The present disclosure relates generally to generators, and specifically to cooling generators and generator enclosures.
Generator systems, particularly those within enclosures, have traditionally required cooling to avoid overheating and to maintain proper fluid temperature within the radiator. Overheating of the generator system can result in premature shutdown, damage to mechanical components, and reliability risks for motors and fans. Failure to maintain proper fluid temperature within the radiator can result in suboptimal performance of the generator of the generator system.
In an embodiment, a system for cooling a generator is disclosed. The system includes a generator system. The generator system includes a generator, an enclosure, the enclosure surrounding the generator, and a radiator, wherein the radiator is fluidly connected to the generator. The system also includes a radiator and ventilation fan system. The radiator and ventilation fan system includes a controller. The radiator and ventilation fan system further includes a ventilation fan variable frequency drive (VFD), the ventilation fan VFD in electrical communication with the controller and a ventilation fan in electrical communication with the ventilation fan VFD. The radiator and ventilation fan system also includes a radiator fan VFD in electrical communication with the controller and a radiator fan in electrical communication with a radiator fans VFD. The system also includes temperature sensors, the temperature sensors in electrical communication with the controller.
In another embodiment, a method for cooling a generator includes supplying a radiator and ventilation fan system, the radiator and ventilation fan system. The radiator and ventilation fan system includes a controller. The radiator and ventilation fan system further includes a ventilation fan variable frequency drive (VFD), the ventilation fan VFD in electrical communication with the controller and a ventilation fan in electrical communication with the ventilation fan VFD. The radiator and ventilation fan system also includes a radiator fan VFD in electrical communication with the controller and a radiator fan in electrical communication with a radiator fan VFD. The radiator and ventilation fan system also includes temperature sensors, the temperature sensors in electrical communication with the controller, the temperature sensors including a jacket water engine temperature sensor, an enclosure temperature sensor, and a charge air temperature sensor. The method also includes communicating a value measured by the enclosure temperature sensor to the controller and based on the value measured by the enclosure temperature sensor, changing the voltage or frequency of the power input to the ventilation fan using ventilation fan VFD to achieve a predetermined set point for enclosure temperature.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
By changing the motor speed of enclosure ventilation fans 260, the enclosure air temperature may be maintained at a set point between, for example and without limitation, −50° F. and 200° F. In certain embodiments, the frequency of the power input to ventilation fans 260 may be between 5 Hz and 60 Hz. By changing the motor speed of radiator fans 270, the operating temperature of the cooling fluids for the generator may be maintained at a set point between, for example and without limitation, 0° F. and 250° F. In certain embodiments, during operation of generator 110, radiator fans 270 are in operation.
Controller logic of controller 210 may depend on the operating parameters of generator system 100 and radiator and ventilation fan system 200. In a non-limiting example, during startup of generator system 100, controller 210 may not recognize any faults or inputs, such as inputs from temperature sensors 240 until the generator is running at a predetermined set point, such as 1000 RPM or greater and for a predetermined time, such as at least 15 seconds. Once these conditions are met, controller 210 reviews all inputs including any faults or alarms. Upon detection of a fault, controller 210 may make several attempts to clear the fault. If the fault cannot be cleared, controller 210 may send a shutdown command to the controls of generator 110. In the alternative, if the fault cannot be cleared controller 210 may send an alarm to an operator or cause ventilation fan VFD 220 and/or radiator fan VFD 230 to operate at maximum speed. Further, in this embodiment, during operation of generator system 100, controller 210 may monitor charge air temperature sensor 246. Depending on the value returned by charge air temperature sensor 246, radiator fans 270 may be controlled using radiator fan VFD 230. For example, when charge air temperature sensor 246 has a low value, such as 90° F., radiator fan VFD 230 may set the speed of radiator fans 270 to 10% fan speed. In addition, for example, when charge air temperature sensor 246 is at a high value, such as 130° F., radiator fan VFD 230 may set the speed of radiator fans 270 to 100% fan speed. Radiator fan VFD 230 may also set the speed of radiator fans 270 based on jacket water engine temperature sensor 242. For example, when jacket water engine temperature sensor 242 returns a low value, such as 160° F., radiator fan VFD 230 may set the speed of radiator fans 270 to 10% fan speed. In addition, for example when jacket water temperature sensor returns a high value, such as 195° F., radiator fan VFD 230 may set the speed of radiator fans 270 to 100% fan speed. In certain embodiments, controller 210 may compare the value of charge air temperature sensor 246 and jacket water engine temperature sensor 242. Controller 210 may communicate to radiator fan VFD 230 the speed of radiator fans 270 based on the percentage of maximum input value, i.e., if the value returned by charge air temperature sensor 246 is closer to its maximum input temperature than the value returned by the jacket water engine temperature sensor 242, controller 210 may set the speed of radiator fans 270 based on the value of charge air temperature sensor 246. In yet another example of the embodiment, depending on the value returned by enclosure temperature sensor 244, enclosure ventilation fans 260 may be controlled using ventilation fan VFD 220. For example, when enclosure temperature sensor 244 has a low value, such as 70° F., ventilation fans VFD 220 may set the speed of enclosure ventilation fans 260 to 10% fan speed. In addition, for example, when enclosure temperature sensor 244 has a high value, such as 110° F., ventilation fan VFD 220 may set the speed of enclosure ventilation fans 260 to 100% fan speed. During shutdown of generator 110, when engine speed is below a certain predetermined value, radiator fan VFD 230 may set the speed of radiator fans 270 to 0% fan speed and ventilation fan VFD 220 may set the speed of enclosure ventilation fans 260 to 90% fan speed until a predetermined condition is met, such as enclosure temperature sensor 244 returning a value of below 110° F. or a time frame, such as one hour, is exceeded.
The foregoing outlines features of several embodiments so that a person of ordinary skill in the art may better understand the aspects of the present disclosure. Such features may be replaced by any one of numerous equivalent alternatives, only some of which are disclosed herein. One of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. One of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a nonprovisional application which claims priority from U.S. provisional application No. 63/318,148, filed Mar. 9, 2022, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63318148 | Mar 2022 | US |