1. Field of the Invention
This invention relates to microprocessors. In particular, the invention relates to processor security.
2. Description of Related Art
Advances in microprocessor and communication technologies have opened up many opportunities for applications that go beyond the traditional ways of doing business. Electronic commerce (E-commerce) and business-to-business (B2B) transactions are now becoming popular, reaching the global markets at a fast rate. Unfortunately, while modern microprocessor systems provide users convenient and efficient methods of doing business, communicating and transacting, they are also vulnerable to unscrupulous attacks. Examples of these attacks include virus, intrusion, security breach, and tampering, to name a few. Computer security, therefore, is becoming more and more important to protect the integrity of the computer systems and increase the trust of users.
Threats caused by unscrupulous attacks may be in a number of forms. Attacks may be remote without requiring physical accesses. An invasive remote-launched attack by hackers may disrupt the normal operation of a system connected to thousands or even millions of users. A virus program may corrupt code and/or data of a single-user platform.
Existing techniques to protect against attacks have a number of drawbacks. Anti-virus programs can only scan and detect known viruses. Most anti-virus programs use a weak policy in which a file or program is assumed good until proved bad. For many security applications, this weak policy may not be appropriate. In addition, most anti-virus programs are used locally where they are resident in the platform. This may not be suitable in a group work environment. Security co-processors or smart cards using cryptographic or other security techniques have limitations in speed performance, memory capacity, and flexibility. Redesigning operating systems creates software compatibility issues and causes tremendous investment in development efforts.
The features and advantages of the present invention will become apparent from the following detailed description of the present invention in which:
In the following description, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that these specific details are not required in order to practice the present invention. In other instances, well-known electrical structures and circuits are shown in block diagram form in order not to obscure the present invention.
One principle for providing security in a computer system or platform is the concept of an isolated execution architecture. The isolated execution architecture includes logical and physical definitions of hardware and software components that interact directly or indirectly with an operating system of the computer system or platform. An operating system and the processor may have several levels of hierarchy, referred to as rings, corresponding to various operational modes. A ring is a logical division of hardware and software components that are designed to perform dedicated tasks within the operating system. The division is typically based on the degree or level of security and/or protection. For example, a ring-0 is the innermost ring, being at the highest level of the hierarchy. Ring-0 encompasses the most critical, security-sensitive components. In addition, modules in Ring-0 can also access to lesser privileged data, but not vice versa. Ring-3 is the outermost ring, being at the lowest level of the hierarchy. Ring-3 typically encompasses users or applications level and has the least security protection. Ring-1 and ring-2 represent the intermediate rings with decreasing levels of security and/or protection.
Ring-010 includes two portions: a normal execution Ring-011 and an isolated execution Ring-015. The normal execution Ring-011 includes software modules that are critical for the operating system, usually referred to as kernel. These software modules include primary operating system (e.g., kernel) 12, software drivers 13, and hardware drivers 14. The isolated execution Ring-015 includes an operating system (OS) nub 16 and a processor nub 18. The OS nub 16 and the processor nub 18 are instances of an OS executive (OSE) and processor executive (PE), respectively. The OSE and the PE are part of executive entities that operate in a secure environment associated with the isolated area 70 and the isolated execution mode. The processor nub loader 52 is a protected bootstrap loader code held within a chipset in the system and is responsible for loading the processor nub 18 from the processor or chipset into an isolated area as will be explained later.
Similarly, ring-120, ring-230, and ring-340 include normal execution ring-121, ring-231, ring-341, and isolated execution ring-125, ring-235, and ring-345, respectively. In particular, normal execution ring-3 includes N applications 421 to 42N and isolated execution ring-3 includes K applets 461 to 46K.
One concept of the isolated execution architecture is the creation of an isolated region in the system memory, referred to as an isolated area, which is protected by both the processor and chipset in the computer system. The isolated region may also be in cache memory, protected by a translation lookaside buffer (TLB) access check. Access to this isolated region is permitted only from a front side bus (FSB) of the processor, using special bus (e.g., memory read and write) cycles, referred to as isolated read and write cycles. The special bus cycles are also used for snooping. The isolated read and write cycles are issued by the processor executing in an isolated execution mode. The isolated execution mode is initialized using a privileged instruction in the processor, combined with the processor nub loader 52. The processor nub loader 52 verifies and loads a ring-0 nub software module (e.g., processor nub 18) into the isolated area. The processor nub 18 provides hardware-related services for the isolated execution.
One task of the processor nub 18 is to verify and load the ring-00S nub 16 into the isolated area, and to generate the root of a key hierarchy unique to a combination of the platform, the processor nub 18, and the operating system nub 16. The operating system nub 16 provides links to services in the primary OS 12 (e.g., the unprotected segments of the operating system), provides page management within the isolated area, and has the responsibility for loading ring-3 application modules 45, including applets 461 to 46K, into protected pages allocated in the isolated area. The operating system nub 16 may also load ring-0 supporting modules.
The operating system nub 16 may choose to support paging of data between the isolated area and ordinary (e.g., non-isolated) memory. If so, then the operating system nub 16 is also responsible for encrypting and hashing the isolated area pages before evicting the page to the ordinary memory, and for checking the page contents upon restoration of the page. The isolated mode applets 461 to 46K and their data are tamper- and monitor-proof from all software attacks from other applets, as well as from non-isolated-space applications (e.g., 421 to 42N), dynamic link libraries (DLLs), drivers and even the primary operating system 12. Only the processor nub 18 or the operating system nub 16 can interfere with or monitor the applet's execution.
The accessible physical memory 60 includes an isolated area 70 and a non-isolated area 80. The isolated area 70 includes applet pages 72 and nub pages 74. The non-isolated area 80 includes application pages 82 and operating system pages 84. The isolated area 70 is accessible only to elements of the operating system and processor operating in isolated execution mode. The non-isolated area 80 is accessible to all elements of the ring-0 operating system and to the processor.
The normal execution ring-011 including the primary OS 12, the software drivers 13, and the hardware drivers 14, can access both the OS pages 84 and the application pages 82. The normal execution ring-3, including applications 421 to 42N, can access only to the application pages 82. Both the normal execution ring-011 and ring-341, however, cannot access the isolated area 70.
The isolated execution ring-015, including the OS nub 16 and the processor nub 18, can access to both of the isolated area 70, including the applet pages 72 and the nub pages 74, and the non-isolated area 80, including the application pages 82 and the OS pages 84. The isolated execution ring-345, including applets 461 to 46K, can access only to the application pages 82 and the applet pages 72. The applets 461 to 46K reside in the isolated area 70.
The processor 110 represents a central processing unit of any type of architecture, such as complex instruction set computers (CISC), reduced instruction set computers (RISC), very long instruction word (VLIW), or hybrid architecture. In one embodiment, the processor 110 is compatible with an Intel Architecture (IA) processor, such as the Pentium™ series, the IA-32™ and the IA-64™. The processor 110 includes a normal execution mode 112 and an isolated execution circuit 115. The normal execution mode 112 is the mode in which the processor 110 operates in a non-secure environment, or a normal environment without the security features provided by the isolated execution mode. The isolated execution circuit 115 provides a mechanism to allow the processor 110 to operate in an isolated execution mode. The isolated execution circuit 115 provides hardware and software support for the isolated execution mode. This support includes configuration for isolated execution, definition of an isolated area, definition (e.g., decoding and execution) of isolated instructions, generation of isolated access bus cycles, and generation of isolated mode interrupts.
In one embodiment, the computer system 100 can be a single processor system, such as a desktop computer, which has only one main central processing unit, e.g. processor 110. In other embodiments, the computer system 100 can include multiple processors, e.g. processors 110, 110a, 110b, etc., as shown in
The processor 110 may also have multiple logical processors. A logical processor, sometimes referred to as a thread, is a functional unit within a physical processor having an architectural state and physical resources allocated according to some partitioning policy. Within the context of the present invention, the terms “thread” and “logical processor” are used to mean the same thing. A multi-threaded processor is a processor having multiple threads or multiple logical processors. A multi-processor system (e.g., the system comprising the processors 110, 110a, and 110b) may have multiple multi-threaded processors.
The host bus 120 provides interface signals to allow the processor 110 or processors 110, 100a, and 110b to communicate with other processors or devices, e.g., the MCH 130. In addition to normal mode, the host bus 120 provides an isolated access bus mode with corresponding interface signals for memory read and write cycles when the processor 110 is configured in the isolated execution mode. The isolated access bus mode is asserted on memory accesses initiated while the processor 110 is in the isolated execution mode. The isolated access bus mode is also asserted on instruction pre-fetch and cache write-back cycles if the address is within the isolated area address range and the processor 110 is initialized in the isolated execution mode. The processor 110 responds to snoop cycles to a cached address within the isolated area address range if the isolated access bus cycle is asserted and the processor 110 is initialized into the isolated execution mode.
The MCH 130 provides control and configuration of memory and input/output devices such as the system memory 140 and the ICH 150. The MCH 130 provides interface circuits to recognize and service isolated access assertions on memory reference bus cycles, including isolated memory read and write cycles. In addition, the MCH 130 has memory range registers (e.g., base and length registers) to represent the isolated area in the system memory 140. Once configured, the MCH 130 aborts any access to the isolated area that does not have the isolated access bus mode asserted.
The system memory 140 stores system code and data. The system memory 140 is typically implemented with dynamic random access memory (DRAM) or static random access memory (SRAM). The system memory 140 includes the accessible physical memory 60 (shown in
The ICH 150 represents a known single point in the system having the isolated execution functionality. For clarity, only one ICH 150 is shown. The system 100 may have many ICHs similar to the ICH 150. When there are multiple ICHs, a designated ICH is selected to control the isolated area configuration and status. In one embodiment, this selection is performed by an external strapping pin. As is known by one skilled in the art, other methods of selecting can be used, including using programmable configuring registers. The ICH 150 has a number of functionalities that are designed to support the isolated execution mode in addition to the traditional I/O functions. In particular, the ICH 150 includes an isolated bus cycle interface 152, the processor nub loader 52 (shown in
The isolated bus cycle interface 152 includes circuitry to interface to the isolated-bus cycle signals to recognize and service isolated bus cycles, such as the isolated read and write bus cycles. The processor nub loader 52, as shown in
The non-volatile memory 160 stores non-volatile information. Typically, the non-volatile memory 160 is implemented in flash memory. The non-volatile memory 160 includes the processor nub 18. The processor nub 18 provides the initial set-up and low-level management of the isolated area 70 (in the system memory 140), including verification, loading, and logging of the operating system nub 16, and the management of the symmetric key used to protect the operating system nub's secrets. The processor nub 18 may also provide application programming interface (API) abstractions to low-level security services provided by other hardware. The processor nub 18 may also be distributed by the original equipment manufacturer (OEM) or operating system vendor (OSV) via a boot disk.
The mass storage device 170 stores archive information such as code (e.g., processor nub 18), programs, files, data, applications (e.g., applications 421 to 42N), applets (e.g., applets 461 to 46K) and operating systems. The mass storage device 170 may include compact disk (CD) ROM 172, floppy diskettes 174, and hard drive 176, and any other magnetic or optical storage devices. The mass storage device 170 provides a mechanism to read machine-readable media. When implemented in software, the elements of the present invention are the code segments to perform the necessary tasks. The program or code segments can be stored in a processor readable medium or transmitted by a computer data signal embodied in a carrier wave, or a signal modulated by a carrier, over a transmission medium. The “processor readable medium” may include any medium that can store or transfer information. Examples of the processor readable medium include an electronic circuit, a semiconductor memory device, a ROM, a flash memory, an erasable programmable ROM (EPROM), a floppy diskette, a compact disk CD-ROM, an optical disk, a hard disk, a fiber optical medium, a radio frequency (RF) link, etc. The computer data signal may include any signal that can propagate over a transmission medium such as electronic network channels, optical fibers, air, electromagnetic, RF links, etc. The code segments may be downloaded via computer networks such as the Internet, an Intranet, etc.
I/O devices 175 may include any I/O devices to perform I/O functions. Examples of I/O devices 175 include a controller for input devices (e.g., keyboard, mouse, trackball, pointing device), media card (e.g., audio, video, graphics), a network card, and any other peripheral controllers.
The token bus 180 provides an interface between the ICH 150 and various tokens in the system. A token is a device that performs dedicated input/output functions with security functionalities. A token has characteristics similar to a smart card, including at least one reserved-purpose public/private key pair and the ability to sign data with the private key. Examples of tokens connected to the token bus 180 include a motherboard token 182, a token reader 184, and other portable tokens 186 (e.g., smart card). The token bus interface 159 in the ICH 150 connects through the token bus 180 to the ICH 150 and ensures that when commanded to prove the state of the isolated execution, the corresponding token (e.g., the motherboard token 182, the token 186) signs only valid isolated digest information. For purposes of security, the token should be connected to the digest memory.
The isolated execution mode protects the platform, system, or environment from attacks, especially attacks by software. In one embodiment of the present invention, a mechanism is provided to prevent software attacks. This mechanism includes generation of special bus cycles by the processor. The special bus cycle is used to enable the processor to perform operations such that they could not be performed by software instructions.
A significant feature of the isolated execution mode is that it prevents a corrupted ring-0 area from getting access to a user's important data. It does this by using execution mode. In this manner, both ring-0 programs and direct memory access (DMA) devices are restricted from accessing the isolated memory area.
The instruction decoder and execution unit 210 receives an instruction stream 215 from an instruction fetch unit. The instruction stream 215 includes a number of instructions. The instruction decoder and execution unit 210 decodes the instructions and executes the decoded instructions. These instructions may be at the micro- or macro-level. The instruction decoder and execution unit 210 may be a physical circuit or an abstraction of a process of decoding and execution of instructions. In addition, the instructions may include isolated instructions and non-isolated instructions. The instruction decoder and execution unit 210 generates a virtual address 212 when there is an access transaction. The TLB 218 translates the virtual address 212 into a physical address which is part of access information 226. The instruction decoder and execution unit 210 interfaces with the isolated bus cycle generator 220 via control/status information 222 and operand 224. The control/status information 222 includes control bits to manipulate various elements in the isolated bus cycle generator 220 and status data from the isolated bus cycle generator 220. The operand 224 includes data to be written to and read from the isolated bus cycle generator 220. The access information 226 includes address, read/write, and access type information.
The isolated bus cycle generator 220 receives and provides the control/status information 222, the operand 224, and receives the access information 226 from the instruction decoder and execution unit 210 as a result of instruction execution. The isolated bus cycle generator 220 generates an isolated bus cycle 230. The isolated bus cycle 230 includes information sent to devices (e.g., chipsets) external to the processor 110 to indicate that the processor 110 is executing an isolated mode instruction. The isolated bus cycle 230 may also be used internally by the processor 110 to control and monitor other isolated or non-isolated activities.
The configuration storage 250 contains configuration parameters to configure the processor 110 in one of a normal execution mode and an isolated execution mode. The configuration storage 250 receives the operand 224 from the instruction decoder and execution unit 210 (
The access generator circuit 270 generates an isolated access signal 272 using at least one of the isolated area parameters in the configuration-storage 250 and the access information 226 in a transaction generated by the processor 110. The isolated access signal 272 is asserted when the processor 110 is configured in the isolated execution mode. The access generator circuit 270 receives the physical address 282 and the read/write signal 284. The access generator circuit 270 also generate an access grant signal 274 to indicate if an isolated access has been granted. A similar checking is also performed for snoop checking when the physical address is provided at the FSB.
The bus cycle decoder 280 generates an isolated bus cycle 230 corresponding to a destination in the transaction using the asserted isolated access signal 272 and the access information 226. The bus cycle decoder 280 receives the read/write signal 284 and the access type 286. The read/write signal 284 indicates whether a read or a write transaction is being performed. The access type 286 indicates a type of access, including a memory reference, an input/output (I/O) reference, a logical processor entry to an isolated enabled state, and a logical processor withdrawal from an isolated enabled state. The destination of the transaction may be one of an isolated memory area, an isolated register, and an isolated state, corresponding to the memory reference, the I/O reference, and the isolated enabled state, respectively.
The address detector 310 receives the isolated setting 260 (e.g., the isolated mask value 263, the isolated base value 265, the isolated length value 267) from the configuration storage 250 in
The access grant generator 320 combines the isolated access signal 272 and the execution mode word 253 to generate an access grant signal 274. The access grant signal 274 is asserted when both the isolated access signal 272 and the execution mode word 253 are asserted to indicate that an isolated access is valid or allowed as configured. In one embodiment, the access grant generator 320 performs a logical AND operation.
The decoder 410 receives the access information 226 including access type 286 and the read/write signal 284, and the isolated access signal 272 from the access generator 270 (
The truth table 420 provides logic equations to generate the isolated bus cycle 230. The isolated bus cycle 230 may be coded in a number of ways. In one embodiment, the isolated bus cycle 230 is coded using binary information. There are essentially seven values or states of the isolated bus cycle 230: a not-available cycle, an isolated logical processor entry cycle, an isolated logical processor withdrawal cycle, an isolated data read cycle, an isolated data write cycle, an isolated control read cycle, and an isolated control write cycle. The isolated bus cycle 230 can be coded using 3 bits of data. The isolated bus cycle 230 can be made available to the external devices so that it can be decoded and used accordingly. The isolated logical processor entry and withdrawal cycles form a logical processor cycle. The isolated data read and write cycles form a data access cycle. The isolated control read and write cycles form a control access cycle. The isolated logical processor cycles are typically generated when the processor operates in ring-0. The isolated data access cycles are typically generated when the processor accesses an isolated memory area. The data access information can be decoded with the normal bus protocol. The control access cycles are typically generated when the processor accesses an isolated register residing in the MCH and the ICH in ring-O.
The truth table 420 includes as inputs the access type 286, the read/write (RD/WR#) 284, and the isolated access signal 272. The access type 286 includes an isolated enabled state and a memory/input-output (M/IO#). The isolated enabled state has two states: an enabled entry state and an enabled withdrawal state. The enabled entry state is asserted when a logical processor enters an isolated execution mode. This occurs when the processor executes an appropriate isolated instruction such as an isolated initialize (iso_init) instruction. The enabled withdrawal state is asserted when a logical processor withdraws from an isolated execution mode. This occurs when the processor executes an appropriate isolated instruction such as an isolated close (iso_close) instruction. In addition, the truth table 420 may also include the ring level to restrict access. For example, the isolated input/output space is accessible only at ring-0.
The isolated bus cycle 230 is not available when the isolated access signal 272 is de-asserted. The isolated bus cycle 230 is the logical processor entry cycle when the isolated access signal 272 is asserted and the isolated enabled state is in the enabled entry state. The isolated bus cycle 230 is the logical processor withdrawal cycle when the isolated access signal 272 is asserted and the isolated enabled state is in the enabled withdrawal state. The isolated bus cycle 230 is the isolated data read cycle when the isolated access signal 272 is asserted, the M/IO# indicates a memory reference (e.g., M/IO#=1), and the read/write indicates a read operation (e.g., RD/WR#=1). The isolated bus cycle 230 is the isolated data write cycle when the isolated access signal 272 is asserted, the M/IO# indicates a memory reference (e.g., M/IO#=1), and the read/write indicates a write operation (e.g., RD/WR#=0). The isolated bus cycle 230 is the isolated control read cycle when the isolated access signal 272 is asserted, the M/IO# indicates an input/output reference (e.g., M/IO#=0), and the read/write indicates a read operation (e.g., RD/WR#=1). The isolated bus cycle 230 is the isolated control write cycle when the isolated access signal 272 is asserted, the M/IO# indicates an input/output reference (e.g., M/IO#=0), and the read/write indicates a write operation (e.g., RD/WR#=0).
Upon START, the process 500 defines an isolated memory area using the isolated setting (e.g., isolated mask and base values) (Block 510). Then, the process 500 asserts the execution mode word in the processor control register to configure the processor in the isolated execution mode (Block 520). Next, the process 500 determines if the physical address as generated in a transaction is within the isolated memory area as defined by the isolated setting (Block 530). If not, the process 500 generates a failure or fault condition or performs access to the non-isolated memory area if allowed (Block 535) and is then terminated. Otherwise, the process 500 asserts the isolated access signal (Block 540).
Next, the process 500 determines what access type is being used in the transaction (Block 550). If the access type is a memory reference, the process 500 generates a data access cycle (Block 560). If the access type is an input/output reference, the process 500 generates a control access cycle (Block 570). If the access type is an entry or withdrawal state, the process 500 generates a logical processor access cycle (Block 580). Then the process 500 is terminated.
In summary, the present invention is a method and apparatus to generate an isolated bus cycle for a transaction in a processor. A configuration storage contains configuration parameters to configure a processor in one of a normal execution mode and an isolated execution mode. An access generator circuit generates an isolated access signal using at least one of the isolated area parameters and access information in the transaction. The isolated access signal is asserted when the processor is configured in the isolated execution mode. A bus cycle decoder generates an isolated bus cycle corresponding to a destination in the transaction using the asserted isolated access signal and the access information.
In one embodiment, the configuration parameters include an isolated setting and an execution mode word. The destination in the transaction may be one of an isolated memory area, an isolated register, and an isolated state. The isolated memory area is located in a memory external to the processor. The isolated register may be located in a chipset external to the processor. The access information includes a physical address and an access type. The configuration storage includes a register to contain the isolated setting for defining the isolated memory area. The isolated setting may be a mask value, a base value, a length value, or any of their combinations. The configuration storage further includes a processor control register to contain the execution mode word which is asserted when the processor is configured in the isolated execution mode. The access generator circuit includes an address detector to detect if the physical address is within the isolated memory area defined by the isolated setting. The isolated bus cycle may be one of a data access cycle, a control access cycle, and a logical processor access cycle. The data access cycle is generated when the access type is a memory reference to the isolated memory area. The control access cycle is generated when the access type is an input/output reference to the isolated register which may be external to the processor. The logical processor access cycle is generated when the access type is one of a logical processor entry to and a logical processor withdrawal from the isolated state. The logical processor entry to the isolated state updates a logical processor counter in the chipset in a first direction (e.g., increment). The logical processor withdrawal from the isolated state updates a logical processor counter in the chipset in a second direction (e.g., decrement).
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications of the illustrative embodiments, as well as other embodiments of the invention, which are apparent to persons skilled in the art to which the invention pertains are deemed to lie within the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3699532 | Schaffer et al. | Oct 1972 | A |
3996449 | Attanasio et al. | Dec 1976 | A |
4037214 | Birney et al. | Jul 1977 | A |
4162536 | Morley | Jul 1979 | A |
4207609 | Luiz et al. | Jun 1980 | A |
4247905 | Yoshida et al. | Jan 1981 | A |
4276594 | Morley | Jun 1981 | A |
4278837 | Best | Jul 1981 | A |
4307447 | Provanzano et al. | Dec 1981 | A |
4319233 | Matsuoka et al. | Mar 1982 | A |
4319323 | Ermolovich et al. | Mar 1982 | A |
4347565 | Kaneda et al. | Aug 1982 | A |
4366537 | Heller et al. | Dec 1982 | A |
4403283 | Myntti et al. | Sep 1983 | A |
4419724 | Branigin et al. | Dec 1983 | A |
4430709 | Schleupen et al. | Feb 1984 | A |
4450535 | de Pommery et al. | May 1984 | A |
4521852 | Guttag | Jun 1985 | A |
4571672 | Hatada et al. | Feb 1986 | A |
4759064 | Chaum | Jul 1988 | A |
4795893 | Ugon | Jan 1989 | A |
4802084 | Ikegaya et al. | Jan 1989 | A |
4825052 | Chemin et al. | Apr 1989 | A |
4907270 | Hazard | Mar 1990 | A |
4907272 | Hazard | Mar 1990 | A |
4910774 | Barakat | Mar 1990 | A |
4975836 | Hirosawa et al. | Dec 1990 | A |
5007082 | Cummins | Apr 1991 | A |
5016274 | Micali et al. | May 1991 | A |
5022077 | Bealkowski et al. | Jun 1991 | A |
5023908 | Weiss | Jun 1991 | A |
5075842 | Lai | Dec 1991 | A |
5079737 | Hackbarth | Jan 1992 | A |
5139760 | Ogawa et al. | Aug 1992 | A |
5187802 | Inoue et al. | Feb 1993 | A |
5230069 | Brelsford et al. | Jul 1993 | A |
5237616 | Abraham et al. | Aug 1993 | A |
5255379 | Melo | Oct 1993 | A |
5287363 | Wolf et al. | Feb 1994 | A |
5293424 | Holtey et al. | Mar 1994 | A |
5295251 | Wakui et al. | Mar 1994 | A |
5303378 | Cohen | Apr 1994 | A |
5317705 | Gannon et al. | May 1994 | A |
5319760 | Mason et al. | Jun 1994 | A |
5350906 | Brody et al. | Sep 1994 | A |
5361375 | Ogi | Nov 1994 | A |
5386552 | Garney | Jan 1995 | A |
5421006 | Jablon et al. | May 1995 | A |
5434999 | Goire et al. | Jul 1995 | A |
5437033 | Inoue et al. | Jul 1995 | A |
5442645 | Ugon et al. | Aug 1995 | A |
5455909 | Blomgren et al. | Oct 1995 | A |
5459867 | Adams et al. | Oct 1995 | A |
5459869 | Spilo | Oct 1995 | A |
5461217 | Claus | Oct 1995 | A |
5469557 | Salt et al. | Nov 1995 | A |
5473692 | Davis | Dec 1995 | A |
5479509 | Ugon | Dec 1995 | A |
5500513 | Langhans et al. | Mar 1996 | A |
5504808 | Hamrick, Jr. | Apr 1996 | A |
5504922 | Seki et al. | Apr 1996 | A |
5506975 | Onodera | Apr 1996 | A |
5511217 | Nakajima et al. | Apr 1996 | A |
5522075 | Robinson et al. | May 1996 | A |
5528231 | Patarin | Jun 1996 | A |
5533126 | Hazard et al. | Jul 1996 | A |
5555385 | Osisek | Sep 1996 | A |
5555414 | Hough et al. | Sep 1996 | A |
5560013 | Scalzi et al. | Sep 1996 | A |
5564040 | Kubals | Oct 1996 | A |
5566323 | Ugon | Oct 1996 | A |
5568552 | Davis | Oct 1996 | A |
5574936 | Ryba et al. | Nov 1996 | A |
5577120 | Penzias | Nov 1996 | A |
5582717 | Di Santo | Dec 1996 | A |
5594227 | Deo | Jan 1997 | A |
5604805 | Brands | Feb 1997 | A |
5606617 | Brands | Feb 1997 | A |
5614703 | Martin et al. | Mar 1997 | A |
5615263 | Takahashi | Mar 1997 | A |
5628022 | Ueno et al. | May 1997 | A |
5633929 | Kaliski, Jr. | May 1997 | A |
5641050 | Smith et al. | Jun 1997 | A |
5657445 | Pearce | Aug 1997 | A |
5668971 | Neufeld | Sep 1997 | A |
5684948 | Johnson et al. | Nov 1997 | A |
5706469 | Kobayashi | Jan 1998 | A |
5717903 | Bonola | Feb 1998 | A |
5720609 | Pfefferle | Feb 1998 | A |
5721222 | Bernstein et al. | Feb 1998 | A |
5721781 | Deo et al. | Feb 1998 | A |
5724424 | Gifford | Mar 1998 | A |
5729760 | Poisner | Mar 1998 | A |
5737604 | Miller et al. | Apr 1998 | A |
5737760 | Grimmer et al. | Apr 1998 | A |
5740178 | Jacks et al. | Apr 1998 | A |
5742756 | Dillaway et al. | Apr 1998 | A |
5742845 | Wagner | Apr 1998 | A |
5752046 | Oprescu et al. | May 1998 | A |
5757919 | Herbert et al. | May 1998 | A |
5764969 | Kahle et al. | Jun 1998 | A |
5768385 | Simon | Jun 1998 | A |
5778069 | Thomlinson et al. | Jul 1998 | A |
5796835 | Saada | Aug 1998 | A |
5796845 | Serikawa et al. | Aug 1998 | A |
5805712 | Davis | Sep 1998 | A |
5809546 | Greenstein et al. | Sep 1998 | A |
5825875 | Ugon | Oct 1998 | A |
5825880 | Sudia et al. | Oct 1998 | A |
5826242 | Montulli | Oct 1998 | A |
5835594 | Albrecht et al. | Nov 1998 | A |
5844986 | Davis | Dec 1998 | A |
5852717 | Bhide et al. | Dec 1998 | A |
5852812 | Reeder | Dec 1998 | A |
5854913 | Goetz et al. | Dec 1998 | A |
5862325 | Reed et al. | Jan 1999 | A |
5864830 | Armetta et al. | Jan 1999 | A |
5867577 | Patarin | Feb 1999 | A |
5872994 | Akiyama et al. | Feb 1999 | A |
5878138 | Yacobi | Mar 1999 | A |
5878141 | Daly et al. | Mar 1999 | A |
5883810 | Franklin et al. | Mar 1999 | A |
5884280 | Yoshioka et al. | Mar 1999 | A |
5890189 | Nozue et al. | Mar 1999 | A |
5897622 | Blinn et al. | Apr 1999 | A |
5898838 | Wagner | Apr 1999 | A |
5898883 | Fujii et al. | Apr 1999 | A |
5900606 | Rigal | May 1999 | A |
5901225 | Ireton et al. | May 1999 | A |
5903752 | Dingwall et al. | May 1999 | A |
5903830 | Joao et al. | May 1999 | A |
5903875 | Kohara | May 1999 | A |
5903880 | Biffar | May 1999 | A |
5905908 | Wagner | May 1999 | A |
5909492 | Payne et al. | Jun 1999 | A |
5913203 | Wong et al. | Jun 1999 | A |
5915023 | Bernstein | Jun 1999 | A |
5918216 | Miksovsky et al. | Jun 1999 | A |
5919257 | Trostle | Jul 1999 | A |
5923734 | Taskett | Jul 1999 | A |
5930777 | Barber | Jul 1999 | A |
5935242 | Madany et al. | Aug 1999 | A |
5935247 | Pai et al. | Aug 1999 | A |
5937063 | Davis | Aug 1999 | A |
5949044 | Walker et al. | Sep 1999 | A |
5949876 | Ginter et al. | Sep 1999 | A |
5950221 | Draves et al. | Sep 1999 | A |
5953502 | Helbig, Sr. | Sep 1999 | A |
5956408 | Arnold | Sep 1999 | A |
5956699 | Wong et al. | Sep 1999 | A |
5958004 | Helland et al. | Sep 1999 | A |
5960411 | Hartman et al. | Sep 1999 | A |
5963915 | Kirsch | Oct 1999 | A |
5966697 | Fergerson et al. | Oct 1999 | A |
5970147 | Davis | Oct 1999 | A |
5970471 | Hill | Oct 1999 | A |
5970472 | Allsop et al. | Oct 1999 | A |
5970473 | Gerszberg et al. | Oct 1999 | A |
5970475 | Barnes et al. | Oct 1999 | A |
5978475 | Schneier et al. | Nov 1999 | A |
5978481 | Ganesan et al. | Nov 1999 | A |
5983207 | Turk et al. | Nov 1999 | A |
5987557 | Ebrahim | Nov 1999 | A |
5991413 | Arditti et al. | Nov 1999 | A |
5999914 | Blinn et al. | Dec 1999 | A |
6000832 | Franklin et al. | Dec 1999 | A |
6002767 | Kramer | Dec 1999 | A |
6009412 | Storey | Dec 1999 | A |
6012143 | Tanaka | Jan 2000 | A |
6014634 | Scroggie et al. | Jan 2000 | A |
6014635 | Harris et al. | Jan 2000 | A |
6014636 | Reeder | Jan 2000 | A |
6014646 | Vallee et al. | Jan 2000 | A |
6014648 | Brennan | Jan 2000 | A |
6014650 | Zampese | Jan 2000 | A |
6014745 | Ashe | Jan 2000 | A |
6014748 | Tushie et al. | Jan 2000 | A |
6016482 | Molinari et al. | Jan 2000 | A |
6016484 | Williams et al. | Jan 2000 | A |
6023510 | Epstein | Feb 2000 | A |
6029147 | Horadan et al. | Feb 2000 | A |
6029150 | Kravitz | Feb 2000 | A |
6029890 | Austin | Feb 2000 | A |
6035374 | Panwar et al. | Mar 2000 | A |
6038292 | Thomas | Mar 2000 | A |
6038551 | Barlow et al. | Mar 2000 | A |
6041308 | Walker et al. | Mar 2000 | A |
6044478 | Green | Mar 2000 | A |
6052675 | Checchio | Apr 2000 | A |
6055637 | Hudson et al. | Apr 2000 | A |
6058418 | Kobata | May 2000 | A |
6058478 | Davis | May 2000 | A |
6061789 | Hauser et al. | May 2000 | A |
6061794 | Angelo | May 2000 | A |
6064981 | Barni et al. | May 2000 | A |
6070150 | Remington et al. | May 2000 | A |
6070154 | Tavor et al. | May 2000 | A |
6075938 | Bugnion et al. | Jun 2000 | A |
6076078 | Camp et al. | Jun 2000 | A |
6078906 | Huberman | Jun 2000 | A |
6081790 | Rosen | Jun 2000 | A |
6085296 | Karkhanis et al. | Jul 2000 | A |
6088262 | Nasu | Jul 2000 | A |
6088717 | Reed et al. | Jul 2000 | A |
6088797 | Rosen | Jul 2000 | A |
6092095 | Maytal | Jul 2000 | A |
6092198 | Lanzy et al. | Jul 2000 | A |
6093213 | Favor et al. | Jul 2000 | A |
6098053 | Slater | Aug 2000 | A |
6101584 | Satou et al. | Aug 2000 | A |
6108644 | Goldschlag et al. | Aug 2000 | A |
6112191 | Burke | Aug 2000 | A |
6115458 | Taskett | Sep 2000 | A |
6115816 | Davis | Sep 2000 | A |
6122625 | Rosen | Sep 2000 | A |
6125352 | Franklin et al. | Sep 2000 | A |
6125430 | Noel et al. | Sep 2000 | A |
6131166 | Wong-Isley | Oct 2000 | A |
6141752 | Dancs et al. | Oct 2000 | A |
6148379 | Schimmel | Nov 2000 | A |
6158546 | Hanson et al. | Dec 2000 | A |
6173417 | Merrill | Jan 2001 | B1 |
6175924 | Arnold | Jan 2001 | B1 |
6175925 | Nardone et al. | Jan 2001 | B1 |
6178509 | Nardone et al. | Jan 2001 | B1 |
6182089 | Ganapathy et al. | Jan 2001 | B1 |
6188257 | Buer | Feb 2001 | B1 |
6192455 | Bogin et al. | Feb 2001 | B1 |
6199152 | Kelly et al. | Mar 2001 | B1 |
6205550 | Nardone et al. | Mar 2001 | B1 |
6212635 | Reardon | Apr 2001 | B1 |
6222923 | Schwenk | Apr 2001 | B1 |
6226749 | Carloganu et al. | May 2001 | B1 |
6249872 | Wildgrube et al. | Jun 2001 | B1 |
6252650 | Nakaumra | Jun 2001 | B1 |
6269392 | Cotichini et al. | Jul 2001 | B1 |
6272533 | Browne | Aug 2001 | B1 |
6272637 | Little et al. | Aug 2001 | B1 |
6275933 | Fine et al. | Aug 2001 | B1 |
6282650 | Davis | Aug 2001 | B1 |
6282651 | Ashe | Aug 2001 | B1 |
6282657 | Kaplan et al. | Aug 2001 | B1 |
6292874 | Barnett | Sep 2001 | B1 |
6301646 | Hostetter | Oct 2001 | B1 |
6308270 | Guthery et al. | Oct 2001 | B1 |
6314409 | Schneck et al. | Nov 2001 | B1 |
6321314 | Van Dyke | Nov 2001 | B1 |
6327652 | England et al. | Dec 2001 | B1 |
6330670 | England et al. | Dec 2001 | B1 |
6339815 | Feng et al. | Jan 2002 | B1 |
6339816 | Bausch | Jan 2002 | B1 |
6357004 | Davis | Mar 2002 | B1 |
6363485 | Adams | Mar 2002 | B1 |
6374286 | Gee et al. | Apr 2002 | B1 |
6374317 | Ajanovic et al. | Apr 2002 | B1 |
6378068 | Foster | Apr 2002 | B1 |
6378072 | Collins et al. | Apr 2002 | B1 |
6389537 | Davis et al. | May 2002 | B1 |
6397379 | Yates, Jr. et al. | May 2002 | B1 |
6412035 | Webber | Jun 2002 | B1 |
6421702 | Gulick | Jul 2002 | B1 |
6445797 | McGough et al. | Sep 2002 | B1 |
6463535 | Drews et al. | Oct 2002 | B1 |
6463537 | Tello | Oct 2002 | B1 |
6499123 | McFarland et al. | Dec 2002 | B1 |
6505279 | Phillips et al. | Jan 2003 | B1 |
6529909 | Bowman-Amuah | Mar 2003 | B1 |
6535988 | Poisner | Mar 2003 | B1 |
6557104 | Vu et al. | Apr 2003 | B1 |
6560627 | McDonald et al. | May 2003 | B1 |
6564326 | Helbig, Sr. | May 2003 | B1 |
6609199 | DeTreville | Aug 2003 | B1 |
6615278 | Curtis | Sep 2003 | B1 |
6633981 | Davis | Oct 2003 | B1 |
6651171 | England et al. | Nov 2003 | B1 |
6684326 | Cromer et al. | Jan 2004 | B1 |
6701284 | Huntley et al. | Mar 2004 | B1 |
20010021969 | Burger et al. | Sep 2001 | A1 |
20010027527 | Khidekel et al. | Oct 2001 | A1 |
20010037450 | Metlitski et al. | Nov 2001 | A1 |
Number | Date | Country |
---|---|---|
4217444 | Dec 1992 | DE |
0473913 | Mar 1992 | EP |
0600112 | Aug 1994 | EP |
0892521 | Jan 1999 | EP |
0930567 | Jul 1999 | EP |
0961193 | Dec 1999 | EP |
0965902 | Dec 1999 | EP |
1 030 237 | Aug 2000 | EP |
1055989 | Nov 2000 | EP |
1056014 | Nov 2000 | EP |
1085396 | Mar 2001 | EP |
1146715 | Oct 2001 | EP |
1116152 | Jun 1999 | JP |
2000076139 | Mar 2000 | JP |
WO9524696 | Sep 1995 | WO |
WO 9729567 | Aug 1997 | WO |
WO9812620 | Mar 1998 | WO |
WO9834365 | Aug 1998 | WO |
WO9844402 | Oct 1998 | WO |
WO9905600 | Feb 1999 | WO |
WO9909482 | Feb 1999 | WO |
WO9918511 | Apr 1999 | WO |
WO9938076 | Jul 1999 | WO |
WO 9949424 | Sep 1999 | WO |
WO9957863 | Nov 1999 | WO |
WO9965579 | Dec 1999 | WO |
WO0021238 | Apr 2000 | WO |
WO 0049586 | Aug 2000 | WO |
WO0062232 | Oct 2000 | WO |
WO 0127723 | Apr 2001 | WO |
WO 0127821 | Apr 2001 | WO |
WO0163994 | Aug 2001 | WO |
WO 0175565 | Oct 2001 | WO |
WO 0175595 | Oct 2001 | WO |
WO0201794 | Jan 2002 | WO |
WO-0217555 | Feb 2002 | WO |
WO02060121 | Aug 2002 | WO |
WO-02086684 | Oct 2002 | WO |
WO03058412 | Jul 2003 | WO |