The present invention relates to the field of ink jet printing and in particular discloses a method and apparatus for the compensation for the time varying nozzle misalignment of a print head assembly having overlapping segments.
Various methods, systems and apparatus relating to the present invention are disclosed in the following patents filed by the applicant or assignee of the present invention:
The disclosures of these patents are incorporated herein by cross-reference.
In the applicant's co-pending application PCT/AU98/00550, a series of ink jet printing arrangements were proposed for printing at high speeds across a page width employing novel ink ejection mechanisms. The disclosed arrangements utilized a thermal bend actuator built as part of a monolithic structure.
In such arrangements, it is desirable to form larger arrays of ink ejection nozzles so as to provide for a page width drop on demand print head. Desirably, a very high resolution of droplet size is required. For example, common competitive printing systems such as offset printing allow for resolutions of one thousand six hundred dots per inch (1600 dpi). Hence, by way of example, for an A4 page print head which is eight inches wide, to print at that resolution would require the equivalent of around 12800 ink ejection nozzles for each colour. Assuming a standard four colour process, this equates to approximately fifty one thousand ink ejection nozzles. For a six colour process including the standard four colours plus a fixative and an IR ink this results in 76800 ink ejection nozzles. Unfortunately, it is impractical to make large monolithic print heads from a contiguous segment of substrate such as a silicon wafer substrate. This is primarily a result of the substantial reduction in yield with increasing size of construction. The problem of yield is a well studied problem in the semi-conductor industry and the manufacture of ink jet devices often utilizes semi-conductor or analogous semi-conductor processing techniques. In particular, the field is generally known as Micro Electro Mechanical Systems (MEMS). A survey on the MEMS field is made in the December 1998 IEEE Spectrum article by S Tom Picraux and Paul J McWhorter entitled “The Broad Sweep of Integrated Micro Systems”.
One solution to the problem of maintaining high yields is to manufacture a lengthy print head in a number of segments and to abut or overlap the segments together. Unfortunately, the extremely high pitch of ink ejection nozzles required for a print head device means that the spacing between adjacent print head segments must be extremely accurately controlled even in the presence of thermal cycling under normal operational conditions. For example, to provide a resolution of one thousand six hundred dots per inch a nozzle to nozzle separation of about sixteen microns is required.
Ambient conditions and the operational environment of a print head may result in thermal cycling of the print head in the overlap region resulting in expansion and contraction of the overlap between adjacent print head segments which may in turn lead to the production of artifacts in the resultant output image. For example, the temperature of the print head may rise 25° C. above ambient when in operation. The assembly of the print head may also be made of materials having different thermal characteristics to the print head segments resulting in a differential thermal expansion between these components. The silicon substrate may be packaged in elastomer for which the respective thermal expansion coefficients are 2.6×10−6 and 20×10−6 microns per degree Celsius.
Artifacts are produced due to the limited resolution of the print head to represent a continuous tone image in a binary form and the ability of the human eye to detect 0.5% differences in colour of adjacent dots in an image.
It is an object of the present invention to provide for a mechanism for compensating for relative displacement of overlapping print head segments during operation in an effective and convenient manner.
In accordance with an aspect of the invention there is provided a method of generating half tone print data, the method comprising the steps of:
determining an extent of overlap caused by temperature variations of overlapping end portions of a pair of consecutive printhead segments;
generating a dither value from a dither matrix;
combining the dither value with the extent of overlap to produce an output value; and
performing a mathematical operation on continuous tone print data based on the output value, to produce the half tone print data.
Other aspects are also disclosed.
This invention is pointed out with particularity in the appended claims. The above and further advantages of this invention may be better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:
In a first embodiment, a method of compensation for the temperature varying relative displacement of adjacent print head segments is provided by the utilization of a digital processing mechanism which adjusts for the overlap between adjacent segments.
In a print head covering an A4 page width there may be 10 segments having 9 overlapping portions arranged in a repeating sequence of staggered pairs. Initial alignment of segments can be made within 10 microns using techniques well known in the art of monolithic fabrication techniques. The width of a segment for a 6 colour ink arrangement would be approximately 225 microns assuming the nozzles of a segment are arranged on 16 micron centres in a zig-zag pattern longitudinally.
In this embodiment, a temperature sensor is placed on each print head segment so as to provide for a measure of the current temperature characteristics of each print head segment. The current temperature measurement can then be utilized to determine the amount of overlap between adjacent print head segments.
Alternatively, only a single temperature sensor can be used if it can be assumed that the segments of the print head are sufficiently similar to one another in physical characteristics and performance and that the ambient milieu of each pair of overlapped segment is substantially the same.
The degree of overlap is then used to provide a mechanism for controlling the half toning between adjacent print head segments. It is assumed that outputting of an image in the instant invention is by means of digital half toning employing any method or technique well known in the art. Many different half toning techniques can be utilized and reference is made to the text by Ulichney entitled “Digital Half Toning” published by MIT Press.
As shown in
A temperature sensor 16 is placed on each print head segment 2, 3 so as to provide for a measure of the current temperature characteristics of each print head segment 2, 3. The current temperature measurement can then be utilized to determine the amount of overlap between adjacent print head segments. Alternatively, fiduciary strips 100, 101 on each overlapped segment 102, 103, as shown in
In the region 10 of the segment 2 the nozzles of this segment are used exclusively for the ejection of ink. Similarly in the region 11 of the segment 3 the nozzles of this segment are used exclusively for the ejection of ink. In the overlapping regions 12, 13 a “blend” is provided between the two print head segments 2, 3 such that along the edge 14 of the print head segment 2 nozzles are used exclusively in the region 12 to print and similarly along the edge 15, the nozzles of the segment 3 are used almost exclusively for printing. In between, an interpolation, which can be linear or otherwise, is provided between these two extreme positions. Hence, as shown in
One such method is illustrated in
An overall general half toning arrangement can be provided as shown in
As shown in
Through the utilization of an arrangement such as described above with respect to
As each overlap signal 28 can be multiplied by a calibration factor and added to a calibration offset factor, the degree of accuracy of placement of adjacent print head segments can also be dramatically reduced. Hence, adjacent print head segments can be roughly aligned during manufacture with one another. Test patterns can then be printed out at known temperatures to determine the degree of overlap between nozzles of adjacent segments. Once a degree of overlap has been determined for a particular temperature range a series of corresponding values can be written to a programmable ROM storage device so as to provide full offset values on demand which are individually factored to the print head segment overlap.
A further embodiment of the invention involves the use of a software solution for reducing the production of artifacts between overlapped segments of the print heads. A full software implementation of a dither matrix including the implementation of an algorithm for adjusting variable overlap between print head segments is attached as appendix A. The program is written in the programming language C. The algorithm may be written in some other code mutatis mutandis within the knowledge of a person skilled in the art. The basis of the algorithm is explained as follows.
A dispersed dot stochastic dithering is used to reproduce the continuous tone pixel values using bi-level dots. Dispersed dot dithering reproduces high spatial frequency, that is, image detail, almost to the limits of the dot resolution, while simultaneously reproducing lower spatial frequencies to their full intensity depth when spatially integrated by the eye. A stochastic dither matrix is designed to be free of objectionable low frequency patterns when tiled across the page.
Dot overlap can be modelled using dot gain techniques. Dot gain refers to any increase from the ideal intensity of a pattern of dots to the actual intensity produced when the pattern is printed. In ink jet printing, dot gain is caused mainly by ink bleed. Bleed is itself a function of the characteristics of the ink and the printing medium. Pigmented inks can bleed on the surface but do not diffuse far inside the medium. Dye based inks can diffuse along cellulose fibres inside the medium. Surface coatings can be used to reduce bleed.
Because the effect of dot overlap is sensitive to the distribution of the dots in the same way that dot gain is, it is useful to model the ideal dot as perfectly tiling the page with no overlap. While an actual ink jet dot is approximately round and overlaps its neighbours, the ideal dot can be modelled by a square. The ideal and actual dot shapes thus become dot gain parameters.
Dot gain is an edge effect, that is it is an effect which manifests itself along edges between printed dots and adjacent unprinted areas. Dot gain is proportional to the ratio between the edge links of a dot pattern and the area of the dot pattern. Two techniques for dealing with dot gain are dispersed dot dithering and clustered dot dithering. In dispersed dot dithering the dot is distributed uniformly over an area, for example for a dot of 50% intensity a chequer board pattern is used. In clustered dot dithering the dot is represented with a single central “coloured” area and an “uncoloured” border with the ratio of the area of “coloured” to “uncoloured” equalling the intensity of the dot to be printed. Dispersed dot dithering is therefore more sensitive to dot gain than clustered dot dithering.
Two adjacent print head segments have a number of overlapping nozzles. In general, there will not be perfect registration between corresponding nozzles in adjacent segments. At a local level there can be a misregistration of plus or minus half the nozzle spacing, that is plus or minus about 8 microns at 1600 dpi. At a higher level, the number of overlapping nozzles can actually vary.
The first approach to smoothly blending the output across the overlap bridge and from one segment to the next consists of blending the continuous tone input to the two segments from one to the other across the overlap region. As output proceeds across the overlap region, the second segment receives an increasing proportion of the input continuous tone value and the first segment receives a correspondingly decreasing proportion as described above with respect to
The first approach has two drawbacks. Firstly, if the dither threshold at a particular dot location is lower than both segments' interpolated continuous tone values then both segments will produce a dot for that location. Since the two dots will overlap, the intensities promised by the two dither matrices will be only partially reproduced, leading to a loss of overall intensity. This can be remedied by ensuring that corresponding nozzles never both produce a dot. This can also be achieved by using the inverse of the dither matrix for alternating segments, or dithering the continuous tone value through a single dither matrix and then assigning the output dot to one or the other nozzle stochastically, according to a probability given by the current interpolation factor.
Secondly, adjacent dots printed by different segments will overlap again leading to a loss of overall intensity.
As shown in
The function shows a linear response when only one segment contributes to the output, that is f=0.0 or f=1.0. This assumes of course that the dither matrix includes the effects of dot gain.
The foregoing description has been limited to specific embodiments of this invention. It will be apparent, however, that variations and modifications may be made to the invention, with the attainment of some or all of the advantages of the invention. For example, it will be appreciated that the invention may be embodied in either hardware or software in a suitably programmed digital data processing system, both of which are readily accomplished by those of ordinary skill in the respective arts. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the invention.
Appendix A
A full software implementation of a dither matrix including the implementation of an algorithm for adjusting variable overlap between print head segments is provided below. The program is written in the programming language C.
The present application is a Continuation Application of U.S. application Ser. No. 12/817,162 filed Jun. 16, 2010, now issued U.S. Pat. No. 8,061,796, which is a Continuation Application of U.S. application Ser. No. 12/423,003 filed Apr. 14, 2009, now issued U.S. Pat. No. 7,744,183, which is a Continuation Application of U.S. application Ser. No. 12/015,243 filed Jan. 16, 2008, now issued U.S. Pat. No. 7,533,951, which is a Continuation Application of U.S. application Ser. No. 11/228,410 filed Sep. 19, 2005, now issued U.S. Pat. No. 7,331,646 which is a Continuation Application of U.S. application Ser. No. 11/007,319 filed Dec. 9, 2004, now issued as U.S. Pat. No. 7,044,585, which is a Continuation Application of U.S. application Ser. No. 10/270,153 filed Oct. 15, 2002, now issued U.S. Pat. No. 6,834,932, which is a Continuation of U.S. application Ser. No. 09/575,117 filed May 23, 2000, now issued as U.S. Pat. No. 6,464,332, all of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4272771 | Furukawa | Jun 1981 | A |
4870499 | Suzuki et al. | Sep 1989 | A |
4977410 | Onuki et al. | Dec 1990 | A |
5384587 | Takagi et al. | Jan 1995 | A |
5450099 | Stephenson et al. | Sep 1995 | A |
5526140 | Rozzi | Jun 1996 | A |
5615282 | Spiegel et al. | Mar 1997 | A |
5717448 | Inada | Feb 1998 | A |
5767874 | Wen et al. | Jun 1998 | A |
5805178 | Silverbrook | Sep 1998 | A |
6068363 | Saito | May 2000 | A |
6213579 | Cornell et al. | Apr 2001 | B1 |
6312099 | Hawkins et al. | Nov 2001 | B1 |
6352329 | Watanabe et al. | Mar 2002 | B1 |
6464332 | Silverbrook et al. | Oct 2002 | B1 |
6679576 | Crivelli | Jan 2004 | B2 |
6834932 | Silverbrook | Dec 2004 | B2 |
7044585 | Walmsley et al. | May 2006 | B2 |
7201460 | Silverbrook et al. | Apr 2007 | B1 |
7331646 | Walmsley et al. | Feb 2008 | B2 |
7465007 | Silverbrook et al. | Dec 2008 | B2 |
7517037 | Silverbrook et al. | Apr 2009 | B2 |
7533951 | Walmsley et al. | May 2009 | B2 |
7618110 | Walmsley et al. | Nov 2009 | B2 |
7744183 | Walmsley et al. | Jun 2010 | B2 |
7837289 | Silverbrook et al. | Nov 2010 | B2 |
8061796 | Walmsley et al. | Nov 2011 | B2 |
Number | Date | Country |
---|---|---|
0034060 | Aug 1981 | EP |
0677388 | Oct 1995 | EP |
0709213 | May 1996 | EP |
0914950 | May 1999 | EP |
0960737 | Dec 1999 | EP |
64-011854 | Jan 1989 | JP |
08-230193 | Sep 1996 | JP |
08-244253 | Sep 1996 | JP |
09-099594 | Apr 1997 | JP |
2000-079707 | Mar 2000 | JP |
2000-092323 | Mar 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20120069074 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12817162 | Jun 2010 | US |
Child | 13295836 | US | |
Parent | 12423003 | Apr 2009 | US |
Child | 12817162 | US | |
Parent | 12015243 | Jan 2008 | US |
Child | 12423003 | US | |
Parent | 11228410 | Sep 2005 | US |
Child | 12015243 | US | |
Parent | 11007319 | Dec 2004 | US |
Child | 11228410 | US | |
Parent | 10270153 | Oct 2002 | US |
Child | 11007319 | US | |
Parent | 09575117 | May 2000 | US |
Child | 10270153 | US |