Automated speech recognition uses a language model to identify the most likely candidate matching a word or expression used in a natural language context. In many instances, the language model used is built using a generic corpus of text and might not offer the most accurate or optimal representation of natural language for a given topic. For example, in a scientific context, the word “star” may be less likely to follow the phrase “country music” than in an entertainment context. Accordingly, when evaluating an audio signal relating to science, a speech recognition system may achieve more accurate results using a language model specific to the topic of science, rather than a generic language model.
The following presents a simplified summary of the disclosure in order to provide a basic understanding of some aspects. It is not intended to identify key or critical elements or to delineate the scope. The following summary merely presents some concepts of the disclosure in a simplified form as a prelude to the more detailed description provided below.
According to one or more aspects, a speech recognition system may automatically generate a topic specific language model and recognize words in a speech signal using the generated model. For example, a speech recognition system may initially determine words in a audio speech signal using a basic or generic language model. A language model, as used herein, generally refers to a construct that defines probabilities of words appearing after another word or set of words (or within a predefined proximity of another word). The speech recognition system may use the determined words to identify one or more topics associated with the speech signal and use the identified topics to obtain a corpus of text relating to those topics. The corpus of text allows the speech recognition system to create a topic specific language model by, in one example, modifying or adapting the basic or generic language model according to the probabilities and language structure presented in the topic specific corpus of text. A second speech recognition pass may then be performed using the topic specific language model to enhance the accuracy of speech recognition. In one or more arrangements, the topic specific language model may be generated on-the-fly, thereby eliminating the need to pre-generate language models prior to receiving or beginning processing of an audio signal.
According to another aspect, collecting a corpus of topic specific text may include generating one or more search queries and using those search queries to identify articles, publications, websites and other documents and files. In one example, the search queries may be entered into a search engine such as GOOGLE or PUBMED. Text may then be extracted from each of the results returned from the search. In one or more arrangements, a corpus collection module may further clean the text by removing extraneous or irrelevant data such as bylines, advertisements, images, formatting codes and information and the like. The corpus collection module may continue to collect text until a specified threshold has been reached.
According to another aspect, multiple queries may be generated for corpus collection. For example, a speech recognition system or text collection module may generate multiple queries for a single topic to increase the amount of text returned. Alternatively or additionally, an audio signal may include multiple topics. Accordingly, at least one query may be generated for each of the multiple topics to insure that the corpus of text collected is representative of the audio signal.
According to yet another aspect, the corpus of text collected may be representative of a distribution of topics associated with the speech signal. Stated differently, a speech signal may include a variety of topics, each topic having a degree of emphasis or significance in that speech signal. The corpus of text may include amounts of text that have been collected based on that distribution of topic significance or emphasis. In one example, the number of words or phrases associated with a topic may be used as a measure of its significance in a speech signal. A threshold number of words may then be divided according to the significance.
The details of these and other embodiments are set forth in the accompanying drawings and the description below. Other features and advantages will be apparent from the description and drawings, and from the claims.
The present disclosure is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:
The STB 106 is generally located at the subscriber location such as a subscriber's home, a tavern, a hotel room, a business, etc., and the receiving device 108 is generally provided by the subscribing client. The receiving device 108 may include a television, high definition television (HDTV), monitor, host viewing device, MP3 player, audio receiver, radio, communication device, personal computer, media player, digital video recorder, game playing device, etc. The device 108 may be implemented as a transceiver having interactive capability in connection with the STB 106, the headend 102 or both the STB 106 and the headend 102. Alternatively, STB 106 may include a cable modem for computers for access over cable.
The headend 102 is generally electrically coupled to the network 104, the network 104 is generally electrically coupled to the STB 106, and each STB 106 is generally electrically coupled to the respective device 108. The electrical coupling may be implemented as any appropriate hard-wired (e.g., twisted pair, untwisted conductors, coaxial cable, fiber optic cable, hybrid fiber cable, etc.) or wireless (e.g., radio frequency, microwave, infrared, etc.) coupling and protocol (e.g., Home Plug, HomePNA, IEEE 802.11(a-b), Bluetooth, HomeRF, etc.) to meet the design criteria of a particular application. While the distribution system 100 is illustrated showing one STB 106 coupled to one respective receiving device 108, each STB 106 may be configured with having the capability of coupling more than one device 108.
The headend 102 may include a plurality of devices 110 (e.g., devices 110a-110n) such as data servers, computers, processors, security encryption and decryption apparatuses or systems, and the like configured to provide video and audio data (e.g., movies, music, television programming, games, and the like), processing equipment (e.g., provider operated subscriber account processing servers), television service transceivers (e.g., transceivers for standard broadcast television and radio, digital television, HDTV, audio, MP3, text messaging, gaming, etc.), and the like. At least one of the devices 110 (e.g., a sender security device 110x), may include a security system.
In one or more embodiments, network 104 may further provide access to a wide area network (WAN) 112 such as the Internet. Accordingly, STB 106 or headend 102 may have access to content and data on the wide area network. Content items may include audio, video, text and/or combinations thereof. In one example, a service provider may allow a subscriber to access websites 114 and content providers 116 connected to the Internet (e.g., WAN 112) using the STB 106. Websites 114 may include news sites, social networking sites, personal webpages and the like. In another example, a service provider (e.g., a media provider) may supplement or customize media data sent to a subscriber's STB 106 using data from the WAN 112. Alternatively or additionally, one or more other computing devices 118 may be used to access either media distribution network 104 or wide area network 112.
Using networks such as those illustrated and described with respect to
From the initial set of identified words, topic extractor 215 is configured to identify one or more topics associated with the natural language data. Topics may be identified from the initial set of words in a variety of ways including by determining a frequency of words used, identification of meaningful vs. non-meaningful words, determining a type of word (e.g., noun, verb, etc.) and/or combinations thereof. For example, words that are used most frequently might be treated as being indicative of a topic of the audio. In another example, meaningful words might be predefined and identified in the natural language data. Accordingly, topic extractor 215 may eliminate non-meaningful words such as “the” or “of” from topic consideration even if such words appear relatively frequently. In one example, stop word lists or noise word lists may be used to filter out non-meaningful words. Stop word lists and other types of word filtering lists may be topic-specific or may be universal for all topics.
In some arrangements, speech recognizer module 205 might not perform a first pass on the natural language to identify the initial set of words. Instead, topic extractor 215 may be configured to identify topics associated with the natural language based on other information such as metadata. For example, if speech recognition device 200 is processing audio stored in an audio file, topic extractor 215 may extract topics from metadata included in the audio file such as a genre, artist, subject and title. If the audio file is located on a webpage, topic extractor 215 may use page or site data extracted from the webpage for topic determination. Alternatively or additionally, a combination of metadata and the initial set of recognized words may be used to identify topics to which the audio relates. A topic may include any number of words and in some instances, may include phrases.
Once topic extractor 215 has outputted the topic(s) of the natural language data, a query generator 225 of a corpus collector module 220 is configured to create search queries for obtaining a corpus of text relating to the identified topics. In one example, the query generator 225 may create search queries for a search engine 235 such as GOOGLE. In another example, query generator 225 may formulate queries for identifying publications in a database such as PUBMED. Queries may be formed using the identified topic words or phrases in a keyword search. Alternatively or additionally, speech recognition device 200 may maintain a definition or meaning table in database 210 to provide further keywords that may be used in a search query. For example, the word “rocket” may be associated with additional key words and phrases “weapon,” “propulsion,” “space shuttle” and the like. Accordingly, multiple search query strings may be formed using various combinations of the topic words and associated keywords.
Articles and other text identified through the search query may then be fed from corpus collector module 220 into a language model generator 230 that creates a language model specific to the topic or topics identified by topic extractor 215. Language models, as used herein, generally refer to data constructs configured to represent a probability of a sequence of words appearing together. Various types of language models may include n-gram language models which specify the probability of a set of n words appearing together (sometimes in a certain sequence). In one example, a language model may indicate that the probability of the word “friend” appearing immediately after the word “best” is more likely than “friend” appearing immediately after the word “chest” in a n-gram language model, where n=2. Accordingly, a speech recognition device such as device 200 may be able to ascertain whether an utterance (e.g., a spoken word or sound in an audio signal) corresponds to the word “chest” or “best” based on the following word (e.g., “friend”). Thus, a language model allows a device or a user to determine the odds that a speech signal includes word or phase x.
To create the topic specific language model, language model generator 230 may modify a basic language model in accordance with the probabilities determined from the text collected by corpus collector 220 (as discussed in further detail herein). Thus, probabilities of certain word combinations or n-grams may be modified based on their frequency of occurrence in the collected corpus of text. Using this topic specific language model, speech recognition device 200 may perform a second pass on the natural language to identify the words used in the speech.
Frequency, on the other hand, corresponds to the number of times a word or topic appears in a segment of speech. In some instances, a topic may correspond to multiple words. Accordingly, even though segment 300 includes only 1 mention of the word “movie,” a frequency assigned to the topic of movies may have a value of 2 in view of the use of the phrase “big screen,” a known colloquialism for movies. In one or more configurations, a word or phrase may be extracted as a topic if the determined frequency is above a certain threshold. The threshold may be defined manually, automatically or a combination thereof. In one example, topics may be identified from the three words or phrases used most frequently in segment 300. Thus, the threshold may be defined as the frequency of the least frequent word or phrase of the top three most frequently used words or phrases. According to one or more arrangements, frequency might only be evaluated upon determining that a word or phrase falls into the category of a meaningful word or phrase.
Using the determined topics, the speech recognition may subsequently generate one or more search queries to identify a corpus of text relevant to the determined topics in step 615. For example, search queries may be created by assembling known keywords associated with or describing the specified topic, as described herein. In response to the search query, the speech recognition system may receive a plurality of search results in step 620. These search results may include multiple types of information including articles, blogs, text from images, metadata, and text from a webpage and may be received from various databases and search engines. Text from each of the search results may then be extracted and collected in step 625. In step 630, the system may determine whether a sufficient number of words has been collected from the search results. The determination may be made by comparing the number of words collected with a specified threshold number of words. The threshold number of words may be, for example, 100,000, 200,000, 1,000,000 or 10,000,000. If the collector module has collected an insufficient number of words, the module may repeat steps 615-625 to obtain more words. For instance, the collector module may generate a new search query or, alternatively or additionally, extract words from additional search results not considered in the first pass.
If, on the other hand, the collector module has obtained a sufficient number of words from the search results, the system may generate a topic specific language model in step 635 using the corpus of text collected. The system may, for example, adapt or revise a basic or generic language model based on the corpus of topic specific text retrieved. By way of example, assuming that a generic or initial language model shows that the probability of the word “dust” immediately following the word “cosmic” at 30% and the probability of the word “dust” immediately following the word “house” at 70%. Assuming that at least one of the topics in the corpus collection and, correspondingly, the speech to be recognized is space, the corpus of topic specific text may show that the probability that the word “dust” appears immediately after the word “cosmic” is 80% versus 20% for “dust” immediately appearing after “house.” Accordingly, the speech recognition system may modify the language model to reflect the probabilities determined based on the corpus of topic specific text. Alternatively, the speech recognition system may average the percentages. For example, the average of the two probabilities of “dust” following “cosmic” may result in a 55% probability while the average for “dust” following “house” may average out to 45%. Other algorithms and methods for adjusting a basic language model to produce the topic specific language model may be used. The above example is merely used to illustrate some aspects of the disclosure and is simplified. Language models generally include a greater number of possible word combinations (e.g., many other words may immediately precede the word “dust”) and probabilities than discussed in the example above.
Once the topic specific language model has been created, the speech recognition system may perform a second pass over the speech to make a final identification of the words spoken in step 640. The words identified in the second pass may be used for a variety of purposes including automatic transcription of recorded audio, creating a document by speaking the words rather than by typing, data entry and the like.
In step 725, the corpus collection module may determine whether a threshold number of words has been collected. If so, the corpus collection module may return the current set of words as a final corpus in step 730. If, however, the corpus collection module determines that the threshold number of words has not been collected, the corpus collection module may determine whether additional pages (e.g., a webpage) or groups of search results are available in step 735. If so, the corpus collection module may repeat steps 710-720 to process one or more additional pages or groups of search results. If, however, no additional search results are available, the corpus collection module may return to step 700 to obtain text using another search query in step 740.
The method of
In one or more arrangements, a query may include phrases or words for multiple topics of the speech signal to insure that the results received are more likely to be relevant. For example, if a speech signal is related to the Battle of Bull Run, submitting queries using only a single word or phrase from the list of “bull,” “run,” “civil war,” “battle,” “Manassas,” and “Virginia” might produce search results that are entirely unrelated. For example, an article about anatomy of a bull may be returned. Alternatively or additionally, an article or movie review about Forest Gump might be returned using a query that was solely focused on the word “run.” Thus, a query such as “bull run” might be used instead to identify articles, documents and the like that are more likely to be relevant to the actual topic or topics of the speech signal.
The methods and systems described herein may be used in contexts and environments other than audio signals. For example, a topic specific language model may be used to aid in optical character recognition to improve the accuracy of the characters and words identified in a particular image or document.
The methods and features recited herein may further be implemented through any number of computer readable media that are able to store computer readable instructions. Examples of computer readable media that may be used include RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, DVD or other optical disk storage, magnetic cassettes, magnetic tape, magnetic storage and the like.
Additionally or alternatively, in at least some embodiments, the methods and features recited herein may be implemented through one or more integrated circuits (IC s). An integrated circuit may, for example, be a microprocessor that accesses programming instructions or other data stored in a read only memory (ROM). In some such embodiments, the ROM stores programming instructions that cause the IC to perform operations according to one or more of the methods described herein. In at least some other embodiments, one or more of the methods described herein are hardwired into an IC. In other words, the IC is in such cases an application specific integrated circuit (ASIC) having gates and other logic dedicated to the calculations and other operations described herein. In still other embodiments, the IC may perform some operations based on execution of programming instructions read from ROM or RAM, with other operations hardwired into gates and other logic of IC. Further, the IC may output image data to a display buffer.
Although specific examples of carrying out the invention have been described, those skilled in the art will appreciate that there are numerous variations and permutations of the above-described systems and methods that are contained within the spirit and scope of the invention as set forth in the appended claims. Additionally, numerous other embodiments, modifications and variations within the scope and spirit of the appended claims will occur to persons of ordinary skill in the art from a review of this disclosure.
This application is a continuation of U.S. patent application Ser. No. 16/728,476, filed Dec. 27, 2019, which is a continuation of U.S. patent application Ser. No. 15/843,846, filed Dec. 15, 2017, now U.S. Pat. No. 10,559,301, which is a continuation of U.S. patent application Ser. No. 12/496,081, filed Jul. 1, 2009, now U.S. Pat. No. 9,892,730, the contents of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4227177 | Moshier | Oct 1980 | A |
5493677 | Balogh et al. | Feb 1996 | A |
5521841 | Arman et al. | May 1996 | A |
5530859 | Tobias et al. | Jun 1996 | A |
5535063 | Amming | Jul 1996 | A |
5553281 | Brown et al. | Sep 1996 | A |
5576755 | Davis et al. | Nov 1996 | A |
5594897 | Goffman | Jan 1997 | A |
5640553 | Schultz | Jun 1997 | A |
5649182 | Reitz | Jul 1997 | A |
5666528 | Thai | Sep 1997 | A |
5682326 | Klingler et al. | Oct 1997 | A |
5717914 | Husick et al. | Feb 1998 | A |
5729741 | Liaguno et al. | Mar 1998 | A |
5737495 | Adams et al. | Apr 1998 | A |
5737734 | Schultz | Apr 1998 | A |
5742816 | Barr et al. | Apr 1998 | A |
5761655 | Hoffman | Jun 1998 | A |
5765150 | Burrows | Jun 1998 | A |
5799315 | Rainey et al. | Aug 1998 | A |
5819292 | Hitz et al. | Oct 1998 | A |
5845279 | Garofalakis et al. | Dec 1998 | A |
5857200 | Togawa | Jan 1999 | A |
5924090 | Krellenstein | Jul 1999 | A |
5928330 | Goetz et al. | Jul 1999 | A |
5937422 | Nelson et al. | Aug 1999 | A |
5956729 | Goetz et al. | Sep 1999 | A |
5982369 | Sciammarella et al. | Nov 1999 | A |
6038560 | Wical | Mar 2000 | A |
6052657 | Yamron et al. | Apr 2000 | A |
6055543 | Christensen et al. | Apr 2000 | A |
6058392 | Sampson et al. | May 2000 | A |
6167377 | Gillick et al. | Dec 2000 | A |
6188976 | Ramaswamy et al. | Feb 2001 | B1 |
6278992 | Curtis et al. | Aug 2001 | B1 |
6320588 | Palmer et al. | Nov 2001 | B1 |
6343294 | Hawley | Jan 2002 | B1 |
6345253 | Viswanathan | Feb 2002 | B1 |
6363380 | Dimitrova | Mar 2002 | B1 |
6366296 | Boreczky et al. | Apr 2002 | B1 |
6374260 | Hoffert et al. | Apr 2002 | B1 |
6415434 | Kind | Jul 2002 | B1 |
6418431 | Mahajan et al. | Jul 2002 | B1 |
6463444 | Jain et al. | Oct 2002 | B1 |
6545209 | Flannery et al. | Apr 2003 | B1 |
6546385 | Mao et al. | Apr 2003 | B1 |
6567980 | Jain et al. | May 2003 | B1 |
6580437 | Liou et al. | Jun 2003 | B1 |
6675174 | Bolle et al. | Jan 2004 | B1 |
6698020 | Zigmond et al. | Feb 2004 | B1 |
6771875 | Kunieda et al. | Aug 2004 | B1 |
6789088 | Lee et al. | Sep 2004 | B1 |
6792426 | Baumeister et al. | Sep 2004 | B2 |
6877134 | Fuller et al. | Apr 2005 | B1 |
6882793 | Fu et al. | Apr 2005 | B1 |
6901364 | Nguyen et al. | May 2005 | B2 |
6937766 | Wilf et al. | Aug 2005 | B1 |
6970639 | McGrath et al. | Nov 2005 | B1 |
7016830 | Huang et al. | Mar 2006 | B2 |
7155392 | Schmid et al. | Dec 2006 | B2 |
7177861 | Tovinkere et al. | Feb 2007 | B2 |
7206303 | Karas et al. | Apr 2007 | B2 |
7272558 | Soucy et al. | Sep 2007 | B1 |
7376642 | Nayak et al. | May 2008 | B2 |
7472137 | Edelstein et al. | Dec 2008 | B2 |
7490092 | Sibley et al. | Feb 2009 | B2 |
7548934 | Platt et al. | Jun 2009 | B1 |
7584102 | Hwang et al. | Sep 2009 | B2 |
7596549 | Issa et al. | Sep 2009 | B1 |
7739286 | Sethy et al. | Jun 2010 | B2 |
7788266 | Venkataraman et al. | Aug 2010 | B2 |
7792812 | Carr | Sep 2010 | B1 |
7814267 | Iyengar et al. | Oct 2010 | B1 |
7921116 | Finkelstein et al. | Apr 2011 | B2 |
7925506 | Farmaner et al. | Apr 2011 | B2 |
7958119 | Eggink et al. | Jun 2011 | B2 |
7983902 | Wu et al. | Jul 2011 | B2 |
8041566 | Peters et al. | Oct 2011 | B2 |
8078467 | Wu et al. | Dec 2011 | B2 |
8117206 | Sibley et al. | Feb 2012 | B2 |
8265933 | Bates et al. | Sep 2012 | B2 |
8468083 | Szulczewski | Jun 2013 | B1 |
8527520 | Morton et al. | Sep 2013 | B2 |
8572087 | Yagnik | Oct 2013 | B1 |
8909655 | McDonnell | Dec 2014 | B1 |
10073829 | Medlock et al. | Sep 2018 | B2 |
20010014891 | Hoffert et al. | Aug 2001 | A1 |
20020035573 | Black et al. | Mar 2002 | A1 |
20020087315 | Lee et al. | Jul 2002 | A1 |
20020091837 | Baumeister et al. | Jul 2002 | A1 |
20020143774 | VanderSluis | Oct 2002 | A1 |
20020194181 | Wachtel | Dec 2002 | A1 |
20030014758 | Kim | Jan 2003 | A1 |
20030033297 | Ogawa | Feb 2003 | A1 |
20030050778 | Nguyen et al. | Mar 2003 | A1 |
20030061028 | Dey et al. | Mar 2003 | A1 |
20030093790 | Logan et al. | May 2003 | A1 |
20030135582 | Allen et al. | Jul 2003 | A1 |
20030163443 | Wang | Aug 2003 | A1 |
20030163815 | Begeja et al. | Aug 2003 | A1 |
20030195877 | Ford et al. | Oct 2003 | A1 |
20030204513 | Bumbulis | Oct 2003 | A1 |
20040111465 | Chuang et al. | Jun 2004 | A1 |
20040117831 | Ellis et al. | Jun 2004 | A1 |
20040139091 | Shin | Jul 2004 | A1 |
20040215634 | Wakefield et al. | Oct 2004 | A1 |
20040225667 | Hu et al. | Nov 2004 | A1 |
20040243539 | Skurtovich et al. | Dec 2004 | A1 |
20040254795 | Fujii et al. | Dec 2004 | A1 |
20040267700 | Dumais et al. | Dec 2004 | A1 |
20050044105 | Terrell | Feb 2005 | A1 |
20050060647 | Doan et al. | Mar 2005 | A1 |
20050091443 | Hershkovich et al. | Apr 2005 | A1 |
20050097138 | Kaiser et al. | May 2005 | A1 |
20050114130 | Java et al. | May 2005 | A1 |
20050152362 | Wu | Jul 2005 | A1 |
20050182792 | Israel et al. | Aug 2005 | A1 |
20050193005 | Gates et al. | Sep 2005 | A1 |
20050222975 | Nayak et al. | Oct 2005 | A1 |
20060004738 | Blackwell et al. | Jan 2006 | A1 |
20060037046 | Simms et al. | Feb 2006 | A1 |
20060074671 | Farmaner et al. | Apr 2006 | A1 |
20060085406 | Evans et al. | Apr 2006 | A1 |
20060088276 | Cho et al. | Apr 2006 | A1 |
20060100898 | Pearce et al. | May 2006 | A1 |
20060112097 | Callaghan et al. | May 2006 | A1 |
20060156399 | Parmar et al. | Jul 2006 | A1 |
20060161546 | Callaghan et al. | Jul 2006 | A1 |
20060167859 | Verbeck et al. | Jul 2006 | A1 |
20060184495 | Crosby et al. | Aug 2006 | A1 |
20060212288 | Sethy et al. | Sep 2006 | A1 |
20060235843 | Musgrove et al. | Oct 2006 | A1 |
20060253780 | Munetsugu et al. | Nov 2006 | A1 |
20060256739 | Seier et al. | Nov 2006 | A1 |
20070011133 | Chang | Jan 2007 | A1 |
20070050343 | Siddaramappa et al. | Mar 2007 | A1 |
20070050366 | Bugir et al. | Mar 2007 | A1 |
20070067285 | Blume et al. | Mar 2007 | A1 |
20070078708 | Yu et al. | Apr 2007 | A1 |
20070083374 | Bates et al. | Apr 2007 | A1 |
20070156677 | Szabo | Jul 2007 | A1 |
20070208567 | Amento et al. | Sep 2007 | A1 |
20070211762 | Song et al. | Sep 2007 | A1 |
20070214123 | Messer et al. | Sep 2007 | A1 |
20070214488 | Nguyen et al. | Sep 2007 | A1 |
20070233487 | Cohen et al. | Oct 2007 | A1 |
20070233656 | Bunescu et al. | Oct 2007 | A1 |
20070233671 | Klein et al. | Oct 2007 | A1 |
20070239707 | Collins et al. | Oct 2007 | A1 |
20070250901 | McIntire et al. | Oct 2007 | A1 |
20070260700 | Messer | Nov 2007 | A1 |
20070271086 | Peters et al. | Nov 2007 | A1 |
20080033915 | Chen et al. | Feb 2008 | A1 |
20080046929 | Cho et al. | Feb 2008 | A1 |
20080059418 | Barsness et al. | Mar 2008 | A1 |
20080091633 | Rappaport et al. | Apr 2008 | A1 |
20080118153 | Wu et al. | May 2008 | A1 |
20080133504 | Messer et al. | Jun 2008 | A1 |
20080162533 | Mount et al. | Jul 2008 | A1 |
20080163328 | Philbin et al. | Jul 2008 | A1 |
20080168045 | Suponau et al. | Jul 2008 | A1 |
20080183681 | Messer et al. | Jul 2008 | A1 |
20080183698 | Messer et al. | Jul 2008 | A1 |
20080189110 | Freeman et al. | Aug 2008 | A1 |
20080204595 | Rathod et al. | Aug 2008 | A1 |
20080208796 | Messer et al. | Aug 2008 | A1 |
20080208839 | Sheshagiri et al. | Aug 2008 | A1 |
20080208864 | Cucerzan et al. | Aug 2008 | A1 |
20080221989 | Messer et al. | Sep 2008 | A1 |
20080222105 | Matheny | Sep 2008 | A1 |
20080222106 | Rao et al. | Sep 2008 | A1 |
20080222142 | ODonnell | Sep 2008 | A1 |
20080235209 | Rathod et al. | Sep 2008 | A1 |
20080235393 | Kunjithapatham et al. | Sep 2008 | A1 |
20080250010 | Rathod et al. | Oct 2008 | A1 |
20080256097 | Messer et al. | Oct 2008 | A1 |
20080266449 | Rathod et al. | Oct 2008 | A1 |
20080281801 | Larson et al. | Nov 2008 | A1 |
20080288641 | Messer et al. | Nov 2008 | A1 |
20080319962 | Riezler et al. | Dec 2008 | A1 |
20090006315 | Mukherjea et al. | Jan 2009 | A1 |
20090006391 | Ram | Jan 2009 | A1 |
20090013002 | Eggink et al. | Jan 2009 | A1 |
20090025054 | Gibbs et al. | Jan 2009 | A1 |
20090055381 | Wu et al. | Feb 2009 | A1 |
20090077078 | Uppala et al. | Mar 2009 | A1 |
20090083257 | Bargeron et al. | Mar 2009 | A1 |
20090094113 | Berry et al. | Apr 2009 | A1 |
20090123021 | Jung et al. | May 2009 | A1 |
20090131028 | Horodezky et al. | May 2009 | A1 |
20090144260 | Bennett et al. | Jun 2009 | A1 |
20090144609 | Liang et al. | Jun 2009 | A1 |
20090157680 | Crossley et al. | Jun 2009 | A1 |
20090172544 | Tsui et al. | Jul 2009 | A1 |
20090198686 | Cushman et al. | Aug 2009 | A1 |
20090204599 | Morris et al. | Aug 2009 | A1 |
20090205018 | Ferraiolo et al. | Aug 2009 | A1 |
20090240650 | Tyler et al. | Sep 2009 | A1 |
20090240674 | Wilde et al. | Sep 2009 | A1 |
20090271195 | Kitade et al. | Oct 2009 | A1 |
20090279682 | Strandell et al. | Nov 2009 | A1 |
20090282069 | Callaghan et al. | Nov 2009 | A1 |
20090326947 | Arnold et al. | Dec 2009 | A1 |
20100042602 | Smyros et al. | Feb 2010 | A1 |
20100063886 | Stratton et al. | Mar 2010 | A1 |
20100070507 | Mori | Mar 2010 | A1 |
20100094845 | Moon et al. | Apr 2010 | A1 |
20100138653 | Spencer et al. | Jun 2010 | A1 |
20100250598 | Brauer et al. | Sep 2010 | A1 |
20110004462 | Houghton et al. | Jan 2011 | A1 |
20110016106 | Xia | Jan 2011 | A1 |
20110077943 | Miki et al. | Mar 2011 | A1 |
20110125728 | Smyros et al. | May 2011 | A1 |
20110191099 | Farmaner et al. | Aug 2011 | A1 |
20110246503 | Bender et al. | Oct 2011 | A1 |
20120036119 | Zwicky et al. | Feb 2012 | A1 |
20120078932 | Skurtovich et al. | Mar 2012 | A1 |
20120150636 | Freeman et al. | Jun 2012 | A1 |
20120191695 | Xia | Jul 2012 | A1 |
20120203708 | Psota et al. | Aug 2012 | A1 |
20130054589 | Cheslow | Feb 2013 | A1 |
20130216207 | Berry et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
2685833 | May 2010 | CA |
1241587 | Sep 2002 | EP |
1462950 | Sep 2004 | EP |
1501305 | Jan 2005 | EP |
2448874 | Nov 2008 | GB |
2448875 | Nov 2008 | GB |
9950830 | Oct 1999 | WO |
0205135 | Jan 2002 | WO |
2005050621 | Jun 2005 | WO |
2006099621 | Sep 2006 | WO |
2007115224 | Oct 2007 | WO |
2008053132 | May 2008 | WO |
2009052277 | Apr 2009 | WO |
2010100853 | Sep 2010 | WO |
Entry |
---|
Arthur De Vany, W. David Walls, “Uncertainty in the Movie Industry: Does Star Power Reduce the Terror of the Box Office?,” Journal of Cultural Economics, 1999, pp. 285-318, Issue 23, Kluwer Academic Publishers, Netherlands. |
Behrang Mohit and Rebecca Hwa, 2005. Syntax-based Semi-Supervised Named Entity Tagging. In Proceedings of the ACL Interactive Poster and Demonstration Sessions, pp. 57-60. |
Boulgouris N. V. et al., “Real-Time Compressed-Domain Spatiotemporal Segmentation and Ontologies for Video Indexing and Retrieval”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, No. 5, pp. 306-621, May 2004. |
Changsheng Xu et al., “Using Webcast Text for Semantic Event Detection in Broadcast Sports Video”, IEEE Transactions on Multimedia, vol. 10, No. 7, pp. 1342-1355, Nov. 2008. |
Eberman, et al., “Indexing Multimedia for the Internet”, Compaq, Cambridge Research laboratory, Mar. 1999, pp. 1-8 and Abstract. |
ESR—EP10154725.5—dated Nov. 2, 2010. |
ESR—EP10155340.2—dated Nov. 25, 2010. |
ESR—EP10162666.1—dated Aug. 4, 2011. |
ESR—EP10167947.0—dated Sep. 28, 2010. |
European Search Report EP 09180762, dated Mar. 22, 2010. |
European Search Report EP09179987.4, dated Jun. 4, 2010. |
European Search Report for Application No. 09180776.8, dated Jun. 7, 2010, 9 pages. |
European Search Report for application No. 10167947.0, dated Sep. 28, 2010. |
Experiments in Spoken Document Retrieval at CMU, M.A. Siegler, et al., School of Computer Science Carnegie Mellon University, Pittsburgh, PA 15213-3890, Justsystem Pittsburgh Research Center, 4616 Henry Street, Pittsburgh, PA 15213. |
Extended European Search Report—EP 09815446.1—dated May 7, 2013. |
Hsin-Min Wang and Berlin Chen, “Content-based Language Models for Spoken Document Retrieval”, ACM, 2000, pp. 149-155. |
International Preliminary Examination Report for PCT/US01/20894, dated Feb. 4, 2002. |
Ishitani, et al., “Logical Structure Analysis of Document Images Based on Emergent Computation”, IEEE Publication, pp. 189-192, Jul. 1999. |
ISR PCT/US2001/020894—dated Nov. 25, 2003. |
Kalina Bontcheva et al “Shallow Methods for Named Entity Coreference Resolution”, Proc. of Tah 2002, Jan. 1, 2002. |
Kontothoanassis, Ledonias et al. “Design, Implementation, and Analysis of a Multimedia Indexing and Delivery Server”, Technical Report Series, Aug. 1999, Cambridge Research Laboratory. |
Koskela M. et al., “Measuring Concept Similarities in Multimedia Ontologies: Analysis and Evaluations”, IEEE Transactions on Multimedia, vol. 9, No. 5, pp. 912-922, Aug. 2007. |
Li et al., “Reliable Video Clock Time Recognition,” Pattern Recognition, 2006, 1CPR 1006, 18th International Conference on Pattern Recognition, 4 pages. |
Liang Bai et al., “Video Semantic Content Analysis based on Ontology”, International Machine Vision and Image recessing Conference, pp. 117-124, Sep. 2007. |
Marin Feldman, Ostendorf and Gupta, “Filtering Web Text to Match Target Genres”, International Conference on Acoustics, Speech and Signal Processing, 2009, Piscataway, NJ, Apr. 19, 2009, pp. 3705-3708. |
Martin Jansche, 2002. Named EntityEntityExtraction with Conditional Markov Models and Classifiers. In Proceedings of ThNLL-2002. |
Messer, Alan et al., “SeeNSearch: A context Directed Search Facilitator for Home Entertainment Devices”, Japer, Samsung Information Systems America Inc., San Jose, CA, Sep. 17, 2008. |
Partial ESR—EP10155340.2—dated Jul. 12, 2010. |
PRP PCT/US2009/069644—dated Jun. 29, 2011. |
R. Bunescu and M. Pasca. 2006. Using encyclopedic knowledge for named entity disambiguation. In Proceedings of EACL-2006, pp. 9-16. |
Radu Florian, 2002. Named entity recognition as a house of cards: Classifier stacking. In Proceedings of CoNL2002, pp. 175-178. |
Raphael Volz et al., “Towards ontology-based disambiguation of geographical identifiers”, Proceedings of the JVWVV2007 Workship 13: Identity, Identifiers, Identification, Entity-Centric Approaches to Information and Knowledge Management on the Web, 2007. |
S. Cucerzan. 2007. Large-Scale Named Entity Disambiguation Based on Wikipedia Data. In Proceedings of EMNLP-CONLL44,2007, pp. 708-716. |
Salton et al., Computer Evaluation of Indexing and Text Processing Journal of the Association for 3omputing Machinery, vol. 15, No. 1, Jan. 1968, pp. 8-36. |
Sethy, Abhinav, Panayiotis G. Georgiou, and Shrikanth Narayanan. “Building topic specific language models from webdata using competitive models.” InterSpeech. 2005. |
Shahraray: “Impact and Applications of Video Content Analysis and Coding in the internet and Telecommunications”, pkT&T Labs Research, A Position Statement for Panel 4: Applications the 1998 International Workshop on Very Low Bitrate Video Coding, 3 pages. |
Shumeet Baluja, Vibhu Mittal and Rahul Sukthankar, 1999. Applying machine learning for high performance named-3ntity extraction. In Proceedings of Pacific Association for Computational Linguistics. |
Smith, J.R. et al., “An Image and Video Search Engine for the World-Wide Web” Storage and Retrieval for Image and Video Databases 5, San Jose, Feb. 13-14, 1997, Proceedings of Spie, Belingham, Spie, US, vol. 3022, Feb. 13, 1997, pp. 84-95. |
SR PCT/US2009/069644—dated Mar. 4, 2010. |
Steffen Staab et al., “Semantic Multimedia”, Reasoning Web; Lecture Notes in Computer Science, pp. 125-170, Sep. 2008. |
Thamar Solorio, 2004. Improvement of Named Entity Tagging by Machine Learning. Reporte Tecnico No. MC-04-004. INAOE. |
Then, “Extraction of Indicative Summary Sentences from Imaged Documents”, IEEE publication, 1997, pp. 227-232. |
Then, Langzhou, et al. “Using information retrieval methods for language model adaptation.” InterSpeech. 2001. |
Towards a Multimedia World-Wide Web Information retrieval engines, Sougata Mukherjea, Kyoji Hirata, and Yoshinori Flara Computer Networks and ISDN Systems 29 (1997) 1181-1191. |
Wacholder N et al., “Disambiguation of Proper Names in Text”, Proceedings of the Conference on Applied Natural Language Processing, Association Computer Linguistics, Morrisontown, NJ, Mar. 1, 2007. |
Zhang et al. 2004. Using the web for automated translation extraction in cross-language information retrieval, Proceedings of the 27th annual intl ACM SIGIR conference on Research and development in info retrieval (SIGIR '04). ACM, NY, NY, USA, 162-169. |
Number | Date | Country | |
---|---|---|---|
20230197069 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16728476 | Dec 2019 | US |
Child | 18085378 | US | |
Parent | 15843846 | Dec 2017 | US |
Child | 16728476 | US | |
Parent | 12496081 | Jul 2009 | US |
Child | 15843846 | US |