517 dated Apr. 3, 2014.
Official Communication for New Zealand Patent Application No. 624557 dated May 14, 2014.
Official Communication for New Zealand Patent Application No. 627962 dated Aug. 5, 2014.
Official Communication for New Zealand Patent Application No. 628161 dated Aug. 25, 2014.
Official Communication for New Zealand Patent Application No. 628263 dated Aug. 12, 2014.
Official Communication for New Zealand Patent Application No. 628495 dated Aug. 19, 2014.
Official Communication for New Zealand Patent Application No. 628585 dated Aug. 26, 2014.
Official Communication for New Zealand Patent Application No. 628840 dated Aug. 28, 2014.
Official Communication for U.S. Appl. No. 12/556,318 dated Jul. 2, 2015.
Official Communication for U.S. Appl. No. 13/247,987 dated Apr. 2, 2015.
Official Communication for U.S. Appl. No. 13/247,987 dated Sep. 22, 2015.
Official Communication for U.S. Appl. No. 13/831,791 dated Feb. 11, 2016.
Official Communication for U.S. Appl. No. 13/831,791 dated Mar. 4, 2015.
Official Communication for U.S. Appl. No. 13/831,791 dated Aug. 6, 2015.
Official Communication for U.S. Appl. No. 13/835,688 dated Jun. 17, 2015.
Official Communication for U.S. Appl. No. 13/835,688 dated Sep. 30, 2015.
Official Communication for U.S. Appl. No. 13/839,026 dated Aug. 4, 2015.
Official Communication for U.S. Appl. No. 14/134,558 dated Oct. 7, 2015.
Official Communication for U.S. Appl. No. 14/139,628 dated Jan. 5, 2015.
Official Communication for U.S. Appl. No. 14/139,640 dated Dec. 15, 2014.
Official Communication for U.S. Appl. No. 14/139,713 dated Dec. 15, 2014.
Official Communication for U.S. Appl. No. 14/148,568 dated Oct. 22, 2014.
Official Communication for U.S. Appl. No. 14/148,568 dated Mar. 26, 2015.
Official Communication for U.S. Appl. No. 14/196,814 dated May 5, 2015.
Official Communication for U.S. Appl. No. 14/196,814 dated Oct. 7, 2015.
Official Communication for U.S. Appl. No. 14/223,918 dated Jun. 8, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 10, 2014.
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 2, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Dec. 21, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Feb. 27, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 11, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 2, 2014.
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 20, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 26, 2016.
Official Communication for U.S. Appl. No. 14/225,084 dated Jan. 4, 2016.
Official Communication for U.S. Appl. No. 14/225,160 dated Feb. 11, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated Aug. 12, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated May 20, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated Oct. 22, 2014.
Official Communication for U.S. Appl. No. 14/225,160 dated Jan. 25, 2016.
Official Communication for U.S. Appl. No. 14/225,160 dated Jul. 29, 2014.
Official Communication for U.S. Appl. No. 14/268,964 dated Sep. 3, 2014.
Official Communication for U.S. Appl. No. 14/280,490 dated Jul. 24, 2014.
Official Communication for U.S. Appl. No. 14/289,596 dated Jul. 18, 2014.
Official Communication for U.S. Appl. No. 14/289,596 dated Jan. 26, 2015.
Official Communication for U.S. Appl. No. 14/289,596 dated Apr. 30, 2015.
Official Communication for U.S. Appl. No. 14/289,599 dated Jul. 22, 2014.
Official Communication for U.S. Appl. No. 14/289,599 dated May 29, 2015.
Official Communication for U.S. Appl. No. 14/289,599 dated Sep. 4, 2015.
Official Communication for U.S. Appl. No. 14/294,098 dated Aug. 15, 2014.
Official Communication for U.S. Appl. No. 14/294,098 dated Nov. 6, 2014.
Official Communication for U.S. Appl. No. 14/306,138 dated Sep. 14, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Mar. 17, 2016.
Official Communication for U.S. Appl. No. 14/306,138 dated Feb. 18, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Sep. 23, 2014.
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 24, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated May 26, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 3, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Feb. 19, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Dec. 24, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Aug. 7, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Sep. 9, 2014.
Official Communication for U.S. Appl. No. 14/306,154 dated Feb. 1, 2016.
Official Communication for U.S. Appl. No. 14/306,154 dated Mar. 11, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated May 15, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated Nov. 16, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated Mar. 17, 2016.
Official Communication for U.S. Appl. No. 14/306,154 dated Jul. 6, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated Sep. 9, 2014.
Official Communication for U.S. Appl. No. 14/319,765 dated Feb. 1, 2016.
Official Communication for U.S. Appl. No. 14/319,765 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/319,765 dated Jun. 16, 2015.
Official Communication for U.S. Appl. No. 14/319,765 dated Nov. 25, 2014.
Official Communication for U.S. Appl. No. 14/319,765 dated Feb. 4, 2015.
Official Communication for U.S. Appl. No. 14/323,935 dated Jun. 22, 2015.
Official Communication for U.S. Appl. No. 14/323,935 dated Nov. 28, 2014.
Official Communication for U.S. Appl. No. 14/323,935 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/326,738 dated Dec. 2, 2014.
Official Communication for U.S. Appl. No. 14/326,738 dated Jul. 31, 2015.
Official Communication for U.S. Appl. No. 14/326,738 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/473,860 dated Nov. 4, 2014.
Official Communication for U.S. Appl. No. 14/473,920 dated Aug. 10, 2017.
Official Communication for U.S. Appl. No. 14/473,920 dated Nov. 14, 2016.
Official Communication for U.S. Appl. No. 14/479,863 dated Dec. 26, 2014.
Official Communication for U.S. Appl. No. 14/487,021 dated Mar. 24, 2017.
Official Communication for U.S. Appl. No. 14/487,021 dated Jun. 30, 2017.
Official Communication for U.S. Appl. No. 14/490,612 dated Aug. 18, 2015.
Official Communication for U.S. Appl. No. 14/490,612 dated Jan. 27, 2015.
Official Communication for U.S. Appl. No. 14/490,612 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/504,103 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/504,103 dated Feb. 5, 2015.
Official Communication for U.S. Appl. No. 14/518,757 dated Dec. 1, 2015.
Official Communication for U.S. Appl. No. 14/579,752 dated Dec. 9, 2015.
Official Communication for U.S. Appl. No. 14/581,920 dated Mar. 1, 2016.
Official Communication for U.S. Appl. No. 14/631,633 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/631,633 dated Feb. 3, 2016.
Official Communication for U.S. Appl. No. 14/639,606 dated Apr. 5, 2016.
Official Communication for U.S. Appl. No. 14/726,353 dated Mar. 1, 2016.
Official Communication for U.S. Appl. No. 14/813,749 dated Sep. 28, 2015.
Official Communication for U.S. Appl. No. 14/813,749 dated Apr. 8, 2016.
Official Communication for U.S. Appl. No. 14/857,071 dated Mar. 2, 2016.
Official Communication for U.S. Appl. No. 15/151,904 dated Jul. 29, 2016.
Restriction Requirement for U.S. Appl. No. 13/839,026 dated Apr. 2, 2015.
Restriction Requirement for U.S. Appl. No. 14/857,071 dated Dec. 11, 2015.
“A Word About Banks and the Laundering of Drug Money,” Aug. 18, 2012, http://www.golemxiv.co.uk/2012/08/a-word-about-banks-and-the-laundering-of-drug-money/.
“Money Laundering Risks and E-Gaming: A European Overview and Assessment,” 2009, http://www.cf.ac.uk/socsi/resources/Levi_Final_Money_Laundering_Risks_egaming.pdf.
“Potential Money Laundering Warning Signs,” snapshot taken 2003, https://web.archive.org/web/20030816090055/http:/finsolinc.com/ANTI-MONEY%20LAUNDERING%20TRAINING%20GUIDES.pdf.
Alfred, Rayner “Summarizing Relational Data Using Semi-Supervised Genetic Algorithm-Based Clustering Techniques”, Journal of Computer Science, 2010, vol. 6, No. 7, pp. 775-784.
Baker et al., “The Development of a Common Enumeration of Vulnerabilities and Exposures,” Presented at the Second International Workshop on.
Butkovic et al., “Using Whois Based Geolocation and Google Maps API for Support Cybercrime Investigations,” http://wseas.us/e-library/conferences/2013/Dubrovnik/TELECIRC/TELECIRC-32.pdf, 2013, pp. 7.
FireEye—Products and Solutions Overview, http://www.fireeye.com/products-and-solutions Printed Jun. 30, 2014 in 3 pages.
FireEye, http://www.fireeye.com/ Printed Jun. 30, 2014 in 2 pages.
Keylines.com, “An Introduction to KeyLines and Network Visualization,” Mar. 2014, http://keylines.com/wp-content/uploads/2014/03/KeyLines-White-Paper.pdf downloaded May 12, 2014 in 8 pages.
Keylines.com, “KeyLines Datasheet,” Mar. 2014, http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf downloaded May 12, 2014 in 2 pages.
Keylines.com, “Visualizing Threats: Improved Cyber Security Through Network Visualization,” Apr. 2014, http://keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf downloaded May 12, 2014 in 10 pages.
Lee et al., “A Data Mining and CIDF Based Approach for Detecting Novel and Distributed Intrusions,” Lecture Notes in Computer Science, vol. 1907 Nov. 11, 2000, pp. 49-65.
Nolan et al., “MCARTA: A Malicious Code Automated Run-Time Analysis Framework,” Homeland Security, 2012 IEEE Conference on Technologies for, Nov. 13, 2012, pp. 13-17.
Notice of Allowance for U.S. Appl. No. 14/139,628 dated Jun. 24, 2015.
Notice of Allowance for U.S. Appl. No. 14/139,640 dated Jun. 17, 2015.
Notice of Allowance for U.S. Appl. No. 14/139,713 dated Jun. 12, 2015.
Notice of Allowance for U.S. Appl. No. 14/264,445 dated May 14, 2015.
Notice of Allowance for U.S. Appl. No. 14/278,963 dated Sep. 2, 2015.
Notice of Allowance for U.S. Appl. No. 14/473,552 dated Jul. 24, 2015.
Notice of Allowance for U.S. Appl. No. 14/473,860 dated Jan. 5, 2015.
Notice of Allowance for U.S. Appl. No. 14/486,991 dated May 1, 2015.
Notice of Allowance for U.S. Appl. No. 14/616,080 dated Apr. 2, 2015.
Official Communication for European Patent Application No. 14159535.5 dated May 22, 2014.
Official Communication for European Patent Application No. 15155845.9 dated Oct. 6, 2015.
Official Communication for European Patent Application No. 15156004.2 dated Aug. 24, 2015.
Official Communication for European Patent Application No. 15175151.8 dated Nov. 25, 2015.
Official Communication for Great Britain Application No. 1404457.2 dated Aug. 14, 2014.
Official Communication for New Zealand Application No. 622181 dated Mar. 24, 2014.
Official Communication for U.S. Appl. No. 14/251,485 dated Oct. 1, 2015.
Official Communication for U.S. Appl. No. 14/264,445 dated Apr. 17, 2015.
Official Communication for U.S. Appl. No. 14/278,963 dated Jan. 30, 2015.
Official Communication for U.S. Appl. No. 14/473,552 dated Feb. 24, 2015.
Official Communication for U.S. Appl. No. 14/486,991 dated Mar. 10, 2015.
Official Communication for U.S. Appl. No. 14/518,757 dated Apr. 2, 2015.
Official Communication for U.S. Appl. No. 14/518,757 dated Jul. 20, 2015.
Official Communication for U.S. Appl. No. 14/579,752 dated Aug. 19, 2015.
Official Communication for U.S. Appl. No. 14/579,752 dated May 26, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated Oct. 16, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated May 18, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated Jul. 24, 2015.
Official Communication for U.S. Appl. No. 14/726,353 dated Sep. 10, 2015.
Perdisci et al., “Behavioral Clustering of HTTP-Based Malware and Signature Generation Using Malicious Network Traces,” USENIX, Mar. 18, 2010, pp. 1-14.
Recent Advances in Intrusion Detection, Sep. 7-9, 1999, pp. 35.
Shah, Chintan, “Periodic Connections to Control Server Offer New Way to Detect Botnets,” Oct. 24, 2013 in 6 pages, http://blogs.mcafee.com/mcafee-labs/periodic-links-to-control-server-offer-new-way-to-detect-botnets.
Shi et al., “A Scalable Implementation of Malware Detection Based on Network Connection Behaviors,” 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, IEEE, Oct. 10, 2013, pp. 59-66.
Symantec Corporation, “E-Security Begins with Sound Security Policies,” Announcement Symantec, Jun. 14, 2001.
VirusTotal—About, http://www.virustotal.com/en/about/ Printed Jun. 30, 2014 in 8 pages.
Wiggerts, T.A., “Using Clustering Algorithms in Legacy Systems Remodularization,” Reverse Engineering, Proceedings of the Fourth Working Conference, Netherlands, Oct. 6-8, 1997, IEEE Computer Soc., pp. 33-43.
Arya et al., “A clustering based algorithm for network intrusion detection,” Oct. 2012, SIN '12: Proceedings of the Fifth International Conference on Security of Information and Networks, pp. 193-196.
Marschalek et al., “Classifying Malicious System Behavior Using Event Propagation Trees,” Dec. 2015, iiWAS '15, Proceedings of the 17th International Conference on Information Integration and Web-based Applications & Services, pp. 1-10.
Stack Overflow, How to use update trigger to update another table, May 2012, 2 pages.
Notice of Allowance for U.S. Appl. No. 14/473,920 dated Dec. 28, 2017.
Notice of Allowance for U.S. Appl. No. 14/487,021 dated Jan. 29, 2018.
Official Communication for European Patent Application No. 15175151.8 dated Jan. 3, 2018.
Official Communication for U.S. Appl. No. 14/948,936 dated Mar. 28, 2018.
Related Publications (1)
Number Date Country
20160034470 A1 Feb 2016 US
Provisional Applications (1)
Number Date Country
61800887 Mar 2013 US
Continuations (3)
Number Date Country
Parent 14264445 Apr 2014 US
Child 14819272 US
Parent 13968213 Aug 2013 US
Child 14264445 US
Parent 13968265 Aug 2013 US
Child 13968213 US