Not Applicable.
Not Applicable.
This disclosure relates to computer systems and more particularly to evaluation of a computer system.
The structure and operation of the Internet and other publicly available networks are well known and support computer systems (systems) of multitudes of companies, organizations, and individuals. A typical system includes networking equipment, end point devices such as computer servers, user computers, storage devices, printing devices, security devices, and point of service devices, among other types of devices. The networking equipment includes routers, switches, edge devices, wireless access points, and other types of communication devices that intercouple in a wired or wireless fashion. The networking equipment facilitates the creation of one or more networks that are tasked to service all or a portion of a company's communication needs, e.g., Wide Area Networks, Local Area Networks, Virtual Private Networks, etc.
Each device within a system includes hardware components and software components. Hardware components degrade over time and eventually are incapable of performing their intended functions. Software components must be updated regularly to ensure their proper functionality. Some software components are simply replaced by newer and better software even though they remain operational within a system.
Many companies and larger organizations have their own Information Technology (IT) departments. Others outsource their IT needs to third party providers. The knowledge requirements for servicing a system typically outstrip the abilities of the IT department or third-party provider. Thus, hardware and software may not be functioning properly and can adversely affect the overall system.
Cyber-attacks are initiated by individuals or entities with the bad intent of stealing sensitive information such as login/password information, stealing proprietary information such as trade secrets or important new technology, interfering with the operation of a system, and/or holding the system hostage until a ransom is paid, among other improper purposes. A single cyber-attack can make a large system inoperable and cost the system owner many millions of dollars to restore and remedy.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
A computing device may be implemented in a variety of ways. A few examples are shown in
A storage system 19-21 may be implemented in a variety of ways. For example, each storage system is a standalone database. As another example, the storage systems are implemented in a common database. A database is a centralized database, a distributed database, an operational database, a cloud database, an object-oriented database, and/or a relational database. A storage system 19-21 is coupled to the analysis system 10 using a secure data pipeline to limit and control access to the storage systems. The secure data pipeline may be implemented in a variety of ways. For example, the secure data pipeline is implemented on a provide network of the analysis system and/or of a system under test. As another example, the secure data pipeline is implemented via the network 14 using access control, using network controls, implementing access and control policies, using encryption, using data loss prevention tools, and/or using auditing tools.
The one or more networks 14 includes one or more wide area networks (WAN), one or more local area networks (LAN), one or more wireless LANs (WLAN), one or more cellular networks, one or more satellite networks, one or more virtual private networks (VPN), one or more campus area networks (CAN), one or more metropolitan area networks (MAN), one or more storage area networks (SAN), one or more enterprise private networks (EPN), and/or one or more other type of networks.
In general, a system proficiency resource 22 is a source for data regarding best-in-class practices (for system requirements, for system design, for system implementation, and/or for system operation), governmental and/or regulatory requirements, security risk awareness and/or risk remediation information, security risk avoidance, performance optimization information, system development guidelines, software development guideline, hardware requirements, networking requirements, networking guidelines, and/or other system proficiency guidance. “Framework for Improving Critical Instructure Cybersecurity”, Version 1.1, Apr. 16, 2018 by the National Institute of Standards and Technology (NIST) is an example of a system proficiency in the form of a guideline for cybersecurity.
A business associated computing device 23 is one that is operated by a business associate of the system owner. Typically, the business associated computing device 23 has access to at least a limited portion of the system to which the general public does not have access. For example, the business associated computing device 23 is operated by a vendor of the organization operating the system and is granted limited access for order placement and/or fulfillment. As another example, the business associated computing device 23 is operated by a customer of the organization operating the system and is granted limited access for placing orders.
A non-business associated computing device 24 is a computing device operated by a person or entity that does not have a business relationship with the organization operating the system. Such non-business associated computing device 24 are not granted special access to the system. For example, a non-business associated computing device 24 is a publicly available server 27 to which a user computing device of the system may access. As another example, a non-business associated computing device 24 is a subscription based servers 28 to which a user computing device of the system may access if it is authorized by a system administrator of the system to have a subscription and has a valid subscription. As yet another example, the non-business associated computing device 24 is a computing device operated by a person or business that does not have an affiliation with the organization operating the system.
A bot (i.e., internet robot) computing device 25 is a computing device that runs, with little to no human interaction, to interact with a system and/or a computing device of a user via the internet or a network. There are a variety of types of bots. For example, there are social media bots, chatbots, bot crawlers, transaction bots, information bots, and entertainment bots (e.g., games, art, books, etc.).
A bad actor computing device 26 is a computing device operated by a person whose use of the computing device is for illegal and/or immoral purposes. The bad actor computing device 26 may employ a bot to execute an illegal and/or immoral purpose. In addition or in the alternative, the person may instruct the bad actor computing device to perform the illegal and/or immoral purpose, such as hacking, planting a worm, planting a virus, stealing data, uploading false data, and so on.
The analysis system 10 is operable to evaluate a system 11-13, or portion thereof, in a variety of ways. For example, the analysis system 10 evaluates system A 11, or a portion thereof, by testing the organization's understanding of its system, or portion thereof; by testing the organization's implementation of its system, or portion thereof; and/or by testing the system's, or portion thereof; operation. As a specific example, the analysis system 10 tests the organization's understanding of its system requirements for the implementation and/or operation of its system, or portion thereof. As another specific example, the analysis system 10 tests the organization's understanding of its software maintenance policies and/or procedures. As another specific example, the analysis system 10 tests the organization's understanding of its cybersecurity policies and/or procedures.
There is an almost endless combination of ways in which the analysis system 10 can evaluate a system 11-13, which may be a computer system, a computer network, an enterprise system, and/or other type of system that includes computing devices operating software. For example, the analysis system 10 evaluates a system aspect (e.g., the system or a portion of it) based on an evaluation aspect (e.g., options for how the system, or portion thereof, can be evaluated) in view of evaluation rating metrics (e.g., how the system, or portion thereof, is evaluated) to produce an analysis system output (e.g., an evaluation rating, deficiency identification, and/or deficiency auto-correction).
The system aspect (e.g., the system or a portion thereof) includes a selection of one or more system elements of the system, a selection of one or more system criteria, and/or a selection of one or more system modes. A system element of the system included one or more system assets which is one or more physical assets of the system and/or a conceptual assets of the system. For example, a physical asset is a computing entity, a computing device, a user software application, a system software application (e.g., operating system, etc.), a software tool, a network software application, a security software application, a system monitoring software application, and the like. As another example, a conceptual asset is a hardware architectural layout, or portion thereof, and/or a software architectural layout, or portion thereof.
A system element and/or system asset may be identified in a variety of ways. For example, it is identifiable by its use and/or location within the organization. As a specific example, a system element and/or system asset is identified by an organizational identifier, a division of the organization identifier, a department of a division identifier, a group of a department identifier, and/or a sub-group of a group identifier. In this manner, if the entire system is to be evaluated, the organization identifier is used to select all of the system elements in the system. If a portion of the system is to be test based on business function, then a division, department, group, and/or sub-group identifier is used to select the desired portion of the system.
In addition or in the alternative, a system element and/or system asset is identifiable based on a serial number, an IP (internet protocol) address, a vendor name, a type of system element and/or system asset (e.g., computing entity, a particular user software application, etc.), registered user of the system element and/or system asset, and/or other identifying metric. In this manner, an individual system element and/or system asset can be evaluated and/or a type of system element and/or system asset can be evaluated (e.g., a particular user software application).
A system criteria is regarding a level of the system, or portion thereof, being evaluated. For example, the system criteria includes guidelines, system requirements, system design, system build, and resulting system. As a further example, the guidelines (e.g., business objectives, security objectives, NIST cybersecurity guidelines, system objectives, governmental and/or regulatory requirements, third party requirements, etc.) are used to develop the system requirements, which are used to design the system, which is used to the build the resulting system. As such, the system, or potion thereof, can be evaluated from a guideline level, a system requirements level, a design level, a build level, and/or a resulting system level.
A system mode is regarding a different level of the system, or portion thereof, being evaluated. For example, the system mode includes assets, system functions, and security functions. As such, the system can be evaluated from an assets level, a system function level, and/or a security function level.
The evaluation aspect (e.g., options for how the system, or portion thereof, can be evaluated) includes a selection of one or more evaluation perspectives, a selection of one or more evaluation viewpoints, and/or a selection of one or more evaluation categories, which may further include sub-categories, and sub-categories of the sub-categories). An evaluation perspective is understanding of the system, or portion thereof; implementation (e.g., design and build) of the system, or portion thereof; operational performance of the system, or portion thereof; or self-analysis of the system, or portion thereof.
An evaluation viewpoint is disclosed information from the system, discovered information about the system by the analysis system, or desired information about the system obtained by the analysis system from system proficiency resources. The evaluation viewpoint complements the evaluation perspective to allow for more in-depth and/or detailed evaluations. For example, the analysis system 10 can evaluate how well the system is understood by comparing disclosed data with discovered data. As another example, the analysis system 10 can evaluate how well the system is actually implemented in comparison to a desired level of implementation.
The evaluation category includes an identify category, a protect category, a detect category, a respond category, and a recover category. Each evaluation category includes a plurality of sub-categories and, at least some of the sub-categories include their own sub-categories (e.g., a sub-sub category). For example, the identify category includes the sub-categories of asset management, business environment, governance, risk assessment, risk management, access control, awareness & training, and data security. As a further example, asset management includes the sub-categories of hardware inventory, software inventory, data flow maps, external system cataloged, resource prioritization, and security roles. The analysis system 10 can evaluate the system, or portion thereof, in light of one more evaluation categories, in light of an evaluation category and one or more sub-categories, or in light of an evaluation category, a sub-category, and one or more sub-sub-categories.
The evaluation rating metrics (e.g., how the system, or portion thereof, is evaluated) include a selection of process, policy, procedure, certification, documentation, and/or automation. This allows the analysis system to quantify its evaluation. For example, the analysis system 10 can evaluate the processes a system, or portion thereof, has to generate an evaluation rating, to identify deficiencies, and/or to auto-correct deficiencies. As another example, the analysis system 10 can evaluate how well the system, or portion thereof, uses the process it has to generate an evaluation rating, to identify deficiencies, and/or to auto-correct deficiencies.
In an example, the analysis computing entity 16 (which includes one or more computing entities) sends a data gathering request to the analysis system module 17. The data gathering request is specific to the evaluation to be performed by the analysis system 10. For example, if the analysis system 10 is evaluating the understanding of the policies, processes, documentation, and automation regarding the assets built for the engineering department, then the data gathering request would be specific to policies, processes, documentation, and automation regarding the assets built for the engineering department.
The analysis system module 17 is loaded on the system 11-13 and obtained the requested data from the system. The obtaining of the data can be done in a variety of ways. For example, the data is disclosed by one or more system administrators. The disclosed data corresponds to the information the system administrator(s) has regarding the system. In essence, the disclosed data is a reflection of the knowledge the system administrator(s) has regarding the system.
As another example, the analysis system module 17 communicates with physical assets of the system to discover the data. The communication may be direct with an asset. For example, the analysis system module 17 sends a request to a particular computing device. Alternatively or in addition, the communication may be through one or more discovery tools of the system. For example, the analysis system module 17 communicates with one or more tools of the system to obtain data regarding data segregation & boundary, infrastructure management, exploit & malware protection, encryption, identity & access management, system monitoring, vulnerability management, and/or data protection.
A tool is a network monitoring tool, a network strategy and planning tool, a network managing tool, a Simple Network Management Protocol (SNMP) tool, a telephony monitoring tool, a firewall monitoring tool, a bandwidth monitoring tool, an IT asset inventory management tool, a network discovery tool, a network asset discovery tool, a software discovery tool, a security discovery tool, an infrastructure discovery tool, Security Information & Event Management (STEM) tool, a data crawler tool, and/or other type of tool to assist in discovery of assets, functions, security issues, implementation of the system, and/or operation of the system. If the system does not have a particular tool, the analysis system module 17 engages one to discover a particular piece of data.
The analysis system module 17 provides the gathered data to the analysis computing entity 16, which stores the gathered data in a private storage 19-21 and processes it. The gathered data is processed alone, in combination with stored data (of the system being evaluated and/or another system's data), in combination with desired data (e.g., system proficiencies), in combination with analysis modeling (e.g., risk modeling, data flow modeling, security modeling, etc.), and/or in combination with stored analytic data (e.g., results of other evaluations). As a result of the processing, the analysis computing entity 16 produces an evaluation rating, to identify deficiencies, and/or to auto-correct deficiencies. The evaluation results are stored in a private storage and/or in another database.
The analysis system 10 is operable to evaluate a system and/or its eco-system at any level of granularity from the entire system to an individual asset over a wide spectrum of evaluation options. As an example, the evaluation is to test understanding of the system, to test the implementation of the system, and/or to test the operation of the system. As another example, the evaluation is to test the system's self-evaluation capabilities with respect to understanding, implementation, and/or operation. As yet another example, the evaluation is to test policies regarding software tools; to test which software tools are prescribed by policy; to test which software tools are prohibited by policy; to test the use of the software tools in accordance with policy, to test maintenance of software tools in accordance with policy; to test the sufficiency of the policies, to test the effectiveness of the policies; and/or to test compliancy with the policies.
The analysis system 10 takes an outside perspective to analyze the system. From within the system, it is often difficult to test the entire system, to test different combinations of system elements, to identify areas of vulnerabilities (assets and human operators), to identify areas of strength (assets and human operators), and to be proactive. Further, such evaluations are additional tasks the system has to perform, which means it consumes resources (human, physicals assets, and financial). Further, since system analysis is not the primary function of a system (supporting the organization is the system's primary purpose), the system analysis is not as thoroughly developed, implemented, and/or executed as is possible when its implemented in a stand-alone analysis system, like system 10.
The primary purpose of the analysis system is to analyze other systems to determine an evaluation rating, to identify deficiencies in the system, and, where it can, auto-correct the deficiencies. The evaluation rating can be regarding how well the system, or portion thereof, is understood, how well it is implemented, and/or how well it operates. The evaluation rating can be regarding how effective the system, or portion thereof, is believed (disclosed data) to support a business function; actually (discovered data) supports a business function; and/or should (desired data) support the business function.
The evaluation rating can be regarding how effective the system, or portion thereof, is believed (disclosed data) to mitigate security risks; actually (discovered data) supports mitigating security risks; and/or should (desired data) support mitigating security risks. The evaluation rating can be regarding how effective the system, or portion thereof, is believed (disclosed data) to respond to security risks; actually (discovered data) supports responding to security risks; and/or should (desired data) support responding security risks.
The evaluation rating can be regarding how effective the system, or portion thereof, is believed (disclosed data) to be used by people; is actually (discovered data) used by people; and/or should (desired data) be used by people. The evaluation rating can be regarding how effective the system, or portion thereof, is believed (disclosed data) to identify assets of the system; actually (discovered data) identifies assets of the system; and/or should (desired data) identify assets of the system.
There are a significant number of combinations in which the analysis system 10 can evaluate a system 11-13. A primary purpose the analysis system 10 is help the system 11-13 become more self-healing, more self-updating, more self-protecting, more self-recovering, more self-evaluating, more self-aware, more secure, more efficient, more adaptive, and/or more self-responding. By discovering the strengths, weaknesses, vulnerabilities, and other system limitations in a way that the system itself cannot do effectively, the analysis system 10 significantly improves the usefulness, security, and efficiency of systems 11-13.
Each of the main memories 45 includes one or more Random Access Memory (RAM) integrated circuits, or chips. For example, a main memory 45 includes four DDR4 (4th generation of double data rate) RAM chips, each running at a rate of 2,400 MHz. In general, the main memory 45 stores data and operational instructions most relevant for the processing module 43. For example, the core control module 41 coordinates the transfer of data and/or operational instructions between the main memory 45 and the memory 56-57. The data and/or operational instructions retrieve from memory 56-57 are the data and/or operational instructions requested by the processing module or will most likely be needed by the processing module. When the processing module is done with the data and/or operational instructions in main memory, the core control module 41 coordinates sending updated data to the memory 56-57 for storage.
The memory 56-57 includes one or more hard drives, one or more solid state memory chips, and/or one or more other large capacity storage devices that, in comparison to cache memory and main memory devices, is/are relatively inexpensive with respect to cost per amount of data stored. The memory 56-57 is coupled to the core control module 41 via the I/O and/or peripheral control module 46 and via one or more memory interface modules 54. In an embodiment, the I/O and/or peripheral control module 46 includes one or more Peripheral Component Interface (PCI) buses to which peripheral components connect to the core control module 41. A memory interface module 54 includes a software driver and a hardware connector for coupling a memory device to the I/O and/or peripheral control module 46. For example, a memory interface 54 is in accordance with a Serial Advanced Technology Attachment (SATA) port.
The core control module 41 coordinates data communications between the processing module(s) 43 and the network(s) 14 via the I/O and/or peripheral control module 46, the network interface module(s) 55, and a network card 58 or 59. A network card 58 or 59 includes a wireless communication unit or a wired communication unit. A wireless communication unit includes a wireless local area network (WLAN) communication device, a cellular communication device, a Bluetooth device, and/or a ZigBee communication device. A wired communication unit includes a Gigabit LAN connection, a Firewire connection, and/or a proprietary computer wired connection. A network interface module 55 includes a software driver and a hardware connector for coupling the network card to the I/O and/or peripheral control module 46. For example, the network interface module 55 is in accordance with one or more versions of IEEE 802.11, cellular telephone protocols, 10/100/1000 Gigabit LAN protocols, etc.
The core control module 41 coordinates data communications between the processing module(s) 43 and input device(s) 52 via the input interface module(s) 50, the I/O interface 49, and the I/O and/or peripheral control module 46. An input device 52 includes a keypad, a keyboard, control switches, a touchpad, a microphone, a camera, etc. An input interface module 50 includes a software driver and a hardware connector for coupling an input device to the I/O and/or peripheral control module 46. In an embodiment, an input interface module 50 is in accordance with one or more Universal Serial Bus (USB) protocols.
The core control module 41 coordinates data communications between the processing module(s) 43 and output device(s) 53 via the output interface module(s) 51 and the I/O and/or peripheral control module 46. An output device 53 includes a speaker, auxiliary memory, headphones, etc. An output interface module 51 includes a software driver and a hardware connector for coupling an output device to the I/O and/or peripheral control module 46. In an embodiment, an output interface module 46 is in accordance with one or more audio codec protocols.
The processing module 43 communicates directly with a video graphics processing module 42 to display data on the display 48. The display 48 includes an LED (light emitting diode) display, an LCD (liquid crystal display), and/or other type of display technology. The display has a resolution, an aspect ratio, and other features that affect the quality of the display. The video graphics processing module 42 receives data from the processing module 43, processes the data to produce rendered data in accordance with the characteristics of the display, and provides the rendered data to the display 48.
In this embodiment, the computing device 40 includes enough processing resources (e.g., module 66, ROM 44, and RAM 67) to boot up. Once booted up, the cloud memory 62 and the cloud processing module(s) 63 function as the computing device's memory (e.g., main and hard drive) and processing module.
In addition to the discussion with respect
The system 11 is shown to include three inter-dependent modes: system functions 82, security functions 83, and system assets 84. System functions 82 correspond to the functions the system executes to support the organization's business requirements. Security functions 83 correspond to the functions the system executes to support the organization's security requirements. The system assets 84 are the hardware and/or software platforms that support system functions 82 and/or the security functions 83.
The analysis system module 17 includes one or more data extraction modules 80 and one or more system user interface modules 81. A data extraction module 80, which will be described in greater detail with reference to one or more subsequent figures, gathers data from the system for analysis by the analysis system 10. A system user interface module 81 provides a user interface between the system 11 and the analysis system 10 and functions to provide user information to the analysis system 10 and to receive output data from the analysis system. The system user interface module 81 will be described in greater detail with reference to one or more subsequent figures.
In this embodiment, the system 11 includes a plurality of sets of system assets to support the system functions 82 and/or the security functions 83. For example, a set of system assets supports the system functions 82 and/or security functions 83 for a particular business segment (e.g., a department within the organization). As another example, a second set of system assets supports the security functions 83 for a different business segment and a third set of system assets supports the system functions 82 for the different business segment.
In this embodiment, the system 11 includes a plurality of sets of system assets 84, system functions 82, and security functions 83. For example, a set of system assets 84, system functions 82, and security functions 83 supports one department in an organization and a second set of system assets 84, system functions 82, and security functions 83 supports another department in the organization.
In this embodiment, the system 11 includes system assets 84, system functions 82, security functions 83, and self-evaluation functions 85. The self-evaluation functions 85 are supported by the system assets 84 and are used by the system to evaluate its assets, is system functions, and its security functions. In general, self-evaluates looks at system's ability to analyze itself for self-determining it's understanding (self-aware) of the system; self-determining the implementation of the system, and/or self-determining operation of the system. In addition, the self-evaluation may further consider the system's ability to self-heal, self-update, self-protect, self-recover, self-evaluate, and/or self-respond. The analysis system 10 can evaluate the understanding, implementation, and/or operation of the self-evaluation functions.
In this embodiment, the system 11 is shown to include a plurality of physical assets dispersed throughout a geographic region (e.g., a building, a town, a county, a state, a country). Each of the physical assets includes hardware and software to perform its respective functions within the system. A physical asset is a computing entity (CE), a public or provide networking device (ND), a user access device (UAD), or a business associate access device (BAAD).
A computing entity may be a user device, a system admin device, a server, a printer, a data storage device, etc. A network device may be a local area network device, a network card, a wide area network device, etc. A user access device is a portal that allows authorizes users of the system to remotely access the system. A business associated access device is a portal that allows authorized business associates of the system access the system.
Some of the computing entities are grouped via a common connection to a network device, which provides the group of computing entities access to other parts of the system and/or the internet. For example, the highlighted computing entity may access a publicly available server 25 via network devices coupled to the network infrastructure. The analysis system 10 can evaluation whether this is an appropriate access, the understanding of this access, the implementation to enable this access, and/or the operation of the system to support this access.
In this embodiment, the system 11 is shown to include a plurality of system assets (SA). A system asset (SA) may include one or more system sub assets (S2A) and a system sub asset (S2A) may include one or more system sub-sub assets (S3A). While being a part of the analysis system 10, at least one data extraction module (DEM) 80 and at least one system user interface module (SUIM) 81 are installed on the system 11.
A system element includes one or more system assets. A system asset (SA) may be a physical asset or a conceptual asset as previously described. As an example, a system element includes a system asset of a computing device. The computing device, which is the SA, includes user applications and an operating system; each of which are sub assets of the computing device (S2A). In addition, the computing device includes a network card, memory devices, etc., which are sub assets of the computing device (S2A). Documents created from a word processing user application are sub assets of the word processing user application (S3A) and sub-sub assets of the computing device.
As another example, the system asset (SA) includes a plurality of computing devices, printers, servers, etc. of a department of the organization operating the system 11. In this example, a computing device is a sub asset of the system asset and the software and hardware of the computing devices are sub-sub assets.
The analysis system 10 may evaluate understanding, implementation, and/or operation of one or more system assets, one or more system sub assets, and/or one or more system sub-sub assets, as an asset, as it supports system functions 82, and/or as it supports security functions. The evaluation may be to produce an evaluation rating, to identify deficiencies, and/or to auto-correct deficiencies.
The analysis interface device 101 includes a data extraction module (DEM) 80 and the system user interface module 81 to provide connectivity to the analysis system 10. With the connectivity, the analysis system 10 is able to evaluate understanding, implementation, and/or operation of each device, or portion thereof, as an asset, as it supports system functions 82, and/or as it supports security functions. For example, the analysis system 10 evaluates the understanding of networking devices 102 as an asset. As a more specific example, the analysis system 10 evaluates how well the networking devices 102, its hardware, and its software are understood within the system and/or by the system administrators. The evaluation includes how well are the networking devices 102, its hardware, and its software documented; how well are they implemented based on system requirements; how well do they operate based on design and/or system requirements; how well are they maintained per system policies and/or procedures; how well are their deficiencies identified; and/or how well are their deficiencies auto-corrected.
The system admin device 104 includes one or more analysis system modules 17, which includes a data extraction module (DEM) 80 and the system user interface module 81 to provide connectivity to the analysis system 10. With the connectivity, the analysis system 10 is able to evaluate understanding, implementation, and/or operation of each device, or portion thereof, as an asset, as it supports system functions 82, and/or as it supports security functions. For example, the analysis system 10 evaluates the implementation of networking devices 102 to support system functions. As a more specific example, the analysis system 10 evaluates how well the networking devices 102, its hardware, and its software are implemented within the system to support one or more system functions (e.g., managing network traffic, controlling network access per business guidelines, policies, and/or processes, etc.). The evaluation includes how well is the implementation of the networking devices 102, its hardware, and its software documented to support the one or more system functions; how well does their implementation support the one or more system functions; how well have their implementation to support the one or more system functions been verified in accordance with policies, processes, etc.; how well are they updated per system policies and/or procedures; how well are their deficiencies in support of the one or more system functions identified; and/or how well are their deficiencies in support of the one or more system functions auto-corrected.
The networking devices 102 includes one or more modems 120, one or more routers 121, one or more switches 122, one or more access points 124, and/or one or more local area network cards 124. The analysis system 10 can evaluate the network devices 102 collectively as assets, as they support system functions, and/or as they support security functions. The analysis system 10 may also evaluate each network device individually as an asset, as it supports system functions, and/or as it supports security functions. The analysis system may further evaluate one or more network devices as part of the physical assets of a system aspect (e.g., the system or a portion thereof being evaluated with respect to one or more system criteria and one or more system modes).
The security devices 103 includes one or more infrastructure management tools 125, one or more encryption software programs 126, one or more identity and access management tools 127, one or more data protection software programs 128, one or more system monitoring tools 129, one or more exploit and malware protection tools 130, one or more vulnerability management tools 131, and/or one or more data segmentation and boundary tools 132. Note that a tool is a program that functions to develop, repair, and/or enhance other programs and/or hardware.
The analysis system 10 can evaluate the security devices 103 collectively as assets, as they support system functions, and/or as they support security functions. The analysis system 10 may also evaluate each security device individually as an asset, as it supports system functions, and/or as it supports security functions. The analysis system may further evaluate one or more security devices as part of the physical assets of a system aspect (e.g., the system or a portion thereof being evaluated with respect to one or more system criteria and one or more system modes).
The servers 107 include one or more telephony servers 133, one or more ecommerce servers 134, one or more email servers 135, one or more web servers 136, and/or one or more content servers 137. The analysis system 10 can evaluate the servers 103 collectively as assets, as they support system functions, and/or as they support security functions. The analysis system 10 may also evaluate each server individually as an asset, as it supports system functions, and/or as it supports security functions. The analysis system may further evaluate one or more servers as part of the physical assets of a system aspect (e.g., the system or a portion thereof being evaluated with respect to one or more system criteria and one or more system modes).
The storage devices includes one or more cloud storage devices 138, one or more storage racks 139 (e.g., a plurality of storage devices mounted in a rack), and/or one or more databases 140. The analysis system 10 can evaluate the storage devices 103 collectively as assets, as they support system functions, and/or as they support security functions. The analysis system 10 may also evaluate each storage device individually as an asset, as it supports system functions, and/or as it supports security functions. The analysis system may further evaluate one or more storage devices as part of the physical assets of a system aspect (e.g., the system or a portion thereof being evaluated with respect to one or more system criteria and one or more system modes).
The user devices 105 include one or more landline phones 141, one or more IP cameras 144, one or more cell phones 143, one or more user computing devices 145, one or more IP phones 150, one or more video conferencing equipment 148, one or more scanners 151, and/or one or more printers 142. The analysis system 10 can evaluate the use devices 103 collectively as assets, as they support system functions, and/or as they support security functions. The analysis system 10 may also evaluate each user device individually as an asset, as it supports system functions, and/or as it supports security functions. The analysis system may further evaluate one or more user devices as part of the physical assets of a system aspect (e.g., the system or a portion thereof being evaluated with respect to one or more system criteria and one or more system modes).
The system admin devices 104 includes one or more system admin computing devices 146, one or more system computing devices 194 (e.g., data management, access control, privileges, etc.), and/or one or more security management computing devices 147. The analysis system 10 can evaluate the system admin devices 103 collectively as assets, as they support system functions, and/or as they support security functions. The analysis system 10 may also evaluate each system admin device individually as an asset, as it supports system functions, and/or as it supports security functions. The analysis system may further evaluate one or more system admin devices as part of the physical assets of a system aspect (e.g., the system or a portion thereof being evaluated with respect to one or more system criteria and one or more system modes).
The memory 162 includes non-volatile memory, volatile memory and/or disk memory. The non-volatile memory stores hardware IDs, user credentials, security data, user IDs, passwords, access rights data, device IDs, one or more IP addresses and security software. The volatile memory includes system volatile memory and user volatile memory. The disk memory includes system disk memory and user disk memory. User memory (volatile and/or disk) stores user data and user applications. System memory (volatile and/or disk) stores system applications and system data.
The user interface 104 includes one or more I/O (input/output) devices such as video displays, keyboards, mice, eye scanners, microphones, speakers, and other devices that interface with one or more users. The user interface 161 further includes one or more physical (PHY) interface with supporting software such that the user computing device can interface with peripheral devices.
The software 160 includes one or more I/O software interfaces (e.g., drivers) that enable the processing module to interface with other components. The software 160 also includes system applications, user applications, disk memory software interfaces (drivers) and network software interfaces (drivers).
The networking device 164 may be a network card or network interface that intercouples the user computing device 105 to devices external to the computing device 105 and includes one or more PHY interfaces. For example, the network card is a WLAN card. As another example, he network card is a cellular data network card. As yet another example, the network card is an ethernet card.
The user computing device may further include a data extraction module 80. This would allow the analysis system 10 to obtain data directly from the user computing device. Regardless of how the analysis system 10 obtains data regarding the user computing device, the analysis system 10 can evaluate the user computing device as an asset, as it supports one or more system functions, and/or as it supports one or more security functions. The analysis system 10 may also evaluate each element of the user computing device (e.g., each software application, each drive, each piece of hardware, etc.) individually as an asset, as it supports one or more system functions, and/or as it supports one or more security functions.
The software 170 includes one or more I/O software interfaces (e.g., drivers) that enable the software 170 to interface with other components. The software 170 includes system applications, server applications, disk memory software interfaces (drivers), and network software interfaces (drivers). The networking resources 173 may be one or more network cards that provides a physical interface for the server to a network.
The server 107 may further include a data extraction module 80. This would allow the analysis system 10 to obtain data directly from the server. Regardless of how the analysis system 10 obtains data regarding the server, the analysis system 10 can evaluate the server as an asset, as it supports one or more system functions, and/or as it supports one or more security functions. The analysis system 10 may also evaluate each element of the server (e.g., each software application, each drive, each piece of hardware, etc.) individually as an asset, as it supports one or more system functions, and/or as it supports one or more security functions.
In this embodiment, the system 11 is shown to include a plurality of system functions (SF). A system function (SF) may include one or more system sub functions (S2F) and a system sub function (S2F) may include one or more system sub-sub functions (S3F). While being a part of the analysis system 10, at least one data extraction module (DEM) 80 and at least one system user interface module (SUIM) 81 are installed on the system 11.
A system function (SF) includes one or more business operations, one or more compliance requirements, one or more data flow objectives, one or more data access control objectives, one or more data integrity objectives, one or more data storage objectives, one or more data use objectives, and/or one or more data dissemination objectives. Business operation system functions are the primary purpose for the system 11. The system 11 is designed and built to support the operations of the business, which vary from business to business.
In general, business operations include operations regarding critical business functions, support functions for core business, product and/or service functions, risk management objectives, business ecosystem objectives, and/or business contingency plans. The business operations may be divided into executive management operations, information technology operations, marketing operations, engineering operations, manufacturing operations, sales operations, accounting operations, human resource operations, legal operations, intellectual property operations, and/or finance operations. Each type of business operation includes sub-business operations, which, in turn may include its own sub-operations.
For example, engineering operations includes a system function of designing new products and/or product features. The design of a new product or feature involves sub-functions of creating design specifications, creating a design based on the design specification, and testing the design through simulation and/or prototyping. Each of these steps includes sub-steps. For example, for the design of a software program, the design process includes the sub-sub system functions of creating a high level design from the design specifications; creating a low level design from the high level design; and the creating code from the low level design.
A compliance requirement may be a regulatory compliance requirement, a standard compliance requirement, a statutory compliance requirement, and/or an organization compliance requirement. For example, there are a regulatory compliance requirements when the organization has governmental agencies as clients. An example of a standard compliance requirement, encryption protocols are often standardized. Data Encryption Standard (DES), Advanced Encryption Standard (AES), RSA (Rivest-Shamir-Adleman) encryption, and public-key infrastructure (PKI) are examples of encryption type standards. HIPAA (health Insurance Portability and Accountability Act) is an example of a statutory compliance requirement. Examples of organization compliance requirements include use of specific vendor hardware, use of specific vendor software, use of encryption, etc.
A data flow objective is regarding where data can flow, at what rate data can and should flow, the manner in which the data flow, and/or the means over which the data flows. As an example of a data flow objective, data for remote storage is to flow via a secure data pipeline using a particular encryption protocol. As another example of a data flow objective, ingesting of data should have the capacity to handle a data rate of 100 giga-bits per second.
A data access control objective established which type of personnel and/or type of assets can access specific types of data. For example, certain members of the corporate department and human resources department have access to employee personnel files, while all other members of the organization do not.
A data integrity objective establishes a reliability that, when data is retrieved, it is the data that was stored, i.e., it was not lost, damaged, or corrupted. An example of a data integrity protocol is Cyclic Redundancy Check (CRC). Another example of a data integrity protocol is a hash function.
A data storage objective establishes the manner in which data is to be stored. For example, a data storage objective is to store data in a RAID system; in particular, a RAID 6 system. As another example, a data storage objective is regarding archiving of data and the type of storage to use for archived data.
A data use objective establishes the manner in which data can be used. For example, if the data is for sale, then the data use objective would establish what type of data is for sale, at what price, and what is the target customer. As another example, a data use objective establishes read only privileges, editing privileges, creation privileges, and/or deleting privileges.
A data dissemination objective establishes how the data can be shared. For example, a data dissemination objective is regarding confidential information and indicates how the confidential information should be marked, who in can be shared with internally, and how it can be shared externally, if at all.
The analysis system 10 may evaluate understanding, implementation, and/or operation of one or more system functions, one or more system sub functions, and/or one or more system sub-sub functions. The evaluation may be to produce an evaluation rating, to identify deficiencies, and/or to auto-correct deficiencies. For example, the analysis system 10 evaluates the understanding of the software development policies and/or processes. As another example, the analysis system 10 evaluates the use of software development policies and/or processes to implement a software program. As yet another example, analysis system 10 evaluates the operation of the software program with respect to the business operation, the design specifications, and/or the design.
The business structure is generic and can be used to represent the structure of most conventional businesses and/or organizations. The analysis system 10 is able to use this generic structure to create and categorize the business structure of the system 11. The creation and categorization of the business structure is done in a number of ways. Firstly, the analysis system 10 accesses corporate organization documents for the business and receive feedback from one or more persons in the business and use these documents and data to initially determine at least partially the business structure. Secondly, the analysis system 10 determines the network structure of the other system, investigate identities of components of the network structure, and construct a sub-division of the other system. Then, based upon software used within the sub-division, data character, and usage character, the analysis system 10 identifies more specifically the function of the divisions, departments and groups. In doing so, the analysis system 10 uses information known of third-party systems to assist in the analysis.
With the abstraction of the business structure, differing portions of the business structure may have different levels of abstraction from a component/sub-component/sub-sub-component/system/sub-system/sub-sub-system level based upon characters of differing segments of the business. For example. a more detailed level of abstraction for elements of the corporate and security departments of the business may be taken than for other departments of the business.
Likewise, the IT department 181 includes a plurality of hardware devices 290, a plurality of software applications 292, a plurality of business policies 294, a plurality of business procedures 296, local networking 298, a plurality of security policies 300, a plurality of security procedures 302, data protection resources 304, data access resources 306, data storage devices 308, a personnel hierarchy 310, and external networking 312. Based upon an assessment of these assets of the IT department 181, the analysis system 10 may evaluate the understanding, implementation, and/or operation of the assets, system functions, and/or security functions of the IT department from a number of different perspectives, as will be described further with reference to one or more of the subsequent figures.
Likewise, each of the operations department 191, the engineering department 192, the manufacturing department 193, the sales department 194, and the accounting department 195 includes a plurality of devices, software, security policies, security procedures, business policies, business procedures, data protection resources, data access resources, data storage resources, a personnel hierarchy, local network resources, and external network resources.
Further, within the business structure, a service mesh may be established to more effectively protect important portions of the business from other portions of the business. The service mesh may have more restrictive safety and security mechanisms for one part of the business than another portion of the business, e.g., manufacturing department service mesh is more restrictive than the sales department service mesh.
The analysis system 10 may evaluate the understanding, implementation, and/or operation of the assets, system functions, and/or security functions of the division 182, of each department, of each type of system elements, and/or each system element. For example, the analysis system 10 evaluates the data access policies and procedures of each department. As another example, the analysis system 10 evaluates the data storage policies, procedures, design, implementation, and/or operation of data storage within the engineering department 192.
In this embodiment, the system 11 is shown to include a plurality of security functions (SEF). A security function (SEF) may include one or more system sub security functions (SE2F) and a security sub function (SE2F) may include one or more security sub-sub functions (SE3F). While being a part of the analysis system 10, at least one data extraction module (DEM) 80 and at least one system user interface module (SUIM) 81 are installed on the system 11. As used herein, a security function includes a security operation, a security requirement, a security policy, and/or a security objective with respect to data, system access, system design, system operation, and/or system modifications (e.g., updates, expansion, part replacement, maintenance, etc.).
A security function (SF) includes one or more threat detection functions, one or more threat avoidance functions, one or more threat resolution functions, one or more threat recovery functions, one or more threat assessment functions, one or more threat impact functions, one or more threat tolerance functions, one or more business security functions, one or more governance security functions, one or more data at rest protection functions, one or more data in transit protection functions, and/or one or more data loss prevention functions.
A threat detection function includes detecting unauthorized system access; detecting unauthorized data access; detecting unauthorized data changes; detecting uploading of worms, viruses, and the like; and/or detecting bad actor attacks. A threat avoidance function includes avoiding unauthorized system access; avoiding unauthorized data access; avoiding unauthorized data changes; avoiding uploading of worms, viruses, and the like; and/or avoiding bad actor attacks.
A threat resolution function includes resolving unauthorized system access; resolving unauthorized data access; resolving unauthorized data changes; resolving uploading of worms, viruses, and the like; and/or resolving bad actor attacks. A threat recovery function includes recovering from an unauthorized system access; recovering from an unauthorized data access; recovering from an unauthorized data changes; recovering from an uploading of worms, viruses, and the like; and/or recovering from a bad actor attack.
A threat assessment function includes accessing the likelihood of and/or mechanisms for unauthorized system access; accessing the likelihood of and/or mechanisms for unauthorized data access; accessing the likelihood of and/or mechanisms for unauthorized data changes; accessing the likelihood of and/or mechanisms for uploading of worms, viruses, and the like; and/or accessing the likelihood of and/or mechanisms for bad actor attacks.
A threat impact function includes determining an impact on business operations from an unauthorized system access; resolving unauthorized data access; determining an impact on business operations from an unauthorized data changes; determining an impact on business operations from an uploading of worms, viruses, and the like; and/or determining an impact on business operations from a bad actor attacks.
A threat tolerance function includes determining a level of tolerance for an unauthorized system access; determining a level of tolerance for an unauthorized data access; determining a level of tolerance for an unauthorized data changes; determining a level of tolerance for an uploading of worms, viruses, and the like; and/or determining a level of tolerance for a bad actor attacks.
A business security function includes data encryption, handling of third party data, releasing data to the public, and so on. A governance security function includes HIPAA compliance; data creation, data use, data storage, and/or data dissemination for specific types of customers (e.g., governmental agency); and/or the like.
A data at rest protection function includes a data access protocol (e.g., user ID, password, etc.) to store data in and/or retrieve data from system data storage; data storage requirements, which include type of storage, location of storage, and storage capacity; and/or other data storage security functions.
A data in transit protection function includes using a specific data transportation protocol (e.g., TCP/IP); using an encryption function prior to data transmission; using an error encoding function for data transmission; using a specified data communication path for data transmission; and/or other means to protect data in transit. A data loss prevention function includes a storage encoding technique (e.g., single parity encoding, double parity encoding, erasure encoding, etc.); a storage backup technique (e.g., one or two backup copies, erasure encoding, etc.); hardware maintenance and replacement policies and processes; and/or other means to prevent loss of data.
The analysis system 10 may evaluate understanding, implementation, and/or operation of one or more security functions, one or more security sub functions, and/or one or more security sub-sub functions. The evaluation may be to produce an evaluation rating, to identify deficiencies, and/or to auto-correct deficiencies. For example, the analysis system 10 evaluates the understanding of the threat detection policies and/or processes. As another example, the analysis system 10 evaluates the use of threat detection policies and/or processes to implement a security assets. As yet another example, analysis system 10 evaluates the operation of the security assets with respect to the threat detection operation, the threat detection design specifications, and/or the threat detection design.
In this example, the organization's system functions includes business operations, compliance requirements, data flow objectives, data access objectives, data integrity objectives, data storage objectives, data use objectives, and/or data dissemination objectives. These system functions apply throughout the system including throughout division 2 and for the engineering department 200 of division 2.
The division 182, however, can issues more restrictive, more secure, and/or more detailed system functions. In this example, the division has issued more restrictive, secure, and/or detailed business operations (business operations +) and more restrictive, secure, and/or detailed data access functions (data access +). Similarly, the engineering department 200 may issue more restrictive, more secure, and/or more detailed system functions than the organization and/or the division. In this example, the engineering department has issued more restrictive, secure, and/or detailed business operations (business operations ++) than the division; has issued more restrictive, secure, and/or detailed data flow functions (data flow ++) than the organization; has issued more restrictive, secure, and/or detailed data integrity functions (data integrity ++) than the organization; and has issued more restrictive, secure, and/or detailed data storage functions (data storage ++) than the organization.
For example, an organization level business operation regarding the design of new products and/or of new product features specifies high-level design and verify guidelines. The division issued more detailed design and verify guidelines. The engineering department issued even more detailed design and verify guidelines.
The analysis system 10 can evaluate the compliance with the system functions for the various levels. In addition, the analysis system 10 can evaluate that the division issued system functions are compliant with the organization issued system functions and/or are more restrictive, more secure, and/or more detailed. Similarly, the analysis system 10 can evaluate that the engineering department issued system functions are compliant with the organization and the division issued system functions and/or are more restrictive, more secure, and/or more detailed.
As is further shown in this example, the organization security functions includes data at rest protection, data loss prevention, data in transit protection, threat management, security governance, and business security. The division has issued more restrictive, more secure, and/or more detailed busines security functions (business security +). The engineering department has issued more restrictive, more secure, and/or more detailed data at rest protection (data at rest protection ++), data loss prevention (data loss prevention ++), and data in transit protection (data in transit ++).
The analysis system 10 can evaluate the compliance with the security functions for the various levels. In addition, the analysis system 10 can evaluate that the division issued security functions are compliant with the organization issued security functions and/or are more restrictive, more secure, and/or more detailed. Similarly, the analysis system 10 can evaluate that the engineering department issued security functions are compliant with the organization and the division issued security functions and/or are more restrictive, more secure, and/or more detailed.
In this example, the system criteria are shown to includes guidelines, system requirements, system design & system build (system implementation), and the resulting system. The analysis system 10 may evaluate the system, or portion thereof, during initial system requirement development, initial design of the system, initial build of the system, operation of the initial system, revisions to the system requirements, revisions to the system design, revisions to the system build, and/or operation of the revised system. A revision to a system includes adding assets, system functions, and/or security functions; deleting assets, system functions, and/or security functions; and/or modifying assets, system functions, and/or security functions.
The guidelines include one or more of business objectives, security objectives, NIST cybersecurity guidelines, system objectives, governmental and/or regulatory requirements, third party requirements, etc. and are used to help create the system requirements. System requirements outline the hardware requirements for the system, the software requirements for the system, the networking requirements for the system, the security requirements for the system, the logical data flow for the system, the hardware architecture for the system, the software architecture for the system, the logical inputs and outputs of the system, the system input requirements, the system output requirements, the system's storage requirements, the processing requirements for the system, system controls, system backup, data access parameters, and/or specification for other system features.
The system requirements are used to help create the system design. The system design includes a high level design (HDL), a low level design (LLD), a detailed level design (DLD), and/or other design levels. High level design is a general design of the system. It includes a description of system architecture; a database design; an outline of platforms, services, and processes the system will require; a description of relationships between the assets, system functions, and security functions; diagrams regarding data flow; flowcharts; data structures; and/or other documentation to enable more detailed design of the system.
Low level design is a component level design that is based on the HLD. It provides the details and definitions for every system component (e.g., HW and SW). In particular, LLD specifies the features of the system components and component specifications. Detailed level design describes the interaction of every component of the system.
The system is built based on the design to produce a resulting system (i.e., the implemented assets). The assets of system operate to perform the system functions and/or security functions.
The analysis system 10 can evaluate the understanding, implementation, operation and/or self-analysis of the system 11 at one or more system criteria level (e.g., guidelines, system requirements, system implementation (e.g., design and/or build), and system) in a variety of ways.
The analysis system 10 evaluates the understanding of the system (or portion thereof) by determining a knowledge level of the system and/or maturity level of system. For example, an understanding evaluation interprets what is known about the system and compares it to what should be known about the system.
As a more specific example, the analysis system evaluates the understanding of the guidelines. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the thoroughness of the guidelines to facilitate the understanding of the guidelines. The more incomplete the data regarding the evaluation metrics, the more likely the guidelines are incomplete; which indicates a lack of understanding. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the creation and/or use of the guidelines, the more likely the guidelines are not well understood (e.g., lower level of knowledge and/or of system maturity) resulting in a low evaluation rating.
As another more specific example of an understanding evaluation, the analysis system 10 evaluates the understanding of the system requirements. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the thoroughness of the system requirements to facilitate the understanding of the system requirements. The more incomplete the data regarding the evaluation metrics, the more likely the system requirements are incomplete; which indicates a lack of understanding. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the creation and/or use of the system requirements, the more likely the system requirements are not well understood (e.g., lower level of knowledge and/or of system maturity) resulting in a low evaluation rating.
As another more specific example of an understanding evaluation, the analysis system 10 evaluates the understanding of the system design. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the thoroughness of the system design to facilitate the understanding of the system design. The more incomplete the data regarding the evaluation metrics, the more likely the system design is incomplete; which indicates a lack of understanding. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the creation and/or use of the system design, the more likely the system design is not well understood (e.g., lower level of knowledge and/or of system maturity) resulting in a low evaluation rating.
As another more specific example of an understanding evaluation, the analysis system 10 evaluates the understanding of the system build. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the thoroughness of the system build to facilitate the understanding of the system build. The more incomplete the data regarding the evaluation metrics, the more likely the system build is incomplete; which indicates a lack of understanding. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the execution of and/or use of the system build, the more likely the system build is not well understood (e.g., lower level of knowledge and/or of system maturity) resulting in a low evaluation rating.
As another more specific example of an understanding evaluation, the analysis system 10 evaluates the understanding of the system functions. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the thoroughness of the system build to facilitate the understanding of the system build. The more incomplete the data regarding the evaluation metrics, the more likely the system build is incomplete; which indicates a lack of understanding. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the execution of and/or use of the system build, the more likely the system build is not well understood (e.g., lower level of knowledge and/or of system maturity) resulting in a low evaluation rating.
As another more specific example of an understanding evaluation, the analysis system 10 evaluates the understanding of the security functions. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the thoroughness of the system functions to facilitate the understanding of the system functions. The more incomplete the data regarding the evaluation metrics, the more likely the system functions are incomplete; which indicates a lack of understanding. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the execution of and/or use of the system functions, the more likely the system functions are not well understood (e.g., lower level of knowledge and/or of system maturity) resulting in a low evaluation rating.
As another more specific example of an understanding evaluation, the analysis system 10 evaluates the understanding of the system assets. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the thoroughness of the system assets to facilitate the understanding of the system assets. The more incomplete the data regarding the evaluation metrics, the more likely the system assets are incomplete; which indicates a lack of understanding. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the selection, identification, and/or use of the system assets, the more likely the system assets are not well understood (e.g., lower level of knowledge and/or of system maturity) resulting in a low evaluation rating.
The analysis system 10 also evaluates the implementation of the system (or portion thereof) by determining how well the system is being, was developed, and/or is being updated. For example, the analysis system 10 determines how well the assets, system functions, and/or security functions are being developed, have been developed, and/or are being updated based on the guidelines, the system requirements, the system design, and/or the system build.
As a more specific example of an implementation evaluation, the analysis system 10 evaluates the implementation of the guidelines. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the development of the guidelines. The more incomplete the data regarding the evaluation metrics, the more likely the development of the guidelines is incomplete. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the development of the guidelines, the more likely the guidelines are not well developed (e.g., lower level of system development maturity) resulting in a low evaluation rating.
As another more specific example of an implementation evaluation, the analysis system 10 evaluates the implementation of the system requirements. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the development of the system requirements. The more incomplete the data regarding the evaluation metrics, the more likely the development of the system requirements is incomplete. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the development of the system requirements, the more likely the system requirements are not well developed (e.g., lower level of system development maturity) resulting in a low evaluation rating.
As another more specific example of an implementation evaluation, the analysis system 10 evaluates the implementation of the system design. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the development of the system design. The more incomplete the data regarding the evaluation metrics, the more likely the development of the system design is incomplete. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the development of the system design, the more likely the system design is not well developed (e.g., lower level of system development maturity) resulting in a low evaluation rating.
As another more specific example of an implementation evaluation, the analysis system 10 evaluates the implementation of the system build. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the development of the system build. The more incomplete the data regarding the evaluation metrics, the more likely the development of the system build is incomplete. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the development of the system build, the more likely the system build is not well developed (e.g., lower level of system development maturity) resulting in a low evaluation rating.
As another more specific example of an implementation evaluation, the analysis system 10 evaluates the implementation of the system functions. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the development of the system functions. The more incomplete the data regarding the evaluation metrics, the more likely the development of the system functions is incomplete. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the development of the system functions, the more likely the system functions are not well developed (e.g., lower level of system development maturity) resulting in a low evaluation rating.
As another more specific example of an implementation evaluation, the analysis system 10 evaluates the implementation of the security functions. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the development of the security functions. The more incomplete the data regarding the evaluation metrics, the more likely the development of the security functions is incomplete. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the development of the security functions, the more likely the security functions are not well developed (e.g., lower level of system development maturity) resulting in a low evaluation rating.
As another more specific example of an implementation evaluation, the analysis system 10 evaluates the implementation of the system assets. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the development of the system assets. The more incomplete the data regarding the evaluation metrics, the more likely the development of the system assets is incomplete. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the development of the system assets, the more likely the system assets are not well developed (e.g., lower level of system development maturity) resulting in a low evaluation rating.
The analysis system 10 also evaluates the operation of the system (or portion thereof) by determining how well the system fulfills its objectives. For example, the analysis system 10 determines how well the assets, system functions, and/or security functions to fulfill the guidelines, the system requirements, the system design, the system build, the objectives of the system, and/or other purpose of the system.
As a more specific example of an operation evaluation, the analysis system 10 evaluates the operation (i.e., fulfillment) of the guidelines by the system requirements. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the fulfillment of the guidelines by the system requirements. The more incomplete the data regarding the evaluation metrics, the more likely the fulfillment of the guidelines by the system requirements is incomplete. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the fulfillment of the guidelines by the system requirements, the more likely the system requirements does not adequately fulfill the guidelines (e.g., lower level of system development maturity) resulting in a low evaluation rating.
As another more specific example of an operation evaluation, the analysis system 10 evaluates the operation (i.e., fulfillment) of the guidelines and/or the system requirements by the system design. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the fulfillment of the guidelines and/or the system requirements by the system design. The more incomplete the data regarding the evaluation metrics, the more likely the fulfillment of the guidelines and/or the system requirements by the system design is incomplete. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the fulfillment of the guidelines and/or the system requirements by the system design, the more likely the system design does not adequately fulfill the guidelines and/or the system requirements (e.g., lower level of system operation maturity) resulting in a low evaluation rating.
As another more specific example of an operation evaluation, the analysis system 10 evaluates the operation (i.e., fulfillment) of the guidelines, the system requirements, and/or the system design by the system build. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the fulfillment of the guidelines, the system requirements, and/or the system design by the system build. The more incomplete the data regarding the evaluation metrics, the more likely the fulfillment of the guidelines, the system requirements, and/or the system design by the system build is incomplete. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the fulfillment of the guidelines, the system requirements, and/or the system design by the system build, the more likely the system build does not adequately fulfill the guidelines, the system requirements, and/or the system design (e.g., lower level of system operation maturity) resulting in a low evaluation rating.
As another more specific example of an operation evaluation, the analysis system 10 evaluates the operation (i.e., fulfillment) of the guidelines, the system requirements, the system design, the system build, and/or objectives by the operation of the system in performing the system functions. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the fulfillment of the guidelines, the system requirements, the system design, the system build, and/or objectives regarding the performance of the system functions by the system. The more incomplete the data regarding the evaluation metrics, the more likely the fulfillment of the guidelines, the system requirements, the system design, the system, and/or the objectives regarding the system functions is incomplete. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the fulfillment of the guidelines, the system requirements, the system design, the system build, and/or the objectives, the more likely the system does not adequately fulfill the guidelines, the system requirements, the system design, the system build, and/or the objectives regarding the system functions (e.g., lower level of system operation maturity) resulting in a low evaluation rating.
As another more specific example of an operation evaluation, the analysis system 10 evaluates the operation (i.e., fulfillment) of the guidelines, the system requirements, the system design, the system build, and/or objectives by the operation of the system in performing the security functions. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the fulfillment of the guidelines, the system requirements, the system design, the system build, and/or objectives regarding the performance of the security functions by the system. The more incomplete the data regarding the evaluation metrics, the more likely the fulfillment of the guidelines, the system requirements, the system design, the system, and/or the objectives regarding the security functions is incomplete. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the fulfillment of the guidelines, the system requirements, the system design, the system build, and/or the objectives, the more likely the system does not adequately fulfill the guidelines, the system requirements, the system design, the system build, and/or the objectives regarding the security functions (e.g., lower level of system operation maturity) resulting in a low evaluation rating.
As another more specific example of an operation evaluation, the analysis system 10 evaluates the operation (i.e., fulfillment) of the guidelines, the system requirements, the system design, the system build, and/or objectives by the operation of the system functions. For instance, the analysis system 10 evaluates the policies, processes, procedures, automation, certifications, documentation, and/or other evaluation metric (e.g., evaluation metrics) regarding the fulfillment of the guidelines, the system requirements, the system design, the system build, and/or objectives regarding the performance of the system assets. The more incomplete the data regarding the evaluation metrics, the more likely the fulfillment of the guidelines, the system requirements, the system design, the system, and/or the objectives regarding the system assets is incomplete. The fewer numbers of and/or incompleteness of policies, processes, procedures, automation, documentation, certification, and/or other evaluation metric regarding the fulfillment of the guidelines, the system requirements, the system design, the system build, and/or the objectives, the more likely the system assets do not adequately fulfill the guidelines, the system requirements, the system design, the system build, and/or the objectives (e.g., lower level of system operation maturity) resulting in a low evaluation rating.
The analysis system 10 also evaluates the self-analysis capabilities of the system (or portion thereof) by determining how well the self-analysis functions are implemented and how they subsequently fulfill the self-analysis objectives. In an example, the self-analysis capabilities of the system are a self-analysis system that overlies the system. Accordingly, the overlaid self-analysis system can be evaluated by the analysis system 10 in a similar manner as the system under test 91. For example, the understanding, implementation, and/or operation of the overlaid self-analysis system can be evaluated with respect to self-analysis guidelines, self-analysis requirements, design of the self-analysis system, build of the self-analysis system, and/or operation of the self-analysis system
As part of the evaluation process, the analysis system 10 may identify deficiencies and, when appropriate, auto-correct a deficiency. For example, the analysis system 10 identifies deficiencies in the understanding, implementation, and/or operation of the guidelines, the system requirements, the system design, the system build, the resulting system, and/or the system objectives. For example, the analysis system 10 obtains addition information from the system via a data gathering process (e.g., producing discovered data) and/or from a system proficiency resource (e.g., producing desired data). The analysis system 10 uses the discovered data and/or desired data to identify the deficiencies. When possible, the analysis system 10 auto-corrects the deficiencies. For example, when a software tool that aides in the creation of guidelines and/or system requirements is missing from the system's tool set, the analysis system 10 can automatically obtain a copy of the missing software tool for the system.
The evaluation from the three evaluation viewpoints may be done serially, in parallel, and/or in a parallel-serial combination to produce three sets of evaluation ratings. One set for disclosed data, one set for discovered data, and one set for desired data.
A set of evaluation ratings includes one or more of: an evaluation rating regarding the understanding of the guidelines; an evaluation rating regarding the understanding of the system requirements; an evaluation rating regarding the understanding of the system design; an evaluation rating regarding the understanding of the system build; an evaluation rating regarding the understanding of the system operation; an evaluation rating regarding the development of the system requirements from the guidelines; an evaluation rating regarding the design from the system requirements; an evaluation rating regarding the system build from the design; an evaluation rating regarding the system operation based on the system design and/or system build; an evaluation rating regarding the guidelines; an evaluation rating regarding the system requirements; an evaluation rating regarding the system design; an evaluation rating regarding the system build; and/or an evaluation rating regarding the system operation.
The evaluation from the nine evaluation viewpoints & evaluation mode combinations may be done serially, in parallel, and/or in a parallel-serial combination to produce nine sets of evaluation ratings one for disclosed data regarding assets, one for discovered data regarding assets, one for desired data regarding assets, one for disclosed data regarding system functions, one for discovered data regarding system functions, one for desired data regarding functions, one for disclosed data regarding security functions, one for discovered data regarding security functions, and one for desired data regarding security functions.
The analysis perspective 213 includes understanding, implementation, operation, and self-analysis. The analysis viewpoint includes disclosed, discovered, and desired. The analysis categories 215 include identify, protect, detect, respond, and recover. The analysis perspective 213, the analysis viewpoint 214, and the analysis categories correspond to how the system, or portion thereof, will be evaluated. For example, the system, or portion thereof, is being evaluated regarding the understanding of the system's ability to identify assets, system functions, and/or security functions from discovered data.
The analysis metrics 218 includes process, policy, procedure, automation, certification, and documentation. The analysis metric 218 and the pre-processing 217 corresponds to manner of evaluation. For example, the policies regarding system's ability to identify assets, system functions, and/or security functions from discovered data of the system, or portion thereof, are evaluated to produce an understanding evaluation rating.
In an example of operation, the analysis system 10 determines what portion of the system is evaluated (i.e., a system aspect). As such, the analysis system 10 determines one or more system elements (e.g., including one or more system assets which are one or more physical assets and/or conceptual assets), one or more system criteria (e.g., guidelines, system requirements, system design, system build, and/or system operation), and one or more system modes (e.g., assets, system functions, and security functions). The analysis system 10 may determine the system aspect in a variety of ways. For example, the analysis system 10 receives an input identifying the system aspect from an authorized operator of the system (e.g., IT personnel, executive personnel, etc.). As another example, the analysis system determines the system aspect in a systematic manner to evaluate various combinations of system aspects as part of an overall system evaluation. The overall system evaluation may be done one time, periodically, or continuously. As yet another example, the analysis system determines the system aspect as part of a systematic analysis of a section of the system, which may be done one time, periodically, or continuously.
The analysis system then determines how the system aspect is to be evaluated by selecting one or more analysis perspectives (understanding, implementation, operation, and self-analysis), one or more analysis viewpoints (disclosed, discovered, and desired), and one or more analysis categories (identify, protect, detect, respond, and recover). The analysis system 10 may determine how the system aspect is to be evaluated in a variety of ways. For example, the analysis system 10 receives an input identifying how the system aspect is to be evaluated from an authorized operator of the system (e.g., IT personnel, executive personnel, etc.). As another example, the analysis system determines how the system aspect is to be evaluated in a systematic manner to evaluate the system aspect in various combinations of analysis perspectives, analysis viewpoints, and analysis categories as part of an overall system evaluation. The overall system evaluation may be done one time, periodically, or continuously. As yet another example, the analysis system determines how the system aspect is to be evaluated as part of a systematic analysis of a section of the system, which may be done one time, periodically, or continuously.
The analysis system 10 also determines one or more analysis metrics (e.g., process, policy, procedure, automation, certification, and documentation) regarding the manner for evaluating the system aspect in accordance with how it's to be evaluated. A policy sets out a strategic direction and includes high-level rules or contracts regarding issues and/or matters. For example, all software shall be a most recent version of the software. A process is a set of actions for generating outputs from inputs and includes one or more directives for generating outputs from inputs. For example, a process regarding the software policy is that software updates are to be performed by the IT department and all software shall be updated within one month of the release of the new version of software.
A procedure is the working instructions to complete an action as may be outlined by a process. For example, the IT department handling software updates includes a procedure that describes the steps for updating the software, verifying that the updated software works, and recording the updating and verification in a software update log. Automation is in regard to the level of automation the system includes for handling actions, issues, and/or matters of policies, processes, and/or procedures. Documentation is in regard to the level of documentation the system has regard guidelines, system requirements, system design, system build, system operation, system assets, system functions, security functions, system understanding, system implementation, operation of the system, policies, processes, procedures, etc. Certification is in regard to certifications of the system, such as maintenance certification, regulatory certifications, etc.
In an example, the analysis system 10 receives an input identifying manner in which to evaluate the system aspect from an authorized operator of the system (e.g., IT personnel, executive personnel, etc.). As another example, the analysis system determines the manner in which to evaluate the system aspect in a systematic manner to evaluate the system aspect in various combinations of analysis metrics as part of an overall system evaluation. The overall system evaluation may be done one time, periodically, or continuously. As yet another example, the analysis system determines the manner in which to evaluate the system aspect as part of a systematic analysis of a section of the system, which may be done one time, periodically, or continuously.
Once the analysis system has determined the system aspect, how it is to be evaluated, and the manner for evaluation, the data gathering function 216 gathers data relevant to the system aspect, how it's to be evaluated, and the manner of evaluation from the system 11, from resources that store system information 210 (e.g., from the system, from a private storage of the analysis system, etc.), and/or from one or more system proficiency resources 22. For example, a current evaluation is regarding an understanding (analysis perspective) of policies (analysis metric) to identify (analysis category) assets (evaluation mode) of an engineering department (system elements) regarding operations (evaluation criteria) that the assets perform based on discovered data (analysis viewpoint). As such, the data gathering function 216 gathers data regarding policies to identify assets of the engineering department and the operations they perform using one or more data discovery tools.
The pre-processing function 217 processes the gathered data by parsing the data, tagging the data, normalizing the data, and/or de-duplicating the data. The analysis system evaluations the processed data in accordance with the selected analysis metric to produce one or more ratings 219. For example, the analysis system would produce a rating regarding the understanding of policies to identify assets of an engineering department regarding operations that the assets perform based on discovered data. The rating 219 is on a scale from low to high. In this example, a low rating indicates issues with the understanding and a high rating indicates no issues with the understanding.
The deficiency perspective function 230 receives one or more ratings 219 and may also receive the data used to generate the ratings 219. From these inputs, the deficiency perspective function 230 determines whether there is an understanding issue, an implementation issue, and/or an operation issue. For example, an understanding (analysis perspective) issue relates to a low understanding evaluation rating for a specific evaluation regarding policies (analysis metric) to identify (analysis category) assets (evaluation mode) of an engineering department (system elements) regarding operations (evaluation criteria) that the assets perform based on discovered data (analysis viewpoint).
As another example, an implementation (analysis perspective) issue relates to a low implementation evaluation rating for a specific evaluation regarding implementation and/or use of policies (analysis metric) to identify (analysis category) assets (evaluation mode) of an engineering department (system elements) regarding operations (evaluation criteria) that the assets perform based on discovered data (analysis viewpoint). As yet another example, an operation (analysis perspective) issue relates to a low operation evaluation rating for a specific evaluation regarding consistent, reliable, and/or accurate mechanism(s) to identify (analysis category) assets (evaluation mode) of an engineering department (system elements) regarding operations (evaluation criteria) that the assets perform based on discovered data (analysis viewpoint) and on policies (analysis metric).
When an understanding, implementation, and/or operation issue is identified, the deficiency evaluation viewpoint function 231 determines whether the issue(s) is based on disclosed data, discovered data, and/or desired data. For example, an understanding issue may be based on a difference between disclosed data and discovered data. As a specific example, the disclosed data includes a policy outline how to identify (analysis category) assets (evaluation mode) of an engineering department (system elements) regarding operations (evaluation criteria) that the assets perform, which is listed as version 1.12 and a last revision date of Oct. 2, 2020. In this specific example, the discovered data includes the same policy, but is has been updated to version 1.14 and the last revision date as Nov. 13, 2020. As such, the deficiency evaluation viewpoint function identifies a deficiency 232 in the disclosed data as being an outdated policy.
As another specific example, the disclosed data includes a policy outline how to identify (analysis category) assets (evaluation mode) of an engineering department (system elements) regarding operations (evaluation criteria) that the assets perform. The disclosed data also shows an inconsistent use and/or application of the policy resulting one or more assets not being properly identified. In this instance, the deficiency evaluation viewpoint function identifies a deficiency 232 in the disclosed data as being inconsistent use and/or application of the policy.
The auto-correct function 233 receives a deficiency 232 and interprets it to determine a deficiency type, i.e., a nature of the understanding issue, the implementation issue, and/or the operation issues. Continuing with the outdated policy example, the nature of the understanding issue is that there is a newer version of the policy. Since there is a newer version available, the auto-correct function 233 can update the policy to the newer version for the system (e.g., an auto-correction). In addition to making the auto-correction 235, the analysis system creates an accounting 236 of the auto-correction (e.g., creates a record). The record includes an identity of the deficiency, date information, what auto-correction was done, how it was done, verification that it was done, and/or more or less data as may be desired for recording auto-corrections.
As another specific example, a deficiency 232 is discovered that an asset exists in the engineering department that was not included in the disclosed data. This deficiency may include one or more related deficiencies. For example, a deficiency of design, a deficiency of build, a deficiency is oversight of asset installation, etc. The deficiencies of design, build, and/or installation oversight can be auto-corrected; the deficiency of an extra asset cannot. With regard to the deficiency of the extra asset, the analysis system generates a report regarding the extra asset and the related deficiencies.
The analysis system 10 can evaluate the system element under test 91 (e.g., system aspect) in one or more combinations of a row selection, a column selection, and/or a third dimension selection. For example, the analysis system performs an evaluation from an understanding perspective, a disclosed data viewpoint, and a ratings output. As another example, the analysis system performs an evaluation from an understanding perspective, all viewpoints, and a ratings output.
For example, the analysis system 10 can evaluate user HW with respect to business operations. As another example, the analysis system 10 can evaluate physical assets with respect to data flow. As another example, the analysis system 10 can evaluate user SW with respect to all system functions.
For example, the analysis system 10 can evaluate threat detection with respect to business operations. As another example, the analysis system 10 can evaluate all security functions with respect to data flow. As another example, the analysis system 10 can evaluate threat avoidance with respect to all system functions.
For example, the analysis system 10 can evaluate user HW with respect to threat recovery. As another example, the analysis system 10 can evaluate physical assets with respect to threat resolution. As another example, the analysis system 10 can evaluate user SW with respect to all security functions.
In an example, the system 11 provides input 271 to the analysis system 10 via the system user interface module 80. The system user interface module 80 provides a user interface for an administrator of the system 11 and provides a s secure end-point of a secure data pipeline between the system 11 and the analysis system 10. While the system user interface module 81 is part of the analysis system, it is loaded on and is executed on the system 11.
Via the system user interface module 81, the administrator makes selections as to how the system is to be evaluated and the desired output from the evaluation. For example, the administrator selects evaluate system, which instructs the analysis system 10 to evaluate the system from most every, if not every, combination of system aspect (e.g., system element, system criteria, and system mode), evaluation aspect (e.g., evaluation perspective, evaluation viewpoint, and evaluation category), evaluation metric (e.g., process, policy, procedure, automation, documentation, and certification), and analysis output (e.g., an evaluation rating, deficiencies identified, and auto-correction of deficiencies). As another example, the administrator selects one or more system aspects, one or more evaluation aspects, one or more evaluation metrics, and/or one or more analysis outputs.
The analysis system 10 receives the evaluation selections as part of the input 271. A control module 256 interprets the input 271 to determine what part of the system is to be evaluated (e.g., system aspects), how the system is to be evaluated (e.g., evaluation aspects), the manner in which the system is to be evaluated (e.g., evaluation metrics), and/or the resulting evaluation output (e.g., an evaluation rating, a deficiency report, and/or auto-correction). From the interpretation of the input, the control module 256 generates data gathering parameters 263, pre-processing parameters 264, data analysis parameters 265, and evaluation parameters 266.
The control module 256 provides the data gathering parameters 263 to the data input module 250. The data input module 250 interprets the data gathering parameters 263 to determine data to gather. For example, the data gathering parameters 263 are specific to the evaluation to be performed by the analysis system 10. As a more specific example, if the analysis system 10 is evaluating the understanding of the policies, processes, documentation, and automation regarding the assets built for an engineering department, then the data gathering parameters 263 would prescribe gathering data related to policies, processes, documentation, and automation regarding the assets built for the engineering department.
The data input module 250 may gather (e.g., retrieve, request, etc.) from a variety of sources. For example, the data input module 250 gathers data 258 from the data extraction module 80. In this example, the data input module 250 provides instructions to the data extraction module 80 regarding the data being requested. The data extraction module 80 pulls the requested data from system information 210, which may be centralized data of the system, system administration data, and/or data from assets of the system.
As another example, the data input module 250 gathers data from one or more external data feeds 259. A source of an external data feed includes one or more business associate computing devices 23, one or more publicly available servers 27, and/or one or more subscriber servers 28. Other sources of external data feeds 259 includes bot computing devices 25, and/or bad actor computing devices 26. Typically, the data input module 250 does not seek data inputs from bot computing devices 25 and/or bad actor computing devices 26 except under certain circumstances involving specific types of cybersecurity risks.
As another example, the data input module 250 gathers system proficiency data 260 from one or more system proficiency resources 22. As a specific example, for a data request that includes desired data, the data input module 250 addresses one or more system proficiencies resources 22 to obtain the desired system proficiency data 260. For example, system proficiency data 260 includes information regarding best-in-class practices (for system requirements, for system design, for system implementation, and/or for system operation), governmental and/or regulatory requirements, security risk awareness and/or risk remediation information, security risk avoidance, performance optimization information, system development guidelines, software development guideline, hardware requirements, networking requirements, networking guidelines, and/or other system proficiency guidance.
As another example, the data input module 250 gathers stored data 261 from the database 275. The stored data 261 is previously stored data that is unique to the system 11, is data from other systems, is previously processed data, is previously stored system proficiency data, and/or is previously stored data that assists in the current evaluation of the system.
The data input module 250 provides the gathered data to the pre-processing module 251. Based on the pre-processing parameters 264 (e.g., parse, tag, normalize, de-duplication, sort, filter, etc.), the pre-processing module 251 processes the gathered data to produce pre-processed data 267. The pre-processed data 267 may be stored in the database 275 and later retrieved as stored data 261.
The analysis modeling module 253 retrieves stored data 261 and/or stored analytics 262 from the database 275. The analysis modeling module 253 operates to increase the artificial intelligence of the analysis system 10. For example, the analysis modeling module 253 evaluates stored data from one or more systems in a variety of ways to test the evaluation processes of the analysis system. As a more specific example, the analysis modeling module 253 models the evaluation of understanding of the policies, processes, documentation, and automation regarding the assets built for an engineering department across multiple systems to identify commonalities and/or deviations. The analysis modeling module 253 interprets the commonalities and/or deviations to adjust parameters of the evaluation of understanding and models how the adjustments affect the evaluation of understanding. If the adjustments have a positive effect, the analysis modeling module 253 stores them as analytics 262 and/or analysis modeling 268 in the database 275.
The data analysis module 252 receives the pre-processed data 267, the data analysis parameters 265 and may further receive optional analysis modeling data 268. The data analysis parameters 265 includes identify of selected evaluation categories (e.g., identify, protect, detect, respond, and recover), identity of selected evaluation sub-categories, identify of selected evaluation sub-sub categories, identity of selected analysis metrics (e.g., process, policy, procedure, automation, certification, and documentation), grading parameters for the selected analysis metrics (e.g., a scoring scale for each type of analysis metric), identity of selected analysis perspective (e.g., understanding, implementation, operation, and self-analysis), and/or identity of selected analysis viewpoint (e.g., disclosed, discovered, and desired).
The data analysis module 252 generates one or more ratings 219 for the pre-processed data 267 based on the data analysis parameters 265. The data analysis module 252 may adjust the generation of the one or more rating 219 based on the analysis modeling data 268. For example, the data analysis module 252 evaluates the understanding of the policies, processes, documentation, and automation regarding the assets built for an engineering department based on the pre-processed data 267 to produce at least one evaluation rating 219.
Continuing with this example, the analysis modeling 268 is regarding the evaluation of understanding of the policies, processes, documentation, and automation regarding the assets built for an engineering department of a plurality of different organizations operating on a plurality of different systems. The modeling indicates that if processes are well understood, the understanding of the policies is less significant in the overall understanding. In this instance, the data analysis module 252 may adjusts its evaluation rating of the understanding to a more favorably rating if the pre-processed data 267 correlates with the modeling (e.g., good understanding of processes).
The data analysis module 252 provides the rating(s) 219 to the data output module 255 and to the evaluation processing module 254. The data output module 255 provides the rating(s) 219 as an output 269 to the system user interface module 81. The system user interface module 81 provides a graphical rendering of the rating(s) 219.
The evaluation processing module 254 processes the rating(s) 219 based on the evaluation parameters 266 to identify deficiencies 232 and/or to determine auto-corrections 235. The evaluation parameters 266 provide guidance on how to evaluate the rating(s) 219 and whether to obtain data (e.g., pre-processed data, stored data, etc.) to assist in the evaluation. The evaluation guidance includes how deficiencies are to be identified. For example, identify the deficiencies based on the disclosed data, based on the discovered data, based on a differences between the disclosed and discovered data, based on a differences between the disclosed and desired data, and/or based on a differences between the discovered and desired data. The evaluation guidance further includes whether auto-correction is enabled. The evaluation parameters 266 may further includes deficiency parameters, which provide a level of tolerance between the disclosed, discovered, and/or desired data when determining deficiencies.
The evaluation processing module 254 provides deficiencies 232 and/or the auto-corrections 235 to the data output module 255. The data output module 255 provides the deficiencies 232 and/or the auto-corrections 235 as an output 269 to the system user interface module 81 and to the remediation module 257. The system user interface module 81 provides a graphical rendering of the deficiencies 232 and/or the auto-corrections 235.
The remediation module 257 interprets the deficiencies 232 and the auto-corrections 235 to identify auto-corrections to be performed within the system. For example, if a deficiency is a computing device having an outdated user software application, the remediation module 257 coordinates obtaining a current copy of the user software application, uploading it on the computing device, and updating maintenance logs.
A remediation module 257 receives a corresponding portion of the output 269. For example, remediation module 257-1 receives output 269-1, which is regarding an evaluation rating, deficiency, and/or an auto-correction of system asset 280-1. Remediation module 257-1 may auto-correct a deficiency of the system asset or a system element thereof. Alternatively or in addition, the remediation module 257-1 may quarantine the system asset or system element thereof if the deficiency cannot be auto-corrected and the deficiency exposes the system to undesired risks, undesired liability, and/or undesired performance degradation.
An extraction data migration module 293 coordinates the collection of system information 210 as extracted data 291-1 through 291-n. An extraction data coordination module 292 coordinates the forwarding of the extracted data 291 as data 258 to the data input module 250.
The system 11 includes one or more tools that can be accessed by the data extraction module 80 to obtain system information from one or more data sources 290-1 through 290-n. The tools include one or more data segmentation tools 300, one or more boundary detection tools 301, one or more data protection tools 302, one or more infrastructure management tools 303, one or more encryption tools 304, one or more exploit protection tools 305, one or more malware protection tools 306, one or more identity management tools 307, one or more access management tools 308, one or more system monitoring tools, and/or one or more vulnerability management tools 310.
A system tool may also be an infrastructure management tool, a network monitoring tool, a network strategy and planning tool, a network managing tool, a Simple Network Management Protocol (SNMP) tool, a telephony monitoring tool, a firewall monitoring tool, a bandwidth monitoring tool, an IT asset inventory management tool, a network discovery tool, a network asset discovery tool, a software discovery tool, a security discovery tool, an infrastructure discovery tool, Security Information & Event Management (STEM) tool, a data crawler tool, and/or other type of tool to assist in discovery of assets, functions, security issues, implementation of the system, and/or operation of the system.
Depending on the data gathering parameters, the tool interface 311 engages a system tool to retrieve system information. For example, the tool interface 311 engages the identity management tool to identify assets in the engineering department. The processing module 312 coordinates requests from the analysis system 10 and responses to the analysis system 10.
This embodiment operates similarly to the embodiment of
The data module 321 operates to provide the analyze & score module 336 with source data 337 selected from incoming data based on one or more data analysis parameters 265. The data analysis parameter(s) 265 indicate(s) how the incoming data is to be parsed (if at all) and how it is to be stored within the data storage modules 322-334. A data analysis parameter 265 includes system aspect storage parameters 345, evaluation aspect storage parameters 346, and evaluation metric storage parameters 347. A system aspect storage parameter 345 may be null or includes information to identify one or more system aspects (e.g., system element, system criteria, and system mode), how the data relating to system aspects is to be parsed, and how the system aspect parsed data is to be stored.
An evaluation aspect storage parameter 346 may be null or includes information to identify one or more evaluation aspects (e.g., evaluation perspective, evaluation viewpoint, and evaluation category), how the data relating to evaluation aspects is to be parsed, and how the evaluation aspect parsed data is to be stored. An evaluation metric storage parameter 347 may be null or includes information to identify one or more evaluation metrics (e.g., process, policy, procedure, certification, documentation, and automation), how the data relating to evaluation metrics is to be parsed, and how the evaluation metric parsed data is to be stored. Note that the data module 321 interprets the data analysis parameters 265 collectively such that parsing, and storage are consistent with the parameters.
The data parsing module 320 parses incoming data in accordance with the system aspect storage parameters 345, evaluation aspect storage parameters 346, and evaluation metric storage parameters 347, which generally correspond to what part of the system is being evaluation, how the system is being evaluated, the manner of evaluation, and/or a desired analysis output. As such, incoming data may be parsed in a variety of ways. The data storage modules 322-334 are assigned to store parsed data in accordance with the storage parameters 345-347. For example, the incoming data, which includes pre-processed data 267, other external feed data 259, data 258 received via a data extraction module, stored data 261, and/or system proficiency data 260, is parsed based on system criteria (of the system aspect) and evaluation viewpoint (of the evaluation aspect). As a more specific example, the incoming data is parsed into, and stored, as follows:
As another example of parsing, the incoming data is parsed based on a combination of one or more system aspects (e.g., system elements, system criteria, and system mode) or sub-system aspects thereof, one or more evaluation aspects (e.g., evaluation perspective, evaluation viewpoint, and evaluation category) or sub-evaluation aspects thereof, and/or one or more evaluation rating metrics (e.g., process, policy, procedure, certification, documentation, and automation) or sub-evaluation rating metrics thereof. As a specific example, the incoming data is parsed based on the evaluation rating metrics, creating processed parsed data, policy parsed data, procedure parsed data, certification parsed data, documentation parsed data, and automation parsed data. As another specific example, the incoming data is parsed based on the evaluation category of identify and its sub-categories of asset management, business environment, governance, risk assessment, risk management, access control, awareness &, training, and/or data security.
As another example of parsing, the incoming data is not parsed, or is minimally parsed. As a specific example, the data is parsed based on timestamps: data from one time period (e.g., a day) is parsed from data of another time period (e.g., a different day).
The source data matrix 335, which may be a configured processing module, retrieves source data 337 from the data storage modules 322-334. The selection corresponds to the analysis being performed by the analyze & score module 336. For example, if the analyze & score module 336 is evaluating the understanding of the policies, processes, documentation, and automation regarding the assets built for the engineering department, then the source data 337 would be data specific to policies, processes, documentation, and automation regarding the assets built for the engineering department.
The analyze & score module 336 generates one or more ratings 219 for the source data 337 in accordance with the data analysis parameters 265 and analysis modeling 268. The data analysis parameters 265 includes system aspect analysis parameters 342, evaluation aspect analysis parameters 343, and evaluation metric analysis parameters 344. The analyze & score module 336 is discussed in greater detail with reference to
For example, the matrix module 341 configures the matrixes based on the system aspect analysis parameters 342 and the evaluation aspect analysis parameters 343 to process the source data 337 to produce the scoring input data. As a specific example, the system aspect analysis parameters 342 and the evaluation aspect analysis parameters 343 indicate assets as the evaluation mode, understanding as the evaluation perspective, discovered as the evaluation viewpoint, and the identify as the evaluation category.
Accordingly, the matrix module 341communicates with the source data matrix module 335 of the data module 321 to obtain source data 337 relevant to assets, understanding, discovered, and identify. The matrix module 341 may organize the source data 337 using an organization scheme (e.g., by asset type, by evaluation metric type, by evaluation sub-categories, etc.) or keep the source data 337 as a collection of data. The matrix module 341 provides the scoring input data 344 as a collection of data or as organized data to the scoring module 348.
Continuing with the example, the scoring module 248 receives the scoring input data 348 and evaluates in accordance with the evaluation metric analysis parameters 344 and the analysis modeling 268 to produce the rating(s) 219. As a specific example, the evaluation metric analysis parameters 344 indicate analyzing the scoring input data with respect to processes. In this instance, the analysis modeling 268 provides a scoring mechanism for evaluating the scoring input data with respect to processes to the scoring module 248. For instance, the analysis modeling 268 includes six levels regarding processes and a corresponding numerical rating: none (e.g., 0), inconsistent (e.g., 10), repeatable (e.g., 20), standardized (e.g., 30), measured (e.g., 40), and optimized (e.g., 50).
In addition, the analysis modeling 268 includes analysis protocols for interpreting the scoring input data to determine its level and corresponding rating. For example, if there are no processes regarding identifying assess of the discovered data, then an understanding level of processes would be none (e.g., 0), since there are no processes. As another example, if there are some processes regarding identifying assess of the discovered data, but there are gaps in the processes (e.g., identifies some assets, but not all, do not produce consistent results), then an understanding level of processes would be inconsistent (e.g., 10). To determine if there are gaps in the processes, the score module 248 executes the processes of the discovered data to identify assets. The scoring module 248 also executes one or more asset discovery tools to identify assets and then compares the two results. If there are inconsistencies in the identified assets, then there are gaps in the processes.
As a further example, the processes regarding identifying assess of the discovered data are repeatable (e.g., produces consistent results, but there are variations in the processes from process to process, and/or the processes are not all regulated) but not standardized (e.g., produces consistent results, but there are no appreciable variations in the processes from process to process, and/or the processes are regulated). If the processes are repeatable but not standardized, the scoring module establishes an understanding level of the processes as repeatable (e.g., 20).
If the processes are standardized, the scoring module then determines whether the processes are measured (e.g., precise, exact, and/or calculated to the task of identifying assets). If not, the scoring module establishes an understanding level of the processes as standardized (e.g., 30).
If the processes are measured, the scoring module then determines whether the processes are optimized (e.g., up-to-date and improvement assessed on a regular basis as part of system protocols). If not, the scoring module establishes an understanding level of the processes as measured (e.g., 40). If so, the scoring module establishes an understanding level of the processes as optimized (e.g., 50).
The system aspect includes system elements, system criteria, and system modes. A system element includes one or more system assets, which is a physical asset and/or a conceptual asset. For example, a physical asset is a computing entity, a computing device, a user software application, a system software application (e.g., operating system, etc.), a software tool, a network software application, a security software application, a system monitoring software application, and the like. As another example, a conception asset is a hardware architecture (e.g., identification of a system's physical components, their capabilities, and their relationship to each other) and/or sub-architectures thereof and a software architecture (e.g., fundamental structures for the system's software, their requirements, and inter-relational operations) and sub-architectures thereof.
A system element and/or system asset is identifiable in a variety of ways. For example, it can be identified by an organization identifier (ID), which would be associated with most, if not all, system elements of a system. As another example, a system element and/or system asset can be identified by a division ID, where the division is one of a plurality of divisions in the organization. As another example, a system element and/or system asset can be identified by a department ID, where the department is one of a plurality of departments in a division. As yet another example, a system element and/or system asset can be identified by a department ID, where the department is one of a plurality of departments in a division. As a further example, a system element and/or system asset can be identified by a group ID, where the department is one of a plurality of groups in a department. As a still further example, a system element and/or system asset can be identified by a sub-group ID, where the department is one of a plurality of sub-groups in a group. With this type of identifier, a collection of system elements can be selected for evaluation by using an organization ID, a division ID, a department ID, a group ID, or a sub-group ID.
A system element and/or system asset may also be identified based on a user ID, a serial number, vendor data, an IP address, etc. For example, a computing device has a serial number and vendor data. As such, the computing device can be identified for evaluation by its serial number and/or the vendor data. As another example, a software application has a serial number and vendor data. As such, the software application can be identified for evaluation by its serial number and/or the vendor data.
In addition, an identifier of one system element and/or system asset may link to one or more other system elements and/or system assets. For example, computing device has a device ID, a user ID, and/or a serial number to identify it. The computing device also includes a plurality of software applications, each with its own serial number. In this example, the software identifiers are linked to the computing device identifier since the software is loaded on the computing device. This type of an identifier allows a single system asset to be identified for evaluation.
The system criteria includes information regarding the development, operation, and/or maintenance of the system 11. For example, a system criteria is a guideline, a system requirement, a system design component, a system build component, the system, and system operation. Guidelines, system requirements, system design, system build, and system operation were discussed with reference to
The system mode indicates the assets of the system, the system functions of the system, and/or the security functions of the system are to be evaluated. Assets, system functions, and security functions have been previously discussed with reference to one or more of
The evaluation aspect, which indicates how the system aspect is to be evaluated, includes evaluation perspective, evaluation viewpoint, and evaluation category. The evaluation perspective includes understanding (e.g., how well the system is known, should be known, etc.); implementation, which includes design and/or build, (e.g., how well is the system designed, how well should it be designed); system performance, and/or system operation (e.g., how well does the system perform and/or operate, how well should it perform and/or operate); and self-analysis (e.g., how self-aware is the system, how self-healing is the system, how self-updating is the system).
The evaluation viewpoint includes disclosed data, discovered data, and desired data. Disclosed data is the known data of the system at the outset of an analysis, which is typically supplied by a system administrator and/or is obtained from data files of the system. Discovered data is the data discovered about the system from the by the analysis system during the analysis. Desired data is the data obtained by the analysis system from system proficiency resources regarding desired guidelines, system requirements, system design, system build, and/or system operation. Differences in disclosed, discovered, and desired data are evaluated to support generating an evaluation rating, to identify deficiencies, and/or to determine and provide auto-corrections.
The evaluation category includes an identify category, a protect category, a detect category, a respond category, and a recover category. In general, the identify category is regarding identifying assets, system functions, and/or security functions of the system; the protect category is regarding protecting assets, system functions, and/or security functions of the system from issues that may adversely affect; the detect category is regarding detecting issues that may, or have, adversely affect assets, system functions, and/or security functions of the system; the respond category is regarding responding to issues that may, or have, adversely affect assets, system functions, and/or security functions of the system; and the recover category is regarding recovering from issues that have adversely affect assets, system functions, and/or security functions of the system. Each category includes one or more sub-categories, and each sub-category may include one or more sub-sub categories as discussed with reference to
The evaluation rating metric includes process, policy, procedure, certification, documentation, and automation. The evaluation rating metric may include more or less topics. The analysis system output options include evaluation rating, deficiency identification, and deficiency auto-correction.
With such a significant number of options with the system aspect, the evaluation aspect, the evaluation rating metrics, and analysis system output options, the analysis system can analyze a system in thousands, or more, combinations. For example, the analysis system 10 could provide an evaluation rating for the entire system with respect to its vulnerability to cyber-attacks. The analysis system 10 could also identify deficiencies in the system's cybersecurity processes, policies, documentation, implementation, operation, assets, and/or security functions based on the evaluation rating. The analysis system 10 could further auto-correct at least some of the deficiencies in the system's cybersecurity processes, policies, documentation, implementation, operation, assets, and/or security functions.
As another example, the analysis system 10 could evaluates the system's requirements for proper use of software (e.g., authorized to use, valid copy, current version) by analyzing every computing device in the system as to the system's software use requirements. From this analysis, the analysis system generates an evaluation rating. The analysis system 10 could also identify deficiencies in the compliance with the system's software use requirements (e.g., unauthorized use, invalid copy, outdated copy). The analysis system 10 could further auto-correct at least some of the deficiencies in compliance with the system's software use requirements (e.g., remove invalid copies, update outdated copies).
The asset management sub-category includes the sub-sub categories of HW inventoried, SW inventoried, data flow mapped out, external systems cataloged, resources have been prioritized, and security roles have been established. The business environment sub-category includes the sub-sub categories of supply chain roles defined, industry critical infrastructure identified, business priorities established, critical services identified, and resiliency requirements identified.
The governance sub-category includes the sub-sub categories of security policies are established, security factors aligned, and legal requirements are identified. The risk assessment sub-category includes the sub-sub categories of vulnerabilities identified, external sources are leveraged, threats are identified, business impacts are identified, risk levels are identified, and risk responses are identified. The risk management sub-category includes the sub-sub categories of risk management processes are established, risk tolerances are established, and risk tolerances are tied to business environment.
The access control sub-category includes the sub-sub categories of remote access control is defined, permissions are defined, and network integrity is defined. The awareness & training sub-category includes the sub-sub categories of users are trained, user privileges are known, third party responsibilities are known, executive responsibilities are known, and IT and security responsibilities are known. The data security sub-category includes the sub-sub categories of data at rest protocols are established, data in transit protocols are established, formal asset management protocols are established, adequate capacity of the system is established, data leak prevention protocols are established, integrity checking protocols are established, and use and development separation protocols are established.
The information protection processes and procedures sub-category includes the sub-sub categories of baseline configuration of IT/industrial controls are established, system life cycle management is established, configuration control processes are established, backups of information are implemented, policy & regulations for physical operation environment are established, improving protection processes are established, communication regarding effective protection technologies is embraced, response and recovery plans are established, cybersecurity in is including in human resources, and vulnerability management plans are established.
The maintenance sub-category includes the sub-sub categories of system maintenance & repair of organizational assets programs are established and remote maintenance of organizational assets is established. The protective technology sub-category includes the sub-sub-categories of audit and recording policies are practiced, removable media is protected & use policies are established, access to systems and assets is controlled, and communications and control networks are protected.
The anomalies and events sub-category includes the sub-sub categories of baseline of network operations and expected data flows are monitored, detected events are analyzed, event data are aggregated and correlated, impact of events is determined, and incident alert thresholds are established. The security continuous monitoring sub-category includes the sub-sub categories of network is monitored to detect potential cybersecurity attacks, physical environment is monitored for cybersecurity events, personnel activity is monitored for cybersecurity events, malicious code is detected, unauthorized mobile codes is detected, external service provider activity is monitored for cybersecurity events, monitoring for unauthorized personnel, connections, devices, and software is performed, and vulnerability scans are performed. The detection processes sub-category includes the sub-sub categories of roles and responsibilities for detection are defined, detection activities comply with applicable requirements, detection processes are tested, event detection information is communicated, and detection processes are routinely improved.
The response planning sub-category includes the sub-sub category of response plan is executed during and/or after an event. The communications sub-category includes the sub-sub category of personnel roles and order of operation are established, events are reported consistent with established criteria, information is shared consistently per the response plan, coordination with stakeholders is consistent with the response plan, and voluntary information is shared with external stakeholders.
The analysis sub-category includes the sub-sub categories of notifications form detection systems are investigated, impact of the incident is understood, forensics are performed, and incidents are categorized per response plan. The mitigation sub-category includes the sub-sub categories of incidents are contained, incidents are mitigated, and newly identified vulnerabilities are processed. The improvements sub-categories includes the sub-sub categories of response plans incorporate lessons learned, and response strategies are updated.
The improvement sub-category includes the sub-sub categories of recovery plans incorporate lessons learned and recovery strategies are updated. The communications sub-category includes the sub-sub categories of public relations are managed, reputations after an event is repaired, and recovery activities are communicated.
For this specific example, the analysis system 10 obtains disclosed data from the system regarding the guidelines associated with the assets of the department. From the disclosed data, the analysis system renders an evaluation rating for the understanding of the guidelines for identifying assets. The analysis system renders a second evaluation rating for the understanding of the guidelines regarding protection of the assets from issues. The analysis system renders a third evaluation rating for the understanding of the guidelines regarding detection of issues that may affect or are affecting the assets.
The analysis system renders a fourth evaluation rating for the understanding of the guidelines regarding responds to issues that may affect or are affecting the assets. The analysis system renders a fifth evaluation rating for the understanding of the guidelines regarding recovery from issues that affected the assets of a department based on disclosed data. The analysis system may render an overall evaluation rating for the understanding of the guidelines based on the first through fifth evaluation ratings.
As another example, the analysis system 11 evaluates the understanding of guidelines used to determine what assets should be included in the department, how the assets should be protected from issues, how issues that may affect or are affecting the assets are detect, how to respond to issues that may affect or are affecting the assets, and how the assets will recover from issues that may affect or are affecting them based on disclosed data. In this example, the analysis system renders an evaluation rating for the understanding of the guidelines regarding what assets should be in the department. The analysis system renders a second evaluation rating for the understanding of the guidelines regarding how the assets should be protected from issues. The analysis system renders a third evaluation rating for the understanding of the guidelines regarding how to detect issues that may affect or are affecting the assets.
The analysis system renders a fourth evaluation rating for the understanding of the guidelines regarding how to respond to issues that may affect or are affecting the assets. The analysis system renders a fifth evaluation rating for the understanding of the guidelines regarding how to recover from issues that affected the assets of a department based on disclosed data. The analysis system may render an overall evaluation rating for the understanding based on the first through fifth evaluation ratings.
For this specific example, the analysis system 10 obtains disclosed data from the system regarding the system design associated with the assets of the department. From the disclosed data, the analysis system renders an evaluation rating for the understanding of the system design for identifying assets. The analysis system renders a second evaluation rating for the understanding of the system design regarding protection of the assets from issues. The analysis system renders a third evaluation rating for the understanding of the system design regarding detection of issues that may affect or are affecting the assets.
The analysis system renders a fourth evaluation rating for the understanding of the system design regarding responds to issues that may affect or are affecting the assets. The analysis system renders a fifth evaluation rating for the understanding of the system design regarding recovery from issues that affected the assets of a department based on disclosed data. The analysis system may render an overall evaluation rating for the understanding based on the first through fifth evaluation ratings.
As another example, the analysis system 11 evaluates the understanding of system design used to determine what assets should be included in the department, how the assets should be protected from issues, how issues that may affect or are affecting the assets are detect, how to respond to issues that may affect or are affecting the assets, and how the assets will recover from issues that may affect or are affecting them based on disclosed data. In this example, the analysis system renders an evaluation rating for the understanding of the system design regarding what assets should be in the department. The analysis system renders a second evaluation rating for the understanding of the system design regarding how the assets should be protected from issues. The analysis system renders a third evaluation rating for the understanding of the system design regarding how to detect issues that may affect or are affecting the assets.
The analysis system renders a fourth evaluation rating for the understanding of the system design regarding how to respond to issues that may affect or are affecting the assets. The analysis system renders a fifth evaluation rating for the understanding of the system design regarding how to recover from issues that affected the assets of a department based on disclosed data. The analysis system may render an overall evaluation rating for the understanding based on the first through fifth evaluation ratings.
For this specific example, the analysis system 10 obtains disclosed data and discovered from the system regarding guidelines, system requirements, and system design associated with the assets of the department. From the disclosed data and discovered data, the analysis system renders one or more first evaluation ratings (e.g., one for each of guidelines, system requirements, and system design, or one for all three) for the understanding of the guidelines, system requirements, and system design for identifying assets. The analysis system renders one or more second evaluation ratings for the understanding of the guidelines, system requirements, and system design regarding protection of the assets from issues. The analysis system renders one or more third evaluation ratings for the understanding of the guidelines, system requirements, and system design regarding detection of issues that may affect or are affecting the assets.
The analysis system renders one or more fourth evaluation ratings for the understanding of the guidelines, system requirements, and system design regarding responds to issues that may affect or are affecting the assets. The analysis system renders one or more fifth evaluation ratings for the understanding of the guidelines, system requirements, and system design regarding recovery from issues that affected the assets of a department based on disclosed data. The analysis system may render an overall evaluation rating for the understanding based on the one or more first through one or more fifth evaluation ratings.
The analysis system 11 may further render an understanding evaluation rating regarding how well the discovered data correlates with the disclosed data. In other words, evaluate the knowledge level of the system. In this example, the analysis system compares the disclosed data with the discovered data. If they substantially match, the understanding of the system would receive a relatively high evaluation rating. The more the disclosed data differs from the discovered data, the lower the understanding evaluation rating will be.
As another example, the analysis system 11 evaluates the understanding of guidelines, system requirements, and system design used to determine what assets should be included in the department, how the assets should be protected from issues, how issues that may affect or are affecting the assets are detect, how to respond to issues that may affect or are affecting the assets, and how the assets will recover from issues that may affect or are affecting them based on disclosed data and discovered data. In this example, the analysis system renders one or more first evaluation ratings for the understanding of the guidelines, system requirements, and system design regarding what assets should be in the department. The analysis system renders one or more second evaluation ratings for the understanding of the guidelines, system requirements, and system design regarding how the assets should be protected from issues. The analysis system renders one or more third evaluation ratings for the understanding of the guidelines, system requirements, and system design regarding how to detect issues that may affect or are affecting the assets.
The analysis system renders one or more fourth evaluation ratings for the understanding of the guidelines, system requirements, and system design regarding how to respond to issues that may affect or are affecting the assets. The analysis system renders one or more fifth evaluation ratings for the understanding of the guidelines, system requirements, and system design regarding how to recover from issues that affected the assets of a department based on disclosed data. The analysis system may render an overall evaluation rating for the understanding of the guidelines, system requirements, and system design based on the one or more first through the one or more fifth evaluation ratings.
For this specific example, the analysis system 10 obtains disclosed data and discovered data from the system regarding the guidelines, system requirements, system design, system build, and resulting system associated with the assets of the department. From the disclosed data and discovered data, the analysis system renders one or more first evaluation ratings (e.g., one for each of guidelines, system requirements, system design, system build, resulting system with respect to each of implementation and operation or one for all of them) for the implementation and operation of identifying the assets per the guidelines, system requirements, system design, system build, and resulting system. The analysis system renders one or more second evaluation ratings for the implementation and operation of protecting the assets from issues per the guidelines, system requirements, system design, system build, and resulting system.
The analysis system renders one or more third evaluation ratings for the implementation and operation of detecting issues that may affect or are affecting the assets per the guidelines, system requirements, system design, system build, and resulting system. The analysis system renders one or more fourth evaluation ratings for the implementation and operation of responding to issues that may affect or are affecting the assets per the guidelines, system requirements, system design, system build, and resulting system.
The analysis system renders one or more fifth evaluation ratings for the implementation and operation of recovering from issues that may affect or are affecting the assets per the guidelines, system requirements, system design, system build, and resulting system. The analysis system may render an overall evaluation rating for the implementation and/or performance based on the one or more first through one or more fifth evaluation ratings.
For this specific example, the analysis system 10 obtains disclosed data and discovered from the system regarding the guidelines, system requirements, system design, system build, and resulting system associated with the assets of the department. From the discovered data and desired data, the analysis system renders one or more first evaluation ratings (e.g., one for each of guidelines, system requirements, system design, system build, resulting system with respect to each of implementation and operation or one for all of them) for the implementation and operation of identifying the assets per the guidelines, system requirements, system design, system build, and resulting system. The analysis system renders one or more second evaluation ratings for the implementation and operation of protecting the assets from issues per the guidelines, system requirements, system design, system build, and resulting system.
The analysis system renders one or more third evaluation ratings for the implementation and operation of detecting issues that may affect or are affecting the assets per the guidelines, system requirements, system design, system build, and resulting system. The analysis system renders one or more fourth evaluation ratings for the implementation and operation of responding to issues that may affect or are affecting the assets per the guidelines, system requirements, system design, system build, and resulting system.
The analysis system renders one or more fifth evaluation ratings for the implementation and operation of recovering from issues that may affect or are affecting the assets per the guidelines, system requirements, system design, system build, and resulting system. The analysis system may render an overall evaluation rating for the implementation and/or performance based on the one or more first through one or more fifth evaluation ratings.
The analysis system 11 may further render an implementation and/or operation evaluation rating regarding how well the discovered data correlates with the desired data. In other words, evaluate the level implementation and operation of the system. In this example, the analysis system compares the disclosed data with the desired data. If they substantially match, the implementation and/or operation of the system would receive a relatively high evaluation rating. The more the discovered data differs from the desired data, the lower the implementation and/or operation evaluation rating will be.
For this specific example, the analysis system 10 obtains disclosed data and discovered from the system regarding the guidelines, system requirements, and system design associated with the assets of the department. From the disclosed data and discovered, the analysis system renders one or more first evaluation ratings (e.g., one for each of guidelines, system requirements, and system design, or one for all three) for the self-evaluation of identifying assets per the guidelines, system requirements, and system design. For instance, what resources does the system have with respect to its guidelines, system requirements, and/or system design for self-identifying of assets.
The analysis system renders one or more second evaluation ratings for the self-evaluation of protecting the assets from issues per the guidelines, system requirements, and system design regarding. The analysis system renders one or more third evaluation ratings for the self-evaluation of detecting issues that may affect or are affecting the assets per the guidelines, system requirements, and system design regarding detection.
The analysis system renders one or more fourth evaluation ratings for the self-evaluation of responding to issues that may affect or are affecting the assets per the guidelines, system requirements, and system design. The analysis system renders one or more fifth evaluation ratings for the self-evaluation of recovering from issues that affected the assets per the guidelines, system requirements, and system design. The analysis system may render an overall evaluation rating for the self-evaluation based on the one or more first through one or more fifth evaluation ratings.
For this specific example, the analysis system 10 obtains disclosed data and discovered data from the system regarding guidelines, system requirements, system design, system build, and resulting system associated with the assets of the department. As a specific example, the disclosed data includes guidelines that certain types of data shall be encrypted; a system requirement that specifies 128-bit Advanced Encryption Standard (AES) for “y” types of documents; a system design that includes 12 “x” type computers that are to be loaded with 128-bit AES software by company “M”, version 2.0 or newer; and a system build and resulting system that includes 12 “x” type computers that have 128-bit AES software by company “M”, version 2.1.
For this specific example, the discovered data includes the same guideline as the disclosed data; a first system requirement that specifies 128-bit Advanced Encryption Standard (AES) for “y” types of documents and a second system requirement that specifies 256-bit Advanced Encryption Standard (AES) for “A” types of documents; a system design that includes 12 “x” type computers that are to be loaded with 128-bit AES software by company “M”, version 2.0 or newer, and 3 “z” type computers that are to be loaded with 256-bit AES software by company “N” version 3.0 or newer; and a system build and resulting system that includes 10 “x” type computers that have 128-bit AES software by company “M” version 2.1, 2 “x” type computers that have 128-bit AES software by company “M” version 1.3, 2 “z” type computers that have 256-bit AES software by company “N” version 3.1, and 1 “z” type computer that has 256-bit AES software by company “K” version 0.1.
From just the disclosed data, the analysis system would render a relatively high evaluation rating for the understanding of the guidelines, system requirements, system design, system build, and resulting system associated with the assets of the department. The relatively high evaluation rating would be warranted since the system build and resulting system included what was in the system design (e.g., 12 “x” type computers that have 128-bit AES software by company “M”, version 2.1). Further, the system design is consistent with the system reequipments (e.g., 128-bit Advanced Encryption Standard (AES) for “y” types of documents), which is consistent with the guidelines (e.g., certain types of data shall be encrypted).
From the discovered data, however, the analysis system would render a relatively low evaluation rating for the understanding of the guidelines, system requirements, system design, system build, and resulting system associated with the assets of the department. The relatively low evaluation rating would be warranted since the system build and resulting system is not consistent with the system design (e.g., is missing 2 “x” type computers with the right encryption software, only has 2 “z” type computers with the right software and has a “z” type computer with the wrong software).
The analysis system would also process the evaluation ratings from the disclosed data and from the discovered data to produce an overall evaluation rating for the understanding of the guidelines, system requirements, system design, system build, and resulting system associated with the assets of the department. In this instance, the disclosed data does not substantially match the discovered data, which indicates a lack of understanding of what's really in the system (i.e., knowledge of the system). Further, since the evaluation rating from the discovered data was low, the analysis system would produce a low overall evaluation rating for the understanding.
As is also shown, the discovered data includes:
From this data, the analysis system identifies deficiencies 232 and, when possible, provides auto-corrections 235. For example, the analysis system determines that the system requirements also included a requirement for 256-bit AES for “A” type documents. The analysis system can auto-correct this deficiency by updating the knowledge of the system to include the missing requirement. This may include updating one or more policies, one or more processes, one or more procedures, and/or updating documentation.
As another example, the analysis system identifies the deficiency of the design further included 3 “z” type computers that are to be loaded with 256-bit AES software by company “N”, version 3.0 or newer. The analysis system can auto-correct this deficiency by updating the knowledge of the system to includes the “z” type computers with the correct software. Again, this may include updating one or more policies, one or more processes, one or more procedures, and/or updating documentation.
As another example, the analysis system identifies the deficiency of 2 “x” type computers having old versions of the encryption software (e.g., have version 1.3 of company M's 128-bit AES software instead of a version 2.0 or newer). The analysis system can auto-correct this deficiency by updating the version of software for the two computers.
As another example, the analysis system identifies the deficiency of 1 “z” type computer has the wrong encryption software (e.g., it has version 0.1 from company K and not version 3.0 or newer from company N). The analysis system can auto-correct this deficiency by replacing the wrong encryption software with the correct encryption software.
As another example, the analysis system identifies the deficiency of 1 “z” type computer is missing from the system. The analysis system cannot auto-correct this deficiency since it is missing hardware. In this instance, the analysis system notifies a system admin of the missing computer.
In an example, comparator 360 compares disclosed data and/or ratings 338 and discovered data and/or ratings 339 based on the disclosed to discovered compare criteria 373 to produce, if any, one or more disclosed to discovered differences 367. As a more specific example, the analysis system evaluates disclosed, discovered, and/or desired data to produce one or more evaluation ratings regarding the understanding of the guidelines, system requirements, system design, system build, and resulting system associated with identifying the assets of the department.
Each of the disclosed data, discovered data, and desired data includes data regarding the guidelines, system requirements, system design, system build, and/or resulting system associated with identifying the assets of the department and/or the assets of the department. Recall that disclosed data is the known data of the system at the outset of an analysis, which is typically supplied by a system administrator and/or is obtained from data files of the system. The discovered data is the data discovered about the system by the analysis system during the analysis. The desired data is the data obtained by the analysis system from system proficiency resources regarding desired guidelines, system requirements, system design, system build, and/or system operation.
For the understanding of the guidelines, system requirements, system design, system build, and resulting system associated with identifying the assets of the department, the analysis system may produce one or more evaluation ratings. For example, the analysis system produces an evaluation rating for:
The disclosed to discovered compare criteria 373 specifies the evaluation ratings to be compared and/or which data of the disclosed data is to be compared to data of the discovered data. For example, the disclosed to discovered compare criteria 373 indicates that the “understanding of the guidelines with respect to system design of the department from the disclosed data” is to be compared to the “understanding of the system design with respect to identifying assets of the department from the discovered data”. As another example, the disclosed to discovered compare criteria 373 indicates that data regarding system design of the disclosed data is to be compared with the data regarding the system design of the discovered data.
In accordance with the disclosed to discovered compare criteria 373 and for this specific example, the comparator 360 compares the “understanding of the guidelines with respect to system design of the department from the disclosed data” with the “understanding of the system design with respect to identifying assets of the department from the discovered data” to produce, if any, one or more understanding differences. The comparator 360 also compares the data regarding system design of the disclosed data with the data regarding the system design of the discovered data to produce, if any, one or more data differences. The comparator 360 outputs the one or more understanding differences and/or the one or more data differences as the disclosed to discovered differences 367.
The analyzer 363 analyzes the disclosed to discovered differences 267 in accordance with the disclosed to discovered deficiency criteria 368 to determine whether a difference 267 constitutes a deficiency. If so, the analyzer 363 includes it in the disclosed to discovered deficiencies 232-1. The disclosed to discovered deficiency criteria 368 correspond to the disclosed to discovered compare criteria 373 and specify how the differences 367 are to be analyzed to determine if they constitute deficiencies 232-1.
As an example, the disclosed to discovered deficiency criteria 368 specify a series of comparative thresholds based on the impact the differences have on the system. The range of impact is from none to significant with as many granular levels in between as desired. For differences that have a significant impact on the system, the comparative threshold is set to trigger a deficiency for virtually any difference. For example, if the difference is regarding system security, then then threshold is set that any difference is a deficiency.
As another example, if the difference is regarding is inconsequential information, then the threshold is set to not identify the difference as a deficiency. For example, the discovered data includes a PO date on Nov. 2, 2020 for a specific purchase order and the disclosed data didn't include a PO date, but the rest of the information regarding the PO is the same for the disclosed and discovered data. In this instance, the missing PO date is inconsequential and would not be identified as a deficiency.
The deficiency correction module 366 receives the disclosed to discovered deficiencies 232-1, if any, and determines whether one or more of the deficiencies 232-1 can be auto-corrected to produce an auto-correction 235. In many instances, software deficiencies are auto-correctable (e.g., wrong software, missing software, out-of-date software, etc.) while hardware deficiencies are not auto-correctable (e.g., wrong computing device, missing computing device, missing network connection, etc.).
The comparator 361 functions similarly to the comparator 360 to produce discovered to desired differences 369 based on the discovered data and/or rating 339 and the desired data and/or rating 340 in accordance with the discovered to desired compare criteria 374. The analyzer 364 functions similarly to the analyzer 363 to produce discovered to desired deficiencies 232-2 from the discovered to desired differences 369 in accordance with the discovered to desired deficiency criteria 370. The deficiency correction module 366 auto-corrects, when possible, the discovered to desired deficiencies 232-2 to produce auto-corrections 235.
The comparator 362 functions similarly to the comparator 360 to produce disclosed to desired differences 371 based on the disclosed data and/or rating 338 and the desired data and/or rating 340 in accordance with the disclosed to desired compare criteria 375. The analyzer 365 functions similarly to the analyzer 363 to produce disclosed to desired deficiencies 232-3 from the disclosed to desired differences 371 in accordance with the disclosed to desired deficiency criteria 372. The deficiency correction module 366 auto-corrects, when possible, the disclosed to desired deficiencies 232-3 to produce auto-corrections 235.
While the examples were for the understanding of the system with respect to identifying assets of the department, the evaluation processing module 254 processes any combination of system aspects, evaluation aspects, and evaluation metrics in a similar manner. For example, the evaluation processing module 254 processes the implementation of the system with respect to identifying assets of the department to identify deficiencies 232 and auto-corrections in the implementation. As another example, the evaluation processing module 254 processes the operation of the system with respect to identifying assets of the department to identify deficiencies 232 and auto-corrections in the operation of the system.
If the understanding of the system is inadequate, the analysis proceeds to the determine deficiencies in the understanding of the system state 382. In this state 382, the deficiencies in understanding are determined by processing differences and/or as discussed herein.
From state 382, corrections required in understanding the system are identified and operation proceeds to state 383 in which a report is generated regarding understanding deficiencies and/or corrective measures to be taken. In addition, a report is generated and sent to the owner/operator of the other system. If there are no understanding deficiencies and/or corrective measures, no auto correction is needed, and operations are complete at the done state.
If an autocorrect can be done, operation proceeds to state 384 where the analysis system updates a determined ability to understand the other system. Corrections are then implemented, and operation proceeds back to state 381. Note that corrections may be automatically performed for some deficiencies but not others, depending upon the nature of the deficiency.
From state 381, if the tested understanding of the system is adequate, operation proceeds to state 385 where a report is generated regarding an adequate understanding of the system and the report is sent. From state 385 if operation is complete, operations proceed to the done state. Alternately, from state 385 operation may proceed to state 386 where testing of the assets, system functions and/or security functions of the other system is performed. If testing of the assets, system functions, and/or security functions of the system results in an adequate test result, operation proceeds to state 390 where a report is generated indicating adequate implementation and/or operation of the system and the report is sent.
Alternately, at state 386 if the testing of the system results in an inadequate result, operations proceed to state 387 where deficiencies in the assets, system functions, and/or security functions of the system are tested. At state 387 differences are compared to identify deficiencies in the assets, system functions, and/or security functions. The analysis then proceeds from state 387 to state 388 where a report is generated regarding corrective measures to be taken in response to the assets, system functions, and/or security functions deficiencies. The report is then sent to the owner/operator. If there are no deficiencies and/or corrective measures, no auto correction is needed, and operations are complete at the done state. If autocorrect is required, operation proceeds to state 389 where the analysis system updates assets, system functions, and/or security functions of the system. Corrections are then implemented and the analysis proceeds to state 386. Note that corrections may be automatically performed for some deficiencies but not others, depending upon the nature of the deficiency.
The data collected at steps 400 and 401 is then compared (step 402) and a determination is made regarding the comparison. If the comparison is favorable, as determined at step 403, meaning that the system proficiency understanding compares favorably to the data regarding understanding, operation is complete, a report is generated (step 412), and the report is sent (step 413). If the comparison is not favorable, as determined at step 403, operation continues with identifying deficiencies in the understanding of the system (step 404), identifying corrective measures (step 405), generating a corresponding report (step 412) and sending the report (step 413).
The method also includes the analysis system obtaining system proficiency understanding data of the system functions and/or security implementation and/or operation of the system (step 406) and obtaining data regarding the owner/operator' s understanding of the system functions and/or security functions implementation and/or operation of the system (step 407). System proficiencies of step 406 include industry best practices and regulatory requirements, for example. The data obtained from the system at step 407 is based upon data received regarding the system or received by probing the system.
The data collected at steps 406 and 407 is then compared (step 414) and a determination is made regarding the comparison. If the comparison is favorable, as determined at step 415, meaning that the system proficiency understanding compares favorably to the data regarding understanding, operation is complete, a report is generated (step 412), and the report is sent (step 413). If the comparison is not favorable, as determined at step 415, operation continues with identifying deficiencies in the understanding of the system (step 416), identifying corrective measures (step 417), generating a corresponding report (step 412) and sending the report (step 413).
The method further includes the analysis system comparing the understanding of the physical structure (obtained at step 401) with the understanding of the system functions and/or security functions implementation and/or operation (obtained at step 406) at step 408. Step 408 essentially determines whether the understanding of the assets corresponds with the understanding of the system functions and/or security functions of the implementation and/or operation of the system. If the comparison is favorable, as determined at step 409, a report is generated (step 412), and the report is sent (step 413). If the comparison is not favorable, as determined at step 409, the method continues with identifying imbalances in the understanding (step 410), identifying corrective measures (step 410), generating a corresponding report (step 412), and sending the report (step 413).
The method continues at step 422 where the analysis system determines an analysis perspective (e.g., understanding, implementation, operation, and/or self-evaluate). The method continues at step 423 where the analysis system determines an analysis viewpoint (e.g., disclosed, discovered, and/or desired). The method continues at step 424 where the analysis system determines a desired output (e.g., evaluation rating, deficiencies, and/or auto-corrections).
The method continues at step 425 where the analysis system determines what data to gather based on the preceding determinations. The method continues at step 426 where the analysis system gathers data in accordance with the determination made in step 425. The method continues at step 427 where the analysis system determines whether the gathered data is to be pre-processed.
If yes, the method continues at step 428 where the analysis system determines data pre-processing functions (e.g., parse, normalize, tag, and/or de-duplicate). The method continues at step 429 where the analysis system pre-processes the data based on the pre-processing functions to produce pre-processed data. Whether the data is pre-processed or not, the method continues at step 430 where the analysis system determines one or more evaluation categories (e.g., identify, protect, detect, respond, and/or recover) and/or sub-categories for evaluation. Note that this may be done prior to step 425 and be part of determining the data to gather.
The method continues at step 431 where the analysis system analyzes the data in accordance with the determine evaluation categories and in accordance with a selected evaluation metric (e.g., process, policy, procedure, automation, certification, and/or documentation) to produce analysis results. The method continues at step 432 where the analysis system processes the analysis results to produce the desired output (e.g., evaluation rating, deficiencies, and/or auto-correct). The method continues at step 432 where the analysis system determines whether to end the method or repeat it for another analysis of the system.
The method continues at step 441 where the analysis system ascertains implementation of the system, or portion thereof (e.g., assets designed to be, and/or built, in the system). The method continues at step 442 where the analysis system correlates components of the assets to components of the implementation (e.g., do the assets of the actual system correlate with assets design/built to be in the system).
The method continues at step 443 where the analysis system scores the components of the physical assets in accordance with the mapped components of the implementation. For example, the analysis system scores how well the assets of the actual system correlate with assets design/built to be in the system. The scoring may be based on one or more evaluation metrics (e.g. process, policy, procedure, automation, certification, and/or documentation). The method continues at step 444 where the analysis system performs a function on the scores to obtain a result (e.g., an evaluation rating, identified deficiencies, and/or auto-correction of deficiencies).
The method continues at step 445 where the analysis system determines whether the result is equal or greater than a target result (e.g., the evaluation rating is a certain value). If yes, the method continues at step 446 where the analysis system indicates that the system, or portion thereof, passes this particular test. If the results are less than the target result, the method continues at step 447 where the analysis system identifies vulnerabilities in the physical assets and/or in the implementation. For example, the analysis system determines that a security software application is missing from several computing devices in the system, or portion thereof, being analyzed.
The method continues at step 448 where the analysis system determines, if possible, corrective measures of the identified vulnerabilities. The method continues at step 449 where the analysis system determines whether the corrective measures can be done automatically. If not, the method continues at step 451 where the analysis system reports the corrective measures. If yes, the method continues at step 450 where the analysis system auto-corrects the vulnerabilities.
The method continues at step 463 where the analysis system scores the components of the physical assets in accordance with the mapped components of the operation. For example, the analysis system scores how well the identified operations of the assets correlate with operations actually performed by the assets. The scoring may be based on one or more evaluation metrics (e.g. process, policy, procedure, automation, certification, and/or documentation). The method continues at step 464 where the analysis system performs a function on the scores to obtain a result (e.g., an evaluation rating, identified deficiencies, and/or auto-correction of deficiencies).
The method continues at step 465 where the analysis system determines whether the result is equal or greater than a target result (e.g., the evaluation rating is a certain value). If yes, the method continues at step 466 where the analysis system indicates that the system, or portion thereof, passes this particular test. If the results are less than the target result, the method continues at step 467 where the analysis system identifies vulnerabilities in the physical assets and/or in the operation.
The method continues at step 468 where the analysis system determines, if possible, corrective measures of the identified vulnerabilities. The method continues at step 469 where the analysis system determines whether the corrective measures can be done automatically. If not, the method continues at step 471 where the analysis system reports the corrective measures. If yes, the method continues at step 470 where the analysis system auto-corrects the vulnerabilities.
The method continues at step 483 where the analysis system scores the components of the system functions in accordance with the mapped components of the implementation. For example, the analysis system scores how well the system functions of the actual system correlate with system functions design/built to be in the system. The scoring may be based on one or more evaluation metrics (e.g. process, policy, procedure, automation, certification, and/or documentation). The method continues at step 484 where the analysis system performs a function on the scores to obtain a result (e.g., an evaluation rating, identified deficiencies, and/or auto-correction of deficiencies).
The method continues at step 485 where the analysis system determines whether the result is equal or greater than a target result (e.g., the evaluation rating is a certain value). If yes, the method continues at step 486 where the analysis system indicates that the system, or portion thereof, passes this particular test. If the results are less than the target result, the method continues at step 487 where the analysis system identifies vulnerabilities in the physical assets and/or in the implementation.
The method continues at step 488 where the analysis system determines, if possible, corrective measures of the identified vulnerabilities. The method continues at step 489 where the analysis system determines whether the corrective measures can be done automatically. If not, the method continues at step 491 where the analysis system reports the corrective measures. If yes, the method continues at step 490 where the analysis system auto-corrects the vulnerabilities.
The method continues at step 503 where the analysis system scores the components of the system functions in accordance with the mapped components of the operation. For example, the analysis system scores how well the identified operations to support the system functions correlate with operations actually performed to support the system functions. The scoring may be based on one or more evaluation metrics (e.g. process, policy, procedure, automation, certification, and/or documentation). The method continues at step 504 where the analysis system performs a function on the scores to obtain a result (e.g., an evaluation rating, identified deficiencies, and/or auto-correction of deficiencies).
The method continues at step 505 where the analysis system determines whether the result is equal or greater than a target result (e.g., the evaluation rating is a certain value). If yes, the method continues at step 506 where the analysis system indicates that the system, or portion thereof, passes this particular test. If the results are less than the target result, the method continues at step 507 where the analysis system identifies vulnerabilities in the physical assets and/or in the operation.
The method continues at step 508 where the analysis system determines, if possible, corrective measures of the identified vulnerabilities. The method continues at step 509 where the analysis system determines whether the corrective measures can be done automatically. If not, the method continues at step 511 where the analysis system reports the corrective measures. If yes, the method continues at step 510 where the analysis system auto-corrects the vulnerabilities.
The method continues at step 523 where the analysis system scores the components of the security functions in accordance with the mapped components of the implementation. For example, the analysis system scores how well the security functions of the actual system correlate with security functions design/built to be in the system. The scoring may be based on one or more evaluation metrics (e.g. process, policy, procedure, automation, certification, and/or documentation). The method continues at step 524 where the analysis system performs a function on the scores to obtain a result (e.g., an evaluation rating, identified deficiencies, and/or auto-correction of deficiencies).
The method continues at step 525 where the analysis system determines whether the result is equal or greater than a target result (e.g., the evaluation rating is a certain value). If yes, the method continues at step 526 where the analysis system indicates that the system, or portion thereof, passes this particular test. If the results are less than the target result, the method continues at step 527 where the analysis system identifies vulnerabilities in the physical assets and/or in the implementation.
The method continues at step 528 where the analysis system determines, if possible, corrective measures of the identified vulnerabilities. The method continues at step 529 where the analysis system determines whether the corrective measures can be done automatically. If not, the method continues at step 531 where the analysis system reports the corrective measures. If yes, the method continues at step 530 where the analysis system auto-corrects the vulnerabilities.
The method continues at step 543 where the analysis system scores the components of the security functions in accordance with the mapped components of the operation. For example, the analysis system scores how well the identified operations to support the security functions correlate with operations actually performed to support the security functions. The scoring may be based on one or more evaluation metrics (e.g. process, policy, procedure, automation, certification, and/or documentation). The method continues at step 544 where the analysis system performs a function on the scores to obtain a result (e.g., an evaluation rating, identified deficiencies, and/or auto-correction of deficiencies).
The method continues at step 545 where the analysis system determines whether the result is equal or greater than a target result (e.g., the evaluation rating is a certain value). If yes, the method continues at step 546 where the analysis system indicates that the system, or portion thereof, passes this particular test. If the results are less than the target result, the method continues at step 547 where the analysis system identifies vulnerabilities in the physical assets and/or in the operation.
The method continues at step 548 where the analysis system determines, if possible, corrective measures of the identified vulnerabilities. The method continues at step 549 where the analysis system determines whether the corrective measures can be done automatically. If not, the method continues at step 551 where the analysis system reports the corrective measures. If yes, the method continues at step 550 where the analysis system auto-corrects the vulnerabilities.
An asset evaluation includes evaluating the system's assets with respect to type, quantity (e.g., not enough assets to perform certain system functions, redundant assets are wasting resources, etc.), and function (e.g., are the system assets doing what they are supposed to do?). The asset evaluation involves analyzing the type, quantity, and function of system assets in regard to business operations and/or objectives, requirements compliance, data flow objectives, data access objectives, data security objectives, data storage objectives, data use objectives, and data dissemination objectives.
The method continues at step 561 where the analysis system determines at least one evaluation perspective for use in performing the asset evaluation on the system sector. An evaluation perspective is an understanding perspective, an implementation perspective, an operation perspective, or a self-analysis perspective. An understanding perspective is with regard to how well the system assets are understood. An implementation perspective is with regard to how well the system assets are implemented. An operation perspective is with regard to how well the system assets operate. A self-analysis (or self-evaluation) perspective is with regard to how well the system self-evaluates the understanding, implementation, and/or operation of system assets.
The method continues at step 562 where the analysis system determines at least one evaluation viewpoint for use in performing the asset evaluation on the system sector. An evaluation viewpoint is a disclosed viewpoint, a discovered viewpoint, or a desired viewpoint. A disclosed viewpoint is with regard to analyzing the system sector based on the disclosed data. A discovered viewpoint is with regard to analyzing the system sector based on the discovered data. A desired viewpoint is with regard to analyzing the system sector based on the desired data.
The method continues at step 563 where the analysis system obtains asset data regarding the system sector in accordance with the at least one evaluation perspective and the at least one evaluation viewpoint. Asset data is data obtained about the system sector. The obtaining of asset data will be discussed in greater detail with reference to
The method continues at step 564 where the analysis system calculates an asset evaluation rating as a measure of asset maturity for the system sector based on the asset data, the at least one evaluation perspective, the at least one evaluation viewpoint, and at least one evaluation rating metric. An evaluation rating metric is a process rating metric, a policy rating metric, a procedure rating metric, a certification rating, a documentation rating metric, or an automation rating metric. The calculating of an asset evaluation rating will be discussed in greater detail with reference to
The method continues at step 566 where the analysis system determines at least one system criteria of the system. A system criteria is system guidelines, system requirements, system design, system build, or resulting system. Evaluation based on system criteria assists with determining where a deficiency originated and/or how it might be corrected. For example, if the system requirements were lacking a requirement for handling a particular type of threat, the lack of system requirements could be identified and corrected.
The method continues at step 567 where the analysis system determines the system sector based on the at least one system element and the at least one system criteria. As an example, a system sector is determined to be system design and/or system build of a particular division. As yet another example, a system sector is determined to be guidelines, system requirements, system design, system build, and resulting system of the organization (e.g., the entire system). As an example, a system sector is determined to be system requirements of a particular division.
The control module 256 determines one or more system criteria based on the system sector. The control module 256 also determines one or more evaluation perspectives, one or more evaluation viewpoints, and/or one or more evaluation rating metrics from the input. As an example, the input 271 could specify the evaluation perspective(s), the evaluation viewpoint(s), the evaluation rating metric(s), and/or analysis output(s). As another example, the input 271 indicates a desired analysis output (e.g., an evaluation rating, deficiencies identified, and/or deficiencies auto-corrected). From this input, the control module 256 determines the evaluation perspective(s), the evaluation viewpoint(s), the evaluation rating metric(s) to fulfill the desired analysis output.
In addition, the control module 256 generates data gathering parameters 263, pre-processing parameters 264, data analysis parameters 265, and/or evaluation parameters 266 as discussed with reference to
The pre-processing module 251 processes the asset data in accordance with the pre-processing parameters 264 to produce pre-processed data 414. The asset data and/or the pre-processed data 414 may be stored in the database 275. The data analysis module 252 calculates an asset evaluation rating 219 based on the pre-processed data 414 in accordance with the data analysis parameters 265 and the analysis modeling 268.
If the requested analysis output was for an evaluation rating only, the data output module 255 outputs the asset evaluation rating 219 as the output 269. The system user interface module 80 renders a graphical representation of the asset evaluation rating and the database 275 stores it.
If the required analysis output included identify deficiencies, then the evaluation processing module 254 evaluates the asset evaluation rating 219 and may further evaluate the pre-processed data to identify one or more deficiencies 232. In addition, the evaluation processing module 254 determines whether a deficiency can be auto-corrected and, if so, determines the auto-correction 235. In this instance, the data output module 255 outputs the asset evaluation rating 219, the deficiencies 232, and the auto-corrections 235 as output 269 to the database 275, the system user interface module 81, and the remediation module 257.
The system user interface module 80 renders a graphical representation of the asset evaluation rating, the deficiencies, and/or the auto-corrections. The database 275 stores the asset evaluation rating, the deficiencies, and/or the auto-corrections. The remediation module 257 processes the auto-corrections 235 within the system 11, verifies the auto-corrections, and then records the execution of the auto-correction and its verification.
For this specific example, the analysis system 10 obtains disclosed data from the system regarding the system build of assets of the engineering department (i.e., engineering department assets). From the disclosed data, the analysis system renders a first evaluation rating for the understanding of the system build of the engineering department assets with respect to an evaluation rating metric of process. The analysis system renders a second evaluation rating for the understanding of the system build of engineering department assets with respect to evaluation rating metric of policy. The analysis system renders a third evaluation rating for the understanding of the system build of engineering department assets with respect to an evaluation rating metric of procedure. The analysis system renders a fourth evaluation rating for the understanding of the system build of engineering department assets with respect to an evaluation rating metric of certification. The analysis system renders a fifth evaluation rating for the understanding of the system build of engineering department assets with respect to an evaluation rating metric of documentation. The analysis system renders a sixth evaluation rating for the understanding of the system build of engineering department assets with respect to an evaluation rating metric of automation.
The analysis system 11 generates the asset evaluation rating for the understanding of the system build of engineering department assets based on the six evaluation ratings. As example, each of the six evaluation rating metrics has a maximum potential rating (e.g., 50 for process, 20 for policy, 15 for procedure, 10 for certification, 20 for documentation, and 20 for automation), which has a maximum rating of 135. Continuing with this example, the first evaluation rating based on process is 35; the second evaluation rating based on policy is 10; the third evaluation rating based on procedure is 10; the fourth evaluation rating based on certification is 10; the fifth evaluation rating based on documentation is 15; and the sixth evaluation rating based on automation is 20, resulting in a cumulative score of 100 out of a possible 135. This rating indicates that there is room for improvement and provides a basis for identifying deficiencies.
The method continues at step 571 where the analysis system identifies at least one system element of the system (e.g., the engineering department) based on the data gathering parameters and obtains asset information from one or more assets of the at least one system element in accordance with the data gathering parameters. The obtaining of the asset information is discussed in greater detail with reference to
The method continues at step 572 where the analysis system records the asset information from the one or more system assets to produce the asset data. As an example, the analysis system stores the asset information in the database. As another example, the analysis system temporarily stores the asset information in the data input module. As yet another example, the analysis system uses some form of retaining a record of the asset information. Examples of asset information are provided with reference to
The method continues at step 574 where the analysis system identifies vendor information from the system asset data response. For example, vendor information includes vendor name, a model name, a product name, a serial number, a purchase date, and/or other information to identify the system asset. The method continues at step 575 where the analysis system tags the system asset data response with the vendor information.
The method continues at step 578 where the analysis system determines a second data gathering parameter based on the at least one evaluation perspective (e.g., understanding, implementation, operation, and/or self-evaluation). For example, if the determined selected evaluation perspective is operation, then the third data gathering parameter would be to search for information regarding operation of the system sector.
The method continues at step 579 where the analysis system determines a third data gathering parameter based on the at least one evaluation viewpoint (e.g., disclosed data, discovered data, and/or desired data). For example, if the determined selected evaluation viewpoint is disclosed and discovered data, then the fourth data gathering parameter would be to obtain for disclosed data and to obtain discovered data.
The method continues at step 580 where the analysis system determines a fourth data gathering parameter based on the at least one evaluation rating metric (e.g., process, policy, procedure, certification, documentation, and/or automation). For example, if the determined selected evaluation rating metric is process, policy, procedure, certification, documentation, and automation, then the fifth data gathering parameter would be to search for data regarding process, policy, procedure, certification, documentation, and automation.
The analysis system generates the data gathering parameters from the first through fourth data gathering parameters. For example, the data gathering parameters include search for information regarding processes, policies, procedures, certifications, documentation, and/or automation (fourth parameter) pertaining to system requirements (first parameter) for system operation (second parameter) regarding system assets from disclosed and discovered data (third parameter).
For example, based on business operations and/or objectives system criteria, the analysis system gathers disclosed business operations information pertaining to assets for the asset evaluation (e.g., system assets and asset information related to, involved in, and/or needed for executing business operations). Disclosed business operations information may include one or more of production and service information, supply chain information, department and/or group operations (e.g., marketing department's e-commerce platform management objectives, personnel roles and responsibilities, legal objectives), business infrastructure (e.g., facilities, structures, and services upon which the business is built), resiliency requirements (e.g., components that remain available through a failure even when the system currently hosting them experiences an outage), and financial objectives (e.g., revenue growth, profit margins, return on investment, etc.).
As another example, based on requirements compliance system criteria, the analysis system gathers disclosed requirements compliance information pertaining to assets for the asset evaluation (e.g., system assets and asset information related to, involved in, and/or needed for executing requirement compliance). Disclosed requirements compliance information may include one or more of organizational requirements, legal requirements, regulatory requirements, and assigned compliance roles and responsibilities (e.g., chief compliance officer roles and responsibilities). For example, organizational compliance requirements may include use of specific vendor hardware, use of specific vendor software, use of encryption, etc. Disclosed organizational compliance requirement information related to assets may include a list of the specific vendor hardware and software and a data encryption tool.
As another example, based on data flow objectives system criteria, the analysis system gathers disclosed data flow objectives information pertaining to assets for the asset evaluation (e.g., system assets and asset information related to, involved in, and/or needed for executing data flow objectives). Disclosed data flow objectives information may include one or more of overall system data flow objectives, data flow with external sources, and department, group, and/or personnel data flow objectives. A data flow objective is regarding where data can flow, at what rate data can and should flow, the manner in which the data flow, and/or the means over which the data flows. As an example of a data flow objective, data for remote storage is to flow via a secure data pipeline using a particular encryption protocol. As another example of a data flow objective, ingesting of data should have the capacity to handle a data rate of 100 giga-bits per second. Disclosed data flow objective information related to assets may include the assets involved in data ingestion and the secure data pipeline.
As another example, based on data access objectives system criteria, the analysis system gathers disclosed data access objectives information pertaining to assets for the asset evaluation (e.g., system assets and asset information related to, involved in, and/or needed for executing data access objectives). Disclosed data access objectives information may include one or more of remote access control information, permissions information, network integrity information, and assigned user privileges.
As another example, based on data security objectives system criteria, the analysis system gathers disclosed data security objectives information pertaining to assets for the asset evaluation (e.g., system assets and asset information related to, involved in, and/or needed for executing data security objectives). Disclosed data security objectives information may include one or more of data at rest protocols, data in transit protocols, asset management protocols, data leak prevention protocols, vulnerability scanning objectives, adequate capacity of the system objectives, integrity checking protocols, assigned security roles and responsibilities, monitoring protocols (e.g., personnel, environmental, malicious code, external service provide, unauthorized code, network, etc.), and use and development separation protocols (e.g., development and testing environments are separate from production environments).
As another example, based on data storage objectives system criteria, the analysis system gathers disclosed data storage objectives information pertaining to assets for the asset evaluation (e.g., system assets and asset information related to, involved in, and/or needed for executing data storage objectives). Disclosed data storage objectives information may include one or more of storage capacity objectives (e.g., disk space management), data storage plans (e.g., RAID, cloud, on premise, data archiving plans, etc.), and data backup strategies (e.g., type of backup media, full backup, copy backup, incremental backup, differential backup, backup rotation, backup monitoring, data restore trials, disk checks, RAM checks, deduplication, encryption, certificate management, data retention plans, etc.).
As another example, based on data use objectives system criteria, the analysis system gathers disclosed data use objectives information pertaining to assets for the asset evaluation (e.g., system assets and asset information related to, involved in, and/or needed for executing data use objectives). Disclosed data use objectives information may include one or more of data creation policies, confidential data use policies and definitions, data use monitoring protocols, and data use permissions.
As another example, based on data dissemination objectives system criteria, the analysis system gathers disclosed data dissemination objectives information pertaining to assets for the asset evaluation (e.g., system assets and asset information related to, involved in, and/or needed for executing data dissemination objectives). Disclosed data dissemination objectives information may include one or more of communications policies (e.g., social media, external source communications, etc.), network policies (e.g., how information may be disseminated on a network, etc.), personnel interactions policies (e.g., mobile phone policies, email policies, etc.), and crisis management plans (e.g., reputation repairment, public statements, disaster recovery information, etc.).
A diagram is a data flow diagram, an HLD diagram, an LLD diagram, a DLD diagram, an operation flowchart, a software architecture diagram, a hardware architecture diagram, and/or other diagram regarding, the design, build, and/or operation of the system, or a portion thereof. A design specification is a security specification, a hardware specification, a software specification, a data flow specification, a business operation specification, a build specification, and/or other specification regarding the system, or a portion thereof
A purchase is a purchase order, a purchase fulfillment document, bill of laden, a quote, a receipt, and/or other information regarding purchases of assets of the system, or a portion thereof. An installation note is a record regarding the installation of an asset of the system, or portion thereof. A maintenance record is a record regarding each maintenance service performed on an asset of the system, or portion thereof
User information includes affiliation of a user with one or more assets of the system, or portion thereof. User information may also include a log of use of the one or more assets by the user or others. User information may also include privileges and/or restrictions imposed on the use of the one or more assets.
Device information includes an identity for an asset of the system, or portion thereof. A device is identified by vendor information (e.g., name, address, contact person information, etc.), a serial number, a device description, a device model number, a version, a generation, a purchase date, an installation date, a service date, and/or other mechanism for identifying a device.
As shown, asset information of the system, or portion thereof, includes a list of network devices (e.g., hardware and/or software), a list of networking tools, a list of security devices (e.g., hardware and/or software), a list of security tools, a list of storage devices (e.g., hardware and/or software), a list of servers (e.g., hardware and/or software), a list of user applications, a list of user devices (e.g., hardware and/or software), a list of design tools, an list of system applications, and/or a list of verification tools. Recall that a tool is a program that functions to develop, repair, and/or enhance other programs and/or hardware of the system, or portion thereof.
Each list of devices includes vendor information (e.g., name, address, contact person information, etc.), a serial number, a device description, a device model number, a version, a generation, a purchase date, an installation date, a service date, and/or other mechanism for identifying a device. Each list of software includes vendor information (e.g., name, address, contact person information, etc.), a serial number, a software description, a software model number, a version, a generation, a purchase date, an installation date, a service date, and/or other mechanism for identifying software. Each list of tools includes vendor information (e.g., name, address, contact person information, etc.), a serial number, a tool description, a tool model number, a version, a generation, a purchase date, an installation date, a service date, and/or other mechanism for identifying a tool.
The columns include a user ID, a user level, a user role, hardware (HW) information, an IP address, user application software (SW) information, device application SW information, device use information, and/or device maintenance information. The user ID includes an individual identifier if a user and may further include an organization ID, a division ID, a department ID, a group ID, and/or a sub-group ID. The user level will be described in greater detail with reference to
The HW information field stores information regarding the hardware of the device. For example, the HW information includes information regarding a computing device such as vendor information, a serial number, a description of the computing device, a computing device model number, a version of the computing device, a generation of the computing device, and/or other mechanism for identifying a computing device. The HW information may further store information regarding the components of the computing device such as the motherboard, the processor, video graphics card, network card, connection ports, and/or memory.
The user application SW information field stores information regarding the user applications installed on the user's computing device. For example, the user application SW information includes information regarding a SW program (e.g., spreadsheet, word processing, database, email, etc.) such as vendor information, a serial number, a description of the program, a program model number, a version of the program, a generation of the program, and/or other mechanism for identifying a program. The device SW information includes similar information, but for device applications (e.g., operating system, drivers, security, etc.).
The device use data field stores data regarding the use of the device (e.g., use of the computing device and software running on it). For example, the device use data includes a log of use of a user application, or program (e.g., time of day, duration of use, date information, etc.). As another example, the device use data includes a log of data communications to and from the device. As yet another example, the device use data includes a log of network accesses. As a further example, the device use data includes a log of server access (e.g., local and/or remote servers). As still further example, the device use data includes a log of storage access (e.g., local and/or remote memory).
The maintenance field stores data regarding the maintenance of the device and/or its components. As an example, the maintenance data includes a purchase date, purchase information, an installation date, installation notes, a service date, services notes, and/or other maintenance data of the device and/or its components.
At step 593, the analysis system generates an automation rating for the system sector based on the asset data and automation analysis parameters and in accordance with the at least one evaluation perspective, the at least one evaluation viewpoint, and automation as the evaluation rating metric. At step 594, the analysis system generates a policy rating for the system sector based on the asset data and policy analysis parameters and in accordance with the at least one evaluation perspective, the at least one evaluation viewpoint, and policy as the evaluation rating metric.
At step 595, the analysis system generates a certification rating for the system sector based on the asset data and certification analysis parameters and in accordance with the at least one evaluation perspective, the at least one evaluation viewpoint, and certification as the evaluation rating metric. At step 596, the analysis system generates a procedure rating for the system sector based on the asset data and procedure analysis parameters and in accordance with the at least one evaluation perspective, the at least one evaluation viewpoint, and procedure as the evaluation rating metric.
The method continues at step 597 where the analysis system generates the asset evaluation rating based on the selected and performed at least two of the process rating, the policy rating, the documentation rating, the automation rating, the procedure rating, and the certification rating. For example, the asset evaluation rating is a summation of the at least individual evaluation metric ratings. As another example, the analysis system performs a mathematical and/or logical function (e.g., a weight average, standard deviation, statistical analysis, trending, etc.) on the at least two individual evaluation metric to produce the asset evaluation rating.
The process rating module 601 evaluates the collection of data 600, or portion thereof, (e.g., pre-processed data of
The process rating module 601 can rate the data 600 at three levels. The first level is that the system has processes, the system has the right number of processes, and/or the system has processes that address the right topics. The second level digs into the processes themselves to determine whether they are adequately covering the requirements of the system. The third level evaluates how well the processes are used and how well they are adhered to.
As an example, the process rating module 601 generates a process evaluation rating based on a comparison of the processes of the data 600 with a list of processes the system, or portion thereof, should have. If all of the processes on the list are found in the data 600, then the process evaluation rating is high. The fewer processes on the list that found in the data 600, the lower the process evaluation rating will be.
As another example, the process rating module 601 generates a process evaluation rating based on a determination of the last revisions of processes of data 600 and/or to determine an age of last revisions. As a specific example, if processes are revised at a rate that corresponds to a rate of revision in the industry, then a relatively high process evaluation rate would be produced. As another specific example, if processes are revised at a much lower rate that corresponds to a rate of revision in the industry, then a relatively low process evaluation rate would be produced (implies a lack of attention to the processes). As yet another specific example, if processes are revised at a much higher rate that corresponds to a rate of revision in the industry, then a relatively low process evaluation rate would be produced (implies processes are inaccurate, incomplete, and/or created with a lack of knowledge as to what's needed).
As another example, the process rating module 601 generates a process evaluation rating based on a determination of frequency of use of processes of data 600. As a specific example, if processes are used at a frequency (e.g., x times per week) that corresponds to a frequency of use in the industry, then a relatively high process evaluation rate would be produced. As another specific example, if processes are used at a much lower frequency that corresponds to a frequency of use in the industry, then a relatively low process evaluation rate would be produced (implies a lack of using and adhering to the processes). As yet another specific example, if processes are used at a much higher frequency that corresponds to a frequency of use in the industry, then a relatively low process evaluation rate would be produced (implies processes are inaccuracy, incompleteness, and/or difficult to use).
As another example, the process rating module 601 generates a process evaluation rating based on an evaluation of a process of data 600 with respect to a checklist regarding content of the policy (e.g., what should be in the policy, which may be based, at least in part, on an evaluation category, sub-category, and/or sub-sub category). As a specific example, the topics contained in the process of data 600 is compared to a checklist of desired topics for such a process. If all of the topics on the checklist are found in the process of data 600, then the process evaluation rating is high. The fewer topics on the checklist that found in the process of data 600, the lower the process evaluation rating will be.
As another example, the process rating module 601 generates a process evaluation rating based on a comparison of balance between local processes of data 600 and system-wide processes of data 600. As a specific example, most security processes should be system-wide. Thus, if there are a certain percentage (e.g., less than 10%) of security processes that are local, then a relatively high process evaluation rating will be generated. Conversely, the greater the percentage of local security processes, the lower the process evaluation rating will be.
As another example, the process rating module 601 generates a process evaluation rating based on evaluation of language use within processes of data 600. As a specific example, most security requirements are mandatory. Thus, if the policy includes too much use of the word “may” (which implies optionality) versus the word “shall (which implies must), the lower the process evaluation rating will be.
The process rating module 601 may perform a plurality of the above examples of process evaluation to produce a plurality of process evaluation ratings. The process rating module 601 may output the plurality of the process evaluation ratings to the cumulative rating module 607. Alternatively, the process rating module 601 may perform a function (e.g., a weight average, standard deviation, statistical analysis, etc.) on the plurality of process evaluation ratings to produce a process evaluation rating that's provided to the cumulative rating module 607.
The policy rating module 602 evaluates the collection of data 600, or portion thereof, (e.g., pre-processed data of
The policy rating module 602 can rate the data 600 at three levels. The first level is that the system has policies, the system has the right number of policies, and/or the system has policies that address the right topics. The second level digs into the policies themselves to determine whether they are adequately covering the requirements of the system. The third level evaluates how well the policies are used and how well they are adhered to.
The procedure rating module 603 evaluates the collection of data 600, or portion thereof, (e.g., pre-processed data of
The procedure rating module 603 can rate the data 600 at three levels. The first level is that the system has procedures, the system has the right number of procedures, and/or the system has procedures that address the right topics. The second level digs into the procedures themselves to determine whether they are adequately covering the requirements of the system. The third level evaluates how well the procedures are used and how well they are adhered to.
The certification rating module 604 evaluates the collection of data 600, or portion thereof, (e.g., pre-processed data of
The certification rating module 603 can rate the data 600 at three levels. The first level is that the system has certifications, the system has the right number of certifications, and/or the system has certifications that address the right topics. The second level digs into the certifications themselves to determine whether they are adequately covering the requirements of the system. The third level evaluates how well the certifications are maintained and updated.
The documentation rating module 603 evaluates the collection of data 600, or portion thereof, (e.g., pre-processed data of
The documentation rating module 605 can rate the data 600 at three levels. The first level is that the system has documentation, the system has the right number of documents, and/or the system has documents that address the right topics. The second level digs into the documents themselves to determine whether they are adequately covering the requirements of the system. The third level evaluates how well the documentation is used and how well it is maintained.
The automation rating module 606 evaluates the collection of data 600, or portion thereof, (e.g., pre-processed data of
The automation rating module 606 can rate the data 600 at three levels. The first level is that the system has automation, the system has the right number of automation, and/or the system has automation that address the right topics. The second level digs into the automation themselves to determine whether they are adequately covering the requirements of the system. The third level evaluates how well the automations are used and how well they are adhered to.
The cumulative rating module 607 receives one or more process evaluation ratings, one or more policy evaluation ratings, one or more procedure evaluation ratings, one or more certification evaluation ratings, one or more documentation evaluation ratings, and/or one or more automation evaluation ratings. The cumulative rating module 607 may output the evaluation ratings it receives as the asset evaluation rating 608. Alternatively, the cumulative rating module 607 performs a function (e.g., a weight average, standard deviation, statistical analysis, etc.) on the evaluation ratings it receives to produce the asset evaluation rating 608.
The method continues at step 611 where the analysis system generates a second process rating based on a second combination of a system criteria (e.g., system design), of an evaluation perspective (e.g., implementation), and of an evaluation viewpoint (e.g., disclosed data). The method continues at step 612 where the analysis system generates the process rating based on the first and second process ratings.
The method also continues at step 615 where the analysis system determines use of the processes in system build of the department with respect to system assets. The method continues at step 616 where the analysis system generates a process rating based on use. Examples of this were discussed with reference to
The method also continues at step 617 where the analysis system determines consistency of applying the processes in system build of the department with respect to system assets. The method continues at step 618 where the analysis system generates a process rating based on consistency of use. Examples of this were discussed with reference to
The method also continues at step 622 where the analysis system determines use of the processes to verify the system build of the department with respect to system assets. The method continues at step 623 where the analysis system generates a process rating based on use of the verify processes. Examples of this were discussed with reference to
The method also continues at step 624 where the analysis system determines consistency of applying the verifying processes to system build of the department with respect to system assets. The method continues at step 625 where the analysis system generates a process rating based on consistency of use. Examples of this were discussed with reference to
The data 600 may further include one or more business operations policies, one or more verification policies, one or more requirements compliance policies, one or more data flow policies, one or more data security policies, one or more data storage policies, one or more data use policies, and/or one or more data dissemination policies.
The data 600 may still further include one or more business operations procedures, one or more verification procedures, one or more requirements compliance procedures, one or more data flow procedures, one or more data security procedures, one or more data storage procedures, one or more data use procedures, and/or one or more data dissemination procedures.
The data 600 may still further include one or more business operations documents, one or more verification documents, one or more requirements compliance documents, one or more data flow documents, one or more data security documents, one or more data storage documents, one or more data use documents, and/or one or more data dissemination documents.
The data 600 may still further include one or more business operations certifications, one or more verification certifications, one or more requirements compliance certifications, one or more data flow certifications, one or more data security certifications, one or more data storage certifications, one or more data use certifications, and/or one or more data dissemination certifications.
The data 600 may still further include one or more business operations automations, one or more verification automations, one or more requirements compliance automations, one or more data flow automations, one or more data security automations, one or more data storage automations, one or more data use automations, and/or one or more data dissemination automations.
In this example the blue shaded boxes (e.g., business operations processes, verification processes, etc.) are data that is directly relevant to the process rating module 601. The light green shaded boxes (e.g., business operations tools, verification tools, etc.) are data that may be relevant to the process rating module 601.
Implementations (e.g., business operations implementation, verification implementation, etc.) refer to how a particular process is performed (e.g., via the use of tools, information, etc.) within the system sector. Other data (e.g., diagrams, device information, etc.) provides information regarding one or more of the processes, tools, and implementations. The data listed is exemplary and not intended to be an exhaustive list.
There may be overlap and/or redundancies with respect to the processes, tools, and implementations listed. For example, a monitoring tool may be a data flow tool and/or a data use tool, etc. Tools and information may be shared across processes. For example, while device information is listed near business operations processes, other processes use and/or rely on device information.
In one embodiment, the process rating module 601 rates how well processes are used for identified tasks. For example, the process rating module 601 rates how well the business operations tools are used in accordance with the business operations processes.
In another embodiment, the process rating module 601 rates the consistency of application of processes. For example, the process rating module rates the consistency of use of the business operations processes to use business operations tools to execute business operations implementations.
If there is at least one process, the method continues at step 632 where the analysis system determines whether the processes are repeatable. In this instance, repeatable processes produce consistent results, include variations from process to process, are not routinely reviewed in an organized manner, and/or are not all regulated. For example, when the number of processes is below a desired number of processes, the analysis system determines that the processes are not repeatable (e.g., with too few processes cannot get repeatable outcomes). As another example, when the processes of the data 600 does not include one or more processes on a list of processes the system should have, the analysis system determines that the processes are not repeatable (e.g., with missing processes cannot get repeatable outcomes).
If the processes are not repeatable, the method continues at step 633 where the analysis system generates a process rating of 10 (and/or a word rating of “inconsistent”). If, however, the processes are at least repeatable, the method continues at step 634 where the analysis system determines whether the processes are standardized. In this instance, standardized includes repeatable plus there are no appreciable variations in the processes from process to process, and/or the processes are regulated.
If the processes are not standardized, the method continues at step 635 where the analysis system generates a process rating of 20 (and/or a word rating of “repeatable”). If, however, the processes are at least standardized, the method continues at step 636 where the analysis system determines whether the processes are measured. In this instance, measured includes standardized plus precise, exact, and/or calculated to specific needs, concerns, and/or functioning of the system.
If the processes are not measured, the method continues at step 637 where the analysis system generates a process rating of 30 (and/or a word rating of “standardized”). If, however, the processes are at least measured, the method continues at step 638 where the analysis system determines whether the processes are optimized. In this instance, optimized includes measured plus processes are up-to-date and/or process improvement assessed on a regular basis as part of system protocols.
If the processes are not optimized, the method continues at step 639 where the analysis system generates a process rating of 40 (and/or a word rating of “measured”). If the processes are optimized, the method continues at step 640 where the analysis system generates a process rating of 50 (and/or a word rating of “optimized”). Note that the numerical rating are example values and could be other values. Further note that the number of level of process rating may be more or less than the six shown.
For this method, distinguishing between repeatable, standardized, measured, and optimized is interpretative based on the manner in which the data 600 was analyzed. As an example, weighting factors on certain types of analysis affect the level. As a specific example, weighting factors for analysis to determine last revisions of processes, age of last revisions, content verification of processes with respect to a checklist, balance of local processes and system-wide processes, topic verification of the processes with respect to desired topics, and/or process language evaluation will affect the resulting level.
If at least one process is used, the method continues at step 643 where the analysis system determines whether the use of the processes is repeatable. In this instance, repeatable use of processes is consistent use, but with variations from process to process, use is not routinely reviewed or verified in an organized manner, and/or use is not regulated.
If the use of processes is not repeatable, the method continues at step 644 where the analysis system generates a process rating of 10 (and/or a word rating of “inconsistent”). If, however, the use of processes is at least repeatable, the method continues at step 645 where the analysis system determines whether the use of processes is standardized. In this instance, standardized includes repeatable plus there are no appreciable variations in the use of processes from process to process, and/or the use of processes is regulated.
If the use of processes is not standardized, the method continues at step 646 where the analysis system generates a process rating of 20 (and/or a word rating of “repeatable”). If, however, the use of processes is at least standardized, the method continues at step 647 where the analysis system determines whether the use of processes is measured. In this instance, measured includes standardized plus use is precise, exact, and/or calculated to specific needs, concerns, and/or functioning of the system.
If the use of processes is not measured, the method continues at step 648 where the analysis system generates a process rating of 30 (and/or a word rating of “standardized”). If, however, the use of processes is at least measured, the method continues at step 649 where the analysis system determines whether the use of processes is optimized. In this instance, optimized includes measured plus use of processes are up-to-date and/or improving use of processes is assessed on a regular basis as part of system protocols.
If the use of processes is not optimized, the method continues at step 650 where the analysis system generates a process rating of 40 (and/or a word rating of “measured”). If the use of processes is optimized, the method continues at step 651 where the analysis system generates a process rating of 50 (and/or a word rating of “optimized”). Note that the numerical rating are example values and could be other values. Further note that the number of level of process rating may be more or less than the six shown.
If at least one process has been consistently applied, the method continues at step 654 where the analysis system determines whether the consistent application of processes is repeatable. In this instance, repeatable consistency of application of processes is a process is consistently applied for a given circumstance of the system (e.g., determining software applications for like devices in a department), but with variations from process to process, application of processes is not routinely reviewed or verified in an organized manner, and/or application of processes is not regulated.
If the consistency of application of processes is not repeatable, the method continues at step 655 where the analysis system generates a process rating of 10 (and/or a word rating of “inconsistent”). If, however, the consistency of application of processes is at least repeatable, the method continues at step 656 where the analysis system determines whether the consistency of application of processes is standardized. In this instance, standardized includes repeatable plus there are no appreciable variations in the application of processes from process to process, and/or the application of processes is regulated.
If the consistency of application of processes is not standardized, the method continues at step 657 where the analysis system generates a process rating of 20 (and/or a word rating of “repeatable”). If, however, the consistency of application of processes is at least standardized, the method continues at step 658 where the analysis system determines whether the consistency of application of processes is measured. In this instance, measured includes standardized plus application of processes is precise, exact, and/or calculated to specific needs, concerns, and/or functioning of the system.
If the consistency of application of processes is not measured, the method continues at step 659 where the analysis system generates a process rating of 30 (and/or a word rating of “standardized”). If, however, the consistency of application of processes is at least measured, the method continues at step 660 where the analysis system determines whether the consistency of application of processes is optimized. In this instance, optimized includes measured plus application of processes is up-to-date and/or improving application of processes is assessed on a regular basis as part of system protocols.
If the consistency of application of processes is not optimized, the method continues at step 661 where the analysis system generates a process rating of 40 (and/or a word rating of “measured”). If the consistency of application of processes is optimized, the method continues at step 662 where the analysis system generates a process rating of 50 (and/or a word rating of “optimized”). Note that the numerical rating are example values and could be other values. Further note that the number of level of process rating may be more or less than the six shown.
The method continues at step 671 where the analysis system generates a second policy rating based on a second combination of a system criteria (e.g., system design), of an evaluation perspective (e.g., implementation), and of an evaluation viewpoint (e.g., disclosed data). The method continues at step 672 where the analysis system generates the policy rating based on the first and second policy ratings.
The method also continues at step 675 where the analysis system determines use of the policies to build the assets. The method continues at step 676 where the analysis system generates a policy rating based on use. Examples of this were discussed with reference to
The method also continues at step 677 where the analysis system determines consistency of applying the policies to build the assets. The method continues at step 678 where the analysis system generates a policy rating based on consistency of use. Examples of this were discussed with reference to
The method also continues at step 682 where the analysis system determines use of the policies to verify the build of the assets. The method continues at step 683 where the analysis system generates a policy rating based on use of the verify policies. Examples of this were discussed with reference to
The method also continues at step 684 where the analysis system determines consistency of applying the verifying policies to build the assets. The method continues at step 685 where the analysis system generates a policy rating based on consistency of use. Examples of this were discussed with reference to
If there is at least one policy, the method continues at step 689 where the analysis system determines whether the policies are defined. In this instance, defined policies include sufficient detail to produce consistent results, include variations from policy to policy, are not routinely reviewed in an organized manner, and/or are not all regulated. For example, when the number of policies is below a desired number of policies, the analysis system determines that the processes are not repeatable (e.g., with too few policies cannot get repeatable outcomes). As another example, when the policies of the data 600 does not include one or more policies on a list of policies the system should have, the analysis system determines that the policies are not repeatable (e.g., with missing policies cannot get repeatable outcomes).
If the policies are not defined, the method continues at step 690 where the analysis system generates a policy rating of 5 (and/or a word rating of “informal”). If, however, the policies are at least defined, the method continues at step 691 where the analysis system determines whether the policies are audited. In this instance, audited includes defined plus the policies are routinely reviewed, and/or the policies are regulated.
If the policies are not audited, the method continues at step 692 where the analysis system generates a policy rating of 10 (and/or a word rating of “defined”). If, however, the policies are at least audited, the method continues at step 693 where the analysis system determines whether the policies are embedded. In this instance, embedded includes audited plus are systematically rooted in most, if not all, aspects of the system.
If the policies are not embedded, the method continues at step 694 where the analysis system generates a policy rating of 15 (and/or a word rating of “audited”). If the policies are embedded, the method continues at step 695 where the analysis system generates a policy rating of 20 (and/or a word rating of “embedded”). Note that the numerical rating are example values and could be other values. Further note that the number of level of policy rating may be more or less than the five shown.
For this method, distinguishing between defined, audited, and embedded is interpretative based on the manner in which the data 600 was analyzed. As an example, weighting factors on certain types of analysis affect the level. As a specific example, weighting factors for analysis to determine last revisions of policies, age of last revisions, content verification of policies with respect to a checklist, balance of local policies and system-wide policies, topic verification of the policies with respect to desired topics, and/or policy language evaluation will affect the resulting level.
If there is at least one use of a policy, the method continues at step 698 where the analysis system determines whether the use of policies is defined. In this instance, defined use of policies include sufficient detail on how and/or when to use a policy, include variations in use from policy to policy, use of policies is not routinely reviewed in an organized manner, and/or use of policies is not regulated.
If the use of policies is not defined, the method continues at step 699 where the analysis system generates a policy rating of 5 (and/or a word rating of “informal”). If, however, the use of policies is at least defined, the method continues at step 700 where the analysis system determines whether the use of policies is audited. In this instance, audited includes defined plus the use of policies is routinely reviewed, and/or the use of policies is regulated.
If the use of policies is not audited, the method continues at step 701 where the analysis system generates a policy rating of 10 (and/or a word rating of “defined”). If, however, the use of policies is at least audited, the method continues at step 702 where the analysis system determines whether the use of policies is embedded. In this instance, embedded includes audited plus use of policies is systematically rooted in most, if not all, aspects of the system.
If the use of policies is not embedded, the method continues at step 703 where the analysis system generates a policy rating of 15 (and/or a word rating of “audited”). If the use of policies is embedded, the method continues at step 704 where the analysis system generates a policy rating of 20 (and/or a word rating of “embedded”). Note that the numerical rating are example values and could be other values. Further note that the number of level of policy rating may be more or less than the five shown.
If there is at least one consistent application of a policy, the method continues at step 707 where the analysis system determines whether the consistent application of policies is defined. In this instance, defined application of policies include sufficient detail on when policies apply, includes application variations from policy to policy, application of policies is not routinely reviewed in an organized manner, and/or application of policies is not regulated.
If the application of policies is not defined, the method continues at step 708 where the analysis system generates a policy rating of 5 (and/or a word rating of “informal”). If, however, the application of policies is at least defined, the method continues at step 707 where the analysis system determines whether the application of policies is audited. In this instance, audited includes defined plus the application of policies is routinely reviewed, and/or the application of policies is regulated.
If the application of policies is not audited, the method continues at step 710 where the analysis system generates a policy rating of 10 (and/or a word rating of “defined”). If, however, the application of policies is at least audited, the method continues at step 711 where the analysis system determines whether the application of policies is embedded. In this instance, embedded includes audited plus application of policies is systematically rooted in most, if not all, aspects of the system.
If the application of policies is not embedded, the method continues at step 712 where the analysis system generates a policy rating of 15 (and/or a word rating of “audited”). If the application of policies is embedded, the method continues at step 713 where the analysis system generates a policy rating of 20 (and/or a word rating of “embedded”). Note that the numerical ratings are example values and could be other values. Further note that the number of level of policies may be more or less than the five shown.
The method continues at step 721 where the analysis system generates a second documentation rating based on a second combination of a system criteria (e.g., system design), of an evaluation perspective (e.g., implementation), and of an evaluation viewpoint (e.g., disclosed data). The method continues at step 722 where the analysis system generates the documentation rating based on the first and second documentation ratings.
The method also continues at step 725 where the analysis system determines use of the documentation to build the assets. The method continues at step 726 where the analysis system generates a documentation rating based on use. Examples of this were discussed with reference to
The method also continues at step 727 where the analysis system determines consistency of applying the documentation to build the assets. The method continues at step 728 where the analysis system generates a documentation rating based on consistency of use. Examples of this were discussed with reference to
The method also continues at step 732 where the analysis system determines use of the documentation to verify the build the assets. The method continues at step 733 where the analysis system generates a documentation rating based on use of the verify documentation. Examples of this were discussed with reference to
The method also continues at step 734 where the analysis system determines consistency of applying the verifying documentation to build the assets. The method continues at step 735 where the analysis system generates a documentation rating based on consistency of use. Examples of this were discussed with reference to
If there is at least one document, the method continues at step 739 where the analysis system determines whether the documents are formalized. In this instance, formalized documents include sufficient detail to produce consistent documentation, include form variations from document to document, are not routinely reviewed in an organized manner, and/or formation of documents is not regulated.
If the documents are not formalized, the method continues at step 740 where the analysis system generates a documentation rating of 5 (and/or a word rating of “informal”). If, however, the documents are at least formalized, the method continues at step 741 where the analysis system determines whether the documents are metric & reporting. In this instance, metric & reporting includes formal plus the documents are routinely reviewed, and/or the formation of documents is regulated.
If the documents are not metric & reporting, the method continues at step 742 where the analysis system generates a documentation rating of 10 (and/or a word rating of “formal”). If, however, the documents are at least metric & reporting, the method continues at step 743 where the analysis system determines whether the documents are improve. In this instance, improve includes audited plus document formation is systematically rooted in most, if not all, aspects of the system.
If the documents are not improve, the method continues at step 744 where the analysis system generates a documentation rating of 15 (and/or a word rating of “metric & reporting”). If the documents are improve, the method continues at step 745 where the analysis system generates a documentation rating of 20 (and/or a word rating of “improvement”). Note that the numerical rating are example values and could be other values. Further note that the number of level of documentation rating may be more or less than the five shown.
For this method, distinguishing between formalized, metric & reporting, and improvement is interpretative based on the manner in which the data 600 was analyzed. As an example, weighting factors on certain types of analysis affect the level. As a specific example, weighting factors for analysis to determine last revisions of documents, age of last revisions, content verification of documents with respect to a checklist, balance of local documents and system-wide documents, topic verification of the documents with respect to desired topics, and/or document language evaluation will affect the resulting level.
If there is at least one use of a document, the method continues at step 748 where the analysis system determines whether the use of the documents is formalized. In this instance, formalized use of documents include sufficient detail regarding how to use the documentation, include use variations from document to document, use of documents is not routinely reviewed in an organized manner, and/or use of documents is not regulated.
If the use of documents is not formalized, the method continues at step 749 where the analysis system generates a documentation rating of 5 (and/or a word rating of “informal”). If, however, the use of documents is at least formalized, the method continues at step 750 where the analysis system determines whether the use of the documents is metric & reporting. In this instance, metric & reporting includes formal plus use of documents is routinely reviewed, and/or the use of documents is regulated.
If the use of documents is not metric & reporting, the method continues at step 751 where the analysis system generates a documentation rating of 10 (and/or a word rating of “formal”). If, however, the use of documents is at least metric & reporting, the method continues at step 752 where the analysis system determines whether the use of documents is improve. In this instance, improve includes metric & reporting plus use of document is systematically rooted in most, if not all, aspects of the system.
If the use of documents is not improve, the method continues at step 753 where the analysis system generates a documentation rating of 15 (and/or a word rating of “metric & reporting”). If the use of documents is improve, the method continues at step 754 where the analysis system generates a documentation rating of 20 (and/or a word rating of “improvement”). Note that the numerical rating are example values and could be other values. Further note that the number of level of documentation rating may be more or less than the five shown.
If there is at least one application of a document, the method continues at step 757 where the analysis system determines whether the application of the documents is formalized. In this instance, formalized application of documents include sufficient detail regarding how to apply the documentation, include application variations from document to document, application of documents is not routinely reviewed in an organized manner, and/or application of documents is not regulated.
If the application of documents is not formalized, the method continues at step 758 where the analysis system generates a documentation rating of 5 (and/or a word rating of “informal”). If, however, the application of documents is at least formalized, the method continues at step 759 where the analysis system determines whether the application of the documents is metric & reporting. In this instance, metric & reporting includes formal plus application of documents is routinely reviewed, and/or the application of documents is regulated.
If the application of documents is not metric & reporting, the method continues at step 760 where the analysis system generates a documentation rating of 10 (and/or a word rating of “formal”). If, however, the application of documents is at least metric & reporting, the method continues at step 761 where the analysis system determines whether the application of documents is improve. In this instance, improve includes metric & reporting plus use of document is systematically rooted in most, if not all, aspects of the system.
If the application of documents is not improve, the method continues at step 762 where the analysis system generates a documentation rating of 15 (and/or a word rating of “metric & reporting”). If the application of documents is improve, the method continues at step 763 where the analysis system generates a documentation rating of 20 (and/or a word rating of “improvement”). Note that the numerical rating are example values and could be other values. Further note that the number of level of documentation may be more or less than the five shown.
The method continues at step 765 where the analysis system generates a second automation rating based on a second combination of a system criteria (e.g., system design), of an evaluation perspective (e.g., implementation), and of an evaluation viewpoint (e.g., disclosed data). The method continues at step 766 where the analysis system generates the automation rating based on the first and second automation ratings.
The method also continues at step 769 where the analysis system determines use of the automation to build the assets. The method continues at step 770 where the analysis system generates an automation rating based on use. Examples of this were discussed with reference to
The method also continues at step 771 where the analysis system determines consistency of applying the automation to build the assets. The method continues at step 772 where the analysis system generates an automation rating based on consistency of use. Examples of this were discussed with reference to
The method also continues at step 776 where the analysis system determines use of the automation to verify the build the assets. The method continues at step 777 where the analysis system generates an automation rating based on use of the verify automation. Examples of this were discussed with reference to
The method also continues at step 778 where the analysis system determines consistency of applying the verifying automation to build the assets. The method continues at step 779 where the analysis system generates an automation rating based on consistency of use. Examples of this were discussed with reference to
If automation is available, the method continues at step 783 where the analysis system determines whether there is at least one automation in the data. If not, the method continues at step 784 where the analysis system generates an automation rating of 0 (and/or a word rating of “none”).
If there is at least one automation, the method continues at step 785 where the analysis system determines whether full automation is found in the data. In this instance, full automation refers to the automation techniques that are available for the system are in the data 600.
If the automation is not full, the method continues at step 786 where the analysis system generates an automation rating of 5 (and/or a word rating of “partial”). If, however, the automation is full, the method continues at step 787 where the analysis system generates an automation rating of 10 (and/or a word rating of “full”). Note that the numerical rating are example values and could be other values. Further note that the number of level of automation may be more or less than the four shown.
If automation is available, the method continues at step 790 where the analysis system determines whether there is at least one use of automation. If not, the method continues at step 791 where the analysis system generates an automation rating of 0 (and/or a word rating of “none”).
If there is at least one use of automation, the method continues at step 792 where the analysis system determines whether automation is fully used. In this instance, full use of automation refers to the automation techniques that the system has are fully used.
If the use of automation is not full, the method continues at step 793 where the analysis system generates an automation rating of 5 (and/or a word rating of “partial”). If, however, the use of automation is full, the method continues at step 794 where the analysis system generates an automation rating of 10 (and/or a word rating of “full”).
If automation is available, the method continues at step 790 where the analysis system determines whether there is at least one application of automation. If not, the method continues at step 798 where the analysis system generates an automation rating of 0 (and/or a word rating of “none”).
If there is at least one application of automation, the method continues at step 799 where the analysis system determines whether automation is fully applied. In this instance, full application of automation refers to the automation techniques of the system are applied to achieve consistent use.
If the application of automation is not full, the method continues at step 800 where the analysis system generates an automation rating of 5 (and/or a word rating of “partial”). If, however, the application of automation is full, the method continues at step 801 where the analysis system generates an automation rating of 10 (and/or a word rating of “full”).
The method continues at step 811 where the analysis system determines whether an identified system element and/or asset has already been identified for the system sector (e.g., is already in the collection of data 600 and/or is part of the gathered data). If yes, the method continues at step 812 where the analysis system determines whether the identifying of system elements and/or assets is done. If not, the method repeats at step 811. If the identifying of system elements and/or assets is done, the method continues at step 813 where the analysis system determines whether to end the method or repeat it for another system sector, or portion thereof.
If, at step 811, the identified system element and/or asset is not included in the collection of data, the method continues at step 814 where the analysis system determines whether the potential system element and/or asset is already identified as being a part of the system sector, but not included in the collection of data 600 (e.g., is it cataloged as being part of the system?). If yes, the method continues at step 815 where the analysis system adds the identified system element and/or asset to the collection of data 600.
If, at step 814, the system element and/or asset is not cataloged as being part of the system, the method continues at step 816 where the analysis system obtains data regarding the potential system element and/or asset. For example, the analysis system obtains a device ID, a user ID, a device serial number, a device description, a software ID, a software serial number, a software description, vendor information and/or other data regarding the system asset.
The method continues at step 816 where the analysis system verifies the potential system element and/or asset based on the data. For example, the analysis system verifies one or more of a device ID, a user ID, a device serial number, a device description, a software ID, a software serial number, a software description, vendor information and/or other data regarding the system asset to establish that the system element and/or asset is a part of the system. When the potential system asset is verified, the method continues at step 818 where the analysis system adds the system element and/or asset as a part of the system sector (e.g., catalogs it as part of the system and/or adds it to the collection of data 600).
For this example, the analysis system 10 can generate one or a plurality of asset evaluation ratings for implementation of the guidelines, system requirements, system design, and/or system build of one or more system assets of an engineering department based on disclosed data and discovered data in accordance with the evaluation rating metrics of process, policy, procedure, certification, documentation, and/or automation. A few, but far from exhaustive, examples are shown in
This allows for a comparison between the understanding of the assets of the engineering department of the guidelines from the disclosed data, the understanding of the assets of the engineering department of the system requirements from the disclosed data, the understanding of the assets of the engineering department of the system design from the disclosed data, and the understanding of the assets of the engineering department of the system build from the disclosed data. This comparison provides a metric for determining how well the guidelines, system requirements, system design, and/or system build were understood with respect to each and how well they were used and/or applied.
At step 821, the analysis system determines an asset deficiency (e.g., a software asset is not supported by a hardware asset, assets are insufficient for operations, etc.) of the system sector based on the asset evaluation rating and the asset data.
At step 822, the analysis system determines an evaluation perspective deficiency (e.g., understanding, implementation, operation, and/or self-analysis) of the system sector based on the asset evaluation rating and the asset data. At step 823, the analysis system determines an evaluation viewpoint deficiency (e.g., disclosed, discovered, and/or desired) of the system sector based on the asset evaluation rating and the asset data. Examples have been discussed with reference to one or more preceding figures.
If the deficiency is not auto-correctable, the method continues at step 826 where the analysis system includes the identified deficiency in a report. If, however, the deficiency is auto-correctable, the method continues at step 827 where the analysis system auto-corrects the deficiency. The method continues at step 828 where the analysis system includes the identified deficiency and auto-correction in a report. Examples of auto-correction have been discussed with reference to one or more preceding Figures.
As another example of selecting the system or portion thereof, the analysis system selects the entire system, selects a division of an organization operating the system, selects a department of a division, selects a group of a department, or selects a sub-group of a group. As another example selecting the system or portion thereof, the analysis system selects one or more physical assets and/or one or more conceptual assets.
The method continues at step 831 where the analysis system obtains asset information regarding the system, or portion thereof. The asset information includes information representative of an organization's understanding of the system, or portion thereof, with respect to the assets. In an example, the analysis system obtains the asset information (e.g., disclosed data from the system) by receiving it from a system admin computing entity. In another example, the analysis system obtains the asset information by gathering it from one or more computing entities of the system.
The method continues at step 832 where the analysis system engages with the system, or portion thereof, to produce system asset data (e.g., discovered data) regarding the system, or portion thereof, with respect to the assets. Engaging the system, or portion thereof, will be discussed in greater detail with reference to
The method continues at step 833 where the analysis system calculates an asset evaluation rating regarding the assets of the system, or portion thereof, based on the asset information, the system asset data, and asset processes, asset policies, asset documentation, and/or asset automation. The asset evaluation rating may be indicative of a variety of factors of the system, or portion thereof. For example, the asset evaluation rating indicates how well the asset information reflects an understanding of the assets of the system, or portion thereof. As another example, the asset evaluation rating indicates how well the asset information reflects intended implementation of the assets of the system, or portion thereof. As another example, the asset evaluation rating indicates how well the asset information reflects intended operation of the assets of the system, or portion thereof.
The method continues at step 834 where the analysis system gathers desired system asset data from one or more system proficiency resources. The method continues at step 835 where the analysis system calculates a second asset evaluation rating regarding a desired evaluation level of assets of the system, or portion thereof, based on the asset information, the system asset data, the desired system asset data, and the asset processes, the asset policies, the asset documentation, and/or the asset automation. The second asset rating is regarding a comparison of desired data with the disclosed data and/or discovered data.
The method continues at step 838 where the analysis system evaluates a response from the component concurrence with a portion of the asset information relevant to the component. The method continues at step 839 where the analysis system determines whether the response concurs with a portion of the asset information. If the response concurs, the method continues at step 840 where the analysis system adds a data element (e.g., a record entry, a note, set a flag, etc.) to the system asset data regarding the substantial concurrence of the response from the component with the portion of the asset information relevant to the component.
If the response does not concur, the method continues at step 841 where the analysis system adds a data element (e.g., a record entry in a table, a note, set a flag, etc.) to the system asset data regarding the response from the component not substantially concurring with the portion of the asset information relevant to the component. The non-concurrence is indicative of a deviation in the implementation, function, and/or operation of the component as identified in the response from disclosed implementation, function, and/or operation of the component as contained in the asset information. For example, the deviation is different HW, different SW, different network access, different data access, different data flow, coupled to different other components, and/or other differences.
The method continues in
The method continues at step 844 where the analysis system determines whether the deviation is a communication deviation. If yes, the method continues at step 845 where the analysis system evaluate a response from the device to ascertain an error of the asset information regarding the device and/or the communication between the device and the component. The method continues at step 846 where the analysis system determines one or more causes of the error of the communication deviation.
If the deviation is not a communication deviation, the method continues at step 847 where the analysis system determines whether the deviation is a system asset function deviation. If yes, the method continues at step 848 where the analysis system evaluate a response from the device to ascertain an error of asset information regarding the device and/or the system function of the device. The method continues at step 849 where the analysis system determines one or more causes of the error of the system asset function deviation.
If the deviation is not a system asset function deviation, the method continues at step 850 where the analysis system determines whether the deviation is a security function deviation. If yes, the method continues at step 851 where the analysis system evaluate a response from the device to ascertain an error of the asset information regarding the device and/or the security function of the device. The method continues at step 852 where the analysis system determines one or more causes of the error of the security function deviation.
If the deviation is not a security function deviation, the method continues at step 853 where the analysis system evaluates a device response from the device to ascertain an error of the asset information regarding the device and/or of the device. The method continues at step 854 where the analysis system determines one or more causes of the error of the information and/or of the device.
The method continues at steps 857-860. At step 857, the analysis system evaluates the process related asset information with respect to the process related system asset data to produce a process asset rating. At step 858, the analysis system evaluates the policy related asset information with respect to the policy related system asset data to produce a policy asset rating. At step 859, the analysis system evaluates the documentation related asset information with respect to the documentation related system asset data to produce a documentation asset rating. At step 860, the analysis system evaluates the automation related asset information with respect to the automation related system asset data to produce an automation asset rating.
The method continues at step 861 where the analysis system generates an asset evaluation rating based on the automation asset rating, the documentation asset rating, the process asset rating, and the policy asset rating. For example, the analysis system performs a function on the automation asset rating, the documentation asset rating, the process asset rating, and the policy asset rating to produce the asset rating. The function is a weight average, standard deviation, statistical analysis, trending, and/or other mathematical function.
The method continues at step 863 where the analysis system identifies a user device and queries it for data in accordance with the data gathering parameters. The method continues at step 864 where the analysis system catalogs the user device (e.g., records it as being part of the system, or portion thereof, if not already cataloged) when the user device responds. The method continues at step 865 where the analysis system obtains a data response from the user device. The data response includes data regarding the user device. An example of user device data was discussed with reference to one or more of
The method continues at step 866 where the analysis system identifies vendor information regarding the user device. The method continues at step 867 where the analysis system tags the data regarding the user device with the vendor information. This enables data to be sorted, searched, etc. based on vendor information.
The method continues at step 868 where the analysis system determines whether data has been received from all relevant user devices. If not, the method repeats at step 863. If yes, the method continues at step 869 where the analysis system identifies a storage device and queries it for data in accordance with the data gathering parameters. The method continues at step 870 where the analysis system catalogs the storage device (e.g., records it as being part of the system, or portion thereof, if not already cataloged) when the storage device responds. The method continues at step 871 where the analysis system obtains a data response from the storage device. The data response includes data regarding the storage device. An example of storage device data was discussed with reference to one or more of
The method continues at step 872 where the analysis system identifies vendor information regarding the storage device. The method continues at step 873 where the analysis system tags the data regarding the storage device with the vendor information. The method continues at step 874 where the analysis system determines whether data has been received from all relevant storage devices. If not, the method repeats at step 869.
If yes, the method continues at step 875 where the analysis system identifies a server device and queries it for data in accordance with the data gathering parameters. The method continues at step 876 where the analysis system catalogs the server device (e.g., records it as being part of the system, or portion thereof, if not already cataloged) when the server device responds. The method continues at step 877 where the analysis system obtains a data response from the server device. The data response includes data regarding the server device. An example of server device data was discussed with reference to one or more of
The method continues at step 878 where the analysis system identifies vendor information regarding the server device. The method continues at step 879 where the analysis system tags the data regarding the server device with the vendor information. The method continues at step 880 of
If yes, the method continues at step 881 where the analysis system identifies a security device and queries it for data in accordance with the data gathering parameters. The method continues at step 882 where the analysis system catalogs the security device (e.g., records it as being part of the system, or portion thereof, if not already cataloged) when the security device responds. The method continues at step 883 where the analysis system obtains a data response from the security device. The data response includes data regarding the security device. An example of security device data was discussed with reference to one or more of
The method continues at step 884 where the analysis system identifies vendor information regarding the security device. The method continues at step 885 where the analysis system tags the data regarding the security device with the vendor information. The method continues at step 886 where the analysis system determines whether data has been received from all relevant security devices. If not, the method repeats at step 881.
If yes, the method continues at step 887 where the analysis system identifies a security tool and queries it for data in accordance with the data gathering parameters. The method continues at step 888 where the analysis system catalogs the security tool (e.g., records it as being part of the system, or portion thereof, if not already cataloged) when the security tool responds via hardware on which the tool operates. The method continues at step 889 where the analysis system obtains a data response from the security tool. The data response includes data regarding the security tool. An example of security tool data was discussed with reference to one or more of
The method continues at step 890 where the analysis system identifies vendor information regarding the security tool. The method continues at step 891 where the analysis system tags the data regarding the security tool with the vendor information. The method continues at step 892 where the analysis system determines whether data has been received from all relevant security tools. If not, the method repeats at step 887.
If yes, the method continues at step 893 where the analysis system identifies a network device and queries it for data in accordance with the data gathering parameters. The method continues at step 894 where the analysis system catalogs the network device (e.g., records it as being part of the system, or portion thereof, if not already cataloged) when the network device responds. The method continues at step 895 where the analysis system obtains a data response from the network device. The data response includes data regarding the network device. An example of network device data was discussed with reference to one or more of
The method continues at step 896 where the analysis system identifies vendor information regarding the network device. The method continues at step 897 where the analysis system tags the data regarding the network device with the vendor information. The method continues at step 898 of
If yes, the method continues at step 899 where the analysis system identifies another device (e.g., any other device that is part of the system, interfaces with the system, uses the system, and/or supports the system) and queries it for data in accordance with the data gathering parameters. The method continues at step 900 where the analysis system catalogs the other device (e.g., records it as being part of the system, or portion thereof, if not already cataloged) when the other device responds. The method continues at step 901 where the analysis system obtains a data response from the other device. The data response includes data regarding the other device. An example of other device data was discussed with reference to one or more of
The method continues at step 902 where the analysis system identifies vendor information regarding the other device. The method continues at step 903 where the analysis system tags the data regarding the other device with the vendor information. The method continues at step 904 where the analysis system determines whether data has been received from all relevant other devices. If not, the method repeats at step 899.
If yes, the method continues at step 905 where the analysis system identifies another tool (e.g., any other tool that is part of the system, interprets the system, monitors the system, and/or supports the system) and queries it for data in accordance with the data gathering parameters. The method continues at step 906 where the analysis system catalogs the other tool (e.g., records it as being part of the system, or portion thereof, if not already cataloged) when the other tool responds via hardware on which the tool operates. The method continues at step 907 where the analysis system obtains a data response from the other tool. The data response includes data regarding the other tool. An example of other tool data was discussed with reference to one or more of
The method continues at step 908 where the analysis system identifies vendor information regarding the other tool. The method continues at step 909 where the analysis system tags the data regarding the other tool with the vendor information. The method continues at step 910 where the analysis system determines whether data has been received from all relevant other tools. If not, the method repeats at step 905. If yes, the method continues at step 911 where the analysis system ends the process or repeats it for another part of the system.
If the device or tool is not in the system asset information, the method continues at step 922 where the analysis system engages one or more detection (or discovery) tools to detect a device and/or a tool. Examples of detection tools were discussed with reference to one or more preceding figures. The method continues at step 923 where the analysis system determines whether the detection tool(s) has identified a device (e.g., hardware and/or software). If not, the method continues at step 924 where the analysis system determines whether the detection tool(s) has identified a tool. If not, the method repeats at step 921.
If a tool is identified, the method continues at step 925 where the analysis system determines whether the tool is cataloged (e.g., is part of the system, but is not included in the system asset information for this particular evaluation). If yes, the method continues at step 926 where the analysis system adds the tool to the system asset information and the method continues at step 921.
If the tool is not cataloged, the method continues at step 927 where the analysis system verifies the tool as being part of the system and then catalogs it as part of the system. The method continues at step 928 where the analysis system obtains a data response from the tool, via hardware on which the tool operates, in regard to a data gathering request. The data response includes data regarding the tool. Examples of the data regarding the tool were discussed with reference to one or more of
The method continues at step 929 where the analysis system identifies vendor information regarding the tool. The method continues at step 930 where the analysis system tags the data regarding the tool with the vendor information. The method repeats at step 921.
If, at step 923, a device is identified, the method continues at step 931 where the analysis system determines whether the device (e.g., hardware and/or software) is cataloged (e.g., is part of the system, but is not included in the system asset information for this particular evaluation). If yes, the method continues at step 932 where the analysis system adds the devices to the system asset information and the method continues at step 921.
If the device is not cataloged, the method continues at step 933 where the analysis system verifies the device as being part of the system and then catalogs it as part of the system. The method continues at step 934 where the analysis system obtains a data response from the device in regard to a data gathering request. The data response includes data regarding the device. Examples of the data regarding the device were discussed with reference to one or more of
The method continues at step 935 where the analysis system identifies vendor information regarding the device. The method continues at step 936 where the analysis system tags the data regarding the device with the vendor information. The method repeats at step 921.
If the device or tool is not in the system asset information, the method continues at step 942 where the analysis system interprets data from an identified device and/or tool (e.g., already in the system asset information) with regards to a device or tool. For example, the analysis system looks for data regarding an identified device exchanging data with the device being reviewed. As another example, the analysis system looks for data regarding a tool being used on the device under review to repair a software issue.
The method continues at step 943 where the analysis system determines whether the data has identified such a device (e.g., hardware and/or software). If not, the method continues at step 944 where the analysis system determines whether the detection tool(s) has identified such a tool. If not, the method repeats at step 941.
If a tool is identified, the method continues at step 945 where the analysis system determines whether the tool is cataloged (e.g., is part of the system, but is not included in the system asset information for this particular evaluation). If yes, the method continues at step 946 where the analysis system adds the tool to the system asset information and the method continues at step 941.
If the tool is not cataloged, the method continues at step 947 where the analysis system verifies the tool as being part of the system and then catalogs it as part of the system. The method continues at step 948 where the analysis system obtains a data response from the tool, via hardware on which the tool operates, in regard to a data gathering request. The data response includes data regarding the tool. Examples of the data regarding the tool were discussed with reference to one or more of
The method continues at step 949 where the analysis system identifies vendor information regarding the tool. The method continues at step 950 where the analysis system tags the data regarding the tool with the vendor information. The method repeats at step 921.
If, at step 943, a device is identified, the method continues at step 951 where the analysis system determines whether the device (e.g., hardware and/or software) is cataloged (e.g., is part of the system, but is not included in the system asset information for this particular evaluation). If yes, the method continues at step 952 where the analysis system adds the devices to the system asset information and the method continues at step 941.
If the device is not cataloged, the method continues at step 953 where the analysis system verifies the device as being part of the system and then catalogs it as part of the system. The method continues at step 954 where the analysis system obtains a data response from the device in regard to a data gathering request. The data response includes data regarding the device. Examples of the data regarding the device were discussed with reference to one or more of
The method continues at step 955 where the analysis system identifies vendor information regarding the device. The method continues at step 956 where the analysis system tags the data regarding the device with the vendor information. The method repeats at step 941.
The method continues at step 963 where the analysis system determines whether the current analysis has identified evaluation criteria (e.g., guidelines, system requirements, system design, system build, and/or resulting system). If yes, the method continues at step 964 where the analysis system determines the specific evaluation criteria. If not, the method continues at step 965 where the analysis system determines a set of default evaluation criteria (e.g., one or more of the evaluation criteria).
The method continues at step 968 where the analysis system determines whether the current analysis has identified an evaluation perspective (e.g., understanding, implementation, and/or operation). If yes, the method continues at step 969 where the analysis system determines the specific evaluation perspective(s). If not, the method continues at step 970 where the analysis system determines a set of default evaluation perspectives (e.g., one or more of the evaluation perspectives).
The method continues at step 971 where the analysis system determines whether the current analysis has identified an evaluation viewpoint (e.g., disclosed, discovered, desired, and/or self-analysis). If yes, the method continues at step 972 where the analysis system determines the specific evaluation viewpoint(s). If not, the method continues at step 973 where the analysis system determines a set of default evaluation viewpoints (e.g., one or more of the evaluation viewpoints).
The method continues at step 974 where the analysis system determines whether the current analysis has identified an evaluation category, and/or sub-categories (e.g., categories include system assets, system functions, and security functions). If yes, the method continues at step 975 where the analysis system determines one or more specific evaluation categories and/or sub-categories. If not, the method continues at step 977 where the analysis system determines a set of default evaluation categories and/or sub-categories (e.g., one or more of the evaluation categories and/or sub-categories). The method continues at step 976 where the analysis system determines the data gathering criteria (or parameters) based on the determination made in the previous steps.
The method continues at step 1007 where the analysis system determines at least one evaluation perspective for use in performing the asset evaluation regarding business operations on the system sector. An evaluation perspective is an understanding perspective, an implementation perspective, an operation perspective, or a self-analysis perspective. An understanding perspective is with regard to how well the assets with respect to business operations are understood. An implementation perspective is with regard to how well the assets with respect to business operations are implemented. An operation perspective is with regard to how well the assets with respect to business operations operate. A self-analysis (or self-evaluation) perspective is with regard to how well the system self-evaluates the understanding, implementation, and/or operation of assets with respect to business operations.
The method continues at step 1008 where the analysis system determines at least one evaluation viewpoint for use in performing the asset evaluation regarding business operations on the system sector. An evaluation viewpoint is disclosed viewpoint, a discovered viewpoint, or a desired viewpoint. A disclosed viewpoint is with regard to analyzing the system sector based on the disclosed data. A discovered viewpoint is with regard to analyzing the system sector based on the discovered data. A desired viewpoint is with regard to analyzing the system sector based on the desired data.
The method continues at step 1009 where the analysis system obtains asset data regarding the business operations of the system sector in accordance with the at least one evaluation perspective and the at least one evaluation viewpoint. Asset data regarding the business operations is data obtained that is regarding the business operations of the system sector.
The method continues at step 1010 where the analysis system calculates an asset rating regarding business operations as a measure of system asset maturity for the system aspect based on the asset data regarding the business operations, the at least one evaluation perspective, the at least one evaluation viewpoint, and at least one evaluation rating metric. An evaluation rating metric is a process rating metric, a policy rating metric, a procedure rating metric, a certification rating, a documentation rating metric, or an automation rating metric.
The method continues at step 1012 where the analysis system determines at least one evaluation perspective for use in performing the asset evaluation regarding data flow on the system sector. An evaluation perspective is an understanding perspective, an implementation perspective, an operation perspective, or a self-analysis perspective. An understanding perspective is with regard to how well the assets with respect to data flow are understood. An implementation perspective is with regard to how well the assets with respect to data flow are implemented. An operation perspective is with regard to how well the assets with respect to data flow operate. A self-analysis (or self-evaluation) perspective is with regard to how well the system self-evaluates the understanding, implementation, and/or operation of assets with respect to data flow.
The method continues at step 1013 where the analysis system determines at least one evaluation viewpoint for use in performing the asset evaluation regarding data flow on the system sector. An evaluation viewpoint is disclosed viewpoint, a discovered viewpoint, or a desired viewpoint. A disclosed viewpoint is with regard to analyzing the system sector based on the disclosed data. A discovered viewpoint is with regard to analyzing the system sector based on the discovered data. A desired viewpoint is with regard to analyzing the system sector based on the desired data.
The method continues at step 1014 where the analysis system obtains asset data regarding the data flow of the system sector in accordance with the at least one evaluation perspective and the at least one evaluation viewpoint. Asset data regarding the data flow is data obtained that is regarding the data flow of the system sector.
The method continues at step 1015 where the analysis system calculates an asset rating regarding data flow as a measure of system asset maturity for the system aspect based on the asset data regarding the data flow, the at least one evaluation perspective, the at least one evaluation viewpoint, and at least one evaluation rating metric. An evaluation rating metric is a process rating metric, a policy rating metric, a procedure rating metric, a certification rating, a documentation rating metric, or an automation rating metric.
The method continues at step 1017 where the analysis system determines at least one evaluation perspective for use in performing the asset evaluation regarding compliance requirements on the system sector. An evaluation perspective is an understanding perspective, an implementation perspective, an operation perspective, or a self-analysis perspective. An understanding perspective is with regard to how well the assets with respect to compliance requirements are understood. An implementation perspective is with regard to how well the assets with respect to compliance requirements are implemented. An operation perspective is with regard to how well the assets with respect to compliance requirements operate. A self-analysis (or self-evaluation) perspective is with regard to how well the system self-evaluates the understanding, implementation, and/or operation of assets with respect to compliance requirements.
The method continues at step 1018 where the analysis system determines at least one evaluation viewpoint for use in performing the asset evaluation regarding compliance requirements on the system sector. An evaluation viewpoint is disclosed viewpoint, a discovered viewpoint, or a desired viewpoint. A disclosed viewpoint is with regard to analyzing the system sector based on the disclosed data. A discovered viewpoint is with regard to analyzing the system sector based on the discovered data. A desired viewpoint is with regard to analyzing the system sector based on the desired data.
The method continues at step 1019 where the analysis system obtains asset data regarding the compliance requirements of the system sector in accordance with the at least one evaluation perspective and the at least one evaluation viewpoint. Asset data regarding the compliance requirements is data obtained that is regarding the compliance requirements of the system sector.
The method continues at step 1020 where the analysis system calculates an asset rating regarding compliance requirements as a measure of system asset maturity for the system aspect based on the asset data regarding the compliance requirements, the at least one evaluation perspective, the at least one evaluation viewpoint, and at least one evaluation rating metric. An evaluation rating metric is a process rating metric, a policy rating metric, a procedure rating metric, a certification rating, a documentation rating metric, or an automation rating metric.
The method continues at step 1022 where the analysis system determines at least one evaluation perspective for use in performing the asset evaluation regarding data access on the system sector. An evaluation perspective is an understanding perspective, an implementation perspective, an operation perspective, or a self-analysis perspective. An understanding perspective is with regard to how well the assets with respect to data access are understood. An implementation perspective is with regard to how well the assets with respect to data access are implemented. An operation perspective is with regard to how well the assets with respect to data access operate. A self-analysis (or self-evaluation) perspective is with regard to how well the system self-evaluates the understanding, implementation, and/or operation of assets with respect to data access.
The method continues at step 1023 where the analysis system determines at least one evaluation viewpoint for use in performing the asset evaluation regarding data access on the system sector. An evaluation viewpoint is disclosed viewpoint, a discovered viewpoint, or a desired viewpoint. A disclosed viewpoint is with regard to analyzing the system sector based on the disclosed data. A discovered viewpoint is with regard to analyzing the system sector based on the discovered data. A desired viewpoint is with regard to analyzing the system sector based on the desired data.
The method continues at step 1024 where the analysis system obtains asset data regarding the data access of the system sector in accordance with the at least one evaluation perspective and the at least one evaluation viewpoint. Asset data regarding the data access is data obtained that is regarding the data access of the system sector.
The method continues at step 1025 where the analysis system calculates an asset rating regarding data access as a measure of system asset maturity for the system aspect based on the asset data regarding the data access, the at least one evaluation perspective, the at least one evaluation viewpoint, and at least one evaluation rating metric. An evaluation rating metric is a process rating metric, a policy rating metric, a procedure rating metric, a certification rating, a documentation rating metric, or an automation rating metric.
The method continues at step 1027 where the analysis system determines at least one evaluation perspective for use in performing the asset evaluation regarding data security on the system sector. An evaluation perspective is an understanding perspective, an implementation perspective, an operation perspective, or a self-analysis perspective. An understanding perspective is with regard to how well the assets with respect to data security are understood. An implementation perspective is with regard to how well the assets with respect to data security are implemented. An operation perspective is with regard to how well the assets with respect to data security operate. A self-analysis (or self-evaluation) perspective is with regard to how well the system self-evaluates the understanding, implementation, and/or operation of assets with respect to data security.
The method continues at step 1028 where the analysis system determines at least one evaluation viewpoint for use in performing the asset evaluation regarding data security on the system sector. An evaluation viewpoint is disclosed viewpoint, a discovered viewpoint, or a desired viewpoint. A disclosed viewpoint is with regard to analyzing the system sector based on the disclosed data. A discovered viewpoint is with regard to analyzing the system sector based on the discovered data. A desired viewpoint is with regard to analyzing the system sector based on the desired data.
The method continues at step 1029 where the analysis system obtains asset data regarding the data security of the system sector in accordance with the at least one evaluation perspective and the at least one evaluation viewpoint. Asset data regarding the data security is data obtained that is regarding the data security of the system sector.
The method continues at step 1030 where the analysis system calculates an asset rating regarding data security as a measure of system asset maturity for the system aspect based on the asset data regarding the data security, the at least one evaluation perspective, the at least one evaluation viewpoint, and at least one evaluation rating metric. An evaluation rating metric is a process rating metric, a policy rating metric, a procedure rating metric, a certification rating, a documentation rating metric, or an automation rating metric.
The method continues at step 1032 where the analysis system determines at least one evaluation perspective for use in performing the asset evaluation regarding data storage on the system sector. An evaluation perspective is an understanding perspective, an implementation perspective, an operation perspective, or a self-analysis perspective. An understanding perspective is with regard to how well the assets with respect to data storage are understood. An implementation perspective is with regard to how well the assets with respect to data storage are implemented. An operation perspective is with regard to how well the assets with respect to data storage operate. A self-analysis (or self-evaluation) perspective is with regard to how well the system self-evaluates the understanding, implementation, and/or operation of assets with respect to data storage.
The method continues at step 1033 where the analysis system determines at least one evaluation viewpoint for use in performing the asset evaluation regarding data storage on the system sector. An evaluation viewpoint is disclosed viewpoint, a discovered viewpoint, or a desired viewpoint. A disclosed viewpoint is with regard to analyzing the system sector based on the disclosed data. A discovered viewpoint is with regard to analyzing the system sector based on the discovered data. A desired viewpoint is with regard to analyzing the system sector based on the desired data.
The method continues at step 1034 where the analysis system obtains asset data regarding the data storage of the system sector in accordance with the at least one evaluation perspective and the at least one evaluation viewpoint. Asset data regarding the data storage is data obtained that is regarding the data storage of the system sector.
The method continues at step 1035 where the analysis system calculates an asset rating regarding data storage as a measure of system asset maturity for the system aspect based on the asset data regarding the data storage, the at least one evaluation perspective, the at least one evaluation viewpoint, and at least one evaluation rating metric. An evaluation rating metric is a process rating metric, a policy rating metric, a procedure rating metric, a certification rating, a documentation rating metric, or an automation rating metric.
The method continues at step 1037 where the analysis system determines at least one evaluation perspective for use in performing the asset evaluation regarding data use on the system sector. An evaluation perspective is an understanding perspective, an implementation perspective, an operation perspective, or a self-analysis perspective. An understanding perspective is with regard to how well the assets with respect to data use are understood. An implementation perspective is with regard to how well the assets with respect to data use are implemented. An operation perspective is with regard to how well the assets with respect to data use operate. A self-analysis (or self-evaluation) perspective is with regard to how well the system self-evaluates the understanding, implementation, and/or operation of assets with respect to data use.
The method continues at step 1038 where the analysis system determines at least one evaluation viewpoint for use in performing the asset evaluation regarding data use on the system sector. An evaluation viewpoint is disclosed viewpoint, a discovered viewpoint, or a desired viewpoint. A disclosed viewpoint is with regard to analyzing the system sector based on the disclosed data. A discovered viewpoint is with regard to analyzing the system sector based on the discovered data. A desired viewpoint is with regard to analyzing the system sector based on the desired data.
The method continues at step 1039 where the analysis system obtains asset data regarding the data use of the system sector in accordance with the at least one evaluation perspective and the at least one evaluation viewpoint. Asset data regarding the data use is data obtained that is regarding the data use of the system sector.
The method continues at step 1040 where the analysis system calculates an asset rating regarding data use as a measure of system asset maturity for the system aspect based on the asset data regarding the data use, the at least one evaluation perspective, the at least one evaluation viewpoint, and at least one evaluation rating metric. An evaluation rating metric is a process rating metric, a policy rating metric, a procedure rating metric, a certification rating, a documentation rating metric, or an automation rating metric.
The method continues at step 1042 where the analysis system determines at least one evaluation perspective for use in performing the asset evaluation regarding data dissemination on the system sector. An evaluation perspective is an understanding perspective, an implementation perspective, an operation perspective, or a self-analysis perspective. An understanding perspective is with regard to how well the assets with respect to data dissemination are understood. An implementation perspective is with regard to how well the assets with respect to data dissemination are implemented. An operation perspective is with regard to how well the assets with respect to data dissemination operate. A self-analysis (or self-evaluation) perspective is with regard to how well the system self-evaluates the understanding, implementation, and/or operation of assets with respect to data dissemination.
The method continues at step 1043 where the analysis system determines at least one evaluation viewpoint for use in performing the asset evaluation regarding data dissemination on the system sector. An evaluation viewpoint is disclosed viewpoint, a discovered viewpoint, or a desired viewpoint. A disclosed viewpoint is with regard to analyzing the system sector based on the disclosed data. A discovered viewpoint is with regard to analyzing the system sector based on the discovered data. A desired viewpoint is with regard to analyzing the system sector based on the desired data.
The method continues at step 1044 where the analysis system obtains asset data regarding the data dissemination of the system sector in accordance with the at least one evaluation perspective and the at least one evaluation viewpoint. Asset data regarding the data dissemination is data obtained that is regarding the data dissemination of the system sector.
The method continues at step 1045 where the analysis system calculates an asset rating regarding data dissemination as a measure of system asset maturity for the system aspect based on the asset data regarding the data dissemination, the at least one evaluation perspective, the at least one evaluation viewpoint, and at least one evaluation rating metric. An evaluation rating metric is a process rating metric, a policy rating metric, a procedure rating metric, a certification rating, a documentation rating metric, or an automation rating metric.
It is noted that terminologies as may be used herein such as bit stream, stream, signal sequence, etc. (or their equivalents) have been used interchangeably to describe digital information whose content corresponds to any of a number of desired types (e.g., data, video, speech, text, graphics, audio, etc. any of which may generally be referred to as ‘data’).
As may be used herein, the terms “substantially” and “approximately” provide an industry-accepted tolerance for its corresponding term and/or relativity between items. For some industries, an industry-accepted tolerance is less than one percent and, for other industries, the industry-accepted tolerance is 10 percent or more. Other examples of industry-accepted tolerance range from less than one percent to fifty percent. Industry-accepted tolerances correspond to, but are not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, thermal noise, dimensions, signaling errors, dropped packets, temperatures, pressures, material compositions, and/or performance metrics. Within an industry, tolerance variances of accepted tolerances may be more or less than a percentage level (e.g., dimension tolerance of less than +/- 1%). Some relativity between items may range from a difference of less than a percentage level to a few percent. Other relativity between items may range from a difference of a few percent to magnitude of differences.
As may also be used herein, the term(s) “configured to”, “operably coupled to”, “coupled to”, and/or “coupling” includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for an example of indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As may further be used herein, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two items in the same manner as “coupled to”.
As may even further be used herein, the term “configured to”, “operable to”, “coupled to”, or “operably coupled to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform, when activated, one or more its corresponding functions and may further include inferred coupling to one or more other items. As may still further be used herein, the term “associated with”, includes direct and/or indirect coupling of separate items and/or one item being embedded within another item.
As may be used herein, the term “compares favorably”, indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1. As may be used herein, the term “compares unfavorably”, indicates that a comparison between two or more items, signals, etc., fails to provide the desired relationship.
As may be used herein, one or more claims may include, in a specific form of this generic form, the phrase “at least one of a, b, and c” or of this generic form “at least one of a, b, or c”, with more or less elements than “a”, “b”, and “c”. In either phrasing, the phrases are to be interpreted identically. In particular, “at least one of a, b, and c” is equivalent to “at least one of a, b, or c” and shall mean a, b, and/or c. As an example, it means: “a” only, “b” only, “c” only, “a” and “b”, “a” and “c”, “b” and “c”, and/or “a”, “b”, and “c”.
As may also be used herein, the terms “processing module”, “processing circuit”, “processor”, “processing circuitry”, and/or “processing unit” may be a single processing device or a plurality of processing devices. Such a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions. The processing module, module, processing circuit, processing circuitry, and/or processing unit may be, or further include, memory and/or an integrated memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of another processing module, module, processing circuit, processing circuitry, and/or processing unit. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. Note that if the processing module, module, processing circuit, processing circuitry, and/or processing unit includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network). Further note that if the processing module, module, processing circuit, processing circuitry and/or processing unit implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. Still further note that, the memory element may store, and the processing module, module, processing circuit, processing circuitry and/or processing unit executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in one or more of the Figures. Such a memory device or memory element can be included in an article of manufacture.
One or more embodiments have been described above with the aid of method steps illustrating the performance of specified functions and relationships thereof. The boundaries and sequence of these functional building blocks and method steps have been arbitrarily defined herein for convenience of description. Alternate boundaries and sequences can be defined so long as the specified functions and relationships are appropriately performed. Any such alternate boundaries or sequences are thus within the scope and spirit of the claims. Further, the boundaries of these functional building blocks have been arbitrarily defined for convenience of description. Alternate boundaries could be defined as long as the certain significant functions are appropriately performed. Similarly, flow diagram blocks may also have been arbitrarily defined herein to illustrate certain significant functionality.
To the extent used, the flow diagram block boundaries and sequence could have been defined otherwise and still perform the certain significant functionality. Such alternate definitions of both functional building blocks and flow diagram blocks and sequences are thus within the scope and spirit of the claims. One of average skill in the art will also recognize that the functional building blocks, and other illustrative blocks, modules and components herein, can be implemented as illustrated or by discrete components, application specific integrated circuits, processors executing appropriate software and the like or any combination thereof
In addition, a flow diagram may include a “start” and/or “continue” indication. The “start” and “continue” indications reflect that the steps presented can optionally be incorporated in or otherwise used in conjunction with one or more other routines. In addition, a flow diagram may include an “end” and/or “continue” indication. The “end” and/or “continue” indications reflect that the steps presented can end as described and shown or optionally be incorporated in or otherwise used in conjunction with one or more other routines. In this context, “start” indicates the beginning of the first step presented and may be preceded by other activities not specifically shown. Further, the “continue” indication reflects that the steps presented may be performed multiple times and/or may be succeeded by other activities not specifically shown. Further, while a flow diagram indicates a particular ordering of steps, other orderings are likewise possible provided that the principles of causality are maintained.
The one or more embodiments are used herein to illustrate one or more aspects, one or more features, one or more concepts, and/or one or more examples. A physical embodiment of an apparatus, an article of manufacture, a machine, and/or of a process may include one or more of the aspects, features, concepts, examples, etc. described with reference to one or more of the embodiments discussed herein. Further, from figure to figure, the embodiments may incorporate the same or similarly named functions, steps, modules, etc. that may use the same or different reference numbers and, as such, the functions, steps, modules, etc. may be the same or similar functions, steps, modules, etc. or different ones.
While the transistors in the above described figure(s) is/are shown as field effect transistors (FETs), as one of ordinary skill in the art will appreciate, the transistors may be implemented using any type of transistor structure including, but not limited to, bipolar, metal oxide semiconductor field effect transistors (MOSFET), N-well transistors, P-well transistors, enhancement mode, depletion mode, and zero voltage threshold (VT) transistors.
Unless specifically stated to the contra, signals to, from, and/or between elements in a figure of any of the figures presented herein may be analog or digital, continuous time or discrete time, and single-ended or differential. For instance, if a signal path is shown as a single-ended path, it also represents a differential signal path. Similarly, if a signal path is shown as a differential path, it also represents a single-ended signal path. While one or more particular architectures are described herein, other architectures can likewise be implemented that use one or more data buses not expressly shown, direct connectivity between elements, and/or indirect coupling between other elements as recognized by one of average skill in the art.
The term “module” is used in the description of one or more of the embodiments. A module implements one or more functions via a device such as a processor or other processing device or other hardware that may include or operate in association with a memory that stores operational instructions. A module may operate independently and/or in conjunction with software and/or firmware. As also used herein, a module may contain one or more sub-modules, each of which may be one or more modules.
As may further be used herein, a computer readable memory includes one or more memory elements. A memory element may be a separate memory device, multiple memory devices, or a set of memory locations within a memory device. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. The memory device may be in a form a solid-state memory, a hard drive memory, cloud memory, thumb drive, server memory, computing device memory, and/or other physical medium for storing digital information.
While particular combinations of various functions and features of the one or more embodiments have been expressly described herein, other combinations of these features and functions are likewise possible. The present disclosure is not limited by the particular examples disclosed herein and expressly incorporates these other combinations.
The present U.S. Utility Patent Application claims priority pursuant to 35 U.S.C. § 120 as a continuation of U.S. Utility application Ser. No. 17/247,714, entitled “GENERATION OF AN ASSET EVALUATION REGARDING A SYSTEM ASPECT OF A SYSTEM,” filed Dec. 21, 2020, which claims priority pursuant to 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/992,661, entitled “System Analysis System”, filed Mar. 20, 2020, both of which are hereby incorporated herein by reference in their entirety and made part of the present U.S. Utility Patent Application for all purposes.
Number | Date | Country | |
---|---|---|---|
62992661 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17247714 | Dec 2020 | US |
Child | 17301361 | US |