The present invention generally relates to the field of air flow generation. More particularly, the present invention relates to systems and methods for generating and managing mass air flows, and subsets thereof including high velocity, high pressure, high density, and the like. This technology is particularly suited, but by no means limited, for application to hybrid vehicles, vehicles propelled by internal combustion engines, stationary applications of internal combustion engines, and ancillary uses of such air flows.
Applications in research, industrial, commercial and consumer applications for pressurized air flows are long standing and well known. Pneumatic systems, using generated or stored pressurized air, are well known and were common even in the early parts of the twentieth century. The availability of air pumps based on fan or blower technologies (such as, for example, centrifugal, spiral, and axial flow air effector devices) is widespread and common.
Air charging refers to the provision of air, or fluid handling like a gas, for purposes both to pressurize an outflow air stream, and to depressurize an intake air source volume. In applications, this may support using a velocity mass air flow device to either fill, with a pressure above the ambient, an outflow need, or to evacuate an intake air source volume that may be a fixed or variable volume container.
In many extant approaches in the known art there are shortcomings and problems with the performance of air charging devices where the resistance from existing structures, gas pressure, or resistive load degrades the ability of the air charging device to be serviceable.
Existing pressurized air flow applications have additional shortcomings that include (varying by the device being compared), for example:
1) Existing devices fail to provide a mass air flow sufficient to complete a task within the desired time window although the mass air flow over a much longer time period may be sufficient.
2) Existing devices fail to provide the necessary control feedback and use measurements to limit possible damage from an uncontrolled velocity or mass air flow.
3) Existing devices fail to provide for operation without a substantial fixed installation that generates, or stores, high pressures that can be transformed into a high velocity mass air flow.
4) Existing devices place a high load on the equipment supplying power (e.g., combustion engine, electrical feed, gas pressure, etc.) on a highly dynamic basis that causes unwanted side-effects in the system the application is supporting.
5) Existing devices place demands for space or physical configurations that cause additional costs and resource requirements beyond that desirable.
6) Existing devices fail to provide the flexibility to use high-velocity mass air flows, or slower less massive flows, to allow optimization of power expenditure, or for other purposes.
7) Existing devices fail to provide power management alternatives that allow multiple operating uses to optimally use power available in an application environment.
8) Existing devices fail to provide full coverage to handle all of the aspects of the apparatus from the low level control of the electrical motor to the connections to the entire application's apparatus structure.
9) Existing devices do not have extensive safety provisions and features to protect the device, the platform on which it is operating, or the human users.
10) Existing devices are not easily integrated into an overall platform power management and operating plan that allows flexible usage of their capabilities while managing their impact on power expenditure, instantaneous demand, and overall power capacity.
Conventional devices and applications have sought with limited success to meet one or more of these applications requirements with a wide variety of power mechanisms, air effector configurations, and control loops.
For example, conventional fan devices may generate a significant volume of air, but generate an output pressure of less than 15% increase from normal conditions. Thus, a typical fan device is inadequate for applications that require a combination of high air flow with higher pressure. The physical diameter and consequent physical guards required also are disadvantages of conventional fan devices in even volume applications.
Also, a centrifugal air actuator may generate modest pressure, but typically requires a very large diameter blower to generate a higher pressure output. Blowers for high volume operation may achieve considerable flow rates, at modest pressures, but range up to almost 60 centimeters in diameter. The electrical power and motors necessary (or other power source) for large centrifugal blowers is also a large consideration when using centrifugal air actuators in high air flow applications.
The efficiency of other air actuator devices (such as compressors in the form of scrolls or overlapped spirals) are not as high as that of the high volume mass air flow devices described in this application. Further, extant compressor applications tend to be specialized and constrained.
To generate pressure, a fixed compressor and tankage system (such as found in many industrial environments) may be used to provide high pressure, but the pneumatic infrastructure is substantial and the possible faults and complexity of the control systems are substantial.
Thus, in view of the foregoing, there is a need for systems and methods that overcome the limitations and drawbacks of the prior art. In particular, there is a need for systems and methods capable of moving a pressurized stream of air (air charging) at a high flow rate and that addresses one or more of these limitations and drawbacks, and preferably addresses most of these limitations and drawbacks, and more preferably the entire range of these shortcomings and provides superior applications performance in many situations. Embodiments of the present invention provide such solutions.
In a hydrogen fuel-cell vehicle, a recognized concern is the ability of the vehicle to operate in cold-weather/ambient conditions. The Department of Energy has selected a series of goals for fuel-cell developments reaching through 2010. U.S. Pat. No. 6,727,013 B2, entitled “Fuel cell energy management system for cold environments,” issued to William S. Wheat et al., discloses the use of a resistive heater to warm the fuel cells. But this approach reduces usable capacity of the fuel cells. U.S. Pat. No. 6,797,421 B2, entitled “Fuel cell thermal management system,” issued to Eric T. White, also discloses the use of a resistive heater to warm the fuel cells with a coolant process (with an unspecified cooling mechanism) to cool them. In U.S. Pat. No. 6,815,103, entitled “Start control device for fuel cell system,” issued to Hiroyuki Abe et al., at FIG. 3, Label S01, a reference is made to the use of a hot air supply, but no mechanism or control structure for such a mechanism is described. U.S. Pat. No. 6,616,424 B2, entitled “Drive System and Method for the Operation of a Fuel Cell System” issued to Raiser discloses the use of compressed air to assist in fuel cell operations, however a hot gas supply is not used.
In the body of U.S. Pat. No. 7,200,483 B1, entitled “Controller Module for Modular Supercharger System,” issued to Kavadeles, the supercharger described and controlled is powered by a mechanical belt and pulley arrangement (see,
U.S. Pat. Nos. 6,141,965; 6,079,211, 5,867,987; 5,771,868 and 5,904,471 disclose conventional approaches to pre-conditioning and directing inflows of air into a device using various pre-whirl strategies, diverters, and vanes; and outlet conditioning of outflows of air for disposal or application. However, these references do not disclose or teach according the inlet and outlet condition of flows full consideration in the deployment and operation of the devices. None of these references teaches the capacity to actively incorporate active pre- and post-conditioning of the flows while managing the power and operating characteristics of the electric motor subassembly. In U.S. Pat. Nos. 5,771,868 and 6,102,672, the control concepts extend to the incorporation of EGR (engine gas recirculation) and bypass air sources. But these references do not disclose or teach incorporation of active inlet and outlet conditioning of flows while managing the power and operating characteristics of the electric motor assembly. U.S. Pat. Nos. 6,062,026 and 5,867,987 disclose using various sensors to assist the air charging units during operations. However, the teachings of these references do not support greater diversity of sensors, sensor interconnection methods, methods of utilizing sensor and sensor-based information (e.g., with direct data, or other apparatus and methods subassemblies). U.S. Pat. Nos. 5,560,208 and Reissued 36,609 disclose air charging mechanisms with interconnections to the engine (such as Element 40 in
The following summary is a simplified summary of the invention in order to provide a basic understanding of some of the aspects of the invention. This summary is not intended to identify key or critical elements of the invention or to define the scope of the invention.
Embodiments of the present invention are directed to unique and innovative solutions to the limitations and problems described above in the prior art while preserving many advantages for the consumer. Embodiments of the present invention are capable of moving a pressurized stream of air (air charging) at a high flow rate. The application of a high velocity mass air flow effector and computing apparatus and methods combine to accrue new benefits to applications/consumers by providing services and performance not available with conventional air actuator systems and methods. Operating the device with different inlet and outlet management, electric motor subassembly rotating and control settings also provides for air flows and beneficial effects.
Embodiments of the present invention may use and combine conventional elements with unique and novel additions and improvements in order to solve technological limitations, as discussed above, in conventional systems and methods. The air charging methods and systems are preferably compatible with existing frameworks in technological, legal, regulatory, and cultural settings. The air charging methods and apparatus for generating a high velocity mass air flows may address one or more, if not all, of the limitations cited in prior art and others known to practitioners. The application of the device at other than high velocity flows may address other needs not met by extant devices.
The systems and methods for generation and management of high velocity mass air flows may be used by individuals and businesses in research, industry, commercial, and consumer applications for both applications requiring high velocity mass air flow and for applications where space, power supply, and/or application system considerations provide benefits to users. The alternative operating modes at other than high velocity flows expands the applications for a single, or product family, of devices.
The installation of a specific embodiment of the invention into usage is referred to herein as an instantiation of the embodiment. The instantiation of an embodiment may use subsets of the complete embodiment's description in order to economize on a specific function (for an illustrative example, omitting active outlet management in some cases where an engine intake manifold already has said feature and this would be redundant and duplicative). The environment and situation of the usage of the embodiment is referred to as the “platform.” Specific components of an embodiment are referred to “elements” or “components.”
One exemplary embodiment of the invention may include a power supply module, an electric motor with an air effector in combination with a computer-based apparatus controller implementation employing computing equipment, software, and (optionally) a communications network.
Economies can be gained when applying more than one embodiment (possibly a plurality of embodiments on a single applications' platform) installed on the same platform. Shared control elements, shared power stores, shared maintenance spares, and shared control of dynamic behavior can yield results not otherwise found when multiple apparatus of other descriptions are applied. The capability of shedding demand on combustion engine torque in high demand situations is well known (illustrated by shutting down an air condition compressor during periods of high acceleration on a small engine, or variable power assist mechanisms). In analogous fashion, the use of shared control elements (connected logically or physically) can shed demand for power in embodiments of the invention in: high demand situations according to operational optimizations defined in the profiles for the devices' operation, to meet the overall operational needs (power, air charging, comfort, and others) across an entire trip, or to operate the device to meet specific high demands (such as meeting the needs for generated power in a high load condition for a hybrid). Physical locations for multiple devices on a single platform (illustrated by needs for multiple air charging or emissions control embodiments in an engine compartment, heating/ventilating embodiments for passenger compartment comfort, battery/fuel cell heating/ventilating, and heating/ventilating embodiments for cargo/equipment compartments) may be in multiple discrete areas, but the control elements of the embodiments may, or may not, communicate or interact with a plurality of the other embodiments instantiated on the same platform through communications media or other interactions (illustrated below in the exemplary embodiments). Multiple embodiments present for a single application (such as multiple air charging devices on a single combustion engine) may interact in a plurality of instantiations with the greatest benefits found when control element, power management, power storage modules, or sensor connections are combined with operating profiles as described more fully in the detailed description of illustrative embodiments.
An exemplary embodiment for the support of applications of high velocity mass air flows include a system and apparatus that receives electrical power, control signals (data flows), and an intake media (normally, but not limited to, gases such as ambient air, inert gases, or other fluids where behavior is like an “air” or gaseous fluid flow). Electrical power stored within the unit's power module may be sufficient for some applications and limited operations, but certain applications may utilize an electrical power supply at some point during a normal operating cycle. Having a separate stored power capacity within the apparatus also enables capabilities for operational optimization and flexibility not available without this integrated feature. Control signals may be as limited as an on/off (e.g., switch originated) signal, or may be as complex as a communications network message that is interpreted by the control apparatus as a stimulus to initiate one or more operations. The control signals may flow over media as simple as an open or closed circuit, or the control signals may flow over a complex communications network mediated by one or more specialized electronic circuit apparatus and that may utilize linear, or non-linear, communications protocols to pass messages, sensor data, meta-data, and the like that is interpreted by the control apparatus as stimulus to perform one or more operations (that may be pre-defined or dynamically determined) to control the electric motor, control valves (optional), sensors (optional), and air effector.
According to another aspect of the invention, the power module, containing in the exemplary embodiments both a power management element and a power storage element, may have the capability of controlling, or cooperating in, the optimal and flexible consumption of power, power capacity, and power distribution for the entire platform where the embodiment is applied. Operating under the control of the Control Apparatus the Power Module Subassembly can conduct operations using a plurality of one or more power sources; the Power Module Subassembly can determine, or be controlled, optimal uses (or conservation) of power supply, power expenditure, or capacity (including recharge); and the Power Module Subassembly can act to provide safety features to the apparatus. Thus, in instantiations of the embodiment where multiple power sources (grid power, alternator/generator, Power Storage Module, auxiliary platform batteries, hybrid primary electrical storage, or others) are present the Power Module Subassembly can control, or cooperate in, the choice of power supply (source optimization), power expenditure (drain optimization), power capacity (overall platform capacity and resource allocations such as recharging, recharge times, and priorities), and power distribution (source or drain optimization based on overall platform distribution and utilization).
The “air effector” referred to throughout this application may be considered as one embodiment of a fluid/media flow device that is related to a transport or movement that can be described by fluid-dynamics. Thus, the “air effector” may include devices otherwise described with terms such as “wheels,” “impellers,” “propellers,” “discs,” “bladed assembly,” “fan,” “flow director,” “mover,” and the like. Preferred embodiments of the invention may use a close physical proximity between the electrical motor and the effector subassembly. This may also be the case with alternate embodiments described, but practitioners will note that a larger physical distance (coupled mechanically, pneumatically, magnetically, or in other fashion) accomplishes identical functions within exemplary method and control apparatus configurations of the invention. Embodiments of the invention may use other air effectors to optimize for other application design criteria (such as acoustic signature, component materials, ease of field maintenance, flow characteristics, etc.).
In like manner, the presence of sensors (such as, for example, in the intake, outflow, air effector housing, motor housing, or other positions on the equipment; sensors may also be placed environmentally or fed remotely to the control apparatus for safety, feedback, control, performance measurement, comparison, testing, device self-assessment, or process control purposes) may be optional in some applications, but most applications are envisioned to incorporate some sensor capabilities into the control apparatus handling to assure proper operations, safety of operation (e.g., to people and other facilities and equipment), for optimal operation, etc. Sensors in the preferred embodiments may include temperature sensing, pressure sensing, and electrical measurements. In alternative embodiments, a plurality of sensors measuring, for example, temperature, pressure, electrical, emissions, gas composition, vibration, acoustic signature, battery condition, fuel, historical sensor information, engine conditions, etc. may be components of the invention. Sensors providing control, monitoring, historical, and profile information to the apparatus can be direct data feeds from an engine control module or fuel control module; a direct sensor feed from a sensing apparatus (such as a thermocouple, accelerometer, coupling value, or diaphragm pressure sensor); an indirect sensor access (such as a bus or network connected sensor); a surrogate sensor feed (derived from relayed or preprocessed sensor data in another module); or inferred sensor data (produced by observations of other operating, environmental, or engine characteristics.
One exemplary embodiment of the present invention may include the following major component elements.
An intake subassembly (element 1) that brings in the medium (normally air as has been described) and passes it into an air effector (element 2). The air effector increases the velocity (flow) and pressure, and therefore the mass air volume (over time), from ambient conditions to those desired in the application. This output is passed through an outflow subassembly (element 3).
Additional elements, obvious to practitioners, include filtering for inflows and outflows of the device in order to effect protection of the embodiments of the invention and to protect the application applying these airflows. As a safety feature there may be sensors present to indicate the absence of these filters and thus limit the automatic operation of an embodiment to safe conditions. Manual operation of the embodiments could include an override mode when the operation of the embodiment of the invention is less than optimal safety conditions are warranted due to larger application safety concerns or optimization.
Intake (inlet) and outflow (outlet) subassemblies occur in most embodiments of the invention to support optimization of airflow through the air effector subassembly. The plurality of components in the inlet and outlet subassemblies is illustrated by instantiations including diverter valves, active swirl assemblies in the inlet, outlet directing vanes, active swirl assemblies in the outlet, and the appropriate valves such as iris, servo, or diaphragm types. Both active and passive valves can be applied to inlet or outlet functions. Both powered and unpowered valves can be applied with solenoids or other powered mechanisms used for valve controls.
In another exemplary embodiment, the capability of an inlet control to manage the pre-swirl on a dynamic basis can alter the functional delivery of a mass air flow to a very different set of efficiency bands. In an exemplary embodiment the capability of an outlet control to manage the pre-swirl on a dynamic basis for the outflow going into another component of a multi-stage embodiment (thus it becomes the pre-swirl of the next stage) can alter the functional delivery of the mass air flow of the next stage of an application.
As an illustration of just one function, active outlet controls can be used to manage waste-gate functionality when the devices are operating at a higher level than needed instantaneously by the platform application. The control element may be responsible for the control of the outlet so that the embodied output of the air effector is used for the optimal priority selection of the platform application while maintaining the availability of a high mass airflow level for output on a demand basis. In an alternate embodiment this control capability might be shared with application control mechanism such that the embodiment's control element communicated with the application control mechanism to effect the waste gate functionality.
A power supply module (element 4) may pass power to an electric motor (element 5) that drives the air effector (element 2). A control apparatus (element 6) that may use control loops, logic and decision-making capability, and communications with the external application environment to determine the sequence of events, controls the power supply module (element 4), the electric motor (element 5), and possibly controls element 1 and/or element 3 if those elements are implemented as including controllable valves, cutoffs, diverters, or other flow management devices.
The inflow subassembly (element 1) may include a mechanical coupling and supply of air to transport. The outflow subassembly (element 3) may include a mechanical coupling and outlet for the air transported. The power module (element 4) may include a plurality of electrical storage devices, a continuing electrical supply input, or other power source (such as, for example, pneumatic, chemical, thermal, etc.) that can be converted to its output electrical power to be supplied.
The electric motor (element 5) may include a mechanical coupling be made linking the rotary action of the electric motor into the mechanical action driving the air effector (element 2). The control apparatus (element 6) may include control data flows (such as, for example, on/off, open/close, etc.) to be established and effective between it and at minimum the electric motor (element 5). Additional data flows between the control apparatus (element 6) and the intake and outflow subassemblies (elements 1 and 3) may take the form of controls, feedback, sensor measurements, or sequencing. The control apparatus (element 6) may also receive, manage, control, integrate, and process data flows to and from the sensors (element 7 through n, number not fixed), any external information (such as, for example, control, feedback, indirect sensor, safety, management, or meta-data such as rule parameters or interpretive information), and may use some or all of the available data to control and manage the other elements of the apparatus and process as embodied (such as, for example, automated diagnostics, safety management, power management, flow management, reporting, metrics, controls for licensing, etc.).
The motors used in the exemplary embodiments of the invention may be sensorless brushless direct current motors. The selection of these motors includes their advantages of high speed, efficient power consumption, and compatibility with operating environments. However, in alternate embodiments of the invention, a wide variety of motor types can be used including sensored and sensorless motors, switched reluctance, alternating current motors, brushedibrushless motors, and others that meet the needs of a specific embodiment. The selection of a motor technology and its application in embodiments of the invention may be supported by features in the control elements' use of profiles and functional isolation of the power and motor control sub-assemblies within the power elements and control elements. The selection, in an alternate embodiment, of a sensor based direct current motor may accommodate an applications' requirement of very fine shaft controls using hall-effect or optical-encoded sensors.
The motor controls used in the exemplary embodiments may be capable of starting, stopping, running, and controlling the running of motors in small increments. In an embodiment of the invention using direct current motors, the rotation of the motor may be controlled by the motor controls to the extent that discrete electrical timing pulses are handled by the motor controls to cause the sequence of electrical events rotating the shaft of the motor. This level of motor control allows the control element to support multiple speeds of rotation, different motor startup and shutdown, different energy management settings in motor operations, and different motor diagnostics. In exemplary embodiments, the power module supplying current to the motor subassembly may also contain a plurality of active (e.g., current limiters, electrical supply conditioning and filters, and others) and passive (e.g., safety interlocks against incorrect wiring, keyed connectors, and others) safety features to protect the embodiments operation.
The sensor(s) (element 7), may be emplaced in, around, or alongside the physical elements of the apparatus. The sensor element(s) may measure various parameters, such as for example: temperature, pressure, operations of the electric motor, the conditions of the power storage component of the power module, element 4, the conditions of the control apparatus (such as internal temperatures to provide for a thermal shutoff if needed), the conditions of the environment (intake external ambient temperatures and pressures), the possible conditions at the outflow (temperatures, pressures, etc.), and the state of control valves (intake element 1, inside the air effector element 2 (if any), outflow element 3), etc.
The physical packaging of different embodiments of the invention may take different forms that may be dictated by the application. The preferred embodiment described, and the alternate embodiments, provide for a variety of exemplary physical packaging configurations.
In heating, ventilating, and/or air cooling applications, packaging advantages not present in other air moving techniques may be found. An exemplary embodiment may use a highly compact 70 mm ducted-fan assembly controlled and powered by the elements otherwise described to replace a series of 200 mm blower assemblies. A separate alternate embodiment for an air exhaust application may apply the single 20 centimeter high velocity air movement configuration to replace multiple 20 centimeter blower assemblies.
The computing apparatus that implements the control apparatus (element 6) can be any of the configurations that support the set of environmental software supporting the application. The communications connections may include one or more linkages to the local application network (such as marine, automotive, building management, appliance management, local device network, point to point signaling, and the like), Internet (wide area network), private virtual networks, direct telecommunications connections, using wired, wireless, or fiber-optic media. It will be appreciated to those practicing in the art that the various embodiments allow for considerable flexibility in the configuration and deployment of the control apparatus element. The connections to sensors or sensing data can occur through a similar wide variety of communications mediums and exchange protocols.
The embodiment support transformational or transmitting functions may include a system and apparatus comprising a plurality of the control apparatus operating environment as described for support of various embodiments with additional capacity for storage (such as optical, magnetic, or solid state memory), systems capabilities (storage management, system management, operational and usage management, etc.), and specific interface tasks (or processes) residing in one or more physical (or virtual) operating environments residing in one or more systems and communications networks. The rule-based application software codes specific to embodiments of the invention may be invoked on the demand, or schedule, of the operations required and may incorporate functionality to log, audit, and validate all conducted operations.
The embodiment support for functions supporting the system and apparatus may maintain a complete data trail for purposes of reporting regulatory compliance, auditing, marketing analytics, demographic analysis, performance/capacity management, warranty management, license management, customer service and the like. The system and apparatus may be additions to the capacities to operate the invention's embodiments in a minimal application, or with additional capacity and capability in the device controller to support the processing, transformations, transmissions that additional software modules (including Report Writers, performance and capacity analysis, log and audit trail analytics, compliance checking, market analyzers, and added demographic and verification subsystems, among others). The support functions can also be used to optimize customer experiences; provide customization of operating parameters, set points, and algorithms; and enforce compliance with operating, regulatory, or user preferences.
As is evident to practitioners of the art, the embodiments of invention can also be combined with other air-charging mechanisms. The combinations or integration with other air charging mechanisms can occur in a wide variety of applications (illustrated, for example, by those in propulsion, stationary, mobile generators, rotary power generation, industrial testing, controlled combustion, and others). The physical interconnections of inlets, outlets, and shared or unique plenums, lead to a wide variety of possible combinations. The logical operating behavior of sequential (one or more operate in a sequence with others), exclusive (solitary operation excluding others), combined (simultaneous operations possibly at different operating behavior), shared (interdependent operations), staged (input of one possibly dependent on one or more others), or independent (operating without regard to others) also lead to a wide variety of possible combinations. The dynamic control of multiple embodiments of an invention concurrently in the same applications platform (illustrated, for example, by the use of multiple high velocity mass air flow devices outputting to a single output plenum to increase the total flow available for an application), with the instantiation of the invention using a plurality of elements (illustrated, for example, by multiple power storage modules, multiple sensors, multiple motors, or multiple inlet/outlet controls) is also within the embodiments of the invention. The presence of additional elements (illustrated, for example, by redundant control elements, redundant sensors, redundant interconnections, redundant power modules, or redundant motor/effector assemblies) for fault tolerance, high availability, high capacity, or high capability instantiations is also contemplated in those instantiations of embodiments of the invention where the application requires those qualities.
Additional features and advantages of the invention will be made apparent from the following detailed description of illustrative embodiments that proceeds with reference to the accompanying drawings.
The foregoing summary, as well as the following detailed description of preferred embodiments, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings exemplary constructions of the invention; however, the invention is not limited to the specific methods and instrumentalities disclosed. Included in the drawing are the following Figures:
The present invention includes embodiments of systems and methods for the generation of high velocity mass air flows, or designed air flows, for use in the combustion elements of a hybrid combustion-electric vehicle.
The present invention includes embodiments of systems and methods for the generation of high velocity mass air flows, or designed air flows, for use in the combustion support elements of a hybrid combustion-electric vehicle.
The present invention also includes embodiments of systems and methods for the generation of high velocity mass air flows, or designed air flows, for use in the electrical elements of a hybrid combustion-electric vehicle for cooling applications.
The present invention also includes several exemplary embodiments of systems and methods for the generation of high velocity mass air flows, or designed air flows, for use in the electrical elements of a hybrid combustion-electric vehicle for heating applications.
Also, the present invention includes embodiments of systems and methods for the generation of high velocity mass air flows, or designed air flows, for use in the passenger elements of a hybrid combustion-electric vehicle for cooling applications.
In addition, the present invention includes embodiments of systems and methods for the generation of high velocity mass air flows, or designed air flows, for use in the passenger elements of a hybrid combustion-electric vehicle for heating applications.
The present invention also includes embodiments of systems and methods for generation of high velocity mass air flows, or designed air flows, for use in the operation of an internal combustion-engine vehicle propulsion operations.
The present invention may also includes embodiments of systems and methods for generation of high velocity mass air flows, or designed air flows, for use in the operation of an internal combustion-engine used in stationary operations.
Exemplary embodiments can be applied to vehicular propulsion, vehicular power generation, stationary, and marine platforms where internal combustion engines are used. Although there are variances in the platform environments, platform controls, and operating patterns the usage of embodiments of the invention possess high levels of commonality. In propulsion, vehicular power generation, marine propulsion, marine power generation, and stationary generator operations the internal combustion engines often require air charging. The presence of air charging subsystems in these platforms, such as turbochargers, superchargers, compressed air subsystems, and the like, have direct instances where the embodiments of the application can be instantiated. The combinations and integration of the air charging features of embodiments of the invention and the extant air charging equipment is similar (by illustration multi-stage turbocharging, multi-stage supercharging, parallel turbocharging, or secondary air injection). The platform controls may vary in specific implementation (for example, CAN bus vehicular applications share many characteristics with NMEA marine applications) but the operating requirements of the platform controls remains highly similar (such as stationary Modbus or control-loop). Operating patterns are also highly similar in subtle, but important, ways when viewing power management and local power storage module elements of the embodiments of the invention. For vehicular power generation and stationary generator uses multiple managed power sources are common operating pattern requirements. In a vehicle the managed capacity and power expenditure controls for the primary electrical storage component has very high commonality of operating patterns with a stationary generator coupled with an uninterruptible power supply electrical storage component. The commonality of applications platform requirements lead to instantiations of the embodiments of the invention that are functionally the same even though the platform environments vary as to location. Although embodiments of the invention are discussed with particular application to vehicular, stationary, marine, or other platforms it is obvious to practitioners that the embodiments can be applied to other platforms without change of the novel and unique features of the invention from which the benefits derive.
Moreover, the present invention may include embodiments of systems and methods for generation of high velocity mass air flows, or designed air flows, for use in the operation of emissions control functions used for internal combustion engines. In these embodiments the invention is applied to the supply of air, on a designed or demand basis, to the emissions control functions used for internal combustion engines. The uses of air include the secondary air injection into an exhaust gas stream for cooling or pressurization prior to recirculation into the intake manifold or air intake of an internal combustion engine. Secondary air injection for purposes of continued reaction (or burning) of residual fuel in the exhaust stream (particularly of engines without sophisticated fuel management) can greatly assist in the reduction of emissions of unburned fuel and the capture of additional thermal energy for application (illustrated by embodiments used in multi-stage combustion systems). An exemplary embodiment shown in
The present invention also includes systems and methods for the generation of high velocity mass air flows. The systems and methods are capable of moving a pressurized stream of air (i.e., air charging) at a high flow rate. For purposes of the described embodiments, the general design point for the exemplary devices described are at about 1000 torr, and about 1,000,000 cc/min air flow. Exemplary devices may show a mass air flow of about 28 gm/sec or more when running at full operational potential. Alternate embodiments with other air effectors (such as those used in an axial flow configuration) may operate a design point up to 50,000,000 cc/min air flow and 100 torr.
In contrast to existing devices, such as centrifugal blowers, large diameter fans, or other air movement actuators, certain preferred embodiments may share a common set of form factors that generally fall within a roughly cylindrical package approximately 22 centimeters in diameter and 15 centimeters in length. Associated electrical power subassemblies (including the secondary apparatus power storage devices and power control), apparatus control electronics, and connections for such a unit may be packaged to fit an enclosure (that may be physically proximate and/or separated) approximately 15 centimeters in length, 10 centimeters in width, and 7.5 centimeters in depth. Existing devices of similar capabilities may require a cylindrical mechanical package of approximately 25 centimeters in diameter and 25 centimeters in length, accompanied by electrical components 32 centimeters in length, 26 centimeters in width, and 15 centimeters in depth. If mechanical and electrical components are packaged separately, they may be connected by one or more cables for power, sensor, and control transmission. For alternate embodiments, an environmentally appropriate implementation of electrical, sensor, and control modules may be integrated into the mechanical assembly design with minimal effect on the overall size of the mechanical assembly. Additional alternate embodiments for applications requiring smaller mass air flows or pressures of air movement, where applications, may be fulfilled by sub-optimal operation, may also vary in size and packaging (for example, such variance may be due to the smaller needs of an air effector, smaller or larger inlet/outlet modules, or the presence of multiple copies of an element). Also, where alternate power or control provisioning applies, alternate embodiment may allow instantiations where both mechanical and electrical assemblies may be reduced in size by up to about 50%. Scaling for larger assemblies is also possible in alternate embodiments for different demands. In addition to the clear functionality and energy management benefits obtained by developing a new embodiment of the invention the packaging of the invention saw a reduction of more than 80% of the size of the prior product family's controller and a reduction of more than 80% of the new motor technologies are incorporated herein. For smaller axial flow units not requiring collectors or volutes the reduction in size and packaging involved are more than 50%. For such units, actuators may fall into a cylindrical form factor 12 centimeters in diameter and 15 centimeters in length or smaller.
In some applications the ability to control and regulate the product of a high air flow at a pressure may be more important than the need to run at peak efficiency. Exemplary embodiments of the invention may have the ability to be applied even at sub-optimal efficiencies, or at much lower mechanical stress, to meet a specific application need (such as a requirement at specific parts of the operating range). Thus, the operation of the units at sub-optimal levels may be one characteristic of the innovation that adds to its unique character. A specific use of this capability is to operate in a sub-optimal mode to develop a temperature variant air flow for applications.
Referring now to
Intake subassembly 1 brings in a medium (normally air as has been described) and passes the medium into the air effector 2. The air effector 2 increases the velocity (flow) and pressure, and therefore the mass air volume (over time), from ambient conditions to those desired in the application. This output is passed through the outflow subassembly 3.
The power supply module 4 passes power to the electric motor 5 that drives the air effector 2. Control apparatus 6 may, for example, include control loops, logic and decision making capability, and communications with the external application environment to determine the sequence of events, control the power supply module 4, the electric motor 5, and may possibly control the intake element 1 and/or outlet element 3 if, for example, those elements are implemented as including controllable valves, cutoffs, diverters, or other flow management devices.
The inflow subassembly 1 may include a mechanical coupling and supply of air to transport. The outflow subassembly 3 may include a mechanical coupling and outlet for the air transported. The power module 4 may include a plurality of electrical storage devices, a continuing electrical supply input, or other power source (such as, for example, pneumatic, chemical, thermal, etc.) that can be converted to an output electrical power to be supplied.
The electric motor 5 may include a mechanical coupling linking the rotary action of the electric motor into the mechanical action driving the air effector 2. The control apparatus 6 may include control data flows (such as, for example, on/off, open/close, etc.) to be established and effective between the control apparatus 6 and the electric motor 5. Additional data flows between the control apparatus 6 and the intake and outflow subassemblies (elements 1 and 3) may take the form of controls, feedback, sensor measurements, or sequencing. The control apparatus 6 may also receive, manage, control, integrate, and process data flows to and from the sensors (element 7 through n, number not fixed), any external information (such as, for example, control, feedback, indirect sensor, safety, management, or meta-data such as rule parameters or interpretive information), and may use some or all of the available data to control and manage the other elements of the apparatus and process as embodied (such as, for example, automated diagnostics, safety management, power management, flow management, reporting, metrics, controls for licensing, etc.).
The sensor(s) 7 may be emplaced in, around, or alongside the physical elements of the apparatus. The sensor element(s) may measure various parameters, such as for example: temperature, pressure, operations of the electric motor, the conditions of the power storage component of the power module, element 4, the conditions of the control apparatus (such as internal temperatures to provide for a thermal shutoff if needed), the conditions of the environment (intake external ambient temperatures and pressures), the possible conditions at the outflow (temperatures, pressures, etc.), and the state of control valves (intake element 1, inside the air effector element 2 (if any), outflow element 3), etc.
The physical packaging of different embodiments of the invention may take different forms that may be dictated by the application. The preferred embodiment described, and the alternate embodiments, provide for a variety of exemplary physical packaging configurations.
The computing apparatus that implements the control apparatus 6 can be any of the configurations that support the set of environmental software supporting the application. The communications connections may include one or more linkages to the local application network (such as marine, automotive, building management, appliance management, local device network, point to point signaling, and the like), Internet (wide area network), private virtual networks, direct telecommunications connections, using wired, wireless, or fiber-optic media. It will be appreciated to those practicing in the art that the various embodiments allow for considerable flexibility in the configuration and deployment of the control apparatus element. The connections to sensors or sensing data can occur through a similar wide variety of communications mediums and exchange protocols.
An embodiment supporting transformational or transmitting functions may include a system and apparatus comprising a plurality of the control apparatus operating environment as described for support of the invention embodiments with additional capacity for storage (such as optical, magnetic, or solid state memory), systems capabilities (storage management, system management, operational and usage management, etc.), and specific interface tasks (or processes) residing in one or more physical (or virtual) operating environments residing in one or more systems and communications networks. The rule-based application software codes specific to the invention may be invoked on the demand, or schedule, of the operations required and may incorporate functionality to log, audit, and validate all conducted operations.
The embodiment support for required functions supporting the system and apparatus may maintain a complete data trail for purposes of reporting regulatory compliance, auditing, marketing analytics, demographic analysis, performance/capacity management, warranty management, license management, and customer service. The system and apparatus may be additions to the capacities to operate the invention's embodiments in a minimal application, or with additional capacity and capability in the device controller to support the processing, transformations, transmissions that additional software modules (including Report Writers, performance and capacity analysis, log and audit trail analytics, compliance checking, market analyzers, and added demographic and verification subsystems, among others) provide these functions in support of the invention. The support functions can also be used to optimize customer experiences; provide customization of operating parameters, set-points, and algorithms; and enforce compliance with operating, regulatory, or user preferences.
In operation, a flow of air, or other fluid flow, through the unit, as described in a simplified fashion through the intake subassembly, air effector subassembly, and outlet subassembly, component elements 1, 2, and 3 (see
In several embodiments, the complexity and presence of the sensor subassembly (intake) 300 and sensor subassembly (outflow) 600 will depend on the needs of the application and the types of data that need to be collected for the apparatus controller subassembly's 900 handling. In similar fashion the need for actuators, controlled from the apparatus controller subassembly 900, may vary in the control valve subassembly (intake) 200 and control valve subassembly (outflow) 700. In some embodiments, actuators in these units 200, 700 may need to divert airflows, change which of the application choices for inflows or outflows is selected, or assure the safe operation of the unit. As one simple example, the closure of these valves may be effected simply to reduce, or eliminate, continued exposure to marine (salt) conditions when the unit is not used on a frequent basis. In similar fashion the control valve subassembly 200 could allow for selection of tanked, pressurized, or pre-cleaned gas flows (such as for material handling hoods) instead of ambient air. In similar fashion the control valve subassembly 700 could select an outflow direction that varies depending on whether the airflow was used to purge a chamber of gas or simply exit a waste gate. In a very simple embodiment application the air intake 100 and control valve subassembly in combination can be combined to select for an application choice to inflate or deflate a variable chamber of a gas or air (with coordination of the control valve subassembly 700 and air outflow 800). Along with connections to the source and destinations of flow that may be appreciated to practitioners the invention is capable of providing for high velocity air charge for a variety of applications.
The various data flows communicating control, sensor data, feedback, management information, component configuration, component operating state information, error conditions, warning conditions, and other information may be shown with the logical directions of exemplary data flows for embodiments of the invention (shown in
1) sensors may include presets for data scaling or sensitivity 300, 400, 600, 1000, 1200, 1300, 1400, 1600;
2) control valves may report current operating states and conditions 200, 700, 1100, 1700;
3) the power source module 1000 may report the conditions of stored power, operating capacities, and diagnostic information; and
4) the apparatus and controller subassembly 900 may need a connection to external applications configuration 1800.
The physical embodiments that connect these logical components of the invention may pass data over many possible physical connection media including wired, wireless, fiber-optic, common signaling media, through integrated sensor loops, or the like. Embodiments of the invention may be constrained to any particular physical embodiment that creates and maintains the physical connection media. This may be an important consideration in certain embodiments because the application of the invention may require that it operate in an integrated functional configuration where a vehicle, marine, avionic, appliance, alarm, power management, building management, factory integration, data collection, or other multiple device connection (network or standalone) in a wide range of connection topologies (such as bus, star, point-to-point, relay, message passing, or routed mesh) are applied for the entire application. The advantages of integrating the available apparatus controller subassembly 900 into a larger set of physical and logical connections (shown as the control data flows and external interfaces 1800) to control, manage, diagnose, acquire the data, or provide a regulated function for the invention are beneficial.
Another application shown in
As previously discussed with respect to some embodiments, the apparatus may retain the capability to locally supply the DC power from one or more power storage modules (not shown). In addition, the capability to bypass the power storage modules (optionally in a specific embodiment), have multiple supply paths for energy to be converted or supplied through the power source module 1000 to the air charging motor subassembly 400, and be able to control, manage, report, and diagnose these features from the apparatus controller subassembly 900, provides other advantages unique to this invention. Power storage components managed by the power source module 1000 may be with, or without, internal capabilities providing data (such as, for example, manufacturer, model, serial number, cumulative usage, current capacity levels, etc.).
The capability to convert multiple supply energy sources to DC power (for example, but not limited to, AC power, DC power at a different voltage, pneumatic power, chemical energy, thermal energy, an induction power supply, etc.) provides for high levels of flexibility and options for continued operations by the user. An example of this multi-source capability is the availability of either AC power (in various voltages, phases, and amperages), or DC power (in a mobile power plant supply feed) that may then be conditioned (e.g., rectified) appropriately to provide operating charge to the power storage capacity. The technology enabling the power storage module can be a simple rechargeable battery technology (including choices such as Ni-Cad, Lead-Acid, Li-Ion, NMH, and others), or a different form such as a super-capacitor, fuel cell, wet cell, thin metal film cell, etc.
A design priority for the power source module 1000 may be that it can provide a consistent sensor and control data flows 1400 for the apparatus controller subassembly 900. This can be accomplished while providing a power flow 1500 to the air charging motor subassembly 400 that is better conditioned (e.g., clean and consistent) than externally-supplied power. In some applications this may be modified to meet lower requirements for some embodiments, but other embodiments will use this capability to provide power source module 1000 alternatives for user application configuration. Thus, a single embodiment may have multiple models or product family members depending on the application configurations for power supply.
An example of a preferred embodiment of the power source module 1000 is the use of Boulder Technologies GP100TMFSC batteries in the 12-V (or 24-V) configuration to provide a power source that is mediated using a current limiter and power sensing circuit. This preferred embodiment provides local storage capacity for the power source module 1000 and resources to be managed by apparatus controller 900.
Another characteristic of the exemplary systems and methods described is the ability to use power sources, such as those described in the preferred embodiment, or others, to provide a power source that is independent of external power sources and that is under the direct control of the apparatus controller subassembly that can optimize its power expenditure while having closely monitored operations. This feature may allow an embodiment to apply the use of a local power supply, not required to support other functions outside the air-moving application, that can be used to overcome in-rush current requirements, manage outage conditions (such as after-cooling), and handle control actuation needs to self-protect the entire air handling apparatus.
The apparatus controller subassembly 900 may use the information from the sensor and control data flows for motor 1300 and the sensor and control data flows 1400 from the power source module 1000 to determine appropriate operations, sequencing, and control processes for the invention. In turn, the power source module 1000 may incorporate current limiters, programmable power management, or other active electrical energy management that provide for the system to be efficient with its utilization of electrical power and supplies. Use of up-line supply sensing (not shown) can also be integrated into embodiments of the invention to supply some applications considerations such as hot switching, hot unplugging, or cold attachments. The application of the highly intelligent apparatus controller subassembly may provide the above described advantages, and others, over extant applications within the state of art and practice.
In this preferred embodiment, the air charging effector subassembly 150 contains an air charging wheel that pressurizes and accelerates air to meet the applications needs for a high velocity mass air flow. In other embodiments the air charging effector subassembly 150 may contain other air flow effector devices. In
The apparatus controller subassembly 900 may include the ability to interact with the power source module 1000 to control the deployment of the power source in a manner consistent with a series of profiles, or user demand characteristics, that are supported by the operation of the apparatus controller subassembly. The apparatus controller subassembly may be capable of operating certain functions of the invention on an autonomous basis (for example, for manufacturing testing, field diagnostics, failure/fallback operations, application system diagnostics, maintenance functions, and the like) or under the direction of the external flows through the control and data flows from external interfaces 1800. In a preferred embodiment, this may be transported across an application-network such as NMEA 2000. Other transport could be via CAN, IEEE 802, IEEE 1394, or the like.
The thermal management 195 provisions for some embodiments may be relatively simple. In more complex embodiments there may be active, or passive, heating/cooling thermal management provisions that may be managed by the apparatus controller subassembly based on sensor, operating, design, or application requirements.
In the normal operation of preferred embodiments, the duty cycle of the unit may be either continuous or intermittent (regular or irregular cycles, depending on the application needs). This characteristic may be true of some embodiments, and driven by a unit interfacing with the apparatus controller subassembly.
In this alternate embodiment, the integration of the apparatus controller subassembly 90 suppresses additional costs in the cabling, attachment, and support of the invention in more than one packaging article. The power supply module 100 cables can allow for simplifying the power supply module 100 to eliminate the stored power configuration if the lowest possible price-point is a highly desired design requirement.
This embodiment has the advantages of a very compact form factor packaging, cooling air drawn across the electrical motor and control apparatus assembly, and ability to integrate sensors into a compact design if needed. This alternate embodiment shows that the physical packaging for the invention can vary across embodiments.
Other features, advantages, and benefits are described below. In accordance with another aspect of the present invention(s), the methods and systems allow for a user to obtain a high velocity mass air flow while the user retains control of the operation of the apparatus.
In accordance with another aspect of the invention, the methods and systems allow for the user to obtain a high velocity mass air flow that utilizes a power module subassembly that is integrated into the control of the control apparatus element.
According to another aspect of the invention, the user may obtain a high velocity mass air flow that can be controlled externally in an application through the application of a highly capable control apparatus.
In accordance with yet another aspect of the invention, the methods and systems allow the user to obtain a high velocity mass air flow where the apparatus controller is capable of controlling a plurality of an electric motor, power supply module, thermal management, control valves, and sensors.
According to another aspect of the invention, the user may obtain a high velocity mass air flow that can use sensor, or sensor based, information for control of the apparatus.
According to another aspect of the invention, the user may obtain a high velocity mass air flow that is controlled by a control apparatus capable of determining appropriate functional and environmental, operating and non-operating conditions and modes that protect the safety of the apparatus.
In accordance with another aspect of the invention, the methods and systems allow for the user to obtain a high velocity mass air flow that is controlled by a control apparatus capable of determining appropriate functional and environmental operating conditions and modes that enable automatic operational and performance adjustment of the apparatus.
In accordance with another aspect of the invention, the methods and systems allow for the user to obtain a high velocity mass air flow that utilizes an electric motor, coupled to an air effector, powered by a power module detached from a continuous supply of power.
According to another aspect of the invention, the user may obtain a high velocity mass air flow that utilizes an electric motor, coupled to an air effector, where the unit may be directly connected to an electrical, or other, power source external to the unit, and where the unit can operate, in a different operating mode, without the direct provision of such a power source.
In accordance with another aspect of the invention, the methods and systems allow for the user to obtain a high velocity air mass flow that utilizes an electric motor, coupled to an air effector, where the unit may be directly connected to an electrical, or other, power source external to the unit, and where the unit can operate in a mode that provides supplemental power to the unit when power demand exceeds the external power source supply.
According to another aspect of the invention, the user may obtain a high velocity mass air flow where the information on these activities is relayed for purposes of audit, control, management, assessment, compliance or examination.
According to another aspect of the invention, the user may obtain a high velocity mass air flow where the data from the operation of the unit can provide diagnostic, operating history, sensor measurements, or other metrics from the unit as part of controlled operation.
According to another aspect of the invention, the user may obtain a high velocity mass air flow where the information on these activities is processed by an apparatus (that may include human participation) to determine if compliance with “terms and conditions of use” (internal compliance), contractual compliance, regulatory compliance (compliance with administrative or cooperative regulations), and legal compliance (by statute, treaty, or common law) has been appropriate and as specified.
In accordance with another aspect of the invention, the methods and systems provide for the safe operation of the unit that is governed by a control apparatus that utilizes available sensor and control inputs to decide whether safe operation is possible.
According to yet another aspect of the invention, the user may obtain a high velocity mass air flow that can directly control intake and outflow control valves that change the characterization of the apparatus' performance.
According to another embodiment of the invention, the device may be used as an “inflator/deflator” for partial, or fully, marine vehicles, entertainment and advertising, modular constructions for shelters, and industrial framing components.
According to another embodiment of the invention, the device may be used as a mass air flow device in an HVAC system.
According to another embodiment of the invention, the device may be used as a mass air flow device to manage the air charging requirements in a vehicular or other transportation device where an internal combustion engine is combined with a plurality of one or more other motive power subsystems. Such applications include those sometimes identified as “hybrid” or “plug in” propulsive mechanisms. There are also applications for such a device in purely electrical vehicles, as well as, non-vehicular fixed/mobile applications where the motive power is used for production, operations, and/or generation. In an exemplary application, the device may be linked with the existing propulsive mechanism control modules as either a controlled sub-system peripheral (e.g., extending the ability of the propulsive mechanism control to air charging as well as other functions), or as an independent or autonomous device that provides a self-managed capability to provide air charging in a tailored fashion to the propulsive application requirement.
For propulsive mechanisms where both a combustion engine and an electrical component are incorporated, an mass air flow device embodiment enables efficient operation of the combustion mechanism by providing air charging, supports the application of smaller (and lighter) propulsive mechanisms, and allows optimization of propulsive mechanism operation by choosing where, how, and for what performance to expend electrical power and combusted fuels. The selection of an optimization strategy may be accomplished by the mass air flow device embodiment, by interactions with the vehicular control modules, or under the direct instruction of the vehicular control modules. The incorporation of the mass air flow device allows the propulsive mechanism control modules flexibility in managing combusted fuel—air mixtures' stoichiometric ratio (where the ratio by weight may dynamically range from about 9:1 for ethanol (e.g., 9.7:1 for E85) to about 14.67:1 for gasoline, to about 17:1 for compressed natural gas (e.g., primarily methane) and the ratio may vary depending on other environmental, operating history, operating optimizations, and the like) on a dynamic basis.
A benefit of incorporating a mass air flow device into the air charging management regime for a propulsion application is to provide operational performance, practicality or diverse fueling, and reliability by dynamically adjusted operation of the entire propulsion mechanism. Because the mass air flow device embodiments described are driven by electrical power sources, the presence of large electrical capacities provides for a range of air charging not otherwise possible in air charging devices coupled directly to combustion cycles and combustion. A direct consequence of the availability of the mass air flow device embodiment is the availability of air heated by compression that can also significantly improve the operation of many electrical battery mechanisms by subsystem warming. The same mass air flows can also be diverted for the comfort, or preservation, of passengers and cargo.
As shown in
For hybrid and plug-in automotive (and other transportation) applications, (there are other fixed installation applications such as standby generators, on-site power, and fixed plant motors where this applies as well), the mass air flow device described may be used with particular benefits. The application of an “intelligent” air charging subsystem can be combined with other vehicular subsystems such as, for example, active drive trains, active suspension, fuel/ignition management, emissions controls, electrical management, environmental sensing, active braking, dynamic engine management, or active environmental (compartment) management and the like to optimize the fuel efficiency, comfort, operational flexibility, or performance of the vehicle.
In
In
The air charging effector 11-500, present in all embodiments of the invention, operates on the airflow to change its measured characteristics. In other alternate embodiments where instantiations of the invention are used to generate vacuum other effectors may be used. The air charging effector may change the rate of flow, the pressure of flow, the volume of flow, or it may not change things at all depending on the operating target set for it by the apparatus controller. A change in the rate of flow may be illustrated by the increase in the velocity of the airflow measured in meters/second. A change in the pressure of the flow may be illustrated by the increase in measurable pressure due to the compression of the flow by a compressor wheel and collector measured in torr. A change in the volume of flow may be illustrated by the increase in measureable volume due to the air effector measured in cc per minute.
The air charging motor 11-400 may be directly connected to the apparatus controller 11-900 and may also be connected to electrical power. The apparatus controller 11-900 may be capable of starting, stopping, running, and controlling the running of motors (like 11-400) in small increments. In exemplary embodiments using direct current motors, the rotation of the motor may be controlled by the motor controls to the extent that discrete electrical timing pulses are handled by the motor controls to cause the sequence of electrical events rotating the shaft of the motor 11-400. The connections between the air charging effector 11-500 and the air charging motor 11-400 are coupled and are illustrated by connections that are directly mounted onto the shaft of the electric motor, hooked to the electric motor 11-400 through a gearbox subassembly, coupled by various mechanical means such as small belts or coupled via other shaft rotation conversions. The apparatus controller sub-assembly 11-900 makes use of control signals and feedback indicators from the air charging motor sub-assembly. Illustrative examples of the control signals and feedback indicators are the position information on the rotating assembly, electrical feedback indicators, and electrical current measurements. In various alternative embodiments, none, one, some, or all, of the connections between the air charging motor and apparatus controller may be absent depending on the application for the embodiment or the nature of the specific air charging motor.
Present throughout the embodiment of the apparatus may be safety features and considerations. Self protection for the air charging effector subassembly in the embodiment of the invention is provided by the apparatus controller. Simpler mechanical protections (such as bypass or relief valves) may also be present in alternative embodiments. The packaging of the embodiment may incorporate safety features as well to present incorrect electrical terminations, mis-wired sensors, or missing airflow path ducts' connections. The apparatus controller 11-900 may then handles a plurality of connections to other elements such as sensors, data devices, or other control mechanisms. (See
In alternative embodiments the apparatus controller 11-900 can be a self-sufficient and standalone device and thus requiring minimal connections to external controls or functions. In other alternative embodiments, the apparatus controller may have substantial quantities of connections for sensors, communicating with the application' apparatus, and communicating with other control devices outside the scope of this application. Not illustrated on this
In
The embodiment illustrated uses a shared apparatus controller 12-900 for both air charging motors 12-400. In an alternate embodiment, each motor could have its own apparatus controller (for example if demanded by physical spacing). In this embodiment, the air charging motors 12-400 could have a single power control module (not shown) and share a single secondary power storage device (not shown) or have their own dedicated secondary power storage devices (not shown).
In
The embodiment in
The exemplary embodiment illustrated uses a shared apparatus controller 14-900 for both air charging motors 14-400. In an alternate embodiment each motor could have its own apparatus controller (for example if demanded by physical spacing). In this embodiment the air charging motors 14-400 could have a single power control module (not shown) and share a single secondary power storage device (not shown) or have their own dedicated secondary power storage devices (not shown). In this application, the multiple stages of superchargers may be used to provide very high volumes of air and high flow rates, but at the penalty of high power demanded by the supercharger compressor assemblies 14-104. One use of this embodiment of the invention may be to increase the effectiveness of the supercharger stages by providing them with air charging (especially at low power rates transferred to the supercharger assemblies 14-104).
Also, the plurality of the superchargers illustrated in
The embodiment illustrated may use a shared apparatus controller 15-900 for both air charging motors 15-400. In an alternate embodiment, each motor could have its own apparatus controller (for example if demanded by physical spacing). In this embodiment the air charging motors 15-400 could have a single power control module (not shown) and share a single secondary power storage device (not shown) or have their own dedicated secondary power storage devices (not shown). In this application the multiple stages of super turbochargers are used to provide very high volumes of air and high flow rates, but at the penalty of high power demanded by the super turbocharger compressor assemblies 15-1043. The use of the embodiment of the invention may be to increase the effectiveness of the supercharger stages by providing them with air charging (especially at low power rates transferred to the super turbocharger assemblies 15-1043). The embodiment thus reduces turbo lag at a design point where the primary and secondary turbocharger assemblies 15-103 are ineffective or less effective.
In
This embodiment may provide an improvement over older techniques that used belt-driven air pumps or other power take offs to power the air pumping assembly. For example, the embodiment could, at different times, be applied to pumping cooling or heating air to the exhaust catalyst 157-2400 or to supply oxygen to the exhaust catalyst assembly 175-2400.
The capabilities of the apparatus power source module may be common to exemplary embodiments of the invention with specific instantiations subject to variances for requirements and optimizations in a specific platform environment. In the embodiments of the invention described herein, the assumption is that the functions of the apparatus power source module and secondary power storage device are functionally common and consistent with the description provided for the embodiment of
The nature of running a compressive air charging effector 20-500 as shown is that the energy transferred may also increase the heat of the air output by up to about 20 degrees or more (depending on ambient conditions and air intake setups). The availability of warming for the passenger, cargo, or electronics assembly compartment will serve to keep the available energy capacity of the passenger, cargo, or electronics assembly up in very cold conditions. The use of a local secondary power storage device (not shown) or plug-in grid power to externally power the air charging motor 20-400 may also provide a mechanism to maximize the passenger, cargo, or electronics assembly capacity available at low or very high ambient temperatures. Of particular benefit in a vehicular application at low temperatures is the availability of heated air in a very short (e.g., less than one minute) period of time. Existing hybrid vehicles and electric vehicles use either primary electrical storage power for a resistance heater and fans, or heated air or coolant from an internal combustion engine, or generated electricity for resistance heating from the internal combustion engine to generate this heat. The illustrated embodiment can provide both an airflow and heated air in a very short period of time possibly using only its onboard secondary power storage device (if properly sized) for power until other power is available, for example, from the hybrid electrical systems. In a power configuration and profile using grid power the embodiment acts as a warmer assembly similar to those extant using resistive elements and fans.
The nature of running an air charging effector 21-500 is that the airflow may be supplied to the heat exchanger/chiller assembly 21-2500. The heat exchanger/chiller assembly 21-2500 can take the form of a simple intercooler or be used to drive the exchange in a fluid cooling cycle. The availability of airflow for the passenger, cargo, or electronics assembly compartment may serve to keep the available energy capacity of the passenger, cargo, or electronics assembly up in very hot conditions. The use of a local secondary power storage device (not shown) or plug-in grid power to externally power the air charging motor 21-400 may also provide a mechanism to maximize the passenger, cargo, or electronics assembly capacity available at very high ambient temperatures. Existing hybrid vehicles and electric vehicles typically use either primary electrical storage power for a cooler/chiller and fans, or cooled air or coolant from an external source. The illustrated embodiment may provide both an airflow and cooling air in a very short period of time possibly using only its onboard secondary power storage device (if properly sized) for power until other power is available, for example, from the hybrid electrical systems. In a power configuration and profile using grid power, the exemplary embodiment may act as an airflow assembly. When used in alternate embodiments of the invention, spiral or scroll effectors may be used for cooling applications where they are more appropriate than compression based air-effectors.
The nature of running an air charging effector 22-500 as shown is that the airflow may be supplied to the heat exchanger/chiller assembly 22-2500. The heat exchanger/chiller assembly 22-2500 can take the form of a simple intercooler or be used to drive the exchange in a fluid cooling cycle. The availability of airflow for the passenger, cargo, or electronics assembly compartment may serve to keep the comfort level of the passenger, cargo, or electronics assembly in very hot conditions. The use of a local secondary power storage device (not shown) or plug-in grid power to externally power the air charging motor 22-400 may also provide a mechanism to maximize the passenger, cargo, or electronics assembly comfort available at very high ambient temperatures. The illustrated embodiment may provide both an airflow and cooling air in a very short period of time possibly using only its onboard secondary power storage device (if properly sized) for power until other power is available, for example, from the hybrid electrical systems. In a power configuration and profile using grid power, the embodiment may act as an airflow assembly. When used in alternate embodiments of the invention, spiral or scroll effectors can be used for cooling applications where they are more appropriate than compression based air-effectors.
For example, the high velocity and mass air flow of one such embodiment can be used as a substitute for the large fans used to furnish air into combustion heating furnaces. Another embodiment could be used to supply ambient airflow to a heat exchanger/chiller assembly with an air charging effector optimized for flow. Units as small as 400 g for a 50,000,000 cc/min air mover are possible with this configuration optimized for smaller spaces and features. Multiple embodiments sharing the apparatus controller 24-900 and power management modules (not shown) can reduce average controller and packaging to less than about 3 kg.
The high velocity and mass air flow of one such embodiment can be used a substitute for the large fans used to furnish air into combustion heating furnaces. Another embodiment could be used to supply ambient airflow to a heat exchanger/chiller assembly with an air charging effector optimized for flow. Units as small as about 400 g for a 50,000,000 cc/min air mover are possible with this configuration optimized for smaller spaces and features. Multiple embodiments sharing the apparatus controller 26-900 and power management modules (not shown) can reduce average controller and packaging to less than about 3 kg. Engine manufacturers continually look for ways to keep the total heat environment of their compartments in control. This embodiment of the invention can be connected to the engine control unit or platform control unit to actively cool (by exhausting) the engine environment (connections using the communications or capabilities shown to sensors in
In
The nature of running a compressive air charging effector 27-500 as shown is that the energy transferred may also increase the heat of the air output by up to about 20 degrees or more (depending on ambient conditions and air intake setups). The availability of warming for the passenger, cargo, or engine compartment may serve to keep the comfort of the passenger, cargo, or engine up in very cold conditions. The use of a local secondary power storage device (not shown) or plug-in grid power to externally power the air charging motor 27-400 may also provide a mechanism to maximize the passenger, cargo, or engine capacity available at low ambient temperatures. The embodiment can provide both an airflow and heated air in a very short period of time possibly using only its onboard secondary power storage device (if properly sized) for power until other power is available from the grid electrical systems. In a power configuration and profile using grid power, the embodiment may act as a warmer assembly similar to those extant using resistive elements and fans. In an example embodiment, the apparatus may be applied to the warming of compartments and facilities in bodies of water. This is needed both to maintain comfort conditions and to maintain the operating character of the engine compartments by keeping them sufficiently heated (and air circulated) to avoid formation of ice and frost. Depending on the outlet device the heated airflow can also be augmented by resistive heating elements to increase its airflow temperature to be applied to frost or ice reduction.
Intake (inlet) and outflow (outlet) subassemblies occur in most embodiments of the invention to support optimization of airflow through the air effector subassembly. The plurality of components in the inlet and outlet subassemblies is illustrated by instantiations including diverter valves, active swirl assemblies in the inlet, outlet directing vanes, active swirl assemblies in the outlet, and the appropriate valves such as iris, servo, or diaphragm types. Both active and passive valves can be applied to inlet or outlet functions. Both powered and unpowered valves can be applied with solenoids or other powered mechanisms used for valve controls. An exemplary example of embodiments of active inlet (
In another exemplary embodiment, the capability of an inlet control to manage the pre-swirl on a dynamic basis can alter the functional delivery of a mass air flow to a very different set of efficiency bands. In an exemplary embodiment the capability of an outlet control to manage the pre-swirl on a dynamic basis for the outflow going into another component of a multi-stage embodiment (thus it becomes the pre-swirl of the next stage) can alter the functional delivery of the mass air flow of the next stage of an application.
Valves in the embodiments of the invention include inlet, outlet, bypass valves, re-circulating valves, vents, exhausts, and connections points between airflows. Unpowered inlet and outlet valves are illustrated by the use of ‘diverters’ or ‘gates’ that may be operated by a plurality of methods such as manual intervention, pressure in the airway, or mechanical linkages. Powered inlet and outlet valves may also have unpowered ‘safe’ or ‘fallback’ settings (that use mechanisms such as pressure loading or mechanical springs) to handle conditions of power loss or to protect against damage. In like manner, powered valves may have manual or mechanical settings (that use methods such as vacuum pressure, mechanical linkages, or manual stops) to ensure access to ‘safe’ or ‘fallback’ settings. For valves (inlet and outlet valves in general including bypass valves, re-circulating valves, vents, and exhausts) in general the provision of feedback, pressure, temperature, or other sensors in the assembly also implies a need for the information for the control element to properly manage the valve or know its setting. Local safety provisions in the valve may override control setting in the event of sensor failure detected in the valve assembly.
Exemplary applications include, but are not limited to:
1. Active Drive Trains: that may use an air charging subsystem to manage the availability of torque to the engine for dead stop take offs or transitions between drive train (“shift”) states; and heavy engine load conditions, such as going up a steep hill;
2. Active Suspension: that may use an air charging subsystem to preset suspension characteristics for ‘lags’ in acceleration;
3. Fuel/ignition management: that may use an air charging subsystem to handle flexible fuel (Ethanol, gasoline, diesel, natural gas, hydrogen, or combination fuels) in the same engine by dynamic air charging configuration;
4. Emissions controls: that may use the air charging subsystem to handle the needs for additional air flows (such as Engine Gas Recirculation, Emissions cooling, pre heating of catalytic converters, active filtration or emissions heating);
5. Electrical management: that may use an air charging subsystem to handle the needs to reduce battery demand during combustion engine operations or to add additional performance to power generation capacity while in a demand mode for combustion engine operation or to act in managing overall power supply, capacity, and expenditure;
6. Environmental sensing: that may use an air charging subsystem to handle the effects of very cold conditions on battery performance, engine fuel burning temperature performance, or for supplying non combustion heat to vehicular components;
7. Active braking: that may use the air charging subsystem to efficiently add power for electrical generation in the engine for powered (magnetic or friction) braking of the vehicle.
8. Dynamic Engine Management can use the air charging subsystem to add pressurized air intake or exhaust as needed to optimize engine configuration of mechanical functions (such as engine cycle configuration, operation of engine cycle components, and pneumatic controls); and 9. Environmental Management: that may use an air charging subsystem to add warm air to a passenger or cargo compartment prior to electrical or combustion based heating. This can also be used to warm batteries for better performance in cold conditions. This can also be used to cool batteries with airflow for better performance in hot conditions.
10. Active brake cooling can use the air charging subsystem to blow air across the brakes thereby providing a cooling effect and providing a means for cleaning the brakes under limited soiling circumstances.
11. An embodiment could be employed to generate large number of bubbles for an instantiation where the heat and bubbles were used to oppose the formation of ice onto surfaces.
12. An embodiment could be employed to generate a lowered plenum pressure in an area where a negative pressure should be maintained for cleanliness purposes.
These applications use two features of an embodiment of the invention: 1) the use of a compressive capacity that heats the air while generating the mass air flow, and 2) the capability of the control module of the embodiment to act autonomously, in integration, or under the control of an external management capability.
Common to all of the preferred embodiments of the invention are the specific capabilities providing a comprehensive range of apparatus management of power (power consumption and capacity), air charging mechanism management (electric motor subassembly management of the rotating subassembly, inlet/outlet active management features, and dynamic management of fluid flow), and capabilities and capacity to consider sensor, control, and stored information to function in a complex operating environment.
Another capability or capacity of the apparatus is the functioning of the device in a safe manner with an incorporated set of features to protect the device, operating environment, and human users. Examples of a plurality of features incorporated through the elements composing the invention are safety limits (illustrated by current limiting in the Power Module or operating thermal limits hot and cold for the rotating assembly), sequences of behavior to limit possibly hazardous conditions (illustrated by self-shutdown of the rotating assembly, distinct startup sequences in response to environment conditions, fail-safe settings for inlets and outlets in the event of missing or invalid sensor data) (sometimes called safety protocols), element controls for components of the inventions (illustrated by turning off power to network interface connections if repeatedly creating network errors on operations), indicators and annunciators (illustrative means such as visual, audible, tactile, or via connections) of the status of the device, safety optimization rules (illustrated by reduction of functionality to restricted levels to conserve power to maintain limited operations instead of a total functional shutdown), data logging and archiving (illustrated by storage and archiving of operating states, events, durations, commands, or other diagnostic information during manufacturing test, field test, diagnostic test, or on command from an external control unit), regulatory compliance restrictions (illustrated by rejection of operating conditions that would create a regulatory compliance exception, tracking of regulatory compliance exceptions, or storing compliance measurements), and self-management of the device (illustrated by rejection of an invalid set point, conflicting operating parameters, or rejection of commands that could create a hazard condition).
Embodiments of the invention may differ in their specifics, but exemplary embodiments of the invention may incorporate a plurality of features that are an innovative exploitation of, for example, the available sensor, fine motor control, and power management capabilities. These features can include the management of the device (including inlet, outlet, and air effector management) to reduce or restrict operations in surge or stall conditions. In an analogous fashion to the operation of anti-skid brakes or anti-slip transmission features the control elements of the invention's embodiments can manage a plurality of the features of the embodiment (including inlet, outlet, airflow, air effector, and power management) to maintain the effective levels of operation possible to the device within its targeted operating profile. The active management of the features present in an embodiment of the invention also support device capabilities of self-protecting the apparatus from operating conditions possibly harmful to the device (such as extended operations at levels with certain harmonics, or operations at levels with high vibration or shock conditions, or operations at levels damaging to the recipient of the outflow, or operations where power consumption would cause negative effects). The power management module present in an exemplary embodiment may also provide for the functional enablement of safety and protection features of the device such as management of power consumption for safe operation of the power storage module, management of power consumption for safe operation of the larger battery/power storage module in the application (such as a hybrid battery or fuel cell), protection for the device against electrical quality concerns (such as sags, surges, fade, spikes, or drops in supply), and management of the device for the application (illustrated by preferences for the operation of the platform over passenger comfort without an override).
Operation of the embodiments of the invention may occur under a profile of usage. The use of stored profiles of usage for embodiments of the invention provides specific benefits not available to other conventional systems or elements. The basic concept of a stored profile can be found in a wide variety of implementations in both vehicular and non-vehicular implementations. Some of the novel and innovative aspects of the application of profiles to the embodiments of the present invention may include the availability of the extent and capabilities of profiles from high level operating strategies through low level motor controls. A profile for an embodiment of the invention may include a plurality of parameters, set points, configuration information, operating capabilities, communications sequences and interactions, data handling rules, data storage requirements, security information, stored processing codes, stored objects, encoded personal data, location information, optimization priorities, operating user preferences, maintenance state, operating constraints, and regulatory requirements.
The storage, communication, and processing of these profiles can be accomplished with a wide variety of extant representations, media, communications methods and apparatus, processing modules, interpretation methods, storage media, storage handling, integrity, validity, and security methods, encodings, encryption, partial or complete retrievals, partial or complete storage, constructions, version and configuration controls, external representations, translations, and dynamic algorithmic transformations.
The operational application of profiles in the embodiments of the invention can include both the retrieval, storage, and processing of the numeric, measurement values, textual, or selection indicators for use by the control element of embodiments of the invention, and the dynamic changes and modifications of the profiles that may occur during normal, and abnormal, functions applied to the storage, representation, and translations of the profile components. Profiles in the context of the invention applies to all of the representations, storage, and processing of the individual, and collective, numerical, measurement, textual, or selection indicators at any point in their existence and handling.
“Parameters” can be a plurality of numerical, measurement values, or selection indicators for use by the control element of embodiments of the invention. The parameters cover the requirements of the control element of the embodiments of the invention to properly control the apparatus. The parameters may vary based on the instantiation of the embodiment, but can include a plurality of motor parameters (e.g., startup, shutdown, motor electrical interfacing, motor rotational characteristics, motor electrical consumption, diagnostic and error conditions, availability of diagnostic or configuration information via separate motor interfacing, motor type, motor electrical configuration of windings/poles, motor thermal characteristics, motor response curves, motor efficiency, motor safety responses, motor safe operation, and others), measurement and sensor translation values (such as conversions from thermocouples or pressure sensors to data ranges normally used by the control element, sensor conversion values for external sensors, or other information), and other such values.
“Set points” can be a plurality of numerical, measurement values, or selected operating labels for use by the control element of the embodiments of the invention. The set points cover the dynamic operating values that the control element of the embodiments of the invention applies to the consistent operation of the device. The set points may vary based on the instantiation of the embodiment, but can include a plurality of the values such as idle rotational speeds, minimum operating speeds, tables of operating speeds against ambient temperature or pressure, minimal or maximal temperatures, minimal or maximal pressures, minimal or maximal speeds for conditions of other components in the apparatus, a table of normal operating conditions known as ‘low’, ‘medium’, ‘high’ (or other labeled operating conditions uniform between profiles, but having different set point values), tables of operating values for different power store levels, tables of operating values for different power store types, tables of operating values for different power store discharge rates, tables of operating values for different power consumption rates, or other such values.
“Configuration Information” can be a plurality of numerical, measurement values, textual, or selected operating labels for use by the control element of the embodiments of the invention. The configuration information covers the static and dynamic operating values that the control element of the embodiments of the invention applies to the consistent operation of the device. The configuration information may vary based on the instantiation of the embodiment, but can include a plurality of the values that identify the components, versions, or engineering controls; that identify the number of components present and their capacities or capabilities as needed by the control element; the configuration possibilities for the correct interoperation of the device with its application (such as requirements for other information, device configuration, number and type of other elements present, or requirements for proper operations); the information labeling other collections of data useful for handling external (human or apparatus driven functions) functions (such as warranty, factory records, minimum training or certification requirements for safe maintenance, compatibility with replacement parts, or other labels); and other such values.
“Operating Capabilities” can be a plurality of numerical, measurement values, textual, or selected operating labels for use by the control element of the embodiments of the invention. The operating capabilities may vary based on the instantiation of the embodiment, but can include a plurality of the values that the control element of the embodiments of the invention applies to the consistent operation of the device. The operating capabilities can include the non-sensor information that identifies controls for the inlet and outlet controls (active or passive), the static operating demands for the behavior of the apparatus (such as the presence or absence of a connection to a secondary air injection requirement), the fault tolerance element presence or absence (redundant modules, redundant air effectors and motors, absent backup power storage modules, redundant human interfaces, redundant support for multiple external diagnostic interfaces, and others), the static or dynamic condition of air inlets and outlets, the static or dynamic condition of filters; the static or dynamic condition of sensors, communications methods and apparatus connections.
“Communications sequences and interactions” can be a plurality of numerical, measurement values, textual, or selected operating labels for use by the control element of the embodiments of the invention. The communications sequences and interactions cover the dynamic operating values that the control element of the embodiments of the invention applies to the consistent operation of the device. The communications sequences and interactions may vary based on the instantiation of the embodiment, but can include a plurality of the values illustrated by communications timeouts, sequencing of protocols to be used during operations, sequences of data transmission, error handling codes for communications integrity checking, encryption keys, encryption algorithm identification, communications media checking and preferences, communications protocols, identification values for broadcast or communications interconnections, availability of communications functions such as diagnostic data retrieval, data communications archiving, or control and diagnostic interactions.
“Data handling rules” can be a plurality of numerical, measurement values, textual, or selected operating labels for use by the control element of the embodiments of the invention. The data handling rules covers the dynamic operating values that the control element of the embodiments of the invention applies to the consistent operation of the device. The data handling rules may vary based on the instantiation of the embodiment, but can include a plurality of the values covering data logging intervals, data logging contents, responses to diagnostic data retrieval requests, data archiving, event logging, sensor value handling, power component characteristics, and handling values for other application platform needs.
“Data storage requirements” can be a plurality of numerical, measurement values, textual, or selected operating labels for use by the control element of the embodiments of the invention. The data storage requirements cover the dynamic operating values that the control element of the embodiments of the invention applies to the consistent operation of the device. The data storage requirements may vary based on the instantiation of the embodiment, but can include a plurality of the values and operations related to size and speed of the available data store; the capacity for logging, archiving, and redundant storage functions; the data organization and data structure of stored numerical, measurement values, textual, or label data, representation, and structural information; data storage sequences, events, connections, and interactions.
“Security information” can be a plurality of numerical, measurement values, textual, or selected operating labels for use by the control element of the embodiments of the invention. The security information covers the dynamic operating values that the control element of the embodiments of the invention applies to the consistent operation of the device. The security information may vary based on the instantiation of the embodiment, but can include a plurality of the values such as encryption keys, identities, authentication sequences, access controls, functional controls, integrity checking, validity checking, and conformance. The purposes of the security information handling are to control knowledge, access, integrity, validity, and conformance for functions such as factory testing, diagnostics, warranties, protections against stolen or misappropriated devices, protections against access of information when not controlled, operational integrity, valid operating combinations, maintenance access, modification and reconfiguration controls, and conformance to specifications.
“Stored processing codes” can be a plurality of numerical, procedural values, textual, or selected operating labels for use by the control element of the embodiments of the invention. The stored processing codes cover the dynamic operations that the control element of the embodiments of the invention applies to the conduct of the device. The stored processing codes may vary based on the instantiation of the embodiment, but can include a plurality of the functional representations used to store the events, flow of events, evaluations, calculations, and data management during the conduct of operations. The availability in the profiles of stored processing codes supports the extension of functions of the control element, and other apparatus components, by the ability to statically or dynamically add, change, delete, access, or copy the pre-existing processing codes. The profile provides a specific mechanism and functionality to update, reduce, extend, copy, validate, verify, or replace processing codes in the control element, or other component elements, or the apparatus that embodies the invention.
“Stored objects” can be a plurality of stored data, stored processing codes, configuration information, security information, encoded personal data, or other profile representations stored as objects for use by the control element of the embodiments of the invention. The stored objects covers the static and dynamic operating objects that the control element of the embodiments of the invention applies to the consistent operation of the device. The maintenance state may vary based on the instantiation of the embodiment, but can include a plurality of the objects stored as one or more parts of the profile. Thus, a profile consists of a variety of collections of stored objects that can be statically or dynamically handled and processed during the normal functions of the control element of the embodiments or the invention or by components of the embodiments of the invention depending on the instantiation of the invention.
“Encoded personal data” can be a plurality of numerical, measurement values, textual, or selected operating labels for use by the control element of the embodiments of the invention. The encoded personal data covers the data that the end user or device operator of the embodiments of the invention applies to the presence in the apparatus. The encoded personal data may vary based on the instantiation of the embodiment, but can include a plurality of the data such as identification of asset the apparatus is attached to, the routing for retrieved stored data, identification of the data handling of archived or logged measurement values and operating information, batch or group identification for multiple apparatus, lot tracking information, materials or disposal handling, and other such data.
“Location information” can be a plurality of numerical, measurement values, textual, or selected operating labels for use by the control element of the embodiments of the invention. The location information covers the dynamic operating values that the control element of the embodiments of the invention applies to the consistent operation of the device. The location information may vary based on the instantiation of the embodiment, but can include a plurality of the values useful to the embodiments of the invention such as current location, route planning, energy plan for routing, operational plans for device functions on route, route and time dependencies, or such other data. The purposes of the location information for the control element may be to allow the optimization priorities for the apparatus to be acted upon. Thus, the knowledge of a long uphill grade at a certain part of a forthcoming route can allow the control element of the apparatus to plan for the energy consumed during that part of the route (longer and higher level operations of an air charging device in this example). In analogous fashion, a long downhill grade with regenerative recapture of the energy in a hybrid vehicle thus allow higher levels of battery warming or passenger comfort operations during that part of the route. Routing and time dependencies can provide for additional air charging for dual-transmission vehicles allowing higher performance from the combustion engine component in order to adjust speeds on a longer trip to reach a destination in a time period. For very short runs the need for passenger comfort may outweigh the need for conserving power capacity. For long runs the need for battery warming may exceed that of air charging. The availability of location information to the Control unit of the embodiment of invention enables this capabilities and functions when needed.
“Optimization priorities” can be a plurality of numerical, measurement values, textual, or selected operating labels for use by the control element of the embodiments of the invention. The optimization priorities cover the dynamic operating values that the control element of the embodiments of the invention applies to the operation of the device. The optimization priorities may vary based on the instantiation of the embodiment, but can include a plurality of the values that allow operation of the device supporting a variety of optimizations. An embodiment of the apparatus can always be composed where the safety features of the apparatus and method are always the highest automatic priority for the device. In alternative embodiments the conservation of power capacity, the ability to reach a destination at certain time, the maintenance of comfort for passengers, cargo, or vehicle components, or the need for internal combustion engine fuel can be priorities for control of the apparatus at the lowest level. An additional illustration of an optimization priority is providing a choice to the platform human user between cabin comfort and environmental emissions levels; or between depletion of electrical capacity and fuel capacity. In these cases the optimization priorities can be dynamically modified by human (as part of an informed decision) or application systems intervention in pre-selected types of conduct.
“Operating user preferences” can be a plurality of numerical, measurement values, textual, or selected operating labels for use by the control element of the embodiments of the invention. The operating user preferences cover the dynamic operating values that the control element of the embodiments of the invention applies to the consistent operation of the device. The operating user preferences may vary based on the instantiation of the embodiment, but can include a plurality of the sensor, pre-selection, and automated selection of the optimization priorities, operating constraints, and operating profiles to be applied at specific instances by the Control element. The functions addressed are the identification, selection, and initiation of the profile in the operations controlled by the Control element. Further, the switching, adding, deleting, modification, updating, replacement, or translation/transformation of profiles in response sensor, pre-selection, or automated selection is also a function of the Control element of the invention.
“Maintenance state” can be a plurality of numerical, measurement values, textual, or selected operating labels for use by the control element of the embodiments of the invention. The maintenance state covers the dynamic operating values that the control element of the embodiments of the invention applies to the consistent operation of the device. The maintenance state may vary based on the instantiation of the embodiment, but can include a plurality of the values for functions of the apparatus and methods for hot swapping components of the apparatus, the ability to bypass certain operating constraints, regulatory requirements, optimization priorities, sensor measurements, or conformance requirements such that a qualified user can access the functionality of the device in a secure access controlled manner.
“Operating constraints” can be a plurality of numerical, measurement values, or selected operating labels for use by the control element of the embodiments of the invention. The operating constraints cover the dynamic operating values that the control element of the embodiments of the invention applies to the consistent operation of the device. The operating constraints may vary based on the instantiation of the embodiment, but can include a plurality of the values time or calendar values (such as those limiting the hours of the day, days of the week, duration in hours, duration in days, other bounding values), values for minimal and maximal limits of continuous operations, values for minimal or maximal apparatus behaviors in normal or abnormal conditions (such as pre-run, after-run, maintenance cycles, diagnostic cycles, or in override conditions), values for consistent operations (illustrated by compatibility with other configuration information, regulatory requirements, or air charging requirements), and other information.
“Regulatory requirements” can be a plurality of numerical, measurement values, textual, or selected operating labels for use by the control element of the embodiments of the invention. The regulatory requirements cover the dynamic operating values that the control element of the embodiments of the invention applies to the consistent operation of the device. The regulatory requirements may vary based on the instantiation of the embodiment, but can include a plurality of the values that delimit the operating states or operating requirements of the apparatus. The regulatory requirements may include a plurality of requirements such as minimum/maximum operating elapsed times, minimum/maximum operating temperatures, minimum/maximum operating pressures, average performance over a defined interval of time or elapsed time, minimum/maximum operating components functional, minimum/maximum data logging, minimum/maximum operator interactions, and other such data.
The usefulness of these profiles can be illustrated by the following examples, but the scope and coverage of the embodiments of the invention are not limited to these examples.
In a simple embodiment for a propulsion vehicle a human operator of the apparatus and methods might select between ‘high performance’, ‘best energy conservation’, ‘most comfortable’, or ‘regulatory testing’ profiles, for example.
In a complex embodiment for a hybrid propulsion vehicle having multiple power stores, the profiles might be applied, and changed, for dependencies of vehicle routing, ambient conditions, power store status, levels of available internal combustion fuel, fuel mixture, user preferences, and the like.
The air charging mechanism (subsystem where the embodiment is implemented) effects on engine performance are such that a smaller engine may be used where a larger, heavier, or higher fuel-consumption engine may otherwise have been required. The vehicle designers, operators, or managers can also select the usage pattern, control points, performance trade-offs, and other characteristics of the vehicle operations depending on what features, energy usage, and/or controls are appropriate at design, deployment, or in dynamic operation of the vehicle.
The extant trend to flexible fuel vehicles (which may be particularly important in emerging world markets) allows a wider range of fuel capabilities because the mass air flow device air charging characteristics allow for fuels such as ethanol (with, for example, a 9.1:1 by weight stoichiometric ratio), E85 (9.7:1), gasoline (14.7:1), or natural gas (17:1) to be combusted. This range (of over 80% variance) is even more complex when environmental (such as outside temperature), operating history (engine status), fuel blend (that may be a combination of fuels), or operating needs (high altitude, high demand, low demand) are factored into vehicle management on a dynamic basis. The ability (reliability) to operate the vehicle may depend on the ability of the air charging subsystem to supply appropriate amounts of air when attempting to operate on specific fuels and conditions.
The application of the invention's mass air flow devices into a hybrid, plug-in, or electrical vehicle (see e.g.,
Another feature of exemplary embodiments of the present invention includes the flexibility and capability of the mass flow device to interact with the external controls and environment in ways not previously available. For example, earlier attempts at high velocity mass air moving devices were limited in many situations to simply being turned on or off by a switch control. Other devices were limited to a set palette of operating flows or very limited operating cycles. The limitations from these earlier devices were often due to immediately available power, lack of sensory or control inputs, or highly constrained motor control functions.
The various embodiments of the invention may include a plurality of the features documented here, but many different combinations are possible due to the ability to “soft configure” the device at design, manufacturing, and/or in the field. The ability to customize the configuration of the device while using the same base physical components (such as, for example, the motor, connectors, physical fittings, etc.) also are advantageous to the control of design costs (e.g., using high levels of reuse, design for configuration, design for customization, and component design for design cost control), control manufacturing costs (e.g., common components, design for manufacturing, integrated features for test management, integrated features for manufacturability, integrated features for mass customization in manufacturing, integrated features for quality assurance), and in the field (e.g., common replaceable components, design for field service, integrated self-test features, integrated self-protection features, integrated features for field service quality assurance, and integrated features for field flexibility).
The interactions of the different embodiments of the invention may include several categories of interactions. These exemplary categories are not mutually exclusive, nor are the embodiments limited to a subset of the interactions. Depending on the embodiment, the invention may be capable, with appropriate control flows, of operating in any, or all, of the described interactions with full capability (or a subset as required).
The interactions of the mass flow device can occur in both direct (e.g., control flows, signals, or switching) and indirect (e.g., power states, sensor inputs, common actuator states, broadcast data bus/transport messages) methods. The interactions can occur as conditional requests, preemptory commands, and/or as informational status only. Note that example messages may be dependent on implementation and any specific device embodiment may handle interactions in a manner consistent with the specific implementation and product environment.
The table below illustrates exemplary interactions:
Exemplary categories of interactions between the various mass flow device embodiments and the external include:
None Category of Interaction:
An exemplary embodiment of the “None” category of interactions may include uses of the high velocity mass flow device for ventilation purposes. For many types of this use, the high velocity mass flow device may be coupled to an inflow and outflow that directs the mass air flow to or from the compartment. Operations run either until stopped by an operator or sensors indicate that the function is complete or needs to be halted for other (such as, for example, diagnostic failure) reasons.
External Switched Category of Interaction:
An exemplary embodiment of the “External Switched” category may include a power up/down interaction where the external power supplied to the unit may be controlled by the external application. A simple application occurs when an “automated warming” or an “automated inflator” function is initiated by an external control application to refresh air in an otherwise overheated passenger compartment. The external controller (such as a climate control module for the passenger compartment) switches the mass flow device by Power Up/Down supplied to the device. Operations may run either until stopped by this external switching or because of other reasons (such as, for example, reaching a pre-set run time or diagnostic failure).
Independent Category of Interaction:
An exemplary embodiment of the “Independent” operation includes an application wherein the mass flow device may be deployed to act as a mass air flow for flushing a specified compartment on a self controlled basis. The device' sensors may act to trigger a control flow that initiates a mass air flow flush (for example, to expel unwanted concentrations of gas or particles). Operations may run until a preprogrammed operating cycle is completed or until other conditions are reached (such as, for example, sensors reporting a clearance state, diagnostic failure, or low power conditions). An example of this embodiment is flushing all of the too warm or too cold air from a vehicular compartment (battery or passenger) on a fixed basis, or to purge accumulated gaseous by-products as part of preset operating profile.
Independent—Indirect Category of Interaction:
An exemplary embodiment of the “Independent—Indirect” operation may include a mass flow device deployed in concert with other devices in an environmental control situation or in an environmental protection role for sensitive equipment (such as, for example, batteries, instrumentation, etc.). Sensors hooked into the communications interface (external) from the device that detect a state that requires the application of a mass air flow are then acted in response by the mass flow device. An example of this sensing state includes the failure of another mass air flow device or a falling temperature. This state sensing then triggers operations of the device to provide a mass air flow (that will act as a heat transfer due to the compressive heating of the creation of the pressurized flow) to support the required environment. Operations may run a condition such as those that show the sensor data is now within control limits without the operation of the embodiment, that the state of power support is inadequate, or until a preprogrammed operating cycle is complete.
Independent—Informational Category of Interaction:
An exemplary embodiment of the “Independent—Informational” application of the mass flow device occurs when the embodiment is in direct control (and possibly in sole interface) to sensors in the air flow path (e.g., intake, and outflow, or, onto other elements of environment hooked to the external data interface) or other data flows in the environment (such as, for example, control states, power information, or operating profiles based on time, events, or sequences). The device is responsible for interpreting and acting upon the received sensor or data flows and conducting operations in response that may be a simple operating cycle, or a complex algorithmic response, or a heuristic control system process. Autonomous operations in response to the sensor or data flows can be monitored, recorded, or relayed to other devices, management reporting systems, maintenance stations, archival recording devices, or other readouts and storage as may be required. Additional control flows, data flows, and sensor relay may occur in addition as in those operating modes where the embodiment acts as a primary management controller in a larger environment. Operations may continue until sensor inputs, operating profiles, local power switching, or other indications cause the embodiment to discontinue operations.
Fully Integrated Slave Category of Interaction:
An exemplary embodiment of the “Fully Integrated Slave” application of the mass flow device occurs when the embodiment is under the direct control of an external management unit that controls the starting and stopping of the unit (with local exceptions in the embodiment to self-management directives), conduct of operations (including application of, for example, preset profiles, operating control strategies, and feedback driven controls), and provide data (such as, for example, diagnostic, sensor, operating, or status information). The external management may be responsible for directly commanding the unit to perform operations (even though it may be acting on sensor information provided by the embodiment or by status information related to the state of power module activity). The operations of the embodiment may continue until the unit completes the commanded operations (that may return it to a specific operating mode, such as continuing to relay sensor data), the embodiment acts under self-management directives (such as, for example, to fault and cease operations in self-protection or due to conditions where damage would result to the embodiment, persons, or surrounding devices), the embodiment is commanded by the external management via a control flow to interrupt operations, or until insufficient power is available to operate.
Fully Integrated Peer Category of Interaction:
An exemplary embodiment of the “Fully Integrated Peer” application of the mass flow device may occur when the embodiment is operating both under the control of an external management controller (in similar fashion to all of the functions described for the “Fully Integrated Slave” category of interaction) while in addition the unit pursues independent operations as previously established for the unit (for example, conducting self-diagnostic checks and “warm up” actions when the embodiment first receives power or has idle functional time). The unit may be responsible for arbitrating both the Requested Functions, Preemptory Commands, and responding to direct and indirect signals and flows (e.g., data, control, or sensor) that may occur. The unit is responsible for maintaining operations under a set of strategies (such as, for example, profiles, operating modes, and information actions such as those found in the “Independent—Informational” interaction category). The complexity of actions of the device in the “Fully Integrated Peer” category of interaction may be determined based on the particular application in which the device may be operating such as, for example, with heuristic, pre-planned, or control-loop response strategies. The functions that provide information to outside devices (directly via the external data and control flows interface or indirectly via sensor information that is shared/relayed/available) may continue as controlled by the embodiment.
The following are exemplary engine and vehicle applications in which the mass flow device may be used and/or incorporated. Exemplary applications include:
I. IC Engine/Fuel Types:
1. Gasoline:
Gasoline engines benefit from reduced pumping losses with positive intake pressure. Active control of intake air pressure optimizes combustion efficiency at varying engine speeds and under wide ranging ambient pressure and temperature conditions.
2. Diesel/Biodiesel:
In addition to benefits for gasoline engines, compression of intake air charge provides heat for starting and running at low ambient temperatures. Active control of intake air pressure and temperature optimizes combustion under various mixes of traditional and bio-derived fuels. On-demand pressurized intake charge reduces particulate (smoke) emissions by optimizing combustion under acceleration.
3. Ethanol:
Active control of intake mass air flow allows for most efficient combustion of pure ethanol or intermediate gasoline/ethanol blends. Heated intake charge aids fuel vaporization for engine operation at low ambient temperatures. Additional mass air flow allows for full combustion of larger volume of ethanol as required to produce equivalent power to gasoline fuels.
4. Natural Gas:
Active control of intake mass air flow allows for precise optimization of lean-burn or stoichiometric combustion of natural gas blends of varying gas compositions. Increased mass air delivery increases maximum power available from natural gas fuels.
5. Hydrogen:
Increased mass air flow to engine allows for complete combustion under stoichiometric conditions requiring significantly more airflow than traditional fuels. Compressed intake flow compensates for volume of combustion chamber displaced by gaseous hydrogen fuel. It has been shown that the stoichiometric or chemically correct A/F ratio for the complete combustion of hydrogen in air is about 34:1 by mass. This means that for complete combustion under normal operating conditions, 34 pounds of air are required for every pound of hydrogen. This is much higher than the 14.7:1 A/F ratio required for gasoline.
Due to hydrogen's low ignition energy limit, igniting hydrogen may be easy and gasoline ignition systems can be used. At very lean A/F ratios (e.g., about 130:1 to about 180:1) the flame velocity may be reduced considerably and the use of a dual spark plug system may be preferred. Also, hydrogen engines are typically designed to use about twice as much air as theoretically required for complete combustion. At this A/F ratio, the formation of NOx may be reduced to near zero. Unfortunately, this also reduces the power out-put to about half that of a similarly sized gasoline engine. To make up for the power loss, hydrogen engines may be larger than gasoline engines, and/or may be equipped with a mass flow device.
6. Hydrogen Fuel-Cell:
In a hydrogen fuel-cell vehicle a recognized concern is the ability of the vehicle to operate in cold-weather/ambient conditions. The embodiment of the invention can be applied to the direct realization of these goals. The unique and innovative features of the invention, in these two embodiments, are the provision of a fuel cell warmer that does not depend on electrical resistive heating while providing warm air for other purposes, a fuel cell cooler that also has unique and innovative features, and that the control and management of air moving devices are under the control of an apparatus that can either manage, be managed, or jointly manage the provision of heating and cooling to the fuel cell apparatus. Specifically, the fuel cell warmer uses a compressive heating mechanism, instead of a resistive electrical element, that also can cycle warm air for passenger or cargo comfort. The fuel cell cooler can be more effective with a full integration of the cooling power consumption process with the fuel cell power management control.
II. Power Storage/Hybrid Types:
1. Battery Cell:
Power stored by hybrid vehicle motor/generator is available to maintain sufficient charge in apparatus power storage. Air charge produced by mass airflow device may be used to maintain vehicle batteries at optimal operating temperature. Power supplied by hybrid power storage cells at variable high voltage levels may require voltage regulation, isolation, and conditioning to supply power to airflow apparatus power storage device. Positive pressure mass air flow provides combustion engine with additional torque for acceleration when vehicle battery reserves are depleted or to optimize combustion for recharging process. See
2. “Plug-In” Hybrid:
Hybrid vehicles operated on electric power to the limits of battery capacity are left without electric motor assist when batteries are depleted. On-demand mass air flow provides for additional engine torque as needed during such periods. See
3. “Pure” Hybrid:
Hybrid applications in which an internal combustion engine is used only to provide electrical power to motor systems benefit from the ability to closely control operating cycle of engine for maximum efficiency under varying environmental conditions and fuel supplies. See
While the present invention has been described in connection with the exemplary embodiments of the various Figures, it is not limited thereto and it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiments for performing the same function of the present invention without deviating therefrom. Therefore, the present invention should not be limited to any single embodiment, but rather should be construed in breadth and scope in accordance with the appended claims. Also, the appended claims should be construed to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the true spirit and scope of the present invention.
This application claims priority to Provisional Application Ser. No. 60/887,424, entitled “Generation of High Velocity Mass Air Flows,” by Kwong et al., filed Jan. 31, 2007, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60887424 | Jan 2007 | US |