Generator stator bar quick-form tooling system and method

Information

  • Patent Application
  • 20080086872
  • Publication Number
    20080086872
  • Date Filed
    October 16, 2006
    18 years ago
  • Date Published
    April 17, 2008
    16 years ago
Abstract
A modular “quick-form” tooling system and stator bar form set-up method is provided for reconfigurably mounting various stator bar bending/forming tool modules that are used to produce custom bends and curvatures in a length of stator bar stock. At least one stator bar support structure is provided having a support surface formed with an array of tool location alignment holes that allow a variety of different bend-forming tooling modules to be positioned relative to each other in a manner that will define the shape of a generator stator bar during a bending/forming process.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top view schematic diagram of an example configuration of the quick-form tooling system and apparatus;



FIG. 2 is a side view schematic diagram of an example configuration of the quick-form tooling system and apparatus; and



FIG. 3 is a top view detailed schematic diagram of an example stator bar end-arm support structure with tooling for forming bends mounted thereon.





DETAILED DESCRIPTION OF THE INVENTION


FIGS. 1 and 2 show an example arrangement of a quick-form tooling system 10 with stator bar tooling module bending apparatus in a simplified, schematic form. FIG. 1 provides a schematic top view and FIG. 2 provides a schematic side view. A center stator bar clamping table or support structure 12 may be anchored to the floor in any suitable fashion. On either side of center clamping table 12, one or more stator bar end-arm support structures, 14 and 16 respectively, are also provided.


In the example implementation disclosed herein, each of the support structures is fashioned in the form of a table having a flat top and several support legs and may be initially moveable or repositionable, but during use are anchored to the floor in accordance with conventional practice. It can be appreciated from FIGS. 1 and 2 that the center clamping/support table structure 12 both supports and immobilizes a center section 18 of a piece of conventional stator bar stock 20. Mounted on the top surface of central clamping/support table structure 12 are one or more stator bar clamping mechanisms 24 for positioning and securely supporting and immobilizing a center portion 18 of stator bar stock 20.


In the non-limiting example implementation described herein, the stator bar end-arm support structures 14 and 16 each have a pair of bending tool modules 22 mounted on top surface 28 for shaping the opposite ends of stator bar stock 20. Bending/forming tooling modules 22 may include hydraulic, electric or other manual or automated components to provide assistance to an operator/machinist during the forming operation. In addition, a plurality of mid-curvature height-wise bend forming piers or modules 26 are also provided between each bending tool module 22. The top surface 28 of each end-arm support structure is provided with an array of tool location alignment holes which accept mating mounting pins 30 provided on an underside mounting surface of the bend-forming tool modules 22 and mid-curvature tool modules 26. Since end-arm support structures 14 and 16 are mirror images of one another, therefore only one need be described in detail herein (see discussion herein below of FIG. 3).


The positioning of appropriate tooling modules on the surfaces of one or more appropriately spaced support structures allows producing curvatures in a length of stator bar stock that result in a desired stator bar form and shape. The placement and selection of the particular bend-forming and mid-curvature forming tooling modules to be mounted on each support table structure and the identification of appropriate tool location holes on the surfaces of the support structures for mounting the tooling modules may be determined by using actual physical dimensional measurements taken of a particular generator stator bar or, as explained herein below, by using conventional computer software for providing relational 3-D virtual modeling of both the desired stator bar and the quick-form tooling system 10, including any tooling support structures (e.g., 14,16) with tooling modules 22 mounted thereon.



FIG. 3 shows a more detailed top view of an example stator bar end-arm support table structure 31 having a variety of bend/curvature-forming tool modules 32, 33 and 34 mounted on a top surface that is provided with an array of tool alignment/positioning holes 36. (Note: not all holes are depicted on support structure surfaces in FIGS. 1 and 3.) Tool location positioning holes 36 are arranged in a general grid-like pattern covering a majority of the upper mounting support surface of support structure 31 and may also be provided in a variety of shapes and sizes (e.g., counter-sunk, tapered, etc.) so as to be specifically keyed to particular types of tooling or clamping modules.


Each bend-forming and mid-curvature forming tooling modules (32, 33, 34) includes a contoured curvature-forming stator bar guide portion 35 that is custom designed and manufactured for each particular stator bar forming operation. This custom contoured curvature-forming guide portion of each tooling module is implemented as a removable and replaceable part—with different custom manufactured curvature-forming guides used for tailoring the tooling modules to produce the desired stator bar shape and design. These curvature-forming guide portions 35 of the tooling modules may be made of suitable materials that reduce machining and manufacturing costs.


Each tooling module of the quick-form system is pre-assigned a specific mounting location on an end-arm support structure by relational 3-D modeling software based on data derived from either an existing stator bar design specification/drawing or a software created 3-D model of the desired stator bar. The bend-forming and mid-curvature forming tool modules are each provided with a custom formed stator bar contacting portion or curvature “forming block” portion 35 for guiding and shaping a particular section of the stator bar during the bending process. The stator bar contacting/curvature forming portion 35 of the tooling modules is preferably removable and replaceable and has a custom designed shape specific to each module and its relative position so that when the module is placed at the assigned position on the support table structure surface it will impart the appropriate curvature to a predetermined portion of the stator bar stock during the forming operation. In addition to the bend-forming and mid-curvature height-wise shape forming modules, other types of tooling modules for performing various metal working tasks are also contemplated.


Bend-forming tools 32, 33 and 34 may be any one of a variety of conventional manual and/or hydraulically-assisted metal bending tools fitted with a custom shaped bend-forming-block/bar-guide portion 35 that supports and conforms the stator bar stock 20 to a predetermined shape/curvature during the bending process. The custom shape of the bend-forming-block/bar guiding portion may be produced via conventional numerical controlled machining techniques based on direct measurements of a generator stator bar or, alternatively, based on dimensional data derived via computer modeling of the desired stator bar shape using relational 3-D virtual modeling software.


In the example implementation, end-arm support structure 31 also includes a set of mid-curvature forming blocks 34 for imparting curvature to a portion of stator bar stock 20 at an angle that is height-wise or orthogonally oriented with respect to bends imparted by bend-forming tools 32 and 33. A pre-bend or post bend stator bar clamping mechanism 39 may also be used.


One of ordinary skill in this art will recognize that a conventional commercially available relational 3-D modeling software program may be used (or an appropriate software application may be readily developed based upon well known 3-D modeling techniques) to enable 3-D modeling of a particular desired stator bar in relation to the quick-form tooling system support structures and appropriate modular bend-forming components to develop an appropriate tooling form layout that will impart the appropriate bends/curvatures to a stock stator bar during the forming operation. For example, relational 3-D modeling of the quick-form tooling system support structures and tooling component modules used in conjunction with dimensional data developed via 3-D modeling of a desired stator bar may be used to develop the custom shapes of the bar guide/curvature-forming portions of each tooling module as well as to provide a set-up reference plan that indicates the appropriate type and relative location/placement of each of the tooling modules on the surface of the support structures.


While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims
  • 1. A stator bar form tooling system, comprising: a central tooling support structure having at least one clamping mechanism mounted thereon for immobilizing a center-section of a stator bar stock;a pair of end-arm support structures for supporting one or more tools for working on opposite end portions of the stator bar stock, each end-arm support structure positioned in a region on opposite sides of the central support structure and each including an upper support surface having a grid-like array of tool location alignment holes; anda stator bar tooling module having one or more tool location alignment pins protruding from a bottom mounting surface that mate with corresponding tool location alignment holes on the upper surface of said end-arm support structures, wherein said tooling module may be adjustably positioned on said support surface of an end-arm support structure such that an arrangement of one or more of said tooling modules mounted on one or more end-arm support structures results in producing a particular stator bar shape during a bending/forming operation.
  • 2. A stator bar quick-form tooling system as in claim 1, wherein said central tooling support structure comprises a table having three or more support legs.
  • 3. A stator bar tooling form system as in claim 1, wherein an end-arm support structure comprises a table having three or more support legs.
  • 4. A stator bar tooling form system as in claim 1, wherein said stator bar tooling module further includes a removable curvature-forming stator bar guide portion for guiding and shaping a particular section of a stator bar stock during the bending process.
  • 5. A stator bar tooling form system as in claim 1, wherein said stator bar guide portion is custom designed and manufactured for each particular stator bar forming operation.
  • 6. A stator bar tooling form system as in claim 1, wherein each end-arm support structure includes a pair of bend-forming tools separated by one or more mid-curvature forming tools for imparting a height-wise curvature to a middle portion of said stator bar stock between two bend locations.
  • 7. A method for setting-up a stator bar form, comprising: clamping a center-section of a length of stator bar stock to a first tooling support structure for immobilizing a center portion of the stator bar stock;positioning a second tooling support structure a predetermined distance from said first support structure, said second tooling support structure including an upper support surface having a grid-like array of tool location alignment holes;providing one or more stator bar bend-forming tooling modules having one or more tool location alignment pins protruding from a bottom mounting surface that mates with corresponding tool location alignment holes on the upper surface of said second support structure;mounting one or more of said stator bar bend-forming tooling modules at predetermined locations on said second tooling support structure surface, wherein said one or more stator bar bend-forming tooling modules are positioned in a manner that will define a final shape of a generator stator bar during a bending/forming process, and;forming a final shape of at least one portion of the stator bar stock using said bend-forming tooling modules.
  • 8. A method for setting-up a stator bar form as in claim 7, further comprising: providing a tooling module location plan for identifying a position of a bend-forming tooling module based on data developed by using dimensional data for a particular stator bar and modeling an appropriate stator bar form tooling arrangement through the use of conventional 3-D object modeling software.
  • 9. In a stator bar form tooling system having a plurality of stator bar tooling support structures, at least one of said tooling support structures including an upper support surface having a grid-like array of tool location alignment holes, and a plurality of stator bar bend-forming tooling modules each having one or more tool location alignment pins protruding from a bottom mounting surface that mate with corresponding tool location alignment holes on an upper surface of said support structure, a stator bar tooling method, comprising: developing a 3-D virtual model of a particular stator bar based on stator bar dimensional data;developing a relational 3-D virtual model of the stator bar form tooling system with a tooling module position arrangement that corresponds to said stator bar for defining a final shape;positioning one or more tooling modules on surfaces of said support structures in accordance with the relational 3-D virtual model of the stator bar form tooling system; andforming a final shape of at least one portion of a length of stator bar stock using the bend-forming tooling modules stator bar form tooling system.
  • 10. The stator bar form tooling system of claim 9, wherein a tooling module is assigned tool location alignment holes corresponding to a specific location on an upper support surface of a support structure as predetermined by the relational 3-D virtual model.