Generating physically aware network-on-chip design from a physical system-on-chip specification

Information

  • Patent Grant
  • 10218580
  • Patent Number
    10,218,580
  • Date Filed
    Thursday, June 18, 2015
    9 years ago
  • Date Issued
    Tuesday, February 26, 2019
    5 years ago
Abstract
Different example implementations of the present disclosure relates to methods and computer readable mediums for automatically generating physically aware NoC design and physically aware NoC Specification based on one or more of given SoC architectural details, physical information of SoC, traffic specification, power profile and one or more constraints. The method includes steps of receiving input information, determining the location/position of different NoC agents, interconnecting channels, pins, I/O interfaces, physical/virtual boundaries, number of layers, size/depth/width of different channels at different time, and locating/configuring the different NoC agents, interconnecting channels, pins, I/O interfaces, and physical/virtual boundaries.
Description
BACKGROUND

Technical Field


Methods and example implementations described herein are directed to interconnect architecture, and more specifically, to generation of a physically aware Network on Chip (NoC) design from a physically aware System on Chip (SoC) design specification.


Related Art


The number of components on a chip is rapidly growing due to increasing levels of integration, system complexity and shrinking transistor geometry. Complex System-on-Chips (SoCs) may involve a variety of components e.g., processor cores, Digital Signal Processors (DSPs), hardware accelerators, memory and I/O, while Chip Multi-Processors (CMPs) may involve a large number of homogenous processor cores, memory and I/O subsystems. In both SoC and CMP systems, the on-chip interconnect plays a role in providing high-performance communication between the various components. Due to scalability limitations of traditional buses and crossbar based interconnects, Network-on-Chip (NoC) has emerged as a paradigm to interconnect a large number of components on the chip. NoC is a global shared communication infrastructure made up of several routing nodes interconnected with each other using point-to-point physical links.


Messages are injected by the source and are routed from the source node to the destination over multiple intermediate nodes and physical links. The destination node then ejects the message and provides the message to the destination. For the remainder of this application, the terms ‘components’, ‘blocks’, ‘hosts’ or ‘cores’ will be used interchangeably to refer to the various system components which are interconnected using a NoC. Terms ‘routers’ and ‘nodes’ will also be used interchangeably. Without loss of generalization, the system with multiple interconnected components will itself be referred to as a ‘multi-core system’.


There are several topologies in which the routers can connect to one another to create the system network. Bi-directional rings (as shown in FIG. 1(a)), 2-D (two dimensional) mesh (as shown in FIG. 1(b)) and 2-D Taurus (as shown in FIG. 1(c)) are examples of topologies in the related art. Mesh and Taurus can also be extended to 2.5-D (two and half dimensional) or 3-D (three dimensional) organizations. FIG. 1(d) shows a 3D mesh NoC, where there are three layers of 3×3 2D mesh NoC shown over each other. The NoC routers have up to two additional ports, one connecting to a router in the higher layer, and another connecting to a router in the lower layer. Router 111 in the middle layer of the example has both ports used, one connecting to the router at the top layer and another connecting to the router at the bottom layer. Routers 110 and 112 are at the bottom and top mesh layers respectively, therefore they have only the upper facing port 113 and the lower facing port 114 respectively connected.


Packets are message transport units for intercommunication between various components. Routing involves identifying a path composed of a set of routers and physical links of the network over which packets are sent from a source to a destination. Components are connected to one or multiple ports of one or multiple routers; with each such port having a unique ID. Packets carry the destination's router and port ID for use by the intermediate routers to route the packet to the destination component.


Examples of routing techniques include deterministic routing, which involves choosing the same path from A to B for every packet. This form of routing is independent from the state of the network and does not load balance across path diversities, which might exist in the underlying network. However, such deterministic routing may be implemented in hardware, maintains packet ordering and may be rendered free of network level deadlocks. Shortest path routing may minimize the latency as such routing reduces the number of hops from the source to the destination. For this reason, the shortest path may also be the lowest power path for communication between the two components. Dimension-order routing is a form of deterministic shortest path routing in 2-D, 2.5-D, and 3-D mesh networks. In this routing scheme, messages are routed along each coordinates in a particular sequence until the message reaches the final destination. For example in a 3-D mesh network, one may first route along the X dimension until it reaches a router whose X-coordinate is equal to the X-coordinate of the destination router. Next, the message takes a turn and is routed in Y dimension and finally takes another turn and moves along the Z dimension until the message reaches the final destination router. Dimension ordered routing may be minimal turn and shortest path routing.



FIG. 2(a) pictorially illustrates an example of XY routing in a two dimensional mesh. More specifically, FIG. 2(a) illustrates XY routing from node ‘34’ to node ‘00’. In the example of FIG. 2(a), each component is connected to only one port of one router. A packet is first routed over the x-axis till the packet reaches node ‘04’ where the x-coordinate of the node is the same as the x-coordinate of the destination node. The packet is next routed over the y-axis until the packet reaches the destination node.


In heterogeneous mesh topology in which one or more routers or one or more links are absent, dimension order routing may not be feasible between certain source and destination nodes, and alternative paths may have to be taken. The alternative paths may not be shortest or minimum turn.


Source routing and routing using tables are other routing options used in NoC. Adaptive routing can dynamically change the path taken between two points on the network based on the state of the network. This form of routing may be complex to analyze and implement.


A NoC interconnect may contain multiple physical networks. Over each physical network, there may exist multiple virtual networks, wherein different message types are transmitted over different virtual networks. In this case, at each physical link or channel, there are multiple virtual channels; each virtual channel may have dedicated buffers at both end points. In any given clock cycle, only one virtual channel can transmit data on the physical channel.


NoC interconnects may employ wormhole routing, wherein, a large message or packet is broken into small pieces known as flits (also referred to as flow control digits). The first flit is the header flit, which holds information about this packet's route and key message level info along with payload data and sets up the routing behavior for all subsequent flits associated with the message. Optionally, one or more body flits follows the head flit, containing the remaining payload of data. The final flit is the tail flit, which in addition to containing the last payload also performs some bookkeeping to close the connection for the message. In wormhole flow control, virtual channels are often implemented.


The physical channels are time sliced into a number of independent logical channels called virtual channels (VCs). VCs provide multiple independent paths to route packets, however they are time-multiplexed on the physical channels. A virtual channel holds the state needed to coordinate the handling of the flits of a packet over a channel. At a minimum, this state identifies the output channel of the current node for the next hop of the route and the state of the virtual channel (idle, waiting for resources, or active). The virtual channel may also include pointers to the flits of the packet that are buffered on the current node and the number of flit buffers available on the next node.


The term “wormhole” plays on the way messages are transmitted over the channels: the output port at the next router can be so short that received data can be translated in the head flit before the full message arrives. This allows the router to quickly set up the route upon arrival of the head flit and then opt out from the rest of the conversation. Since a message is transmitted flit by flit, the message may occupy several flit buffers along its path at different routers, creating a worm-like image.


Based upon the traffic between various end points, and the routes and physical networks that are used for various messages, different physical channels of the NoC interconnect may experience different levels of load and congestion. The capacity of various physical channels of a NoC interconnect is determined by the width of the channel (number of physical wires) and the clock frequency at which it is operating. Various channels of the NoC may operate at different clock frequencies, and various channels may have different widths based on the bandwidth requirement at the channel. The bandwidth requirement at a channel is determined by the flows that traverse over the channel and their bandwidth values. Flows traversing over various NoC channels are affected by the routes taken by various flows. In a mesh or Taurus NoC, there may exist multiple route paths of equal length or number of hops between any pair of source and destination nodes. For example, in FIG. 2(b), in addition to the standard XY route between nodes 34 and 00, there are additional routes available, such as YX route 203 or a multi-turn route 202 that makes more than one turn from source to destination.


In a NoC with statically allocated routes for various traffic slows, the load at various channels may be controlled by intelligently selecting the routes for various flows. When a large number of traffic flows and substantial path diversity is present, routes can be chosen such that the load on all NoC channels is balanced nearly uniformly, thus avoiding a single point of bottleneck. Once routed, the NoC channel widths can be determined based on the bandwidth demands of flows on the channels. Unfortunately, channel widths cannot be arbitrarily large due to physical hardware design restrictions, such as timing or wiring congestion. There may be a limit on the maximum channel width, thereby putting a limit on the maximum bandwidth of any single NoC channel.


Additionally, wider physical channels may not help in achieving higher bandwidth if messages are short. For example, if a packet is a single flit packet with a 64-bit width, then no matter how wide a channel is, the channel will only be able to carry 64 bits per cycle of data if all packets over the channel are similar. Thus, a channel width is also limited by the message size in the NoC. Due to these limitations on the maximum NoC channel width, a channel may not have enough bandwidth in spite of balancing the routes.


To address the above bandwidth concern, multiple parallel physical NoCs may be used. Each NoC may be called a layer, thus creating a multi-layer NoC architecture. Hosts inject a message on a NoC layer; the message is then routed to the destination on the NoC layer, where it is delivered from the NoC layer to the host. Thus, each layer operates more or less independently from each other, and interactions between layers may only occur during the injection and ejection times. FIG. 3(a) illustrates a two layer NoC. Here the two NoC layers are shown adjacent to each other on the left and right, with the hosts connected to the NoC replicated in both left and right diagrams. A host is connected to two routers in this example—a router in the first layer shown as R1, and a router is the second layer shown as R2. In this example, the multi-layer NoC is different from the 3D NoC, i.e. multiple layers are on a single silicon die and are used to meet the high bandwidth demands of the communication between hosts on the same silicon die. Messages do not go from one layer to another. For purposes of clarity, the present application will utilize such a horizontal left and right illustration for multi-layer NoC to differentiate from the 3D NoCs, which are illustrated by drawing the NoCs vertically over each other.


In FIG. 3(b), a host connected to a router from each layer, R1 and R2 respectively, is illustrated. Each router is connected to other routers in its layer using directional ports 301, and is connected to the host using injection and ejection ports 302. Abridge-logic 303 may sit between the host and the two NoC layers to determine the NoC layer for an outgoing message and sends the message from host to the NoC layer, and also perform the arbitration and multiplexing between incoming messages from the two NoC layers and delivers them to the host.


In a multi-layer NoC, the number of layers needed may depend upon a number of factors such as the aggregate bandwidth requirement of all traffic flows in the system, the routes that are used by various flows, message size distribution, maximum channel width, etc. Once the number of NoC layers in NoC interconnect is determined in a design, different messages and traffic flows may be routed over different NoC layers. Additionally, one may design NoC interconnects such that different layers have different topologies in number of routers, channels and connectivity. The channels in different layers may have different widths based on the flows that traverse over the channel and their bandwidth requirements.


In a NoC interconnect, if the traffic profile is not uniform and there is a certain amount of heterogeneity (e.g., certain hosts talking to each other more frequently than the others), the interconnect performance may depend on the NoC topology and where various hosts are placed in the topology with respect to each other and to what routers they are connected to. For example, if two hosts talk to each other frequently and require higher bandwidth than other interconnects, then they should be placed next to each other. This will reduce the latency for this communication, which thereby reduces the global average latency, as well as reduce the number of router nodes and links over which the higher bandwidth of this communication must be provisioned.


To design a SoC/NoC, a user generally provides several requirements such as number of nodes/agents/elements, positions of different agents/nodes, capacity of agents, channel size/capacity, connectivity information of channel, how different nodes/agents are connected, power profiles, voltage profile, bandwidth requirement etc. in the form of physical information of the SoC, along with SoC specification and traffic specification of SoC. Physical information of SoC, SoC specification and traffic specification may include one more restrictions or constraints of the SoC/NoC or of agents or of channels of SoC/NOC. In several cases, it is possible that one or more of these inputs are conflicting, and hence these conflicting inputs/restrictions/constraints need to be identified.


Designing a NoC that fulfills several of these requirements and incorporates a plurality of restrictions/constraints may not be possible manually. There do exist related art methods and systems for generation of NoC design for a given input specification, however these existing automation methods and systems do not automatically generate a physically aware NoC design and are also not able to generate physically aware NoC scripts/specifications.


SUMMARY

Therefore, there is a need for methods, systems, and computer readable mediums for automatic generation of physically aware NoC and physically aware NoC specification from one or a combination of physical information of SoC, SoC specification, and traffic specification of the SoC. These methods, systems, and computer readable mediums should also automatically generate a physically aware NoC specification that can be used by different Electronic Design Automation (EDA) tools and can be used to modify physical information of SoC, SoC specification, and traffic specification of SoC so as to remove conflicting constraints/restrictions.


Aspects of the present disclosure relate to methods, systems, and computer readable mediums for automatically generating physically aware NoC design, and physically aware NoC specification based on one or a combination of given SoC architectural details, physical information of SoC, traffic specification, power profile, and one or more constraints. An aspect of present disclosure provides a method for automatically generating a physically aware NoC design and physically aware NoC specification including traffic specification, power specification, and physical/location constraints etc. based on one or a combination of given SoC architectural details, physical information of the SoC, traffic specification, power profile, and one or more constraints, and can include steps of receiving input information, determining the location/position of different NoC agents, interconnecting channels, pins, I/O interfaces, physical/virtual boundaries, number of layers, size/depth/width of different channels at different times, and locating/configuring the different NoC agents, interconnecting channels, pins, I/O interfaces, physical/virtual boundaries.


In an example implementation, upon receiving the input information such as SoC architectural details, physical information of SoC, traffic specification, power profile, and one or more constraints associated with SoC, method of the present disclosure can include the step of determining position/location of different NoC agents, interconnecting channels, network elements, input/output interfaces, and pins such that once the location/position of agents, interconnecting channels, pins and input/output interfaces are determined, different power profiles and traffic profiles including routing information can be determined and assigned to different NoC agents and network elements. In an example implementation, size of channels (input channels and output channels), width/depth of channels, buffer size of agents and network elements can be determined and assigned to respective channels. In example implementations, optimal positions of the NoC agents, network elements, and their orientations and interface signals positions can be determined based on given physical information of the SoC.


In an aspect, method of the present disclosure can further include the step of generating physical information associated with one or more elements of NoC design, wherein the generated physical information can be used to augment the physical information of the SoC for further processing by EDA tools.


In an example implementation, physical information of the SoC can include, but is not limited to, details of silicon fabrication technology, SoC floor plan information, SoC wires capacity, wire positions available for the NoC usage, wire velocity, timing information of the SoC elements/agents, clock domains information, frequency domain information, input signal driver strength and output signal loads. In an example implementation, physical information of the SoC can further include one or a combination of power grid information of the SoC, voltage and power domain associated with the SoC elements/agents, and information of power domain and voltage domain available for NoC usage. In an example implementation, physical information of the SoC can also include one or more of timing information of the SoC elements/agents such as clock domains and frequencies of various agents/interfaces of the NoC, clock domains of the NoC elements and wires at various positions, timing constraints such as input and output signal delays and properties of the clock groups. In an example implementation, physical information of the SoC can include indication of SoC/NoC core area, boundary within which the NoC agents should be placed, wiring details/channels that are available for NoC at various positions, constraints relating to whether NoC channels can be placed at certain places or not, and maximum width of channels at various positions.


In an example implementation, traffic profile specification can include routing information, bandwidth requirements, width/depth of the channel at different positions and other routing information/logics. In an example implementation, power profile specification can include details of power domains and frequency domains at which different NoC agents, hardware elements, pins, I/O interfaces and channels need to operate and power/voltage values of different NoC agents, hardware elements, pins, I/O interfaces and channels at different times. Power profile specification can also include details of plurality of power profiles at which different NoC agents, blocks, or NoC may need to operate. In an example implementation, physical constrains may include one or more restrictions or limitations such as maximum width of channels, boundaries within which the NoC agents must be placed, performance requirements, maximum delay and other such restrictions.


In an example implementation, input information such as the SoC architectural details, physical information of the SoC, traffic specification, power profile and one or more constraints can be provided in form of computer readable format, such as in design exchange format (DEF) format.


In an example implementation, physical information of the SoC can include library model that can include/define timing models at different levels, driver cell information for synthesis of SoC/NoC, number of wiring layers, metals to be used for wiring, metal speed rating, and estimated time delay of SoC/NoC or estimated/allowed performance delay on each agent of SoC/NoC.


In an example implementation, optimal number of NoC layers to meet the performance requirements can be determined based on a given number of wiring layers as part of physical information of the SoC. In an example implementation, different clock speeds at which different NoC layers may operate can be determined based on given speed rating of metals.


In an example implementation, one or more constraints such as location constraints of interconnecting wires, SoC/NoC agents, traffic restriction, power limitation, among other constraints can also be considered to determine routing of the interconnecting channels of the SoC/NoC agents to help determine the NoC topology and architecture.


According to an aspect of the present disclosure, physically aware NoC design can be automatically generated using physical information of the SoC and the SoC traffic specification. In an example implementation, the physical information of the SoC and the SoC traffic specification can be used to automatically generate one or more NoC bridges, NoC routers, and NoC channels at one or more allowed SoC physical positions without violating any constraints of the SoC specification(s). In an example implementation, the generated NoC elements/agents, SoC elements/agents and channels can be interconnected in an efficient manner in such as way that the performance requirements from the SoC traffic specification are satisfied.


According to an aspect of the present disclosure, wire information, timing information, and clock information of the physical information of the SoC can be used to automatically assign clock domains and clock frequencies to the one or more elements of the NoC design. In an example implementation, the clock domains and the clock frequencies for one or more NoC elements/agent and/or one or more NoC channels can be determined automatically and be assigned to different channels and agents of the NoC based on the physical information of the SoC. In an example implementation, register stages needed/required for each of the NoC channels can be determined based on clock domain properties, clock frequencies, and wire properties of one or more NoC channels. In an example implementation, wire properties can include wire capacity, average delay, metal used, thickness etc.


In an example implementation, power and voltage information, power states, power activities of the SoC, and the SoC traffic specification can be used to automatically assign voltage domains and power domains to the one or more elements of the NoC design that meet the defined power and voltage domain constraints and reduce the overall NoC power consumption.


In an example implementation, one or more conflicts/constraint violations during the generation of physically aware NoC design can be identified and suggestions for modification of such constraints in the input information can be generated and sent as feedback information for modifying the input NoC specification.


According to one example implementation of the present disclosure, physical information associated with one or more elements of NoC design can be automatically generated in suitable computer readable formats such as RTL format, DEF format, synthesis script etc. In an example implementation, one or more traffic constraints, physical location constraints, timing constraints, physical synthesis script and power intent information of the physically aware NoC can be generated in a suitable file format that can be used by other RTL/EDA tools.


In an example implementation, generated physically aware design specifications can be augmented with the given SoC physical information to enable the backend EDA flow.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1(a), 1(b) 1(c) and 1(d) illustrate examples of Bidirectional ring, 2D Mesh, 2D Taurus, and 3D Mesh NoC Topologies.



FIG. 2(a) illustrates an example of XY routing in a related art two dimensional mesh.



FIG. 2(b) illustrates three different routes between a source and destination nodes.



FIG. 3(a) illustrates an example of a related art two layer NoC interconnect.



FIG. 3(b) illustrates the related art bridge logic between host and multiple NoC layers.



FIG. 4(a) illustrates an example floor plan of SoC that can be submitted as part of physical information of SoC to automatically generate NoC design in accordance with an example implementation of the present disclosure.



FIG. 4(b) illustrates properties of SoC incorporated as part of physical information of SoC in accordance with an example implementation of the present disclosure.



FIG. 4(c) illustrates an example floor plan indicating possible grouping of agents in accordance with an example implementation of the present disclosure.



FIG. 5 illustrates an example physically aware NoC design generated in accordance with an example implementation of the present disclosure.



FIG. 6 illustrates an example flow diagram for generating a physically aware NoC design, physically aware NoC specification, and one or more constraints in accordance with an example implementation of the present disclosure.



FIG. 7 illustrates an example bock diagram of a method for generating a physically aware NoC design in accordance with an example implementation of the present disclosure.



FIG. 8 illustrates an example physically aware SoC/NoC design created in accordance with an example implementation.



FIG. 9 illustrates an example computer system on which example implementation can be present disclosure can be executed.





DETAILED DESCRIPTION

The following detailed description provides further details of the figures and example implementations of the present application. Reference numerals and descriptions of redundant elements between figures are omitted for clarity. Terms used throughout the description are provided as examples and are not intended to be limiting. For example, the use of the term “automatic” may involve fully automatic or semi-automatic implementations involving user or administrator control over certain aspects of the implementation, depending on the desired implementation of one of ordinary skill in the art practicing implementations of the present application.


Aspects of the present disclosure relate to methods, systems, and computer readable mediums for automatically generating physically aware NoC design, and physically aware NoC specification based on one or a combination of given SoC architectural details, physical information of SoC, traffic specification, power profile, and one or more constraints. An aspect of present disclosure provides a method for automatically generating a physically aware NoC design and physically aware NoC specification including traffic specification, power specification, and physical/location constraints etc. based on one or a combination of given SoC architectural details, physical information of the SoC, traffic specification, power profile, and one or more constraints, wherein the includes steps of receiving input information, determining the location/position of different NoC agents, interconnecting channels, pins, I/O interfaces, physical/virtual boundaries, number of layers, size/depth/width of different channels at different times, and locating/configuring the different NoC agents, interconnecting channels, pins, I/O interfaces, physical/virtual boundaries.


In an example implementation, upon receiving the input information such as SoC architectural details, physical information of SoC, traffic specification, power profile, and one or more constraints associated with SoC, method of the present disclosure can include the step of determining position/location of different NoC agents, interconnecting channels, network elements, input/output interfaces, and pins such that once the location/position of agents, interconnecting channels, pins and input/output interfaces are determined, different power profiles and traffic profiles including routing information can be determined and assigned to different NoC agents and network elements. In an example implementation, size of channels (input channels and output channels), width/depth of channels, buffer size of agents and network elements can be determined and assigned to respective channels. In example implementations, optimal positions of the NoC agents, network elements, and their orientations and interface signals positions can be determined based on given physical information of the SoC.


In an aspect, method of the present disclosure can further include the step of generating physical information associated with one or more elements of NoC design, wherein the generated physical information can be used to augment the physical information of the SoC for further processing by EDA tools.


In an example implementation, physical information of the SoC can include, but is not limited to, details of silicon fabrication technology, SoC floorplan information, SoC wires capacity, wire positions available for the NoC usage, wire velocity, timing information of the SoC elements/agents, clock domains information, frequency domain information, input signal driver strength and output signal loads. In an example implementation, physical information of the SoC can further include one or a combination of power grid information of the SoC, voltage and power domain associated with the SoC elements/agents, and information of power domain and voltage domain available for NoC usage. In an example implementation, physical information of the SoC can also include one or more of timing information of the SoC elements/agents such as clock domains and frequencies of various agents/interfaces of the NoC, clock domains of the NoC elements and wires at various positions, timing constraints such as input and output signal delays and properties of the clock groups. In an example implementation, physical information of the SoC can include indication of SoC/NoC core area, boundary within which the NoC agents should be placed, wiring details/channels that are available for NoC at various positions, constraints relating to whether NoC channels can be placed at certain places or not, and maximum width of channels at various positions.


In an example implementation, traffic profile specification can include routing information, bandwidth requirements, width/depth of the channel at different positions and other routing information/logics. In an example implementation, power profile specification can include details of power domains and frequency domains at which different NoC agents, hardware elements, pins, I/O interfaces and channels need to operate and power/voltage values of different NoC agents, hardware elements, pins, I/O interfaces and channels at different times. Power profile specification can also include details of plurality of power profiles at which different NoC agents, blocks, or NoC may need to operate. In an example implementation, physical constrains may include one or more restrictions or limitations such as maximum width of channels, boundaries within which the NoC agents must be placed, performance requirements, maximum delay and other such restrictions.


In an example implementation, input information such as the SoC architectural details, physical information of the SoC, traffic specification, power profile and one or more constraints can be provided in form of computer readable format, such as in design exchange format (DEF) format.


In an example implementation, physical information of the SoC can include library model that can include/define timing models at different levels, driver cell information for synthesis of SoC/NoC, number of wiring layers, metals to be used for wiring, metal speed rating, and estimated time delay of SoC/NoC or estimated/allowed performance delay on each agent of SoC/NoC.


In an example implementation, optimal number of NoC layers to meet the performance requirements can be determined based on a given number of wiring layers as part of physical information of the SoC. In an example implementation, different clock speeds at which different NoC layers may operate can be determined based on given speed rating of metals.


In an example implementation, one or more constraints such as location constraints of interconnecting wires, SoC/NoC agents, traffic restriction, power limitation, among other constraints can also be considered to determine routing of the interconnecting channels of the SoC/NoC agents to help determine the NoC topology and architecture.


According to an aspect of the present disclosure, a physically aware NoC design can be automatically generated using physical information of the SoC and the SoC traffic specification. In an example implementation, the physical information of the SoC and the SoC traffic specification can be used to automatically generate one or more NoC bridges, NoC routers, and NoC channels at one or more allowed SoC physical positions without violating any constraints of the SoC specification(s). In an example implementation, the generated NoC elements/agents, SoC elements/agents and channels can be interconnected in an efficient manner in such as way that the performance requirements from the SoC traffic specification are satisfied.


According to an aspect of the present disclosure, wire information, timing information, and clock information of the physical information of the SoC can be used to automatically assign clock domains and clock frequencies to the one or more elements of the NoC design. In an example implementation, the clock domains and the clock frequencies for one or more NoC elements/agent and/or one or more NoC channels can be determined automatically and be assigned to different channels and agents of the NoC based on the physical information of the SoC. In an example implementation, register stages needed/required for each of the NoC channels can be determined based on clock domain properties, clock frequencies, and wire properties of one or more NoC channels. In an example implementation, wire properties can include wire capacity, average delay, metal used, proposed thickness etc.


In an example implementation, power and voltage information, power states, power activities of the SoC, and the SoC traffic specification can be used to automatically assign voltage domains and power domains to the one or more elements of the NoC design that meet the defined power and voltage domain constraints and reduce the overall NoC power consumption.


In an example implementation, one or more conflicts/constraint violations during the generation of physically aware NoC design can be identified and suggestions for modification of such constraints in the input information can be generated and sent as feedback information for modifying the input NoC specification.


According to one example implementation of the present disclosure, physical information associated with the one or more elements of NoC design can be automatically generated in suitable computer readable formats such as RTL format, DEF format, synthesis script etc. In an example implementation, one or more traffic constraints, physical location constraints, timing constraints, physical synthesis script and power intent information of the physically aware NoC can be generated in a suitable file format that can be used by other RTL/EDA tools.


In an example implementation, generated physically aware design specifications can be augmented with the given SoC physical information to enable the backend EDA flow.



FIG. 4(a) illustrates an example floor plan of SoC that can be submitted as part of physical information of SoC to automatically generate NoC design in accordance with an example implementation of the present disclosure. As shown in the FIG. 4(a), floor plan 400 can include an indication of different SoC elements that need to be incorporated in the NoC, their tentative positions, capacities, space constraints, size constraints, among other like parameters. Example floor plan 400 can include different agents/elements such as mobile industry processor interface (MIPI) 402, digital signal processor (DSP) 404, audio processing unit 406, serial peripheral interface (SPI) 408, CART 410, video encoder (VIDEOE) 412, video decoder (VIDEOD) 412, I3, memory DDR 418, processing units CPU0 420 and CPU1 422, and their desired positioning. In addition, the floor plan information can also include shape and size information of different agents/elements of the SoC. The agents listed in floorplan 400 are examples of types of agents that can be used, and is not limited to the agents illustrated. Other agents with various sizes may be used depending on the desired implementation.


In an example implementation, SoC floor plan information can include information about location of different NoC elements/agents, their capacities, power profiles, power/current status, and connectivity information. Floor plan of the SoC can also include plurality of details such as positions of the SoC/NoC elements/agents, shapes of the SoC/NoC elements/agents, size of SoC/NoC elements/agents, aspect ratios, locations of different pins and blocks of the SoC. In an example implementation, information associated with the floor plan 400 can be provided at top level, hierarchical level, agent level, group level or voltage domain level. In an example implementation, floor plan and other physical information of the SoC can be provided as DEF files.


Further, agents can be used interchangeably to represent any hardware element such as CPU, GPU, different ports, and different interfaces. Similarly, hardware elements can be used interchangeably to collectively refer different routers, switches, and other network elements.


In another example implementation, the number of agents/elements, their positions, sizes and other properties of SoC/NoC can be defined through a user interface. Such a user interface can allow a user to draw/indicate positions of different agents, their sizes, and other associated properties. The physical information incorporating the floor plan can be received as input for automatically generating the NoC design through the input interface that may have option to directly upload the floor plan written in a scripting language or as a DEF file that defines the floor plan in detail. In an example implementation, the input interface allows a user to draw the floor plan with help of EDA tools. In an example implementation, information associated with the floor plan can be provided at top level, hierarchical level, agent level, group level, or at the voltage domain level. In an example implementation, location/position of each agent can be indicated by storing the location/position in form of coordinates. In an example implementation, the floor plan and other physical information of the SoC can be provided as DEF files. In an example implementation, SoC floor plan information can include information about location of different NoC elements/agents, their capacities, power profiles, power/current status, and connectivity information. In other example implementation, floor plan can include details of blocks, aspect ratios of each block and/or individual agents, locations of pins, positions of SoC/NoC agents, shapes of SoC/NoC agents, sizes of SoC/NoC agents, routing paths, connectivity information, firing channels, capacity of different agents and channels, wire delays, minimum and maximum allowed distance between different agents and overall size of the SoC. Physical information of the SoC can clearly indicate location of each firing channel, wire velocity of different interconnecting wires, and possible delay/drops in communication. Physical information of the SoC can include one or more restrictions/conditions and other properties of SoC in addition to the floor plan.



FIG. 4(b) illustrates properties of SoC that are incorporated as part of the physical information of the SoC in accordance with an example implementation of the present disclosure. As shown in FIG. 4(b), different properties of the SoC may include coherence properties and debug properties, which can be defined by a user. In an example implementation, different debug properties such as


ALLOW_DUPLICATE_ADD_TRAFFIC,


LINK_WIRE_WIDTH_NM,


MAX_NO_OF_CHAINS_TO_DISPLAY,


PRINT_ADD_TRAFFIC_INFO_WARN, REGISTER_AREA_NM2, and


TOOLTIP_ON,


among others can be specified in the physical information of the SoC. In an example implementation, power properties, frequency domain information of individual agents and channels can be specified. As shown in FIG. 4(b), debug information ALLOW_DUPLICATE_ADD_TRAFFIC may specify duplicate traffic that can be allowed through any channel or agent, and LINK_WIRE_WIDTH_NM indicates wire thickness/width and length of wires connecting different agents/elements. Similarly, other debug properties of the SoC can be defined through the input interface, and can be provided as part of the physical information of the SoC. As explain earlier, physical information of the SoC can include details of the silicon fabrication technology, SoC wires capacity, and wire positions available for the NoC usage, and properties of the SoC wires such as wire velocity.


In an example implementation, physical information of the SoC can also include one or more of timing information of the SoC elements/agents such as clock domains and frequencies of various agent interfaces to the NoC, clock domains of the NoC elements and wires at various positions, timing constraints such as input and output signal delay and properties of the clock groups, input signal driver strength, and output signal loading, among other attributes/parameters. In an example implementation, the physical information of the SoC can further include power grid information of the SoC, voltage and power domain associated with the SoC elements/agents and information of power domain and voltage domain available for NoC usage.


In an example implementation, floor plan and other physical information of the SoC can also indicate power domain, frequency domain, and clock frequencies of different agents and channels, which may be used for grouping the agents based on their power domain and frequency domain information. For instance, agents operating at a particular frequency domain or power domain can be grouped together and can be placed in close proximity.


In an example implementation, library model containing timing models at different levels, driver cell information for synthesis of SoC/NoC, and estimated time delay of the SoC/NoC or estimated/allowed performance delay on each agent of SoC/NoC can also be provided as part of the physical information of the SoC.


One can appreciate that physical information of the SoC can be provided as input in the form of a computer readable file format for automatically generating a NoC design and NoC design specification.



FIG. 4(c) illustrates an example floor plan indicating possible grouping of agents in accordance with an example implementation of the present disclosure. In an example implementation, floor plan 440 can be divided into different groups/clocks, namely block 474, block 476, block 478, block 480, and block 482. In example implementation, these blocks can be created based on certain similarity such as operating power domain, operating frequency domain, clock speed, frequency of communication, among other parameters. For instance, a plurality of agents such as MIPI 442, DSP 44, and AUDIO 446 can be grouped together as they may be operating at power domain 1 (PD1) to form a group/block 474, and another set of agents such as SPI 448 and CART 450 can be grouped together as they may be operating at power domain 2 (PD2) to form a group/block 476. Similarly, agents CPU0 470 and CPU1 472 can be grouped together to form a group/block 478.


In another example implementation, grouping and/or block information of the SoC can be provided by the user as part of the physical information of the SoC or can be automatically generated based on given physical information of the SoC and other SoC specification. In an example implementation, a plurality of agents can be grouped together based on power domain, frequency domain, clock frequency, position/location indication/restriction of agents, and maximum allowed length of channels. In an example implementation, once the blocks have been defined, their associated parameters or constraints can be defined by the user or can be automatically generated. For example, aspect ratios of each block 474, block 476, block 478, block 480, and block 482 can be individually defined by the user. Locations of different pins or cross-domain interfaces can similarly be defined.


According to an example implementation, upon receiving the physical information of the SoC, one or more constraints, SoC specification, power profile, and profile of the SoC, the NoC design can be automatically generated. In an example implementation, location of the plurality of agents and connecting wires/channels can be determined based on the given input physical information of the SoC, one or more constraints, SoC specification and power profile and profile of SoC. Plurality of agents can be strategically be placed together to form a group/block based on similarity of the properties of agents. Once the location/position of the NoC agents is determined, different agents can be configured accordingly. For example, power profile and frequency profile can be assigned to different agents.



FIG. 5 illustrates an example physically aware NoC design generated in accordance with an example implementation of the present disclosure. As shown on the FIG. 5, different agents can be placed at the required location and can be interconnected through routers and other agents. One can appreciate that one or more processing elements such as MIPI 502, DSP 504, AUDIO 506, SPI 508, CART 510, VIDEOE 512, VIDEOD 514, I3 516, DDR 58, CPU0 520, and CPU1 522, collectively and interchangeably referred as NoC agents can be interconnected through routers 8, 9, 10, 11, 15, 16, 18, 23, 25, 26, 29, 30, 32, 33, 36, 37, 38 and 39. Based on the given physical information of the SoC, one or more constraints, SoC specification, power profile and profile of the SoC, physically aware NoC design can be automatically generated. Upon receiving the input information such as SoC architectural details, physical information of the SoC, traffic specification, power profile, and one or more constraints associated with the SoC, method of the present disclosure can determine position/location of the different NoC agents, interconnecting channels, network elements, input/output interfaces, and pins. Once the locations/positions of the agents, interconnecting channels, pins, and input/output interfaces are determined, different power profiles and traffic profiles, including routing information, can be determined and assigned to the different NoC agents and network elements. In an example implementation, size of channels (input channels and output channels), width/depth of the channels, buffer size of the agents, and network elements can be determined and assigned to the respective channels. In example implementation, optimal position of the NoC agents, network elements, and their orientations and interface signals positions can be determined based on given physical information of the SoC.


In an example implementation, the location of plurality of agents and network elements, such as routers, and corresponding connecting wires/channels can be determined based on the given physical information of SoC, one or more constraints, SoC specification and power profile, and profile of the SoC. Although in the present disclosure, physical positions of the agents of the physically aware NoC 500 are similar to those of the agents of SoC 400, it is possible in another implementation that the locations/positions of the agents change due to conflicting input specification and/or conflicting constraints/limitations.


In an example implementation, a plurality of agents can be strategically placed together to form a group/block based on similarity of the properties of the agents. In an example implementation, locations/positions of different agents can be determined based on the given floor plan such that once the location/position of the NoC agents is determined, different agents can be configured accordingly. For example, power and frequency profiles of agents can be configured, width of channels and size of buffers can be assigned, and different ports/pins can be accordingly configured. Right clock domain, frequency domain, power domain, power state, and voltage state can be assigned to different agents of the NoC 500. Clock at which different agents of the NoC 500 need to operate, frequency at which different agents of the NoC need to operate at different times can also be assigned. In an example implementation, width/length of wire/channel, metal to be used for different wires/channels of the NoC 500 can be determined based on the given physical information, traffic profile and SoC specification. The physically aware NoC 500 may also have agents/blocks operating different clocks and supporting both agents/blocks that are clock synchronous and asynchronous. In an example implementation, different NoC layers may be clocked at different speeds based on the given speed rating of the metal layers. In an example implementation, different agents of the NoC can be designed differently. For instance, if there are two metal layers and one is 2 times faster than the other, the NoC can include two layers and one layer may be clocked at 2 times higher frequency than the other. Alternatively, both the layers may clock at the same speed but one layer (the faster metal layer one) may use fewer pipeline registering stages to meet the same clock frequency as that of the other NoC layer.


In an example implementation, based on a given power profile information, power domains for different NoC agents can be defined, and isolation cells can be placed at the power domain crossing boundary. In an example implementation, the number of register stages needed at each channel can be determined for the NoC 500 and can be included in the NoC specification.


In an example implementation, after generating the physically aware NoC 500, a physically aware NoC specification, power profile specification, traffic profile specification and one or more constraints/limitations of the NoC can be automatically be generated. The NoC specification can include information such as the kind of drivers that are driving different input pins, capacity/maximum load that the input and pins can support, velocity of wires, estimated delay of wires, and pipe line stages. In an example implementation, the traffic profile specification can include capacity of each channel, coordinate of each channel, and routing logics.


In an example implementation, power profile of the NoC can include power intent information, power state information, current values of different agents and channel at different times. In an example implementation, power profile of the NoC 500 can be written in a Common Power Format (CPF) file format or in another suitable format that can be used by other EDA tools. Power profile information can include details of “Always ON” agents, retention requirements and/or retention logics and/or isolation cells, and so on.


In an example implementation, one or more constraints related to location/position of agents and/or channels, timing, clock speed, power domain, frequency domain and capacity/size of different pins/interfaces can be determined. In different example implementations, one or more of these constraints can be defined at different levels such as at overall NoC level, hierarchical levels, bridge boundary or router boundary.


In an example implementation, one or more conflicting constraints/restriction included in the SoC specification or physical information of SoC, and other input information can be determined, and a feedback incorporating suggestions to be resolved such as conflicts can be generated for modifying the relevant input specifications.



FIG. 6 illustrates an example flow diagram 600 for a method of generating physically aware NoC design, physically aware NoC specification and one or more constraints in accordance with an example implementation of the present disclosure. The present method 600 can include the steps of receiving input information, determining location/position of different NoC agents, interconnecting channels, pins, I/O interfaces, physical/virtual boundaries, number of layers, size/depth/width of different channels at different time, and locating/configuring the different NoC agents, interconnecting channels, pins, I/O interfaces, physical/virtual boundaries.


At 602, the method can include receiving one or a combination of SoC architectural details, physical information, one or more constraints, SoC traffic/power profile, and other SoC specification, and at 604, the method can include determining the location/position of different NoC agents, interconnecting channels, pins, I/O interfaces, physical/virtual boundaries, number of layers, size/depth/width of different channels at different time. At 606, method the present disclosure can further include the step of locating/configuring the different NoC agents, interconnecting channels, pins, I/O interfaces, and physical/virtual boundaries for automatically generating the physically aware NoC design.


In an example implementation, based on the given input information such as SoC architectural details, physical information, one or more constraints, SoC traffic/power profile and other SoC specification, physically aware NoC design and physically aware NoC specification can be automatically generated.


In an example implementation, physical information of the SoC can include details of one or a combination of silicon fabrication technology, SoC floorplan information, SoC wire capacity, wire positions available for the NoC usage, wire velocity, timing information of the SoC elements/agents, clock domain information, frequency domain information, input signal driver strength and output signal loading. In an example implementation, physical information of the SoC can further include power grid information of the SoC, voltage and power domain associated with the SoC elements/agents and information of power domain and voltage domain available for NoC usage.


In an example implementation, SoC floor plan information can include information about location of different NoC elements/agents, their capacities, power profiles, power/current status and connectivity information. Floor plan of the SoC can further include other details such as positions/shapes/sizes/aspect ratios of the SoC/NoC agents, location of different pins and blocks of the SoC. In an example implementation, information associated with floor plan can be provided at top level, hierarchical level, agent level, group level, or voltage domain level. In an example implementation, floor plan and other physical information of the SoC can be provided as DEF files.


In an example implementation, physical information of SoC also include details on the number of wiring layers that may be used to determine the optimal number of NoC layers that may be used to meet the performance requirements. Furthermore, speed rating of the metal layers may be included as part of physical information of SoC, based on which the NoC layers may be clocked at different speeds and different NoC layers may be designed differently.


In an example implementation, physical information of the SoC agents, their positions, shapes and sizes, and the positions of their interconnect interfaces can be used to determine positions of the NoC bridges & their interface signals. The physical information of various SoC agents can also be used for determining optimal positions of the routers and their orientations and interface signals. Further based on the positions of the SoC and NoC elements, NoC channel wires of appropriate capacity can be allocated and connected.


In an example implementation, one or more constraints such as location constraints of interconnecting wires, SoC/NoC agents, traffic restriction, power limitation etc. can also be considered to determine routing of interconnection of SoC/NoC agents and hence to determine the NoC topology and architecture.


According to an aspect of the present disclosure, physically aware NoC design can be automatically generated using the physical information of SoC and SoC traffic specification. In an example implementation, physical information of the SoC and the SoC traffic specification can be used to automatically generate one or more NoC bridges, one or more NoC routers, and one or more NoC channels at an allowed SoC physical position without violating any constraints of the SoC specification. In an example implementation, generated NoC elements/agents, SoC elements/agents and channels can be interconnected in efficient manner in such as way that performance requirement from the SoC traffic specification are satisfied.


According to an aspect of the present disclosure, wire information, timing information and clock information of the physical information of the SoC can be used to automatically assign clock domains and clock frequencies to the one or more elements of the NoC design. In an example implementation, clock domains and clock frequencies for one or more NoC elements/agents and/or one or more NoC channels can be determined automatically and be assigned to different channels and agents of the NoC based on the physical information of the SoC. In an example implementation, register stages needed/required for each of the NoC channels can be determined based on clock domain properties, clock frequency and wire properties of one or more NoC channels. In an example implementation, wire properties can include wire capacity, average delay, metal used, proposed thickness, among other like attributes.


In an example implementation, power and voltage information, power states, power activities of the physical information of the SoC, and the SoC traffic specification can be used to automatically assign voltage domains and power domains to the one or more elements of the NoC design that meet power domain and voltage domains constraints, reducing the overall NoC power consumption.


In an example implementation, one or more conflicts/constraint violations during the generation of physically aware NoC design can be identified and a suggestion for modification of such constrains in the SoC specification can be generated and sent as feedback information for modifying the input NoC specification.


According to one example implementation of the present disclosure, physical information associated with the one or more elements of NoC design can be automatically generated in suitable computer readable formats such as RTL files, DEF files, synthesis script etc. In an example implementation, one or more traffic constraints, physical location constraints, timing constraints, physical synthesis script and power intent information of the physically aware NoC can be generated in a suitable file format that can be used by other RTL/EDA tools.



FIG. 7 illustrates a bock diagram of the method of the present disclosure that receives a plurality of input information associated with SoC, and automatically generates physically aware NoC design, NoC specification, and suggestions for modifying the input information in accordance with an example implementation of the present disclosure. As shown in the figure, input information associated with the SoC may include physical information of the SoC 702, traffic profile specification 704, power profile specification 706, and dynamically changing physical constraints 708.


In an example implementation, physical information of the SoC 702 can include one or a combination of indication of SoC/NoC core area, boundary within which the NoC agents should be placed, wiring details/channels available for NoC at various positions, constraints relating to whether NoC channels can be placed at certain places or not, and allowed maximum width of channels at various positions, among other like parameters. In an example implementation, traffic profile specification 704 may include routing information, bandwidth requirements, width/depth of the channel at different position and other routing information/logics. In an example implementation, power profile specification 706 can include details of power and frequency domain at which different NoC agents, hardware elements, pins, I/O interfaces and channels need to operate and power or voltage values of different NoC agents, hardware elements, pins, I/O interfaces and channels at different times. Power profile specification 706 can also include details of plurality of power profiles at which different NoC agents, blocks, or NoC may need to operate. In an example implementation, physical constraints 708 can include one or more restrictions or limitations such as maximum width of channels, boundaries within which the NoC agents must be placed or kept out, performance requirements, maximum delay, and other such restrictions.


Upon receiving such input information associated with the SoC, position/location of different NoC agents, interconnecting channels, network elements, input/output interfaces, and pins can be determined at step 710. In an example implementation, locations or positions of different pins, interfaces, cross-domain boundaries, number of NoC layers, channel bandwidth, among other attributes can be determined. Once the location/position of agents and other elements are determined, different power profiles and traffic profiles can be assigned to different NoC agents and network elements and size of channels (input channels and out channels), width/depth of channels, buffer sizes of agents and network elements can be determined as shown in step 712 from the given input information and can be assigned to the physically aware NoC design.


At step 714, a tentative physically aware NoC design can be automatically generated from the given input information after determining positions of different agents, network elements, pins, I/O interfaces, boundary details, and configuration of their power profiles and traffic profiles along with depth/size/width configurations of various channels and buffers.


At step 716, a tentative physically aware NoC design specification can be generated for the tentative physically aware NoC design. In an example implementation, the physically aware NoC design specification/script including various details can be generated for different purposes in different formats such as VIP 718, CPF files 720, RTL files 722, synthesis script 724. In an example implementation, one or more physical constraints 726 can be determined and a suggestion to change the input information and physical constraints can be automatically generated.


In an example implementation, at step 728, physical synthesis of the tentative physically aware NoC design can be performed. At step 730, a check can be configured to verify if there are any changes/modifications required in the NoC design due to one or more physical constraints. If no modification/change in the NoC design is required as shown at step 732, it can be interpreted that the designed NoC satisfies all performance requirements and given physical constraints and the generated physically aware design can be finalized. On the other hand, if there are changes/modifications required due to one or more generated physical constraints 726, the process of determining the appropriate location/position of NoC agents, interconnecting channel, network elements, I/O interface and pins can be recursively performed till all the physical constraints and performance requirements are met.


In a related art flow of electronics system design, an intermediate step may not predict the result of subsequent steps to perfect accuracy, although a more coherent flow has narrower gap between the front-end phase and the back-end phase. Hence, progressive and iterative optimization techniques are often applied for design tuning and convergence. Here, the NoC design can be performed using feedback information, which improves the performance of the required specification by recursively determining the position of different NoC agents, network elements, pin, and I/O interfaces, and determining the channels and efficient routing information. Once the first pass to the physical design, i.e. placement and routing is done, detailed physical information can be back-annotated again for progressive ECO optimization.


In an example implementation, the number of NoC layers can be determined based on the physical information of the SoC that provides an indication of the number of wiring layers.



FIG. 8 illustrates an example physically aware SoC/NoC design created in accordance with an example implementation. In an example implementation, a physically aware SoC/NoC design 822 can be created for a given SoC logical block 802 based on physical information/placement information of SoC 814, one or more of traffic profile specification 816, power profile specification 818, and physical constraints specification 820. In an example implementation, a physically aware NoC design generation module 812 can be configured to receive a SoC logical block 802, physical information/placement information of SoC 814, and one or more of traffic profile specification 816, power profile specification 818, and physical constraints specification 820, and can create a physically aware SoC/NoC design 822 where the location/position of each hardware component is known, and these components can be connected through dynamically configured/positioned NoC network elements and auto-generated links/channels. As can be seen in FIG. 8, SoC logical block 802 can include high-level information of type of hardware elements to be placed over/in SoC/NoC. For example, the SoC logical block 802 include processing units 804 such as CPU 804-1, L3 804-2, GPU 804-3 and DSP 804-4, and/or audio and video (A/V) units 806 such as A/V encoder 806-1, A/V decoder 806-2, A/V display 806-3 and audio 806-4. The SoC logical block 802 can further include input/output interfaces 808 such as USB 808-1, HDMI 808-2, PCIE3 808-3 and SATA 808-4, other interfaces 810 such as DDR 810-1, SPI 810-2, UART 810-3, I2C 810-4, MIPI 810-5 and NAND 810-6. The SoC logical block 802 can indicate the required hardware elements that need to be placed over a SoC/NoC and for which the physically aware design needs to be created. In an example implementation, physical information/placement information of SoC 814 can include tentative physical location or proximity of hardware elements based on which the physically aware design specification needs to be created. In an example implementation, based on given SoC logical block 802 information and physical information/placement information of SoC 814, physically aware NoC design generation module 812 can create a physically aware SoC/NoC design 822. In example implementations, the physically aware NoC design generation module can take one or more input specifications such as traffic profile specification 816, power profile specification 818, and physical constraints specification 820 for creating a more efficient physically aware SoC/NoC design.


As shown in FIG. 8, physically aware SoC/NoC design 822 can include details about placement of each hardware element, their connectivity information, and wire/channel specification. For example, the physically aware SoC/NoC design may have interfaces such DDR 814, SPI 826, UART 828, I2C 830 and MIPI 832 that are placed near to each other and at one end of the chip. Similarly DSP 834, audio 840, video encoder 836, and video decoder 842 can be placed in close proximity and can be connected through optimized auto-placed network elements and auto-generated/configured wire/channels. The processing units such as CPU-1 844-1 and CPU-2 844-2, L3 cache 838, and GPU 852 can be placed together and can be connected through relevant network elements and auto-generated/configured links. In an example implementation, input/output interfaces such as display 856, PCIE 848, I2C 850, SATA 856, NAND 954, HDMI 858 and USB 860 can be placed together other end of the chip and can be connected through optimized set of network elements and wires/channels.


In an example implementation, the physically aware SoC/NoC design 822 can be fully heterogeneous and can include hardware elements that operate in different frequency domains, and/or different time domains, and/or different time/clock frequencies.


In an example implementation, the physically aware SoC/NoC design 822 can include physical information such as silicon fabrication technology information, SoC floor plan information, and SoC wire placement/capacity information. In an example implementation, the physically aware SoC/NoC design 822 can also include other physical information such as timing information of SoC agents/clock domain information of one or more wires and one or more NoC elements, timing constraints, input signal driving strength, and output signal loading strength.


In an example implementation, the physically aware SoC/NoC design 822 can include power grid information of the SoC, voltage domain information, and power domain information of associated SoC agents of the SoC, and physical information of power domains and voltage domains available for NoC usage.



FIG. 9 illustrates an example computer system on which example implementation can be present disclosure can be executed. The computer system 900 includes a server 905 which may involve an I/O unit 935, storage 960, and a processor 910 operable to execute one or more units as known to one of skill in the art. The term “computer-readable medium” as used herein refers to any medium that participates in providing instructions to processor 910 for execution, which may come in the form of computer-readable storage mediums, such as, but not limited to optical disks, magnetic disks, read-only memories, random access memories, solid state devices and drives, or any other types of tangible media suitable for storing electronic information, or computer-readable signal mediums, which can include carrier waves. The I/O unit processes input from user interfaces 940 and operator interfaces 945 which may utilize input devices such as a keyboard, mouse, touch device, or verbal command.


The server 905 may also be connected to an external storage 950, which can contain removable storage such as a portable hard drive, optical media (CD or DVD), disk media or any other medium from which a computer can read executable code. The server may also be connected an output device 955, such as a display to output data and other information to a user, as well as request additional information from a user. The connections from the server 905 to the user interface 940, the operator interface 945, the external storage 950, and the output device 955 may via wireless protocols, such as the 802.11 standards, Bluetooth® or cellular protocols, or via physical transmission media, such as cables or fiber optics. The output device 955 may therefore further act as an input device for interacting with a user.


The processor 910 may execute one or more modules including physically aware NoC design generation module 911 configured to automatically generate a physically aware Network on Chip (NoC) design based on a System on Chip (SoC) architecture, physical information of the SoC, and SoC traffic specification. In an aspect, the physical information of the SoC can include at least one of silicon fabrication technology information, SoC floor plan information, and SoC wire information. In another aspect, the physical information of the SoC can include at least one of timing information of SoC agents, clock domain information of one or more wires and one or more NoC elements, timing constraints, input signal driver strength and output signal loading. In yet another aspect, the physical information of the SoC can include at least one of power grid information of the SoC, voltage domain information and power domain information of associated SoC agents of the SoC, and physical information of power domains and voltage domains available for NoC usage. In an aspect of the present disclosure, the physically aware NoC design can be automatically generated based on use of the physical SoC information and the SoC traffic specification to automatically generate one or more of one or more NoC bridges, one or more NoC routers and one or more NoC channels at allowable SoC physical positions, and interconnecting SoC agents, NoC routers, and NoC bridges with channels such that performance requirements from the SoC traffic specification are satisfied. The physically aware NoC design generation module 911 can further be configured to automatically generate the physically aware NoC design by using wire information, timing information and clock information of the physical information of the SoC to automatically assign clock domains and clock frequencies to the one or more elements of the NoC design. Module 911 can further be configured to determine clock domains and clock frequencies for NoC channels of the NoC design, and further determine a number of register stages needed on each of the NoC channels to meet timing and performance based on clock domain properties, clock frequency, and wire properties of the each of the NoC channels. Module 911 can further configured to use power information and voltage information of the physical information of the SoC, power states, power activities and the SoC traffic specification to automatically assign voltage domains and power domains to the one or more elements of the NoC design that meets power domain and voltage domain constraints and reduces overall NoC power consumption. Module 911 can further be configured to, for one or more constraint violations occurring during the automatically generating the physically aware NoC design, generate feedback indicating the one or more constraint violations and generating one or more suggestions for modifying an input physical specification.


System of the present disclosure can further include physical information generation module 912 configured to automatically generate physical information associated with one or more elements of the NoC design. In an example implementation, module 912 can be configured to automatically generate the physical information associated with the one or more elements of the NoC design by generating physical information of the one or more elements of the NoC design in a computer readable format, and by generating timing constraints of the NoC design, physical synthesis scripts, and power intent information in a computer readable format. In another aspect, the physical information associated with the one or more elements of the NoC design can be combined with the physical information of the SoC.


System of the present disclosure can further include a physical information updation module 913 configured to update the physical information of the SoC based on the physical information associated with the one or more elements of the NoC design.


Unless specifically stated otherwise, as apparent from the discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” “displaying,” or the like, can include the actions and processes of a computer system or other information processing device that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system's memories or registers or other information storage, transmission or display devices.


Example implementations may also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may include one or more general-purpose computers selectively activated or reconfigured by one or more computer programs. Such computer programs may be stored in a computer readable medium, such as a computer-readable storage medium or a computer-readable signal medium. A computer-readable storage medium may involve tangible mediums such as, but not limited to optical disks, magnetic disks, read-only memories, random access memories, solid state devices and drives, or any other types of tangible or non-transitory media suitable for storing electronic information. A computer readable signal medium may include mediums such as carrier waves. The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Computer programs can involve pure software implementations that involve instructions that perform the operations of the desired implementation.


Various general-purpose systems may be used with programs and modules in accordance with the examples herein, or it may prove convenient to construct a more specialized apparatus to perform desired method steps. In addition, the example implementations are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the example implementations as described herein. The instructions of the programming language(s) may be executed by one or more processing devices, e.g., central processing units (CPUs), processors, or controllers.


As is known in the art, the operations described above can be performed by hardware, software, or some combination of software and hardware. Various aspects of the example implementations may be implemented using circuits and logic devices (hardware), while other aspects may be implemented using instructions stored on a machine-readable medium (software), which if executed by a processor, would cause the processor to perform a method to carry out implementations of the present disclosure. Further, some example implementations of the present disclosure may be performed solely in hardware, whereas other example implementations may be performed solely in software. Moreover, the various functions described can be performed in a single unit, or can be spread across a number of components in any number of ways. When performed by software, the methods may be executed by a single-core or multi-core processor, such as a general purpose computer, or a distributed set of such processors, such as a general purpose cloud computing server farm, based on instructions stored on a computer-readable medium. If desired, the instructions can be stored on the medium in a compressed and/or encrypted format.


Moreover, other implementations of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the teachings of the present disclosure. Various aspects and/or components of the described example implementations may be used singly or in any combination. It is intended that the specification and example implementations be considered as examples only, with the true scope and spirit of the present disclosure being indicated by the following claims.

Claims
  • 1. A method, comprising: automatically generating a physically aware Network on Chip (NoC) design, based on a System on Chip (SoC) architecture, physical information of the SoC and SoC traffic specification;automatically generating physical information associated with one or more elements of the NoC design;updating the physical information of the SoC based on the physical information associated with the one or more elements of the NoC design; andgenerating a SoC from the updated physical information of the SoC;
  • 2. The method of claim 1, wherein the physical information of the SoC comprises at least one of: silicon fabrication technology information, SoC floorplan information, and SoC wire information.
  • 3. The method of claim 1 wherein the physical information of the SoC comprises at least one of: timing information of SoC agents, clock domain information of one or more wires and one or more NoC elements, timing constraints, input signal driver strength and output signal loading.
  • 4. The method of claim 1, wherein the physical information of the SoC comprises at least one of: power grid information of the SoC, voltage domain information and power domain information of associated SoC agents of the SoC, and physical information of power domains and voltage domains available for NoC usage.
  • 5. The method of claim 1, wherein the automatically generating the physically aware NoC design comprises: using wire information, timing information and clock information of the physical information of the SoC to automatically assign clock domains and clock frequencies to the one or more elements of the NoC design;determining clock domains and clock frequencies for NoC channels of the NoC design; anddetermining a number of register stages needed on each of the NoC channels to meet timing and performance based on clock domain properties, clock frequency, and wire properties of the each of the NoC channels.
  • 6. The method of claim 1, wherein the automatic generation of the physically aware NoC design further comprises: using power information and voltage information of the physical information of the SoC, power states, power activities and the SoC traffic specification to automatically assign voltage domains and power domains to the one or more elements of the NoC design that meets power domain and voltage domain constraints and reduces overall NoC power consumption.
  • 7. The method of claim 1, further comprising: for one or more constraint violations occurring during the automatically generating the physically aware NoC design, generating feedback indicating the one or more constraint violations and generating one or more suggestions for modifying an input physical specification.
  • 8. The method of claim 1, wherein the automatically generating of the physical information associated with the one or more elements of the NoC design comprises: generating physical information of the one or more elements of the NoC design in a computer readable format; andgenerating timing constraints of the NoC design, physical synthesis scripts, and power intent information in a computer readable format.
  • 9. The method of claim 8, further comprising combining the physical information associated with the one or more elements of the NoC design with the physical information of the SoC.
  • 10. A non-transitory computer readable medium, storing instructions for executing a process, the instructions comprising: automatically generating a physically aware Network on Chip (NoC) design, based on a System on Chip (SoC) architecture, physical information of the SoC and SoC traffic specification;automatically generating physical information associated with one or more elements of the NoC design;updating the physical information of the SoC based on the physical information associated with the one or more elements of the NoC design; andgenerating a SoC from the updated physical information of the SoC;
  • 11. The non-transitory computer readable medium of claim 10, wherein the physical information of the SoC comprises at least one of: silicon fabrication technology information, SoC floorplan information, and SoC wire information.
  • 12. The non-transitory computer readable medium of claim 10 wherein the physical information of the SoC comprises at least one of: timing information of SoC agents, clock domain information of one or more wires and one or more NoC elements, timing constraints, input signal driver strength and output signal loading.
  • 13. The non-transitory computer readable medium of claim 10, wherein the physical information of the SoC comprises at least one of: power grid information of the SoC, voltage domain information and power domain information of associated SoC agents of the SoC, and physical information of power domains and voltage domains available for NoC usage.
  • 14. The non-transitory computer readable medium of claim 10, wherein the automatically generating the physically aware NoC design comprises: using wire information, timing information and clock information of the physical information of the SoC to automatically assign clock domains and clock frequencies to the one or more elements of the NoC design;determining clock domains and clock frequencies for NoC channels of the NoC design; anddetermining a number of register stages needed on each of the NoC channels to meet timing and performance based on clock domain properties, clock frequency, and wire properties of the each of the NoC channels.
  • 15. The non-transitory computer readable medium of claim 10, wherein the automatic generation of the physically aware NoC design further comprises: using power information and voltage information of the physical information of the SoC, power states, power activities and the SoC traffic specification to automatically assign voltage domains and power domains to the one or more elements of the NoC design that meets power domain and voltage domain constraints and reduces overall NoC power consumption.
  • 16. The non-transitory computer readable medium of claim 10, wherein the instructions further comprise: for one or more constraint violations occurring during the automatically generating the physically aware NoC design, generating feedback indicating the one or more constraint violations and generating one or more suggestions for modifying an input physical specification.
  • 17. The non-transitory computer readable medium of claim 10, wherein the automatically generating of the physical information associated with the one or more elements of the NoC design comprises: generating physical information of the one or more elements of the NoC design in a computer readable format; andgenerating timing constraints of the NoC design, physical synthesis scripts, and power intent information in a computer readable format.
  • 18. The non-transitory computer readable medium of claim 17, wherein the instructions further comprise combining the physical information associated with the one or more elements of the NoC design with the physical information of the SoC.
US Referenced Citations (400)
Number Name Date Kind
4409838 Schomberg Oct 1983 A
4933933 Dally et al. Jun 1990 A
5105424 Flaig et al. Apr 1992 A
5163016 Har'El et al. Nov 1992 A
5355455 Hilgendorf et al. Oct 1994 A
5432785 Ahmed et al. Jul 1995 A
5563003 Suzuki et al. Oct 1996 A
5583990 Birrittella et al. Dec 1996 A
5588152 Dapp et al. Dec 1996 A
5764740 Holender Jun 1998 A
5790554 Pitcher Aug 1998 A
5859981 Levin et al. Jan 1999 A
5991308 Fuhrmann et al. Nov 1999 A
5999530 LeMaire Dec 1999 A
6003029 Agrawal et al. Dec 1999 A
6029220 Iwamura et al. Feb 2000 A
6058385 Koza et al. May 2000 A
6101181 Passint et al. Aug 2000 A
6108739 James et al. Aug 2000 A
6249902 Igusa et al. Jun 2001 B1
6314487 Hahn et al. Nov 2001 B1
6377543 Grover Apr 2002 B1
6415282 Mukherjea et al. Jul 2002 B1
6674720 Passint et al. Jan 2004 B1
6701361 Meier Mar 2004 B1
6711717 Nystrom et al. Mar 2004 B2
6778531 Kodialam Aug 2004 B1
6925627 Longway et al. Aug 2005 B1
6967926 Williams, Jr. et al. Nov 2005 B1
6983461 Hutchison et al. Jan 2006 B2
7046633 Carvey May 2006 B2
7065730 Alpert et al. Jun 2006 B2
7143221 Bruce et al. Nov 2006 B2
7318214 Prasad et al. Jan 2008 B1
7379424 Krueger May 2008 B1
7437518 Tsien Oct 2008 B2
7461236 Wentzlaff Dec 2008 B1
7509619 Miller et al. Mar 2009 B1
7564865 Radulescu Jul 2009 B2
7583602 Bejerano Sep 2009 B2
7590959 Tanaka Sep 2009 B2
7693064 Thubert et al. Apr 2010 B2
7701252 Chow et al. Apr 2010 B1
7724735 Locatelli et al. May 2010 B2
7725859 Lenahan et al. May 2010 B1
7774783 Toader Aug 2010 B2
7808968 Kalmanek, Jr. et al. Oct 2010 B1
7853774 Wentzlaff Dec 2010 B1
7917885 Becker Mar 2011 B2
7957381 Clermidy et al. Jun 2011 B2
7973804 Mejdrich et al. Jul 2011 B2
8018249 Koch et al. Sep 2011 B2
8020163 Nollet et al. Sep 2011 B2
8020168 Hoover et al. Sep 2011 B2
8050256 Bao et al. Nov 2011 B1
8059551 Milliken Nov 2011 B2
8098677 Pleshek Jan 2012 B1
8099757 Riedle et al. Jan 2012 B2
8136071 Solomon Mar 2012 B2
8203938 Gibbings Jun 2012 B2
8261025 Mejdrich et al. Sep 2012 B2
8281297 Dasu et al. Oct 2012 B2
8306042 Abts Nov 2012 B1
8312402 Okhmatovski et al. Nov 2012 B1
8352774 Elrabaa Jan 2013 B2
8407425 Gueron et al. Mar 2013 B2
8412795 Mangano et al. Apr 2013 B2
8438578 Hoover et al. May 2013 B2
8448102 Kornachuk et al. May 2013 B2
8490110 Hoover et al. Jul 2013 B2
8492886 Or-Bach et al. Jul 2013 B2
8503445 Lo Aug 2013 B2
8514889 Jayasimha Aug 2013 B2
8541819 Or-Bach et al. Sep 2013 B1
8543964 Ge et al. Sep 2013 B2
8572353 Bratt Oct 2013 B1
8601423 Philip et al. Dec 2013 B1
8614955 Gintis Dec 2013 B2
8619622 Harrand et al. Dec 2013 B2
8635577 Kazda et al. Jan 2014 B2
8661455 Mejdrich et al. Feb 2014 B2
8667439 Kumar et al. Mar 2014 B1
8705368 Abts et al. Apr 2014 B1
8711867 Guo et al. Apr 2014 B2
8717875 Bejerano et al. May 2014 B2
8726295 Hoover et al. May 2014 B2
8738860 Griffin et al. May 2014 B1
8793644 Michel et al. Jul 2014 B2
8798038 Jayasimha et al. Aug 2014 B2
8819611 Philip et al. Aug 2014 B2
8885510 Kumar et al. Nov 2014 B2
9210048 Marr Dec 2015 B1
9223711 Philip et al. Dec 2015 B2
9244845 Rowlands et al. Jan 2016 B2
9244880 Philip et al. Jan 2016 B2
9253085 Kumar et al. Feb 2016 B2
9294354 Kumar Mar 2016 B2
9319232 Kumar Apr 2016 B2
9444702 Raponi et al. Sep 2016 B1
9471726 Kumar et al. Oct 2016 B2
9473359 Kumar et al. Oct 2016 B2
9473388 Kumar et al. Oct 2016 B2
9473415 Kumar Oct 2016 B2
9477280 Gangwar et al. Oct 2016 B1
9529400 Kumar et al. Dec 2016 B1
9535848 Rowlands et al. Jan 2017 B2
9568970 Kaushal et al. Feb 2017 B1
9569579 Kumar Feb 2017 B1
9571341 Kumar et al. Feb 2017 B1
9571402 Kumar et al. Feb 2017 B2
9571420 Kumar Feb 2017 B2
9590813 Kumar et al. Mar 2017 B1
9660942 Kumar May 2017 B2
9699079 Chopra et al. Jul 2017 B2
9742630 Philip et al. Aug 2017 B2
20020071392 Grover et al. Jun 2002 A1
20020073380 Cooke et al. Jun 2002 A1
20020083159 Ward et al. Jun 2002 A1
20020095430 Egilsson et al. Jul 2002 A1
20020150094 Cheng Oct 2002 A1
20030005149 Haas Jan 2003 A1
20030088602 Dutta et al. May 2003 A1
20030145314 Nguyen et al. Jul 2003 A1
20030200315 Goldenberg Oct 2003 A1
20040006584 Vandeweerd Jan 2004 A1
20040019814 Pappalardo Jan 2004 A1
20040049565 Keller et al. Mar 2004 A1
20040103218 Blumrich et al. May 2004 A1
20040156376 Nakagawa Aug 2004 A1
20040156383 Nakagawa Aug 2004 A1
20040216072 Alpert et al. Oct 2004 A1
20050147081 Acharya et al. Jul 2005 A1
20050203988 Nollet et al. Sep 2005 A1
20050204316 Nebel Sep 2005 A1
20050228930 Ning et al. Oct 2005 A1
20050286543 Coppola et al. Dec 2005 A1
20060002303 Bejerano Jan 2006 A1
20060031615 Bruce et al. Feb 2006 A1
20060053312 Jones Mar 2006 A1
20060075169 Harris et al. Apr 2006 A1
20060104274 Caviglia May 2006 A1
20060161875 Rhee Jul 2006 A1
20060206297 Ishiyama et al. Sep 2006 A1
20060209846 Clermidy et al. Sep 2006 A1
20060268909 Langevin et al. Nov 2006 A1
20070038987 Ohara et al. Feb 2007 A1
20070088537 Lertora et al. Apr 2007 A1
20070118320 Luo et al. May 2007 A1
20070147379 Lee et al. Jun 2007 A1
20070162903 Babb, II et al. Jul 2007 A1
20070189283 Agarwal et al. Aug 2007 A1
20070244676 Shang et al. Oct 2007 A1
20070256044 Coryer et al. Nov 2007 A1
20070267680 Uchino et al. Nov 2007 A1
20070274331 Locatelli et al. Nov 2007 A1
20080072182 He et al. Mar 2008 A1
20080120129 Seubert et al. May 2008 A1
20080126569 Rhim et al. May 2008 A1
20080127014 Pandey May 2008 A1
20080184259 Lesartre et al. Jul 2008 A1
20080186998 Rijpkema Aug 2008 A1
20080211538 Lajolo et al. Sep 2008 A1
20080232387 Rijpkema et al. Sep 2008 A1
20090037888 Tatsuoka et al. Feb 2009 A1
20090046727 Towles Feb 2009 A1
20090067331 Watsen Mar 2009 A1
20090067348 Vasseur Mar 2009 A1
20090070726 Mehrotra et al. Mar 2009 A1
20090083263 Felch Mar 2009 A1
20090089725 Khan Apr 2009 A1
20090109996 Hoover Apr 2009 A1
20090122703 Gangwal et al. May 2009 A1
20090125574 Mejdrich May 2009 A1
20090125703 Mejdrich May 2009 A1
20090125706 Hoover May 2009 A1
20090135739 Hoover May 2009 A1
20090138567 Hoover May 2009 A1
20090150647 Mejdrich Jun 2009 A1
20090157976 Comparan Jun 2009 A1
20090172304 Gueron et al. Jul 2009 A1
20090182944 Comparan Jul 2009 A1
20090182954 Mejdrich Jul 2009 A1
20090182986 Schwinn Jul 2009 A1
20090182987 Mejdrich Jul 2009 A1
20090187716 Comparan et al. Jul 2009 A1
20090187734 Mejdrich Jul 2009 A1
20090187756 Nollet et al. Jul 2009 A1
20090201302 Hoover Aug 2009 A1
20090210184 Medardoni et al. Aug 2009 A1
20090210883 Hoover Aug 2009 A1
20090228681 Mejdrich Sep 2009 A1
20090228682 Mejdrich Sep 2009 A1
20090228689 Muff Sep 2009 A1
20090228690 Muff Sep 2009 A1
20090231348 Mejdrich et al. Sep 2009 A1
20090231349 Mejdrich Sep 2009 A1
20090240920 Muff Sep 2009 A1
20090245257 Comparan Oct 2009 A1
20090256836 Fowler Oct 2009 A1
20090260013 Heil Oct 2009 A1
20090268677 Chou et al. Oct 2009 A1
20090271172 Mejdrich Oct 2009 A1
20090276572 Heil Nov 2009 A1
20090282139 Mejdrich Nov 2009 A1
20090282197 Comparan Nov 2009 A1
20090282211 Hoover Nov 2009 A1
20090282214 Kuesel Nov 2009 A1
20090282221 Heil Nov 2009 A1
20090282222 Hoover Nov 2009 A1
20090282226 Hoover Nov 2009 A1
20090282227 Hoover Nov 2009 A1
20090282419 Mejdrich Nov 2009 A1
20090285222 Hoover et al. Nov 2009 A1
20090287885 Kriegel Nov 2009 A1
20090292907 Schwinn Nov 2009 A1
20090293061 Schwinn Nov 2009 A1
20090300292 Fang et al. Dec 2009 A1
20090300335 Muff Dec 2009 A1
20090307714 Hoover et al. Dec 2009 A1
20090313592 Murali et al. Dec 2009 A1
20090315908 Comparan Dec 2009 A1
20100023568 Hickey Jan 2010 A1
20100031009 Muff Feb 2010 A1
20100040162 Suehiro Feb 2010 A1
20100042812 Hickey Feb 2010 A1
20100042813 Hickey Feb 2010 A1
20100070714 Hoover Mar 2010 A1
20100091787 Muff Apr 2010 A1
20100100707 Mejdrich Apr 2010 A1
20100100712 Mejdrich Apr 2010 A1
20100100770 Mejdrich Apr 2010 A1
20100100934 Mejdrich Apr 2010 A1
20100106940 Muff Apr 2010 A1
20100125722 Hickey May 2010 A1
20100158005 Mukhopadhyay et al. Jun 2010 A1
20100162019 Kumar Jun 2010 A1
20100189111 Muff Jul 2010 A1
20100191940 Mejdrich Jul 2010 A1
20100211718 Gratz et al. Aug 2010 A1
20100223505 Andreev et al. Sep 2010 A1
20100228781 Fowler Sep 2010 A1
20100239185 Fowler Sep 2010 A1
20100239186 Fowler Sep 2010 A1
20100242003 Kwok Sep 2010 A1
20100269123 Mejdrich Oct 2010 A1
20100284309 Allan Nov 2010 A1
20100333099 Kupferschmidt Dec 2010 A1
20110022754 Cidon et al. Jan 2011 A1
20110035523 Feero et al. Feb 2011 A1
20110044336 Umeshima Feb 2011 A1
20110060831 Ishii et al. Mar 2011 A1
20110063285 Hoover Mar 2011 A1
20110064077 Wen Mar 2011 A1
20110072407 Keinert et al. Mar 2011 A1
20110085550 Lecler et al. Apr 2011 A1
20110085561 Ahn Apr 2011 A1
20110103799 Shacham et al. May 2011 A1
20110119322 Li May 2011 A1
20110154282 Chang et al. Jun 2011 A1
20110173258 Arimilli Jul 2011 A1
20110191088 Hsu et al. Aug 2011 A1
20110191774 Hsu et al. Aug 2011 A1
20110235531 Vangal et al. Sep 2011 A1
20110243147 Paul Oct 2011 A1
20110276937 Waller Nov 2011 A1
20110289485 Mejdrich Nov 2011 A1
20110292063 Mejdrich Dec 2011 A1
20110302345 Boucard et al. Dec 2011 A1
20110302450 Hickey Dec 2011 A1
20110307734 Boesen et al. Dec 2011 A1
20110316864 Mejdrich Dec 2011 A1
20110320719 Mejdrich Dec 2011 A1
20110320724 Mejdrich Dec 2011 A1
20110320771 Mejdrich Dec 2011 A1
20110320854 Elrabaa Dec 2011 A1
20110320991 Hsu Dec 2011 A1
20110321057 Mejdrich Dec 2011 A1
20120022841 Appleyard Jan 2012 A1
20120023473 Brown et al. Jan 2012 A1
20120026917 Guo et al. Feb 2012 A1
20120054511 Brinks Mar 2012 A1
20120072635 Yoshida Mar 2012 A1
20120079147 Ishii et al. Mar 2012 A1
20120099475 Tokuoka Apr 2012 A1
20120110106 De Lescure et al. May 2012 A1
20120110541 Ge et al. May 2012 A1
20120144065 Parker Jun 2012 A1
20120155250 Carney et al. Jun 2012 A1
20120173846 Wang et al. Jul 2012 A1
20120176364 Schardt Jul 2012 A1
20120195321 Ramanujam Aug 2012 A1
20120198408 Chopra Aug 2012 A1
20120209944 Mejdrich et al. Aug 2012 A1
20120218998 Sarikaya Aug 2012 A1
20120221711 Kuesel Aug 2012 A1
20120260252 Kuesel Oct 2012 A1
20120311512 Michel Dec 2012 A1
20130021896 Pu Jan 2013 A1
20130028083 Yoshida Jan 2013 A1
20130028090 Yamaguchi et al. Jan 2013 A1
20130028261 Lee Jan 2013 A1
20130036296 Hickey Feb 2013 A1
20130044117 Mejdrich Feb 2013 A1
20130046518 Mejdrich Feb 2013 A1
20130051397 Guo et al. Feb 2013 A1
20130054811 Harrand Feb 2013 A1
20130073771 Hanyu Mar 2013 A1
20130073878 Jayasimha Mar 2013 A1
20130080073 de Corral Mar 2013 A1
20130080671 Ishii Mar 2013 A1
20130086399 Tychon Apr 2013 A1
20130103369 Huynh et al. Apr 2013 A1
20130103912 Jones et al. Apr 2013 A1
20130111190 Muff May 2013 A1
20130111242 Heller May 2013 A1
20130117543 Venkataramanan et al. May 2013 A1
20130138925 Hickey May 2013 A1
20130145128 Schardt Jun 2013 A1
20130148506 Lea Jun 2013 A1
20130151215 Mustapha Jun 2013 A1
20130159668 Muff Jun 2013 A1
20130159669 Comparan Jun 2013 A1
20130159674 Muff Jun 2013 A1
20130159675 Muff Jun 2013 A1
20130159676 Muff Jun 2013 A1
20130159944 Uno et al. Jun 2013 A1
20130160026 Kuesel Jun 2013 A1
20130160114 Greenwood Jun 2013 A1
20130163615 Mangano et al. Jun 2013 A1
20130174113 Lecler et al. Jul 2013 A1
20130179613 Boucard et al. Jul 2013 A1
20130179902 Hoover et al. Jul 2013 A1
20130185542 Mejdrich Jul 2013 A1
20130191572 Nooney et al. Jul 2013 A1
20130191600 Kuesel Jul 2013 A1
20130191649 Muff Jul 2013 A1
20130191651 Muff Jul 2013 A1
20130191824 Muff Jul 2013 A1
20130191825 Muff Jul 2013 A1
20130207801 Barnes Aug 2013 A1
20130219148 Chen et al. Aug 2013 A1
20130250792 Yoshida et al. Sep 2013 A1
20130254488 Kaxiras et al. Sep 2013 A1
20130263068 Cho et al. Oct 2013 A1
20130268990 Urzi et al. Oct 2013 A1
20130294458 Yamaguchi et al. Nov 2013 A1
20130305207 Hsieh Nov 2013 A1
20130311819 Ishii Nov 2013 A1
20130326458 Kazda et al. Dec 2013 A1
20140013293 Hsu Jan 2014 A1
20140068132 Philip et al. Mar 2014 A1
20140068134 Philip et al. Mar 2014 A1
20140082237 Wertheimer Mar 2014 A1
20140086260 Dai Mar 2014 A1
20140092740 Wang et al. Apr 2014 A1
20140098683 Kumar Apr 2014 A1
20140112149 Urzi et al. Apr 2014 A1
20140115218 Philip et al. Apr 2014 A1
20140115298 Philip et al. Apr 2014 A1
20140126572 Hutton May 2014 A1
20140143557 Kuesel May 2014 A1
20140143558 Kuesel May 2014 A1
20140149720 Muff May 2014 A1
20140164465 Muff Jun 2014 A1
20140164704 Kuesel Jun 2014 A1
20140164732 Muff Jun 2014 A1
20140164734 Muff Jun 2014 A1
20140211622 Kumar et al. Jul 2014 A1
20140229709 Kuesel Aug 2014 A1
20140229712 Muff Aug 2014 A1
20140229713 Muff Aug 2014 A1
20140229714 Muff Aug 2014 A1
20140229720 Hickey Aug 2014 A1
20140230077 Muff Aug 2014 A1
20140232188 Cheriyan Aug 2014 A1
20140241376 Balkan Aug 2014 A1
20140254388 Kumar et al. Sep 2014 A1
20140281243 Shalf Sep 2014 A1
20140281402 Comparan Sep 2014 A1
20140307590 Dobbelaere Oct 2014 A1
20140359641 Clark Dec 2014 A1
20140376569 Philip Dec 2014 A1
20150020078 Kuesel Jan 2015 A1
20150026435 Muff Jan 2015 A1
20150026494 Bainbridge Jan 2015 A1
20150026500 Muff Jan 2015 A1
20150032988 Muff Jan 2015 A1
20150032999 Muff Jan 2015 A1
20150043575 Kumar et al. Feb 2015 A1
20150081941 Brown Mar 2015 A1
20150103822 Gianchandani Apr 2015 A1
20150109024 Abdelfattah et al. Apr 2015 A1
20150159330 Weisman et al. Jun 2015 A1
20150178435 Kumar Jun 2015 A1
20150331831 Solihin Nov 2015 A1
20150348600 Bhatia Dec 2015 A1
20150381707 How Dec 2015 A1
20170061053 Kumar et al. Mar 2017 A1
20170063625 Philip et al. Mar 2017 A1
20170063697 Kumar Mar 2017 A1
Foreign Referenced Citations (10)
Number Date Country
103684961 Mar 2014 CN
5936793 May 2016 JP
6060316 Jan 2017 JP
6093867 Feb 2017 JP
10-2013-0033898 Apr 2013 KR
101652490 Aug 2016 KR
101707655 Feb 2017 KR
2010074872 Jul 2010 WO
2013063484 May 2013 WO
2014059024 Apr 2014 WO
Non-Patent Literature Citations (40)
Entry
Ababei, C., et al., Achieving Network on Chip Fault Tolerance by Adaptive Remapping, Parallel & Distributed Processing, 2009, IEEE International Symposium, 4 pgs.
Abts, D., et al., Age-Based Packet Arbitration in Large-Radix k-ary n-cubes, Supercomputing 2007 (SC07), Nov. 10-16, 2007, 11 pgs.
Beretta, I, et al., A Mapping Flow for Dynamically Reconfigurable Multi-Core System-on-Chip Design, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Aug. 2011, 30(8), pp. 1211-1224.
Das, R., et al., Aergia: Exploiting Packet Latency Slack in On-Chip Networks, 37th International Symposium on Computer Architecture (ISCA '10), Jun. 19-23, 2010, 11 pgs.
Ebrahimi, E., et al., Fairness via Source Throttling: A Configurable and High-Performance Fairness Substrate for Multi-Core Memory Systems, ASPOLS '10, Mar. 13-17, 2010, 12 pgs.
Gindin, R., et al., NoC-Based FPGA: Architecture and Routing, Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07), May 2007, pgs. 253-262.
Grot, B., Preemptive Virtual Clock: A Flexible, Efficient, and Cost-Effective QOS Scheme for Networks-on-Chip, Micro '09, Dec. 12-16, 2009, 12 pgs.
Grot, B., Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for Scalability and Service Guarantees, ISCA 11, Jun. 4-8, 2011, 12 pgs.
Grot, B., Topology-Aware Quality-of-Service Support in Highly Integrated Chip Multiprocessors, 6th Annual Workshop on the Interaction between Operating Systems and Computer Architecture, Jun. 2006, 11 pgs.
Hestness, J., et al., Netrace: Dependency-Tracking for Efficient Network-on-Chip Experimentation, The University of Texas at Austin, Dept. Of Computer Science, May 2011, 20 pgs.
Jiang, N., et al., Performance Implications of Age-Based Allocations in On-Chip Networks, CVA MEMO 129, May 24, 2011, 21 pgs.
Lee, J. W. et al., Globally-Synchronized Frames for Guaranteed Quality-of-Service in On-Chip Networks, 35th IEEE/ACM International Symposium on Computer Architecture (ISCA), Jun. 2008, 12 pgs.
Lee, M. M., et al,. Approximating Age-Based Arbitration in On-Chip Networks, PACT '10, Sep. 11-15, 2010, 2 pgs.
Li, B. et al.' CoQoS: Coordinating QoS-Aware Shared Resources in NoC-based SoCs, J. Parallel Distrib. Comput., 71(5), May 2011, 14 pgs.
Lin, S., et al., Scalable Connection-Based Flow Control Scheme for Application-Specific Network-on-Chip, The Journal of China Universities of Posts and Telecommunications, Dec. 2011, 18(6), pp. 98-105.
Bolotin, Evgency, et al., “QNoC: QoS Architecture and Design Process for Network on Chip” 2004, 24 pp., Journal of Systems Architecture 50 (2004) 105-128 Elsevier.
Holsmark, Shashi Kumar Rickard, et al., “HiRA: A Methodology for Deadlock Free Routing in Hierarchical Networks on Chip”, 10 pages, (978-1-4244-4143-3/09 2009 IEEE).
Munirul, H. M., et al., Evaluation of Multiple-Valued Packet Multiplexing Scheme for Network-on-Chip Architecture, Proceedings of the 36th International Symposium on Multiple-Valued Logic (ISMVL '06), 2006, 6 pgs.
Rajesh Bv, Shivaputra, “NOC: Design and Implementation of Hardware Network Interface With Improved Communication Reliability”, 7 pages, International Journal of VLSI and Embedded Systems, IJIVES (vol. 04, Article 06116; Jun. 2013).
Yang, J., et al., Homogeneous NoC-based FOGA: The Foundation for Virtual FPGA, 10th IEEE International Conference on Computer and Information Technology (CIT 2010), Jun. 2010, pp. 62-67.
Zaman, Aanam, “Formal Verification of Circuit-Switched Network on Chip (NoC) Architectures using SPIN”, Oosman Hasan, IEEE © 2014, 8 pages.
Benini, Luca, et al., “Networks on Chips: A New SoC Paradigm”, IEEE Computers, SOC Designs, pp. 70-78, Copyright 2002 IEEE. 0018-9162/02.
Sethuraman, Ranga Vemuri Balasubramanian, “optiMap: A Tool for Automated Generation of NoC Architecture Using Multi-Port Routers for FPGAs”, IEEE, pp. 1-6, 2006.
International Search Report and Written Opinion for PCT/US2014/060745, Jan. 21, 2015, 10 pgs.
International Search Report and Written Opinion for PCT/US2014/060879, Jan. 21, 2015, 10 pgs.
International Search Report and Written Opinion for PCT/US2014/060892, Jan. 27, 2015, 10 pgs.
International Search Report and Written Opinion for PCT/US2014/060886, Jan. 26, 2015, 10 pgs.
International Search Report and Written Opinion for PCT/US2013/064140, Jan. 22, 2014, 9 pgs.
International Search Report and Written Opinion for PCT/US2014/012003, Mar. 26, 2014, 9 pgs.
International Search Report and Written Opinion for PCT/US2014/012012, May 14, 2014, 9 pgs.
International Search Report and Written Opinion for PCT/US2014/023625, Jul. 10, 2014, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/064140, dated Apr. 14, 2015, 5 pages
Office Action for Korean Patent Application No. 10-2016-7019093 dated Sep. 8, 2016, 3 pages plus 1 page English translation. KIPO, Korea.
Notice of Allowance for for Korean Patent Application No. 10-2016-7019093 dated Sep. 8, 2016, 4 pages. KIPO, Korea.
International Search Report and Written Opinion for PCT/US2014/037902, Sep. 30, 2014, 14 pgs.
Office Action for Japanese Patent Application No. 2015-535898 dated Oct. 25, 2016, 2 pages English, 2 pages untranslated copy. Japan Patent Office.
Notice of Grant for Japanese Patent Application No. 2015-535898 dated Jan. 17, 2017, 3 pages, untranslated. Japan Patent Office.
International Search Report and Written Opinion for PCT/US2014/048190, Nov. 28, 2014, 11 pgs.
Office Action for Japanese Patent Application No. 2016-516030 dated Aug. 30, 2016, 2 pages, Japan Patent Office.
Decision to Grant for Japanese Patent Application No. 2016-516030 dated Nov. 22, 2016, 6 pages, untranslated, Japan Patent Office.
Related Publications (1)
Number Date Country
20170230253 A1 Aug 2017 US