1. Field of the Invention
Embodiments of the present invention generally relate to data analysis and, more specifically, to generating data clusters of related data entities with customizable analysis strategies.
2. Description of the Related Art
In financial and security investigations an analyst may have to make decisions regarding data entities within a collection of data. For instance, the analyst could have to decide whether an account data entity represents a fraudulent bank account. However, an individual data entity oftentimes includes insufficient information for the analyst to make such decisions. The analyst makes better decisions based upon a collection of related data entities. For instance, two financial transactions may be related by an identical account identifier or two accounts belonging to one customer may be related by an identical customer identifier or other attribute (e.g., a shared phone number or address). Some currently available systems assist the analyst by identifying data entities that are directly related to an initial data entity. For example, the analyst could initiate an investigation with a single suspicious data entity or “seed,” such as a fraudulent credit card account. If the analyst examined this data entity by itself, then the analyst would not observe any suspicious characteristics. However, the analyst could request a list of data entities related to the seed by a shared attribute, such as a customer identifier. In doing so, the analyst could discover an additional data entity, such as an additional credit card account, which relates to the original fraudulent account because of a shared customer identifier. The analyst could then mark the additional credit card account as potentially fraudulent, based upon the relationship of the shared customer identifier.
Although these systems can be very helpful in discovering related data entities, they typically require the analyst to manually repeat the same series of searches for many investigations. Repeating the same investigation process consumes time and resources, such that there are oftentimes more investigations than can be performed. Thus, analysts typically prioritize investigations based upon the characteristics of the seeds. However, there may be insignificant differences between the seeds, so the analyst may not be able to determine the correct priority for investigations. For instance, the analyst could have to choose between two potential investigations based upon separate fraudulent credit card accounts. One investigation could reveal more potentially fraudulent credit card accounts than the other, and therefore could be more important to perform. Yet, the characteristics of the two original credit card accounts could be similar, so the analyst would not be able to choose the more important investigation. Without more information, prioritizing investigations is difficult and error prone.
One embodiment of the invention includes a method for prioritizing a plurality of clusters. This method may generally include identifying a scoring strategy for prioritizing the plurality of clusters. Each cluster is generated from a seed and stores a collection of data retrieved using the seed. For each cluster, elements of the collection of data stored by the cluster are evaluated according to the scoring strategy and a score is assigned to the cluster based on the evaluation. This method may also include ranking the clusters according to the respective scores assigned to the plurality of clusters. The collection of data stored by each cluster may include financial data evaluated by the scoring strategy for a risk of fraud. The score assigned to each cluster corresponds to an amount at risk.
In a particular embodiment, assigning a respective score to the cluster based on the evaluation may include determining a plurality of base scores and determining, as the score to assign to the cluster, an aggregate score from the plurality of base scores.
Other embodiments include, without limitation, a computer-readable medium that includes instructions that enable a processing unit to implement one or more aspects of the disclosed methods as well as a system having a processor, memory, and application programs configured to implement one or more aspects of the disclosed methods.
Advantageously, the disclosed techniques provide a more effective starting point for an investigation of financial and security data entities. An analyst is able to start the investigation from a cluster of related data entities instead of an individual data entity, which may reduce the amount of time and effort required to perform the investigation. The disclosed techniques also provide a prioritization of multiple clusters. The analyst is also able to start the investigation from a high priority cluster, which may allow the analyst to focus on the most important investigations.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Embodiments of the invention provide techniques for building clusters of related data from an initial data entity, called a seed. The seed and related data entities may be available from databases maintained by a financial institution. Such databases may include a variety of information, such as credit card accounts, customer identifiers, customer information, and transactions, as well as the relationships that link those data entities together, stored across different systems controlled by different entities. Embodiments bring together data from multiple datasets such as these to build clusters. To perform financial and security investigations related to the seed, an analyst may have to search several layers of related data entities. For example, the analyst could investigate data entities related to a seed credit card account, by discovering the customer identifiers associated with the credit card account, the phone numbers associated with those customer identifiers, the additional customer identifiers associated with those phone numbers, and finally the additional credit card accounts associated with those additional customer identifiers. If the seed credit card account were fraudulent, then the analyst could determine that the additional credit card accounts could also be fraudulent. In such an investigation, the analyst would discover the relationship between the additional credit card accounts and the seed credit card accounts through several layers of related data entities. This technique is particularly valuable for investigations where the relationship between data entities could include several layers and would be difficult to identify.
In one embodiment, the data analysis system automatically discovers data entities related to a seed and stores the resulting relationships and related data entities together in a “cluster.” A cluster generation strategy specifies what searches to perform at each step of the investigation process. The searches produce layers of related data entities to add to the cluster. Thus, the analyst starts an investigation with the resulting cluster, instead of the seed alone. Starting with the cluster, the analyst may form opinions regarding the related data entities, conduct further analysis of the related data entities, or may query for additional related data entities. Further, for numerous such seeds and associated investigations, the data analysis system may prioritize the clusters based upon an aggregation of characteristics of the related data entities within the clusters. The data analysis system then displays summaries of the clusters. The summaries may be displayed according to the prioritization. The prioritization may assist the analyst in selecting what clusters to investigate.
In the following description, numerous specific details are set forth to provide a more thorough understanding of the present invention. However, it will be apparent to one of skill in the art that the present invention may be practiced without one or more of these specific details.
The application server 115 includes a cluster engine 120 and a workflow engine 125. The cluster engine 120 is configured to build one or more clusters of related data entities, according to a defined analysis strategy. The cluster engine 120 may read data from a variety cluster data sources 160 to generate clusters from seed data. Once created, the resulting clusters may be stored on the server computer 110 or on the database 140. The operations of the cluster engine 120 are discussed in detail below in conjunction with
The cluster engine 120 is configured to score the clusters, according to a defined scoring strategy. The score may indicate the importance of analyzing the cluster. For instance, the cluster engine 120 could execute a scoring strategy that aggregates the account balances of credit card accounts within the cluster. If the cluster included a larger total balance than other clusters, then the cluster could be a greater liability for the financial institution. Thus, the cluster would be more important to analyze and would receive a higher score. In one embodiment, the cluster engine 120 organizes and presents the clusters according to the assigned scores. The cluster engine 120 may present summaries of the clusters and/or interactive representations of the clusters within the cluster analysis UI. For example, the representations may provide visual graphs of the related data entities within the clusters. The cluster engine 120 may generate the cluster analysis UI as a web application or a dynamic web page displayed within the client 135. The cluster engine 120 also allows an analyst to create tasks associated with the clusters. The operations of the cluster engine 120 are discussed in detail below in conjunction with
The client 135 represents one or more software applications configured to present data and translate input, from the analyst, into requests for data analyses by the application server 115. In one embodiment, the client 135 and the application server 115 are coupled together. However, several clients 135 may execute on the client computer 130 or several clients 135 on several client computers 130 may interact with the application server 115. In one embodiment, the client 135 may be a browser accessing a web service.
While the client 135 and application server 115 are shown running on distinct computing systems, the client 135 and application server 115 may run on the same computing system. Further, the cluster engine 120 and the workflow engine 125 may run on separate applications servers 115, on separate server computing systems, or some combination thereof. Additionally, a history service may store the results generated by an analyst relative to a given cluster
In one embodiment, the cluster data sources 160 provide data available to the cluster engine to create clusters from a set of seeds. Such data sources may include relational data sources, web services data, XML data, etc. For example, the data sources may be related to customer account records stored by a financial institution. In such a case, the data sources may include a credit card account data, bank account data, customer data, and transaction data. The data may include data attributes such as account numbers, account balances, phone numbers, addresses, and transaction amounts, etc. Of course, cluster data sources 160 is included to be representative of a variety of data available to the server computer system 110 over network 150, as well as locally available data sources.
The database 140 may be a Relational Database Management System (RDBMS) that stores the data as rows in relational tables. While the database 140 is shown as a distinct computing system, the database 140 may operate on the same server computing system 110 as the application server 115.
Seeds 212 are the starting point for generating a cluster 252. To generate a cluster, the cluster engine 120 retrieves a given seed 212 from the seed list 210. The seed 212 may be an arbitrary data entity within the database 140, such as a customer name, a customer social security number, an account number, or a customer telephone number.
The cluster engine 120 generates the cluster 252 from the seed 212. In one embodiment, the cluster engine 120 generates the cluster 252 as a collection of data entities and the relationships between the various data entities. As noted above, the cluster strategy executes data bindings in order to add each additional layer of objects to the cluster. For example, the cluster engine 120 could generate the cluster 252 from a seed credit card account. The cluster engine 120 first adds the credit card account to the cluster 252. The cluster engine 120 could then add customers related to the credit card account to the cluster 252. The cluster engine 120 could complete the cluster 252 by adding additional credit card accounts related to those customers. As the cluster engine 120 generates the cluster 252, the cluster engine 120 stores the cluster 252 within the cluster list 250. The cluster 252 may be stored as a graph data structure. The cluster list 250 may be a collection of tables in the database 140. In such a case, there may be a table for the data entities of the cluster 252, a table for the relationships between the various data entities, a table for the attributes of the data entities, and a table for a score of the cluster 252. The cluster list 250 may include clusters 252 from multiple investigations. Note that the cluster engine 120 may store portions of the cluster 252 in the cluster list 250 as the cluster engine 120 generates the cluster 252. Persons skilled in the art will recognize that many technically feasible techniques exist for creating and storing graph data structures.
The cluster strategy store 230 includes cluster strategies 232-1, 232-2 . . . 232-N. Each cluster strategy may include references 235 to one or more data bindings 237. As noted, each data binding may be used to identify data that may grow a cluster (as determined by the given search strategy 232). The cluster engine 120 executes a cluster strategy 232 to generate the cluster 252. Specifically, the cluster engine 120 executes the cluster strategy 232 selected by an analyst. The analyst may submit a selection of the cluster strategy 232 to the cluster engine 120 through the client 135.
Each cluster strategy 232 is configured as to perform an investigation processes for generating the cluster 252. Again, e.g., the cluster strategy 232 may include references 235 to a collection of data bindings executed to add layer after layer of data to a cluster. The investigation process includes searches to retrieve data entities related to the seed 212. For example, the cluster strategy 232 could start with a possibly fraudulent credit card account as the seed 212. The cluster strategy 232 would search for customers related to the credit card account, and then additional credit card accounts related to those customers. A different cluster strategy 232 could search for customers related to the credit card account, phone numbers related to the customers, additional customers related to the phone numbers, and additional credit card accounts related to the additional customers.
In one embodiment, the cluster strategy 232 includes a reference to at least one data binding 237. The cluster engine 120 executes the search protocol of specified by the data binding 237 to retrieve data, and the data returned by a given data binding forms a layer within the cluster 252. For instance, the data binding 237 could retrieve sets of customers related to an account by an account owner attribute. The data binding 237 retrieves the set of related data entities from a data source. For instance, the data binding 237-1 could define specify a database query to perform against a database. Likewise, the data binding 237-2 could define a connection to a remote relational database system and the data binding 237-3 could define a connection and query against a third-party web service. Once retrieved, the cluster strategy 232 may evaluate whether the returned data should be added to a cluster being grown from a given seed 212. Multiple cluster strategies 232 may reference a given data binding 237. The analyst can update the data binding 237, but typically updates the data binding 237 only if the associated data source changes. A cluster strategy 232 may also include a given data binding 237 multiple times. For example, executing a data binding 237 using one seed 212 may generate additional seeds for that data binding 237 (or generate seeds for another data binding 237). More generally, different cluster strategies 232-1, 232-2 . . . 232-N may include different arrangements of various data bindings 237 to generate different types of clusters 252.
The cluster strategy 232 may specify that the cluster engine 120 use an attribute from the related data entities retrieved with one data binding 237, as input to a subsequent data binding 237. The cluster engine 120 uses the subsequent data binding 237 to retrieve a subsequent layer of related date entities for the cluster 252. For instance, the cluster strategy 232 could specify that the cluster engine 120 retrieve a set of credit card account data entities with a first data binding 237-1. The cluster strategy 232 could also specify that the cluster engine 120 then use the account number attribute from credit card account data entities as input to a subsequent data binding 237-2. The cluster strategy 232 may also specify filters for the cluster engine 120 to apply to the attributes before performing the subsequent data binding 237. For instance, if the first data binding 237-1 were to retrieve a set of credit card account data entities that included both personal and business credit card accounts, then the cluster engine 120 could filter out the business credit card accounts before performing the subsequent data binding 237-2.
In operation, the cluster engine 120 generates a cluster 252-1 from a seed 212-1 by first retrieving a cluster strategy 232. Assuming that the analyst selected a cluster strategy 232-2, then the cluster engine 120 would retrieve the cluster strategy 232-2 from the cluster strategy store 230. The cluster engine 120 could then retrieve the seed 212-1 as input to the cluster strategy 232-2. The cluster engine 120 would execute the cluster strategy 232-2 by retrieving sets of data by executing data bindings 237 referenced by the cluster strategy 232-2. For example, the cluster strategy could execute data bindings 237-1, 237-2, and 237-3. The cluster engine 120 evaluates data returned by each data binding 237 to determine whether to use that data to grow the cluster 252-1. The cluster engine 120 may then use elements of the returned data as input to the next data binding 237. Of course, a variety of execution paths are possible for the data bindings 237. For example, assume one data binding 237 returned a set of phone numbers. In such a case, another data binding 237 could evaluate each phone number individually. As another example, one data binding 237 might use input parameters obtained by executing multiple, other data bindings 237. More generally, the cluster engine 120 may retrieves data for each data binding referenced by the cluster strategy 232-2. The cluster engine 120 then stores the complete cluster 252-1 in the cluster list 250.
As the cluster engine 120 generates the clusters 252-1, 252-2 . . . 252-C from seeds 212-1, 212-2 . . . 212-S, the cluster list 250 may include overlapping clusters 252. Two clusters 252-1 and 252-C overlap if both clusters 252-1 and 252-C include a common data entity. Oftentimes, a larger cluster 252 formed by merging two smaller clusters 252-1 and 252-C may be a better investigation starting point than the smaller clusters 252-1 and 252-C individually. The larger cluster 252 may provide additional insight or relationships, which may not be available if the two clusters 252-1 and 252-C remain separate.
In one embodiment, the cluster engine 120 includes a resolver 226 that is configured to detect and merge two overlapping clusters 252 together. The resolver 226 compares the data entities within a cluster 252-1 to the data entities within each one of the other clusters 252-2 through 252-C. If the resolver 226 finds the same data entity within the cluster 252-1 and a second cluster 252-C, then the resolver 226 may merge the two clusters 252-1 and 252-C into a single larger cluster 252. For example, the cluster 252-1 and cluster 252-C could both include the same customer. The resolver 226 would compare the data entities of cluster 252-1 to the data entities of cluster 252-C and detect the same customer in both clusters 252. Upon detecting the same customer in both clusters 252, the resolver 226 could merge the cluster 252-1 with cluster 252-C. The resolver 226 may test each pair of clusters 252 to identify overlapping clusters 252. Although the larger clusters 252 may be better investigation starting points, an analyst may want to understand how the resolver 226 formed the larger clusters 252. The resolver 226, stores a history of each merge.
After the cluster engine generates a group of clusters from a given collection of seeds (and after merging or resolving the cluster), the cluster engine 120 may score, rank, or otherwise order the clusters relative to a scoring strategy 442.
In one embodiment, the analysis system 100, and more specifically, the cluster engine 120 receives a list of seeds to generate a group of clusters, subsequently ranked, ordered, and presented to analysts. That is, the cluster engine 120 consumes seeds generated by other systems. Alternatively, in other embodiments, cluster engine 120 may generate the seeds 212-1, 212-2 . . . 212-S. For instance, the cluster engine 120 may include a lead generation strategy that identifies data entities as potential seeds 212. The lead generation strategy may apply to a particular business type, such as credit cards, stock trading, or insurance claims and may be run against a cluster data source 160 or an external source of information.
Assuming that the seed 212 were a fraudulent credit card account, then the cluster engine 120 would add the credit card account to the cluster 252 as the seed data entity 302. The cluster engine 120 would then use the account owner attribute of the credit card account as input to a data binding 237. The cluster engine 120 would execute the search protocol of data binding 237 to retrieve the customer data identifying the owner of the fraudulent credit card account. The cluster engine 120 would then add the customer data to the cluster 252 as the related data entity 305-1. The cluster engine 120 would also add the account owner attribute as the link 303-1 that relates the account number to the customer data of the owner. The cluster engine 120 would execute the next search of the cluster strategy 232 by inputting the customer identifier attribute of the customer data into a data binding 237 to retrieve a phone data. The cluster engine 120 would then add the phone data as the related data entity 305-2 and the customer identifier attribute as the link 303-2 between the customer data and the phone data. At this point in the investigation process, the cluster 252 would include the seed data entity 302, two links 303-1 and 303-2, and two related data entities 305-1 and 305-2. That is, the cluster 252 includes the fraudulent credit card account, the customer data of the owner of the credit card, and the phone number of the owner. By carrying the investigation process further, the cluster engine 120 could reveal further related information—e.g., additional customers or potentially fraudulent credit card accounts.
Turning to
The cluster engine 120 executes a scoring strategy 442 to score a cluster 252. For example, the cluster engine 120 may generate a cluster, via a cluster strategy/data bindings, and attempt to resolve it with existing clusters. Thereafter, the cluster engine 120 may score the resulting cluster with any scoring strategies associated with a given cluster generation strategy. In one embodiment, the score for a cluster may be a meta score generated as an aggregation of scores generated for different aspects, metrics, or data of a cluster. Ordering for a group of clusters, (according to a given scoring strategy) may be performed done on demand when requested by a client. Alternatively, the analyst may select of a scoring strategy 442 to the cluster engine 120 through the client 135 or the analyst may include the selection within a script or configuration file. In other embodiments, the cluster engine 120 may execute several scoring strategies 442 to determine a combined score for the cluster 252.
The scoring strategy 442 specifying an approach for scoring a cluster 252. The score may indicate the relative importance or significance of a given cluster 252. For instance, the cluster engine 120 could execute a scoring strategy 442-1 to determine a score by counting the number of a particular data entity type within the cluster 252. Assume, e.g., a data entity corresponds to a credit account. In such a case, a cluster with a large number of accounts opened by a single individual (possibly within a short time) might correlate with a higher fraud risk. Of course, a cluster score may be related to a high risk of fraud based on the other data in the cluster, as appropriate for a given case. More generally, each scoring strategy 442 may be tailored based on the data in clusters created by a given cluster strategy 230 and the particular type of risk or fraud (or amounts at risk).
In operation, the cluster engine 120 scores a cluster 252-1 by first retrieving a scoring strategy 442. For example, assume a analyst selects scoring strategy 442-1. In response, the cluster engine 120 retrieves the scoring strategy 442-1. The cluster engine 120 also retrieves the cluster 252-1 from the cluster list 250. After determining the score of the cluster 252-1, the cluster engine 120 may store the score with the cluster 252-1 in the cluster list 250.
The cluster engine 120 may score multiple clusters 252-1, 252-2 . . . 252-C in the cluster list 250. The cluster engine 120 may also rank the clusters 252-1, 252-2 . . . 252-C based upon the scores. For instance, the cluster engine 120 could rank the cluster 252-1, 252-2 . . . 252-C from highest score to lowest score.
The lead box 510 allows the analyst to select a seed list 210 or a suitable lead generation strategy. The lead generation strategy generates a seed list 210. The lead generation strategy may generate a seed list 210 from the database 140 or an external source of information (e.g., a cluster data source 160).
The cluster strategy box 530 displays the cluster strategies 232 that the cluster engine 120 ran against the seed list 210. The cluster engine 120 may execute multiple cluster strategies 232 against the seed list 210, so there may be multiple cluster strategies 232 listed in the cluster strategy box 530. The analyst may click on the name of a given cluster strategy 232 in the cluster strategy box 530 to review the clusters 252 that the cluster strategy 232 generated.
The workflow engine 125 displays summaries of the clusters 252 in the cluster summary list 525. For example, the summaries, may include characteristics of the clusters 252, such as identifiers, the scores, or analysts assigned to analyze the clusters 252. The workflow engine 125 can select the clusters 252 for the display in the cluster summary list 525 according to those or other characteristics. For instance, the workflow engine 125 could display the summaries in the order of the scores of the clusters 252, where a summary of the highest scoring cluster 252 is displayed first.
The workflow engine 125 controls the order and selection of the summaries within the cluster summary list 525 based upon the input from the analyst. The cluster search box 520 includes a search text box coupled to a search button and a pull-down control. The analyst may enter a characteristic of a cluster 252 in the search text box and then instruct the workflow engine 125 to search for and display clusters 252 that include the characteristic by pressing the search button. For example, the analyst could search for clusters with a particular score. The pull-down control includes a list of different characteristics of the clusters 252, such as score, size, assigned analyst, or date created. The analyst may select one of the characteristics to instruct the workflow engine 125 to present the summaries of the clusters 252 arranged by that characteristic.
The workflow engine 125 is also configured to present details of a given cluster 252 within the cluster review window 515. The workflow engine 125 displays the details of the cluster 252, e.g., the score, or average account balances within a cluster, when the analyst clicks a mouse pointer on the associated summary within the cluster summary list 525. The workflow engine 125 may present details of the cluster 252, such as the name of the analyst assigned to analyze the cluster 252, the score of the cluster 252, and statistics or graphs generated from the cluster 252. These details allow the analyst to determine whether to investigate the cluster 252 further. The cluster review window 515 also includes a button which may be clicked to investigate a cluster 252 within a graph and an assign button for assigning a cluster to an analyst.
The analyst can click a mouse pointer on the button to investigate the cluster 252 within an interactive graph. The interactive representation is a visual graph of the cluster 252, where icons represent the entities of the cluster 252 and lines between the icons represent the links between entities of the cluster 252. For example, the workflow engine 125 could display the interactive graph of the cluster 252 similar to the representation of the cluster 252 in
An administrative user can click a mouse pointer on the assign button to assign the associated cluster 252 to an analyst. The workflow engine 125 also allows the administrative user to create tasks associated with the clusters 252, while the administrative user assigns the cluster 252. For example, the administrative user could create a task for searching within the three highest scoring clusters 252 for fraudulent credit card accounts. The workflow engine 125 may display the summaries in the cluster summary list 525 according to the names of the analysts assigned to the clusters 252. Likewise, the workflow engine 125 may only display summaries for the subset of the clusters 252 assigned to an analyst.
The interface shown in
As shown, method 600 begins at step 605, where the cluster engine 120 retrieves a cluster strategy 232 and a seed 212. Once a cluster strategy is selected, the cluster engine 120 identifies a list of seeds to build clusters using the selected cluster strategy. At step 610, the cluster engine 120 initializes a cluster 252 with one of the seeds in the list. The cluster 252 is stored as a graph data structure. The cluster engine 120 initializes the graph data structure, and then adds the seed 212-1 to the graph data structure as the first data entity.
At step 615, the cluster engine 120 grows the cluster 252 by executing the search protocol of a data binding 237 from the cluster strategy 232-2. The cluster strategy 232-2 includes a series of data bindings 237 that the cluster engine 120 executes to retrieve related data entities. A given data binding 237 may include queries to execute against a cluster data source 160 using the seed as an input parameters. For example, if the seed 212-1 were an account number, then the data binding 237 might retrieve the data identifying the owner of the account with the account number. After retrieving this information, the cluster engine 120 would add the customer data entity to the cluster as a related data entity and the account owner attribute as the link between the seed 212-1 and the related data entity. After retrieving the related data entities, the cluster engine 120 adds them to the cluster 252.
At step 620, the cluster engine 120 determines if the cluster strategy 232-2 is fully executed. If so the method 600 returns to step 615 to execute additional data bindings for a given seed. Once the cluster strategy is executed for that seed, the cluster engine 120 may determine and assign a score to that cluster (relative to a specified scoring strategy). After generating clusters for a group of seeds, such clusters may be ordered or ranked based on the relative scores. Doing so allows an analyst to rapidly identify and evaluate clusters determined to represent a high risk of fraud (or having high amounts at risk).
At step 625, the cluster engine 120 stores the cluster 252 in cluster list 250. The cluster list 250 is a collection of tables within a relational database, where a table may include the seed and related data entities of the cluster 252 and another table may include links between the related data entities of the cluster 252. At step 630, the cluster engine 120 determines if there are more seeds 212 to analyze in the seed list 210. If so, the method 600 returns to step 605 to generate another cluster from the next seed. Otherwise, the method 600 ends. Note, while method 600 describes a single cluster being generated, one of skill in the art will recognize that the cluster generation process illustrated by method 600 may be performed in parallel.
As shown, method 700 begins at step 705, where the cluster engine 120 retrieves a scoring strategy 442 and a cluster 252 (e.g., a cluster just created using the method 600 of
At step 710, the cluster engine 120 executes the scoring strategy 442 against the cluster 252. The scoring strategy 442 specifies characteristics of the related data entities within the cluster 252 to aggregate. The cluster engine 120 executes the scoring strategy 442 by aggregated the specified characteristics together to determine a score. For instance, the cluster engine 120 could aggregate the account balances of related data entities that are account data entities. In such a case, the total amount of dollars included within the balances of the account data entities of the cluster 252 could be the score of the cluster 252.
At step 715, the cluster engine 120 stores the score with the cluster 252 in the cluster list 250. At step 720, the cluster engine 120 determines if there are more clusters 252 to score. For example, in one embodiment, a set of clusters may be re-scored using an updated scoring strategy. In other cases, the cluster engine may score each cluster when it is created from a seed (based on a given cluster generation and corresponding scoring strategy). If more clusters remain to be scored (or re-scored), the method 700 returns to step 705.
At step 725, the cluster engine 125 ranks the clusters 252 according to the scores of the clusters 252. For example, after re-scoring a set of clusters (or after scoring a group of clusters generated from a set of seeds), the cluster engine 125 may rank the clusters 252 from highest score to lowest score. The ranking may be used to order a display of summaries of the clusters 252 presented to the analyst. The analyst may rely upon the ranking and scores to determine which clusters 252 to analyze first. The ranking and sorting may generally be performed on-demand when an analyst is looking for a cluster to investigate. Thus, the ranking need not happen at the same time as scoring. And further, the clusters may be scored (and later ranked) using different raking strategies.
The CPU 860 retrieves and executes programming instructions stored in memory 820 as well as stores and retrieves application data residing in memory 820. The bus 840 is used to transmit programming instructions and application data between the CPU 860, I/O device interface 870, storage 830, network interface 850, and memory 820. Note that the CPU 860 is included to be representative of a single CPU, multiple CPUs, a single CPU having multiple processing cores, a CPU with an associate memory management unit, and the like. The memory 820 is generally included to be representative of a random access memory. The storage 830 may be a disk drive storage device. Although shown as a single unit, the storage 830 may be a combination of fixed and/or removable storage devices, such as fixed disc drives, removable memory cards, or optical storage, network attached storage (NAS), or a storage area-network (SAN).
Illustratively, the memory 820 includes a seed list 210, a cluster engine 120, a cluster list 250, and a workflow engine 125. The cluster engine 120 includes a cluster strategy 232-2. The particular cluster strategy 232-2 includes data bindings 237-1, 237-2, and 237-3, with which the cluster engine 120 accesses the cluster data source 160. The workflow engine 125 includes a scoring strategy 442-1.
Illustratively, the storage 830 includes a cluster strategy store 230, data bindings store 835, and a scoring strategy store 440. As discussed the cluster strategy store 230 may include a collection of different cluster strategies 232, such as cluster strategy 232-2. The cluster strategy store 230 may be a directory that includes the cluster strategies 232-1, 232-2 . . . 232-N as distinct modules. The scoring strategy store 440 may include a collection of different scoring strategies 442, such as scoring strategy 442-2 and may also be a directory of distinct modules. The data binding store 835 includes data bindings 237-1, 237-2 . . . 237-M, which may also be stored as distinct modules within a directory.
Although shown in memory 820, the seed list 210, cluster engine 120, cluster list 250, and workflow engine 125, may be stored in memory 820, storage 830, or split between memory 820 and storage 830. Likewise, copies of the cluster strategy 232-2, data binding 237-1, 237-2, and 237-3, and scoring strategy 442-2 may be stored in memory 820, storage 830, or split between memory 820 and storage 830.
Note, while financial fraud using credit card accounts is used as a primary reference example in the discussion above, one of ordinary skill in the art will recognize that the techniques described herein may be adapted for use with a variety of data sets. For example, information from data logs of online systems could be evaluated as seeds to improve cyber security. In such a case, a seed could be a suspicious IP address, a compromised user account, etc. From the seeds, log data, DHCP logs, IP blacklists packet captures, webapp logs, and other server and database logs could be used to create clusters of activity related to the suspicions seeds. Other examples include data quality analysis used to cluster transactions processed through a computer system (whether financial or otherwise).
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof. For example, aspects of the present invention may be implemented in hardware or software or in a combination of hardware and software. One embodiment of the invention may be implemented as a program product for use with a computer system. The program(s) of the program product define functions of the embodiments (including the methods described herein) and can be contained on a variety of computer-readable storage media. Illustrative computer-readable storage media include, but are not limited to: (i) non-writable storage media (e.g., read-only memory devices within a computer such as CD-ROM disks readable by a CD-ROM drive, flash memory, ROM chips or any type of solid-state non-volatile semiconductor memory) on which information is permanently stored; and (ii) writable storage media (e.g., hard-disk drive or any type of solid-state random-access semiconductor memory) on which alterable information is stored.
The invention has been described above with reference to specific embodiments. Persons of ordinary skill in the art, however, will understand that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The foregoing description and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. Therefore, the scope of the present invention is determined by the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 14/264,445, which was filed Apr. 29, 2015, which is a continuation of each of U.S. patent application Ser. Nos. 13/968,213 and 13/968,265, each of which was filed Aug. 15, 2013, and each of which application claims benefit of U.S. Provisional Patent Application Ser. No. 61/800,887 filed Mar. 15, 2013. All of the above items are hereby incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5109399 | Thompson | Apr 1992 | A |
5329108 | Lamoure | Jul 1994 | A |
5632009 | Rao et al. | May 1997 | A |
5670987 | Doi et al. | Sep 1997 | A |
5781704 | Rossmo | Jul 1998 | A |
5790121 | Sklar et al. | Aug 1998 | A |
5798769 | Chiu et al. | Aug 1998 | A |
5845300 | Comer | Dec 1998 | A |
5978475 | Schneier et al. | Nov 1999 | A |
6057757 | Arrowsmith et al. | May 2000 | A |
6091956 | Hollenberg | Jul 2000 | A |
6141659 | Barker et al. | Oct 2000 | A |
6161098 | Wallman | Dec 2000 | A |
6219053 | Tachibana et al. | Apr 2001 | B1 |
6232971 | Haynes | May 2001 | B1 |
6247019 | Davies | Jun 2001 | B1 |
6279018 | Kudrolli et al. | Aug 2001 | B1 |
6341310 | Leshem et al. | Jan 2002 | B1 |
6366933 | Ball et al. | Apr 2002 | B1 |
6369835 | Lin | Apr 2002 | B1 |
6374251 | Fayyad et al. | Apr 2002 | B1 |
6456997 | Shukla | Sep 2002 | B1 |
6549944 | Weinberg et al. | Apr 2003 | B1 |
6560620 | Ching | May 2003 | B1 |
6567936 | Yang et al. | May 2003 | B1 |
6581068 | Bensoussan et al. | Jun 2003 | B1 |
6594672 | Lampson et al. | Jul 2003 | B1 |
6631496 | Li et al. | Oct 2003 | B1 |
6642945 | Sharpe | Nov 2003 | B1 |
6674434 | Chojnacki et al. | Jan 2004 | B1 |
6714936 | Nevin, III | Mar 2004 | B1 |
6725240 | Asad et al. | Apr 2004 | B1 |
6775675 | Nwabueze et al. | Aug 2004 | B1 |
6807569 | Bhimani et al. | Oct 2004 | B1 |
6820135 | Dingman | Nov 2004 | B1 |
6828920 | Owen et al. | Dec 2004 | B2 |
6839745 | Dingari et al. | Jan 2005 | B1 |
6877137 | Rivette et al. | Apr 2005 | B1 |
6976210 | Silva et al. | Dec 2005 | B1 |
6980984 | Huffman et al. | Dec 2005 | B1 |
6985950 | Hanson et al. | Jan 2006 | B1 |
7017046 | Doyle et al. | Mar 2006 | B2 |
7036085 | Barros | Apr 2006 | B2 |
7043702 | Chi et al. | May 2006 | B2 |
7055110 | Kupka et al. | May 2006 | B2 |
7139800 | Bellotti et al. | Nov 2006 | B2 |
7158878 | Rasmussen et al. | Jan 2007 | B2 |
7162475 | Ackerman | Jan 2007 | B2 |
7168039 | Bertram | Jan 2007 | B2 |
7171427 | Witowski et al. | Jan 2007 | B2 |
7225468 | Waisman et al. | May 2007 | B2 |
7269786 | Malloy et al. | Sep 2007 | B1 |
7278105 | Kitts | Oct 2007 | B1 |
7290698 | Poslinski et al. | Nov 2007 | B2 |
7333998 | Heckerman et al. | Feb 2008 | B2 |
7370047 | Gorman | May 2008 | B2 |
7373669 | Eisen | May 2008 | B2 |
7379811 | Rasmussen et al. | May 2008 | B2 |
7379903 | Caballero et al. | May 2008 | B2 |
7426654 | Adams et al. | Sep 2008 | B2 |
7451397 | Weber et al. | Nov 2008 | B2 |
7454466 | Bellotti et al. | Nov 2008 | B2 |
7467375 | Tondreau et al. | Dec 2008 | B2 |
7487139 | Fraleigh et al. | Feb 2009 | B2 |
7502786 | Liu et al. | Mar 2009 | B2 |
7525422 | Bishop et al. | Apr 2009 | B2 |
7529727 | Arning et al. | May 2009 | B2 |
7529734 | Dirisala | May 2009 | B2 |
7533008 | Mangino et al. | May 2009 | B2 |
7546245 | Surpin et al. | Jun 2009 | B2 |
7558677 | Jones | Jul 2009 | B2 |
7574409 | Patinkin | Aug 2009 | B2 |
7574428 | Leiserowitz et al. | Aug 2009 | B2 |
7579965 | Bucholz | Aug 2009 | B2 |
7596285 | Brown et al. | Sep 2009 | B2 |
7614006 | Molander | Nov 2009 | B2 |
7617232 | Gabbert et al. | Nov 2009 | B2 |
7620628 | Kapur et al. | Nov 2009 | B2 |
7627812 | Chamberlain et al. | Dec 2009 | B2 |
7634717 | Chamberlain et al. | Dec 2009 | B2 |
7640173 | Surpin et al. | Dec 2009 | B2 |
7703021 | Flam | Apr 2010 | B1 |
7706817 | Bamrah et al. | Apr 2010 | B2 |
7712049 | Williams et al. | May 2010 | B2 |
7716067 | Surpin et al. | May 2010 | B2 |
7716077 | Mikurak | May 2010 | B1 |
7725530 | Sah et al. | May 2010 | B2 |
7725547 | Albertson et al. | May 2010 | B2 |
7730082 | Sah et al. | Jun 2010 | B2 |
7730109 | Rohrs et al. | Jun 2010 | B2 |
7770032 | Nesta et al. | Aug 2010 | B2 |
7770100 | Chamberlain et al. | Aug 2010 | B2 |
7783658 | Bayliss | Aug 2010 | B1 |
7801871 | Gosnell | Sep 2010 | B2 |
7805457 | Viola et al. | Sep 2010 | B1 |
7809703 | Balabhadrapatruni et al. | Oct 2010 | B2 |
7814102 | Miller et al. | Oct 2010 | B2 |
7818291 | Ferguson et al. | Oct 2010 | B2 |
7818658 | Chen | Oct 2010 | B2 |
7870493 | Pall et al. | Jan 2011 | B2 |
7894984 | Rasmussen et al. | Feb 2011 | B2 |
7899611 | Downs et al. | Mar 2011 | B2 |
7917376 | Bellin et al. | Mar 2011 | B2 |
7920963 | Jouline et al. | Apr 2011 | B2 |
7933862 | Chamberlain et al. | Apr 2011 | B2 |
7962281 | Rasmussen et al. | Jun 2011 | B2 |
7962495 | Jain et al. | Jun 2011 | B2 |
7962848 | Bertram | Jun 2011 | B2 |
7970240 | Chao et al. | Jun 2011 | B1 |
7971150 | Raskutti et al. | Jun 2011 | B2 |
7984374 | Caro et al. | Jul 2011 | B2 |
8001465 | Kudrolli et al. | Aug 2011 | B2 |
8001482 | Bhattiprolu et al. | Aug 2011 | B2 |
8010545 | Stefik et al. | Aug 2011 | B2 |
8010886 | Gusmorino et al. | Aug 2011 | B2 |
8015487 | Roy et al. | Sep 2011 | B2 |
8019709 | Norton et al. | Sep 2011 | B2 |
8024778 | Cash et al. | Sep 2011 | B2 |
8036632 | Cona et al. | Oct 2011 | B1 |
8042110 | Kawahara et al. | Oct 2011 | B1 |
8046362 | Bayliss | Oct 2011 | B2 |
8082172 | Chao et al. | Dec 2011 | B2 |
8103543 | Zwicky | Jan 2012 | B1 |
8134457 | Velipasalar et al. | Mar 2012 | B2 |
8135679 | Bayliss | Mar 2012 | B2 |
8135719 | Bayliss | Mar 2012 | B2 |
8145703 | Frishert et al. | Mar 2012 | B2 |
8185819 | Sah et al. | May 2012 | B2 |
8190893 | Benson et al. | May 2012 | B2 |
8196184 | Amirov et al. | Jun 2012 | B2 |
8214361 | Sandler et al. | Jul 2012 | B1 |
8214764 | Gemmell et al. | Jul 2012 | B2 |
8225201 | Michael | Jul 2012 | B2 |
8229947 | Fujinaga | Jul 2012 | B2 |
8230333 | Decherd et al. | Jul 2012 | B2 |
8239668 | Chen et al. | Aug 2012 | B1 |
8266168 | Bayliss | Sep 2012 | B2 |
8271461 | Pike et al. | Sep 2012 | B2 |
8280880 | Aymeloglu et al. | Oct 2012 | B1 |
8290926 | Ozzie et al. | Oct 2012 | B2 |
8290942 | Jones et al. | Oct 2012 | B2 |
8301464 | Cave et al. | Oct 2012 | B1 |
8301904 | Gryaznov | Oct 2012 | B1 |
8312367 | Foster | Nov 2012 | B2 |
8312546 | Alme | Nov 2012 | B2 |
8321943 | Walters et al. | Nov 2012 | B1 |
8347398 | Weber | Jan 2013 | B1 |
8352881 | Champion et al. | Jan 2013 | B2 |
8368695 | Howell et al. | Feb 2013 | B2 |
8397171 | Klassen et al. | Mar 2013 | B2 |
8411046 | Kruzeniski et al. | Apr 2013 | B2 |
8412707 | Mianji | Apr 2013 | B1 |
8447674 | Choudhuri et al. | May 2013 | B2 |
8447722 | Ahuja et al. | May 2013 | B1 |
8452790 | Mianji | May 2013 | B1 |
8463036 | Ramesh et al. | Jun 2013 | B1 |
8484168 | Bayliss | Jul 2013 | B2 |
8489331 | Kopf et al. | Jul 2013 | B2 |
8489623 | Jain et al. | Jul 2013 | B2 |
8489641 | Seefeld et al. | Jul 2013 | B1 |
8495077 | Bayliss | Jul 2013 | B2 |
8498969 | Bayliss | Jul 2013 | B2 |
8498984 | Hwang et al. | Jul 2013 | B1 |
8510743 | Hackborn et al. | Aug 2013 | B2 |
8514082 | Cova et al. | Aug 2013 | B2 |
8515207 | Chau | Aug 2013 | B2 |
8515912 | Garrod et al. | Aug 2013 | B2 |
8527461 | Ducott, III et al. | Sep 2013 | B2 |
8554579 | Tribble et al. | Oct 2013 | B2 |
8554653 | Falkenborg et al. | Oct 2013 | B2 |
8554709 | Goodson et al. | Oct 2013 | B2 |
8560413 | Quarterman | Oct 2013 | B1 |
8577911 | Stepinski et al. | Nov 2013 | B1 |
8589273 | Creeden et al. | Nov 2013 | B2 |
8595234 | Siripuapu et al. | Nov 2013 | B2 |
8600872 | Yan | Dec 2013 | B1 |
8620641 | Farnsworth et al. | Dec 2013 | B2 |
8639757 | Zang et al. | Jan 2014 | B1 |
8646080 | Williamson et al. | Feb 2014 | B2 |
8676597 | Buehler et al. | Mar 2014 | B2 |
8676857 | Adams et al. | Mar 2014 | B1 |
8689108 | Duffield et al. | Apr 2014 | B1 |
8707185 | Robinson et al. | Apr 2014 | B2 |
8713467 | Goldenberg et al. | Apr 2014 | B1 |
8726379 | Stiansen et al. | May 2014 | B1 |
8739278 | Varghese | May 2014 | B2 |
8742934 | Sarpy et al. | Jun 2014 | B1 |
8744890 | Bernier | Jun 2014 | B1 |
8745516 | Mason et al. | Jun 2014 | B2 |
8756244 | Dassa et al. | Jun 2014 | B2 |
8781169 | Jackson et al. | Jul 2014 | B2 |
8787939 | Papakipos et al. | Jul 2014 | B2 |
8788405 | Sprague et al. | Jul 2014 | B1 |
8788407 | Singh et al. | Jul 2014 | B1 |
8799799 | Cervelli et al. | Aug 2014 | B1 |
8799812 | Parker | Aug 2014 | B2 |
8812960 | Sun et al. | Aug 2014 | B1 |
8818892 | Sprague et al. | Aug 2014 | B1 |
8826438 | Perdisci et al. | Sep 2014 | B2 |
8830322 | Nerayoff et al. | Sep 2014 | B2 |
8832594 | Thompson et al. | Sep 2014 | B1 |
8868486 | Tamayo | Oct 2014 | B2 |
8868537 | Colgrove et al. | Oct 2014 | B1 |
8917274 | Ma et al. | Dec 2014 | B2 |
8924872 | Bogomolov et al. | Dec 2014 | B1 |
8937619 | Sharma et al. | Jan 2015 | B2 |
8938686 | Erenrich et al. | Jan 2015 | B1 |
8972376 | Gailis et al. | Mar 2015 | B1 |
9009171 | Grossman et al. | Apr 2015 | B1 |
9009827 | Albertson et al. | Apr 2015 | B1 |
9021260 | Falk et al. | Apr 2015 | B1 |
9021384 | Beard et al. | Apr 2015 | B1 |
9043696 | Meiklejohn et al. | May 2015 | B1 |
9043894 | Dennison et al. | May 2015 | B1 |
9069842 | Melby | Jun 2015 | B2 |
9116975 | Shankar et al. | Aug 2015 | B2 |
9135658 | Sprague et al. | Sep 2015 | B2 |
9165299 | Stowe et al. | Oct 2015 | B1 |
9171334 | Visbal et al. | Oct 2015 | B1 |
9177344 | Singh et al. | Nov 2015 | B1 |
9202249 | Cohen et al. | Dec 2015 | B1 |
9230280 | Maag et al. | Jan 2016 | B1 |
9256664 | Chakerian et al. | Feb 2016 | B2 |
9344447 | Cohen et al. | May 2016 | B2 |
9367872 | Visbal et al. | Jun 2016 | B1 |
9589299 | Visbal et al. | Mar 2017 | B2 |
9674662 | Freeland et al. | Jun 2017 | B2 |
9965937 | Cohen et al. | May 2018 | B2 |
9998485 | Cohen et al. | Jun 2018 | B2 |
20010021936 | Bertram | Sep 2001 | A1 |
20020033848 | Sciammarella et al. | Mar 2002 | A1 |
20020065708 | Senay et al. | May 2002 | A1 |
20020091707 | Keller | Jul 2002 | A1 |
20020095658 | Shulman | Jul 2002 | A1 |
20020112157 | Doyle et al. | Aug 2002 | A1 |
20020116120 | Ruiz et al. | Aug 2002 | A1 |
20020130907 | Chi et al. | Sep 2002 | A1 |
20020174201 | Ramer et al. | Nov 2002 | A1 |
20020194119 | Wright et al. | Dec 2002 | A1 |
20030028560 | Kudrolli et al. | Feb 2003 | A1 |
20030033228 | Bosworth-Davies et al. | Feb 2003 | A1 |
20030036848 | Sheha et al. | Feb 2003 | A1 |
20030039948 | Donahue | Feb 2003 | A1 |
20030074368 | Schuetze et al. | Apr 2003 | A1 |
20030097330 | Hillmer et al. | May 2003 | A1 |
20030140106 | Raguseo | Jul 2003 | A1 |
20030144868 | MacIntyre et al. | Jul 2003 | A1 |
20030163352 | Surpin et al. | Aug 2003 | A1 |
20030200217 | Ackerman | Oct 2003 | A1 |
20030225755 | Iwayama et al. | Dec 2003 | A1 |
20030229848 | Arend et al. | Dec 2003 | A1 |
20040032432 | Baynger | Feb 2004 | A1 |
20040064256 | Barinek et al. | Apr 2004 | A1 |
20040085318 | Hassler et al. | May 2004 | A1 |
20040095349 | Bito et al. | May 2004 | A1 |
20040111410 | Burgoon et al. | Jun 2004 | A1 |
20040126840 | Cheng et al. | Jul 2004 | A1 |
20040143602 | Ruiz et al. | Jul 2004 | A1 |
20040143796 | Lerner et al. | Jul 2004 | A1 |
20040153418 | Hanweck | Aug 2004 | A1 |
20040163039 | Gorman | Aug 2004 | A1 |
20040181554 | Heckerman et al. | Sep 2004 | A1 |
20040193600 | Kaasten et al. | Sep 2004 | A1 |
20040205524 | Richter et al. | Oct 2004 | A1 |
20040221223 | Yu et al. | Nov 2004 | A1 |
20040250124 | Chesla et al. | Dec 2004 | A1 |
20040260702 | Cragun et al. | Dec 2004 | A1 |
20040267746 | Marcjan et al. | Dec 2004 | A1 |
20050027705 | Sadri et al. | Feb 2005 | A1 |
20050028094 | Allyn | Feb 2005 | A1 |
20050039119 | Parks et al. | Feb 2005 | A1 |
20050065811 | Chu et al. | Mar 2005 | A1 |
20050078858 | Yao et al. | Apr 2005 | A1 |
20050080769 | Gemmell | Apr 2005 | A1 |
20050086207 | Heuer et al. | Apr 2005 | A1 |
20050108063 | Madill et al. | May 2005 | A1 |
20050125715 | Di Franco et al. | Jun 2005 | A1 |
20050143602 | Yada et al. | Jun 2005 | A1 |
20050154628 | Eckart et al. | Jul 2005 | A1 |
20050154769 | Eckart et al. | Jul 2005 | A1 |
20050162523 | Darrell et al. | Jul 2005 | A1 |
20050166144 | Gross | Jul 2005 | A1 |
20050180330 | Shapiro | Aug 2005 | A1 |
20050182793 | Keenan et al. | Aug 2005 | A1 |
20050183005 | Denoue et al. | Aug 2005 | A1 |
20050210409 | Jou | Sep 2005 | A1 |
20050222928 | Steier et al. | Oct 2005 | A1 |
20050229256 | Banzhof | Oct 2005 | A2 |
20050246327 | Yeung et al. | Nov 2005 | A1 |
20050251786 | Citron et al. | Nov 2005 | A1 |
20060026120 | Carolan et al. | Feb 2006 | A1 |
20060026170 | Kreitler et al. | Feb 2006 | A1 |
20060045470 | Poslinski et al. | Mar 2006 | A1 |
20060053096 | Subramanian et al. | Mar 2006 | A1 |
20060059139 | Robinson | Mar 2006 | A1 |
20060069912 | Zheng et al. | Mar 2006 | A1 |
20060074866 | Chamberlain et al. | Apr 2006 | A1 |
20060074881 | Vembu et al. | Apr 2006 | A1 |
20060080619 | Carlson et al. | Apr 2006 | A1 |
20060093222 | Saffer et al. | May 2006 | A1 |
20060095521 | Patinkin | May 2006 | A1 |
20060129746 | Porter | Jun 2006 | A1 |
20060139375 | Rasmussen et al. | Jun 2006 | A1 |
20060142949 | Helt | Jun 2006 | A1 |
20060143034 | Rothermel | Jun 2006 | A1 |
20060149596 | Surpin et al. | Jul 2006 | A1 |
20060161558 | Tamma et al. | Jul 2006 | A1 |
20060203337 | White | Sep 2006 | A1 |
20060218637 | Thomas et al. | Sep 2006 | A1 |
20060241974 | Chao et al. | Oct 2006 | A1 |
20060242040 | Rader | Oct 2006 | A1 |
20060242630 | Koike et al. | Oct 2006 | A1 |
20060265747 | Judge | Nov 2006 | A1 |
20060271277 | Hu et al. | Nov 2006 | A1 |
20060279630 | Aggarwal et al. | Dec 2006 | A1 |
20070011150 | Frank | Jan 2007 | A1 |
20070016363 | Huang et al. | Jan 2007 | A1 |
20070038646 | Thota | Feb 2007 | A1 |
20070038962 | Fuchs et al. | Feb 2007 | A1 |
20070057966 | Ohno et al. | Mar 2007 | A1 |
20070078832 | Ott et al. | Apr 2007 | A1 |
20070083541 | Fraleigh et al. | Apr 2007 | A1 |
20070088596 | Berkelhamer et al. | Apr 2007 | A1 |
20070094389 | Nussey et al. | Apr 2007 | A1 |
20070106582 | Baker et al. | May 2007 | A1 |
20070150369 | Zivin | Jun 2007 | A1 |
20070174760 | Chamberlain et al. | Jul 2007 | A1 |
20070192265 | Chopin et al. | Aug 2007 | A1 |
20070198571 | Ferguson et al. | Aug 2007 | A1 |
20070208497 | Downs et al. | Sep 2007 | A1 |
20070208498 | Barker et al. | Sep 2007 | A1 |
20070208736 | Tanigawa et al. | Sep 2007 | A1 |
20070233709 | Abnous | Oct 2007 | A1 |
20070240062 | Christena et al. | Oct 2007 | A1 |
20070266336 | Nojima et al. | Nov 2007 | A1 |
20070294200 | Au | Dec 2007 | A1 |
20070294643 | Kyle | Dec 2007 | A1 |
20070294766 | Mir et al. | Dec 2007 | A1 |
20080016216 | Worley et al. | Jan 2008 | A1 |
20080040275 | Paulsen et al. | Feb 2008 | A1 |
20080040684 | Crump | Feb 2008 | A1 |
20080051989 | Welsh | Feb 2008 | A1 |
20080052142 | Bailey et al. | Feb 2008 | A1 |
20080077597 | Butler | Mar 2008 | A1 |
20080077642 | Carbone et al. | Mar 2008 | A1 |
20080082486 | Lermant et al. | Apr 2008 | A1 |
20080104019 | Nath | May 2008 | A1 |
20080126951 | Sood et al. | May 2008 | A1 |
20080133567 | Ames et al. | Jun 2008 | A1 |
20080148398 | Mezack et al. | Jun 2008 | A1 |
20080155440 | Trevor et al. | Jun 2008 | A1 |
20080162616 | Gross et al. | Jul 2008 | A1 |
20080195417 | Surpin et al. | Aug 2008 | A1 |
20080195608 | Clover | Aug 2008 | A1 |
20080201580 | Savitzky et al. | Aug 2008 | A1 |
20080222295 | Robinson et al. | Sep 2008 | A1 |
20080229422 | Hudis et al. | Sep 2008 | A1 |
20080249983 | Meisels et al. | Oct 2008 | A1 |
20080255973 | El Wade et al. | Oct 2008 | A1 |
20080263468 | Cappione et al. | Oct 2008 | A1 |
20080267107 | Rosenberg | Oct 2008 | A1 |
20080270328 | Lafferty et al. | Oct 2008 | A1 |
20080276167 | Michael | Nov 2008 | A1 |
20080278311 | Grange et al. | Nov 2008 | A1 |
20080281819 | Tenenbaum et al. | Nov 2008 | A1 |
20080288306 | MacIntyre et al. | Nov 2008 | A1 |
20080288425 | Posse et al. | Nov 2008 | A1 |
20080288475 | Kim et al. | Nov 2008 | A1 |
20080301559 | Martinsen et al. | Dec 2008 | A1 |
20080301643 | Appleton et al. | Dec 2008 | A1 |
20080313281 | Scheidl et al. | Dec 2008 | A1 |
20090002492 | Velipasalar et al. | Jan 2009 | A1 |
20090007272 | Huang et al. | Jan 2009 | A1 |
20090018940 | Wang et al. | Jan 2009 | A1 |
20090024505 | Patel et al. | Jan 2009 | A1 |
20090027418 | Maru et al. | Jan 2009 | A1 |
20090030915 | Winter et al. | Jan 2009 | A1 |
20090037912 | Stoitsev et al. | Feb 2009 | A1 |
20090044279 | Crawford et al. | Feb 2009 | A1 |
20090055251 | Shah et al. | Feb 2009 | A1 |
20090070162 | Leonelli et al. | Mar 2009 | A1 |
20090076845 | Bellin et al. | Mar 2009 | A1 |
20090082997 | Tokman et al. | Mar 2009 | A1 |
20090083184 | Eisen | Mar 2009 | A1 |
20090088964 | Schaaf et al. | Apr 2009 | A1 |
20090103442 | Douville | Apr 2009 | A1 |
20090119309 | Gibson et al. | May 2009 | A1 |
20090125359 | Knapic | May 2009 | A1 |
20090125369 | Kloostra et al. | May 2009 | A1 |
20090125459 | Norton et al. | May 2009 | A1 |
20090132921 | Hwangbo et al. | May 2009 | A1 |
20090132953 | Reed et al. | May 2009 | A1 |
20090143052 | Bates et al. | Jun 2009 | A1 |
20090144262 | White et al. | Jun 2009 | A1 |
20090144274 | Fraleigh et al. | Jun 2009 | A1 |
20090164934 | Bhattiprolu et al. | Jun 2009 | A1 |
20090171939 | Athsani et al. | Jul 2009 | A1 |
20090172511 | Decherd et al. | Jul 2009 | A1 |
20090172821 | Daira et al. | Jul 2009 | A1 |
20090177962 | Gusmorino et al. | Jul 2009 | A1 |
20090179892 | Tsuda et al. | Jul 2009 | A1 |
20090187464 | Bai et al. | Jul 2009 | A1 |
20090192957 | Subramanian et al. | Jul 2009 | A1 |
20090222400 | Kupershmidt et al. | Sep 2009 | A1 |
20090222759 | Drieschner | Sep 2009 | A1 |
20090222760 | Halverson et al. | Sep 2009 | A1 |
20090228701 | Lin | Sep 2009 | A1 |
20090234720 | George et al. | Sep 2009 | A1 |
20090249244 | Robinson et al. | Oct 2009 | A1 |
20090254970 | Agarwal et al. | Oct 2009 | A1 |
20090254971 | Herz | Oct 2009 | A1 |
20090271359 | Bayliss | Oct 2009 | A1 |
20090281839 | Lynn et al. | Nov 2009 | A1 |
20090287470 | Farnsworth et al. | Nov 2009 | A1 |
20090292626 | Oxford | Nov 2009 | A1 |
20090300589 | Watters et al. | Dec 2009 | A1 |
20090318775 | Michelson et al. | Dec 2009 | A1 |
20090328222 | Helman et al. | Dec 2009 | A1 |
20100004857 | Pereira et al. | Jan 2010 | A1 |
20100011282 | Dollard et al. | Jan 2010 | A1 |
20100042922 | Bradateanu et al. | Feb 2010 | A1 |
20100057716 | Stefik et al. | Mar 2010 | A1 |
20100070523 | Delgo et al. | Mar 2010 | A1 |
20100070842 | Aymeloglu et al. | Mar 2010 | A1 |
20100070845 | Facemire et al. | Mar 2010 | A1 |
20100070897 | Aymeloglu et al. | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100077483 | Stolfo et al. | Mar 2010 | A1 |
20100100963 | Mahaffey | Apr 2010 | A1 |
20100103124 | Kruzeniski et al. | Apr 2010 | A1 |
20100106611 | Paulsen et al. | Apr 2010 | A1 |
20100106752 | Eckardt et al. | Apr 2010 | A1 |
20100114817 | Broeder et al. | May 2010 | A1 |
20100114887 | Conway et al. | May 2010 | A1 |
20100122152 | Chamberlain et al. | May 2010 | A1 |
20100125546 | Barrett et al. | May 2010 | A1 |
20100131457 | Heimendinger | May 2010 | A1 |
20100162176 | Dunton | Jun 2010 | A1 |
20100169237 | Howard et al. | Jul 2010 | A1 |
20100185691 | Irmak et al. | Jul 2010 | A1 |
20100191563 | Schlaifer et al. | Jul 2010 | A1 |
20100198684 | Eraker et al. | Aug 2010 | A1 |
20100199225 | Coleman et al. | Aug 2010 | A1 |
20100228812 | Uomini | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100250412 | Wagner | Sep 2010 | A1 |
20100262688 | Hussain et al. | Oct 2010 | A1 |
20100280857 | Liu et al. | Nov 2010 | A1 |
20100293174 | Bennett et al. | Nov 2010 | A1 |
20100306029 | Jolley | Dec 2010 | A1 |
20100306713 | Geisner et al. | Dec 2010 | A1 |
20100313119 | Baldwin et al. | Dec 2010 | A1 |
20100318924 | Frankel et al. | Dec 2010 | A1 |
20100321399 | Ellren et al. | Dec 2010 | A1 |
20100325526 | Ellis et al. | Dec 2010 | A1 |
20100325581 | Finkelstein et al. | Dec 2010 | A1 |
20100330801 | Rouh | Dec 2010 | A1 |
20110004498 | Readshaw | Jan 2011 | A1 |
20110029526 | Knight et al. | Feb 2011 | A1 |
20110047159 | Baid et al. | Feb 2011 | A1 |
20110055140 | Roychowdhury | Mar 2011 | A1 |
20110060753 | Shaked et al. | Mar 2011 | A1 |
20110060910 | Gormish et al. | Mar 2011 | A1 |
20110061013 | Bilicki et al. | Mar 2011 | A1 |
20110066933 | Ludwig | Mar 2011 | A1 |
20110074811 | Hanson et al. | Mar 2011 | A1 |
20110078055 | Faribault et al. | Mar 2011 | A1 |
20110078173 | Seligmann et al. | Mar 2011 | A1 |
20110087519 | Fordyce, III et al. | Apr 2011 | A1 |
20110093327 | Fordyce, III et al. | Apr 2011 | A1 |
20110117878 | Barash et al. | May 2011 | A1 |
20110119100 | Ruhl et al. | May 2011 | A1 |
20110131122 | Griffin et al. | Jun 2011 | A1 |
20110137766 | Rasmussen et al. | Jun 2011 | A1 |
20110153384 | Horne et al. | Jun 2011 | A1 |
20110161096 | Buehler et al. | Jun 2011 | A1 |
20110167054 | Bailey et al. | Jul 2011 | A1 |
20110167105 | Ramakrishnan et al. | Jul 2011 | A1 |
20110167493 | Song et al. | Jul 2011 | A1 |
20110170799 | Carrino et al. | Jul 2011 | A1 |
20110173032 | Payne et al. | Jul 2011 | A1 |
20110173093 | Psota et al. | Jul 2011 | A1 |
20110178842 | Rane et al. | Jul 2011 | A1 |
20110185316 | Reid et al. | Jul 2011 | A1 |
20110208724 | Jones et al. | Aug 2011 | A1 |
20110213655 | Henkin | Sep 2011 | A1 |
20110218934 | Elser | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110225198 | Edwards et al. | Sep 2011 | A1 |
20110225650 | Margolies et al. | Sep 2011 | A1 |
20110231223 | Winters | Sep 2011 | A1 |
20110238495 | Kang | Sep 2011 | A1 |
20110238510 | Rowen et al. | Sep 2011 | A1 |
20110238553 | Raj et al. | Sep 2011 | A1 |
20110238570 | Li et al. | Sep 2011 | A1 |
20110246229 | Pacha | Oct 2011 | A1 |
20110251951 | Kolkowitz | Oct 2011 | A1 |
20110258158 | Resende et al. | Oct 2011 | A1 |
20110270705 | Parker | Nov 2011 | A1 |
20110289397 | Eastmond et al. | Nov 2011 | A1 |
20110289407 | Naik et al. | Nov 2011 | A1 |
20110289420 | Morioka et al. | Nov 2011 | A1 |
20110291851 | Whisenant | Dec 2011 | A1 |
20110307382 | Siegel et al. | Dec 2011 | A1 |
20110310005 | Chen et al. | Dec 2011 | A1 |
20110314007 | Dassa et al. | Dec 2011 | A1 |
20120004904 | Shin et al. | Jan 2012 | A1 |
20120019559 | Siler et al. | Jan 2012 | A1 |
20120036013 | Neuhaus et al. | Feb 2012 | A1 |
20120036434 | Oberstein | Feb 2012 | A1 |
20120050293 | Carlhian et al. | Mar 2012 | A1 |
20120066296 | Appleton et al. | Mar 2012 | A1 |
20120072825 | Sherkin et al. | Mar 2012 | A1 |
20120079363 | Folting et al. | Mar 2012 | A1 |
20120084118 | Bai et al. | Apr 2012 | A1 |
20120084135 | Nissan et al. | Apr 2012 | A1 |
20120084866 | Stolfo | Apr 2012 | A1 |
20120106801 | Jackson | May 2012 | A1 |
20120110633 | An et al. | May 2012 | A1 |
20120110674 | Belani et al. | May 2012 | A1 |
20120117082 | Koperda et al. | May 2012 | A1 |
20120131512 | Takeuchi et al. | May 2012 | A1 |
20120137235 | Ts et al. | May 2012 | A1 |
20120144335 | Abeln et al. | Jun 2012 | A1 |
20120159307 | Chung et al. | Jun 2012 | A1 |
20120159362 | Brown et al. | Jun 2012 | A1 |
20120159399 | Bastide et al. | Jun 2012 | A1 |
20120170847 | Tsukidate | Jul 2012 | A1 |
20120173985 | Peppel | Jul 2012 | A1 |
20120180002 | Campbell et al. | Jul 2012 | A1 |
20120196557 | Reich et al. | Aug 2012 | A1 |
20120196558 | Reich et al. | Aug 2012 | A1 |
20120197651 | Robinson et al. | Aug 2012 | A1 |
20120203708 | Psota et al. | Aug 2012 | A1 |
20120208636 | Feige | Aug 2012 | A1 |
20120215898 | Shah et al. | Aug 2012 | A1 |
20120221511 | Gibson et al. | Aug 2012 | A1 |
20120221553 | Wittmer et al. | Aug 2012 | A1 |
20120221580 | Barney | Aug 2012 | A1 |
20120245976 | Kumar et al. | Sep 2012 | A1 |
20120246148 | Dror | Sep 2012 | A1 |
20120254129 | Wheeler et al. | Oct 2012 | A1 |
20120266245 | McDougal et al. | Oct 2012 | A1 |
20120284345 | Costenaro et al. | Nov 2012 | A1 |
20120290879 | Shibuya et al. | Nov 2012 | A1 |
20120296907 | Long et al. | Nov 2012 | A1 |
20120304244 | Xie et al. | Nov 2012 | A1 |
20120310831 | Harris et al. | Dec 2012 | A1 |
20120310838 | Harris et al. | Dec 2012 | A1 |
20120311684 | Paulsen et al. | Dec 2012 | A1 |
20120323829 | Stokes et al. | Dec 2012 | A1 |
20120323888 | Osann, Jr. | Dec 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20120330973 | Ghuneim et al. | Dec 2012 | A1 |
20130006426 | Healey et al. | Jan 2013 | A1 |
20130006655 | Van Arkel et al. | Jan 2013 | A1 |
20130006668 | Van Arkel et al. | Jan 2013 | A1 |
20130006725 | Simanek et al. | Jan 2013 | A1 |
20130006916 | McBride et al. | Jan 2013 | A1 |
20130018796 | Kolhatkar et al. | Jan 2013 | A1 |
20130019306 | Lagar-Cavilla et al. | Jan 2013 | A1 |
20130024268 | Manickavelu | Jan 2013 | A1 |
20130024307 | Fuerstenberg et al. | Jan 2013 | A1 |
20130024339 | Choudhuri et al. | Jan 2013 | A1 |
20130046635 | Grigg et al. | Feb 2013 | A1 |
20130046842 | Muntz et al. | Feb 2013 | A1 |
20130060786 | Serrano et al. | Mar 2013 | A1 |
20130061169 | Pearcy et al. | Mar 2013 | A1 |
20130073377 | Heath | Mar 2013 | A1 |
20130073454 | Busch | Mar 2013 | A1 |
20130078943 | Biage et al. | Mar 2013 | A1 |
20130086482 | Parsons | Apr 2013 | A1 |
20130097482 | Marantz et al. | Apr 2013 | A1 |
20130101159 | Chao et al. | Apr 2013 | A1 |
20130110822 | Ikeda et al. | May 2013 | A1 |
20130110877 | Bonham et al. | May 2013 | A1 |
20130111320 | Campbell et al. | May 2013 | A1 |
20130117651 | Waldman et al. | May 2013 | A1 |
20130139268 | An et al. | May 2013 | A1 |
20130150004 | Rosen | Jun 2013 | A1 |
20130151148 | Parundekar et al. | Jun 2013 | A1 |
20130151388 | Falkenborg et al. | Jun 2013 | A1 |
20130157234 | Gulli et al. | Jun 2013 | A1 |
20130160120 | Malaviya et al. | Jun 2013 | A1 |
20130166550 | Buchmann et al. | Jun 2013 | A1 |
20130176321 | Mitchell et al. | Jul 2013 | A1 |
20130179420 | Park et al. | Jul 2013 | A1 |
20130197925 | Blue | Aug 2013 | A1 |
20130211985 | Clark et al. | Aug 2013 | A1 |
20130224696 | Wolfe et al. | Aug 2013 | A1 |
20130225212 | Khan | Aug 2013 | A1 |
20130226318 | Procyk | Aug 2013 | A1 |
20130226953 | Markovich et al. | Aug 2013 | A1 |
20130232045 | Tai et al. | Sep 2013 | A1 |
20130238616 | Rose et al. | Sep 2013 | A1 |
20130246170 | Gross et al. | Sep 2013 | A1 |
20130251233 | Yang et al. | Sep 2013 | A1 |
20130262527 | Hunter et al. | Oct 2013 | A1 |
20130262528 | Foit | Oct 2013 | A1 |
20130263019 | Castellanos et al. | Oct 2013 | A1 |
20130267207 | Hao et al. | Oct 2013 | A1 |
20130268520 | Fisher et al. | Oct 2013 | A1 |
20130276799 | Davidson | Oct 2013 | A1 |
20130279757 | Kephart | Oct 2013 | A1 |
20130282696 | John et al. | Oct 2013 | A1 |
20130288719 | Alonzo | Oct 2013 | A1 |
20130290011 | Lynn et al. | Oct 2013 | A1 |
20130290825 | Arndt et al. | Oct 2013 | A1 |
20130297619 | Chandrasekaran et al. | Nov 2013 | A1 |
20130311375 | Priebatsch | Nov 2013 | A1 |
20130318594 | Hoy et al. | Nov 2013 | A1 |
20130339218 | Subramanian et al. | Dec 2013 | A1 |
20140006109 | Callioni et al. | Jan 2014 | A1 |
20140013434 | Ranum et al. | Jan 2014 | A1 |
20140019936 | Cohanoff | Jan 2014 | A1 |
20140032506 | Hoey et al. | Jan 2014 | A1 |
20140033010 | Richardt et al. | Jan 2014 | A1 |
20140040371 | Gurevich et al. | Feb 2014 | A1 |
20140047319 | Eberlein | Feb 2014 | A1 |
20140047357 | Alfaro et al. | Feb 2014 | A1 |
20140058763 | Zizzamia et al. | Feb 2014 | A1 |
20140059038 | McPherson et al. | Feb 2014 | A1 |
20140059683 | Ashley | Feb 2014 | A1 |
20140067611 | Adachi et al. | Mar 2014 | A1 |
20140068487 | Steiger et al. | Mar 2014 | A1 |
20140074855 | Zhao et al. | Mar 2014 | A1 |
20140081652 | Klindworth | Mar 2014 | A1 |
20140081685 | Thacker et al. | Mar 2014 | A1 |
20140095273 | Tang et al. | Apr 2014 | A1 |
20140095509 | Patton | Apr 2014 | A1 |
20140101124 | Scriffignano et al. | Apr 2014 | A1 |
20140108068 | Williams | Apr 2014 | A1 |
20140108380 | Gotz et al. | Apr 2014 | A1 |
20140108985 | Scott et al. | Apr 2014 | A1 |
20140123279 | Bishop et al. | May 2014 | A1 |
20140129261 | Bothwell et al. | May 2014 | A1 |
20140143009 | Brice et al. | May 2014 | A1 |
20140149130 | Getchius | May 2014 | A1 |
20140149272 | Hirani et al. | May 2014 | A1 |
20140149436 | Bahrami et al. | May 2014 | A1 |
20140156484 | Chan et al. | Jun 2014 | A1 |
20140156527 | Grigg et al. | Jun 2014 | A1 |
20140157172 | Peery et al. | Jun 2014 | A1 |
20140164502 | Khodorenko et al. | Jun 2014 | A1 |
20140189536 | Lange et al. | Jul 2014 | A1 |
20140195515 | Baker et al. | Jul 2014 | A1 |
20140195887 | Ellis et al. | Jul 2014 | A1 |
20140214579 | Shen et al. | Jul 2014 | A1 |
20140222521 | Chait | Aug 2014 | A1 |
20140244388 | Manouchehri et al. | Aug 2014 | A1 |
20140258246 | Lo Faro et al. | Sep 2014 | A1 |
20140267294 | Ma | Sep 2014 | A1 |
20140267295 | Sharma | Sep 2014 | A1 |
20140279824 | Tamayo | Sep 2014 | A1 |
20140304582 | Bills et al. | Oct 2014 | A1 |
20140310266 | Greenfield | Oct 2014 | A1 |
20140310282 | Sprague et al. | Oct 2014 | A1 |
20140316911 | Gross | Oct 2014 | A1 |
20140333651 | Cervelli et al. | Nov 2014 | A1 |
20140337772 | Cervelli et al. | Nov 2014 | A1 |
20140344230 | Krause et al. | Nov 2014 | A1 |
20140351070 | Christner et al. | Nov 2014 | A1 |
20140366132 | Stiansen et al. | Dec 2014 | A1 |
20150019394 | Unser et al. | Jan 2015 | A1 |
20150046870 | Goldenberg et al. | Feb 2015 | A1 |
20150073929 | Psota et al. | Mar 2015 | A1 |
20150089424 | Duffield et al. | Mar 2015 | A1 |
20150100897 | Sun et al. | Apr 2015 | A1 |
20150100907 | Erenrich et al. | Apr 2015 | A1 |
20150134633 | Colgrove et al. | May 2015 | A1 |
20150134666 | Gattiker et al. | May 2015 | A1 |
20150169709 | Kara et al. | Jun 2015 | A1 |
20150169726 | Kara et al. | Jun 2015 | A1 |
20150170077 | Kara et al. | Jun 2015 | A1 |
20150178825 | Huerta | Jun 2015 | A1 |
20150178877 | Bogomolov et al. | Jun 2015 | A1 |
20150186821 | Wang et al. | Jul 2015 | A1 |
20150187036 | Wang et al. | Jul 2015 | A1 |
20150227295 | Meiklejohn et al. | Aug 2015 | A1 |
20150235334 | Wang et al. | Aug 2015 | A1 |
20150242401 | Liu | Aug 2015 | A1 |
20150309719 | Ma et al. | Oct 2015 | A1 |
20150317342 | Grossman et al. | Nov 2015 | A1 |
20150324868 | Kaftan et al. | Nov 2015 | A1 |
20160004764 | Chakerian et al. | Jan 2016 | A1 |
20160006749 | Cohen et al. | Jan 2016 | A1 |
20160034470 | Sprague et al. | Feb 2016 | A1 |
20160048937 | Mathura et al. | Feb 2016 | A1 |
20160180451 | Visbal et al. | Jun 2016 | A1 |
20170132200 | Noland et al. | May 2017 | A1 |
20170244735 | Visbal et al. | Aug 2017 | A1 |
20170308402 | Bills et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
101729531 | Jun 2010 | CN |
103281301 | Sep 2013 | CN |
102014103482 | Sep 2014 | DE |
102014215621 | Feb 2015 | DE |
1 191 463 | Mar 2002 | EP |
1672527 | Jun 2006 | EP |
2551799 | Jan 2013 | EP |
2555153 | Feb 2013 | EP |
2560134 | Feb 2013 | EP |
2 778 983 | Sep 2014 | EP |
2778977 | Sep 2014 | EP |
2779082 | Sep 2014 | EP |
2835745 | Feb 2015 | EP |
2835770 | Feb 2015 | EP |
2838039 | Feb 2015 | EP |
2846241 | Mar 2015 | EP |
2851852 | Mar 2015 | EP |
2858014 | Apr 2015 | EP |
2858018 | Apr 2015 | EP |
2863326 | Apr 2015 | EP |
2863346 | Apr 2015 | EP |
2869211 | May 2015 | EP |
2881868 | Jun 2015 | EP |
2884439 | Jun 2015 | EP |
2884440 | Jun 2015 | EP |
2891992 | Jul 2015 | EP |
2 911 078 | Aug 2015 | EP |
2911100 | Aug 2015 | EP |
2940603 | Nov 2015 | EP |
2940609 | Nov 2015 | EP |
2963577 | Jan 2016 | EP |
2985729 | Feb 2016 | EP |
3037991 | Jun 2016 | EP |
2513247 | Oct 2014 | GB |
2516155 | Jan 2015 | GB |
2518745 | Apr 2015 | GB |
2012778 | Nov 2014 | NL |
2013306 | Feb 2015 | NL |
624557 | Dec 2014 | NZ |
WO 2000009529 | Feb 2000 | WO |
WO 2002065353 | Aug 2002 | WO |
WO 2005104736 | Nov 2005 | WO |
WO 2008011728 | Jan 2008 | WO |
WO 2008064207 | May 2008 | WO |
WO 2008113059 | Sep 2008 | WO |
WO 2009061501 | May 2009 | WO |
WO 2010000014 | Jan 2010 | WO |
WO 2010030913 | Mar 2010 | WO |
WO 2013010157 | Jan 2013 | WO |
WO 2013102892 | Jul 2013 | WO |
WO 2013126281 | Aug 2013 | WO |
WO 2015047803 | Apr 2015 | WO |
Entry |
---|
US 8,712,906, 04/2014, Sprague et al. (withdrawn) |
“A First Look: Predicting Market Demand for Food Retail using a Huff Analysis,” TRF Policy Solutions, Jul. 2012, pp. 30. |
“A Quick Guide to UniProtKB Swiss-Prot & TrEMBL,” Sep. 2011, pp. 2. |
About 80 Minutes, “Palantir in a Number of Parts—Part 6—Graph,” Mar. 21, 2013, pp. 1-6. |
Acklen, Laura, “Absolute Beginner's Guide to Microsoft Word 2003,” Dec. 24, 2003, pp. 15-18, 34-41, 308-316. |
Alur et al., “Chapter 2: IBM InfoSphere DataStage Stages,” IBM InfoSphere DataStage Data Flow and Job Design, Jul. 1, 2008, pp. 35-137. |
Amnet, “5 Great Tools for Visualizing Your Twitter Followers,” posted Aug. 4, 2010, http://www.amnetblog.com/component/content/article/115-5-grate-tools-for-visualizing-your-twitter-followers.html. |
Ananiev et al., “The New Modality API,” http://web.archive.org/web/20061211011958/http://java.sun.com/developer/technicalArticles/J2SE/Desktop/javase6/modality/ Jan. 21, 2006, pp. 8. |
Bluttman et al., “Excel Formulas and Functions for Dummies,” 2005, Wiley Publishing, Inc., pp. 280, 284-286. |
Boyce, Jim, “Microsoft Outlook 2010 Inside Out,” Aug. 1, 2010, retrieved from the internet https://capdtron.files.wordpress.com/2013/01/outlook-2010-inside_out.pdf. |
Bugzilla@Mozilla, “Bug 18726—[feature] Long-click means of invoking contextual menus not supported,” http://bugzilla.mozilla.org/show_bug.cgi?id=18726 printed Jun. 13, 2013 in 11 pages. |
Canese et al., “Chapter 2: PubMed: The Bibliographic Database,” The NCBI Handbook, Oct. 2002, pp. 1-10. |
Celik, Tantek, “CSS Basic User Interface Module Level 3 (CSS3 UI),” Section 8 Resizing and Overflow, Jan. 17, 2012, retrieved from internet http://www.w3.org/TR/2012/WD-css3-ui-20120117/#resizing-amp-overflow retrieved on May 18, 2015. |
Chen et al., “Bringing Order to the Web: Automatically Categorizing Search Results,” CHI 2000, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 1-6, 2000, The Hague, The Netherlands, pp. 145-152. |
Chung, Chin-Wan, “Dataplex: An Access to Heterogeneous Distributed Databases,” Communications of the ACM, Association for Computing Machinery, Inc., vol. 33, No. 1, Jan. 1, 1990, pp. 70-80. |
Conner, Nancy, “Google Apps: The Missing Manual,” May 1, 2008, pp. 15. |
Crosby et al., “Efficient Data Structures for Tamper-Evident Logging,” Department of Computer Science, Rice University, 2009, pp. 17. |
Definition “Identify”, downloaded Jan. 22, 2015, 1 page. |
Definition “Overlay”, downloaded Jan. 22, 2015, 1 page. |
Delcher et al., “Identifying Bacterial Genes and Endosymbiont DNA with Glimmer,” BioInformatics, vol. 23, No. 6, 2007, pp. 673-679. |
Dramowicz, Ela, “Retail Trade Area Analysis Using the Huff Model,” Directions Magazine, Jul. 2, 2005 in 10 pages, http://www.directionsmag.com/articles/retail-trade-area-analysis-using-the-huff-model/123411. |
“The FASTA Program Package,” fasta-36.3.4, Mar. 25, 2011, pp. 29. |
Gesher, Ari, “Palantir Screenshots in the Wild: Swing Sightings,” The Palantir Blog, Sep. 11, 2007, pp. 1-12. |
GIS-NET 3 Public _ Department of Regional Planning. Planning & Zoning Information for Unincorporated LA County. Retrieved Oct. 2, 2013 from http://gis.planning.lacounty.gov/GIS-NET3_Public/Viewer.html. |
Glaab et al., “EnrichNet: Network-Based Gene Set Enrichment Analysis,” Bioinformatics 28.18 (2012): pp. i451-i457. |
Goswami, Gautam, “Quite Writly Said!,” One Brick at a Time, Aug. 21, 2005, pp. 7. |
Griffith, Daniel A., “A Generalized Huff Model,” Geographical Analysis, Apr. 1982, vol. 14, No. 2, pp. 135-144. |
Hansen et al., “Analyzing Social Media Networks with NodeXL: Insights from a Connected World”, Chapter 4, pp. 53-67 and Chapter 10, pp. 143-164, published Sep. 2010. |
Hardesty, “Privacy Challenges: Analysis: It's Surprisingly Easy to Identify Individuals from Credit-Card Metadata,” MIT News on Campus and Around the World, MIT News Office, Jan. 29, 2015, 3 pages. |
Hibbert et al., “Prediction of Shopping Behavior Using a Huff Model Within a GIS Framework,” Healthy Eating in Context, Mar. 18, 2011, pp. 16. |
Hogue et al., “Thresher: Automating the Unwrapping of Semantic Content from the World Wide Web,” 14th International Conference on World Wide Web, WWW 2005: Chiba, Japan, May 10-14, 2005, pp. 86-95. |
Huang et al., “Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources,” Nature Protocols, 4.1, 2008, 44-57. |
Huff et al., “Calibrating the Huff Model Using ArcGIS Business Analyst,” ESRI, Sep. 2008, pp. 33. |
Huff, David L., “Parameter Estimation in the Huff Model,” ESRI, ArcUser, Oct.-Dec. 2003, pp. 34-36. |
Hur et al., “SciMiner: web-based literature mining tool for target identification and functional enrichment analysis,” Bioinformatics 25.6 (2009): pp. 838-840. |
IBM, “Determining Business Object Structure,” IBM, 2004, 9 pages. |
Kahan et al., “Annotea: an Open RDF Infrastructure for Shared Web Annotations”, Computer Networks, Elsevier Science Publishers B.V., vol. 39, No. 5, dated Aug. 5, 2002, pp. 589-608. |
Kitts, Paul, “Chapter 14: Genome Assembly and Annotation Process,” The NCBI Handbook, Oct. 2002, pp. 1-21. |
Li et al., “Interactive Multimodal Visual Search on Mobile Device,” IEEE Transactions on Multimedia, vol. 15, No. 3, Apr. 1, 2013, pp. 594-607. |
Li et al., “Identifying the Signs of Fraudulent Accounts using Data Mining Techniques,” Computers in Human Behavior, vol. 28, No. 3, Jan. 16, 2012. |
Liu, Tianshun, “Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA,” Papers in Resource Analysis, 2012, vol. 14, pp. 8. |
Ma et al., “A New Approach to Secure Logging,” ACM Transactions on Storage, vol. 5, No. 1, Article 2, Published Mar. 2009, 21 pages. |
Madden, Tom, “Chapter 16: The BLAST Sequence Analysis Tool,” The NCBI Handbook, Oct. 2002, pp. 1-15. |
Manno et al., “Introducing Collaboration in Single-user Applications through the Centralized Control Architecture,” 2010, pp. 10. |
Manske, “File Saving Dialogs,” <http://www.mozilla.org/editor/ui_specs/FileSaveDialogs.html>, Jan. 20, 1999, pp. 7. |
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.yahoo.com. |
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.bing.com. |
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.google.com. |
Microsoft—Developer Network, “Getting Started with VBA in Word 2010,” Apr. 2010, <http://msdn.microsoft.com/en-us/library/ff604039%28v=office.14%29.aspx> as printed Apr. 4, 2014 in 17 pages. |
Microsoft Office—Visio, “About connecting shapes,” <http://office.microsoft.com/en-us/visio-help/about-connecting-shapes-HP085050369.aspx> printed Aug. 4, 2011 in 6 pages. |
Microsoft Office—Visio, “Add and glue connectors with the Connector tool,” <http://office.microsoft.com/en-us/visio-help/add-and-glue-connectors-with-the-connector-tool-HA010048532.aspx?CTT=1> printed Aug. 4, 2011 in 1 page. |
Mizrachi, Ilene, “Chapter 1: GenBank: The Nuckeotide Sequence Database,” The NCBI Handbook, Oct. 2002, pp. 1-14. |
Ngai et al., “The Application of Data Mining Techniques in Financial Fraud Detection: A Classification Frameworok and an Academic Review of Literature,” Decision Support Systems, Elsevier Science Publishers, Amsterdam, Netherlands, vol. 50, No. 3, Feb. 1, 2011. |
Nierman, “Evaluating Structural Similarity in XML Documents”, 6 pages, 2002. |
Olanoff, Drew, “Deep Dive with the New Google Maps for Desktop with Google Earth Integration, It's More than Just a Utility,” May 15, 2013, pp. 1-6, retrieved from the internet: http://web.archive.org/web/20130515230641/http://techcrunch.com/2013/05/15/deep-dive-with-the-new-google-maps-for-desktop-with-google-earth-integration-its-more-than-just-a-utility/. |
Palantir Technologies, “Palantir Labs—Timeline,” Oct. 1, 2010, retrieved from the internet https://www.youtube.com/watch?v=JCgDW5bru9M. |
Palmas et al., “An Edge-Bunding Layout for Interactive Parallel Coordinates” 2014 IEEE Pacific Visualization Symposium, pp. 57-64. |
Quest, “Toad for Oracle 11.6—Guide to Using Toad,” Sep. 24, 2012, pp. 1-162. |
“Refresh CSS Ellipsis When Resizing Container—Stack Overflow,” Jul. 31, 2013, retrieved from internet http://stackoverflow.com/questions/17964681/refresh-css-ellipsis-when-resizing-container, retrieved on May 18, 2015. |
Rouse, Margaret, “OLAP Cube,” <http://searchdatamanagement.techtarget.com/definition/OLAP-cube>, Apr. 28, 2012, pp. 16. |
Schneier et al., “Automatic Event Stream Notarization Using Digital Signatures,” Security Protocols, International Workshop Apr. 1996 Proceedings, Springer-Veriag, 1997, pp. 155-169, https://schneier.com/paper-event-stream.pdf. |
Schneier et al., “Cryptographic Support for Secure Logs on Untrusted Machines,” The Seventh USENIX Security Symposium Proceedings, USENIX Press, Jan. 1998, pp. 53-62, https://www.schneier.com/paper-secure-logs.pdf. |
Sigrist, et al., “PROSITE, a Protein Domain Database for Functional Characterization and Annotation,” Nucleic Acids Research, 2010, vol. 38, pp. D161-D166. |
Sirotkin et al., “Chapter 13: The Processing of Biological Sequence Data at NCBI,” The NCBI Handbook, Oct. 2002, pp. 1-11. |
Thompson, Mick, “Getting Started with GEO,” Getting Started with GEO, Jul. 26, 2011. |
Umagandhi et al., “Search Query Recommendations Using Hybrid User Profile with Query Logs,” International Journal of Computer Applications, vol. 80, No. 10, Oct. 1, 2013, pp. 7-18. |
Waters et al., “Building an Encrypted and Searchable Audit Log,” Published Jan. 9, 2004, 11 pages, http://www.parc.com/content/attachments/building_encrypted_searchable_5059_parc.pdf. |
Wikipedia, “Federated Database System,” Sep. 7, 2013, retrieved from the internet on Jan. 27, 2015 http://en.wikipedia.org/w/index.php?title=Federated_database_system&oldid=571954221. |
Wright et al., “Palantir Technologies VAST 2010 Challenge Text Records _ Investigations into Arms Dealing,”Oct. 29, 2010, pp. 1-10. |
Yang et al., “HTML Page Analysis Based on Visual Cues”, A129, pp. 859-864, 2001. |
Zheng et al., “GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis,” Nucleic acids research 36.suppl 2 (2008): pp. W385-W363. |
International Search Report and Written Opinion in Application No. PCT/US2009/056703 dated Mar. 15, 2010. |
Notice of Acceptance for Australian Patent Application No. 2014250678 dated Oct. 7, 2015. |
Notice of Allowance for U.S. Appl. No. 12/556,318 dated Nov. 2, 2015. |
Notice of Allowance for U.S. Appl. No. 13/247,987 dated Mar. 17, 2016. |
Notice of Allowance for U.S. Appl. No. 14/102,394 dated Aug. 25, 2014. |
Notice of Allowance for U.S. Appl. No. 14/108,187 dated Aug. 29, 2014. |
Notice of Allowance for U.S. Appl. No. 14/135,289 dated Oct. 14, 2014. |
Notice of Allowance for U.S. Appl. No. 14/148,568 dated Aug. 26, 2015. |
Notice of Allowance for U.S. Appl. No. 14/192,767 dated Dec. 16, 2014. |
Notice of Allowance for U.S. Appl. No. 14/192,767 dated Apr. 20, 2015. |
Notice of Allowance for U.S. Appl. No. 14/225,084 dated May 4, 2015. |
Notice of Allowance for U.S. Appl. No. 14/268,964 dated Dec. 3, 2014. |
Notice of Allowance for U.S. Appl. No. 14/294,098 dated Dec. 29, 2014. |
Notice of Allowance for U.S. Appl. No. 14/323,935 dated Oct. 1, 2015. |
Notice of Allowance for U.S. Appl. No. 14/326,738 dated Nov. 18, 2015. |
Notice of Allowance for U.S. Appl. No. 14/473,860 dated Feb. 27, 2015. |
Notice of Allowance for U.S. Appl. No. 14/504,103 dated May 18, 2015. |
Notice of Allowance for U.S. Appl. No. 14/579,752 dated Apr. 4, 2016. |
Notice of Allowance for U.S. Appl. No. 15/151,904 dated Oct. 24, 2016. |
Official Communication for Australian Patent Application No. 2014201511 dated Feb. 27, 2015. |
Official Communication for Australian Patent Application No. 2014202442 dated Mar. 19, 2015. |
Official Communication for Australian Patent Application No. 2014210604 dated Jun. 5, 2015. |
Official Communication for Australian Patent Application No. 2014210614 dated Jun. 5, 2015. |
Official Communication for Australian Patent Application No. 2014213553 dated May 7, 2015. |
Official Communication for Australian Patent Application No. 2014250678 dated Jun. 17, 2015. |
Official Communication for European Patent Application No. 14158861.6 dated Jun. 16, 2014. |
Official Communication for European Patent Application No. 14159464.8 dated Jul. 31, 2014. |
Official Communication for European Patent Application No. 14180142.3 dated Feb. 6, 2015. |
Official Communication for European Patent Application No. 14180281.9 dated Jan. 26, 2015. |
Official Communication for European Patent Application No. 14180321.3 dated Apr. 17, 2015. |
Official Communication for European Patent Application No. 14180432.8 dated Jun. 23, 2015. |
Official Communication for European Patent Application No. 14186225.0 dated Feb. 13, 2015. |
Official Communication for European Patent Application No. 14187739.9 dated Jul. 6, 2015. |
Official Communication for European Patent Application No. 14187996.5 dated Feb. 12, 2015. |
Official Communication for European Patent Application No. 14187996.5 dated Feb. 19, 2016. |
Official Communication for European Patent Application No. 14189344.6 dated Feb. 20, 2015. |
Official Communication for European Patent Application No. 14189344.6 dated Feb. 29, 2016. |
Official Communication for European Patent Application No. 14189347.9 dated Mar. 4, 2015. |
Official Communication for European Patent Application No. 14189802.3 dated May 11, 2015. |
Official Communication for European Patent Application No. 14191540.5 dated May 27, 2015. |
Official Communication for European Patent Application No. 14197879.1 dated Apr. 28, 2015. |
Official Communication for European Patent Application No. 14197895.7 dated Apr. 28, 2015. |
Official Communication for European Patent Application No. 14197938.5 dated Apr. 28, 2015. |
Official Communication for European Patent Application No. 14199182.8 dated Mar. 13, 2015. |
Official Communication for European Patent Application No. 15155846.7 dated Jul. 8, 2015. |
Official Communication for European Patent Application No. 15165244.3 dated Aug. 27, 2015. |
Official Communication for European Patent Application No. 15175106.2 dated Nov. 5, 2015. |
Official Communication for European Patent Application No. 15180515.7 dated Dec. 14, 2015. |
Official Communication for European Patent Application No. 15183721.8 dated Nov. 23, 2015. |
Official Communication for European Patent Application No. 15201727.3 dated May 23, 2016. |
Official Communication for European Patent Application No. 15201727.3 dated Sep. 27, 2017. |
Official Communication for Great Britain Patent Application No. 1404574.4 dated Dec. 18, 2014. |
Official Communication for Great Britain Patent Application No. 1408025.3 dated Nov. 6, 2014. |
Official Communication for Great Britain Patent Application No. 1411984.6 dated Dec. 22, 2014. |
Official Communication for Great Britain Patent Application No. 1413935.6 dated Jan. 27, 2015. |
Official Communication for Netherlands Patent Application No. 2012433 dated Mar. 11, 2016. |
Official Communication for Netherlands Patent Application No. 2012437 dated Sep. 18, 2015. |
Official Communication for Netherlands Patent Application No. 2013306 dated Apr. 24, 2015. |
Official Communication for New Zealand Patent Application No. 622513 dated Apr. 3, 2014. |
Official Communication for New Zealand Patent Application No. 622517 dated Apr. 3, 2014. |
Official Communication for New Zealand Patent Application No. 624557 dated May 14, 2014. |
Official Communication for New Zealand Patent Application No. 627962 dated Aug. 5, 2014. |
Official Communication for New Zealand Patent Application No. 628161 dated Aug. 25, 2014. |
Official Communication for New Zealand Patent Application No. 628263 dated Aug. 12, 2014. |
Official Communication for New Zealand Patent Application No. 628495 dated Aug. 19, 2014. |
Official Communication for New Zealand Patent Application No. 628585 dated Aug. 26, 2014. |
Official Communication for New Zealand Patent Application No. 628840 dated Aug. 28, 2014. |
Official Communication for U.S. Appl. No. 12/556,318 dated Jul. 2, 2015. |
Official Communication for U.S. Appl. No. 13/247,987 dated Apr. 2, 2015. |
Official Communication for U.S. Appl. No. 13/247,987 dated Sep. 22, 2015. |
Official Communication for U.S. Appl. No. 13/831,791 dated Feb. 11, 2016. |
Official Communication for U.S. Appl. No. 13/831,791 dated Mar. 4, 2015. |
Official Communication for U.S. Appl. No. 13/831,791 dated Aug. 6, 2015. |
Official Communication for U.S. Appl. No. 13/835,688 dated Jun. 17, 2015. |
Official Communication for U.S. Appl. No. 13/835,688 dated Sep. 30, 2015. |
Official Communication for U.S. Appl. No. 13/839,026 dated Aug. 4, 2015. |
Official Communication for U.S. Appl. No. 14/134,558 dated Oct. 7, 2015. |
Official Communication for U.S. Appl. No. 14/139,628 dated Jan. 5, 2015. |
Official Communication for U.S. Appl. No. 14/139,640 dated Dec. 15, 2014. |
Official Communication for U.S. Appl. No. 14/139,713 dated Dec. 15, 2014. |
Official Communication for U.S. Appl. No. 14/148,568 dated Oct. 22, 2014. |
Official Communication for U.S. Appl. No. 14/148,568 dated Mar. 26, 2015. |
Official Communication for U.S. Appl. No. 14/196,814 dated May 5, 2015. |
Official Communication for U.S. Appl. No. 14/196,814 dated Oct. 7, 2015. |
Official Communication for U.S. Appl. No. 14/223,918 dated Jun. 8, 2015. |
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 10, 2014. |
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 2, 2015. |
Official Communication for U.S. Appl. No. 14/225,006 dated Dec. 21, 2015. |
Official Communication for U.S. Appl. No. 14/225,006 dated Feb. 27, 2015. |
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 11, 2015. |
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 2, 2014. |
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 20, 2015. |
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 26, 2016. |
Official Communication for U.S. Appl. No. 14/225,084 dated Jan. 4, 2016. |
Official Communication for U.S. Appl. No. 14/225,160 dated Feb. 11, 2015. |
Official Communication for U.S. Appl. No. 14/225,160 dated Aug. 12, 2015. |
Official Communication for U.S. Appl. No. 14/225,160 dated May 20, 2015. |
Official Communication for U.S. Appl. No. 14/225,160 dated Oct. 22, 2014. |
Official Communication for U.S. Appl. No. 14/225,160 dated Jan. 25, 2016. |
Official Communication for U.S. Appl. No. 14/225,160 dated Jul. 29, 2014. |
Official Communication for U.S. Appl. No. 14/268,964 dated Sep. 3, 2014. |
Official Communication for U.S. Appl. No. 14/280,490 dated Jul. 24, 2014. |
Official Communication for U.S. Appl. No. 14/289,596 dated Jul. 18, 2014. |
Official Communication for U.S. Appl. No. 14/289,596 dated Jan. 26, 2015. |
Official Communication for U.S. Appl. No. 14/289,596 dated Apr. 30, 2015. |
Official Communication for U.S. Appl. No. 14/289,599 dated Jul. 22, 2014. |
Official Communication for U.S. Appl. No. 14/289,599 dated May 29, 2015. |
Official Communication for U.S. Appl. No. 14/289,599 dated Sep. 4, 2015. |
Official Communication for U.S. Appl. No. 14/294,098 dated Aug. 15, 2014. |
Official Communication for U.S. Appl. No. 14/294,098 dated Nov. 6, 2014. |
Official Communication for U.S. Appl. No. 14/306,138 dated Sep. 14, 2015. |
Official Communication for U.S. Appl. No. 14/306,138 dated Mar. 17, 2016. |
Official Communication for U.S. Appl. No. 14/306,138 dated Feb. 18, 2015. |
Official Communication for U.S. Appl. No. 14/306,138 dated Sep. 23, 2014. |
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 24, 2015. |
Official Communication for U.S. Appl. No. 14/306,138 dated May 26, 2015. |
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 3, 2015. |
Official Communication for U.S. Appl. No. 14/306,147 dated Feb. 19, 2015. |
Official Communication for U.S. Appl. No. 14/306,147 dated Dec. 24, 2015. |
Official Communication for U.S. Appl. No. 14/306,147 dated Aug. 7, 2015. |
Official Communication for U.S. Appl. No. 14/306,147 dated Sep. 9, 2014. |
Official Communication for U.S. Appl. No. 14/306,154 dated Feb. 1, 2016. |
Official Communication for U.S. Appl. No. 14/306,154 dated Mar. 11, 2015. |
Official Communication for U.S. Appl. No. 14/306,154 dated May 15, 2015. |
Official Communication for U.S. Appl. No. 14/306,154 dated Nov. 16, 2015. |
Official Communication for U.S. Appl. No. 14/306,154 dated Mar. 17, 2016. |
Official Communication for U.S. Appl. No. 14/306,154 dated Jul. 6, 2015. |
Official Communication for U.S. Appl. No. 14/306,154 dated Sep. 9, 2014. |
Official Communication for U.S. Appl. No. 14/319,765 dated Feb. 1, 2016. |
Official Communication for U.S. Appl. No. 14/319,765 dated Sep. 10, 2015. |
Official Communication for U.S. Appl. No. 14/319,765 dated Jun. 16, 2015. |
Official Communication for U.S. Appl. No. 14/319,765 dated Nov. 25, 2014. |
Official Communication for U.S. Appl. No. 14/319,765 dated Feb. 4, 2015. |
Official Communication for U.S. Appl. No. 14/323,935 dated Jun. 22, 2015. |
Official Communication for U.S. Appl. No. 14/323,935 dated Nov. 28, 2014. |
Official Communication for U.S. Appl. No. 14/323,935 dated Mar. 31, 2015. |
Official Communication for U.S. Appl. No. 14/326,738 dated Dec. 2, 2014. |
Official Communication for U.S. Appl. No. 14/326,738 dated Jul. 31, 2015. |
Official Communication for U.S. Appl. No. 14/326,738 dated Mar. 31, 2015. |
Official Communication for U.S. Appl. No. 14/473,860 dated Nov. 4, 2014. |
Official Communication for U.S. Appl. No. 14/473,920 dated Aug. 10, 2017. |
Official Communication for U.S. Appl. No. 14/473,920 dated Nov. 14, 2016. |
Official Communication for U.S. Appl. No. 14/479,863 dated Dec. 26, 2014. |
Official Communication for U.S. Appl. No. 14/487,021 dated Mar. 24, 2017. |
Official Communication for U.S. Appl. No. 14/487,021 dated Jun. 30, 2017. |
Official Communication for U.S. Appl. No. 14/490,612 dated Aug. 18, 2015. |
Official Communication for U.S. Appl. No. 14/490,612 dated Jan. 27, 2015. |
Official Communication for U.S. Appl. No. 14/490,612 dated Mar. 31, 2015. |
Official Communication for U.S. Appl. No. 14/504,103 dated Mar. 31, 2015. |
Official Communication for U.S. Appl. No. 14/504,103 dated Feb. 5, 2015. |
Official Communication for U.S. Appl. No. 14/518,757 dated Dec. 1, 2015. |
Official Communication for U.S. Appl. No. 14/579,752 dated Dec. 9, 2015. |
Official Communication for U.S. Appl. No. 14/581,920 dated Mar. 1, 2016. |
Official Communication for U.S. Appl. No. 14/631,633 dated Sep. 10, 2015. |
Official Communication for U.S. Appl. No. 14/631,633 dated Feb. 3, 2016. |
Official Communication for U.S. Appl. No. 14/639,606 dated Apr. 5, 2016. |
Official Communication for U.S. Appl. No. 14/726,353 dated Mar. 1, 2016. |
Official Communication for U.S. Appl. No. 14/813,749 dated Sep. 28, 2015. |
Official Communication for U.S. Appl. No. 14/813,749 dated Apr. 8, 2016. |
Official Communication for U.S. Appl. No. 14/857,071 dated Mar. 2, 2016. |
Official Communication for U.S. Appl. No. 15/151,904 dated Jul. 29, 2016. |
Restriction Requirement for U.S. Appl. No. 13/839,026 dated Apr. 2, 2015. |
Restriction Requirement for U.S. Appl. No. 14/857,071 dated Dec. 11, 2015. |
“A Word About Banks and the Laundering of Drug Money,” Aug. 18, 2012, http://www.golemxiv.co.uk/2012/08/a-word-about-banks-and-the-laundering-of-drug-money/. |
“Money Laundering Risks and E-Gaming: A European Overview and Assessment,” 2009, http://www.cf.ac.uk/socsi/resources/Levi_Final_Money_Laundering_Risks_egaming.pdf. |
“Potential Money Laundering Warning Signs,” snapshot taken 2003, https://web.archive.org/web/20030816090055/http:/finsolinc.com/ANTI-MONEY%20LAUNDERING%20TRAINING%20GUIDES.pdf. |
Alfred, Rayner “Summarizing Relational Data Using Semi-Supervised Genetic Algorithm-Based Clustering Techniques”, Journal of Computer Science, 2010, vol. 6, No. 7, pp. 775-784. |
Baker et al., “The Development of a Common Enumeration of Vulnerabilities and Exposures,” Presented at the Second International Workshop on. |
Butkovic et al., “Using Whois Based Geolocation and Google Maps API for Support Cybercrime Investigations,” http://wseas.us/e-library/conferences/2013/Dubrovnik/TELECIRC/TELECIRC-32.pdf, 2013, pp. 7. |
FireEye—Products and Solutions Overview, http://www.fireeye.com/products-and-solutions Printed Jun. 30, 2014 in 3 pages. |
FireEye, http://www.fireeye.com/ Printed Jun. 30, 2014 in 2 pages. |
Keylines.com, “An Introduction to KeyLines and Network Visualization,” Mar. 2014, http://keylines.com/wp-content/uploads/2014/03/KeyLines-White-Paper.pdf downloaded May 12, 2014 in 8 pages. |
Keylines.com, “KeyLines Datasheet,” Mar. 2014, http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf downloaded May 12, 2014 in 2 pages. |
Keylines.com, “Visualizing Threats: Improved Cyber Security Through Network Visualization,” Apr. 2014, http://keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf downloaded May 12, 2014 in 10 pages. |
Lee et al., “A Data Mining and CIDF Based Approach for Detecting Novel and Distributed Intrusions,” Lecture Notes in Computer Science, vol. 1907 Nov. 11, 2000, pp. 49-65. |
Nolan et al., “MCARTA: A Malicious Code Automated Run-Time Analysis Framework,” Homeland Security, 2012 IEEE Conference on Technologies for, Nov. 13, 2012, pp. 13-17. |
Notice of Allowance for U.S. Appl. No. 14/139,628 dated Jun. 24, 2015. |
Notice of Allowance for U.S. Appl. No. 14/139,640 dated Jun. 17, 2015. |
Notice of Allowance for U.S. Appl. No. 14/139,713 dated Jun. 12, 2015. |
Notice of Allowance for U.S. Appl. No. 14/264,445 dated May 14, 2015. |
Notice of Allowance for U.S. Appl. No. 14/278,963 dated Sep. 2, 2015. |
Notice of Allowance for U.S. Appl. No. 14/473,552 dated Jul. 24, 2015. |
Notice of Allowance for U.S. Appl. No. 14/473,860 dated Jan. 5, 2015. |
Notice of Allowance for U.S. Appl. No. 14/486,991 dated May 1, 2015. |
Notice of Allowance for U.S. Appl. No. 14/616,080 dated Apr. 2, 2015. |
Official Communication for European Patent Application No. 14159535.5 dated May 22, 2014. |
Official Communication for European Patent Application No. 15155845.9 dated Oct. 6, 2015. |
Official Communication for European Patent Application No. 15156004.2 dated Aug. 24, 2015. |
Official Communication for European Patent Application No. 15175151.8 dated Nov. 25, 2015. |
Official Communication for Great Britain Application No. 1404457.2 dated Aug. 14, 2014. |
Official Communication for New Zealand Application No. 622181 dated Mar. 24, 2014. |
Official Communication for U.S. Appl. No. 14/251,485 dated Oct. 1, 2015. |
Official Communication for U.S. Appl. No. 14/264,445 dated Apr. 17, 2015. |
Official Communication for U.S. Appl. No. 14/278,963 dated Jan. 30, 2015. |
Official Communication for U.S. Appl. No. 14/473,552 dated Feb. 24, 2015. |
Official Communication for U.S. Appl. No. 14/486,991 dated Mar. 10, 2015. |
Official Communication for U.S. Appl. No. 14/518,757 dated Apr. 2, 2015. |
Official Communication for U.S. Appl. No. 14/518,757 dated Jul. 20, 2015. |
Official Communication for U.S. Appl. No. 14/579,752 dated Aug. 19, 2015. |
Official Communication for U.S. Appl. No. 14/579,752 dated May 26, 2015. |
Official Communication for U.S. Appl. No. 14/639,606 dated Oct. 16, 2015. |
Official Communication for U.S. Appl. No. 14/639,606 dated May 18, 2015. |
Official Communication for U.S. Appl. No. 14/639,606 dated Jul. 24, 2015. |
Official Communication for U.S. Appl. No. 14/726,353 dated Sep. 10, 2015. |
Perdisci et al., “Behavioral Clustering of HTTP-Based Malware and Signature Generation Using Malicious Network Traces,” USENIX, Mar. 18, 2010, pp. 1-14. |
Recent Advances in Intrusion Detection, Sep. 7-9, 1999, pp. 35. |
Shah, Chintan, “Periodic Connections to Control Server Offer New Way to Detect Botnets,” Oct. 24, 2013 in 6 pages, http://blogs.mcafee.com/mcafee-labs/periodic-links-to-control-server-offer-new-way-to-detect-botnets. |
Shi et al., “A Scalable Implementation of Malware Detection Based on Network Connection Behaviors,” 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, IEEE, Oct. 10, 2013, pp. 59-66. |
Symantec Corporation, “E-Security Begins with Sound Security Policies,” Announcement Symantec, Jun. 14, 2001. |
VirusTotal—About, http://www.virustotal.com/en/about/ Printed Jun. 30, 2014 in 8 pages. |
Wiggerts, T.A., “Using Clustering Algorithms in Legacy Systems Remodularization,” Reverse Engineering, Proceedings of the Fourth Working Conference, Netherlands, Oct. 6-8, 1997, IEEE Computer Soc., pp. 33-43. |
Arya et al., “A clustering based algorithm for network intrusion detection,” Oct. 2012, SIN '12: Proceedings of the Fifth International Conference on Security of Information and Networks, pp. 193-196. |
Marschalek et al., “Classifying Malicious System Behavior Using Event Propagation Trees,” Dec. 2015, iiWAS '15, Proceedings of the 17th International Conference on Information Integration and Web-based Applications & Services, pp. 1-10. |
Stack Overflow, How to use update trigger to update another table, May 2012, 2 pages. |
Notice of Allowance for U.S. Appl. No. 14/473,920 dated Dec. 28, 2017. |
Notice of Allowance for U.S. Appl. No. 14/487,021 dated Jan. 29, 2018. |
Official Communication for European Patent Application No. 15175151.8 dated Jan. 3, 2018. |
Official Communication for U.S. Appl. No. 14/948,936 dated Mar. 28, 2018. |
Number | Date | Country | |
---|---|---|---|
20160034470 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
61800887 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14264445 | Apr 2014 | US |
Child | 14819272 | US | |
Parent | 13968213 | Aug 2013 | US |
Child | 14264445 | US | |
Parent | 13968265 | Aug 2013 | US |
Child | 13968213 | US |