Generator/Electric Motor, in Particular for Wind Power Plants, Cable Controlled Plants or for Hydraulic Plants

Abstract
A segmented electric generator/motor, such as for a wind powered generator, in which the rotor and/or stator is subdivided in the circumferential direction into segments disposed adjacent to one another. Additionally, the stator segments are accessible via and the rotor segments can be installed and removed in the axial direction in rotor segment mounts provided in the rotor ring. Each rotor segment preferably includes a base shaped to prevent radial and circumferential or tangential motion of the rotor segment while permitting axial motion in the rotor segment's respective mount. The rotor ring segment mounts are preferably sized to allow removal of stator segments through the openings.
Description
BACKGROUND AND SUMMARY

The present invention relates to a rotating machine, such as a generator or an electric motor for wind power plant, and traction cable plant. The rotating machine generally comprises a bearing, an annular stator supporting the bearing, an annular, turnable rotor facing the stator and supported by the bearing, and, connected to the rotor, a drive arrangement. In embodiments employed as electrical generators or motors, one of the stator or rotor will carry permanent magnets or other magnetic field generators, while the other of the stator and the rotor will carry windings, the magnetic field generators and the windings being disposed on opposing surfaces of the stator and of the rotor.


Preferred embodiments are particularly suited for wind powered machines, such as large scale electrical generators, and the drive arrangement in such embodiments includes blades mounted on a hub attached to the rotor so that the rotor rotates when wind passes over the blades. Large scale wind powered electrical generators are becoming more common, particularly in onshore and offshore wind farm applications. In such large scale generators, a tower supports a nacelle housing the stator, which supports the rotor, which supports the drive arrangement, such as a hub and blades. Equipment required for controlling the generator, including controls for the blades and other machinery, can be housed in the tower, the nacelle, and/or in cavities within the stator and/or the rotor. Embodiments preferably are particularly suited for use in an annular variety of such rotating machines in which an annular stator faces an annular rotor. Preferably, the rotor rotates within the stator and carries the magnetic field generators, such as permanent magnets, on an external surface of the rotor. The windings or coils are carried on an inner surface of the stator facing the rotor. It should be clear that the rotor could rotate outside the stator and/or the magnetic field generators could be carried on the stator. The machines are sized and arranged to enable human passage into the interior of the rotor.


In rotating machines of this type, particularly the annular variety, a problem arises in that the magnetic field generators, such as permanent magnets, as well as the windings, are difficult to maintain and repair. In the preferred annular arrangement in which the rotor rotates within the stator, access to the stator elements is blocked from inside the machine by the rotor. In most cases the rotating machine components must be entirely removed or disassembled in order to obtain access to the point of a fault or to get access to a part to be maintained. It is sometimes necessary to remove virtually the complete stator or rotor in order to bring a component to the workshop and to repair or maintain it. This can be quite cumbersome since the parts involved can be quite heavy and difficult to manage and/or transport when they are atop a fifteen meter high or taller support tower.


A generator is described in the international patent application WO 2004/017497 A1 where simple mounting and dismounting of individual generator components is possible. In this case, however, only one particular arrangement of annular windings and the same armature is provided, which are disposed so as to be sequential. That is, the generator is constructed with an axial arrangement of axially-alternating rotors and stators. The rotors and stators are of similar radial dimension and are broken into segments. However, because of the axial arrangement of the components, the issue of access to the annular stator surrounding an annular rotor, or vice versa, is not addressed.


Another generator is disclosed in U.S. Pat. No. 5,844,341 to Spooner et al. Spooner et al. employ a modular rotor comprising concentric, axially spaced rotor rings mounted on a shaft with spokes. Pairs of the axially-spaced rotor rings support magnet modules that can be installed and removed in a radial direction, the modules being attached to the rings with bolts extending axially through the rings into radially and circumferentially extending mounting plates. While Spooner et al. employ a modular rotor, they do so in a spoked wheel type generator that does not encounter the issues an annular generator has regarding mounting of the rotor segments and access to the stator components. The Spooner et al. solution can not be employed in an annular generator since the rotor segments are supported only at their ends, which would be insufficient in an annular generator.


Embodiments disclosed herein provide a circumferentially segmented rotating machine, such as an annular wind powered generator, in order to be able to mount, repair, and maintain the rotating device in a simpler manner by providing easy access to components of the rotating machine. Embodiments achieve easy access to the components of the rotor and stator by providing a circumferentially segmented rotor and a circumferentially segmented stator. The stator segments are attached to the stator/housing with bolts extending radially to the exterior of the stator and are disposed so that the stator segments are adjacent to one another. The rotor segments are preferably mounted in an annular rotor ring via openings in the rotor ring. A base preferably allows easy axial removal of each rotor segment by engaging axially-extending edges of a respective axial mounting slot formed in the rotor ring to extend from one edge of the rotor ring axially into the ring. Like the stator segments, the rotor segments are disposed so as to be adjacent to one another. When a rotor segment is removed by sliding it out of the rotor ring in an axial direction, one or more stator segments can be accessed through the exposed opening of the empty mounting slot. If the mounting slots, rotor segments, and stator segments are sized properly, then the stator segments can be removed through the openings of the mounting slots, such as in a substantially radial direction.


In a preferred embodiment, each rotor segment comprises at least one permanent magnet and each stator segment has at least one winding. Each rotor segment preferably is disposed on a base which is provided with a profile shaped to prevent radial and circumferential motion of the segment while allowing axial movement of the segment. For example, a dovetail-shaped profile which engages the edges of the mounting slot in the rotor ring with grooves in sides of the profile can be employed. Thus, each rotor segment can be removed in the axial direction without the entire rotor having to be removed. It should again be noted that, while embodiments are described with the rotor carrying magnets and the stator carrying windings or coils, the stator could instead carry magnets while the rotor could instead carry windings or coils.





BRIEF DESCRIPTION OF THE DRAWINGS

Further characteristics and advantages of the segmented rotating machine according to the invention follow from the claims and from the following description of a preferred form of embodiment represented in the accompanying drawings. Shown are:



FIG. 1, a view in the axial direction of a rotating machine, such as a generator/electric motor, according to embodiments, in particular for wind power mechanisms, winch cable mechanisms and/or hydraulic mechanisms, and



FIG. 2, a schematic, enlarged detail from FIG. 1.





DESCRIPTION

As shown in the figures, a rotating machine according to the invention, such as a wind powered generator, is represented with the reference number 1. The rotating machine 1 comprises a stator 3 and a rotor 2. The stator 3 is subdivided into a plurality of circumferential stator segments 4, while the rotor 2 is subdivided into a plurality of circumferential rotor segments 5 that are preferably larger than the stator segments 4. Where the rotating machine 1 embodiments is a generator or electric motor, each stator segment 4 can comprise at least one winding 6. In the present preferred case, two tooth-wound coil windings are shown, though other numbers and types of windings can be employed within the scope of embodiments. Again, where the rotating machine 1 embodiments is a generator or electric motor, the rotor segments 5 preferably carry magnetic field generators 7, preferably in the form of permanent magnets.


According to embodiments, each rotor segment 5 carries at least one magnetic field generator 7, such as a permanent magnet. In the present case shown in the FIGS., four permanent magnets, are preferably disposed on each segment 5, but different numbers of magnets 7 could be employed within the scope of embodiments. Preferably, the rotor segment 5 includes a base 8 which is mounted in a rotor ring 9 of the rotor 2 via a rotor segment mount 10 in the form of a slot, window, or opening, which extends in an axial direction along the rotor ring 9. More particularly, the mount 10 preferably includes axially extending, circumferentially spaced apart side walls between an end of the rotor ring and a circumferentially extending end wall of the segment mount. The base 8 is shaped to allow axial movement of the base 8 in the mount 10, but to restrain the base 8 against circumferential and radial movement. For example, the base 8 can have a dovetail shaped profile in which the edges of the base 8 include grooves that have inclined surfaces, as seen in FIG. 2. Preferably, in embodiments the mount 10, and the corresponding base 8 and rotor segment 5, is sized in such a manner that a stator segment 4 can be removed at the face when a rotor segment 5 is not present in the mount 10. In other words, when maintenance of a stator segment 4 is required, one or more rotor segments 5 in the vicinity of the stator segment 4 is removed by sliding it axially in the mount 10 to provide access to the stator segment 4 via the opening left in the mount 10. If the stator segment 4 must be removed, then it can be removed in a substantially radial direction (at the face) through the opening left in the mount 10 once the stator segment's restraints have been released.


In an expedient manner, the outer face of the wind powered generator of embodiments is provided with cooling ribs or fins 11. The stator segments 4 are preferably restrained or mounted with bolts projecting into the stator 2 from the outer face of the rotating machine 1 and into or through the stator segments 4, or vice versa. Preferably, the bolts are placed between cooling ribs or fins 11 so as not to interfere with the ribs or fins 11.


It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. It will also be noted that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.

Claims
  • 1. An electric generator/motor for wind power plant or traction cable plant, the electric generator/motor comprising: a bearing;an annular stator supporting the bearingan annular rotor facing the stator and rotating with respect to the stator; andrespective generator elements, the generator elements comprising permanent magnets and windings, disposed on respective opposing faces of the stator and of the rotor;the annular rotor being subdivided in the circumferential direction into segments disposed adjacent to one another, the rotor segments being selectively movable in the axial direction, thereby facilitating installation, removal, and maintenance of the rotor segments and providing access to components mounted on the stator.
  • 2. The electric generator/motor of claim 1 wherein the annular rotor further comprises a rotor ring in which the rotor segments are mounted.
  • 3. The electric generator/motor of claim 2 wherein the rotor ring comprises a rotor segment mount for each rotor segment, the mount comprising circumferentially spaced apart edges extending axially from an end of the rotor ring to an end wall of the mount.
  • 4. The electric generator/motor of claim 3 wherein each rotor segment has a base shaped to restrain the segment against circumferential and radial movement while enabling axial movement of the rotor segment.
  • 5. The electric generator/motor of claim 1 wherein the annular stator comprises circumferential segments sized to fit through the rotor segment mounts, the stator segments being accessible through the rotor segment mounts when a respective rotor segment is axially moved out of its mount in the rotor ring.
  • 6. A segmented electric generator/motor for wind power plant or traction cable plant, the electric generator/motor comprising: an annular rotor carrying a first group of generator elements, the generator elements comprising one of magnetic field generators and windings;an annular stator carrying a second group of generator elements facing the first group of generator elements;a bearing supported by the annular stator and supporting the annular rotor for rotation relative to the annular stator;the annular rotor including a rotor ring and a plurality of circumferential rotor segments carrying the generator elements of the first group of generator elements, the rotor segments being mounted adjacent one another on the rotor ring.
  • 7. The segmented electric generator/motor of claim 6 wherein the rotor ring comprises a segment mount for each rotor segment, the segment mount including axially extending circumferentially spaced apart side walls between an end of the rotor ring and a circumferentially extending end wall of the segment mount, the segment mount thereby allowing axial installation and removal of a respective rotor segment.
  • 8. The segmented electric generator/motor of claim 7 wherein the rotor is mounted within the stator and the rotor segment mounts provide access to the second group of generator elements carried on the stator when respective rotor segments are absent.
  • 9. The segmented electric generator/motor of claim 6 wherein the stator comprises a plurality of adjacent circumferential segments.
  • 10. The segmented electric generator/motor of claim 9 wherein each stator segment carries a plurality of generator elements of the second group of generator elements.
  • 11. The segmented electric generator/motor of claim 6 wherein each rotor segment further comprises a base that engages a respective segment mount in the rotor ring, thereby preventing radial and tangential movement of the rotor segment while permitting axial movement of the rotor segment.
  • 12. The segmented electric generator/motor of claim 11 wherein the base comprises grooves on sides thereof corresponding to the edges of the segment mount.
  • 13. A segmented electric generator/motor for wind power plant or traction cable plant, the electric generator/motor comprising: a plurality of circumferential segments each carrying at least one first generator element;one of an annular stator and an annular rotor including a ring supporting the plurality of circumferential segments;second generator elements on the other of the annular stator and the annular rotor being arranged to face the first generator elements;a bearing supported by the stator and rotatably supporting the rotor for rotation relative to the stator, the first elements on the rotor facing the second elements on the stator; anda plurality of segment mounts in the ring, each segment mount supporting a respective circumferential segment.
  • 14. The segmented electric generator/motor of claim 13 wherein the rotor is mounted within the stator and the ring is a rotor ring.
  • 15. The segmented electric generator/motor of claim 13 wherein the stator comprises another plurality of circumferential segments each carrying at least one of the second generator elements.
  • 16. The segmented electric generator/motor of claim 13 wherein the stator is mounted within the rotor and the ring is a stator ring.
  • 17. The segmented electric generator/motor of claim 13 wherein the ring is part of an inner of the rotor and the stator so that removal of a circumferential segment provides access to an inner surface of the outer of the rotor and the stator.
  • 18. The segmented electric generator/motor of claim 17 wherein the outer or the rotor and the stator comprises another plurality of circumferential segments that can each be removed through a segment mount of the ring when a respective segment of the inner of the rotor and the stator is absent from its mount.
Priority Claims (1)
Number Date Country Kind
BZ2004A000047 Sep 2004 IT national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB05/02742 9/16/2005 WO 00 11/29/2007